WO2019229853A1 - 管理ノード、転送ノード及び通信システム - Google Patents

管理ノード、転送ノード及び通信システム Download PDF

Info

Publication number
WO2019229853A1
WO2019229853A1 PCT/JP2018/020570 JP2018020570W WO2019229853A1 WO 2019229853 A1 WO2019229853 A1 WO 2019229853A1 JP 2018020570 W JP2018020570 W JP 2018020570W WO 2019229853 A1 WO2019229853 A1 WO 2019229853A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
communication
information
forwarding
nodes
Prior art date
Application number
PCT/JP2018/020570
Other languages
English (en)
French (fr)
Inventor
もとこ 鈴木
宏司 坪内
榑林 亮介
アシック カーン
賢二 福井
アナラ ゾリーグ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/020570 priority Critical patent/WO2019229853A1/ja
Publication of WO2019229853A1 publication Critical patent/WO2019229853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update

Definitions

  • the present invention relates to a management node, a transfer node, and a communication system that relay data between communication nodes.
  • the present invention provides a management capable of avoiding a data relay delay when relaying data in a plurality of transfer nodes to which a communication node can be dynamically connected.
  • An object is to provide a node, a forwarding node, and a communication system.
  • a management node configured to be communicably connected to a transfer node that performs relay processing of data transmitted and received between a plurality of communication nodes.
  • a management node for storing node information that is referred to during relay processing in a plurality of transfer nodes, and that is based on a data communication log for each of the plurality of communication nodes.
  • the information related to the future communication partner predicted in the node is registered in the node information corresponding to the communication node, and the node information for each of the plurality of communication nodes is transferred corresponding to the information related to the communication partner registered in the node information. Pre-send to node.
  • the forwarding node is configured to be communicably connected to the management node, and performs relay processing of data transmitted / received between a plurality of communication nodes based on node information received from the management node. Do.
  • the communication system includes the management node and the forwarding node.
  • the transfer node includes a plurality of communication nodes configured to be communicable and a management node that stores node information regarding the transfer node that is communication-connected for each of the plurality of communication nodes.
  • node information for each of the plurality of communication nodes is transmitted in advance to a forwarding node corresponding to a future communication partner predicted for each of the plurality of communication nodes.
  • FIG. 3 is a diagram illustrating a processing sequence for registering node information in the communication system 1.
  • FIG. 1 is a diagram showing a system configuration of a communication system 1 according to the present embodiment.
  • a communication system 1 is a node group constituting a communication network that relays data between communication nodes such as user terminals (UEs) or server devices, and includes a plurality of transfer nodes. 10 and at least one management node 20.
  • the management node 20 is configured to be communicably connected to a plurality of transfer nodes 10, and is a node that collectively manages the communication connection states of the communication nodes in the plurality of transfer nodes 10.
  • the forwarding node 10 is configured to be communicably connected to the forwarding node 10.
  • the forwarding node 10 is configured to be dynamically communicable with the communication node using wireless communication or wired communication, and the communication node communicably connected to the own node and the communication node communicably connected to another node. Node that relays packets (data) between The forwarding node 10 can also relay packets between a communication node that is communicatively connected to the own node and a communication node that is communicatively connected to the own node. That is, the forwarding node 10 is configured to be communicably connected to any communication node as the communication node moves.
  • the forwarding nodes 10 include six forwarding nodes 10a, 10b, 10c, 10d, 10e, and 10f.
  • the management node 20 is not limited to one and may be two or more.
  • UE 31 that is a communication node is communicatively connected to transfer node 10 d
  • server device 32 that is a communication node is communicatively connected to transfer node 10 f
  • UE 33 that is a communication node is transferred to transfer node 10 e.
  • the UE 34 as a communication node is communicatively connected to the forwarding node 10a.
  • the state in which the communication node is connected to the specific forwarding node 10 is also referred to as “the communication node is located in the specific forwarding node 10”.
  • FIG. 2 is a block diagram showing functional configurations of the forwarding node 10 and the management node 20 of FIG.
  • the forwarding node 10 includes a relay processing unit 101, a node information storage unit 102, and a communication log transmission unit 103.
  • the management node 20 includes a node information storage unit 201, a communication log reception unit 202, a prediction unit 203, and a node information transmission unit 204.
  • each configuration of the forwarding node 10 and the management node 20 will be described.
  • forwarding node 10 First, the components of the forwarding node 10 will be described. Note that the forwarding nodes 10a, 10b, 10c, 10d, 10e, and 10f shown in FIG. 1 all have the same configuration.
  • the relay processing unit 101 transfers a packet transmitted from a communication node located in the forwarding node 10 that is the local node to the forwarding node 10 that is another node in which the communication node that is the destination of the packet is located. Relay. Further, the relay processing unit 101 relays a packet transmitted from the forwarding node 10 which is another node to a communication node located in the forwarding node 10 which is the own node, to the communication node. At this time, the relay processing unit 101 identifies the forwarding node 10 in which the communication destination node of the packet is located based on the node information (routing information) stored in the node information storage unit 102, and the identified forwarding The packet is relayed to the node 10. In addition, when the transmission destination of the packet is a communication node located in the forwarding node 10 that is the own node, the relay processing unit 101 relays the packet to the communication node that is communicably connected to the own node.
  • FIG. 3 shows the data structure of the node information stored in the node information storage unit 102.
  • FIG. 1 an example of the data configuration of the node information stored in the node information storage unit 102 of the forwarding node 10f (FIG. 1) is shown.
  • the transfer node 10 in which those communication nodes are located is identified.
  • Forwarding node identifiers “forwarding node E” and “forwarding node F” are stored in association with each other.
  • the relay processing unit 101 is communicatively connected to the forwarding node 10e, which is another node identified by the forwarding node identifier “forwarding node E”, with the UE 33 identified by the communications node identifier “UE3”. It is possible to determine that it is in the area and relay a packet whose destination is the UE 33 to the forwarding node 10e.
  • the relay processing unit 101 is communicatively connected to the forwarding node 10f that is the local node identified by the forwarding node identifier “forwarding node F” and the server device 32 identified by the communications node identifier “server 2” (present). The packet having the server device 32 as the transmission destination can be relayed to the server device 32.
  • the node information related to the communication node located in the own node detects that the communication node is first connected to the own node (being located). To be registered. Also, this node information is deleted at the timing when it is detected that the forwarding node 10 in which the communication node is located has changed from its own node to another node.
  • node information related to a communication node located in another node is referred from the management node 20 when a packet having the communication node as a transmission destination is generated.
  • node information related to communication nodes residing in other nodes can be acquired and stored in advance from the management node 20 by the function of the management node 20 described later.
  • the communication log transmission unit 103 collects a communication log related to a packet transmitted from a communication node located in the local node, and the communication log is collected as needed (for example, every time a packet is generated, Or, periodically) to the management node 20.
  • the communication log transmission unit 103 of the forwarding node 10e (FIG. 1) is a UE 33 identified by the communication node identifier “UE3” as a communication node residing in its own node.
  • the communication log “UE3: Server 2, UE4” is transmitted. From such a communication log, it is possible to specify the occurrence of two packets whose destinations are the server device 32 and the UE 34 from the UE 33.
  • the node information storage unit 201 is information for specifying the forwarding node 10 located in each of the plurality of communication nodes, and is a part that stores node information that is referred to during packet relay processing in the forwarding node 10.
  • FIG. 4 shows the data structure of the node information stored in the node information storage unit 201.
  • the node information for each of the communication node identifiers “UE1”, “server 2”, “UE3”, “UE4” for identifying the communication node, those communication nodes are located.
  • Forwarding node identifiers “forwarding node D”, “forwarding node F”, “forwarding node E”, and “forwarding node A” for identifying the forwarding node 10 are stored in association with each other.
  • the UE 31, the server device 32, the UE 33, and the UE 34 identified by the communication node identifiers “UE1”, “server 2”, “UE3”, “UE4” are respectively transferred to the forwarding node identifier “forwarding node”.
  • D ”,“ forwarding node F ”,“ forwarding node E ”, and“ forwarding node A ” can be determined to be located in forwarding nodes 10d, 10f, 10e, and 10a.
  • a packet relay process can be executed by referring to the node information.
  • the node information stored in the node information storage unit 201 is registered when the transfer node 10 is notified that each communication node is first located in the transfer node 10.
  • the node information is updated by notifying the transfer node 10 that the transfer node 10 in which the communication node is located has been changed.
  • the node information for each communication node is associated with a communication log indicating a history regarding the transmission destination of the packet transmitted from the communication node and information indicating a future communication partner of the communication node.
  • This communication log is information stored based on the communication log transmitted from the communication log transmission unit 103 of the transfer node 10, and information on the communication partner is information predicted by the prediction unit 203 based on this communication log. It is.
  • the communication log receiving unit 202 receives the communication log for each communication node transmitted from the transfer node 10.
  • the communication log receiving unit 202 adds the received communication log to the node information related to the corresponding communication node and registers it.
  • the prediction unit 203 refers to the communication log included in the node information for each of the plurality of communication nodes, and predicts a future communication partner based on the communication log. That is, the prediction unit 203 identifies the communication frequency for each communication node of the communication partner from the communication log acquired within a certain period, and the communication partner with the higher communication frequency (for example, the predetermined number in the order of the higher communication frequency). Communication partner or a communication partner whose communication frequency exceeds a predetermined threshold) is predicted as a future communication partner. It is assumed that the communication partner predicted in this way has a high probability that the corresponding communication node will be a transmission destination for transmitting future packets.
  • the prediction unit 203 adds information indicating the communication partner predicted for each of the plurality of communication nodes to the node information corresponding to the communication node stored in the node information storage unit 201 and registers the information. For example, as illustrated in FIG. 4, the prediction unit 203 performs communication using the server device 32 as a transmission destination based on the communication log “server 2, UE 4, server 2” regarding the UE 33 identified by the communication node identifier “UE3”. The frequency is two times, and the communication frequency with the UE 34 as the transmission destination is specified as one time. As a result, the prediction unit 203 predicts that the future communication partner of the UE 33 is the server device 32 having a relatively high communication frequency, and corresponds the information “server 2” for identifying the predicted communication partner to the UE 33. Register the node information.
  • the prediction unit 203 identifies the communication rate for each communication node of the communication partner from the communication log, and the communication partner with the higher communication rate (for example, a predetermined number of communication partners with the highest communication rate, or A communication partner whose communication ratio exceeds a predetermined threshold value) may be predicted as a future communication partner.
  • the communication counterpart predicted in this way is also assumed to have a high probability that the corresponding communication node will be a transmission destination for transmitting future packets.
  • the prediction unit 203 determines the ratio of the total number of packet transmissions within a predetermined period and the number of transmissions with a specific communication node as a transmission destination as a communication ratio for communication with the specific communication node as a transmission destination.
  • a transmission destination with a high communication rate is predicted as a future communication partner.
  • the total number of packet transmissions is 3
  • the number of transmissions with the server device 32 as a transmission destination is 2
  • the number of transmissions with the UE 34 as the transmission destination is specified as one.
  • the communication ratio with the server device 32 as the transmission destination is calculated as 2/3
  • the communication ratio with the UE 34 as the transmission destination is calculated as 1/3
  • the future communication partner of the UE 33 compares the communication ratio. It is predicted that the server device 32 is high.
  • the node information transmission unit 204 transmits in advance the node information stored in the node information storage unit 201 to the forwarding node 10 corresponding to the communication partner information registered in the node information. That is, the node information transmission unit 204 transmits in advance node information for each of the plurality of communication nodes to the forwarding node 10 in which the communication node predicted as the future communication partner of each communication node is located.
  • the server device 32 identified by the node information “UE3: forwarding node E” regarding the UE 33 is identified by the information “server 2” of the communication partner registered in the node information.
  • the transmission timing of the node information may be a periodic timing, or triggered by the communication node predicted to be a future communication partner started communication connection to the forwarding node 10 (being located). The timing may be as follows.
  • FIG. 5 is a diagram illustrating a processing sequence for registering node information in the communication system 1
  • FIG. 6 is a diagram illustrating a processing sequence for transmitting node information in the communication system 1.
  • the forwarding node 10e and the forwarding node 10f relay the packet toward the server device 32 (step S1).
  • the transfer node 10e holds a communication log in which the transmission destinations related to the packets transmitted from the UE 33 are specified by the “server 2” and “UE 4”.
  • the communication log transmission unit 103 of the forwarding node 10e adds a communication log with the transmission destination “server 2” to the communication log related to the packet transmitted from the UE 33, and holds the communication log (step S3). S2). Thereafter, the communication log held in the forwarding node 10e is transmitted to the management node 20 at any time (for example, periodically) (step S3).
  • the communication log receiving unit 202 of the management node 20 that has received the communication log registers the communication log in the node information corresponding to the UE 33, and then the prediction unit 203 of the management node 20 refers to the communication log in the registered node information. Then, a future communication partner is predicted for the UE 33 (step S4). Furthermore, the prediction unit 203 of the management node 20 registers the information of the communication node identifier “server 2” that identifies the predicted communication partner in the node information corresponding to the UE 33 (step S5).
  • the node information registration process in the management node 20 as described above is repeatedly executed for each of a plurality of communication nodes.
  • the transmission timing of the node information for each of the plurality of communication nodes registered in the management node 20 may be periodic, or is the timing at which the communication node starts to be located in the forwarding node 10 to which the node information is transmitted. May be.
  • the procedure of node information transmission at the latter timing will be described.
  • a location registration signal is transmitted from the UE 34 to the management node 20 via the transfer node 10a at the timing when the UE 34 starts communication connection (location) to the transfer node 10a (step S11).
  • This location registration signal enables the management node 20 to grasp that the UE 34 has started visiting the forwarding node 10a.
  • the node information transmission unit 204 of the management node 20 obtains the communication node identifier “UE4” for identifying the UE 34 when the UE 34 knows that the UE 34 is in the forwarding node 10a based on the location registration signal. Node information included as information is referenced from the node information storage unit 201 (step S12).
  • the node information transmission unit 204 of the management node 20 displays node information (for example, “UE1: node D”) indicating the location of each communication node registered in the referenced node information, and the UE 34 indicates the location. It transmits to the forwarding node 10a that has started (step S13). Then, the forwarding node 10a stores the received node information in the node information storage unit 102 (step S14).
  • node information for example, “UE1: node D”
  • a plurality of transfer nodes 10 configured such that a plurality of communication nodes can be located (communication connection), and management for storing node information regarding the destination transfer node 10 for each of the plurality of communication nodes
  • a future communication partner is predicted for each of the plurality of communication nodes, and node information for each of the plurality of communication nodes is transmitted in advance to the transfer node 10 corresponding to the predicted communication partner.
  • control signaling can be suppressed as compared with such a method, and overall efficient packet transmission can also be realized.
  • the prediction unit 203 predicts a communication node as a future communication partner
  • the node information transmission unit 204 is a communication node predicted as a communication partner.
  • Node information is transmitted in advance to the forwarding node 10 in which the node is located.
  • the node information transmitting unit 204 transmits node information to the forwarding node 10 when a communication node predicted as a communication partner starts to be located in the forwarding node 10. In this way, the node information related to the forwarding node 10 in which the communication node to which the packet is relayed is located can be efficiently transmitted to the forwarding node 10 before the packet relay processing. As a result, when relaying a packet in the forwarding node 10, a delay in packet communication can be avoided more reliably.
  • the prediction unit 203 predicts a future communication partner based on the communication frequency or communication ratio for each communication partner specified from the communication log. In this case, a future communication partner for each communication node can be appropriately predicted, and as a result, a delay in packet communication can be avoided more reliably.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the forwarding node 10 and the management node 20 in one embodiment of the present invention may function as a computer that performs the processing of the present embodiment.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of the forwarding node 10 and the management node 20 according to the present embodiment.
  • the above-described transfer node 10 or the like may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the forwarding node 10 or the like may be configured to include one or a plurality of devices illustrated in FIG. 7, or may be configured not to include some devices.
  • Each function in the transfer node 10 and the like is performed by causing the processor 1001 to perform computation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and performing communication by the communication device 1004, the memory 1002, and the storage. This is realized by controlling reading and / or writing of data in 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the relay processing unit 101, the communication log transmission unit 103, and the like may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the relay processing unit 101, the communication log transmission unit 103, and the like may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the communication method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device a network controller, a network card, a communication module, or the like.
  • the relay processing unit 101, the communication log transmission unit 103, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the transfer node 10 and the like include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • the communication node is predicted as the future communication partner for each communication node, but the forwarding node 10 may be predicted as the future communication partner.
  • FIG. 8 shows an example of the data configuration of the node information stored in the node information storage unit 201 in the communication system 1 according to the first modification that predicts the forwarding node 10 as a future communication partner.
  • the communication log transmission unit 103 of the forwarding node 10 detects the occurrence of a packet from another communication node located in the own node via another node
  • a transfer node identifier for identifying a certain other node is transmitted as a communication log.
  • the communication log receiving unit 202 of the management node 20 adds and registers the received communication log including the transfer node identifier to the node information regarding the corresponding communication node. For example, as shown in FIG.
  • the node information related to the UE 33 identified by the communication node identifier “UE3” includes the forwarding nodes identified by the forwarding node identifiers “forwarding node F”, “forwarding node A”, and “forwarding node F”.
  • a communication log related to packet relay via the node 10 is registered.
  • FIG. 9 is a sequence diagram illustrating a procedure for registering node information when a packet is transmitted from the UE 33 via the forwarding node 10f in the communication system 1 according to the first modification.
  • the forwarding node 10e and the forwarding node 10f relay the packet (step S21).
  • the forwarding node 10e holds a communication log in which the forwarding destination related to the packet transmitted from the UE 33 is specified by “forwarding node F” and “forwarding node A”.
  • the communication log transmission unit 103 of the forwarding node 10e adds a communication log with the forwarding destination “forwarding node F” to the communication log related to the packet transmitted from the UE 33, and holds the communication log ( Step S22). Thereafter, the communication log held in the forwarding node 10e is transmitted to the management node 20 at any time (for example, periodically) (step S23).
  • the communication log receiving unit 202 of the management node 20 that has received the communication log registers the communication log in the node information corresponding to the UE 33, and then the prediction unit 203 of the management node 20 refers to the communication log in the registered node information. Then, a future communication partner is predicted for the UE 33 (step S24). Further, the prediction unit 203 of the management node 20 registers the information of the forwarding node identifier “forwarding node F” that identifies the predicted communication partner in the node information corresponding to the UE 33 (step S25).
  • the node information registration process in the management node 20 as described above is repeatedly executed for each of a plurality of communication nodes.
  • the forwarding node 10 is predicted as the communication partner in the prediction unit 203, and the node information is transmitted in advance to the forwarding node 10 predicted as the communication partner in the node information transmission unit 204.
  • node information related to the forwarding node 10 that is the relay destination of the packet can be referred to efficiently, so that a delay in packet relay can be reliably avoided.
  • FIG. 10 is a block diagram illustrating functional configurations of the forwarding node 10A and the management node 20A according to the second modification.
  • the configuration of the second modification is different from the configuration of the embodiment shown in FIG. 2 in that the forwarding node 10A is provided with a prediction unit 104 that is a functional unit responsible for prediction processing of a future communication partner. To do.
  • FIG. 11 is a sequence diagram showing a procedure for registering node information when a packet whose destination is the server device 32 is transmitted from the UE 33 in the second modification.
  • the communication partner is predicted based on the communication log as compared with the procedure composed of steps S1 to S5 in the embodiment shown in FIG. The difference is that the process is executed in the forwarding node 10 (step S33) and that the information of the predicted communication partner is transmitted from the forwarding node 10 to the management node 20 (step S34).
  • FIG. 12 is a sequence diagram showing a procedure for registering node information when a packet is transmitted from the UE 33 via the forwarding node 10f in the second modified example.
  • the communication partner based on the communication log is compared with the procedure composed of steps S21 to S25 in the first modified example shown in FIG.
  • the prediction process is executed in the transfer node 10 (step S43), and the information on the predicted communication partner is transmitted from the transfer node 10 to the management node 20 (step S44).
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • system and “network” used in this specification are used interchangeably.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • a mobile communication terminal is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal by those skilled in the art. , Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “decision” are, for example, judgment, calculation, calculation, processing, derivation, investigating, searching (looking up) (for example, table , Searching in a database or another data structure), considering ascertaining what is “certain”, “determining”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (for example, accessing data in a memory) may be considered as “determined” or “determined”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to the element does not generally limit the quantity or order of the elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
  • the present invention uses a management node, a transfer node, and a communication system, and can avoid data relay delay when data is relayed in a plurality of transfer nodes that can be dynamically connected to the communication node. It is to make.

Abstract

通信システム1は、複数の通信ノードが在圏可能に構成され、2つの通信ノード間で送受信されるパケットの中継処理を行う複数の転送ノード10と、複数の通信ノード毎に在圏先の転送ノード10を示す情報であって、複数の転送ノード10における中継処理時に参照されるノード情報を記憶する管理ノード20とを含んで構成される通信システムであって、複数の通信ノード毎に、パケットの通信ログを基に将来の通信相手先を予測し、通信相手先に関する情報を当該通信ノードに対応するノード情報に登録する予測部203と、複数の通信ノード毎のノード情報を、当該ノード情報に登録された通信相手先に関する情報に対応する転送ノード10に予め送信するノード情報送信部204とを備える。

Description

管理ノード、転送ノード及び通信システム
 本発明は、通信ノード間でデータを中継する管理ノード、転送ノード及び通信システムに関する。
 従来から、信号の転送先に関するルーティング情報を参照して信号を中継するルーティング方法が広く用いられている。例えば、下記特許文献1には、信号の転送先の信号局に対するルーティング情報を保有している場合にそのルーティング情報に従ってルーティングを行い、信号の転送先の信号局に対するルーティング情報を保有していない場合に自局を管理する上位の信号局に対してルーティングを要求する信号中継局が記載されている。
特開平10-164242号公報
 上記特許文献1に記載の方法においては、信号の転送先の信号局に対するルーティング情報を保有していない場合に上位の信号局に対して要求する手順が必要とされるため、信号の中継の遅延時間が増大する傾向にある。特に、通信ノードが動的に接続可能とされる複数の転送ノードにおいてデータを中継する通信システムにおいては、中継先に関するルーティング情報を保有していない場合の問い合わせ処理によって、データ中継の遅延が発生する傾向にあった。
 そこで、上述の課題を解決するために、本発明は、通信ノードが動的に接続可能とされる複数の転送ノードにおいてデータを中継する際に、データ中継の遅延を回避することが可能な管理ノード、転送ノード及び通信システムを提供することを目的とする。
 上述の課題を解決するために、本発明の一側面にかかる管理ノードは、複数の通信ノード間で送受信されるデータの中継処理を行う転送ノードと通信接続可能に構成され、複数の通信ノード毎に通信接続されている転送ノードを示す情報であって、複数の転送ノードにおける中継処理時に参照されるノード情報を記憶する管理ノードであって、複数の通信ノード毎に、データの通信ログを基に予測された将来の通信相手先に関する情報を当該通信ノードに対応するノード情報に登録し、複数の通信ノード毎のノード情報を、当該ノード情報に登録された通信相手先に関する情報に対応する転送ノードに予め送信する。
 また、本発明の一側面にかかる転送ノードは、上記管理ノードと通信接続可能に構成され、管理ノードから受信されたノード情報を基に、複数の通信ノード間で送受信されるデータの中継処理を行う。
 また、本発明の一側面にかかる通信システムは、上記管理ノードと上記転送ノードとを含んで構成される。
 上記のいずれかの側面によれば、複数の通信ノードが通信接続可能に構成された転送ノードと、複数の通信ノード毎に通信接続されている転送ノードに関するノード情報を記憶する管理ノードとを含む通信システムにおいて、複数の通信ノード毎に予測された将来の通信相手先に対応する転送ノードに、複数の通信ノード毎のノード情報が予め送信される。これにより、転送ノードにおいてデータを中継する際に中継先の転送ノードに関するノード情報が効率的に参照可能とされるので、データ中継の遅延を回避することができる。
 本発明の実施形態によれば、通信ノードが動的に接続可能とされる複数の転送ノードにおいてデータを中継する際に、データ中継の遅延を回避することができる。
本実施形態の通信システム1のシステム構成を示す図である。 本実施形態の転送ノード10および管理ノード20の機能構成を示すブロック図である。 図2のノード情報格納部102に格納されたノード情報のデータ構成を示す図である。 図2のノード情報格納部201に格納されたノード情報のデータ構成を示す図である。 通信システム1のノード情報登録の処理シーケンスを示す図である。 通信システム1のノード情報送信の処理シーケンスを示す図である。 転送ノード10および管理ノード20のハードウェア構成を示す図である。 第1変形例にかかる通信システム1においてノード情報格納部201に格納されるノード情報のデータ構成を示す図である。 第1変形例おけるノード情報登録の処理シーケンスを示す図である。 第2変形例にかかる転送ノード10Aおよび管理ノード20Aの機能構成を示すブロック図である。 第2変形例におけるノード情報登録の処理シーケンスを示す図である。 第2変形例におけるノード情報登録の処理シーケンスを示す図である。
 添付図面を参照しながら本発明の実施形態を説明する。可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。
 図1は、本実施形態の通信システム1のシステム構成を示す図である。図1に示されるとおり、通信システム1は、ユーザ端末であるUE(User Equipment)、あるいはサーバ装置等の通信ノード間でデータを中継する通信網を構成するノード群であって、複数の転送ノード10と、少なくとも1つの管理ノード20とを含んで構成されている。管理ノード20は、複数の転送ノード10と通信接続可能に構成されており、複数の転送ノード10における通信ノードの通信接続の状態を統括的に管理するノードである。転送ノード10は、転送ノード10と通信接続可能に構成されている。また、転送ノード10は、通信ノードと無線通信あるいは有線通信を利用して動的に通信接続可能に構成されており、自ノードに通信接続された通信ノードと他ノードに通信接続された通信ノードとの間でパケット(データ)を中継するノードである。この転送ノード10は、更に、自ノードに通信接続された通信ノードと自ノードに通信接続された通信ノードとの間でパケットを中継することもできる。つまり、転送ノード10は、通信ノードの移動に伴って任意の通信ノードと通信接続可能に構成されている。
 図1においては、転送ノード10として転送ノード10a,10b,10c,10d,10e,10fの6つのノードを含む例を図示しているが、転送ノード10のノード数は特定数には限定されないし、管理ノード20も1つには限定されず、2以上であってもよい。また、図1においては、通信ノードであるUE31が転送ノード10dに通信接続されており、通信ノードであるサーバ装置32が転送ノード10fに通信接続されており、通信ノードであるUE33が転送ノード10eに通信接続されており、通信ノードであるUE34が転送ノード10aに通信接続されている状態を例示している。なお、以下においては、通信ノードが特定の転送ノード10に通信接続された状態を、「通信ノードが特定の転送ノード10に在圏している」とも記載するものとする。
 図2は、図1の転送ノード10及び管理ノード20の機能構成を示すブロック図である。図2に示されるとおり、転送ノード10は、中継処理部101、ノード情報格納部102、および通信ログ送信部103を備えている。管理ノード20は、ノード情報格納部201、通信ログ受信部202、予測部203、およびノード情報送信部204を備えている。以下、転送ノード10、および管理ノード20の各構成について説明する。
 まず、転送ノード10の構成要素について説明する。なお、図1に示した転送ノード10a,10b,10c,10d,10e,10fは、全て、同一の構成を有する。
 中継処理部101は、自ノードである転送ノード10に在圏している通信ノードから送信されたパケットを、そのパケットの送信先の通信ノードが在圏している他ノードである転送ノード10に中継する。また、中継処理部101は、他ノードである転送ノード10から、自ノードである転送ノード10に在圏している通信ノードに向けて送信されたパケットを、その通信ノードに中継する。この際、中継処理部101は、パケットの送信先の通信ノードが在圏している転送ノード10をノード情報格納部102に格納されたノード情報(ルーティング情報)を基に特定し、特定した転送ノード10にパケットを中継する。また、中継処理部101は、パケットの送信先が自ノードである転送ノード10に在圏している通信ノードである場合には、自ノードに通信接続されている通信ノードにパケットを中継する。
 図3は、ノード情報格納部102に格納されたノード情報のデータ構成を示している。ここでは、転送ノード10f(図1)のノード情報格納部102に格納されたノード情報のデータ構成の一例を示す。このように、ノード情報においては、通信ノードを識別するための通信ノード識別子“UE3”、“サーバ2”のそれぞれに対して、それらの通信ノードが在圏している転送ノード10を識別するための転送ノード識別子“転送ノードE”、“転送ノードF”が対応付けられて格納されている。このようなノード情報によって、中継処理部101が、通信ノード識別子“UE3”によって識別されるUE33が転送ノード識別子“転送ノードE”によって識別される他ノードである転送ノード10eに通信接続されている(在圏している)と判断することができ、UE33を送信先とするパケットを転送ノード10eに中継することができる。また、中継処理部101が、通信ノード識別子“サーバ2”によって識別されるサーバ装置32が転送ノード識別子“転送ノードF”によって識別される自ノードである転送ノード10fに通信接続されている(在圏している)と判断することができ、サーバ装置32を送信先とするパケットをサーバ装置32に中継することができる。
 ここで、ノード情報格納部102に格納されるノード情報のうち、自ノードに在圏する通信ノードに関するノード情報は、その通信ノードが最初に自ノードに通信接続した(在圏した)ことを検出することによって登録される。また、このノード情報は、その通信ノードが在圏する転送ノード10が自ノードから他ノードに変化したことを検出したタイミングで削除される。加えて、ノード情報格納部102に格納されるノード情報のうち、他ノードに在圏する通信ノードに関するノード情報は、その通信ノードを送信先とするパケットが発生した際に管理ノード20から参照して取得することができ、管理ノード20から取得した後に一定期間記憶(キャッシュ)しておいて、後のパケットの中継時に参照することもできる。また、他ノードに在圏する通信ノードに関するノード情報は、後述する管理ノード20の機能により、予め管理ノード20から取得して格納しておくこともできる。
 図2に戻って、通信ログ送信部103は、自ノードに在圏している通信ノードから送信されたパケットに関する通信ログを収集し、その通信ログを随時(例えば、パケットが発生する度に、あるいは、定期的に)管理ノード20に送信する。例えば、転送ノード10e(図1)の通信ログ送信部103は、自ノードに在圏している通信ノードが、通信ノード識別子“UE3”で識別されるUE33であり、その通信ノードから、送信先を通信ノード識別子“サーバ2”で識別されるサーバ装置32とするパケットの発生と、送信先を通信ノード識別子“UE4”で識別されるUE34とするパケットの発生を検出した場合には、通信ログ“UE3:サーバ2,UE4”を送信する。このような通信ログにより、UE33からサーバ装置32及びUE34を送信先とする2つのパケットの発生を特定することができる。
 次に、管理ノード20の構成要素について説明する。
 ノード情報格納部201は、複数の通信ノード毎に在圏している転送ノード10を特定する情報であって、転送ノード10におけるパケットの中継処理時に参照されるノード情報を記憶する部分である。
 図4は、ノード情報格納部201に格納されたノード情報のデータ構成を示している。このように、ノード情報においては、通信ノードを識別するための通信ノード識別子“UE1”、“サーバ2”、“UE3”、“UE4”のそれぞれに対して、それらの通信ノードが在圏している転送ノード10を識別するための転送ノード識別子“転送ノードD”、“転送ノードF”、“転送ノードE”、“転送ノードA”が対応付けられて格納されている。このようなノード情報によって、通信ノード識別子“UE1”、“サーバ2”、“UE3”、“UE4”によって識別されるUE31、サーバ装置32、UE33、及びUE34が、それぞれ、転送ノード識別子“転送ノードD”、“転送ノードF”、“転送ノードE”、“転送ノードA”によって識別される転送ノード10d、10f、10e、10aに在圏していると判断することができ、転送ノード10はノード情報を参照することによりパケットの中継処理を実行することができる。
 ここで、ノード情報格納部201に格納されるノード情報は、それぞれの通信ノードが最初に転送ノード10に在圏したことを転送ノード10から通知されることによって登録される。また、ノード情報は、通信ノードが在圏する転送ノード10が変更されたことを転送ノード10から通知されることによって更新される。
 また、それぞれの通信ノード毎のノード情報には、その通信ノードから送信されたパケットの送信先に関する履歴を示す通信ログと、その通信ノードの将来の通信相手先を示す情報とが対応付けられて格納されている。この通信ログは転送ノード10の通信ログ送信部103から送信された通信ログに基づいて格納された情報であり、通信相手先の情報は、この通信ログに基づいて予測部203によって予測された情報である。
 再び図2に戻って、通信ログ受信部202は、転送ノード10から送信された通信ノード毎の通信ログを受信する。通信ログ受信部202は、受信した通信ログを、該当する通信ノードに関するノード情報に付加して登録する。
 予測部203は、複数の通信ノード毎に、ノード情報に含まれる通信ログを参照し、その通信ログを基に将来の通信相手先を予測する。すなわち、予測部203は、一定期間内に取得された通信ログから通信相手先の通信ノード毎の通信頻度を特定し、その通信頻度が高い通信相手先(例えば、通信頻度が高い順の所定数の通信相手先、または、通信頻度が所定の閾値を超えた通信相手先)を将来の通信相手先として予測する。このようにして予測された通信相手先は、該当の通信ノードが将来パケットを送信する送信先となる確率が高いと想定される。そして、予測部203は、複数の通信ノード毎に予測した通信相手先を示す情報を、ノード情報格納部201に格納されている該当の通信ノードに対応するノード情報に付加して登録する。例えば、図4に示すように、予測部203は、通信ノード識別子“UE3”によって識別されるUE33に関する通信ログ“サーバ2,UE4,サーバ2”を基に、サーバ装置32を送信先とした通信頻度が2回であり、UE34を送信先とした通信頻度が1回であると特定する。その結果、予測部203は、UE33の将来の通信相手先を、通信頻度が比較的高いサーバ装置32であると予測し、予測した通信相手先を識別する情報“サーバ2”を、UE33に対応するノード情報に登録する。
 一方で、予測部203は、通信ログから通信相手先の通信ノード毎の通信割合を特定し、その通信割合が高い通信相手先(例えば、通信割合が高い順の所定数の通信相手先、または、通信割合が所定の閾値を超えた通信相手先)を将来の通信相手先として予測してもよい。このようにして予測された通信相手先も、該当の通信ノードが将来パケットを送信する送信先となる確率が高いと想定される。具体的には、予測部203は、所定期間内におけるパケットの合計送信回数と、特定の通信ノードを送信先とする送信回数との比を、特定の通信ノードを送信先とする通信に関する通信割合として計算し、通信割合が高い送信先を将来の通信相手先として予測する。例えば、図4の例によれば、UE33に関する通信ログ“サーバ2,UE4,サーバ2”を基に、パケットの合計送信回数が3回、サーバ装置32を送信先とする送信回数が2回、UE34を送信先とする送信回数が1回と特定される。その結果、サーバ装置32を送信先とする通信割合が2/3と計算され、UE34を送信先とする通信割合が1/3と計算され、UE33の将来の通信相手先が、通信割合が比較的高いサーバ装置32であると予測される。
 ノード情報送信部204は、ノード情報格納部201に格納されているノード情報を、そのノード情報に登録されている通信相手先の情報に対応する転送ノード10に予め送信する。すなわち、ノード情報送信部204は、複数の通信ノード毎のノード情報を、それぞれの通信ノードの将来の通信相手先と予測された通信ノードが在圏している転送ノード10に予め送信する。図4の例によれば、UE33に関するノード情報“UE3:転送ノードE”を、そのノード情報に登録されている通信相手先の情報“サーバ2”によって識別されるサーバ装置32が在圏している転送ノード識別子“転送ノードF”によって識別される転送ノード10fに送信する。ノード情報の送信のタイミングは、定期的なタイミングであってもよいし、将来の通信相手先と予測された通信ノードが転送ノード10に通信接続を開始した(在圏を開始した)ことを契機としたタイミングであってもよい。
 次に、本実施形態における通信システム1における処理シーケンスについて説明する。図5は、通信システム1のノード情報登録の処理シーケンスを示す図であり、図6は、通信システム1のノード情報送信の処理シーケンスを示す図である。
 まず、図5を参照して、通信システム1において、UE33からサーバ装置32に向けてパケットが送信された場合のノード情報登録の手順を説明する。
 UE33から送信先をサーバ装置32とするパケットが送信されると、転送ノード10eおよび転送ノード10fがそのパケットをサーバ装置32に向けて中継する(ステップS1)。この時点では、転送ノード10eにおいて、UE33から送信されたパケットに関する送信先を“サーバ2”および“UE4”で特定した通信ログが保持されているものとする。
 そうすると、転送ノード10eの通信ログ送信部103により、UE33から送信されたパケットに関する通信ログに対して、送信先を“サーバ2”とする通信ログが付加され、その通信ログが保持される(ステップS2)。その後、転送ノード10eに保持されている通信ログが、随時に(例えば、定期的に)管理ノード20に送信される(ステップS3)。
 通信ログを受信した管理ノード20の通信ログ受信部202は、その通信ログをUE33に対応するノード情報に登録した後、管理ノード20の予測部203が、登録したノード情報中の通信ログを参照して、UE33に対して将来の通信相手先を予測する(ステップS4)。さらに、管理ノード20の予測部203は、予測した通信相手先を特定する通信ノード識別子“サーバ2”の情報を、UE33に対応するノード情報に登録する(ステップS5)。以上のような管理ノード20におけるノード情報登録の処理は、複数の通信ノード毎に繰り返し実行される。
 図6を参照して、通信システム1において、管理ノード20から転送ノード10に対するノード情報送信の手順を説明する。管理ノード20において登録された複数の通信ノード毎のノード情報の送信タイミングは、定期的であってもよいし、ノード情報の送信先の転送ノード10において通信ノードが在圏を開始したタイミングであってもよい。ここでは、後者のタイミングでのノード情報送信の手順を説明する。
 まず、UE34が転送ノード10aに通信接続(在圏)を開始したタイミングで、UE34から転送ノード10aを経由して管理ノード20に向けて位置登録信号が送信される(ステップS11)。この位置登録信号によって、管理ノード20において、UE34が転送ノード10aに在圏を開始したことが把握可能とされる。管理ノード20のノード情報送信部204は、位置登録信号を基にUE34が転送ノード10aに在圏したことを把握したことを契機に、UE34を識別する通信ノード識別子“UE4”を通信相手先の情報として含むノード情報を、ノード情報格納部201から参照する(ステップS12)。
 次に、管理ノード20のノード情報送信部204は、参照したノード情報に登録された通信ノード毎の在圏先を示すノード情報(例えば、“UE1:ノードD”)を、UE34が在圏を開始した転送ノード10aに送信する(ステップS13)。そうすると、転送ノード10aは、受信したノード情報をノード情報格納部102に格納する(ステップS14)。
 次に、本実施形態のように構成された通信システム1の作用効果について説明する。
 本実施形態によれば、複数の通信ノードが在圏(通信接続)可能に構成された複数の転送ノード10と、複数の通信ノード毎に在圏先の転送ノード10に関するノード情報を記憶する管理ノード20とを含む通信システムにおいて、複数の通信ノード毎に将来の通信相手先が予測され、予測された通信相手先に対応する転送ノード10に、複数の通信ノード毎のノード情報が予め送信される。これにより、転送ノード10においてパケットを中継する際に中継先の転送ノード10に関するノード情報が効率的に参照可能とされるので、データ中継の遅延を回避することができる。
 つまり、パケットの中継処理時に中継先の転送ノードを特定するための制御信号のシグナリングを抑制することができ、結果としてパケット送信の遅延を回避することができる。また、管理ノード20が全ての通信ノードに関するノード情報を全ての転送ノード10に予め送信する手法も考えられる。本実施形態では、そのような手法に比較して制御信号のシグナリングを抑制することができ、全体として効率的なパケットの送信も実現することができる。
 また、本実施形態のように構成された通信システム1においては、予測部203は、将来の通信相手先として通信ノードを予測し、ノード情報送信部204は、通信相手先として予測された通信ノードが在圏している転送ノード10にノード情報を予め送信している。かかる構成により、転送ノード10においてパケットを中継する際に、パケットの中継先の通信ノードが在圏している転送ノード10に関するノード情報が効率的に参照可能とされるので、データ中継の遅延を確実に回避することができる。
 さらに、ノード情報送信部204は、通信相手先として予測された通信ノードが転送ノード10に在圏を開始したことを契機に、転送ノード10にノード情報を送信している。こうすれば、パケットの中継先の通信ノードが在圏している転送ノード10に関するノード情報が、パケットの中継処理の前に効率的に転送ノード10に送信可能とされる。その結果、転送ノード10においてパケットを中継する際に、パケット通信の遅延をさらに確実に回避することができる。
 また、予測部203は、通信ログから特定される通信相手先毎の通信頻度あるいは通信割合を基に、将来の通信相手先を予測している。この場合、通信ノード毎の将来の通信相手先を適切に予測することができ、その結果、パケット通信の遅延を一層確実に回避することができる。
 上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態における転送ノード10および管理ノード20などは、本実施形態の処理を行うコンピュータとして機能してもよい。図7は、本実施形態に係る転送ノード10、管理ノード20等のハードウェア構成の一例を示す図である。上述の転送ノード10等は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。転送ノード10等のハードウェア構成は、図7に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 転送ノード10等における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、中継処理部101、通信ログ送信部103等は、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、中継処理部101、通信ログ送信部103等は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の中継処理部101、通信ログ送信部103等は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、転送ノード10等は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 以上、本実施形態について詳細に説明したが、当業者にとっては、本実施形態が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本実施形態は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本実施形態に対して何ら制限的な意味を有するものではない。
 上記実施形態においては、通信ノード毎の将来の通信相手先として通信ノードを予測していたが、将来の通信相手先として転送ノード10を予測してもよい。
 図8は、将来の通信相手先として転送ノード10を予測する第1変形例に係る通信システム1において、ノード情報格納部201に格納されるノード情報のデータ構成の一例を示している。この第1変形例においては、転送ノード10の通信ログ送信部103は、自ノードに在圏している通信ノードから他ノードを経由したパケットの発生を検出した場合に、そのパケットの中継先である他ノードを識別する転送ノード識別子を通信ログとして送信する。これに対して、管理ノード20の通信ログ受信部202は、受信した転送ノード識別子を含む通信ログを、該当する通信ノードに関するノード情報に付加して登録する。例えば、図8に示すように、通信ノード識別子“UE3”によって識別されるUE33に関するノード情報に、転送ノード識別子“転送ノードF”、“転送ノードA”、“転送ノードF”によって識別される転送ノード10を経由したパケット中継に関する通信ログが登録される。
 図9は、第1変形例にかかる通信システム1において、UE33から転送ノード10fを経由してパケットが送信された場合のノード情報登録の手順を示すシーケンス図である。
 まず、UE33から中継先を転送ノード10fとするパケットが送信されると、転送ノード10eおよび転送ノード10fがそのパケットを中継する(ステップS21)。この時点では、転送ノード10eにおいて、UE33から送信されたパケットに関する中継先を“転送ノードF”および“転送ノードA”で特定した通信ログが保持されているものとする。
 そうすると、転送ノード10eの通信ログ送信部103により、UE33から送信されたパケットに関する通信ログに対して、中継先を“転送ノードF”とする通信ログが付加され、その通信ログが保持される(ステップS22)。その後、転送ノード10eに保持されている通信ログが、随時に(例えば、定期的に)管理ノード20に送信される(ステップS23)。
 通信ログを受信した管理ノード20の通信ログ受信部202は、その通信ログをUE33に対応するノード情報に登録した後、管理ノード20の予測部203が、登録したノード情報中の通信ログを参照して、UE33に対して将来の通信相手先を予測する(ステップS24)。さらに、管理ノード20の予測部203は、予測した通信相手先を特定する転送ノード識別子“転送ノードF”の情報を、UE33に対応するノード情報に登録する(ステップS25)。以上のような管理ノード20におけるノード情報登録の処理は、複数の通信ノード毎に繰り返し実行される。
 このような第1変形例によれば、予測部203において通信相手先として転送ノード10が予測され、ノード情報送信部204において通信相手先として予測された転送ノード10にノード情報が予め送信される。かかる構成により、転送ノード10においてパケットを中継する際に、パケットの中継先の転送ノード10に関するノード情報が効率的に参照可能とされるので、パケット中継の遅延を確実に回避することができる。
 また、上述した実施形態および第1変形例においては、管理ノード20において通信ノード毎の将来の通信相手先の予測処理が実行されていたが、転送ノード10において予測処理が実行されてもよい。図10は、第2変形例にかかる転送ノード10Aおよび管理ノード20Aの機能構成を示すブロック図である。第2変形例の構成は、図2に示した実施形態の構成に対して、将来の通信相手先の予測処理を担う機能部である予測部104が転送ノード10Aに備えられている点において相違する。
 図11は、第2変形例において、UE33からサーバ装置32を送信先としたパケットが送信された場合のノード情報登録の手順を示すシーケンス図である。このように、第2変形例におけるステップS31~S35からなる手順においては、図5に示した実施形態におけるステップS1~S5からなる手順に比較して、通信ログを基にした通信相手先の予測処理が転送ノード10において実行されていること(ステップS33)、及び、予測された通信相手先の情報が転送ノード10から管理ノード20に送信されていること(ステップS34)が相違する。
 図12は、第2変形例において、UE33から転送ノード10fを経由してパケットが送信された場合のノード情報登録の手順を示すシーケンス図である。このように、第2変形例におけるステップS41~S45からなる手順においては、図9に示した第1変形例におけるステップS21~S25からなる手順に比較して、通信ログを基にした通信相手先の予測処理が転送ノード10において実行されていること(ステップS43)、及び、予測された通信相手先の情報が転送ノード10から管理ノード20に送信されていること(ステップS44)が相違する。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 情報等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 移動通信端末(携帯端末)は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で「第1の」、「第2の」などの呼称を使用した場合においては、その要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本明細書において、文脈または技術的に明らかに1つのみしか存在しない装置である場合以外は、複数の装置をも含むものとする。
 本発明は、管理ノード、転送ノード及び通信システムを使用用途とし、通信ノードが動的に接続可能とされる複数の転送ノードにおいてデータを中継する際に、データ中継の遅延を回避することを可能にするものである。
 1…通信システム、31,33,34…UE(通信ノード)、32…サーバ装置(通信ノード)、10,10A,10a~10f…転送ノード、20,20A…管理ノード、104,203…予測部、204…ノード情報送信部。

Claims (10)

  1.  複数の通信ノード間で送受信されるデータの中継処理を行う転送ノードと通信接続可能に構成され、前記複数の通信ノード毎に通信接続されている前記転送ノードを示す情報であって、複数の前記転送ノードにおける前記中継処理時に参照されるノード情報を記憶する管理ノードであって、
     前記複数の通信ノード毎に、データの通信ログを基に予測された将来の通信相手先に関する情報を当該通信ノードに対応する前記ノード情報に登録し、
     前記複数の通信ノード毎の前記ノード情報を、当該ノード情報に登録された前記通信相手先に関する情報に対応する前記転送ノードに予め送信する、
    管理ノード。
  2.  前記通信相手先として前記通信ノードが予測されており、
     前記通信相手先として予測された前記通信ノードが通信接続されている前記転送ノードに前記ノード情報を予め送信する、
    請求項1記載の管理ノード。
  3.  前記通信相手先として予測された前記通信ノードが前記転送ノードに通信接続を開始したことを契機に、前記転送ノードに前記ノード情報を送信する、
    請求項2記載の管理ノード。
  4.  前記通信相手先として前記転送ノードが予測されており、
     前記通信相手先として予測された前記転送ノードに前記ノード情報を予め送信する、
    請求項1記載の管理ノード。
  5.  前記通信ログから特定される通信相手先毎の通信頻度を基に、前記通信相手先を予測する、
    請求項1~4のいずれか1項に記載の管理ノード。
  6.  前記通信ログから特定される通信相手先毎の通信割合を基に、前記通信相手先を予測する、
    請求項1~4のいずれか1項に記載の管理ノード。
  7.  請求項1~6のいずれか1項に記載の管理ノードと通信接続可能に構成され、前記管理ノードから受信された前記ノード情報を基に、前記複数の通信ノード間で送受信されるデータの中継処理を行う、
    転送ノード。
  8.  前記複数の通信ノード毎に、データの通信ログから特定される通信相手先毎の通信頻度を基に、前記通信相手先を予測する、
    請求項7に記載の転送ノード。
  9.  前記複数の通信ノード毎に、データの通信ログから特定される通信相手先毎の通信割合を基に、前記通信相手先を予測する、
    請求項7に記載の転送ノード。
  10.  請求項1~6のいずれか1項に記載の管理ノードと、
     請求項7~9のいずれか1項に記載の転送ノードと、
    を含む通信システム。
PCT/JP2018/020570 2018-05-29 2018-05-29 管理ノード、転送ノード及び通信システム WO2019229853A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020570 WO2019229853A1 (ja) 2018-05-29 2018-05-29 管理ノード、転送ノード及び通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020570 WO2019229853A1 (ja) 2018-05-29 2018-05-29 管理ノード、転送ノード及び通信システム

Publications (1)

Publication Number Publication Date
WO2019229853A1 true WO2019229853A1 (ja) 2019-12-05

Family

ID=68696851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020570 WO2019229853A1 (ja) 2018-05-29 2018-05-29 管理ノード、転送ノード及び通信システム

Country Status (1)

Country Link
WO (1) WO2019229853A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336029A (ja) * 1992-05-28 1993-12-17 Matsushita Electric Ind Co Ltd 移動通信システム
JP2005149398A (ja) * 2003-11-19 2005-06-09 Hitachi Ltd ストレージ制御装置及びストレージシステム
JP2009021939A (ja) * 2007-07-13 2009-01-29 Oki Electric Ind Co Ltd ノード情報収集システム、ネットワーク装置及びノード

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336029A (ja) * 1992-05-28 1993-12-17 Matsushita Electric Ind Co Ltd 移動通信システム
JP2005149398A (ja) * 2003-11-19 2005-06-09 Hitachi Ltd ストレージ制御装置及びストレージシステム
JP2009021939A (ja) * 2007-07-13 2009-01-29 Oki Electric Ind Co Ltd ノード情報収集システム、ネットワーク装置及びノード

Similar Documents

Publication Publication Date Title
WO2011121398A1 (en) Method and apparatus for providing management of measurement reporting after cell change
JP6839699B2 (ja) スライス情報変更方法および通信システム
CN111034266A (zh) 通信***、通信控制装置及通信方法
WO2020049868A1 (ja) ランダムアクセス待機時間設定方法
WO2019159372A1 (ja) 情報転送方法及びノード群
WO2019229853A1 (ja) 管理ノード、転送ノード及び通信システム
WO2019035287A1 (ja) 通信制御方法および通信システム
WO2018008239A1 (ja) 無線通信システム
JP2019036873A (ja) 基地局
JP2022149316A (ja) 通信制御装置
WO2019193764A1 (ja) 基地局装置および通信システム
JP2020096248A (ja) 呼制御システム
WO2021210278A1 (ja) 管理装置
WO2022038909A1 (ja) 管理装置
WO2019159373A1 (ja) 通信制御方法および通信システム
JP7417728B2 (ja) ネットワークシステム
JP7478823B2 (ja) 端末装置及び端末装置の制御方法
WO2019207789A1 (ja) 管理ノードおよび転送ノード
US11985047B2 (en) Management apparatus
JP2019036874A (ja) 基地局
JP6997586B2 (ja) 制御装置
WO2018034078A1 (ja) 通信システム、処理サーバおよびベアラ確立制御方法
JP6611354B2 (ja) 通信制御装置
WO2019159286A1 (ja) 経路制御装置及び中継装置
WO2020031303A1 (ja) 通信接続装置および通信接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP