WO2019228368A1 - 电子装置 - Google Patents

电子装置 Download PDF

Info

Publication number
WO2019228368A1
WO2019228368A1 PCT/CN2019/088867 CN2019088867W WO2019228368A1 WO 2019228368 A1 WO2019228368 A1 WO 2019228368A1 CN 2019088867 W CN2019088867 W CN 2019088867W WO 2019228368 A1 WO2019228368 A1 WO 2019228368A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
electronic device
long side
short side
Prior art date
Application number
PCT/CN2019/088867
Other languages
English (en)
French (fr)
Inventor
向元彬
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820826053.2U external-priority patent/CN208539942U/zh
Priority claimed from CN201810528099.0A external-priority patent/CN108832267B/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019228368A1 publication Critical patent/WO2019228368A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets

Definitions

  • the present application relates to the field of electronic technology, and in particular, to an electronic device.
  • the present application provides an electronic device with high real-time data transmission.
  • An embodiment of the present application provides an electronic device.
  • the electronic device includes at least one first antenna component, at least one second antenna component, and a middle frame.
  • a radiator of the at least one first antenna component is formed on the middle frame.
  • the radiator is disposed independently of the middle frame, and the at least one first antenna component and the at least one second antenna component are both used to transmit and receive antenna signals in the same frequency band, and the at least one first antenna component and the at least one The second antenna components collectively form a multiple-input multiple-output antenna system.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an embodiment of a structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 2 is a schematic diagram of an embodiment of a structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 3 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 4 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 5 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 6 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 7 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 8 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 9 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 10 is a schematic diagram of another embodiment of the structure of the electronic device shown in FIG. 1 at the I-I line;
  • FIG. 11 is a schematic structural diagram of a first antenna assembly of the electronic device shown in FIG. 2;
  • FIG. 12 is a schematic structural diagram of a second antenna component of the electronic device shown in FIG. 2;
  • FIG. 13 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 14 is a schematic structural diagram of a part of the electronic device shown in FIG. 2;
  • FIG. 15 is a partial structural schematic diagram of a fourth antenna assembly of the electronic device shown in FIG. 13;
  • 16 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1;
  • FIG. 17 is a schematic diagram of another embodiment of the structure of the electronic device at the I-I line shown in FIG. 1.
  • an electronic device includes at least one first antenna component, at least one second antenna component, and a middle frame, and a radiator of the at least one first antenna component is formed in the middle.
  • the radiator of the at least one second antenna component is provided independently of the middle frame, and the at least one first antenna component and the at least one second antenna component are both used to transmit and receive antenna signals in the same frequency band.
  • the at least one first antenna component and the at least one second antenna component together form a multiple-input multiple-output antenna system.
  • the middle frame includes a frame and a middle plate, and the frame includes a first short side and a second short side disposed opposite to each other and a first long side and A second long side, the first short side, the first long side, the second short side, and the second long side are connected in sequence; each radiator of the first antenna component is formed at any one A connection between the short side and any one of the long sides, and including a part of the short side and a part of the long side at the connection, each radiator of the second antenna component and the frame Insulated from each other.
  • a first gap is provided between the first short side and the middle plate, and the first gap is between the first short side and the first gap.
  • a connection at a long side is bent to extend between a portion of the first long side and the middle plate, and at a connection between the first short side and the second long side is extended to a portion of the Between the second long side and the middle plate, a first antenna slot is provided on the first short side, and the first antenna slot and the first slot are between the first short side and the first A radiator of the first antenna component is isolated from a connection of a long side or a connection of the first short side and the second long side.
  • a second gap is provided between the second short side and the middle plate, and the second gap is between the second short side and the first gap.
  • a connection at a long side is bent to extend between a portion of the first long side and the middle plate, and at a connection between the second short side and the second long side is extended to a portion of the Between the second long side and the middle plate, a second antenna slot is provided on the second short side, and the second antenna slot and the second slot are between the second short side and the first
  • a radiator of the first antenna component is isolated from a connection of a long side or a connection of the second short side and the second long side.
  • the frame is provided with a micro slit or a slit, and the frame is divided into at least one independent metal region by the micro slit or the slit.
  • the independent metal region and the frame are insulated from each other, and a radiator of the second antenna component is formed in the independent metal region.
  • the electronic device further includes at least one antenna bracket, the at least one antenna bracket is fixed to the middle plate, and a radiator of the second antenna component is formed at The antenna support.
  • the antenna bracket includes an insulating portion, and a radiator of the second antenna component is formed on the antenna bracket by a laser direct molding technique or a printing direct molding technique. .
  • the antenna bracket includes a metal portion, the metal portion and the frame are insulated from each other, and a radiator of the second antenna assembly is formed on the metal portion. on.
  • a flexible circuit board is fixed on the antenna bracket, and a radiator of the second antenna assembly is formed on the flexible circuit board.
  • the first antenna assembly further includes a first excitation source and a first switching circuit, and the first switching circuit The first switching circuit is connected between the first excitation source and the radiator of the first antenna component, and the first switching circuit is configured to switch a signal receiving and transmitting frequency band of the first antenna component.
  • the first antenna assembly further includes a first return point and a first ground-matching circuit, and the first ground-matching circuit is connected to the first antenna. Between the radiator of the component and the first return point, the first ground-matching circuit is used to adjust a return path of the first antenna component.
  • the second antenna assembly further includes a second excitation source and a second switching circuit, and the second switching A circuit is connected between the second excitation source and a radiator of the second antenna component, and the second switching circuit is configured to switch a signal receiving and transmitting frequency band of the second antenna component.
  • the second antenna assembly further includes a second return point and a second ground matching circuit, and the second ground matching circuit is connected to the first Between the radiator of the two antenna components and the second return point, the second ground-matching circuit is used to adjust a return path of the second antenna component.
  • the electronic device includes two first antenna components and two second antenna components.
  • the first antenna component and the two second antenna components together form a 4 ⁇ 4 multiple-input multiple-output antenna system for transmitting and receiving antenna signals in the LTE mid / high frequency band.
  • one of the radiators of the first antenna component is formed at a junction between the first short side and the first long side, or is formed at Where the first short side is connected to the second long side; another radiator of the first antenna component is formed at the connection between the second short side and the first long side, or is formed at A connection between the second short side and the second long side.
  • the radiators of the two second antenna components are arranged at intervals along the first long side or the second long side, or The radiator of one of the second antenna components is disposed along the first long side, and the radiator of the second antenna component is disposed along the second long side.
  • the electronic device further includes a third antenna component, and the frequency band of the third antenna component receiving and transmitting antenna is different from that of the first antenna component, and the first short A third antenna slot is provided on the side, and the first antenna slot, the third antenna slot, and the first slot isolate the radiator of the third antenna component on the first short side.
  • the third antenna component includes a third excitation source, a third switching circuit, a third ground-matching circuit, and a third return point
  • the third A switching circuit is connected between the third excitation source and the radiator of the third antenna component, the third switching circuit is used to switch the signal transmitting and receiving frequency band of the third antenna component, and the third pair is matched with the ground
  • the circuit is connected in parallel with the third switching circuit, and the third ground-matching circuit is connected between the radiator of the third antenna assembly and the third return point.
  • the third ground-matching circuit is used for Adjusting a return path of the third antenna component.
  • the electronic device further includes a fourth antenna component, and the fourth antenna component has the same transmitting and receiving antenna frequency band as the third antenna component, and the second antenna component The slot and the second antenna slot isolate the radiator of the fourth antenna assembly on the first long side and the second short side.
  • the electronic device further includes a fifth antenna component, and the fifth antenna component transmits and receives a frequency band with the first antenna component and the second antenna component.
  • the third antenna component and the fourth antenna component are different.
  • the first slot and the third antenna slot isolate the fifth antenna on the first short side and the second long side.
  • the radiator of the component is different.
  • the electronic device includes a sixth antenna component, and the sixth antenna component transmission and reception frequency band is a 5G WIFI frequency band, and the sixth antenna component is formed in the
  • the middle plate may be formed on the frame.
  • the electronic device 100 may be a smart device such as a tablet computer, a mobile phone, a camera, a personal computer, a notebook computer, a vehicle-mounted device, or a wearable device.
  • the electronic device 100 includes at least one first antenna assembly 10, at least one second antenna assembly 30, and a middle frame 20.
  • the radiator of the at least one first antenna assembly 10 is formed on the middle frame 20.
  • the radiator of the at least one second antenna assembly 30 is disposed independently of the middle frame 20.
  • the at least one first antenna component 10 and the at least one second antenna component 30 are both configured to transmit and receive antenna signals in the same frequency band. At least one first antenna component 10 and at least one second antenna component 30 together form a multiple-input multiple-output antenna system.
  • the fact that the radiator of the at least one second antenna assembly 30 is independent of the middle frame 20 means that the radiator of the at least one second antenna assembly 30 is provided by being insulated from the middle frame 20. That is, there is no electrical connection between the radiator of the second antenna assembly 30 and the middle frame 20.
  • the “first” and “second” used in the “first antenna assembly 10” and the “second antenna assembly 30” mentioned in this application are used for descriptive purposes only, and should not be interpreted as indicating or suggesting relative importance or Implicitly indicates the number of technical features indicated. Accordingly, other descriptions mentioned in this application that refer to "first”, “second”, “N”, etc., are also used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating what is indicated The number of technical features.
  • At least one first antenna assembly 10 is formed by forming a radiator of at least one first antenna assembly 10 on the middle frame 20 and by forming at least one radiator of the second antenna assembly 30 independently of the middle frame 20. Together with at least one second antenna assembly 30, a multiple-input multiple-output antenna system for transmitting and receiving antenna signals in the same frequency band is formed, thereby significantly increasing the channel capacity of the antenna system of the electronic device 100, thereby increasing the transmission rate of user data, and improving the electronic Real-time performance of data transmission of the device 100.
  • the radiator of the at least one first antenna assembly 10 is formed on the middle frame 20
  • the performance of the antenna system for transmitting and receiving antenna signals can be improved, and the antenna system can be prevented from being arranged inside the electronic device 100, thereby The space utilization of the electronic device 100 is improved.
  • at least one antenna assembly 10 is formed on the middle frame 20
  • when the antenna system is arranged inside the electronic device 100 components inside the electronic device 100 can avoid electromagnetic interference.
  • the middle frame 20 includes a frame 21 and a middle plate 22.
  • the frame 21 includes first short sides 211 and first short sides 212 disposed opposite to each other, and first long sides 213 and second long sides 214 disposed opposite to each other.
  • the first short side 211, the first long side 213, the first short side 212, and the second long side 214 are sequentially connected.
  • the radiator of each of the first antenna components 10 is formed at a connection between any of the short sides and any of the long sides, and includes a part of the short side and a part of the long side at the connection. .
  • the radiator of each of the second antenna components 30 and the frame 21 are insulated from each other.
  • the radiator of the first antenna assembly 10 may be formed at a connection between the first short side 211 and the first long side 213, and a portion of the first short side 211 and the first long side 213 located at the connection.
  • the radiator of the first antenna assembly 10 is formed at a connection between the first short side 211 and the second long side 214, and a portion of the first short side 211 and the second long side 214 located at the connection.
  • the radiator of the first antenna assembly 10 is formed at a connection between the second short side 212 and the first long side 213, and a portion of the second short side 212 and the first long side 213 located at the connection.
  • the radiator of the first antenna assembly 10 is formed at a connection between the second short side 212 and the second long side 214, and a portion of the second short side 212 and the second long side 214 located at the connection.
  • the first antenna assembly 10 not only can improve the antenna performance of the first antenna assembly 10, but also can prevent the user from affecting the performance of the antenna system by holding the radiator of the first antenna assembly 10 when using the electronic device 100.
  • the first antenna assembly 10 located at the connection between the first short side 211 and the first long side 213 and the connection between the first short side 212 and the second long side 214 can avoid the user.
  • the holding position ensures that the first antenna assembly 10 transmits and receives antenna signals at any time. Or when the user holds one of the radiators, the other radiator can also transmit and receive antenna signals as usual to ensure the stable operation of the antenna system.
  • a first gap 23 is provided between the first short side 211 and the middle plate 22.
  • the first gap 23 is bent at the connection between the first short side 211 and the first long side 213 to extend between a portion of the first long side 213 and the middle plate 22, and between the first short side 211 and the second long side 214.
  • the connection is bent to extend between a portion of the second long side 214 and the middle plate 22.
  • a first antenna slit 24 is provided on the first short side 211.
  • the first antenna slot 24 and the first slot 23 isolate the radiator of the first antenna assembly 10 at the connection between the first short side 211 and the first long side 213 or the connection between the first short side 211 and the second long side 214. .
  • the first short side 211 and the first long side 213 are made of a metal material.
  • the connection between the first short side 211 and the first long side 213 is an arc segment.
  • the arc-shaped section and part of the first short side 211 and part of the first long side 213 form the first radiator 11 of the first antenna assembly 10.
  • the directions in which the first radiator 11 transmits and receives antenna signals have multiple directions, including the first short side 211, the first long side 213, and the orientation of the connection between the first short side 211 and the first long side 213. Therefore, the first radiator 11 in this embodiment can transmit and receive antenna signals in multiple directions to further improve the transmission rate of user data.
  • the first radiator 11 formed on the frame 21 can save the internal space of the electronic device 100 to arrange more devices, thereby improving the space utilization of the electronic device 100.
  • the first radiator 11 formed on the frame 21 can also prevent electromagnetic interference caused by components inside the electronic device 100 when the antenna system is arranged inside the electronic device 100.
  • a second gap 25 is provided between the second short side 212 and the middle plate 22.
  • the second gap 25 is bent at the junction of the second short side 212 and the first long side 213 to extend between a portion of the first long side 213 and the middle plate 22, and between the second short side 212 and the second long side 214.
  • the connection is bent to extend between a portion of the second long side 214 and the middle plate 22.
  • the second short side 212 is provided with a second antenna slot 26, and the second antenna slot 26 and the second slot 25 are at a connection between the second short side 212 and the first long side 213 or the second short side 212 and the second long side
  • the connection of 214 isolates the radiator of the first antenna assembly 10.
  • connection between the second short side 212 and the second long side 214 is an arc-shaped segment.
  • the arc-shaped segment and part of the second short side 212 and part of the second long side 214 form the second radiator 12 of the first antenna assembly 10.
  • the direction in which the second radiator 12 transmits and receives antenna signals has multiple directions, including the orientation of the second short side 212, the second long side 214, and the direction where the second short side 212 and the second long side 214 are connected. Therefore, the second radiator 12 of the first antenna assembly 10 can transmit and receive antenna signals in multiple directions to further improve the transmission rate of user data.
  • the second radiator 12 formed on the frame 21 can save the internal space of the electronic device 100 to arrange more devices, thereby improving the space utilization rate of the electronic device 100.
  • the second radiator 12 formed on the frame 21 can also prevent electromagnetic interference caused by components inside the electronic device 100 when the antenna system is arranged inside the electronic device 100.
  • the radiator of the second antenna assembly 30 has multiple setting methods:
  • Embodiment 1 As shown in FIGS. 2 and 3, a gap 2131 is provided on the frame 21.
  • the frame 21 is divided into at least one independent metal region (31/32) by a micro slit band or a slit.
  • Independent metal regions (31/32) are insulated from the frame 21.
  • the radiator of the second antenna assembly 30 is formed in a separate metal region (31/32).
  • the independent metal region (31/32) refers to one of the following third radiators 31 or fourth radiators.
  • the first long side 213 is a metal material.
  • a slit 2131 is provided on the first long side 213 to divide the first long side 213 into two independent metal regions (31/32).
  • the two metal regions (31/32) form the third radiator 31 and the fourth radiator 32 of the second antenna assembly 30, respectively.
  • the antenna frequency bands of the third radiator 31 and the fourth radiator 32 are the same as those of the first antenna 11 and the second radiator 12.
  • the second antenna assembly 30 can be prevented from being additionally arranged in the electronic device 100, thereby saving the internal space of the electronic device 100 and improving the electronic device. Space utilization.
  • the third radiator 31 and the fourth radiator 32 are formed in the electronic device 100, the channel capacity of the electronic device 100 can be doubled, thereby improving the real-time performance of data transmission of the electronic device 100.
  • a micro slit tape is provided on the frame 21.
  • the frame 21 is divided into at least one independent metal region by a micro slit band. Independent metal regions are insulated from the frame 21.
  • the radiator of the second antenna assembly 30 is formed in a separate metal region.
  • the third radiator 31 of the second antenna assembly 30 may be formed on at least one of the first short side 211, the first short side 212, or the second long side 214.
  • the fourth radiator 32 of the second antenna assembly 30 may be formed on one of the first short side 211, the first short side 212, or the second long side 214. Specific can be set according to the actual situation.
  • the electronic device 100 further includes at least one antenna bracket 40.
  • At least one antenna bracket 40 is fixed to the middle plate 22.
  • the radiator of the second antenna assembly 30 is formed on the antenna support 40.
  • an antenna bracket 40 is provided on the middle plate 22 to set the third radiator 31 and the fourth radiator 32 of the second antenna assembly 30 on the antenna bracket 40.
  • the antenna bracket 40 is disposed near the first long side 213.
  • the third radiator 31 and the fourth radiator 32 cooperate with the first radiator 11 and the second radiator 12 to transmit and receive antenna signals in the same frequency band, thereby increasing the channel capacity of the antenna system and further increasing the transmission rate of user data.
  • the second antenna assembly 20 may be disposed near the second long side 214.
  • the antenna bracket 40 is a first pressure plate bracket.
  • the radiator of the second antenna assembly 30 is formed on the first platen bracket.
  • a first mounting hole is provided on the first platen bracket.
  • the middle plate 22 is provided with a second mounting hole.
  • the first pressure plate bracket is fixed on the middle plate 22 by screws or screws.
  • the third radiator 31 and the fourth radiator 32 of the second antenna assembly 30 are formed on the first pressure plate bracket to cooperate with the first radiator 11 and the second radiator 12 to transmit and receive antenna signals of the same frequency band, thereby improving the channel of the antenna system. Capacity, thereby increasing the transmission rate of user data.
  • the middle board 22 is provided with a first circuit board 221.
  • the first circuit board 221 is provided with a plurality of circuit components, such as a resistor, an inductor, or a capacitor.
  • the first pressing plate bracket can be used to press these circuit components on the middle plate 22, on the one hand, to avoid interference between these components and other components, or to prevent other components of the electronic device 100 and these components from occurring. The collision ensures that these components work normally.
  • the overall bonding strength of the electronic device 100 can be improved. Therefore, the first pressure plate bracket of this embodiment can be used for both purposes, which can save the internal space of the electronic device 100 and improve the space utilization rate inside the electronic device 100.
  • the first platen bracket may be fixed to the middle plate 22 by welding or snapping.
  • the antenna bracket 40 includes an insulating portion 41.
  • the radiator of the second antenna assembly 30 is formed on the antenna bracket 40 by a laser direct molding technique or a printing direct molding technique.
  • the antenna bracket 40 is a first pressure plate bracket.
  • the first pressure plate bracket is disposed near the first long side 213.
  • a metal antenna pattern is formed on the insulating portion 41 of the first platen bracket by a laser direct molding technique or a printing direct molding technique, thereby forming the third radiator 31 and the fourth radiator 32 of the second antenna assembly 30.
  • the first platen bracket may be disposed near the second long side 214.
  • the antenna bracket 40 includes a metal portion 42.
  • the metal portion 42 and the frame 21 are insulated from each other.
  • the radiator of the second antenna assembly 30 is formed on the metal portion 42.
  • the antenna bracket 40 is a first pressure plate bracket.
  • the first pressure plate bracket is disposed near the first long side 213.
  • the slit 421 of the first pressing plate metal portion 42 divides at least two independent second metal regions.
  • the second metal region forms the third radiator 31 and the fourth radiator 32 of the second antenna assembly 30.
  • the metal portion 42 is provided on the first platen bracket to further improve the bonding firmness between the first platen bracket and the middle plate 22, thereby improving the overall bonding strength of the electronic device 100.
  • the third radiator 31 and the fourth radiator 32 are formed in the metal part 42 to cooperate with the first radiator 11 and the second radiator 12 to transmit and receive antenna signals of the same frequency band, thereby effectively improving the antenna system.
  • the channel capacity of the electronic device 100 is further improved.
  • at least two independent second metal regions are divided by the micro-slit strip of the first platen metal portion 42. The second metal region forms the third radiator 31 and the fourth radiator 32 of the second antenna assembly 30.
  • Embodiment 6 As shown in FIG. 8, a flexible circuit board 44 is fixed on the antenna bracket 40.
  • the radiator of the second antenna assembly 30 is formed on the flexible circuit board 44.
  • the antenna bracket is a first pressure plate bracket.
  • the first flexible circuit board forms the third radiator 31 of the second antenna assembly 30.
  • the second flexible circuit board 44 forms a fourth radiator 32 of the second antenna assembly 30.
  • the third radiator 31 and the fourth radiator 32 cooperate with the first radiator 11 and the second radiator 12 to transmit and receive antenna signals of the same frequency band, thereby effectively improving the channel capacity of the antenna, and further increasing The transmission of the electronic device 100 is real-time.
  • the two flexible circuit boards are fixed by embedding or welding on the first platen bracket to form a third radiator 31 and a fourth radiator 32.
  • the electronic device 100 further includes a second antenna bracket 50.
  • the second antenna bracket 50 is spaced from the antenna bracket 40.
  • the second antenna bracket 50 is fixed to the middle plate 22.
  • the second antenna bracket 50 is disposed near the second long side 214.
  • the antenna bracket 40 includes a first insulating portion 43.
  • the third radiator 31 of the second antenna assembly 30 is formed by fixing a flexible circuit board to the first insulating portion 43 or by a laser direct molding technique or a printing direct molding technique.
  • the second antenna bracket 50 includes a second insulating portion 51.
  • the fourth radiator 32 of the second antenna assembly 30 is formed by fixing a flexible circuit board to the second insulating portion 51 or by a laser direct molding technique or a printing direct molding technique.
  • the second antenna bracket 50 is a second pressure plate bracket.
  • the second pressure plate bracket is used for fixing circuit components on the first circuit board 221. Therefore, the third radiator 31 and the fourth radiator 32 are provided at a distance from the antenna bracket 40 to prevent the user from receiving and transmitting antenna signals through the fourth radiator 32 when the user holds the third radiator 31.
  • the antenna bracket 40 includes a first insulating portion 43.
  • the second antenna bracket 50 includes a first metal portion 52.
  • the third radiator 31 of the second antenna assembly 30 is formed by fixing a flexible circuit board to the first insulating portion 43 or by a laser direct molding technique or a printing direct molding technique.
  • the antenna bracket 40 is a first pressure plate bracket.
  • the second antenna bracket 50 is a second pressure plate bracket.
  • a metal region is divided in the first metal portion 52 through the slot 521 to form a fourth radiator 32 of the second antenna assembly 30.
  • the positions of the antenna bracket 40 and the second antenna bracket 50 may be reversed. Set it according to the actual situation.
  • the electronic device 100 includes two first antenna components 10 and two second antenna components 30.
  • the two first antenna components 10 and the two second antenna components 30 together form a 4 ⁇ 4 multiple-input multiple-output antenna system for transmitting and receiving antenna signals in the LTE mid / high frequency band.
  • the 4 ⁇ 4 MIMO antenna supports the LTE frequency band.
  • the LTE frequency band includes a low frequency band, an intermediate frequency band, and a high frequency band.
  • the intermediate frequency band of the LTE band is 1710MHz-2170MHz.
  • the high-frequency bands of the LTE band are 2300MHz-2400MHz and 2500MHz-2700MHz.
  • the low-frequency band of the LTE band is 824MHz-960MHz.
  • the first radiator 11 of the first antenna assembly 10 is formed at a connection between the first short side 211 and the first long side 213, or at a connection between the first short side 211 and the second long side 214.
  • the second radiator of the first antenna assembly 10 is formed at a connection between the second short side 212 and the second long side 214, or is formed at a connection between the second short side 212 and the second long side 214.
  • the radiators of the two second antenna assemblies 30 may be formed by any one of the first embodiment to the eighth embodiment.
  • the radiators of the two second antenna components 30 may be disposed at intervals along the second long side 214 or the second long side 214.
  • the radiator of one of the second antenna components 30 is disposed along the second long side 214, and the radiator of the other second antenna component 30 is disposed along the second long side 214. This application does not make specific restrictions.
  • the first antenna assembly 10 further includes a first excitation source 13 and a first switching circuit 14.
  • the first switching circuit 14 is connected between the first excitation source 13 and the radiator of the first antenna assembly 10.
  • the first switching circuit 14 is used to switch a signal receiving and transmitting frequency band of the first antenna assembly 10.
  • the first switching circuit 14 includes a first switching branch c1 and a second switching branch c2 which are arranged in parallel.
  • the first switching branch c1 is provided with an inductor.
  • the second switching branch c2 is provided with a capacitor.
  • the switching frequency band of the first antenna assembly 10 is switched by switching the first switching branch c1 and the second switching branch c2.
  • the first excitation source 13 and the first switching circuit 14 are both disposed on the middle plate 22.
  • the first excitation source 13 is used for transmitting an excitation signal.
  • the first switching circuit 14 is configured to cover antenna signals in different frequency bands by switching different branches. For example, when the first switching circuit 14 is switched to the first switching branch c1 to work, the inductance of the first switching branch c1 is operated at 2.7 nh, and the first antenna assembly 10 receives and transmits a frequency of 1800 MHz. When the first switching circuit 14 is switched to work on the second switching branch c2, the capacitance of the second switching branch c2 is operated at 1p, and the first antenna assembly 10 receives and transmits a frequency of 2600 MHz. In other embodiments, the first switching branch c1 and the second switching branch c2 may be swapped. Specific can be set according to the actual situation. In other embodiments, the first switching circuit 14 also includes other tuning devices such as switches. This application does not make specific restrictions.
  • the first antenna assembly 10 further includes a first return point 15 and a first ground-matching circuit 16.
  • the first ground-matching circuit 16 is connected between the radiator of the first antenna assembly 10 and the first return point 15.
  • the first ground-matching circuit 16 is used to adjust the return path of the first antenna assembly 10.
  • the first pair-to-ground matching circuit 16 is connected in parallel with the first switching circuit 14.
  • the first pair-to-ground matching circuit 16 includes an inductor.
  • the inductor includes a first connection terminal and a second connection terminal. The first connection terminal is connected to the first return point 15, and the second connection terminal is connected to the first switching circuit 14.
  • the position of the first round point 15 is adjusted to adjust the length between the feeding point of the first radiator 11 and the first round point 15 to adjust the inductance of the inductor, and then the first An antenna component 10 transmits and receives an antenna frequency band.
  • the first pair of ground matching circuits 16 may also include a capacitor.
  • the structure of the second radiator 12 of the first antenna assembly 10 is the same, and details are not described herein.
  • a switch for shielding low-frequency signals is provided on a side of the second radiator 12 remote from the ground matching circuit.
  • the switch for shielding low-frequency signals is closed, and the second radiator 12 is directly connected to the ground point through an inductor or a capacitor to avoid the influence of low-frequency signals.
  • the second antenna assembly 30 further includes a second excitation source 33 and a second switching circuit 34.
  • the second switching circuit 34 is connected between the second excitation source 33 and the radiator of the second antenna assembly 30.
  • the second switching circuit 34 is configured to switch a signal transmitting / receiving frequency band of the second antenna assembly 30.
  • the second switching circuit 34 includes a third switching branch d1 and a fourth switching branch d2 arranged in parallel.
  • the third switching branch d1 is provided with an inductor.
  • the fourth switching branch d2 is provided with a capacitor.
  • the switching frequency band of the second antenna assembly 30 is switched by switching the third switching branch d1 and the fourth switching branch d2.
  • the second excitation source 33 and the second switching circuit 34 are both disposed on the middle plate 22.
  • the second excitation source 33 is used for transmitting an excitation signal.
  • the second switching circuit 34 is configured to cover different antenna frequency bands by switching different circuit devices. For example, when the second switching circuit 34 is switched to the third switching branch d1 to work, the inductance of the third switching branch is operated at 2.7 nh, and the first antenna assembly 10 is transmitting and receiving a frequency of 1800 MHz. When the second switching circuit 34 is switched to the fourth switching branch d2 for operation, the capacitance of the fourth switching branch d2 is operated at 1p, and the first antenna assembly 10 receives and transmits a frequency of 2600 MHz. Furthermore, the second switching circuit 34 may also be connected to the ground point through an inductor or a capacitor, so as to adjust the second antenna component 30 to transmit and receive different antenna frequency bands.
  • the second antenna assembly 30 further includes a second return point 35 and a second ground matching circuit 36.
  • the second ground matching circuit 36 is connected between the radiator of the second antenna assembly 30 and the second return point 35.
  • the second ground-matching circuit 36 is used to adjust the return path of the second antenna assembly 30.
  • the specific adjustment principle is consistent with the adjustment principle of the first return point 15 of the first antenna assembly 10 and the first ground-to-ground matching circuit 16, and details are not described herein again.
  • the first circuit board 221 is disposed near the first short side 211.
  • the first excitation source 13, the first switching circuit 14, and the first ground-matching circuit 16 electrically connected to the first antenna assembly 10 near the first short side 211 are disposed on the first circuit board 221.
  • a second excitation source 33, a second switching circuit 34, and a second ground-matching circuit 36 electrically connected to the second antenna assembly 30 are disposed on the first circuit board 221.
  • the first excitation source 13 is electrically connected to the first switching circuit 14 and the first ground-matching circuit 16 through a conductive line, so as to control the first excitation source 13 to the first radiator 11 through the first circuit board 221. Transmit the excitation signal.
  • the second excitation source 33 electrically connected to the second antenna assembly 30 is electrically connected to the second switching circuit 34 through a conductive line.
  • the second excitation source 33 is controlled by the first circuit board 221 to send an excitation signal to the third radiator 31.
  • the first excitation source 13 may also be connected to the first switching circuit 14 and the first pair-to-ground matching circuit 16 by means of printed circuit board wiring or the like.
  • the second excitation source 33 may also be electrically connected to the second switching circuit 34 and the second pair-to-ground matching circuit 36 through a printed circuit board wiring or the like.
  • the electronic device 100 includes a second circuit board 222 electrically connected to the first circuit board 221.
  • the second circuit board 222 is disposed near the second short side 212 and is disposed on the middle board 22.
  • the electronic device 100 further includes a user identification card holder 223 and an electrical connector 224 provided on the midplane 22.
  • the first excitation source 13, the first switching circuit 14, and the first ground-matching circuit 16 electrically connected to the second radiator 12 near the first short side 212 are disposed on the second circuit board 222.
  • the user identification card holder 223 and the electrical connector 224 are disposed on the second circuit board 222.
  • the electrically connected first excitation source 13 of the second radiator 12 near the first short side 212 is connected to the first switching circuit 14 and the first ground-matching circuit 16 through a conductive line, and is controlled by the second circuit board 222
  • the first excitation source 13 finds an excitation signal to the second radiator 12 to realize the receiving and transmitting antenna signals of the first antenna assembly 10.
  • the second radiator 112 shares the second circuit board 222 with the user identification card holder 223 and the electrical connector 224 to save the extra preparation of a circuit board for the second radiator 12.
  • the electronic device 100 includes a third antenna component 60.
  • the transmitting and receiving antenna frequency band of the third antenna component 60 is different from that of the first antenna component 10.
  • the first short side 211 is provided with a third antenna slot 27.
  • the first antenna slit 24, the third antenna slit 27, and the first slit 23 separate the radiator of the third antenna assembly 60 on the first short side 211.
  • the antenna frequency band transmitted and received by the third antenna assembly 60 is a low-frequency band of LTE.
  • the frequency band range of the transmitting and receiving antennas of the electronic device 100 can be increased, thereby improving the antenna performance of the electronic device 100.
  • the third antenna assembly 60 includes a third excitation source 61, a third switching circuit 62, a third ground-to-ground matching circuit 63, and a third return point 64.
  • the third switching circuit 62 is connected between the third excitation source 61 and the radiator of the third antenna assembly 60.
  • the third switching circuit 62 is configured to switch a signal transmitting / receiving frequency band of the third antenna assembly 60.
  • the third ground matching circuit 63 is connected in parallel with the third switching circuit 62, and the third ground matching circuit 63 is connected between the radiator of the third antenna assembly 60 and the third return point 64.
  • the third ground matching circuit 63 is used for For adjusting the return path of the third antenna assembly 60.
  • the third antenna assembly 60 transmits and receives LTE low-frequency bands.
  • the third switching circuit 62 includes an inductor and a capacitor switch. By adjusting the inductive reactance of the inductance of the third switching circuit 62 or the impedance of the capacitor, the frequency band of the transmitting and receiving antenna of the third antenna assembly 60 is adjusted.
  • the third excitation source 61 and the third switching circuit 62 are electrically connected to the first circuit board 221.
  • the first circuit board 221 controls the third excitation source 61 to send an excitation signal to the third antenna assembly 60.
  • the third antenna assembly 60 adjusts the position of the third return point 64 to adjust the frequency band range of the antenna signal transmitted and received by the third antenna assembly 60.
  • the electronic device 100 includes a fourth antenna assembly 70.
  • the frequency band of the transmitting and receiving antenna of the fourth antenna assembly 70 is the same as that of the third antenna assembly 60.
  • the second slot 25 and the second antenna slot 26 isolate the radiator of the fourth antenna assembly 70 on the first long side 213 and the first short side 212.
  • the fourth antenna assembly 70 is isolated on the first long side 213 and the first short side 212 to transmit and receive the LTE low-frequency band, thereby increasing the types of antenna signals transmitted and received by the electronic device 100 to meet various communication requirements. demand.
  • the fourth antenna component 70 cooperates with the third antenna component 60 to form a 2 ⁇ 2 multiple-input multiple-output antenna system, which is used to transmit and receive antenna signals in the LTE low frequency band.
  • the fourth antenna assembly 70 includes a fourth excitation source 71.
  • the fourth excitation source 71 is electrically connected to the radiator of the fourth antenna assembly 70.
  • a fourth excitation source 71 is provided on the second circuit board 222.
  • the second circuit board 222 controls the fourth excitation source 71 to transmit an excitation signal, so that the fourth antenna assembly 70 transmits an antenna signal.
  • the fourth antenna assembly 70 further includes a single pole four throw switch 72.
  • the single pole four throw switch 72 includes a first port 721, a second port 722, a third port 723, and a fourth port 724.
  • the first port 721, the second port 722, the third port 723, and the fourth port 724 are respectively set at different ground points.
  • the lengths of the metal conductors from the return point connected to each port to the feeding point of the fourth antenna assembly 70 are different. Therefore, the frequency bands of the transmitting and receiving antennas corresponding to the different metal conductor lengths are different.
  • the transmitting and receiving antenna frequency band of the first port 721 is 703MHz-748MHz
  • the receiving and transmitting antenna frequency band of the second port 722 is 1850MHz-1910MHz
  • the receiving and transmitting antenna frequency band of the third port 723 is 880MHz-915MHz. Therefore, the single-pole connection with the first port 721, the second port 722, and the third port 723 is controlled to adjust the antenna frequency band for transmission and reception.
  • the fourth antenna assembly 70 is provided with a switch for shielding low-frequency signals.
  • the switch for shielding low-frequency signals is closed, and the fourth antenna assembly 70 is directly connected to the ground point through an inductor or a capacitor to avoid the fourth antenna assembly 70 The effect of low-frequency signals on the operation of the second radiator 12.
  • the electronic device 100 includes a fifth antenna assembly 80.
  • the transmitting and receiving frequency bands of the fifth antenna assembly 80 are different from those of the first antenna assembly 10, the third antenna assembly 60, and the fourth antenna assembly 70.
  • the first slot 23 and the third antenna slot 27 isolate the radiator of the fifth antenna assembly 80 on the first short side 211 and the second long side 214.
  • the fifth antenna assembly 80 transmits and receives a 2.4G WIFI frequency band, a 5G WIFI frequency band, a 2.4G GPS frequency band, and a 5GGPS frequency band.
  • the 2.4G WIFI frequency band is usually 2.4GHz-2.5GHz.
  • 5G WIFI frequency band is usually 5.1GHz-5.8GHz.
  • the types of the antenna signals transmitted and received by the electronic device 100 can be increased to meet various communication requirements.
  • the antenna signal can be received in multiple directions to quickly transmit user data.
  • the electronic device 100 includes a fourth-time location 81 and a fifth-time location 82.
  • the different positions of the third antenna assembly 60 are directly connected to the fourth loop site 81 and the fifth loop site 82 via conductive lines, respectively.
  • the fifth antenna assembly 80 works, it can significantly isolate the low-frequency signal of the third antenna assembly 60 from the first antenna.
  • the interference of the five antenna components ensures the accuracy of the antenna signals transmitted and received by the fifth antenna component 80, thereby improving the antenna performance of the electronic device 100.
  • the electronic device 100 includes a sixth antenna assembly 90.
  • the transmitting and receiving frequency band of the sixth antenna component 90 is a 5G WIFI frequency band.
  • the sixth antenna assembly 90 is formed on the middle plate 22 or the frame 21.
  • the sixth antenna component 90 and the fifth antenna component 80 form a 2 ⁇ 2 5G WIFI multiple input multiple output system.
  • the sixth antenna assembly 90 has multiple settings:
  • Embodiment 1 As shown in FIG. 16, a gap 91 is provided on the frame 21.
  • An independent third metal region 92 is divided by the slit 91, and the third metal region forms a radiator of the sixth antenna assembly 90.
  • the sixth antenna assembly 90 may be formed on one of the first short side 211, the first short side 212, or the first long side 213.
  • an independent third metal region 92 is divided by a micro slit, and the third metal region forms a radiator of the sixth antenna assembly 90.
  • the second embodiment is different from the first embodiment: as shown in FIG. 17, it is formed by fixing a flexible circuit board on the antenna bracket 40 or the second antenna bracket 50 on the middle plate 22 or by direct laser molding technology or direct printing technology.
  • the sixth antenna assembly 90 In this embodiment, a flexible circuit board is pasted on the insulating portion 41 of the antenna bracket 40 to form the radiator 93 of the sixth antenna assembly 90. In other embodiments, the flexible circuit board may also be fixed by embedding or welding on the antenna bracket 40 to form the sixth antenna assembly 90. Furthermore, a metal antenna pattern may also be formed on the antenna support 40 by a laser direct molding technique or a printing direct molding technique, thereby forming the sixth antenna assembly 90. Set it according to the actual situation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种电子装置。电子装置包括至少一个第一天线组件、至少一个第二天线组件及中框,所述至少一个第一天线组件的辐射体形成于所述中框上,所述至少一个第二天线组件的辐射体独立于所述中框设置,所述至少一个第一天线组件和所述至少一个第二天线组件均用于收发相同频段的天线信号,所述至少一个第一天线组件和所述至少一个第二天线组件共同形成多输入多输出天线***。上述的电子装置通过至少一个第一天线组件及至少一个第二天线组件形成多输入多输出天线***,以用于收发相同频段的天线信号,使得电子装置的数据传输实时性高。

Description

电子装置 技术领域
本申请涉及电子技术领域,尤其涉及一种电子装置。
背景技术
随着移动通信技术的日趋发展,大容量、高传输率和高可靠性的无线通信技术越来越受到用户的青睐。然而,由于传统的手机天线***的通信容量小,使得传统的手机无法满足用户对天线的数据传输实时性的要求。
发明内容
本申请提供了一种数据传输实时性高的电子装置。
本申请实施例提供了一种电子装置。所述电子装置包括至少一个第一天线组件、至少一个第二天线组件及中框,所述至少一个第一天线组件的辐射体形成于所述中框上,所述至少一个第二天线组件的辐射体独立于所述中框设置,所述至少一个第一天线组件和所述至少一个第二天线组件均用于收发相同频段的天线信号,所述至少一个第一天线组件和所述至少一个第二天线组件共同形成多输入多输出天线***。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电子装置的结构示意图;
图2是图1所示的电子装置在I-I线处的结构的一种实施方式的示意图;
图3是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图4是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图5是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图6是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图7是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图8是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图9是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图10是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图11是图2所示的电子装置在的第一天线组件的结构示意图;
图12是图2所示的电子装置的第二天线组件的结构示意图;
图13是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图14是图2所示的电子装置的部分结构示意图;
图15是图13所示的电子装置的第四天线组件的部分结构示意图;
图16是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图;
图17是图1所示的电子装置在I-I线处的结构的另一种实施方式的示意图。
具体实施方式
第一方面,提供了一种电子装置,所述电子装置包括:至少一个第一天线组件、至少一个第二天线组件及中框,所述至少一个第一天线组件的辐射体形成于所述中框上,所述 至少一个第二天线组件的辐射体独立于所述中框设置,所述至少一个第一天线组件和所述至少一个第二天线组件均用于收发相同频段的天线信号,所述至少一个第一天线组件和所述至少一个第二天线组件共同形成多输入多输出天线***。
结合第一方面,在第一种实施方式中,所述中框包括边框和中板,所述边框包括相背设置的第一短边和第二短边及相背设置的第一长边和第二长边,所述第一短边、所述第一长边、所述第二短边及所述第二长边依次连接;每一个所述第一天线组件的辐射体形成于任一所述短边与任一所述长边的连接处,并包括位于所述连接处的部分所述短边和部分所述长边,每一个所述第二天线组件的辐射体与所述边框相互绝缘设置。
结合第一种实施方式,在第二种实施方式中,所述第一短边与所述中板之间设有第一缝隙,所述第一缝隙在所述第一短边与所述第一长边的连接处弯折延伸至部分所述第一长边和所述中板之间,并在所述第一短边与所述第二长边的连接处弯折延伸至部分所述第二长边和所述中板之间,所述第一短边上设置有第一天线缝,所述第一天线缝和所述第一缝隙在所述第一短边与所述第一长边的连接处或所述第一短边与所述第二长边的连接处隔离出所述第一天线组件的辐射体。
结合第二种实施方式,在第三种实施方式中,所述第二短边与所述中板之间设有第二缝隙,所述第二缝隙在所述第二短边与所述第一长边的连接处弯折延伸至部分所述第一长边和所述中板之间,并在所述第二短边与所述第二长边的连接处弯折延伸至部分所述第二长边和所述中板之间,所述第二短边上设置有第二天线缝,所述第二天线缝和所述第二缝隙在所述第二短边与所述第一长边的连接处或所述第二短边与所述第二长边的连接处隔离出所述第一天线组件的辐射体。
结合第一种实施方式,在第四种实施方式中,所述边框上设置有微缝带或缝隙,所述边框通过所述微缝带或所述缝隙分割出至少一个独立的金属区域,所述独立的金属区域与所述边框相互绝缘,所述第二天线组件的辐射体形成于所述独立的金属区域。
结合第一种实施方式,在第五种实施方式中,所述电子装置还包括至少一天线支架,所述至少一天线支架固定于所述中板,所述第二天线组件的辐射体形成于所述天线支架上。
结合第五种实施方式,在第六种实施方式中,所述天线支架包括绝缘部,所述第二天线组件的辐射体通过激光直接成型技术或者通过印刷直接成型技术形成于所述天线支架上。
结合第五种实施方式,在第七种实施方式中,,所述天线支架包括金属部,所述金属部与所述边框相互绝缘,所述第二天线组件的辐射体形成于所述金属部上。
结合第五种实施方式,在第八种实施方式中,所述天线支架上固定有柔性电路板,所述第二天线组件的辐射体形成于所述柔性电路板上。
结合第一种至第八中实施方式中的任意一种实施方式,在第九种实施方式中,所述第一天线组件还包括第一激励源和第一切换电路,所述第一切换电路连接在所述第一激励源与所述第一天线组件的辐射体之间,所述第一切换电路用于切换所述第一天线组件的信号收发频段。
结合第九种实施方式,在第十种实施方式中,所述第一天线组件还包括第一回地点及第一对地匹配电路,所述第一对地匹配电路连接在所述第一天线组件的辐射体与所述第一回地点之间,所述第一对地匹配电路用于调节所述第一天线组件的回地路径。
结合第一种至第八中实施方式中的任意一种实施方式,在第十一种实施方式中,所述第二天线组件还包括第二激励源和第二切换电路,所述第二切换电路连接在所述第二激励源与所述第二天线组件的辐射体之间,所述第二切换电路用于切换所述第二天线组件的信号收发频段。
结合第十一种实施方式,在第十二种实施方式中,所述第二天线组件还包括第二回地 点及第二对地匹配电路,所述第二对地匹配电路连接在所述第二天线组件的辐射体与所述第二回地点之间,所述第二对地匹配电路用于调节所述第二天线组件的回地路径。
结合第一种至第八中实施方式中的任意一种实施方式,在第十三种实施方式中,所述电子装置包括两个第一天线组件及两个第二天线组件,两个所述第一天线组件与两个所述第二天线组件共同形成4×4多输入多输出天线***,用于收发LTE中/高频段的天线信号。
结合第十三种实施方式,在第十四种实施方式中,其中一个所述第一天线组件的辐射体形成于所述第一短边与所述第一长边的连接处,或形成于所述第一短边与所述第二长边的连接处;另一个所述第一天线组件的辐射体形成于所述第二短边与所述第一长边的连接处,或形成于所述第二短边与所述第二长边的连接处。
结合第十三种实施方式,在第十五种实施方式中,其特征在于,两个所述第二天线组件的辐射体沿所述第一长边或所述第二长边间隔设置,或者,其中一个所述第二天线组件的辐射体沿所述第一长边设置,另一个所述第二天线组件的辐射体沿所述第二长边设置。
结合第三种实施方式,在第十六种实施方式中,所述电子装置还包括第三天线组件,所述第三天线组件收发天线频段与所述第一天线组件不同,所述第一短边设有第三天线缝,所述第一天线缝、所述第三天线缝及所述第一缝隙在所述第一短边隔离出所述第三天线组件的辐射体。
结合第十六种实施方式,在第十七种实施方式中,所述第三天线组件包括第三激励源,第三切换电路、第三对地匹配电路及第三回地点,所述第三切换电路连接在所述第三激励源及所述第三天线组件的辐射体之间,所述第三切换电路用于切换所述第三天线组件的信号收发频段,所述第三对地匹配电路与所述第三切换电路并联,且所述第三对地匹配电路连接在所述第三天线组件的辐射体与所述第三回地点之间,所述第三对地匹配电路用于调节所述第三天线组件的回地路径。
结合第十六种实施方式,在第十八种实施方式中,所述电子装置还包括第四天线组件,所述第四天线组件收发天线频段与所述第三天线组件相同,所述第二缝隙以及所述第二天线缝在所述第一长边与所述第二短边隔离出所述第四天线组件的辐射体。
结合第十八种实施方式,在第十九种实施方式中,所述电子装置还包括第五天线组件,所述第五天线组件收发频段与所述第一天线组件、所述第二天线组件、所述第三天线组件及所述第四天线组件不同,所述第一缝隙及所述第三天线缝,在所述第一短边及所述第二长边隔离出所述第五天线组件的辐射体。
结合第十九种实施方式,在第二十种实施方式中,所述电子装置包括第六天线组件,所述第六天线组件收发频段为5G WIFI频段,所述第六天线组件形成于所述中板或形成于所述边框。
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
请参照图1,本申请实施方式提供一种电子装置100。电子装置100可以是平板电脑、手机、照相机、个人计算机、笔记本电脑、车载设备、可穿戴设备等智能设备。
请参阅图1及图2,本实施例提供一种电子装置100。电子装置100包括至少一个第一 天线组件10、至少一个第二天线组件30及中框20。至少一个第一天线组件10的辐射体形成于中框20上。至少一个第二天线组件30的辐射体独立于中框20设置。至少一个第一天线组件10和至少一个第二天线组件30均用于收发相同频段的天线信号。至少一个第一天线组件10和至少一个第二天线组件30共同形成多输入多输出天线***。可以理解的是:至少一个第二天线组件30的辐射体独立于中框20设置指的是通过与中框20绝缘设置至少一个第二天线组件30的辐射体。即第二天线组件30的辐射体与中框20不存在电性连接的关系。本申请中提到的“第一天线组件10”、“第二天线组件30”中所用到的“第一”、“第二”仅用于描述目的,不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。相应地,本申请中提到的其他涉及“第一”、“第二”、“第N”等描述,也仅仅用于描述目的,不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
在本实施例中,通过在中框20上形成至少一个第一天线组件10的辐射体以及通过独立于中框20形成至少一个第二天线组件30的辐射体,使得至少一个第一天线组件10和至少一个第二天线组件30共同形成收发相同频段的天线信号的多输入多输出的天线***,从而显著地增加电子装置100的天线***的信道容量,进而提高用户数据的传输速率,以及提高电子装置100的数据传输的实时性。
可以理解的是,当在中框20上形成至少一个第一天线组件10的辐射体,既可以提高天线***的收发天线信号的性能,又可以避免在电子装置100的内部排布天线***,从而提高电子装置100的空间利用率。此外,当至少一个天线组件10形成在中框20上,可以避免当天线***排布于电子装置100内部时,电子装置100内部的器件对其产生电磁干扰。
请参阅图1及图2,中框20包括边框21和中板22。边框21包括相背设置的第一短边211和第一短边212及相背设置的第一长边213和第二长边214。第一短边211、第一长边213、第一短边212及第二长边214依次连接。每一个所述第一天线组件10的辐射体形成于任一所述短边与任一所述长边的连接处,并包括位于所述连接处的部分所述短边和部分所述长边。每一个所述第二天线组件30的辐射体与所述边框21相互绝缘设置。本实施例中,第一天线组件10的辐射体可以形成于第一短边211及第一长边213的连接处,以及位于连接处的部分第一短边211及第一长边213。或者,第一天线组件10的辐射体形成于第一短边211与第二长边214的连接处,以及位于连接处的部分第一短边211及第二长边214。或者第一天线组件10的辐射体形成于第二短边212与第一长边213的连接处,以及位于连接处的部分第二短边212及第一长边213。或者第一天线组件10的辐射体形成于第二短边212与第二长边214的连接处,以及位于连接处的部分第二短边212及第二长边214。此时,第一天线组件10不但可以提升第一天线组件10的天线性能,还可以避免用户在使用电子装置100时,因握持住第一天线组件10的辐射体而影响天线***的性能。例如,用户在拍照或者接听电话时,位于第一短边211和第一长边213的连接处及第一短边212和第二长边214的连接处的第一天线组件10可以避开用户握持的位置,从而保证第一天线组件10随时收发天线信号。或者当用户握持住其中一个辐射体,另一个辐射体也可以照常收发天线信号,保证天线***稳定工作。
如图2所示,第一短边211与中板22之间设有第一缝隙23。第一缝隙23在第一短边211与第一长边213的连接处弯折延伸至部分第一长边213和中板22之间,并在第一短边211与第二长边214的连接处弯折延伸至部分第二长边214和中板22之间。第一短边211上设置有第一天线缝24。第一天线缝24和第一缝隙23在第一短边211与第一长边213的连接处或第一短边211与第二长边214的连接处隔离出第一天线组件10的辐射体。本实施例中,第一短边211与第一长边213为金属材料。第一短边211与第一长边213的连接处为弧形段。该弧形段与部分第一短边211及部分第一长边213形成第一天线组件10的第一 个辐射体11。此时,第一个辐射体11收发天线信号的方向具有多个方向,包括第一短边211、第一长边213以及第一短边211与第一长边213连接处的朝向。故而,本实施例的第一个辐射体11可以实现多方向的收发天线信号,以进一步的提高用户数据的传输速率。此外,形成在边框21的第一个辐射体11,可以节省电子装置100的内部空间,以排布更多的器件,从而提高电子设备100的空间利用率。此外,形成在边框21的第一个辐射体11也可以避免当天线***排布于电子装置100内部时,电子装置100内部的器件对其产生电磁干扰。
如图2所示,第二短边212与中板22之间设有第二缝隙25。第二缝隙25在第二短边212与第一长边213的连接处弯折延伸至部分第一长边213和中板22之间,并在第二短边212与第二长边214的连接处弯折延伸至部分第二长边214和中板22之间。第二短边212上设置有第二天线缝26,第二天线缝26和第二缝隙25在第二短边212与第一长边213的连接处或第二短边212与第二长边214的连接处隔离出第一天线组件10的辐射体。在本实施例中,第二短边212及第二长边214的连接处为弧形段。此时,该弧形段与部分第二短边212及部分第二长边214形成第一天线组件10的第二个辐射体12。第二个辐射体12收发天线信号的方向具有多个方向,包括第二短边212、第二长边214及第二短边212与第二长边214连接处的朝向。故而,第一天线组件10的第二个辐射体12可以实现多方向的收发天线信号,以进一步的提高用户数据的传输速率。此外,形成在边框21的第二个辐射体12,可以节省电子装置100的内部空间,以排布更多的器件,从而提高电子设备100的空间利用率。此外,形成在边框21的第二个辐射体12也可以避免当天线***排布于电子装置100内部时,电子装置100内部的器件对其产生电磁干扰。
本实施例中,所述第二天线组件30的辐射体具有多种设置方式:
实施方式一:如图2及图3所示,边框21上设置有缝隙2131。边框21通过微缝带或缝隙分割出至少一个独立的金属区域(31/32)。独立的金属区域(31/32)与边框21相互绝缘。第二天线组件30的辐射体形成于独立的金属区域(31/32)。独立的金属区域(31/32)指的是形成以下第三辐射体31或第四辐射体的其中一个。本实施例中,第一长边213为金属材料。通过在第一长边213上设置缝隙2131,以将第一长边213分割出独立的两个独立的金属区域(31/32)。两个金属区域(31/32)分别形成第二天线组件30的第三个辐射体31及第四个辐射体32。第三个辐射体31及第四个辐射体32收发的天线频段与第一个辐射体11及第二个辐射体12的收发的天线频段相同。通过在边框21上直接形成第三个辐射体31及第四个辐射体32,可以避免在电子装置100内额外排布第二天线组件30,从而节省电子装置100的内部空间,以提高电子装置的空间利用率。此外,当在电子装置100内形成第三个辐射体31及第四个辐射体32可以成倍增加电子装置100的信道容量,从而提高电子装置100的数据传输实时性。
在其他实施方式中,边框21上设置有微缝带。边框21通过微缝带分割出至少一个独立的金属区域。独立的金属区域与边框21相互绝缘。第二天线组件30的辐射体形成于独立的金属区域。此外,第二天线组件30的第三个辐射体31也可以形成在第一短边211、第一短边212或第二长边214的至少一个。第二天线组件30的第四个辐射体32也可以形成在第一短边211、第一短边212或第二长边214的其中一个。具体的可以根据实际情况设置。
实施方式二:如图2及图4所示,所述电子装置100还包括至少一天线支架40。至少一天线支架40固定于中板22。第二天线组件30的辐射体形成于天线支架40上。本实施例中,通过在中板22上设置一天线支架40,以在天线支架40上设置第二天线组件30的第三个辐射体31及第四个辐射体32。天线支架40靠近第一长边213设置。当第三个辐射体31及第四个辐射体32配合第一辐射体11及第二辐射体12收发相同频段的天线信号, 从而提高天线***的信道容量,进而提高用户数据的传输速率。在其他实施方式中,第二天线组件20也可以靠近第二长边214设置。
实施方式三:如图5所示,天线支架40为第一压板支架。第二天线组件30的辐射体形成于第一压板支架。本实施例中,第一压板支架上设有第一安装孔。中板22设有第二安装孔。通过螺丝或者螺钉将第一压板支架固定在中板22上。在第一压板支架形成第二天线组件30的第三辐射体31及第四辐射体32,以配合第一辐射体11及第二辐射体12收发相同频段的天线信号,从而提高天线***的信道容量,进而提高用户数据的传输速率。此外,中板22设有第一电路板221。第一电路板221上设有多个电路元器件,例如电阻,电感或电容等。此时,利用第一压板支架可以将该些电路元器件压设在中板22上,一方面避免该些元器件与其他部件发生干扰,或者避免电子装置100的其他部件与该些元器件发生碰撞,从而保证该些元器件正常工作,另一方面,可以提高电子装置100的整体结合强度。故而,本实施例的第一压板支架一物两用,可以节省电子装置100的内部空间,提高电子装置100内部的空间利用率。在其他实施方式中,第一压板支架也可以通过焊接或者卡接等方式固定在中板22上。
实施方式四:如图6所示,天线支架40包括绝缘部41。第二天线组件30的辐射体通过激光直接成型技术或者通过印刷直接成型技术形成于天线支架40上。本实施方式中,天线支架40为第一压板支架。第一压板支架靠近第一长边213设置。通过激光直接成型技术或者印刷直接成型技术在第一压板支架的绝缘部41上形成金属天线图案,从而构成第二天线组件30的第三个辐射体31及第四个辐射体32。在其他实施例中,第一压板支架可以靠近第二长边214设置。
实施方式五:如图7所示,天线支架40包括金属部42。金属部42与边框21相互绝缘。第二天线组件30的辐射体形成于金属部42上。本实施方式中,天线支架40为第一压板支架。第一压板支架靠近第一长边213设置。第一压板金属部42缝隙421分割出独立的至少两个第二金属区域。第二金属区域形成第二天线组件30的第三辐射体31及第四辐射体32。通过在第一压板支架设置金属部42,以进一步的提高第一压板支架与中板22的结合牢固度,从而提高电子装置100整体的结合强度。此外,通过在金属部42形成第三个辐射体31及第四个辐射体32,以配合第一个辐射体11及第二个辐射体12收发相同频段的天线信号,从而有效地提升天线***的信道容量,进而提高电子装置100的传输实时性。在其他实施方式中,通过第一压板金属部42微缝带分割出独立的至少两个第二金属区域。第二金属区域形成第二天线组件30的第三辐射体31及第四辐射体32。
实施方式六:如图8所示,天线支架40上固定有柔性电路板44。第二天线组件30的辐射体形成于柔性电路板44上。本实施方式中,天线支架为第一压板支架。通过在第一压板支架的绝缘部41上粘贴两个分开的柔性电路板44。第一个柔性电路板形成第二天线组件30的第三个辐射体31。第二个柔性电路板44形成第二天线组件30的第四个辐射体32。此时,第三个辐射体31及第四个辐射体32配合第一个辐射体11及第二个辐射体12,以收发相同频段的天线信号,从而有效地提升天线的信道容量,进而提高电子装置100的传输实时性。通过在第一压板支架上嵌设或焊接等方式固定两个柔性电路板以形成第三个辐射体31及第四个辐射体32。
实施方式七:如图9所示,电子装置100还包括第二天线支架50。第二天线支架50与天线支架40间隔设置。第二天线支架50固定于中板22。第二天线支架50靠近第二长边214设置。天线支架40包括第一绝缘部43。通过在第一绝缘部43固定柔性电路板或者通过激光直接成型技术或者印刷直接成型技术形成第二天线组件30的第三辐射体31。第二天线支架50包括第二绝缘部51。通过在第二绝缘部51固定柔性电路板或者通过激光直接成型技术或者印刷直接成型技术形成第二天线组件30的第四辐射体32。本实施方式中, 第二天线支架50为第二压板支架。第二压板支架用于固定第一电路板221上的电路元器件。故而,通过设置与天线支架40间隔设置的第三辐射体31及第四辐射体32,以避免用户握持住第三辐射体31时,可通过第四辐射体32进行收发天线信号。
实施方式八:如图10所示,天线支架40包括第一绝缘部43。第二天线支架50包括第一金属部52。通过在第一绝缘部43固定柔性电路板或者通过激光直接成型技术或者印刷直接成型技术形成第二天线组件30的第三个辐射体31。本实施方式中,天线支架40为第一压板支架。第二天线支架50为第二压板支架。通过缝隙521在第一金属部52分割出一个金属区域,以形成第二天线组件30的第四个辐射体32。在其他实施方式中,天线支架40与第二天线支架50的位置可以对调。具体根据实际情况设置。
一种实施例,如图2所示,电子装置100包括两个第一天线组件10及两个第二天线组件30。两个所述第一天线组件10与两个所述第二天线组件30共同形成4×4多输入多输出天线***,用于收发LTE中/高频段的天线信号。其中,4×4MIMO天线支持频段为LTE频段。可以理解的是,LTE频段包括低频频段、中频频段及高频频段。其中,LTE频段的中频频段为1710MHz-2170MHz。LTE频段的高频频段为2300MHz-2400MHz以及2500MHz-2700MHz。LTE频段的低频频段为824MHz-960MHz。具体的,第一天线组件10的第一个辐射体11形成于第一短边211与第一长边213的连接处,或形成于第一短边211与第二长边214的连接处。第一天线组件10的第二个辐射体形成于第二短边212与第二长边214的连接处,或形成于第二短边212与第二长边214的连接处。此外,两个第二天线组件30的辐射体可由上述实施方式一至实施方式八的任一种形成。且两个第二天线组件30的辐射体可以沿第二长边214或第二长边214间隔设置。或者其中一个第二天线组件30的辐射体沿第二长边214设置,另一个第二天线组件30的辐射体沿第二长边214设置。具体的本申请不作出具体的限制。
如图2及图11所示,第一天线组件10还包括第一激励源13和第一切换电路14。第一切换电路14连接在第一激励源13与第一天线组件10的辐射体之间,第一切换电路14用于切换第一天线组件10的信号收发频段。在本实施例中,第一切换电路14包括并联设置的第一切换支路c1和第二切换支路c2。第一切换支路c1设有电感。第二切换支路c2设有电容。通过切换第一切换支路c1与第二切换支路c2来切换第一天线组件10的收发频段。第一激励源13及第一切换电路14均设于中板22上。第一激励源13用于发射激励信号。第一切换电路14用于通过切换不同的支路以覆盖不同频段的天线信号。例如,当第一切换电路14切换到第一切换支路c1工作时,第一切换支路c1的电感在2.7nh工作,第一天线组件10收发1800MHz的频率。当第一切换电路14切换到第二切换支路c2工作时,第二切换支路c2的电容在1p工作,第一天线组件10收发2600MHz的频率。在其他实施例中,第一切换支路c1和第二切换支路c2可以对调。具体的可以根据实际情况设置。在其他实施例中,第一切换电路14也包括开关等其他调谐器件。本申请不作出具体的限定。
进一步的,第一天线组件10还包括第一回地点15及第一对地匹配电路16。第一对地匹配电路16连接在第一天线组件10的辐射体与第一回地点15之间。第一对地匹配电路16用于调节第一天线组件10的回地路径。在本实施例中,第一对地匹配电路16与第一切换电路14并联。第一对地匹配电路16包括电感。电感包括第一连接端及第二连接端。第一连接端接通至第一回地点15,第二连接端接通至第一切换电路14。此时通过调节第一回地点15的位置,以调节第一个辐射体11的馈电点至第一回地点15之间的长度,从而调节电感的电感量,进而通过变化的电感量调节第一天线组件10收发的天线频段。例如,当第一回地点15至第一个辐射体11的馈电点的距离为a1时,电感的电感量为L1,第一天线组件10收发频段为M1。当第一回地点15至第一个辐射体11的馈电点的距离为a2时,电感的电感量为L2,第一天线组件10收发频段为M2。在其他实施例中,第一对地匹配电路 16也可以包括电容。通过调节第一回地点15的位置,以调节第一个辐射体11的馈电点至第一回地点15之间的长度,从而调节电容的容量,进而调节第一天线组件10收发的天线频段。具体的根据实际情况设置。
在本实施例中,第一天线组件10的第二个辐射体12的结构一致,这里不在赘述。与第一个辐射体12不同的是,第二个辐射体12的远离对地匹配电路的一侧设有用于屏蔽低频信号的开关。当第二个辐射体12工作于高频的频段时,屏蔽低频信号的开关闭合,第二个辐射体12通过电感或电容直接连接到接地点,以避免低频信号的影响。
如图2及图12所示,第二天线组件30还包括第二激励源33和第二切换电路34。第二切换电路34连接在第二激励源33与第二天线组件30的辐射体之间。第二切换电路34用于切换第二天线组件30的信号收发频段。本实施例中,第二切换电路34包括并联设置的第三切换支路d1和第四切换支路d2。第三切换支路d1设有电感。第四切换支路d2设有电容。通过切换第三切换支路d1与第四切换支路d2来切换第二天线组件30的收发频段。第二激励源33及第二切换电路34均设于中板22上。第二激励源33用于发射激励信号。第二切换电路34用于通过切换不同电路器件以覆盖不同频段的天线频段。例如,当第二切换电路34切换到第三切换支路d1工作时,第三切换支路的电感在2.7nh工作,第一天线组件10收发1800MHz的频率。当第二切换电路34切换到第四切换支路d2工作时,第四切换支路d2的电容在1p工作,第一天线组件10收发2600MHz的频率。再者,第二切换电路34也可以通过电感或电容连接至接地点,以实现调节第二天线组件30收发不同的天线频段。
进一步的,第二天线组件30还包括第二回地点35及第二对地匹配电路36。第二对地匹配电路36连接在第二天线组件30的辐射体与第二回地点35之间。第二对地匹配电路36用于调节第二天线组件30的回地路径。具体的调节原理与第一天线组件10的第一回地点15及第一对地匹配电路16的调节原理一致,这里不再赘述。
如图5至图10所示,第一电路板221靠近第一短边211设置。靠近第一短边211的第一天线组件10电连接的第一激励源13、第一切换电路14和第一对地匹配电路16设于第一电路板221。第二天线组件30电连接的第二激励源33、第二切换电路34及第二对地匹配电路36设于第一电路板221。本实施例中,第一激励源13通过传导线电连接至第一切换电路14以及第一对地匹配电路16,以通过第一电路板221控制第一激励源13向第一个辐射体11发射激励信号。第二天线组件30电连接的第二激励源33通过传导线电连接至第二切换电路34。此外,通过第一电路板221控制第二激励源33向第三个辐射体31发送激励信号。在其他实施例中,第一激励源13也可以通过印刷电路板布线等方式与第一切换电路14以及第一对地匹配电路16。第二激励源33也可以通过印刷电路板布线等方式与第二切换电路34及第二对地匹配电路36电连接。
如图13所示,电子装置100包括与第一电路板221电连接的第二电路板222。第二电路板222靠近第二短边212设置,且设于中板22上。电子装置100还包括设于中板22的用户身份识别卡座223及电连接器224。靠近第一短边212的第二个辐射体12电连接的第一激励源13、第一切换电路14和第一对地匹配电路16设于第二电路板222。用户身份识别卡座223及电连接器224设于第二电路板222。将靠近第一短边212的第二个辐射体12的电连接的第一激励源13通过传导线连接于第一切换电路14和第一对地匹配电路16,并利用第二电路板222控制第一激励源13向第二个辐射体12发现激励信号,以实现第一天线组件10的收发天线信号。此外,通过第二个辐射体112与用户身份识别卡座223及电连接器224共用第二电路板222,以省去额外制备电路板供第二个辐射体12使用。
如图2及图14所示,电子装置100包括第三天线组件60。第三天线组件60收发天线频段与第一天线组件10不同。第一短边211设有第三天线缝27。第一天线缝24、第三天 线缝27以及第一缝隙23,在第一短边211隔离出第三天线组件60的辐射体。本实施例中,第三天线组件60收发的天线频段为LTE的低段频段。此时,通过在第一短边211形成第三天线组件60,可以增加电子装置100的收发天线频段范围,从而提高电子装置100的天线性能。
进一步的,第三天线组件60包括第三激励源61,第三切换电路62、第三对地匹配电路63及第三回地点64。第三切换电路62连接在第三激励源61及第三天线组件60的辐射体之间。第三切换电路62用于切换第三天线组件60的信号收发频段。第三对地匹配电路63与第三切换电路62并联,且第三对地匹配电路63连接在第三天线组件60的辐射体与第三回地点64之间,第三对地匹配电路63用于调节第三天线组件60的回地路径。本实施例中,第三天线组件60收发LTE低频的频带。第三切换电路62包括电感、电容开关。通过调节第三切换电路62的电感的感抗或者调节电容的阻抗,以调节第三天线组件60的收发天线的频段。第三激励源61及第三切换电路62电连接在第一电路板221。通过第一电路板221控制第三激励源61向第三天线组件60发送激励信号。此外,第三天线组件60通过调节第三回地点64的位置,以调节第三天线组件60的收发天线信号的频段范围。
如图2及图13所示,电子装置100包括第四天线组件70。第四天线组件70收发天线频段与第三天线组件60相同。第二缝隙25以及第二天线缝26,在第一长边213及第一短边212隔离出第四天线组件70的辐射体。本实施例中,通过在第一长边213及第一短边212隔离出第四天线组件70,以收发LTE低频的频带,从而增加电子装置100的收发天线信号的种类,满足各种通信的需求。此外,当第四天线组件70与第三天线组件60配合,形成2×2多输入多输出天线***,用于收发LTE低频段的天线信号。
进一步的,如图13及图15所示,第四天线组件70包括第四激励源71。第四激励源71电连接第四天线组件70的辐射体。此外,第四激励源71设在第二电路板222上。通过第二电路板222控制第四激励源71发射激励信号,以使第四天线组件70发射天线信号。此外,第四天线组件70还包括单刀四掷开关72。单刀四掷开关72包括第一端口721、第二端口722、第三端口723及第四端口724。第一端口721、第二端口722、第三端口723及第四端口724分别设在不同的接地点。此时,每个端口所连接的回地点至第四天线组件70的馈电点的金属导体长度不同,因此,不同的金属导体长度对应的收发天线的频段不同。例如,第一端口721的收发的天线频段为703MHz-748MHz,第二端口722的收发的天线频段为1850MHz-1910MHz,第三端口723的收发的天线频段为880MHz-915MHz。故而,通过控制单刀与第一端口721、第二端口722以及第三端口723的连接,以调节收发的天线频段。
进一步的,第四天线组件70设有用于屏蔽低频信号的开关。当第一天线组件10的第二个辐射体12工作于高频的频段时,屏蔽低频信号的开关闭合,第四天线组件70通过电感或电容直接连接到接地点,以避免第四天线组件70低频信号的影响第二个辐射体12工作。
如图2所示,电子装置100包括第五天线组件80。第五天线组件80收发频段与第一天线组件10、第三天线组件60及第四天线组件70不同。第一缝隙23及第三天线缝27,在第一短边211及第二长边214隔离出第五天线组件80的辐射体。本实施例中,第五天线组件80收发2.4G WIFI频段、5G WIFI频段、2.4G GPS频段及5GGPS频段。其中,2.4G WIFI频段通常为2.4GHz-2.5GHz。5G WIFI频段通常为5.1GHz-5.8GHz。通过在第一短边211及第二长边214隔离出第五天线组件80可以增加电子装置100的收发天线信号的种类,满足各种通信的需求。此外,通过在第一短边211及第二长边214的连接处形成第五天线组件80,可以多方向接收天线信号,以快速传输用户的数据。
本实施例中,如图2及图14所示,电子装置100包括第四回地点81及第五回地点82。第三天线组件60的不同位置分别经传导线直接连接于第四回地点81及第五回地点82,以 在第五天线组件80工作时,可以显著地隔离第三天线组件60的低频信号对第五天线组件的干扰,从而保证第五天线组件80的收发天线信号的准确性,进而提高电子装置100的天线性能。可以理解的是,由于第三天线组件60的不同位置直接连接于第四回地点81及第五回地点82,可以省去额外在第四回地点81及第五回地点82设置开关来切换接地以屏蔽低频信号。
如图2所示,电子装置100包括第六天线组件90。所述第六天线组件90收发频段为5G WIFI频段。第六天线组件90形成于中板22或形成于边框21。第六天线组件90与第五天线组件80形成2×2的5G WIFI多输入多输出***。
本实施例中,第六天线组件90具有多种设置方式:
实施方式一:如图16所示,边框21上设置有缝隙91。通过缝隙91分割出独立的一个第三金属区域92,第三金属区域形成第六天线组件90的辐射体。通过在边框21上直接形成第六天线组件90的辐射体,可以避免在电子装置100内额外设置第六天线组件90,从而减小电子装置100的内部空间,提高电子装置100的内部空间的利用率。在其他实施方式中,第六天线组件90也可以形成在第一短边211、第一短边212或第一长边213的其中一个。在其他实施方式中,通过微缝带分割出独立的一个第三金属区域92,第三金属区域形成第六天线组件90的辐射体。
实施方式二,与实施方式一不同的是:如图17所示,通过在中板22上天线支架40或第二天线支架50上固定柔性电路板或者通过激光直接成型技术或者印刷直接成型技术形成所述第六天线组件90。本实施方式中,通过在天线支架40的绝缘部41上粘贴柔性电路板以形成第六天线组件90的辐射体93。在其他实施方式中,也可以通过在天线支架40上嵌设或焊接等方式固定柔性电路板以形成第六天线组件90。再者,也可以通过激光直接成型技术或者印刷直接成型技术在天线支架40上形成金属天线图案,从而构成所述第六天线组件90。具体的根据实际情况设置。
以上是本申请的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (21)

  1. 一种电子装置,其特征在于,包括:至少一个第一天线组件、至少一个第二天线组件及中框,所述至少一个第一天线组件的辐射体形成于所述中框上,所述至少一个第二天线组件的辐射体独立于所述中框设置,所述至少一个第一天线组件和所述至少一个第二天线组件均用于收发相同频段的天线信号,所述至少一个第一天线组件和所述至少一个第二天线组件共同形成多输入多输出天线***。
  2. 根据权利要求1所述的电子装置,其特征在于,所述中框包括边框和中板,所述边框包括相背设置的第一短边和第二短边及相背设置的第一长边和第二长边,所述第一短边、所述第一长边、所述第二短边及所述第二长边依次连接;每一个所述第一天线组件的辐射体形成于任一所述短边与任一所述长边的连接处,并包括位于所述连接处的部分所述短边和部分所述长边,每一个所述第二天线组件的辐射体与所述边框相互绝缘设置。
  3. 根据权利要求2所述的电子装置,其特征在于,所述第一短边与所述中板之间设有第一缝隙,所述第一缝隙在所述第一短边与所述第一长边的连接处弯折延伸至部分所述第一长边和所述中板之间,并在所述第一短边与所述第二长边的连接处弯折延伸至部分所述第二长边和所述中板之间,所述第一短边上设置有第一天线缝,所述第一天线缝和所述第一缝隙在所述第一短边与所述第一长边的连接处或所述第一短边与所述第二长边的连接处隔离出所述第一天线组件的辐射体。
  4. 根据权利要求3所述的电子装置,其特征在于,所述第二短边与所述中板之间设有第二缝隙,所述第二缝隙在所述第二短边与所述第一长边的连接处弯折延伸至部分所述第一长边和所述中板之间,并在所述第二短边与所述第二长边的连接处弯折延伸至部分所述第二长边和所述中板之间,所述第二短边上设置有第二天线缝,所述第二天线缝和所述第二缝隙在所述第二短边与所述第一长边的连接处或所述第二短边与所述第二长边的连接处隔离出所述第一天线组件的辐射体。
  5. 根据权利要求2所述的电子装置,其特征在于,所述边框上设置有微缝带或缝隙,所述边框通过所述微缝带或所述缝隙分割出至少一个独立的金属区域,所述独立的金属区域与所述边框相互绝缘,所述第二天线组件的辐射体形成于所述独立的金属区域。
  6. 根据权利要求2所述的电子装置,其特征在于,所述电子装置还包括至少一天线支架,所述至少一天线支架固定于所述中板,所述第二天线组件的辐射体形成于所述天线支 架上。
  7. 根据权利要求6所述的电子装置,其特征在于,所述天线支架包括绝缘部,所述第二天线组件的辐射体通过激光直接成型技术或者通过印刷直接成型技术形成于所述天线支架上。
  8. 根据权利要求6所述的电子装置,其特征在于,所述天线支架包括金属部,所述金属部与所述边框相互绝缘,所述第二天线组件的辐射体形成于所述金属部上。
  9. 根据权利要求6所述的电子装置,其特征在于,所述天线支架上固定有柔性电路板,所述第二天线组件的辐射体形成于所述柔性电路板上。
  10. 根据权利要求2至9任一项所述的电子装置,其特征在于,所述第一天线组件还包括第一激励源和第一切换电路,所述第一切换电路连接在所述第一激励源与所述第一天线组件的辐射体之间,所述第一切换电路用于切换所述第一天线组件的信号收发频段。
  11. 根据权利要求10所述的电子装置,其特征在于,所述第一天线组件还包括第一回地点及第一对地匹配电路,所述第一对地匹配电路连接在所述第一天线组件的辐射体与所述第一回地点之间,所述第一对地匹配电路用于调节所述第一天线组件的回地路径。
  12. 根据权利要求2至9任一项所述的电子装置,其特征在于,所述第二天线组件还包括第二激励源和第二切换电路,所述第二切换电路连接在所述第二激励源与所述第二天线组件的辐射体之间,所述第二切换电路用于切换所述第二天线组件的信号收发频段。
  13. 根据权利要求12所述的电子装置,其特征在于,所述第二天线组件还包括第二回地点及第二对地匹配电路,所述第二对地匹配电路连接在所述第二天线组件的辐射体与所述第二回地点之间,所述第二对地匹配电路用于调节所述第二天线组件的回地路径。
  14. 根据权利要求2至9任一项所述的电子装置,其特征在于,所述电子装置包括两个第一天线组件及两个第二天线组件,两个所述第一天线组件与两个所述第二天线组件共同形成4×4多输入多输出天线***,用于收发LTE中/高频段的天线信号。
  15. 根据权利要求14所述的电子装置,其特征在于,其中一个所述第一天线组件的辐射体形成于所述第一短边与所述第一长边的连接处,或形成于所述第一短边与所述第二长边的连接处;另一个所述第一天线组件的辐射体形成于所述第二短边与所述第一长边的连接处,或形成于所述第二短边与所述第二长边的连接处。
  16. 根据权利要求14所述的电子装置,其特征在于,两个所述第二天线组件的辐射体沿所述第一长边或所述第二长边间隔设置,或者,其中一个所述第二天线组件的辐射体沿 所述第一长边设置,另一个所述第二天线组件的辐射体沿所述第二长边设置。
  17. 根据权利要求4所述的电子装置,其特征在于,所述电子装置还包括第三天线组件,所述第三天线组件收发天线频段与所述第一天线组件不同,所述第一短边设有第三天线缝,所述第一天线缝、所述第三天线缝及所述第一缝隙在所述第一短边隔离出所述第三天线组件的辐射体。
  18. 根据权利要求17所述的电子装置,其特征在于,所述第三天线组件包括第三激励源,第三切换电路、第三对地匹配电路及第三回地点,所述第三切换电路连接在所述第三激励源及所述第三天线组件的辐射体之间,所述第三切换电路用于切换所述第三天线组件的信号收发频段,所述第三对地匹配电路与所述第三切换电路并联,且所述第三对地匹配电路连接在所述第三天线组件的辐射体与所述第三回地点之间,所述第三对地匹配电路用于调节所述第三天线组件的回地路径。
  19. 根据权利要求17所述的电子装置,其特征在于,所述电子装置还包括第四天线组件,所述第四天线组件收发天线频段与所述第三天线组件相同,所述第二缝隙以及所述第二天线缝在所述第一长边与所述第二短边隔离出所述第四天线组件的辐射体。
  20. 根据权利要求19所述的电子装置,其特征在于,所述电子装置还包括第五天线组件,所述第五天线组件收发频段与所述第一天线组件、所述第二天线组件、所述第三天线组件及所述第四天线组件不同,所述第一缝隙及所述第三天线缝,在所述第一短边及所述第二长边隔离出所述第五天线组件的辐射体。
  21. 根据权利要求20所述的电子装置,其特征在于,所述电子装置包括第六天线组件,所述第六天线组件收发频段为5G WIFI频段,所述第六天线组件形成于所述中板或形成于所述边框。
PCT/CN2019/088867 2018-05-29 2019-05-28 电子装置 WO2019228368A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820826053.2U CN208539942U (zh) 2018-05-29 2018-05-29 电子装置
CN201820826053.2 2018-05-29
CN201810528099.0 2018-05-29
CN201810528099.0A CN108832267B (zh) 2018-05-29 2018-05-29 电子装置

Publications (1)

Publication Number Publication Date
WO2019228368A1 true WO2019228368A1 (zh) 2019-12-05

Family

ID=68698544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088867 WO2019228368A1 (zh) 2018-05-29 2019-05-28 电子装置

Country Status (1)

Country Link
WO (1) WO2019228368A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202759014U (zh) * 2012-08-09 2013-02-27 中兴通讯股份有限公司 共享终端耳机fm功能的cmmb天线设备及终端
CN104466393A (zh) * 2013-09-20 2015-03-25 索尼公司 用于调谐多频带框形天线的设备
US20160164169A1 (en) * 2013-07-19 2016-06-09 Nokia Technologies Oy Apparatus and methods for wireless communication
CN205693664U (zh) * 2016-06-08 2016-11-16 华硕电脑股份有限公司 通信装置
CN106410372A (zh) * 2016-09-29 2017-02-15 努比亚技术有限公司 一种移动终端及其通信处理方法
CN106450658A (zh) * 2015-08-07 2017-02-22 微软技术许可有限责任公司 用于电子设备的天线装置
CN108039571A (zh) * 2018-01-16 2018-05-15 广东欧珀移动通信有限公司 中框组件、天线组件及电子设备
CN108832267A (zh) * 2018-05-29 2018-11-16 Oppo广东移动通信有限公司 电子装置
CN208539942U (zh) * 2018-05-29 2019-02-22 Oppo广东移动通信有限公司 电子装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202759014U (zh) * 2012-08-09 2013-02-27 中兴通讯股份有限公司 共享终端耳机fm功能的cmmb天线设备及终端
US20160164169A1 (en) * 2013-07-19 2016-06-09 Nokia Technologies Oy Apparatus and methods for wireless communication
CN104466393A (zh) * 2013-09-20 2015-03-25 索尼公司 用于调谐多频带框形天线的设备
CN106450658A (zh) * 2015-08-07 2017-02-22 微软技术许可有限责任公司 用于电子设备的天线装置
CN205693664U (zh) * 2016-06-08 2016-11-16 华硕电脑股份有限公司 通信装置
CN106410372A (zh) * 2016-09-29 2017-02-15 努比亚技术有限公司 一种移动终端及其通信处理方法
CN108039571A (zh) * 2018-01-16 2018-05-15 广东欧珀移动通信有限公司 中框组件、天线组件及电子设备
CN108832267A (zh) * 2018-05-29 2018-11-16 Oppo广东移动通信有限公司 电子装置
CN208539942U (zh) * 2018-05-29 2019-02-22 Oppo广东移动通信有限公司 电子装置

Similar Documents

Publication Publication Date Title
CN108832267B (zh) 电子装置
CN108511904B (zh) 天线结构及具有该天线结构的无线通信装置
CN113013594B (zh) 天线组件和电子设备
WO2022142824A1 (zh) 天线***及电子设备
AU2018423290B2 (en) Antenna system and terminal device
CN208539942U (zh) 电子装置
WO2022160920A1 (zh) 天线组件及电子设备
CN107645042B (zh) 天线结构及具有该天线结构的无线通信装置
US20050237251A1 (en) Antenna arrangement and module including the arrangement
JP2017504274A (ja) アンテナユニット及び端末
CN109802236B (zh) 天线结构及具有该天线结构的无线通信装置
SE522492C2 (sv) Antennanordning för en mobilterminal
CN108140948B (zh) 一种通信设备
CN106450752B (zh) 一种用于智能手机实现高隔离度的mimo天线
CN107645053B (zh) 天线结构及具有该天线结构的无线通信装置
US11171404B2 (en) Antenna and window glass for vehicle
WO2019137462A1 (zh) 天线及无线通信电子设备
CN113078449A (zh) 天线结构及具有该天线结构的无线通信装置
CN110336112B (zh) 天线馈电单元、调谐单元与显示屏组件结合的电子设备
US11791540B2 (en) Signal feeding assembly, antenna module and electronic equipment
CN108075220A (zh) 终端天线组件以及手机
CN113078445A (zh) 天线结构及具有该天线结构的无线通信装置
WO2019228368A1 (zh) 电子装置
US20130093631A1 (en) Mobile wireless terminal
CN210379412U (zh) 天线、天线组件以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19809970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19809970

Country of ref document: EP

Kind code of ref document: A1