WO2019228314A1 - 一种资源配置的方法、装置及*** - Google Patents

一种资源配置的方法、装置及*** Download PDF

Info

Publication number
WO2019228314A1
WO2019228314A1 PCT/CN2019/088686 CN2019088686W WO2019228314A1 WO 2019228314 A1 WO2019228314 A1 WO 2019228314A1 CN 2019088686 W CN2019088686 W CN 2019088686W WO 2019228314 A1 WO2019228314 A1 WO 2019228314A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
resource
uplink
resource configuration
transmission
Prior art date
Application number
PCT/CN2019/088686
Other languages
English (en)
French (fr)
Inventor
陈雷
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19811525.5A priority Critical patent/EP3793293B1/en
Priority to BR112020024316-7A priority patent/BR112020024316A2/pt
Publication of WO2019228314A1 publication Critical patent/WO2019228314A1/zh
Priority to US17/103,268 priority patent/US11777587B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of communication technology, and in particular, to a technology based on beam communication in a communication system, and in particular, to a method, an apparatus, and a system for resource allocation in a communication system.
  • Beams for transmission in mobile communication systems, that is, by sending signals spatially towards a specific direction, a higher antenna array gain can be achieved.
  • Beams can be implemented by technical means such as beamforming.
  • beamforming For example, in high frequency (HF) communication, an important direction is analog and digital hybrid beamforming. This can not only resist the loss caused by the transmission distance of high frequency signals, but also reduce the complexity. And hardware costs are controlled within an acceptable range.
  • HF high frequency
  • the transmitting end In a beam-based communication system, in order to obtain the beam gain, the transmitting end will collectively transmit signals in a specific direction, and the receiving end will adjust the receiving beam mode to obtain as much signal energy as possible.
  • the communication quality of a pair of transmitting and receiving beams that are communicating may decrease, or even fail to communicate properly.
  • the user equipment In order to solve the beam failure caused by the degradation of the beam communication quality, the user equipment (UE) needs to detect the beam. When the physical layer of the UE determines that the detected beam is not within a beam detection interval (which can correspond to a reporting period) If a predetermined condition is satisfied and a beam failure instance is generated, it will be reported to the upper layer of the UE according to the reporting period.
  • the UE can confirm the occurrence of the beam failure and enter a beam recovery process.
  • the beam recovery process includes the identification of a new beam in the candidate beam set and the beam failure. Resumption request and beam failure response reception steps.
  • PRACH physical random access channel
  • the shortest period of PRACH resources is 10 ms.
  • PRACH resource configuration is not flexible enough.
  • BWP bandwidth parts
  • CC carrier component
  • the network device may not be configured with PRACH resources.
  • PUCCH physical uplink control signal
  • the problem with using PUCCH resources for beam recovery is that under normal circumstances, the transmit and receive beams of the PUCCH have been determined. When the beam fails, the uplink beam of the PUCCH may no longer be able to communicate, and there is no guarantee that the base station can successfully receive the request for recovery from beam failure.
  • This application provides a method, device, and system for resource configuration, which are used to configure the beam recovery using the flexibility of the PUCCH resource, so that the beam recovery can be implemented flexibly and effectively.
  • a method and apparatus for resource allocation are provided.
  • the method is applied to a terminal device and sends configuration information of a PUCCH resource for beam failure recovery to the terminal side through the network side, so that the terminal device can flexibly and effectively perform beam failure recovery.
  • the method includes: receiving a resource configuration of a physical uplink control channel PUCCH for beam failure recovery sent by a network device, the resource configuration of the PUCCH includes a transmission beam corresponding to the PUCCH; and when a beam failure event is detected, based on the PUCCH resource And configured to send a beam failure recovery request to the network device according to a period corresponding to the PUCCH.
  • the period of the PUCCH may be configured by a network device, that is, the resource configuration of the PUCCH includes the period of the PUCCH, or it may be a preset period, that is, a protocol, a specification, or other predefined ones. It should be noted that if the base station is configured with periodic transmission or uplink transmission resources, such as periodic or semi-continuous uplink sounding signal transmission, periodic or semi-continuous scheduling request transmission, periodic or semi-continuous data transmission, periodic Or semi-continuous downlink reference signal reporting, periodic or semi-persistent random access resources, and the period of the PUCCH may also reuse part or all of the foregoing uplink transmission or uplink transmission resource period.
  • periodic transmission or uplink transmission resources such as periodic or semi-continuous uplink sounding signal transmission, periodic or semi-continuous scheduling request transmission, periodic or semi-continuous data transmission, periodic Or semi-continuous downlink reference signal reporting, periodic or semi-persistent random access resources.
  • This design enables flexible and efficient terminal failure recovery through the configuration of PUCCH resources for beam failure recovery.
  • the device can implement the corresponding method in the first aspect.
  • the device is defined in a functional form, and may be a terminal-side entity, and its specific implementation form may be a terminal device, for example, it may be a terminal device, or a chip or a functional module in the terminal device. Or implement the above method by executing corresponding software through hardware.
  • the device may include a processor and a memory.
  • the processor is configured to support the apparatus to perform a corresponding function in the method of the first aspect.
  • the memory is used for coupling to the processor, and it holds programs (instructions) and data necessary for the device.
  • the device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication interface may be a transceiver.
  • the apparatus may include a transceiver unit, where the transceiver unit is configured to communicate with a network device to receive the resource configuration of the PUCCH.
  • the apparatus may further include a processing unit for determining that a beam failure event is detected.
  • a method and device for resource allocation are provided.
  • the method is applied to a network device, such as an access node or a transmission and reception point on the network side that has some functions of the access node.
  • the configuration information of the PUCCH resource used for beam failure recovery is sent to the terminal side by the network side, so that the terminal device can flexibly and effectively perform beam failure recovery.
  • the method includes: resource configuration of a physical uplink control channel PUCCH for beam failure recovery sent to a terminal device, the resource configuration of the PUCCH includes a transmission beam corresponding to the PUCCH; receiving a beam failure event when the terminal device detects a beam failure event, Based on the PUCCH resource configuration, a beam failure recovery request sent according to a period corresponding to the PUCCH.
  • the period of the PUCCH may be configured by a network device, that is, the resource configuration of the PUCCH includes the period of the PUCCH, or it may be a preset period, that is, a protocol, a specification, or other predefined ones. It should be noted that if the base station is configured with periodic transmission or uplink transmission resources, such as periodic or semi-continuous uplink sounding signal transmission, periodic or semi-continuous scheduling request transmission, periodic or semi-continuous data transmission, periodic Or semi-continuous downlink reference signal reporting, periodic or semi-persistent random access resources, and the period of the PUCCH may also reuse part or all of the foregoing uplink transmission or uplink transmission resource period.
  • periodic transmission or uplink transmission resources such as periodic or semi-continuous uplink sounding signal transmission, periodic or semi-continuous scheduling request transmission, periodic or semi-continuous data transmission, periodic Or semi-continuous downlink reference signal reporting, periodic or semi-persistent random access resources.
  • This design enables flexible and efficient terminal failure recovery through the configuration of PUCCH resources for beam failure recovery.
  • a device for resource allocation is provided, and the device can implement the corresponding method in the second aspect.
  • the device is defined in a functional form, and may be an entity on the access side, and its specific implementation form may be an access node device, for example, it may be an access node device, or a chip or a functional module in the access node device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the device may include a processor and a memory.
  • the processor is configured to support the apparatus to perform a corresponding function in the method of the second aspect.
  • the memory is used for coupling to the processor, and it holds programs (instructions) and data necessary for the device.
  • the device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication interface may be a transceiver.
  • the apparatus may include a transceiver unit, where the transceiver unit is configured to send a resource configuration of the PUCCH to a terminal device.
  • the apparatus may further include a processing unit, which is configured to determine a resource configuration of the PUCCH allocated to the terminal device.
  • the resource configuration of the PUCCH includes communication resources of one PUCCH, or communication resources of multiple PUCCHs.
  • the resource configuration of the PUCCH further includes at least one of the following: communication resources (such as time-frequency code domain resources) of the PUCCH, time offsets of the PUCCH, and the PUCCH Format.
  • the resource configuration of the PUCCH further includes: an association relationship between the use time of the transmission beam and a period of the PUCCH, and / or the use time of the transmission beam and the PUCCH Association of time offsets.
  • the resource configuration of the PUCCH is associated with the downlink signal resource corresponding to the candidate beam in the candidate beam set, and the candidate beam set is a beam set configured by the network device for beam failure recovery; And / or, the resource configuration of the PUCCH is associated with resources of one or more uplink signals. Understandably, for the above two association situations, when the PUCCH resource configuration includes one PUCCH communication resource (for example, time-frequency code domain resource, etc.), the PUCCH time-frequency resource configuration and candidate beam set The downlink signal resources corresponding to each candidate beam are associated, or the time-frequency resource configuration of the PUCCH is associated with resources of one or more uplink signals.
  • the PUCCH resource configuration includes one PUCCH communication resource (for example, time-frequency code domain resource, etc.)
  • the PUCCH time-frequency resource configuration and candidate beam set The downlink signal resources corresponding to each candidate beam are associated, or the time-frequency resource configuration of the PUCCH is associated with resources of one or more uplink signals.
  • the PUCCH resource configuration includes at least two PUCCH communication resources (such as time-frequency code domain resources, etc.), there can be two cases: one is that one PUCCH communication resource is associated one-to-one The downlink signal resources corresponding to a candidate beam in the candidate beam set, or the resources of one PUCCH communication resource associated with one uplink signal; the other is a part of the PUCCH communication resources associated with the downlink signal resource corresponding to the candidate beam. Or one-to-one associated uplink signal resources, some PUCCH communication resources, one-to-many associated candidate beam downlink signal resources, or one-to-many associated uplink signal resources.
  • the transmission beam includes an uplink transmission beam corresponding to a candidate beam for transmitting a downlink signal in the candidate beam set; and / or, the transmission beam includes a beam for transmitting the uplink signal.
  • the resource configuration of the PUCCH includes time-frequency resources of the PUCCH, and the time-frequency resources of the PUCCH are the same as the time-frequency resources of the uplink measurement signal; or the time-domain resources of the PUCCH and the uplink measurement
  • the time domain resources of the signals are the same, and the frequency domain resources of the PUCCH are different from the frequency domain resources of the uplink measurement signal. It can be understood that considering that the network device will configure a periodic uplink measurement signal resource for the terminal device, the network device would originally receive the uplink measurement signal on these uplink measurement signal resources, so it may be considered to multiplex the PUCCH to these uplink measurement signal resources .
  • the transmission of the PUCCH may optionally preempt the transmission of the uplink measurement signal, and the optional may not necessarily preempt the transmission of the uplink measurement signal.
  • the terminal device may The network device is configured or a predefined priority determines whether the transmission of the PUCCH preempts the transmission of the uplink measurement signal.
  • the transmission beam includes an uplink transmission beam corresponding to a candidate beam for transmitting a downlink signal in the candidate beam set, and / or a beam for transmitting an uplink measurement signal; the candidate beam set is configured for the network device for beam failure. Recovered beam set.
  • the transmission beam includes a beam transmitting an uplink measurement signal.
  • a terminal device sends a beam failure recovery request to a network device by using a transmission beam other than the transmission beam
  • the terminal device sends a beam failure recovery request to the network device.
  • the network device sends beam information, and the network device receives beam information sent by the terminal device, where the beam information is used to indicate a beam that sends the beam failure recovery request.
  • a method and device for resource allocation are provided.
  • the method is applied to a terminal device and sends configuration information of a PUCCH resource for beam failure recovery to the terminal side through the network side, so that the terminal device can flexibly and effectively perform beam failure recovery.
  • the method includes: receiving resource configuration of a physical uplink control channel PUCCH for beam failure recovery sent by a network device, the resource configuration of the PUCCH includes a transmission beam corresponding to the PUCCH; and when a direction change of the transmission beam of the PUCCH is detected To determine a transmission beam of a new PUCCH, where the transmission beam of the new PUCCH is a beam in an uplink transmission beam whose direction is the same as the direction before the transmission beam direction of the PUCCH is changed, and sending the transmission beam of the new PUCCH to the network device Information.
  • This design uses the configuration of PUCCH resources for beam failure recovery, so that terminal equipment can flexibly and effectively perform beam failure recovery, and when the direction of the PUCCH transmission beam changes due to the rotation of the terminal device, it is guaranteed that PUCCH transmission.
  • the device can implement the corresponding method in the third aspect.
  • the device is defined in a functional form, and may be a terminal-side entity, and its specific implementation form may be a terminal device, for example, it may be a terminal device, or it may be a chip or a functional module in the terminal device. Or implement the above method by executing corresponding software through hardware.
  • the device may include a processor and a memory.
  • the processor is configured to support the apparatus to perform a corresponding function in the method of the third aspect.
  • the memory is used for coupling to the processor, and it holds programs (instructions) and data necessary for the device.
  • the device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication interface may be a transceiver.
  • the apparatus may include a transceiver unit, where the transceiver unit is configured to communicate with a network device to receive the resource configuration of the PUCCH.
  • the apparatus may further include a processing unit, which is configured to determine that a direction of a transmission beam of the PUCCH is changed and determine a transmission beam of a new PUCCH.
  • a method and an apparatus for resource allocation are provided.
  • the method is applied to a network device, such as an access node or a transmission and reception point on the network side that has some functions of the access node.
  • the configuration information of the PUCCH resource used for beam failure recovery is sent to the terminal side by the network side, so that the terminal device can flexibly and effectively perform beam failure recovery.
  • the method includes: sending a resource configuration of a physical uplink control channel PUCCH for beam failure recovery to a terminal device, the resource configuration of the PUCCH including a transmission beam corresponding to the PUCCH; and receiving information about a transmission beam of a new PUCCH sent by the terminal device
  • the transmission beam of the new PUCCH is a determined transmission beam of the new PUCCH when the terminal detects that the direction of the transmission beam of the PUCCH is changed, and the transmission beam of the new PUCCH is the direction between the uplink transmission beam and the transmission beam.
  • the transmission beam direction of PUCCH is the same beam before the direction change.
  • This design uses the configuration of PUCCH resources for beam failure recovery, so that terminal equipment can flexibly and effectively perform beam failure recovery, and when the direction of the PUCCH transmission beam changes due to the rotation of the terminal device, it is guaranteed that PUCCH transmission.
  • a device for resource allocation is provided, and the device can implement the corresponding method in the fourth aspect.
  • the device is defined in a functional form, and may be an entity on the access side, and its specific implementation form may be an access node device, for example, it may be an access node device, or a chip or a functional module in the access node device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the device may include a processor and a memory.
  • the processor is configured to support the apparatus to perform a corresponding function in the method of the fourth aspect.
  • the memory is used for coupling to the processor, and it holds programs (instructions) and data necessary for the device.
  • the device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication interface may be a transceiver.
  • the apparatus may include a transceiver unit, where the transceiver unit is configured to send a resource configuration of the PUCCH to a terminal device.
  • the apparatus may further include a processing unit, which is configured to determine a PUCCH resource allocated to the terminal device.
  • the PUCCH resource further includes at least one of the following: a time-frequency code domain resource of the PUCCH, a time offset of the PUCCH, and a format of the PUCCH.
  • the resources of the PUCCH further include: an association relationship between a use time of the transmission beam and a period of the PUCCH, and / or a time offset between the use time of the transmission beam and a time offset of the PUCCH Association of displacement.
  • the PUCCH resource is associated with a downlink signal resource corresponding to a candidate beam in a candidate beam set, and the candidate beam set is a beam set configured by the network device for beam failure recovery; or,
  • the PUCCH resources are associated with resources of one or more uplink signals.
  • a method and apparatus for resource allocation are provided.
  • the method is applied to a terminal device and sends configuration information of a PUCCH resource for beam failure recovery to the terminal side through the network side, so that the terminal device can flexibly and effectively perform beam failure recovery.
  • the method includes receiving a resource configuration of a physical uplink control channel PUCCH for beam failure recovery sent by a network device, where the resource configuration of the PUCCH includes an association relationship between a usage time of a transmission beam of the PUCCH and a period of the PUCCH, and / Or the correlation between the use time of the transmission beam and the time offset of the PUCCH; when a beam failure event is detected, based on the resource configuration of the PUCCH, the beam fails to be sent to the network device according to the corresponding PUCCH cycle Resume request.
  • the period of the PUCCH may be configured by a network device, that is, the resource configuration of the PUCCH includes the period of the PUCCH, or it may be a preset period, that is, a protocol, a specification, or the like. It should be noted that if the base station is configured with periodic transmission or uplink transmission resources, such as periodic or semi-continuous uplink sounding signal transmission, periodic or semi-continuous scheduling request transmission, periodic or semi-continuous data transmission, periodic Or semi-continuous downlink reference signal reporting, periodic or semi-persistent random access resources, and the period of the PUCCH may also reuse part or all of the foregoing uplink transmission or uplink transmission resource period.
  • periodic transmission or uplink transmission resources such as periodic or semi-continuous uplink sounding signal transmission, periodic or semi-continuous scheduling request transmission, periodic or semi-continuous data transmission, periodic Or semi-continuous downlink reference signal reporting, periodic or semi-persistent random access resources.
  • This design enables flexible and efficient terminal failure recovery through the configuration of PUCCH resources for beam failure recovery.
  • the device can implement the corresponding method in the fifth aspect.
  • the device is defined in a functional form, and may be a terminal-side entity, and its specific implementation form may be a terminal device, for example, it may be a terminal device, or it may be a chip or a functional module in the terminal device. Or implement the above method by executing corresponding software through hardware.
  • the device may include a processor and a memory.
  • the processor is configured to support the apparatus to perform a corresponding function in the method of the fifth aspect.
  • the memory is used for coupling to the processor, and it holds programs (instructions) and data necessary for the device.
  • the device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication interface may be a transceiver.
  • the apparatus may include a transceiver unit, where the transceiver unit is configured to communicate with a network device to receive the resource configuration of the PUCCH.
  • the apparatus may further include a processing unit for determining that a beam failure event is detected.
  • a method and an apparatus for resource allocation are provided.
  • the method is applied to a network device, such as an access node or a transmission and reception point on the network side that has some functions of the access node.
  • the configuration information of the PUCCH resource used for beam failure recovery is sent to the terminal side by the network side, so that the terminal device can flexibly and effectively perform beam failure recovery.
  • the method includes sending a resource configuration of a physical uplink control channel PUCCH for recovery of beam failure to a terminal device, where the resource configuration of the PUCCH includes an association relationship between a usage time of a transmission beam of the PUCCH and a period of the PUCCH, and / or An association relationship between the use time of the transmission beam and the time offset of the PUCCH; when the terminal device detects a beam failure event, based on the PUCCH resource configuration, the beam transmitted according to the corresponding PUCCH cycle fails Resume request.
  • the resource configuration of the PUCCH includes an association relationship between a usage time of a transmission beam of the PUCCH and a period of the PUCCH, and / or An association relationship between the use time of the transmission beam and the time offset of the PUCCH
  • the period of the PUCCH may be configured by a network device, that is, the resource configuration of the PUCCH includes the period of the PUCCH, or it may be a preset period, that is, a protocol, a specification, or other predefined ones. It should be noted that if the base station is configured with periodic transmission or uplink transmission resources, such as periodic or semi-continuous uplink sounding signal transmission, periodic or semi-continuous scheduling request transmission, periodic or semi-continuous data transmission, periodic Or semi-continuous downlink reference signal reporting, periodic or semi-persistent random access resources, and the period of the PUCCH may also reuse part or all of the foregoing uplink transmission or uplink transmission resource period.
  • periodic transmission or uplink transmission resources such as periodic or semi-continuous uplink sounding signal transmission, periodic or semi-continuous scheduling request transmission, periodic or semi-continuous data transmission, periodic Or semi-continuous downlink reference signal reporting, periodic or semi-persistent random access resources.
  • This design enables flexible and efficient terminal failure recovery through the configuration of PUCCH resources for beam failure recovery.
  • a device for resource allocation is provided, and the device can implement the corresponding method in the sixth aspect.
  • the device is defined in a functional form, and may be an entity on the access side, and its specific implementation form may be an access node device, for example, it may be an access node device, or a chip or a functional module in the access node device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the device may include a processor and a memory.
  • the processor is configured to support the apparatus to perform a corresponding function in the method of the sixth aspect.
  • the memory is used for coupling to the processor, and it holds programs (instructions) and data necessary for the device.
  • the device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication interface may be a transceiver.
  • the apparatus may include a transceiver unit, where the transceiver unit is configured to send a resource configuration of the PUCCH to a terminal device.
  • the apparatus may further include a processing unit, which is configured to determine a PUCCH resource allocated to the terminal device.
  • the terminal device when the terminal device detects a beam failure event, based on the PUCCH resource configuration, according to the corresponding PUCCH
  • all the PUCCH resources configured by the network device may be used for beam failure recovery, or part of the PUCCH resources configured by the network device may or may not be used for beam failure recovery.
  • Recovery that is, the terminal device decides independently.
  • the transmission beam of the PUCCH does not adopt the configuration of the network device.
  • the present application also provides a computer storage medium on which a computer program (instruction) is stored, and when the program (instruction) runs on the computer, the computer is caused to execute the method described in any of the above aspects.
  • This application also provides a computer program product that, when run on a computer, causes the computer to perform the method described in any of the above aspects.
  • the present application also provides a chip in which instructions are stored, which when executed on a communication device, causes the communication device to execute the corresponding methods described in the above aspects.
  • the present application further provides a device including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • a device including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program, the corresponding methods in the foregoing aspects are implemented.
  • the present application further provides a device, including a processor, which is configured to be coupled to the memory, read an instruction in the memory, and implement the corresponding method according to the foregoing aspects according to the instruction.
  • the memory may be integrated in the processor, or may be independent of the processor.
  • the present application also provides a device including a processor, and the processor implements the corresponding methods described in the above aspects when executing a computer program.
  • the processor may be a dedicated processor.
  • the present application also provides a system including the terminal-side device provided above and the network-side device provided above. These systems constitute the corresponding methods described in the above aspects.
  • any of the devices, computer storage media, computer program products, chips, and systems provided above are used to implement the corresponding methods provided above. Therefore, for the beneficial effects that can be achieved, refer to the corresponding methods. The beneficial effects in the description are not repeated here.
  • FIG. 1 is a network system architecture involved in this application
  • FIG. 2 is a flowchart of a first embodiment of a method for resource configuration provided by the present application
  • FIG. 3 is a schematic diagram of a communication opportunity for a UE to perform beam failure recovery provided by the present application
  • FIG. 4 is a flowchart of a second embodiment of a method for resource configuration provided in the present application.
  • FIG. 5 is a flowchart of a third embodiment of a method for resource allocation provided by the present application.
  • FIG. 6 is a schematic diagram of multiplexing a resource of a PUCCH to a resource of an uplink measurement signal provided in this application;
  • FIG. 7 is a schematic diagram of a PUCCH transmission beam multiplexing a resource of a PUCCH to a resource of an uplink measurement signal provided in the present application;
  • FIG. 8 is a schematic diagram of PUCCH transmission beam adjustment in a UE rotation scene provided by the present application.
  • FIG. 9 is a simplified structural diagram of a terminal device provided by the present application.
  • FIG. 10 is a simplified schematic structural diagram of a network device provided by the present application.
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship between the associated objects, and indicates that there can be three kinds of relationships, for example, A and / or B can indicate that: there is A alone, A and B, and B alone. Where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are an "or” relationship.
  • “At least one or more of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one (a), a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the terms “first”, “second”, “third”, “fourth” and the like in this application are for distinguishing different objects, and do not limit the order of the different objects.
  • terminals may in some cases refer to mobile devices, such as mobile phones, personal digital assistants, handheld or laptop computers, and similar devices with telecommunication capabilities, and in some cases It can also be a wearable device or a vehicle-mounted device, and includes a terminal in a future 5G network or a terminal in a future evolved PLMN network.
  • Such a terminal may include a device and its associated removable storage module (such as, but not limited to, a subscriber identity module (Subscriber Identity Module) (SIM) application, a universal subscriber identity module (Universal Identity Module, referred to as USIM) ) Application or removable user identification module (Removable User Identity Module (R-UIM) application (Universal Integrated Circuit Card (UICC) application)).
  • SIM Subscriber Identity Module
  • USIM Universal Subscriber identity Module
  • R-UIM Remote User Identity Module
  • UICC Universal Integrated Circuit Card
  • terminal may include the device itself without such a module.
  • the term "terminal” / "terminal device” may refer to a device with similar capabilities but not portable, such as a desktop computer, a set-top box, or a network device.
  • terminal may also refer to any hardware or software component that can terminate a user's communication session.
  • “User Terminal”, “User Equipment”, “UE”, “Site”, “station”, “STA”, “User Equipment”, “User Agent”, “User Agent”, “UA”, “User Equipment” “,” Mobile device “,” device “, etc. are alternative terms synonymous with” terminal "/" terminal device “herein.
  • the above-mentioned devices are collectively referred to as user equipment or UE.
  • the "access node” mentioned in this application is a network device.
  • a device deployed in a wireless access network to provide wireless communication functions for terminal devices can be responsible for scheduling and configuring downlink reference signals to the UE and other functions.
  • the access node may include various forms of macro base stations, micro base stations, relay stations, access points, etc., and may be Global System of Mobile (GSM) or Code Division Multiple Access (Code Division Multiple Access).
  • GSM Global System of Mobile
  • Code Division Multiple Access Code Division Multiple Access
  • Base Station Transceiver Station, BTS for short
  • BTS Base Station
  • NodeB Base Station
  • NodeB Base Station
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long-term evolution
  • Evolutionary NodeB, eNB or eNodeB Evolution base station
  • LTE LongTerm, Evolution
  • relay station or access point transmission node or transceiver point (transmission reception in New Radio (NR) system) point (referred to as TRP or TP) or next-generation NodeB (generation nodeB (referred to as gNB)
  • a wireless-fidelity (Wi-Fi) site wireless backhaul node, small station, micro station, or Base stations and the like in the 5th Generation Mobile Communication (abbreviated as 5G) network are not limited herein.
  • 5G 5th Generation Mobile Communication
  • the beam-based communication in this application refers to using a beam for transmission in a mobile communication system, that is, by transmitting a signal in a spatial direction toward a specific direction, a higher antenna array gain can be achieved.
  • Beams can be implemented by technical means such as beamforming.
  • beamforming an important research direction in high frequency (HF) communication is analog plus digital hybrid beamforming, which can not only resist the loss caused by the transmission distance of high frequency signals, but also Controlling complexity and hardware costs is within acceptable limits.
  • Quasi-co-location A quasi-parity relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics. For multiple resources with a quasi-parity relationship, the same can be used. Or similar communication configuration. For example, if the two antenna ports have a quasi-parity relationship, the large-scale characteristic of a channel transmitting one symbol from one port can be inferred from the large-scale characteristic of a channel transmitting one symbol at the other port.
  • the quasi-parity indication is used to indicate whether at least two groups of antenna ports have a quasi-parity relationship: the quasi-parity indication is used to indicate whether the channel state information reference signals sent by the at least two groups of antenna ports are from the same transmission point, Or the quasi-parity indication is used to indicate whether the channel state information reference signals sent by the at least two groups of antenna ports are from the same beam group.
  • Quasi-parity hypothesis It is assumed whether there is a QCL relationship between two ports.
  • the configuration and indication of the quasi-parity hypothesis can be used to help the receiving end to receive and demodulate signals.
  • the receiving end can confirm that the A port and the B port have a QCL relationship, that is, the large-scale parameters of the signal measured on the A port can be used for signal measurement and demodulation on the B port.
  • a beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or another type of beam.
  • the beam forming technology may be a beam forming technology or other technical means.
  • the beamforming technology may be specifically a digital beamforming technology, an analog beamforming technology, and a hybrid digital / analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be transmitted through different beams.
  • multiple beams having the same or similar communication characteristics may be considered as one beam.
  • a beam may include one or more antenna ports for transmitting data channels, control channels, and detection signals.
  • a transmission beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted by an antenna.
  • the receiving beam may refer to a signal strength distribution of a wireless signal received from an antenna in different directions in space. It can be understood that one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the embodiment of the beam in the protocol can still be a spatial filter.
  • Beam information can be identified by index information.
  • the index information may correspond to a resource identifier of a configured UE.
  • the index information may correspond to an ID or resource of a configured channel state information reference signal (CSI-RS) or The ID or resource of the corresponding configured uplink sounding reference signal (Sounding Reference Signal, SRS for short).
  • CSI-RS channel state information reference signal
  • SRS Sounding Reference Signal
  • the index information may also be displayed or implicitly carried by a signal or channel carried by a beam.
  • the index information may be a synchronization signal sent by a beam or a broadcast channel indicating the beam. Index information.
  • the identification of the beam information includes an absolute index of the beam, a relative index of the beam, a logical index of the beam, an index of the antenna port corresponding to the beam, an index of the antenna port group corresponding to the beam, and a downlink synchronization signal block.
  • spatial QCL can be considered as a type of QCL. There are two perspectives to understand about spatial: from the sending end or from the receiving end. From the perspective of the transmitting end, if the two antenna ports are quasi-co-located in the airspace, it means that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are quasi co-located in the airspace, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • FIG. 1 shows a network system architecture involved in the present application.
  • the present application is applicable to a multi-carrier communication system based on the beam 300 shown in FIG. 1, such as a 5G New Radio (NR).
  • the system includes uplink (UE 200 to access node 100) and downlink (access node 100 to UE 200) communication in the communication system.
  • uplink communication includes the transmission of uplink physical channels and uplink signals.
  • the uplink physical channels include random access channels (PRACH), uplink control channels (PUCCH), uplink data channels (PUSCH), etc., and uplink signals.
  • PRACH random access channels
  • PUCCH uplink control channels
  • PUSCH uplink data channels
  • Downlink communication includes transmission of downlink physical channels and downlink signals.
  • PUCCH Uplink control channel demodulation reference signal
  • PUSCH-DMRS Uplink data channel demodulation reference signal
  • PTRS phase noise tracking reference signal
  • the downlink physical channels include a broadcast channel (Physical Broadcast Channel, PBCH for short), a downlink control channel (Physical downlink control channel, PDCCH for short), a downlink data channel (Physical downlink, shared channel, PDSCH), etc.
  • the downlink signal includes a primary synchronization signal ( Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS), downlink control channel demodulation reference signal PDCCH-DMRS, downlink data channel demodulation reference signal PDSCH-DMRS, phase noise tracking signal PTRS, channel status Information reference signal (Channel information, reference information, CSI-RS), cell signal (Cell Reference Signal, abbreviated as CRS) (NR without), fine synchronization signal (Tim / frequency tracking, Reference Signal, abbreviated as TRS), and so on.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PDCCH-DMRS downlink control channel demodulation reference signal
  • a beam indication of a beam used by a downlink channel or a beam transmitted by a reference signal is implemented by using a reference resource index in an associated transmission configuration indicator (Transmission Configuration Indicator (TCI) status table).
  • TCI Transmission Configuration Indicator
  • the NR For uplink transmission, the NR has not defined a spatial quasi-parity relationship, and the uplink beam indication is directly implemented by the reference signal resource identifier:
  • beam failure when the communication quality between the transmit beam and the receive beam of the downlink physical channel deteriorates, beam failure may occur.
  • a beam detection interval which can correspond to a reporting period
  • the beam detection signal is used to detect the beam.
  • the UE has learned the period of each beam detection signal before detection. Therefore, the UE knows which beam detection numbers need to be detected in the current beam detection interval.
  • the UE detection needs Detected beam detection signals; when the number of consecutive beam failure instances reaches the maximum number (the maximum number can be configured by the access node 100 or a specific value specified by the protocol), it can be determined that a beam failure has occurred.
  • the access node 100 may configure a set for the UE 200 through high-level signaling, such as radio resource control (Radio Resouce Control, RRC) signaling.
  • RRC Radio Resouce Control
  • the set may not be configured by the access node 100, but may be determined by the UE 200 according to the downlink physical channel, such as the TCI indication of the control channel in the following row.
  • the set may optionally include one or more periodic CSI-RS resource indexes; the access node 100 also configures the UE with a physical uplink control channel PUCCH resource for beam failure recovery, and the PUCCH resource includes a corresponding PUCCH transmission beam
  • the PUCCH resource may be one or more.
  • the access node 100 may also configure a set for the UE 200 through high-level signaling (such as RRC).
  • a candidate beam set (the set may also be determined by the UE 200 itself), the set may optionally include a CSI-RS resource index and / or an SSB resource index.
  • the access node 100 configures the maximum beam failure instance number N for the UE 200 through high-level signaling (such as RRC) (the number N may not be configured by the access node 100, but a specific value is specified by the protocol), and the beam fails.
  • high-level signaling also includes some other configuration information, including beam recovery timers, beam recovery response timers, and maximum transmission times for beam recovery requests.
  • the access node 100 is not configured with a set UE200 should decide according to the TCI state corresponding to the downlink physical channel (such as PDCCH) that is currently required to be detected.
  • the downlink physical channel such as PDCCH
  • the threshold Qin is the physical layer reference signal received power (L1-RSRP) threshold of the CSI-RS.
  • the threshold of the SSB can be determined by the powerControlOffsetSS (ie, PC_ss) in the higher layer signaling. Combined with the power deviation of the resource elements of the SSB) to infer Qin.
  • the following row of the control channel PDCCH is used as an example.
  • UE200 uses The RS that meets the spatial quasi-parity relationship with the DMRS of the PDCCH evaluates the quality of the control channel. Specifically, the UE 200 uses the RS that satisfies the condition to estimate the Block Error Rate (BLER) of the PDCCH (PDCCH-hypothetical-BLER).
  • BLER Block Error Rate
  • a beam detection interval which can correspond to a reporting period
  • a threshold value for example, it may be 0.1
  • the UE200 physical layer confirms an instance of a beam failure and reports it to the UE200 side MAC layer according to a specified period.
  • the MAC layer on the UE 200 side counts beam failure instances reported by the physical layer. When the number of consecutive beam failure instances reaches the maximum value N configured by the access node 100, the MAC can determine that a beam failure has occurred, start a beam failure recovery timer, and notify the UE 200 that a physical layer beam failure has occurred. After receiving the MAC layer beam failure indication, optionally, the UE200 physical layer reports the set The beam measurement results of the reference signals that meet the candidate beam threshold Qin are reported in one or more groups ⁇ beam RS index, L1-RSRP measurement result ⁇ .
  • the MAC layer of the UE 200 selects an RS index of a candidate beam according to a certain rule according to the measurement results and beams reported by the physical layer, and determines the corresponding PUCCH resource according to this RS index, and sets the selected beam index q new to its corresponding PUCCH Resources are fed back to the physical layer.
  • the physical layer of the UE 200 sends a beam failure recovery request (Beam-failure-recovery-request) to the access node 100 using the corresponding PUCCH transmission beam on the designated PUCCH resource according to the PUCCH cycle pre-configured or specified by the access node 100.
  • Beam-failure-recovery-request Beam-failure-recovery-request
  • UE200 After sending a beam failure recovery request for a predetermined time slot, UE200 uses the qnew corresponding beam to monitor the control resource set CORESET allocated for beam failure recovery response by high-level signaling, and the response content is the possibility of scrambling using a C-RNTI scrambling code.
  • Downlink Control Information DCI
  • the beam recovery is successful and the normal beam management process is entered. If a valid response is not successfully received within a certain time window, the foregoing process is repeated again from the time when the beam recovery request is sent, until the maximum number of beam recovery requests is reached or the beam failure recovery timer expires.
  • DCI Downlink Control Information
  • FIG. 1 is only an example of a network system architecture involved in the present application, and the present application is not limited thereto.
  • the access node configures the PUCCH resource for the beam failure recovery for the UE.
  • the description is made by using an unlimited number of PUCCH resources.
  • this embodiment and subsequent The embodiments are described by the interaction between the UE and the access node, which is only an exemplary description. This application is not limited to this.
  • TRP transmission and reception point
  • FIG. 2 is a flowchart of a first embodiment of a method for resource configuration provided by the present application.
  • this embodiment and subsequent embodiments both use UE and The behavior of the two sides of the access node is unfolded, and the overall description is made from the perspective of multiple parties.
  • the improvement in the system is not limited to the steps on each side of the interaction must be performed together.
  • the technical solution proposed in this application is on each side of the system. All improved.
  • the method includes:
  • the access node sends a resource configuration of a physical uplink control channel PUCCH for recovery of beam failure to the UE, where the resource configuration of the PUCCH includes a transmission beam corresponding to the PUCCH.
  • the resource configuration of the PUCCH may further include at least one of the following: communication resources of the PUCCH (for example, time domain resources, frequency domain resources, and / or code domain resources corresponding to the PUCCH, such as sending for beams A mask used by the failed PUCCH, etc.), a time offset of the PUCCH, a format of the PUCCH, and a period of the PUCCH.
  • the resources of the PUCCH further include: an association relationship between a use time of the transmission beam and a period of the PUCCH, and / or a relationship between a use time of the transmission beam and a time offset of the PUCCH. connection relation. It should be noted that the use time of the transmission beam is even the time for downlink signal transmission through the transmission beam.
  • a transmission beam in addition to being associated with a period / offset, a transmission beam. It can also be associated with the following information: PUCCH start symbol, symbol length, start slot, slot length, start frequency domain position, frequency domain resource size, scrambling sequence, orthogonal mask sequence, cyclic shift sequence, Cyclic shift hopping method, phase rotation size, sequence hopping method, number of effective bits, coding method, code rate, frequency hopping pattern, modulation method, order of modulation method, waveform, transmit power, PUCCH format, PUCCH content, etc., so
  • the resource configuration of the PUCCH may further include the information and / or the association relationship between the information and the transmission beam.
  • the PUCCH includes a long PUCCH, for example, occupying 4-14 OFDM symbols, and a short PUCCH, for example, occupying 1-2 OFDM symbols.
  • PUCCH can be transmitted in one time slot or across time slots. The start symbol, number of symbols, and number of time slots are all configurable.
  • PUCCH can carry different number of bits, from 0, 1, 2 or more. Among them, 0 bit refers to the presence or absence of a signal, and the signal itself does not carry valid information.
  • the coding method and bit rate of PUCCH are configurable.
  • the PUCCH transmission sequence can be configured with sequence hopping and cyclic shift hopping.
  • the frequency resource of the PUCCH may be configured with a frequency hopping method or a frequency hopping pattern. That is, the terminal transmits PUCCH using different frequency resources at different times to obtain frequency domain diversity.
  • Frequency hopping methods include intra-slot frequency hopping and inter-slot frequency hopping.
  • the PUCCH transmission sequence can be configured with scrambling, masking and other operations to distinguish different terminals. That is, different terminals use different scrambling codes and orthogonal masks to achieve the purpose of distinguishing terminals at the receiving end.
  • PUCCH transmission can use different modulation methods, such as binary phase shift keying (BPSK), Pi / 2BPSK, quadrature phase shift keying (QPSK) and so on.
  • BPSK binary phase shift keying
  • Pi / 2BPSK Pi / 2BPSK
  • QPSK quadrature phase shift keying
  • the transmission of PUCCH can use different waveforms, such as cyclic prefix orthogonal frequency division multiplexing (CP-OFDM), discrete Fourier transform extended OFDM (referred to as DFT-s- OFDM) and so on.
  • CP-OFDM cyclic prefix orthogonal frequency division multiplexing
  • DFT-s- OFDM discrete Fourier transform extended OFDM
  • the transmission power of the PUCCH is calculated by the terminal according to the instruction of the base station.
  • the information indicated by the base station includes path loss, power accumulation parameters, and so on.
  • PUCCH can be used for different purposes, such as sending scheduling requests, sending Hybrid Automatic Repeat Request (HARQ) acknowledgment (ACK) / negative ACK (NACK) information, and sending CSI information. Wait.
  • HARQ Hybrid Automatic Repeat Request
  • NACK negative ACK
  • a PUCCH is also used to send a beam failure recovery request.
  • a PUCCH for different uses can be reused.
  • a PUCCH can send a scheduling request + HARQ ACK.
  • a PUCCH in the present invention can be used to send a beam failure recovery request + CSI (that is, beam reporting).
  • the scheduling request and the beam failure recovery request may have the same bit length. Further distinguishing methods can be introduced, such as different scrambling codes, masks, cyclic shifts, transmission power, frequency hopping patterns, etc. for scheduling requests and beam failure recovery requests. Further information exchange may also be introduced, for example, the base station issues a downlink control channel to schedule the terminal for uplink transmission, and requires the terminal to carry information indicating the purpose of the PUCCH in the uplink transmission.
  • the resource configuration of the PUCCH includes communication resources of the PUCCH, and the communication resources of the PUCCH may be set with candidate beams
  • the downlink signal resources corresponding to the candidate beam in the (beam set configured for beam failure recovery) configured on the network side may be associated with resources of one or more uplink signals (such as SRS).
  • the PUCCH communication resource may be one or more. For the case where there are multiple PUCCH communication resources, they can be associated one-to-one The resources of the downlink signal corresponding to each beam in and / or the resources of the one-to-one associated uplink signal.
  • some PUCCH communication resources can also be associated one-to-one
  • the resources of the downlink signals corresponding to the beams in the beam and / or the resources associated with the uplink signals one-to-one, each PUCCH communication resource in one or part of the PUCCH communication resources is one-to-many association
  • the configuration method of one-to-many association in multiple PUCCH communication resources is similar to the configuration method when there is only one PUCCH communication resource. It will not be expanded in this embodiment, and will be described in the following embodiments. .
  • the examples in the configuration relationship tables in this embodiment are described in a case where there are multiple PUCCH communication resources, including a plurality of PUCCH communication resources that associate the downlink signal or the uplink signal with one-to-one, and some of the PUCCH communication resources.
  • a PUCCH communication resource is associated with the downlink signal and / or the uplink signal on a one-to-one basis.
  • one-to-one associated downlink signals are configured.
  • the specific table below shows the PUCCH communication resources (resources) associated with the reference signals in the candidate beam set ⁇ CSI-RS resource # x and CSI-RS resource # y ⁇ :
  • the communication resources of PUCCH resource # x are referenced to the communication resources of CSI-RS resource # x
  • the communication resources of PUCCH resource # y are referenced to the communication resources of CSI-RS resource # x.
  • the UE sends information about the transmission beam of the PUCCH used by the PUCCH, for example, the configuration may be as shown in Table 2:
  • PUCCH resource UE sends beam indication (PUCCH spatial information) PUCCH # resource # x CSI-RS resource # x PUCCH resource # y CSI-RS # resource # y ... ...
  • the transmission beam (that is, the transmission beam) of the PUCCH is indicated by the resource index of the downlink reference signal RS, which indicates that the access node expects the UE to use the transmission beam corresponding to the reception beam of the downlink RS to send the beam for the beam.
  • PUCCH for failed recovery request can also be configured as other downlink RS (such as synchronization signal blocks, tracking signals, etc.) or uplink signals (such as sounding signals SRS, etc.). If it is configured as associated uplink signals, this indicates that the access node wants the UE to perform training according to previous training.
  • the uplink beam of the uplink signal is used to send the PUCCH used for the beam failure recovery request.
  • Table 3 The specific configuration can be exemplarily shown in Table 3:
  • PUCCH resource UE sends beam indication (PUCCH spatial information) PUCCH # resource # x SRS resources # x PUCCH resource # y SRS # resource # y ... ...
  • the access node can directly configure the PUCCH to associate with the uplink signal resource.
  • This association includes that the beam information of the PUCCH is configured as an SRS resource (see Table 3).
  • SRS resource see Table 3
  • the communication resources of the PUCCH and optionally, it can be associated with the downlink signal as configured in Table 1.
  • it can be associated with the communication resource of the uplink signal.
  • the UE detects a beam failure event and detects a newly available beam.
  • the following row of the control channel PDCCH is used as an example.
  • the UE uses the set of beam failure detection configured by the access node.
  • the RS that meets the spatial quasi-parity relationship with the DMRS of the PDCCH evaluates the quality of the control channel.
  • the UE 200 uses the RS that meets the conditions to estimate the PDCCH's Block Error Rate (BLER) (PDCCH-hypothetical-BLER).
  • BLER Block Error Rate
  • a beam detection interval which can correspond to a reporting period
  • a threshold value for example, it may be 0.1
  • a beam failure instance is confirmed, and the UE counts the beam failure instances.
  • the access node When the number of consecutive beam failure instances reaches the maximum value N configured by the access node, it can be determined that a beam failure event is detected, and this embodiment does not limit the specific method for the UE to detect the beam failure.
  • UE to candidate beam set The downlink signal corresponding to the middle beam is detected to confirm that a new beam is available. For example, in this embodiment, it is assumed that the UE confirms that the downlink beam represented by CSI-RS resource # x satisfies the communication condition and becomes a newly available beam.
  • the UE When the UE detects a beam failure event, the UE sends a beam failure recovery request to the access node based on the PUCCH resource configuration and according to the period of the corresponding PUCCH.
  • the PUCCH in this embodiment needs to have periodic characteristics.
  • the base station side needs to periodically use the receiving beam corresponding to the PUCCH communication resource to receive a PUCCH message that the UE may send for a beam recovery request.
  • the PUCCH is sent according to the PUCCH cycle.
  • the period of the PUCCH may be configured by an access node, and the optional period of the PUCCH may also be a preset period, such as a period given by various protocols and specifications. Further, optionally, this period may be It is related to the period of the associated downlink signal resource or uplink signal resource itself or to the reporting period corresponding to the downlink signal.
  • FIG. 3 shows a schematic diagram of the communication timing of the UE for beam failure recovery.
  • the access node configures the UE with multiple PUCCHs associated with the candidate beams (CSI-RS resource # x, CSI-RS resource # y) in the candidate beam set.
  • Resources PUCCH resource # x, PUCCH resource # y). For specific configuration methods, see Table 1 and Table 2 in S101 by way of example.
  • the access node periodically uses the period of PUCCH # x corresponding to PUCCH resource # x.
  • the receiving beam corresponding to CSI-RS # resource # x is used to monitor whether a beam failure recovery request from the UE is received; the access node periodically uses CSI-RS # resource # y according to the period of PUCCH # y corresponding to PUCCH # resource # y.
  • the corresponding receiving beam is used to monitor whether a beam failure recovery request from the UE is received.
  • the UE detects a beam failure and confirms that the corresponding beam of CSI-RS resource # x is a newly available beam.
  • the UE can use the resource of PUCCH # x and use The PUCCH transmission beam associated with CSI-RS resource # x, that is, the UE receives the CSI-RS corresponding to CSI-RS resource # x, and the transmission beam corresponds to the PUCCH transmission beam. It should be noted that after the UE detects that the beam fails, It is not necessary to immediately perform beam failure recovery, but to use the transmission beam corresponding to the CSI-RS resource # x reception beam as the PUCCH transmission beam to the access node according to the period of PUCCH # 1 on the corresponding resource. Failure recovery request, and / or information to inform the access node of newly available beams.
  • the access node Since the access node is configured with PUCCH resource # x, which includes information such as communication resources and beams (such as sequences), the access node can receive PUCCH resource # x on the receiving beam corresponding to the transmitting beam that sends CSI-RS resource # x.
  • the PUCCH used by the UE for the beam failure recovery request may not contain valid information (payload), and the base station can determine the UE feedback through the association relationship between PUCCH resource # x and CSI-RS resource # x.
  • the available beam is CSI-RS resource # x.
  • the PUCCH fed back by the UE may contain valid information, which indicates that the newly available beam selected by the UE is CSI-RS resource # x, and at the same time, the UE may also feedback CSI-RS resource # The beam quality corresponding to x, such as L1-RSRP measured by CSI-RS resource # x. If the transmission beam of the PUCCH is configured as the transmission beam of the uplink signal, then in this example, the transmission beam of the corresponding uplink signal is used to send a beam failure recovery request to the access node on the corresponding communication resource, which may further indicate the newly available selection selected by the UE. Information about the beam.
  • the PUCCH transmission beam configured in S101 is a beam for transmitting an uplink signal
  • the UE when the UE sends a beam failure recovery request to an access node by using a transmission beam other than the transmission beam among the beams for transmitting an uplink signal, the UE further sends the beam failure recovery request to the access node.
  • the access node sends beam information, where the beam information is used to indicate a beam that sends the beam failure recovery request.
  • the access node sends a beam failure recovery response message to the UE.
  • the UE needs to detect the response of the access node. After the access node receives the beam failure and new available beam information reported by the UE through the PUCCH, the access node can send a response to the UE through the available beam in order to confirm the beam failure information to the UE and The information of the new beam is successfully received by the access node, and subsequent communication may be based on the new beam reported by the UE.
  • This response can be a PDCCH or a PDCCH and a PDSCH is scheduled.
  • the UE uses a receiving beam corresponding to the PUCCH beam for the beam failure recovery request sent by 103 to receive the response of this access node.
  • the access node does not necessarily send a response to the UE, or the UE does not necessarily receive the response from the access node after the beam failure recovery request, and if the response is not received within a predetermined time, the beam is considered to be The failed recovery request failed.
  • the beam failure recovery request may be sent multiple times within a predetermined time.
  • a resource configuration method in the embodiment of the present application enables a UE to flexibly and efficiently perform beam failure recovery by configuring a PUCCH resource for beam failure recovery.
  • FIG. 4 is a flowchart of a second embodiment of a method for resource configuration provided by this application.
  • This embodiment is directed to a one-to-many configuration mode of one PUCCH communication resource and multiple uplink / downlink signal resources, or each PUCCH in one or more PUCCH communication resources among multiple PUCCH communication resources.
  • the content that is the same as or similar to the first embodiment will not be repeated in this embodiment.
  • this embodiment is based on the behavior of the UE and the access node on both sides, and describes the overall perspective from the perspective of multi-party interaction.
  • the improvement in the system is not limited to the steps on each side of the interaction. They must be implemented together.
  • the technical solution proposed in this application is improved on each side of the system.
  • the method includes:
  • An access node sends a resource configuration of a physical uplink control channel PUCCH for recovery of beam failure to the UE, where the resource configuration of the PUCCH includes related information of a transmission beam corresponding to the PUCCH and a usage time of the transmission beam.
  • the resource configuration of the PUCCH may further include at least one of the following: communication resources of the PUCCH, a time offset of the PUCCH, a format of the PUCCH, and a period of the PUCCH.
  • the related information of the use time of the transmission beam includes an association relationship between the use time of the transmission beam and a period of the PUCCH, and / or a time offset between the use time of the transmission beam and the PUCCH Relationship.
  • the resource configuration of the PUCCH includes a PUCCH communication resource, and the PUCCH communication resource may be set with a candidate beam
  • the downlink signal resources corresponding to the medium candidate beam are also associated with resources of one or more uplink signals (such as SRS).
  • the communication resources of the PUCCH are one-to-many associated downlink / uplink signal resources.
  • the transmission beam of the PUCCH is not limited to one, and may be multiple.
  • PUCCH spatial info can be configured as ⁇ CSI-RS resource # x and CSI-RS resource # y ⁇ , that is, in the configuration in this example, the UE has two possible transmission beams (the reception beam corresponding to CSI-RS # x indicated by CSI-RS resource # x corresponds to , The transmission beam corresponding to the reception beam indicated by CSI-RS resource # y and the transmission beam corresponding to CSI-RS # y indicated by CSI-RS resource # y), since the PUCCH communication resource is one in this embodiment, and if the UE uses one dedicated communication resource, One of these two beams is used for PUCCH transmission.
  • the access node cannot distinguish according to different communication resources.
  • the access node needs to receive on the dedicated PUCCH communication resource to determine which beam the UE specifically uses to ensure the connection.
  • the receiving beam corresponding to #y receives the PUCCH.
  • the transmit beam corresponding to each beam is used for PUCCH transmission, and the access node should also use the receive beam corresponding to the nth beam in the candidate beam set in the corresponding slot for reception.
  • the n-th beam in the candidate beam set may be sorted according to the identifier size of the reference signal corresponding to the beam.
  • each PUCCH transmission beam may be defined in other forms to distinguish each beam.
  • the transmission beam of the PUCCH may be associated with the resource of the uplink signal (such as the SRS corresponding to the trained beam), and optionally, based on the above-mentioned associated downlink signal resource (CSI-RS resource)
  • the transmission beam of the uplink signal can be used as the PUCCH transmission beam, and different PUCCH transmission beams can be distinguished according to the predetermined association relationship between the time of the beam and the period, time offset, etc. of the PUCCH, or other methods.
  • it is not necessary to configure the corresponding association to distinguish the time of using the beam but to specify that the UE uses all the transmitted beams of the configured uplink signal resources for polling.
  • the order can be based on the uplink signal resource number.
  • the PUCCH transmission beam is restricted to the beam corresponding to the SRS used for beam management.
  • the UE detects a beam failure event and detects a newly available beam.
  • the following row of the control channel PDCCH is used as an example.
  • the UE uses the set of beam failure detection configured by the access node.
  • the RS that meets the spatial quasi-parity relationship with the DMRS of the PDCCH evaluates the quality of the control channel.
  • the UE 200 uses the RS that satisfies the condition to estimate the Block Error Rate (BLER) of the PDCCH (PDCCH-hypothetical-BLER).
  • BLER Block Error Rate
  • a beam detection interval which can correspond to a reporting period
  • a threshold value for example, it may be 0.1
  • a beam failure instance is confirmed, and the UE counts the beam failure instances.
  • the beam failure time is detected.
  • UE to candidate beam set The downlink signal corresponding to the middle beam is detected to confirm that a new beam is available.
  • This embodiment does not limit the specific method for the UE to detect a beam failure. For example, in this embodiment, it is assumed that the UE confirms that the downlink beam represented by the CSI-RS resource # x satisfies the communication condition and becomes a newly available beam.
  • the UE When the UE detects a beam failure event, the UE sends a beam failure recovery request to the access node based on the PUCCH resource configuration and according to the period of the corresponding PUCCH.
  • the PUCCH in this embodiment needs to have periodic characteristics.
  • the base station side needs to periodically use the receiving beam corresponding to the PUCCH communication resource to receive a PUCCH message that the UE may send for a beam recovery request.
  • the PUCCH is sent according to the PUCCH cycle.
  • the period of the PUCCH may be configured by an access node, and the optional period of the PUCCH may also be a preset period, such as a period given by various protocols and specifications. Further, optionally, this period may be It is related to the period of the associated downlink signal resource or uplink signal resource itself or to the reporting period corresponding to the downlink signal. It should be noted that if the transmission beam of the PUCCH is distinguished by the association relationship with the period of the PUCCH, then a beam failure recovery request needs to be sent according to the association relationship between the transmission beam of the PUCCH and the period.
  • the UE uses the CSI-RS resource # x to receive the corresponding transmission
  • the beam sends a PUCCH for a beam failure recovery request at PUCCH # resource # x to inform the access node of the beam failure and / or information about the newly available beam.
  • the access node can receive PUCCH resource # x on the receiving beam corresponding to the transmission beam that sends CSI-RS resource # x.
  • the PUCCH fed back by the UE may not contain valid information (payload), and the base station can determine the available beams fed back by the UE through the association relationship between PUCCH # resource # x and CSI-RS # resource # x. It is CSI-RS resource # x.
  • the PUCCH fed back by the UE may contain valid information, which indicates that the newly available beam selected by the UE is CSI-RS resource # x, and at the same time, the UE may also feedback CSI-RS resource # The beam quality corresponding to x, such as L1-RSRP measured by CSI-RS resource # x.
  • the transmission beam of the PUCCH is configured as the transmission beam of the uplink signal
  • the transmission beam of the uplink signal is used to send a beam failure recovery request to the access node on the dedicated communication resource, and the UE may be further instructed to select a new beam.
  • the PUCCH transmission beam configured in S201 is a beam for transmitting an uplink signal
  • the UE when the UE sends a beam failure recovery request to an access node by using the transmission beam other than the transmission beam among the beams for transmitting the uplink signal, the UE further sends the beam failure recovery request to the access node.
  • the access node sends beam information, where the beam information is used to indicate a beam that sends the beam failure recovery request.
  • the access node sends a beam failure recovery response message to the UE.
  • the UE needs to detect the response of the access node. After the access node receives the beam failure and new available beam information reported by the UE through the PUCCH, the access node can send a response to the UE through the available beam in order to confirm the beam failure information to the UE and The information of the new beam is successfully received by the access node, and subsequent communication may be based on the new beam reported by the UE.
  • This response can be a PDCCH or a PDCCH and a PDSCH is scheduled.
  • the UE uses a receiving beam corresponding to the PUCCH beam for the beam failure recovery request sent by 103 to receive the response of this access node.
  • the access node does not necessarily send a response to the UE, or the UE does not necessarily receive the response from the access node after the beam failure recovery request, and if the response is not received within a predetermined time, the beam is considered to be The failed recovery request failed.
  • the beam failure recovery request may be sent multiple times within a predetermined time.
  • a resource configuration method by configuring a dedicated PUCCH resource for beam failure recovery, enables the UE to flexibly and effectively perform beam failure recovery, and reduces resource occupation and overhead.
  • FIG. 5 is a flowchart of a third embodiment of a method for resource allocation provided by this application.
  • Embodiment 1 and Embodiment 2 differ from Embodiment 1 and Embodiment 2 in this embodiment.
  • an existing uplink measurement signal resource is used to send a PUCCH for a beam failure recovery request.
  • the same or similar content as Embodiment 1 and Embodiment 2 is implemented in this implementation. I will not repeat them in the example.
  • this embodiment is based on the behaviors of the UE and the access node on both sides, and describes the overall perspective from the perspective of multi-party interaction. They must be implemented together.
  • the technical solution proposed in this application is improved on each side of the system.
  • the method includes:
  • the access node sends a resource configuration of a physical uplink control channel PUCCH for recovery of beam failure to the UE.
  • the resource configuration of the PUCCH includes a transmission beam corresponding to the PUCCH.
  • the time domain resources of the PUCCH and the time domain of the uplink measurement signal are same resources.
  • the same includes all the same or part of the same. All are the same.
  • the 14th symbol in one time slot can be used to send SRS, and the 14th symbol in one time slot can be used to send PUCCH.
  • the part is the same.
  • the 14th symbol in one time slot can be used to send SRS, and the 11th to 14th symbols in one time slot can be used to send PUCCH.
  • the access node needs to periodically switch its receiving beam for receiving a beam failure recovery request that the UE may send.
  • the access node does not receive any valid information after it specifically switches the receive beam, which will cause a loss of uplink system performance.
  • the access node will configure the periodic uplink measurement signal (such as SRS) resources for the UE, taking SRS as an example, the access node would originally receive the SRS on these SRS resources, especially the OFDM symbols.
  • SRS periodic uplink measurement signal
  • the uplink measurement signal uses SRS as an example. As shown in FIG. 6, FIG.
  • FIG. 6 shows a schematic diagram of multiplexing the resources of the PUCCH to the resources of the uplink measurement signal.
  • the configuration is used for beam failure recovery (abbreviation recovery).
  • BFR PUCCH (that is, PUCCH-BFR) and uplink measurement signal (SRS # 1) frequency division multiplexing (FDM).
  • SRS # 1 frequency division multiplexing
  • PUCCH-BFR PUCCH for beam failure recovery request is configured.
  • the time domain resources of the resource configuration of the PUCCH are the same as the time domain resources of the uplink measurement signal, and the frequency domain resources of the PUCCH resource configuration are different from the frequency domain resources of the uplink measurement signal; and in the mode 2, The time-frequency resources of the resource configuration of the PUCCH are the same as the time-frequency resources of the uplink measurement signal.
  • the reference signals of the candidate beams are ⁇ CSI-RS resources # x and CSI-RS resources # y ⁇ .
  • the PUCCH resources configured in this embodiment are frequency-division multiplexed with the resources of one or more SRSs, or occupy the resources of one or more SRSs, and the transmission beam of the PUCCH is consistent with the resources of one or more SRSs that are frequency-multiplexed / occupied .
  • the uplink measurement signal uses SRS as an example.
  • FIG. 7 shows a schematic diagram of a PUCCH transmission beam that multiplexes a resource of a PUCCH to a resource of an uplink measurement signal.
  • FIG. 7 shows a schematic diagram of a PUCCH transmission beam that multiplexes a resource of a PUCCH to a resource of an uplink measurement signal.
  • the SRS transmission beams corresponding to the occupied one or more SRS resources are consistent.
  • FIG. 7 is only an example.
  • the transmission beam of the PUCCH is not necessarily consistent with the SRS transmission beam.
  • the transmission beam of the PUCCH may include an uplink transmission beam corresponding to a candidate beam for transmitting a downlink signal in the candidate beam set.
  • the transmission of the PUCCH does not necessarily preempt the transmission of the uplink measurement signal, and may be based on the access node configuration or a predefined priority. It is determined whether the transmission of the PUCCH preempts the transmission of the uplink measurement signal.
  • the UE detects a beam failure event and detects a newly available beam.
  • the UE When the UE detects a beam failure event, the UE sends a beam failure recovery request to the access node based on the PUCCH resource configuration and according to the period of the corresponding PUCCH.
  • the UE performs frequency division multiplexing with the uplink measurement signal resources / PUCCH resources corresponding to the uplink measurement signal resources and the corresponding configurations configured in CSI-RS resources # x and 301.
  • the uplink beam of the uplink measurement signal fails to be transmitted.
  • the transmission beam of the PUCCH is not necessarily the uplink beam of the uplink measurement signal, and it may also include the uplink beam of transmission that corresponds to the candidate beam in the candidate beam set that transmits the downlink signal.
  • the PUCCH fed back by the UE may contain valid information, which indicates that the newly available beam selected by the UE is CSI-RS resource # x, and at the same time, the UE may also feedback CSI-RS resource # The beam quality corresponding to x, such as L1-RSRP measured by CSI-RS resource # x.
  • the access node sends a beam failure recovery response message to the UE.
  • the UE needs to detect the response of the access node. After the access node receives the beam failure and / or newly available beam information reported by the UE through the PUCCH, the access node can send a response to the UE through the available beam to confirm to the UE that the beam has failed. The information and the information of the new beam are successfully received by the access node, and subsequent communication may be based on the new beam reported by the UE.
  • This response can be a PDCCH or a PDCCH and a PDSCH is scheduled.
  • the UE shall use the receiving beam of the newly available beam CSI-RS # resource # x selected by 302 to receive the response of this access node.
  • the access node does not necessarily send a response to the UE, or the UE does not necessarily receive the response from the access node after the beam failure recovery request, and if the response is not received within a predetermined time, the beam is considered to be The failed recovery request failed.
  • the beam failure recovery request may be sent multiple times within a predetermined time.
  • a method for resource configuration in the embodiment of the present application by using the resource for multiplexing uplink measurement signals in whole or in part as a configuration mode of PUCCH resources for beam failure recovery, enables the UE to flexibly and effectively perform beam failure recovery, and reduces Complexity and overhead.
  • the uplink measurement signal uses SRS as For example, as shown in FIG. 8, FIG. 8 shows a schematic diagram of PUCCH transmission beam adjustment in a UE rotation scenario. If the UE instructs to transmit SRS according to the SRS transmission beam configuration configured by the access node. That is the following table.
  • the PUCCH is transmitted according to the PUCCH transmission beam configured by the base station, and the PUCCH transmission beam is consistent with the transmission beam corresponding to SRS resource # 1, that is, the following table:
  • the UE After the UE rotates, as shown in FIG. 8, the direction of the transmission beam # 1 corresponding to SRS resource # 1 has changed, which will cause the access node to fail to receive the PUCCH transmission for beam failure recovery.
  • the UE This PUCCH transmission should be transmitted using the transmission beam # 2 corresponding to SRS resource # 2.
  • the UE autonomously rewrites the PUCCH transmit beam indication, and this information needs to be notified by the UE to the access node.
  • the uplink message carries the adjusted uplink beam information for PUCCH used.
  • a terminal device when a terminal device detects a beam failure event, based on the resource configuration of the PUCCH, a beam failure recovery request sent according to a period corresponding to the PUCCH
  • all PUCCH resources configured by network equipment may be used for beam failure recovery, or part of the PUCCH resources configured by network equipment may or may not be used for beam failure recovery, that is, the terminal device decides autonomously.
  • the period of the PUCCH involved in all the above embodiments may be configured by a network device, that is, the resource configuration of the PUCCH includes the period of the PUCCH, or it may be a preset period, that is, a protocol, a specification, or other predefined .
  • the base station is configured with periodic transmission or uplink transmission resources, such as periodic or semi-continuous uplink sounding signal transmission, periodic or semi-continuous scheduling request transmission, periodic or semi-continuous data transmission, periodic Or semi-continuous downlink reference signal reporting, periodic or semi-persistent random access resources, and the period of the PUCCH may also reuse part or all of the foregoing uplink transmission or uplink transmission resource period.
  • each entity includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. A professional technician can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the embodiments of the present application may divide the functional modules of the UE and the access node according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner. The following description is made by taking each function module corresponding to each function as an example.
  • FIG. 9 shows a simplified structural diagram of a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device 90 includes a processor, a memory, a radio frequency circuit, an antenna, and an input / output device.
  • the processor is mainly used for processing communication protocols and communication data, controlling the terminal device 90, executing software programs, and processing data of the software programs.
  • the memory is mainly used for storing software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal equipment 90 may not have an input / output device.
  • the memory and the processor may be integrated together, or may be independently set; in addition, the radio frequency circuit and the processor may be integrated together, or may be independently set.
  • the processor When it is necessary to send data, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data. .
  • FIG. 9 only one memory and processor are shown in FIG. 9. In an actual terminal equipment product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device.
  • the memory may be set independently of the processor or integrated with the processor, which is not limited in the embodiment of the present application.
  • an antenna and a radio frequency circuit having a transmitting and receiving function may be regarded as a transmitting and receiving unit of the terminal device 90, and a processor having a processing function may be regarded as a processing unit of the terminal device 90.
  • the terminal device 90 includes a transceiver unit 901 and a processing unit 902.
  • the transceiver unit may also be called a transceiver (including a transmitter and / or receiver), a transceiver, a transceiver device, a transceiver circuit, and the like.
  • the processing unit may also be called a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 901 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 901 may be regarded as a transmitting unit, that is, the transceiver unit 901 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may also be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiver unit 901 and the processing unit 902 may be integrated together, or may be independently provided.
  • processing unit 902 may be implemented in one chip, or part of the functions may be implemented in one chip, and other functions may be implemented in one or more chips, which is not limited in this application.
  • unit may refer to an application specific integrated circuit (ASIC), an electronic circuit, a (shared, dedicated, or group) processor and memory, a combinational logic circuit, and / or an implementation of one or more software or firmware programs. Other suitable components of the function.
  • the transceiver unit 901 may be configured to perform operations that the UE sends and / or receives in S101, S103, and / or S104 of FIG. 2 and / or other steps in this application.
  • the processing unit 902 may be configured to execute S102 in FIG. 2 and / or other steps in this application.
  • the transceiver unit 901 may be configured to perform operations sent and / or received by the UE in S201, S203, and / or S204 of FIG. 4 and / or other steps in this application.
  • the processing unit 902 may be configured to execute S202 in FIG. 4 and / or other steps in this application.
  • the transceiver unit 901 may be configured to perform operations that the UE sends and / or receives in S301, S303, and / or S304 in FIG. 5 and / or other steps in this application.
  • the processing unit 902 may be configured to perform S302 in FIG. 5 and / or other steps in this application.
  • the embodiment of the present application further provides a network device.
  • the network device may be used as an access node or a transmission and reception point, and is configured to perform the steps performed by the access node in any of FIG. 2, FIG. 4, and FIG. 5.
  • FIG. 10 shows a simplified schematic diagram of a network device structure.
  • the network device 100 includes a 1001 portion and a 1002 portion.
  • Part 1001 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals to baseband signals.
  • Part 1002 is mainly used for baseband processing and controlling network equipment 100.
  • the 1001 part may be generally called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the part 1002 is usually a control center of the network device 100, and may generally be called a processing unit, a control unit, a processor, or a controller, etc., and is used to control the network device 100 to perform the measurement function entity on the access side in the foregoing related embodiments. Or the steps performed by an access node / transmission receiving point as a measurement function entity on the access side.
  • a control center of the network device 100 may generally be called a processing unit, a control unit, a processor, or a controller, etc.
  • the transceiver unit in part 1001 can also be called a transceiver, or a transceiver, etc. It includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device used to implement the receiving function in part 1001 can be regarded as the receiving unit and the device used to implement the transmitting function can be regarded as the transmitting unit, that is, the part 1001 includes the receiving unit and the transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit, and the sending unit may be called a transmitter, a transmitter, or a transmitting circuit.
  • the 1002 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processors are used to read and execute programs in the memory to implement the baseband processing function and to the network equipment.
  • 100 controls If there are multiple boards, the boards can be interconnected to increase processing capacity.
  • multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processes at the same time.
  • the memory and the processor may be integrated together, or may be independently set.
  • the 1001 part and the 1002 part may be integrated together or may be provided independently.
  • all functions in part 1002 can be implemented in one chip, or part of functions can be implemented in one chip, and other functions can be implemented in one or more chips, which is not limited in this application.
  • the transceiver unit may be configured to perform operations of receiving and / or transmitting by the access node in S101, S103, and / or S104 of FIG. 2 and / or other steps in this application.
  • the processing unit may be configured to perform operations such as determining the resource configuration of the PUCCH allocated to the UE, determining a beam failure of the UE, confirming a newly available beam, and / or other steps in this application.
  • the transceiver unit may be configured to perform the operations of receiving and / or transmitting by the access node in S201, S203, and / or S204 in FIG. 4 and / or other steps in this application.
  • the processing unit may be configured to perform operations such as determining the resource configuration of the PUCCH allocated to the UE, determining a beam failure of the UE, confirming a newly available beam, and / or other steps in this application.
  • the transceiver unit may be configured to perform operations of receiving and / or transmitting by the access node in S301, S303, and / or S304 in FIG. 5 and / or other steps in this application.
  • the processing unit may be configured to perform operations such as determining the resource configuration of the PUCCH allocated to the UE, determining a beam failure of the UE, confirming a newly available beam, and / or other steps in the present application.
  • the terminal-side device provided above may be a terminal device, or a chip or a functional module in the terminal device, and the foregoing method may be implemented by software, hardware, or by executing corresponding software through hardware.
  • the specific implementation form of the network-side device provided above can be an access node device, for example, it can be an access node device, or a chip or a functional module in the access node device, which can be implemented by software, hardware, or The hardware executes the corresponding software to implement the above method.
  • the present application also provides a system for detecting beam failure, including the UE (which may also be a UE-end device that implements the UE function described above) and an access node (which may also be a device that implements the access node function described in the foregoing embodiment). Access-side device or transmission receiving point).
  • the present application also provides a computer program product that, when run on a computer, causes the computer to perform any of the methods provided above.
  • the present application also provides a chip in which instructions are stored, which, when running on the above devices, cause each device to execute the method provided above.
  • the present application also provides a computer storage medium on which a computer program (instruction) is stored, and when the program (instruction) runs on the computer, the computer is caused to execute the method described in any of the above aspects.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as servers, data centers, and the like that can be integrated with the medium.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种资源配置的方法、装置及***。其中,通过网络设备向终端设备发送用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;当终端设备检测到波束失败事件时,基于所述PUCCH的资源配置,根据对应PUCCH的周期,向所述网络设备发送波束失败恢复请求。所述PUCCH的周期可以是由网络设备配置的,也可以是预置周期。通过本申请实施例的用于波束失败恢复的PUCCH资源的配置方式,使得终端设备能够灵活有效地进行波束失败恢复。

Description

一种资源配置的方法、装置及***
本申请要求于2018年5月28日提交中国国家知识产权局、申请号为201810525115.0、发明名称为“一种资源配置的方法、装置及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及通信***中的基于波束通信的技术,具体地涉及通信***中资源配置的方法、装置及***。
背景技术
在移动通信***中使用波束进行传输,即通过在空间上朝向特定的方向发送信号,可以实现更高的天线阵列增益。波束可以通过波束成型(Beamforming)等技术手段实现。例如在高频(high frequency,HF)通信中的一个重要的方向就是模拟加数字混合波束成型(hybrid Beamforming),这样既可以很好的对抗高频信号由于传输距离导致的损耗又可以把复杂度和硬件成本控制在可接受的范围内。
在基于波束的通信***中,为了获得波束增益,发射端会将信号朝特定方向集中发射,而接收端会调整接收波束模式,尽量获取更多的信号能量。然而,随着由于移动、遮挡或信道干扰环境改变,正在通信的一对收发波束的通信质量可能下降,甚至无法正常通信。为了解决由于波束通信质量下降造成的波束失败,用户设备(User Equipment,简称UE)需要对波束进行检测,当UE物理层在一个波束检测区间(可以对应一个上报周期)内确定被检测的波束不满足预定条件,产生波束失败实例,则将按照上报周期上报给UE的高层。当被检测的波束持续不满足预定条件(即,波束失败实例持续产生)时,UE即可确认波束失败发生,并进入波束恢复流程,波束恢复流程包括候选波束集合中新波束的识别、波束失败恢复请求和波束失败应答接收等步骤。
针对波束恢复的流程,目前使用物理随机接入信道(physical random access channel,简称PRACH)资源进行波束恢复,PRACH资源的最短周期为10ms,对于拥有快速波束恢复需求的***(例如时延敏感的***),基于PRACH资源的波束恢复时间过长。另外,PRACH的资源配置不够灵活,在一些带宽部分(bandwidth part,简称BWP)或载波分量(ComponentCarrier,简称CC)上,可能网络设备没有配置PRACH资源。相比之下,物理上行控制信号(physical uplink control channel,简称PUCCH)资源具有更高的灵活性,然而,使用PUCCH资源进行波束恢复的问题在于,正常情况下PUCCH的收发波束已经确定,在发生波束失败时,PUCCH的上行波束可能已经无法通信,无法保证基站可以成功接收波束失败恢复的请求。
发明内容
本申请提供一种资源配置的方法、装置及***,用以利用PUCCH资源的灵活性,进行波束恢复的配置,使得能灵活有效地实现波束恢复。
第一方面,提供一种资源配置的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过网络侧向终端侧发送用于波束失败恢复的PUCCH资源的配置信息,使终端设备能够灵活有效的进行波束失败恢复。 该方法包括:接收网络设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期,向所述网络设备发送波束失败恢复请求。可以理解的,所述PUCCH的周期可以是由网络设备配置的,即所述PUCCH的资源配置包括PUCCH的周期,也可以是预置周期,即协议、规范等预定义的。需要说明的是如果基站配置了带有周期性质的上行传输或者上行传输资源,例如周期或半持续的上行探测信号的传输,周期或半持续的调度请求传输,周期或半持续的数据传输,周期或半持续的下行参考信号上报,周期或半持续的随机接入资源,PUCCH的周期也可以复用部分或全部的前述上行传输或者上行传输资源的周期。
该设计通过用于波束失败恢复的PUCCH资源的配置,使得终端设备能够灵活有效地进行波束失败恢复。
相应的,提供一种资源配置的装置,该装置可以实现第一方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信接收所述PUCCH的资源配置。该装置还可以包括处理单元,该处理单元用于确定检测到波束失败事件。
第二方面,提供一种资源配置的方法和装置。
在一种可能的设计中,该方法应用于网络设备上,如接入节点、网络侧具备接入节点部分功能的传输接收点。通过网络侧向终端侧发送用于波束失败恢复的PUCCH资源的配置信息,使终端设备能够灵活有效的进行波束失败恢复。该方法包括:向终端设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;接收当所述终端设备当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期发送的波束失败恢复请求。可以理解的,所述PUCCH的周期可以是由网络设备配置的,即所述PUCCH的资源配置包括PUCCH的周期,也可以是预置周期,即协议、规范等预定义的。需要说明的是如果基站配置了带有周期性质的上行传输或者上行传输资源,例如周期或半持续的上行探测信号的传输,周期或半持续的调度请求传输,周期或半持续的数据传输,周期或半持续的下行参考信号上报,周期或半持续的随机接入资源,PUCCH的周期也可以复用部分或全部的前述上行传输或者上行传输资源的周期。
该设计通过用于波束失败恢复的PUCCH资源的配置,使得终端设备能够灵活有效地进行波束失败恢复。
相应的,提供一种资源配置的装置,该装置可以实现第二方面中的对应的方法。例如,该装置以功能形式限定,可以是接入侧的实体,其具体实现形式可以是接入节点设 备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第二方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于向终端设备发送所述PUCCH的资源配置。该装置还可以包括处理单元,该处理单元用于确定配置给终端设备的PUCCH的资源配置。
基于第一方面、第二方面提供的任一种技术方案:
在一种可能的设计中,所述PUCCH的资源配置包括一个PUCCH的通信资源,或多个PUCCH的通信资源。
在一种可能的设计中,所述PUCCH的资源配置还包括以下至少一项:所述PUCCH的通信资源(如,时频码域资源等)、所述PUCCH的时间偏移量、所述PUCCH的格式。
在一种可能的设计中,所述PUCCH的的资源配置还包括:所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系。
在一种可能的设计中,所述PUCCH的资源配置与候选波束集合中候选波束对应的下行信号资源相关联,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;和/或,所述PUCCH的资源配置与一个或多个上行信号的资源相关联。可以理解的,针对以上两种关联情况,当PUCCH的资源配置包括的PUCCH的通信资源(如,时频码域资源等)为一个时,所述PUCCH的时频的资源配置与候选波束集合中各候选波束对应的下行信号资源相关联,或者,所述PUCCH的时频的资源配置与一个或多个上行信号的资源相关联。还可以理解,当PUCCH的资源配置包括的PUCCH的通信资源(如,时频码域资源等)为至少两个时,可以有两种情况:一种是每一PUCCH的通信资源一对一关联候选波束集合中一候选波束对应的下行信号资源,或者每一PUCCH的通信资源一对一关联一上行信号的资源;另一种是部分PUCCH的通信资源一对一关联候选波束对应的下行信号资源或一对一关联上行信号的资源,部分PUCCH的通信资源一对多关联候选波束对应的下行信号资源或一对多关联上行信号的资源。通过针对用于波束失败恢复的一对多的专用PUCCH资源的配置,使得终端设备能够灵活有效地进行波束失败恢复,并降低了资源占用和开销。进一步的,所述传输波束包括所述候选波束集合中传输下行信号的候选波束对应的上行发送波束;和/或,所述传输波束包括传输所述上行信号的波束。
在一种可能的设计中,所述PUCCH的资源配置包括PUCCH的时频资源,所述PUCCH的时频资源与上行测量信号的时频资源相同;或者,所述PUCCH的时域资源与上行测量信号的时域资源相同,所述PUCCH的频域资源与上行测量信号的频域资源不同。可以理解,考虑到网络设备会为终端设备配置周期性的上行测量信号资源,网络设备本来就会在这些上行测量信号的资源上接收上行测量信号,因此可以考虑复用PUCCH到这些上行测量信号资源。对于PUCCH的时频资源与上行测量信号的时频资源相同的情况,PUCCH的传输可选的可以抢占上行测量信号的传输,可选的也不一定优先抢占上行测量信号的 传输,终端设备可以根据网络设备配置或者预定义的优先级,确定PUCCH的传输是否抢占上行测量信号的传输。进一步地,所述传输波束包括候选波束集合中传输下行信号的候选波束对应的上行发送波束,和/或传输上行测量信号的波束;所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合。
在一种可能的设计中,所述传输波束包括传输上行测量信号的波束,当终端设备采用传输上行测量信号的波束中非所述传输波束向网络设备发送波束失败恢复请求,终端设备向所述网络设备发送波束信息,网络设备接收终端设备发送的波束信息,所述波束信息用于指示发送所述波束失败恢复请求的波束。
第三方面,提供一种资源配置的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过网络侧向终端侧发送用于波束失败恢复的PUCCH资源的配置信息,使终端设备能够灵活有效的进行波束失败恢复。该方法包括:接收网络设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;当检测到所述PUCCH的传输波束的方向发生改变,确定新PUCCH的传输波束,所述新PUCCH的传输波束为上行传输波束中方向与所述PUCCH的传输波束方向改变前的方向相同的波束,向所述网络设备发送所述新PUCCH的传输波束的信息。
该设计通过用于波束失败恢复的PUCCH资源的配置,使得终端设备能够灵活有效地进行波束失败恢复,并能够根据终端设备发生旋转等导致PUCCH传输波束方向发生变化时,保证用于波束失败恢复的PUCCH的传输。
相应的,提供一种资源配置的装置,该装置可以实现第三方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第三方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信接收所述PUCCH的资源配置。该装置还可以包括处理单元,该处理单元用于确定PUCCH的传输波束的方向发生改变、确定新PUCCH的传输波束。
第四方面,提供一种资源配置的方法和装置。
在一种可能的设计中,该方法应用于网络设备上,如接入节点、网络侧具备接入节点部分功能的传输接收点。通过网络侧向终端侧发送用于波束失败恢复的PUCCH资源的配置信息,使终端设备能够灵活有效的进行波束失败恢复。该方法包括:向终端设备发送用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;接收所述终端设备发送的新PUCCH的传输波束的信息,所述新PUCCH的传输波束为当终端检测到所述PUCCH的传输波束的方向发生改变时,确定的新的PUCCH的传输波束,所述新PUCCH的传输波束为上行传输波束中方向与所述PUCCH 的传输波束方向改变前的方向相同的波束。
该设计通过用于波束失败恢复的PUCCH资源的配置,使得终端设备能够灵活有效地进行波束失败恢复,并能够根据终端设备发生旋转等导致PUCCH传输波束方向发生变化时,保证用于波束失败恢复的PUCCH的传输。
相应的,提供一种资源配置的装置,该装置可以实现第四方面中的对应的方法。例如,该装置以功能形式限定,可以是接入侧的实体,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第四方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于向终端设备发送所述PUCCH的资源配置。该装置还可以包括处理单元,该处理单元用于确定配置给终端设备的PUCCH资源。
基于第三方面、第四方面提供的技术方案:
在一种可能的设计中,所述PUCCH资源还包括以下至少一项:所述PUCCH的时频码域资源、所述PUCCH的时间偏移量、所述PUCCH的格式。
在一种可能的设计中,所述PUCCH的资源还包括:所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系。
在一种可能的设计中,所述PUCCH资源与候选波束集合中候选波束对应的下行信号资源相关联,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;或者,所述PUCCH资源与一个或多个上行信号的资源相关联。
第五方面,提供一种资源配置的方法和装置。
在一种可能的设计中,该方法应用于终端设备上,通过网络侧向终端侧发送用于波束失败恢复的PUCCH资源的配置信息,使终端设备能够灵活有效的进行波束失败恢复。该方法包括:接收网络设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括PUCCH的传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系;当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期,向所述网络设备发送波束失败恢复请求。可以理解的,所述PUCCH的周期可以是由网络设备配置的,即所述PUCCH的资源配置包括PUCCH的周期,也可以是预置周期,即协议、规范等预定义的。需要说明的是如果基站配置了带有周期性质的上行传输或者上行传输资源,例如周期或半持续的上行探测信号的传输,周期或半持续的调度请求传输,周期或半持续的数据传输,周期或半持续的下行参考信号上报,周期或半持续的随机接入资源,PUCCH的周期也可以复用部分或全部的前述上行传输或者上行传输资源的周期。
该设计通过用于波束失败恢复的PUCCH资源的配置,使得终端设备能够灵活有效地进行波束失败恢复。
相应的,提供一种资源配置的装置,该装置可以实现第五方面中的对应的方法。例如,该装置以功能形式限定,可以是终端侧的实体,其具体实现形式可以是终端设备,例如:可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第五方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于与网络设备通信接收所述PUCCH的资源配置。该装置还可以包括处理单元,该处理单元用于确定检测到波束失败事件。
第六方面,提供一种资源配置的方法和装置。
在一种可能的设计中,该方法应用于网络设备上,如接入节点、网络侧具备接入节点部分功能的传输接收点。通过网络侧向终端侧发送用于波束失败恢复的PUCCH资源的配置信息,使终端设备能够灵活有效的进行波束失败恢复。该方法包括:向终端设备发送用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括PUCCH的传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系;接收当所述终端设备当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期发送的波束失败恢复请求。可以理解的,所述PUCCH的周期可以是由网络设备配置的,即所述PUCCH的资源配置包括PUCCH的周期,也可以是预置周期,即协议、规范等预定义的。需要说明的是如果基站配置了带有周期性质的上行传输或者上行传输资源,例如周期或半持续的上行探测信号的传输,周期或半持续的调度请求传输,周期或半持续的数据传输,周期或半持续的下行参考信号上报,周期或半持续的随机接入资源,PUCCH的周期也可以复用部分或全部的前述上行传输或者上行传输资源的周期。
该设计通过用于波束失败恢复的PUCCH资源的配置,使得终端设备能够灵活有效地进行波束失败恢复。
相应的,提供一种资源配置的装置,该装置可以实现第六方面中的对应的方法。例如,该装置以功能形式限定,可以是接入侧的实体,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第六方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括收发单元,其中,收发单元,用于向终端设备发送所述PUCCH的资源配置。该装置还可以包括处理单元,该处理单元用于确定配置给终端设备的PUCCH资源。
需要说明的是,基于以上第一方面、第二方面、第五方面、第六方面任一提供的技 术方案,其中终端设备当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期发送的波束失败恢复请求中,基于所述PUCCH的资源配置,可以是全部采用网络设备配置的PUCCH资源进行波束失败恢复,也可以是部分采用或者不采用网络设备配置的PUCCH资源进行波束失败恢复,即终端设备自主决定。例如以上第三方面、第四方面所提供的技术方案,PUCCH的传输波束就没有采用网络设备的配置。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种芯片,其中存储有指令,当其在通信设备上运行时,使得通信设备执行上述各方面所述的对应方法。
本申请还提供了一种装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述各方面所述的对应方法。
本申请还提供了一种装置,包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现上述各方面所述的对应方法。可以理解的,该存储器可以集成在处理器中,也可以独立于处理器之外。
本申请还提供了一种装置,包括处理器,所述处理器执行计算机程序时实现上述各方面所述的对应方法。该处理器可以是专用处理器。
本申请还提供了一种***,包括上述提供的终端侧的装置,以及上述提供的网络侧的装置,这些***组成分别实现上述各方面所述的对应方法。
可以理解地,上述提供的任一种装置、计算机存储介质、计算机程序产品、芯片、***均用于实现上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本申请实施例的内容和这些附图获得其他的附图。
图1是本申请涉及的一种网络***架构;
图2是本申请提供的一种资源配置的方法的第一个实施例的流程图;
图3是本申请提供的UE进行波束失败恢复的通信时机示意图;
图4是本申请提供的一种资源配置的方法的第二个实施例的流程图;
图5是本申请提供的一种资源配置的方法的第三个实施例的流程图;
图6是本申请提供的复用PUCCH的资源到上行测量信号的资源的示意图;
图7是本申请提供的复用PUCCH的资源到上行测量信号的资源的PUCCH传输波束示意图;
图8是本申请提供的UE旋转场景下PUCCH发送波束调整的示意图;
图9是本申请提供的一种简化的终端设备结构示意图;
图10是本申请提供的一种简化的网络设备结构示意图。
具体实施方式
为使本申请解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将以实施例的形式结合附图对本申请的技术方案作进一步详细的描述。所述详细的描述通过使用方框图、流程图和/或示例提出了设备和/或过程的各种实施例。由于这些方框图、流程图和/或示例包含一个或多个功能和/或操作,所以本领域技术人员将理解可以通过许多硬件、软件、固件或它们的任意组合单独和/或共同实施这些方框图、流程图或示例内的每个功能和/或操作。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。本申请中的术语“第一”、“第二”、“第三”、“第四”等是为了区分不同的对象,并不限定该不同对象的顺序。
本申请中,名词“网络”和“***”经常交替使用,但本领域的技术人员可以理解其含义。本申请所提及的所有“终端”/“终端设备”,在一些情况下可以是指移动设备,例如移动电话、个人数字助理、手持或膝上型计算机以及具有电信能力的类似设备,有些情况下还可以是穿戴设备或车载设备等,并包括未来5G网络中的终端或者未来演进的PLMN网络中的终端等。这种终端可以包括设备及其相关联的可移除存储模块(例如但不限于:包括订户标识模块(Subscriber Identification Module,简称为SIM)应用、通用订户标识模块(Universal Subscriber Identification Module,简称为USIM)应用或可移除用户标识模块(Removable User Identity Module,简称为R-UIM)应用的通用集成电路卡(Universal Integrated Circuit Card,简称为UICC)))。备选地,这种终端可以包括没有这种模块的设备本身。在其它情况下,术语“终端”/“终端设备”可以是指具有类似能力但是不可携带的设备,例如,台式计算机、机顶盒或网络设备。术语“终端”/“终端设备”还可以是指可端接用户的通信会话的任何硬件或软件组件。此外,“用户终端”、“User Equipment”、“UE”、“站点”、“station”、“STA”、“用户设备”、“用户代理”、“User Agent”、“UA”、“用户装备”、“移动设备”和“设备”等皆是与本文中“终端”/“终端设备”同义的替代术语。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。
本申请中提及的“接入节点”,是一种网络设备,部署在无线接入网中用以为终端设备提供无线通信功能的装置,能够负责调度和配置给UE的下行参考信号等功能。所述接入节点可以包括各种形式的宏基站、微基站、中继站、接入点等等,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,新空口(New Radio,简称NR)***中的传输节点或收发点(transmission reception point, 简称TRP或者TP)或者下一代节点B(generation nodeB,简称gNB),无线保真(Wireless-Fidelity,简称Wi-Fi)的站点、无线回传节点、小站、微站,或者未来第五代移动通信(the 5th Generation Mobile Communication,简称5G)网络中的基站等,本申请在此并不限定。在采用不同的无线接入技术的***中,具备接入节点功能的设备名称可能会有所不同。为方便描述,本申请中,上述为UE提供无线通信功能的装置统称为接入节点。
本申请中基于波束的通信,是指在移动通信***中使用波束进行传输,即通过在空间上朝向特定的方向发送信号,可以实现更高的天线阵列增益。波束可以通过波束成型(Beamforming)等技术手段实现。例如在高频(high frequency,简称HF)通信中的一个重要的研究方向就是模拟加数字混合波束成型(hybrid Beamforming),这样既可以很好的对抗高频信号由于传输距离导致的损耗又可以把复杂度和硬件成本控制在可接受的范围内。
本申请所涉及的技术中,相关术语定义如下:
准同位(quasi-co-location,简称QCL):准同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有准同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有准同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(Angel-of-Arrival,AoA),平均到达角,AoA的扩展等。具体地,准同位指示用于指示至少两组天线端口是否具有准同位关系为:所述准同位指示用于指示所述至少两组天线端口发送的信道状态信息参考信号是否来自相同的传输点,或所述准同位指示用于指示所述至少两组天线端口发送的信道状态信息参考信号是否来自相同的波束组。
准同位假设(QCL assumption):是指假设两个端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如,接收端能确认A端口和B端口具有QCL关系,即可以将A端口上测得的信号的大尺度参数用于B端口上的信号测量和解调。
波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现还是可以空域滤波器(spatial filter)。
波束的信息可以通过索引信息进行标识。可选地,所述索引信息可以对应配置UE的资源标识,比如,所述索引信息可以对应配置的信道状态信息参考信号(Channel status  information Reference Signal,简称CSI-RS)的ID或者资源,也可以对应配置的上行探测参考信号(Sounding Reference Signal,简称SRS)的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息可以是通过波束发送的同步信号或者广播信道指示该波束的索引信息。
或者,可选地,波束的信息的标识包括可以通过波束的绝对索引、波束的相对索引,波束的逻辑索引,波束对应的天线端口的索引,波束对应的天线端口组的索引,下行同步信号块的时间索引,波束对连接(beam pair link,BPL)信息,波束对应的发送参数(Tx parameter),波束对应的接收参数(Rx parameter),波束对应的发送权重(weight),权重矩阵(weight vector),权重向量(weight matrix),波束对应的接收权重,或者它们的索引,波束对应的发送码本(codebook),波束对应的接收码本,或者它们的索引。
空域准同位(spatial QCL):spatial QCL可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
图1给出了本申请涉及的一种网络***架构,本申请适用于如图1所示的基于波束300的多载波通信***,例如5G新空口(New Radio,简称NR)。该***中包括通信***中的上行(UE200到接入节点100)和下行(接入节点100到UE200)通信。根据长期演进(Long Term Evolution,简称LTE)/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中上行物理信道包括随机接入信道(Random access channel,简称为PRACH),上行控制信道(Physical uplink control channel,简称为PUCCH),上行数据信道(Physical uplink shared channel,简称为PUSCH)等,上行信号包括信道探测信号SRS,上行控制信道解调参考信号(PUCCH De-modulation Reference Signal,简称PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,简称PTRS)等。下行通信包括下行物理信道和下行信号的传输。其中下行物理信道包括广播信道(Physical broadcast channel,简称PBCH),下行控制信道(Physical downlink control channel,简称PDCCH),下行数据信道(Physical downlink shared channel,简称PDSCH)等,下行信号包括主同步信号(Primary Synchronization Signal,简称PSS)/辅同步信号(Secondary Synchronization Signal,简称SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(Channel status information reference signal,CSI-RS),小区信号(Cell Reference Signal,简称CRS)(NR没有),精同步信号(Tim/frequency tracking Reference Signal,简称TRS)(LTE没有)等。
在NR中,下行信道所使用的波束或参考信号发送对应的波束的波束指示是通过关联传输配置指示(Transmission Configuration Indicator,简称TCI)状态表中的参考资源索引实现的。
对于上行传输,NR尚未定义空间准同位关系,上行的波束指示直接通过参考信号 资源标识实现:
在上行和下行通信中,当下行物理信道的发射波束与接收波束之间的通信质量恶化后,波束失败可能发生。在NR协议中,在一个波束检测区间(可以对应一个上报周期)内,当所有需要检测的下行物理信道的波束质量低于某一门限时,可以视作一次波束失败实例;需要说明的是UE通过波束检测信号实现对波束的检测,对于至少一个波束检测信号,UE在检测之前已经获知各波束检测信号的周期,所以UE知道在当前波束检测区间内哪些波束检测号到来需要检测,UE检测需要检测的波束检测信号;连续波束失败实例达到最大次数时(最大次数可以由接入节点100配置,也可以由协议规定具体值),可以确定波束失败发生。
本申请中,在图1所示的***下,接入节点100可以通过高层信令,例如无线资源控制(Radio Resouce Control,简称RRC)信令为UE200配置一个集合
Figure PCTCN2019088686-appb-000001
用于波束失败检测,需要说明的,该集合也可以不由接入节点100配置,而由UE200根据下行物理信道,如下行控制信道的TCI指示自行确定。该集合中可选包含一个或多个周期性的CSI-RS资源索引;接入节点100还为UE配置用于波束失败恢复的物理上行控制信道PUCCH资源,该PUCCH资源包括对应的PUCCH的传输波束,PUCCH资源可以为一个或多个。可选的,接入节点100还可通过高层信令(如RRC)为UE200配置一个集合
Figure PCTCN2019088686-appb-000002
作为候选波束集合(该集合也可以由UE200自行确定),该集合中可选包含CSI-RS资源索引和/或SSB的资源索引。可选的,接入节点100通过高层信令(如RRC)为UE200配置最大波束失败实例个数N(该个数N也可不由接入节点100配置,而由协议规定具体值),波束失败后的候选波束门限Qin,以及UE200波束恢复的随机接入信道(Random Access Channel,简称RACH)信息、候选波束对应的RACH资源、用于检测波束失败恢复应答的控制资源集合(control resource set)等。除此之外,高层信令还包含一些其他配置信息,包括波束恢复计时器、波束恢复应答计时器,波束恢复请求的最大传输次数。当接入节点100没有配置集合
Figure PCTCN2019088686-appb-000003
时,UE200应根据当前被要求检测的下行物理信道(如PDCCH)所对应的TCI状态来决定
Figure PCTCN2019088686-appb-000004
以包括与该信道(如PDCCH)具有空间QCL关系的SSB和/或周期性CSI-RS。门限Qin为CSI-RS的物理层参考信号接收功率(Layer 1-Reference Signal Received Power,简称L1-RSRP)门限,SSB的门限可以通过高层信令中的powerControlOffsetSS(即PC_ss,表示CSI-RS资源元素与SSB的资源元素的功率偏差)结合Qin推断。
以下行控制信道PDCCH为例,UE200使用
Figure PCTCN2019088686-appb-000005
中与PDCCH的DMRS满足空间准同位关系的RS对控制信道的质量进行评估。具体的,UE200使用满足条件的RS对PDCCH的块误码率(Block Error Rate,简称BLER)进行估算(PDCCH-hypothetical-BLER),在一个波束检测区间(可以对应一个上报周期)内当所有需被检测的下行控制信道的hypothetical-BLER大于门限值(例如,可以为0.1)时,UE200物理层确认一次波束失败实例,并按照指定周期上报给UE200侧MAC层。
UE200侧MAC层对物理层上报的波束失败实例进行计数。当波束失败实例连续发生次数达到接入节点100配置的最大值N时,MAC可以判定为波束失败发生,开启波束失败恢复计时器,并通知UE200物理层波束失败发生。收到MAC层波束失败的指示后,可选的,UE200物理层上报集合
Figure PCTCN2019088686-appb-000006
中满足候选波束门限Qin的参考信号的波束测量结果,上报形式为一组或多组{波束RS索引,L1-RSRP测量结果}。UE200的MAC层根据物理层上报的测量结果和波束,按照某种规则选择一个候选波束的RS索引,并根据这个RS索引确定对 应的PUCCH资源,并将选择后的波束索引q new与其对应的PUCCH资源反馈给物理层。UE200的物理层根据接入节点100预配置或规范预定义的PUCCH周期,在指定的PUCCH资源上使用对应的PUCCH传输波束向接入节点100发送波束失败恢复请求(Beam-failure-recovery-request)。在发送波束失败恢复请求预定个时隙后,UE200使用qnew对应波束对高层信令分配的用于波束失败恢复应答的控制资源集CORESET进行监测,应答内容为使用C-RNTI扰码加扰的可能的下行控制信息(DCI)。若成功获取应答,则波束恢复成功,进入正常波束管理流程。若在一定时间窗口内未能成功收到有效的应答,则再次从发送波束恢复请求开始重复前述过程,直到达到最大波束恢复请求次数或波束失败恢复计时器超时。
以上,实现了在该***中波束失败检测和恢复的流程。需要说明的是,图1所示的仅是本申请所涉及的一种网络***架构的示例,本申请并不局限于此。
实施例一
为了能够灵活有效地进行波束失败恢复,接入节点为UE配置用于波束失败恢复的PUCCH资源,本实施例中以不限一个PUCCH资源为例进行描述,需要说明的是,本实施例及后续实施例皆以UE与接入节点之间交互进行描述,仅为示例性描述,本申请不限于此,在网络中接入节点管理下的传输接收点TRP具备部分接入节点的相关功能时,本申请还可以应用在UE与TRP交互的场景下。根据本申请的实施例,图2为本申请提供的一种资源配置的方法的第一个实施例的流程图,为了便于方案理解,在描述时,本实施例及后续实施例皆以UE和接入节点双侧的行为展开,从交互多方的角度进行整体描述,但绝非限定***中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在***中每一侧均有改进。
该方法包括:
S101、接入节点向UE发送用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束。
可选的,所述PUCCH的资源配置还可以包括以下至少一项:所述PUCCH的通信资源(如,PUCCH对应的时域资源、频域资源、和/或码域资源,例如发送用于波束失败恢复的PUCCH使用的掩码等)、所述PUCCH的时间偏移量、所述PUCCH的格式、所述PUCCH的周期。进一步可选的,所述PUCCH的资源还包括:所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系。需要说明的是,传输波束的使用时间,即使通过传输波束进行下行信号传输的时间。
进一步可选的,传输波束除了和周期/偏移量关联之外。还可以与以下信息关联:PUCCH起始符号、符号长度、起始时隙、时隙长度、起始频域位置、频域资源大小、扰码序列、正交掩码序列、循环移位序列、循环移位跳跃方法、相位旋转大小、序列跳跃方法、有效比特数目、编码方法、码率、跳频图案、调制方法、调制方法的阶数、波形、发送功率、PUCCH格式、PUCCH内容等,所以,PUCCH的资源配置还可以包括这些信息和/或这些信息与传输波束的关联关系。
可选的,PUCCH包括长PUCCH,例如占4-14个OFDM符号,短PUCCH,例如占1-2个OFDM符号。PUCCH可以在一个时隙内传输,也可以跨时隙传输。起始符号,符号数和时隙数都是可配置的。
PUCCH能承载不同的比特数,从0个,1个,2个到多个。其中,0个比特是指信号的有无,而信号本身不携带有效信息。PUCCH的编码方法和码率都是可配置的。
PUCCH的传输序列可以配置序列跳跃(sequence hopping)和循环移位跳跃(cyclic shift hopping)。
PUCCH的频率资源可以配置跳频(frequency hopping)方法或跳频图案。即终端在不同时间使用不同的频率资源传输PUCCH以获得频域多样性。跳频方法包括时隙内跳频和时隙间跳频。
PUCCH的传输序列可以配置加扰、掩码等操作来区分不同的终端。即不同终端使用不同的扰码、正交的掩码等达到在収端区分终端的目的。
PUCCH的传输可以使用不同的调制方式,例如二进制相移键控(binary phase shift keying,简称BPSK),Pi/2BPSK,正交相移健控(quadrature phase shift keying,简称QPSK)等。
PUCCH的传输可以使用不同的波形,例如循环前缀正交频分复用(cyclic prefix Orthogonal Frequency Division Multiplexing,简称为CP-OFDM),离散傅立叶变换扩展OFDM(discrete Fourier transform spread OFDM,简称DFT-s-OFDM)等。
PUCCH的发送功率是终端根据基站指示进行计算的。基站指示的信息包括路损,功率累积参数等。
PUCCH可以用于不同的用途,例如发送调度请求,发送混合自动重传请求(Hybrid Automatic Repeat reQuest,简称HARQ)确认(Acknowledgement,简称ACK)/非确认(negative ACK,简称NACK)信息,发送CSI信息等。本发明中也用PUCCH发送波束失败恢复请求。
用于不同用途的PUCCH可以复用。例如一个PUCCH可以发送调度请求+HARQ ACK。本发明中一个PUCCH可以用于发送波束失败恢复请求+CSI(即波束上报)。
当基站无法区分PUCCH的用途时,例如调度请求和波束失败恢复请求可能具有相同的比特长度。可以引入进一步的区分方法,例如调度请求和波束失败恢复请求使用不同扰码、掩码、cyclic shift、发送功率,跳频图案等。也可以引入进一步的信息交互,例如基站下发下行控制信道调度终端进行上行传输,要求终端在上行传输中携带表明PUCCH用途的信息。
可选的,所述PUCCH的资源配置包括PUCCH的通信资源,PUCCH的通信资源可以与候选波束集合
Figure PCTCN2019088686-appb-000007
(网络侧配置的用于波束失败恢复的波束集合)中候选波束对应的下行信号资源相关联,还可以与一个或多个上行信号(如SRS)的资源相关联。所述PUCCH通信资源可以为一个或者多个。对于PUCCH通信资源为多个的情况,可以一对一关联
Figure PCTCN2019088686-appb-000008
中的各波束对应的下行信号的资源,和/或一对一关联上行信号的资源。可选的,对于PUCCH通信资源为多个的情况,也可以部分PUCCH通信资源一对一关联
Figure PCTCN2019088686-appb-000009
中的各波束对应的下行信号的资源和/或一对一关联所述上行信号的资源,一个或部分PUCCH通信资源中每一个PUCCH通信资源是一对多关联
Figure PCTCN2019088686-appb-000010
中的各波束对应的下行信号的资源,和/或一对多关联上行信号的资源。对于多个PUCCH通信资源中存在一对多关联的配置方式,与只有一个PUCCH通信资源的情况下进行配置的方式类似,在本实施例中不进行展开,将在后续实施例中进行针对性描述。本实施例中各配置关系表中的示例以PUCCH通信资源为多个的情况进行描述,包括多个PUCCH通信资源一对一关联所述下行信号或所述上行信号、多个 PUCCH通信资源中部分PUCCH通信资源一对一关联所述下行信号和/或所述上行信号。示例性的,针对全部或部分PUCCH通信资源一对一关联下行信号的配置方式,具体的下表给出了PUCCH通信资源(resource)分别关联了候选波束集合中的参考信号{CSI-RS resource#x和CSI-RS resource#y}:
表1
PUCCH resource 下行信号
PUCCH resource#x CSI-RS resource#x
PUCCH resource#y CSI-RS resource#y
根据表1的配置,PUCCH resource#x的通信资源以CSI-RS resource#x的通信资源为参考,PUCCH resource#y的通信资源以CSI-RS resource#x的通信资源为参考。
此外,对于PUCCH的资源配置包括的UE发送该PUCCH使用的所述PUCCH的传输波束的信息,示例性的可以如表2的配置:
表2
PUCCH resource UE发送波束指示(PUCCH spatial info)
PUCCH resource#x CSI-RS resource#x
PUCCH resource#y CSI-RS resource#y
在表2中,PUCCH的传输波束(即,发送波束)指示由下行参考信号RS的资源索引表示,这表明接入节点希望UE使用接收该下行RS的接收波束对应的发送波束来发送用于波束失败恢复请求的PUCCH。PUCCH spatial info也可以配置成其他的下行RS(如同步信号块,跟踪信号等)或者上行信号(如探测信号SRS等),如果配置成关联上行信号,这表明接入节点希望UE根据之前训练过的该上行信号的发送波束来发送用于波束失败恢复请求的PUCCH,具体配置可以示例性的如表3所示:
表3
PUCCH resource UE发送波束指示(PUCCH spatial info)
PUCCH resource#x SRS resource#x
PUCCH resource#y SRS resource#y
需要说明的,如果PUCCH通信资源一对一关联上行信号,接入节点可以直接配置PUCCH关联到上行信号资源。这种关联关系包括PUCCH的波束信息配置为SRS资源(如表3)。对于PUCCH的通信资源,可以不进行限制,可选的,可以如表1的配置方式,关联下行信号;可选的,可以与上行信号的通信资源相关联。
S102、UE检测到波束失败事件并检测新可用波束。
以下行控制信道PDCCH为例,UE使用接入节点配置的用于波束失败检测的集合
Figure PCTCN2019088686-appb-000011
中与PDCCH的DMRS满足空间准同位关系的RS对控制信道的质量进行评估。具体的,UE200 使用满足条件的RS对PDCCH的块误码率(Block Error Rate,简称BLER)进行估算(PDCCH-hypothetical-BLER),在一个波束检测区间(可以对应一个上报周期)内当所有需被检测的下行控制信道的hypothetical-BLER大于门限值(例如,可以为0.1)时,确认一次波束失败实例,UE对波束失败实例进行计数。当波束失败实例连续发生次数达到接入节点配置的最大值N时,可以判定为检测到波束失败事件,本实施例不限制UE检测波束失败的具体方法。UE对候选波束集合
Figure PCTCN2019088686-appb-000012
中的波束对应的下行信号进行检测,确认可用新波束,示例性的,本实施例中假设UE确认CSI-RS resource#x代表的下行波束满足通信条件,成为新可用波束。
S103、当UE检测到波束失败事件,UE基于所述PUCCH的资源配置,根据对应PUCCH的周期,向所述接入节点发送波束失败恢复请求。
本实施例中的PUCCH需要具有周期性的特性。特别是基站侧,需要周期性的使用PUCCH通信资源对应的收波束来接收UE可能发送的用于波束恢复请求的PUCCH消息。而在UE侧,则只需要在发生了波束失败事件并确认其可用新波束的时候才会根据PUCCH的周期发送这个PUCCH。可选的,所述PUCCH的周期可以由接入节点配置,可选的所述PUCCH的周期也可以为预置周期,如各类协议、规范给定的周期,进一步可选的,这个周期可以与关联的下行信号资源或上行信号资源本身的周期相关或者与下行信号对应的上报的周期相关。
以PUCCH的资源关联CSI-RS的资源为例,如图3所示,图3给出了UE进行波束失败恢复的通信时机示意图。以关联下行信号中CSI-RS的资源为例,接入节点为UE配置了多个与候选波束集合中的候选波束(CSI-RS resource#x、CSI-RS resource#y)相关联的PUCCH的资源(PUCCH resource#x、PUCCH resource#y),具体配置方式可以示例性地见S101中的表1和表2,接入节点根据PUCCH resource#x对应的PUCCH#x的周期,周期性地使用CSI-RS resource#x对应的接收波束去监测是否接收到UE发来的波束失败恢复请求;接入节点根据PUCCH resource#y对应的PUCCH#y的周期,周期性地使用CSI-RS resource#y对应的接收波束去监测是否接收到UE发来的波束失败恢复请求。在时刻t时UE检测到波束失败并确认CSI-RS resource#x对应波束为新可用波束,由于PUCCH的资源关联有CSI-RS resource#x的资源,则UE可使用PUCCH#x的资源,用关联CSI-RS resource#x的PUCCH的传输波束,即UE接收CSI-RS resource#x对应的CSI-RS的波束对应的发送波束为PUCCH的传输波束,需要说明的是UE检测到波束失败后,并不一定是立即进行波束失败恢复,而是要根据PUCCH#1的周期,在对应的资源上,使用CSI-RS resource#x收波束对应的发送波束作为PUCCH的传输波束向接入节点发送波束失败恢复请求,和/或通知接入节点新可用波束的信息。由于接入节点配置了PUCCH resource#x,包括通信资源,波束等信息(如序列等),接入节点能够在发送CSI-RS resource#x的发波束对应的收波束上接收PUCCH resource#x。按照接入节点的配置或预定义,UE反馈的用于波束失败恢复请求的PUCCH可以不包含有效信息(payload),基站能够通过PUCCH resource#x和CSI-RS resource#x的关联关系确定UE反馈的可用波束是CSI-RS resource#x。或者,按照接入节点的配置或预定义,UE反馈的PUCCH可以包含有效信息,该有效信息表明UE选择的新可用波束是CSI-RS resource#x,同时,UE也可以反馈CSI-RS resource#x对应的波束质量,例如CSI-RS resource#x测得的L1-RSRP。如果PUCCH的传输波束配置成上行信号的发送波束,那么 该示例中,就在相应通信资源上采用对应的上行信号的发送波束向接入节点发送波束失败恢复请求,可进一步指示UE选择的新可用波束的相关信息。
需要说明的是,对于S101中配置的PUCCH传输波束是传输上行信号的波束时,当UE采用传输上行信号的波束中非所述传输波束向接入节点发送波束失败恢复请求,UE还向所述接入节点发送波束信息,所述波束信息用于指示发送所述波束失败恢复请求的波束。
S104、接入节点向UE发送波束失败恢复响应消息。
UE需要检测接入节点的响应,接入节点在收到了UE通过PUCCH上报的波束失败和新可用波束信息后,接入节点可以通过该可用波束向UE发送响应以便向UE确认波束失败的信息和新波束的信息被接入节点成功的接收,并且后续的通信可以基于UE上报的新波束。这个响应可以是一个PDCCH,也可以是PDCCH并且调度了一个PDSCH。可选的,UE使用103发送用于波束失败恢复请求的PUCCH波束对应的接收波束来接收这个接入节点的响应。
需要说明的是,接入节点不一定向UE发送响应,或者说UE不一定在波束失败恢复请求后,收到接入节点的响应,如果在预定时间内未收到响应,则认为所述波束失败恢复请求失败。可选的,波束失败恢复请求在预定时间内可多次发送。
本申请实施例的一种资源配置的方法,通过用于波束失败恢复的PUCCH资源的配置,使得UE能够灵活有效地进行波束失败恢复。
实施例二
图4为本申请提供的一种资源配置的方法的第二个实施例的流程图。与实施例一的区别在于,该实施例针对一个PUCCH通信资源与多个上/下行信号的资源一对多的配置方式,或者多个PUCCH通信资源中,一个或多个PUCCH通信资源中各PUCCH通信资源与多个上/下行信号的资源一对多的配置方式。与实施例一相同或类似的内容在本实施例中不再赘述。需要说明的,为了便于方案理解,在描述时,本实施例以UE和接入节点双侧的行为展开,从交互多方的角度进行整体描述,但绝非限定***中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在***中每一侧均有改进。
该方法包括:
S201、接入节点向UE发送用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束、传输波束的使用时间的相关信息。
可选的,所述PUCCH的资源配置还可以包括以下至少一项:所述PUCCH的通信资源、所述PUCCH的时间偏移量、所述PUCCH的格式、所述PUCCH的周期。进一步可选的,传输波束的使用时间的相关信息包括,所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系。
可选的,所述PUCCH的资源配置包括PUCCH通信资源,所述PUCCH通信资源可以与候选波束集合
Figure PCTCN2019088686-appb-000013
中候选波束对应的下行信号资源相关联,还可以与一个或多个上行信号(如SRS)的资源相关联。本实施例中,PUCCH的通信资源一对多的关联下行/上行信号的资源。但是PUCCH的传输波束不限于一个,可以是多个。针对多个情况,示例性的,针对一个PUCCH通信资源(可以是一个PUCCH通信资源中的,或者多个PUCCH通信资源中的,但是一对多的PUCCH通信资源),PUCCH spatial info可以配置成{CSI-RS resource#x和CSI-RS resource#y},即在该例子中的配置下,UE有两个可能的发送波束(CSI-RS  resource#x指示的CSI-RS#x的接收波束对应的发送波束、CSI-RS resource#y指示的CSI-RS#y的接收波束对应的发送波束来),由于本实施例中PUCCH的通信资源为一个,而UE在该一专用通信资源上若使用这两个波束之一进行PUCCH的发送,接入节点无法根据通信资源的不同进行区分,接入节点需要在该一专用PUCCH通信资源上进行接收,判断UE具体使用的是哪个波束,进而保证接入节点能够在正确的方向接收到UE发送的PUCCH。所以,可以将使用波束的时间与PUCCH的周期相关。示例性的,假如,PUCCH的周期为4个时隙(slot),约定UE只能在slot number mod(2*4)=0时使用CSI-RS resource#x发送用于波束失败恢复请求的PUCCH,slot number mod(2*4)=4时使用CSI-RS resource#y发送用于波束失败恢复请求的PUCCH。而相应的,接入节点需要在slot number mod(2*4)=0时使用CSI-RS resource#x对应的收波束接收PUCCH,slot number mod(2*4)=4时使用CSI-RS resource#y对应的收波束接收PUCCH。或者,可以说如果基站能在slot number mod(2*4)=0时使用CSI-RS resource#x对应的收波束收到PUCCH,则可以判断UE反馈的可用波束是CSI-RS resource#x。可以归纳地说,如果PUCCH周期为P,备选波束的参考信号数目为N,那么UE应该在slot number mod(P*N)=(n-1)*P时使用候选波束集合中的第n个波束对应的发波束进行PUCCH的发送,而接入节点也应该在相应的slot使用候选波束集合中的第n个波束对应的收波束进行接收。其中候选波束集合中的第n个波束可以是按照波束对应的参考信号的标识大小排序的。以上仅为各PUCCH传输波束的使用时间与PUCCH的周期相关的一种示例,本申请不限于此,还可以通过其他形式来来定义各PUCCH传输波束的使用,以区分各波束。再例举一种实现方式,可以将使用波束的时间与PUCCH的时间偏移量(offset)相关,假如,PUCCH的周期为4个slot,约定UE只能在offset=0时使用CSI-RS resource#x发送用于波束失败恢复请求的PUCCH,offset=1时使用CSI-RS resource#y发送用于波束失败恢复请求的PUCCH。而相应的,基站需要在slot number mod(2*4)=0时使用CSI-RS resource#x对应的收波束接收PUCCH,slot number mod(2*4)=4时使用CSI-RS resource#y对应的收波束接收PUCCH。可以说,如果基站能在slot number mod(2*4)=0时使用CSI-RS resource#x对应的收波束收到PUCCH,则可以判断UE反馈的可用波束是CSI-RS resource#x。需要说明的,使用不同的offset区分不同的波束也可以适用于实施例一。
对于PUCCH通信资源与上行信号关联的情况,PUCCH的传输波束可以关联上行信号(如已经训练过的波束对应的SRS)的资源,可选的,基于与以上关联下行信号资源(CSI-RS resource)的类似方式,可以通过上行信号的发送波束作为PUCCH的传输波束,根据使用波束的时间与例如PUCCH的周期、时间偏移量等预定关联关系,或者是其他方式,来区分不同的PUCCH的传输波束。可选的,也可以不配置相应关联关系来区分使用波束的时间,而是规定UE使用所有已配置的上行信号资源的发送波束进行轮询,顺序可以依照上行信号资源编号,可选的,可以限制PUCCH的传输波束为用于做波束管理的SRS对应的波束。
S202、UE检测到波束失败事件并检测新可用波束。
以下行控制信道PDCCH为例,UE使用接入节点配置的用于波束失败检测的集合
Figure PCTCN2019088686-appb-000014
中与PDCCH的DMRS满足空间准同位关系的RS对控制信道的质量进行评估。具体的,UE200使用满足条件的RS对PDCCH的块误码率(Block Error Rate,简称BLER)进行估算(PDCCH-hypothetical-BLER),在一个波束检测区间(可以对应一个上报周期)内当所 有需被检测的下行控制信道的hypothetical-BLER大于门限值(例如,可以为0.1)时,确认一次波束失败实例,UE对波束失败实例进行计数。当波束失败实例连续发生次数达到接入节点配置的最大值N时,可以判定为检测到波束失败时间。UE对候选波束集合
Figure PCTCN2019088686-appb-000015
中的波束对应的下行信号进行检测,确认可用新波束。本实施例不限制UE检测波束失败的具体方法,示例性的,本实施例中假设UE确认CSI-RS resource#x代表的下行波束满足通信条件,成为新可用波束。
S203、当UE检测到波束失败事件,UE基于所述PUCCH的资源配置,根据对应PUCCH的周期,向所述接入节点发送波束失败恢复请求。
本实施例中的PUCCH需要具有周期性的特性。特别是基站侧,需要周期性的使用PUCCH通信资源对应的收波束来接收UE可能发送的用于波束恢复请求的PUCCH消息。而在UE侧,则只需要在发生了波束失败事件并确认其可用新波束的时候才会根据PUCCH的周期发送这个PUCCH。可选的,所述PUCCH的周期可以由接入节点配置,可选的所述PUCCH的周期也可以为预置周期,如各类协议、规范给定的周期,进一步可选的,这个周期可以与关联的下行信号资源或上行信号资源本身的周期相关或者与下行信号对应的上报的周期相关。需要说明的是,如果PUCCH的传输波束是通过与PUCCH的周期的关联关系进行区分,那么就需要根据PUCCH的传输波束与周期的关联关系,发送波束失败恢复请求。
以PUCCH传输波束关联下行信号中CSI-RS的资源为例,根据202发现的CSI-RS resource#x和201中配置的一专用PUCCH通信资源,UE使用CSI-RS resource#x收波束对应的发波束在PUCCH resource#x发送用于波束失败恢复请求的PUCCH,通知接入节点波束失败和/或新可用波束的信息。按照201的接入节点配置,接入节点能够在发送CSI-RS resource#x的发波束对应的收波束上接收PUCCH resource#x。可选的,按照接入节点的配置或预定义,UE反馈的PUCCH可以不包含有效信息(payload),基站能够通过PUCCH resource#x和CSI-RS resource#x的关联关系确定UE反馈的可用波束是CSI-RS resource#x。可选的,按照基站的配置或预定义,UE反馈的PUCCH可以包含有效信息,该有效信息表明UE选择的新可用波束是CSI-RS resource#x,同时,UE也可以反馈CSI-RS resource#x对应的波束质量,例如CSI-RS resource#x测得的L1-RSRP。如果PUCCH的传输波束配置成上行信号的发送波束,那么该示例中,就在该一专用通信资源上采用上行信号的发送波束向接入节点发送波束失败恢复请求,并可进一步指示UE选择的新可用波束的相关信息。
需要说明的是,对于S201中配置的PUCCH传输波束是传输上行信号的波束时,当UE采用传输上行信号的波束中非所述传输波束向接入节点发送波束失败恢复请求,UE还向所述接入节点发送波束信息,所述波束信息用于指示发送所述波束失败恢复请求的波束。
S204、接入节点向UE发送波束失败恢复响应消息。
UE需要检测接入节点的响应,接入节点在收到了UE通过PUCCH上报的波束失败和新可用波束信息后,接入节点可以通过该可用波束向UE发送响应以便向UE确认波束失败的信息和新波束的信息被接入节点成功的接收,并且后续的通信可以基于UE上报的新波束。这个响应可以是一个PDCCH,也可以是PDCCH并且调度了一个PDSCH。可选的,UE使用103发送用于波束失败恢复请求的PUCCH波束对应的接收波束来接收这个接入节点的响应。
需要说明的是,接入节点不一定向UE发送响应,或者说UE不一定在波束失败恢复 请求后,收到接入节点的响应,如果在预定时间内未收到响应,则认为所述波束失败恢复请求失败。可选的,波束失败恢复请求在预定时间内可多次发送。
本申请实施例的一种资源配置的方法,通过针对用于波束失败恢复的专用PUCCH资源的配置,使得UE能够灵活有效地进行波束失败恢复,并降低了资源占用和开销。
实施例三
图5为本申请提供的一种资源配置的方法的第三个实施例的流程图。与实施例一、实施例二的区别在于,该实施例中使用已有的上行测量信号资源发送用于波束失败恢复请求的PUCCH,与实施例一、实施例二相同或类似的内容在本实施例中不再赘述。需要说明的,为了便于方案理解,在描述时,本实施例以UE和接入节点双侧的行为展开,从交互多方的角度进行整体描述,但绝非限定***中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在***中每一侧均有改进。
该方法包括:
S301、接入节点向UE发送用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束,所述PUCCH的时域资源与上行测量信号的时域资源相同。
需要说明的是,相同包括全部相同或者部分相同。全部相同,可以例如一个时隙内的第14个符号用来发送SRS,一个时隙内的第14个符号用来发送PUCCH。部分相同,可以例如一个时隙内的第14个符号用来发送SRS,一个时隙内的第11-14个符号用来发送PUCCH。
实施例一和二中接入节点需要周期性切换它的接收波束用于接收UE可能发送的波束失败恢复请求。实际中,由于UE的波束失败并不是一个经常发生的事件,所以接入节点大部分时候专门切换接收波束之后不会收到任何有效信息,这样会对上行***性能造成损失。考虑到接入节点会为UE配置周期性的上行测量信号(如SRS)资源,以SRS为例,接入节点本来就会在这些SRS的资源上,特别是OFDM符号上接收SRS,本实施例考虑复用PUCCH到这些OFDM符号。上行测量信号以SRS为例,如图6所示,图6给出了复用PUCCH的资源到上行测量信号的资源的示意图,可见方式1中,配置用于波束失败恢复(beam failure recovery,简称BFR)的PUCCH(即,PUCCH-BFR)与上行测量信号(SRS#1)频分复用(frequency division multiplexing,简称FDM),方式2中,配置用于波束失败恢复请求的PUCCH(PUCCH-BFR)可以占用上行测量信号(SRS#1)的资源。即方式1中,所述PUCCH的资源配置的时域资源与上行测量信号的时域资源相同,所述PUCCH的资源配置的频域资源与上行测量信号的频域资源不同;而方式2中,所述PUCCH的资源配置的时频资源与上行测量信号的时频资源相同。
示例性的,与实施例一类似的,候选波束的参考信号为{CSI-RS resource#x和CSI-RS resource#y}。本实施例配置的PUCCH资源和一个或多个SRS的资源频分复用,或者占用一个或多个SRS的资源,PUCCH的传输波束与其频分复用/占用的一个或多个SRS的资源一致。上行测量信号以SRS为例,如图7所示,图7给出了复用PUCCH的资源到上行测量信号的资源的PUCCH传输波束示意图,图7中,PUCCH的传输波束与其频分复用/占用的一个或多个SRS的资源对应的SRS传输波束一致。图7仅为示例,PUCCH的传输波束不一定与SRS传输波束一致,可选的,PUCCH的传输波束可以包括候选波束集合中传 输下行信号的候选波束对应的上行发送波束。
需要说明的是,对于PUCCH资源的时频资源与上行测量信号的时频资源相同的情况,PUCCH的传输不一定优先抢占上行测量信号的传输,可以根据接入节点配置或者预定义的优先级,确定PUCCH的传输是否抢占上行测量信号的传输。
S302、UE检测到波束失败事件并检测新可用波束。
与实施例一、实施例二类似,在此不再赘述,可参见实施例一、实施例二的描述。
S303、当UE检测到波束失败事件,UE基于所述PUCCH的资源配置,根据对应PUCCH的周期,向所述接入节点发送波束失败恢复请求。
假设S302中UE检测的新可用波束为CSI-RS resource#x,UE根据CSI-RS resource#x、301中配置的与上行测量信号资源频分复用/占用上行测量信号资源的PUCCH资源和对应的上行测量信号的发波束发送波束失败恢复请求(可选的,PUCCH的传输波束不一定是上行测量信号的发送波束,还可以包括候选波束集合中传输下行信号的候选波束对应的上行发送波束),通知接入节点波束失败和/或新可用波束的信息。或者,按照接入节点的配置或预定义,UE反馈的PUCCH可以包含有效信息,该有效信息表明UE选择的新可用波束是CSI-RS resource#x,同时,UE也可以反馈CSI-RS resource#x对应的波束质量,例如CSI-RS resource#x测得的L1-RSRP。
需要说明的是,对于PUCCH传输需要占用上行测量信号传输资源的情况,如果上行测量信号传输的优先级高于PUCCH传输,那么当UE检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期,要进行PUCCH传输时,恰有上行测量信号要进行传输,那么UE不向接入节点发送波束失败恢复请求,等待下一合适时机再传。
S204、接入节点向UE发送波束失败恢复响应消息。
UE需要检测接入节点的响应,接入节点在收到了UE通过PUCCH上报的波束失败和/或新可用波束信息后,接入节点可以通过该可用波束向UE发送响应以便向UE确认波束失败的信息和新波束的信息被接入节点成功的接收,并且后续的通信可以基于UE上报的新波束。这个响应可以是一个PDCCH,也可以是PDCCH并且调度了一个PDSCH。UE应该使用302选择的新可用波束CSI-RS resource#x的接收波束来接收这个接入节点的响应。
需要说明的是,接入节点不一定向UE发送响应,或者说UE不一定在波束失败恢复请求后,收到接入节点的响应,如果在预定时间内未收到响应,则认为所述波束失败恢复请求失败。可选的,波束失败恢复请求在预定时间内可多次发送。
本申请实施例的一种资源配置的方法,通过全部或部分复用上行测量信号的资源作为用于波束失败恢复的PUCCH资源的配置方式,使得UE能够灵活有效地进行波束失败恢复,并降低了复杂度和开销。
进一步可选的,针对以上三个实施例,在接入节点配置的PUCCH的传输波束包括上行测量信号的的发送波束的情况下,考虑UE旋转导致发送波束改变的问题,上行测量信号以SRS为例,如图8所示,图8给出UE旋转场景下,PUCCH发送波束调整的示意图,如果UE按照接入节点的配置的SRS发送波束指示发送SRS。即按下表。
SRS resource#1 发送波束#1
SRS resource#2 发送波束#2
并且按照基站配置的PUCCH的发送波束发送PUCCH,PUCCH的发送波束与SRS resource#1对应的发送波束一致,即按下表:
PUCCH resource PUCCH spatial info
PUCCH resource#1 SRS resource#1
在UE旋转后,如图8所示,SRS resource#1对应的发送波束#1的方向已经发生改变,会导致接入节点无法收到用于波束失败恢复的PUCCH传输,根据UE内部调整,UE应该使用SRS resource#2对应的发送波束#2发送该PUCCH传输。也就是说,UE自主重写了PUCCH的发送波束指示,这个信息需要由UE通知接入节点。例如在上行消息中携带调整后使用的用于PUCCH的上行波束信息。根据该示例,需要进一步说明书的是,基于以上三个实施例提供的技术方案中,终端设备当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期发送的波束失败恢复请求,其中,基于所述PUCCH的资源配置,可以是全部采用网络设备配置的PUCCH资源进行波束失败恢复,也可以是部分采用或者不采用网络设备配置的PUCCH资源进行波束失败恢复,即终端设备自主决定。
可以理解的,上面所有实施例涉及的所述PUCCH的周期可以是由网络设备配置的,即所述PUCCH的资源配置包括PUCCH的周期,也可以是预置周期,即协议、规范等预定义的。需要说明的是如果基站配置了带有周期性质的上行传输或者上行传输资源,例如周期或半持续的上行探测信号的传输,周期或半持续的调度请求传输,周期或半持续的数据传输,周期或半持续的下行参考信号上报,周期或半持续的随机接入资源,PUCCH的周期也可以复用部分或全部的前述上行传输或者上行传输资源的周期。
上述主要从***各实体之间交互或者实体内部实现流程角度对本申请实施例提供的方案进行了介绍。可以理解的是,各实体,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对UE、接入节点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
本申请实施例还提供了一种终端设备。该终端设备可以用于执行图2,图4-图5任一附图中UE所执行的步骤。图9示出了一种简化的终端设备结构示意图。便于理解和图示方便,图9中,终端设备以手机作为例子。如图9所示,终端设备90包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备90进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射 频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备90可以不具有输入输出装置。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的;此外,射频电路和处理器可以是集成在一起的,也可以是独立设置的。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备90时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备90的收发单元,将具有处理功能的处理器视为终端设备90的处理单元。如图9所示,终端设备90包括收发单元901和处理单元902。收发单元也可以称为收发器(包括发射机和/或接收器)、收发机、收发装置、收发电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元901中用于实现接收功能的器件视为接收单元,将收发单元901中用于实现发送功能的器件视为发送单元,即收发单元901包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。在一些实施例中,收发单元901和处理单元902可以是集成在一起的,也可以是独立设置的。另外,处理单元902中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现,另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。本文所使用的术语“单元”可指执行一个或多个软件或固件程序的专用集成电路(ASIC)、电子电路、(共享、专用或组)处理器以及存储器,组合逻辑电路,和/或提供所述功能的其它合适的部件。
例如,在一种实现方式中,收发单元901可以用于执行图2的S101、S103和/或S104中UE发送和/或接收的操作,和/或本申请中的其他步骤。处理单元902可以用于执行图2的S102,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元901可以用于执行图4的S201、S203和/或S204中UE发送和/或接收的操作,和/或本申请中的其他步骤。处理单元902可以用于执行图4的S202,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元901可以用于执行图5的S301、S303和/或S304中UE发送和/或接收的操作,和/或本申请中的其他步骤。处理单元902可以用于执行图5的S302,和/或本申请中的其他步骤。
本申请实施例还提供了一种网络设备。该网络设备可以作为接入节点或传输接收点,用于执行图2、图4-图5任一附图中接入节点所执行的步骤。图10示出了一种简化的网络设备结构示意图。网络设备100包括1001部分以及1002部分。1001部分主要用于射 频信号的收发以及射频信号与基带信号的转换;1002部分主要用于基带处理,对网络设备100进行控制等。1001部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1002部分通常是网络设备100的控制中心,通常可以称为处理单元、控制单元、处理器、或者控制器等,用于控制网络设备100执行上述相关实施例中关于接入侧的测量功能实体,或作为接入侧的测量功能实体的接入节点/传输接收点所执行的步骤。具体可参见上述相关部分的描述。
1001部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选的,可以将1001部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1001部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1002部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备100的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。其中,存储器和处理器可以是集成在一起的,也可以是独立设置的。在一些实施例中,1001部分和1002部分可以是集成在一起的,也可以是独立设置的。另外,1002部分中的全部功能可以集成在一个芯片中实现,也可以部分功能集成在一个芯片中实现,另外一部分功能集成在其他一个或多个芯片中实现,本申请对此不进行限定。
例如,在一种实现方式中,收发单元可以用于执行图2的S101、S103和/或S104中接入节点接收和/或发送的操作,和/或本申请中的其他步骤。处理单元可以用于执行图2相关实施例中确定配置给UE的PUCCH的资源配置、确定UE发生波束失败、确认新可用波束等操作,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元可以用于执行图4的S201、S203和/或S204中接入节点接收和/或发送的操作,和/或本申请中的其他步骤。处理单元可以用于执行图4相关实施例中确定配置给UE的PUCCH的资源配置、确定UE发生波束失败、确认新可用波束等操作,和/或本申请中的其他步骤。
例如,在一种实现方式中,收发单元可以用于执行图5的S301、S303和/或S304中接入节点接收和/或发送的操作,和/或本申请中的其他步骤。处理单元可以用于执行图5相关实施例中确定配置给UE的PUCCH的资源配置、确定UE发生波束失败、确认新可用波束等操作,和/或本申请中的其他步骤。
以上提供的终端侧的装置可以为终端设备,也可以为终端设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
以上提供的网络侧的装置,其具体实现形式可以是接入节点设备,例如:可以为接入节点设备,也可以为接入节点设备中的芯片或功能模块,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
上述提供的任一种终端设备、网络设备及对应装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请还提供了一种用于波束失败检测的***,包括上述实施方式中UE(还可以是实现上述UE功能的UE端装置),以及接入节点(还可以是实现上述接入节点功能的接入侧装置或传输接收点)。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述提供的任一种方法。
本申请还提供了一种芯片,其中存储有指令,当其在上述各设备上运行时,使得各设备执行上述提供的方法。
本申请还提供了一种计算机存储介质,其上储存有计算机程序(指令),当该程序(指令)在计算机上运行时,使得计算机执行上述任一方面所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器/控制器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (49)

  1. 一种资源配置的方法,其特征在于,所述方法包括:
    接收网络设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;
    当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期,向所述网络设备发送波束失败恢复请求。
  2. 根据权利要求1所述的方法,其特征在于,所述PUCCH的资源配置还包括:所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系。
  3. 根据权利要求1所述的方法,其特征在于,所述PUCCH的资源配置与候选波束集合中候选波束对应的下行信号资源相关联,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;和/或,所述PUCCH的资源配置与一个或多个上行信号的资源相关联。
  4. 根据权利要求3所述的方法,其特征在于,
    所述传输波束包括所述候选波束集合中传输下行信号的候选波束对应的上行发送波束;
    和/或,所述传输波束包括发送所述上行信号的波束。
  5. 根据权利要求1所述的方法,其特征在于,所述PUCCH的资源配置包括PUCCH的时频资源;
    所述PUCCH的时频资源与上行测量信号的时频资源相同;
    或者,所述PUCCH的时域资源与上行测量信号的时域资源相同,所述PUCCH的频域资源与上行测量信号的频域资源不同。
  6. 根据权利要求5所述的方法,其特征在于,
    所述传输波束包括候选波束集合中传输下行信号的候选波束对应的上行发送波束,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;和/或发送上行测量信号的波束。
  7. 根据权利要求1所述的方法,其特征在于,所述传输波束包括传输上行信号的波束,所述方法还包括:当采用传输上行信号的波束中非所述传输波束向网络设备发送波束失败恢复请求,向所述网络设备发送波束信息,所述波束信息用于指示发送所述波束失败恢复请求的波束。
  8. 一种资源配置的方法,其特征在于,所述方法包括:
    向终端设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;
    接收当所述终端设备当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期发送的波束失败恢复请求。
  9. 根据权利要求8所述的方法,其特征在于,所述PUCCH的的资源配置还包括:所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系。
  10. 根据权利要求8所述的方法,其特征在于,所述PUCCH的资源配置与候选波束集合中候选波束对应的下行信号资源相关联,所述候选波束集合为所述网络设备配置的 用于波束失败恢复的波束集合;和/或,所述PUCCH的资源配置与一个或多个上行信号的资源相关联。
  11. 根据权利要求10所述的方法,其特征在于,
    所述传输波束包括所述候选波束集合中传输下行信号的候选波束对应的上行发送波束;
    和/或,所述传输波束包括发送所述上行信号的波束。
  12. 根据权利要求8所述的方法,其特征在于,所述PUCCH的资源配置包括PUCCH的时频资源;
    所述PUCCH的时频资源与上行测量信号的时频资源相同;
    或者,所述PUCCH的时域资源与上行测量信号的时域资源相同,所述PUCCH的频域资源与上行测量信号的频域资源不同。
  13. 一种资源配置的装置,其特征在于,所述装置包括:
    收发单元,用于接收网络设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;
    所述收发单元,还用于当处理单元检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期,向所述网络设备发送波束失败恢复请求;
    处理单元,用于检测波束失败事件。
  14. 根据权利要求13所述的装置,其特征在于,所述PUCCH的资源配置包括所述PUCCH的周期;或者,所述PUCCH的周期为预置周期。
  15. 根据权利要求13所述的装置,其特征在于,所述PUCCH的资源配置还包括以下至少一项:所述PUCCH的通信资源、所述PUCCH的时间偏移量、所述PUCCH的格式。
  16. 根据权利要求15所述的装置,其特征在于,所述PUCCH的的资源配置还包括:所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系。
  17. 根据权利要求13所述的装置,其特征在于,所述PUCCH的资源配置与候选波束集合中候选波束对应的下行信号资源相关联,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;和/或,所述PUCCH的资源配置与一个或多个上行信号的资源相关联。
  18. 根据权利要求17所述的装置,其特征在于,
    所述传输波束包括所述候选波束集合中传输下行信号的候选波束对应的上行发送波束;
    和/或,所述传输波束包括发送所述上行信号的波束。
  19. 根据权利要求13所述的装置,其特征在于,所述PUCCH的资源配置包括PUCCH的时频资源;
    所述PUCCH的时频资源与上行测量信号的时频资源相同;
    或者,所述PUCCH的时域资源与上行测量信号的时域资源相同,所述PUCCH的频域资源与上行测量信号的频域资源不同。
  20. 根据权利要求19所述的装置,其特征在于,
    所述传输波束包括候选波束集合中传输下行信号的候选波束对应的上行发送波束,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;和/或发送上行 测量信号的波束。
  21. 根据权利要求13所述的装置,其特征在于,所述传输波束包括传输上行信号的波束,所述收发装置还用于:当采用传输上行信号的波束中非所述传输波束向网络设备发送波束失败恢复请求,向所述网络设备发送波束信息,所述波束信息用于指示发送所述波束失败恢复请求的波束。
  22. 根据权利要求13-21任一项所述的装置,其特征在于,所述PUCCH的资源配置包括一个PUCCH的通信资源,或多个PUCCH的通信资源。
  23. 一种资源配置的装置,其特征在于,所述装置包括:
    收发单元,用于向终端设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;
    所述收发单元,还用于接收当所述终端设备当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期发送的波束失败恢复请求。
  24. 根据权利要求23所述的装置,其特征在于,所述PUCCH的的资源配置还包括:所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系。
  25. 根据权利要求23所述的装置,其特征在于,所述PUCCH的资源配置与候选波束集合中候选波束对应的下行信号资源相关联,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;和/或,所述PUCCH的资源配置与一个或多个上行信号的资源相关联。
  26. 根据权利要求25所述的装置,其特征在于,
    所述传输波束包括所述候选波束集合中传输下行信号的候选波束对应的上行发送波束;
    和/或,所述传输波束包括发送所述上行信号的波束。
  27. 根据权利要求23所述的装置,其特征在于,所述PUCCH的资源配置包括PUCCH的时频资源;
    所述PUCCH的时频资源与上行测量信号的时频资源相同;
    或者,所述PUCCH的时域资源与上行测量信号的时域资源相同,所述PUCCH的频域资源与上行测量信号的频域资源不同。
  28. 一种资源配置的装置,其特征在于,所述装置包括:
    收发器,用于接收网络设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;
    所述收发器,还用于当处理器检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期,向所述网络设备发送波束失败恢复请求;
    处理器,用于检测波束失败事件。
  29. 根据权利要求28所述的装置,其特征在于,所述PUCCH的资源配置包括所述PUCCH的周期;或者,所述PUCCH的周期为预置周期。
  30. 根据权利要求28所述的装置,其特征在于,所述PUCCH的资源配置还包括以下至少一项:所述PUCCH的通信资源、所述PUCCH的时间偏移量、所述PUCCH的格式。
  31. 根据权利要求30所述的装置,其特征在于,所述PUCCH的的资源配置还包括:所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时 间与所述PUCCH的时间偏移量的关联关系。
  32. 根据权利要求28所述的装置,其特征在于,所述PUCCH的资源配置与候选波束集合中候选波束对应的下行信号资源相关联,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;和/或,所述PUCCH的资源配置与一个或多个上行信号的资源相关联。
  33. 根据权利要求32所述的装置,其特征在于,
    所述传输波束包括所述候选波束集合中传输下行信号的候选波束对应的上行发送波束;
    和/或,所述传输波束包括发送所述上行信号的波束。
  34. 根据权利要求28所述的装置,其特征在于,所述PUCCH的资源配置包括PUCCH的时频资源;
    所述PUCCH的时频资源与上行测量信号的时频资源相同;
    或者,所述PUCCH的时域资源与上行测量信号的时域资源相同,所述PUCCH的频域资源与上行测量信号的频域资源不同。
  35. 根据权利要求34所述的装置,其特征在于,
    所述传输波束包括候选波束集合中传输下行信号的候选波束对应的上行发送波束,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;和/或发送上行测量信号的波束。
  36. 根据权利要求28所述的装置,其特征在于,所述传输波束包括传输上行信号的波束,所述收发装置还用于:当采用传输上行信号的波束中非所述传输波束向网络设备发送波束失败恢复请求,向所述网络设备发送波束信息,所述波束信息用于指示发送所述波束失败恢复请求的波束。
  37. 根据权利要求28-36任一项所述的装置,其特征在于,所述PUCCH的资源配置包括一个PUCCH的通信资源,或多个PUCCH的通信资源。
  38. 一种资源配置的装置,其特征在于,所述装置包括:
    收发器,用于向终端设备发送的用于波束失败恢复的物理上行控制信道PUCCH的资源配置,所述PUCCH的资源配置包括对应PUCCH的传输波束;
    所述收发器,还用于接收当所述终端设备当检测到波束失败事件,基于所述PUCCH的资源配置,根据对应PUCCH的周期发送的波束失败恢复请求。
  39. 根据权利要求38所述的装置,其特征在于,所述PUCCH的的资源配置还包括:所述传输波束的使用时间与所述PUCCH的周期的关联关系,和/或所述传输波束的使用时间与所述PUCCH的时间偏移量的关联关系。
  40. 根据权利要求38所述的装置,其特征在于,所述PUCCH的资源配置与候选波束集合中候选波束对应的下行信号资源相关联,所述候选波束集合为所述网络设备配置的用于波束失败恢复的波束集合;和/或,所述PUCCH的资源配置与一个或多个上行信号的资源相关联。
  41. 根据权利要求40所述的装置,其特征在于,
    所述传输波束包括所述候选波束集合中传输下行信号的候选波束对应的上行发送波束;
    和/或,所述传输波束包括发送所述上行信号的波束。
  42. 根据权利要求38所述的装置,其特征在于,所述PUCCH的资源配置包括PUCCH的时频资源;
    所述PUCCH的时频资源与上行测量信号的时频资源相同;
    或者,所述PUCCH的时域资源与上行测量信号的时域资源相同,所述PUCCH的频域资源与上行测量信号的频域资源不同。
  43. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被计算机执行时实现如权利要求1至12中任一项所述的方法。
  44. 一种资源配置的装置,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时使得所述装置实现如权利要求1至12中任一项所述的方法。
  45. 如权利要求44所述的装置,其特征在于,所述存储器与所述处理器独立设置,或所述存储器设置在所述处理器上。
  46. 一种资源配置的装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令使得所述装置实现如权利要求1至12中任一项所述的方法。
  47. 一种资源配置的装置,其特征在于,所述装置用于实现如权利要求1至12中任一项所述的方法。
  48. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机实现如权利要求1至12中任一项所述的方法。
  49. 一种资源配置的***,其特征在于,包括如权利要求13-22、28-37任一项所述的装置,和如权利要求23-27、38-42任一项所述的装置。
PCT/CN2019/088686 2018-05-28 2019-05-28 一种资源配置的方法、装置及*** WO2019228314A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19811525.5A EP3793293B1 (en) 2018-05-28 2019-05-28 Resource allocation method, apparatus and computer-readable medium
BR112020024316-7A BR112020024316A2 (pt) 2018-05-28 2019-05-28 método, aparelho, dispositivo terminal, dispositivo de rede, meio de armazenamento legível por computador, produto de programa de computador e sistema de configuração de recurso
US17/103,268 US11777587B2 (en) 2018-05-28 2020-11-24 Resource configuration method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810525115.0A CN110545580B (zh) 2018-05-28 2018-05-28 一种资源配置的方法、装置及***
CN201810525115.0 2018-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/103,268 Continuation US11777587B2 (en) 2018-05-28 2020-11-24 Resource configuration method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019228314A1 true WO2019228314A1 (zh) 2019-12-05

Family

ID=68696637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088686 WO2019228314A1 (zh) 2018-05-28 2019-05-28 一种资源配置的方法、装置及***

Country Status (5)

Country Link
US (1) US11777587B2 (zh)
EP (1) EP3793293B1 (zh)
CN (2) CN110545580B (zh)
BR (1) BR112020024316A2 (zh)
WO (1) WO2019228314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022027552A1 (en) * 2020-08-07 2022-02-10 Lenovo (Beijing) Limited Methods and apparatus for providing assistant information for uplink scheduling

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6936381B2 (ja) * 2018-02-19 2021-09-15 株式会社日立国際電気 無線通信装置および無線通信装置の周波数オフセット補償方法
WO2020032685A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 빔 실패 검출을 수행하는 방법 및 이에 대한 장치
CN112956280B (zh) * 2018-11-01 2024-04-02 株式会社Ntt都科摩 用户装置以及基站装置
CN113455038B (zh) * 2019-01-11 2023-04-28 联想(北京)有限公司 用于波束故障恢复的方法及设备
WO2020243505A1 (en) * 2019-05-29 2020-12-03 Apple Inc. Multiplexing of pucch for beam failure recovery and other signals
CN114208245A (zh) * 2019-05-31 2022-03-18 株式会社Ntt都科摩 用户终端以及无线通信方法
US11665558B2 (en) * 2019-09-19 2023-05-30 Qualcomm Incorporated Beam failure recovery request multiplexing for secondary cells
CN113271604B (zh) * 2020-02-14 2023-03-24 展讯通信(上海)有限公司 波束失败恢复方法、终端设备、网络设备及存储介质
US11930490B2 (en) * 2020-04-01 2024-03-12 Samsung Electronics Co., Ltd. Method and apparatus for idle mode operation in wireless communication system
CN116134794A (zh) * 2020-08-07 2023-05-16 Lg电子株式会社 在无线通信***中发送和接收无线信号的方法和设备
EP4275425A1 (en) * 2021-01-07 2023-11-15 Nokia Technologies Oy Beam management for a device in an inactive mode
WO2022151102A1 (zh) * 2021-01-13 2022-07-21 北京小米移动软件有限公司 调度请求资源的确定方法、装置及通信设备
WO2022205177A1 (en) * 2021-03-31 2022-10-06 Apple Inc. Methods and apparatus for multi-trp ul transmis sion
WO2023206272A1 (zh) * 2022-04-28 2023-11-02 富士通株式会社 波束信息的发送和接收方法、装置和通信***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634037A (zh) * 2012-08-28 2014-03-12 中兴通讯股份有限公司 波束成形方法及装置
US20160353510A1 (en) * 2015-02-13 2016-12-01 Mediatek Singapore Pte. Ltd. Handling of Intermittent Disconnection in A Millimeter Wave (MMW) System
CN107948987A (zh) * 2016-10-13 2018-04-20 华为技术有限公司 通信方法、装置及***
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108675A (ja) 1987-10-21 1989-04-25 Hitachi Ltd 電子伝票処理システム
US8942192B2 (en) 2009-09-15 2015-01-27 Qualcomm Incorporated Methods and apparatus for subframe interlacing in heterogeneous networks
CN102541761B (zh) 2012-01-17 2014-10-22 苏州国芯科技有限公司 应用于嵌入式芯片的只读高速缓冲存储器
CN104718792B (zh) 2012-09-28 2019-04-05 华为技术有限公司 资源重配方法、基站及用户设备
CN110830227B (zh) 2013-07-04 2022-08-19 韩国电子通信研究院 用于多连接性的方法
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
US11050478B2 (en) * 2017-12-19 2021-06-29 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
AU2018402429B2 (en) * 2018-01-12 2022-11-24 Ntt Docomo, Inc. User terminal and radio communication method
JP2021519552A (ja) * 2018-04-04 2021-08-10 日本電気株式会社 端末デバイス及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634037A (zh) * 2012-08-28 2014-03-12 中兴通讯股份有限公司 波束成形方法及装置
US20160353510A1 (en) * 2015-02-13 2016-12-01 Mediatek Singapore Pte. Ltd. Handling of Intermittent Disconnection in A Millimeter Wave (MMW) System
CN107948987A (zh) * 2016-10-13 2018-04-20 华为技术有限公司 通信方法、装置及***
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Report to TSG", 3GPP TSG RAN MEETING #76, RP-171137STATUS, 8 June 2017 (2017-06-08), XP051280623 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022027552A1 (en) * 2020-08-07 2022-02-10 Lenovo (Beijing) Limited Methods and apparatus for providing assistant information for uplink scheduling

Also Published As

Publication number Publication date
EP3793293A4 (en) 2021-07-14
EP3793293A1 (en) 2021-03-17
US20210083751A1 (en) 2021-03-18
BR112020024316A2 (pt) 2021-02-23
CN116456462A (zh) 2023-07-18
CN110545580A (zh) 2019-12-06
CN110545580B (zh) 2023-04-07
US11777587B2 (en) 2023-10-03
EP3793293B1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
WO2019228314A1 (zh) 一种资源配置的方法、装置及***
US11357029B2 (en) Method for transceiving data in unlicensed band and apparatus for same
US12010707B2 (en) Methods and apparatuses for transmitting and receiving control signaling, and method for determining information
US10772118B2 (en) Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information
US11463226B2 (en) Resource indication method and communications device
US10735170B2 (en) ACK/NACK feedback method and user equipment
JP6693565B2 (ja) 無線通信システムにおける短い送信時間間隔に基づく通信のための方法
CN107113150B (zh) 用于发送上行链路信号的方法和用户设备、以及用于接收上行链路信号的方法和基站
US10477578B2 (en) Uplink data transmission method and user equipment, and uplink data reception method and base station
CN105794287B (zh) 用于在fdd半双工通信中监测pdcch的方法及其终端
EP4142231A1 (en) Methods and apparatus for supporting frequency division multiplexing of multiple waveforms
EP3664546A1 (en) Communication method, and communication device
US20180279291A1 (en) Transmission of Uplink Control Information For Multiple Control Channel Format Lengths
CN113767698A (zh) 省电模式下物理下行链路控制信道(pdcch)分配的确定
US20190268787A1 (en) Communication method and communications apparatus
US20170359745A1 (en) Method for terminal for reporting channel status information and apparatus for the method in wireless communication system supporting carrier aggregation
WO2020228589A1 (zh) 通信方法和通信装置
US11622386B2 (en) Terminal apparatus, base station apparatus, and communication method
JPWO2018174271A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2019157967A1 (zh) 一种用于波束失败检测的方法、装置及***
WO2020143558A1 (zh) 信道测量方法和装置
CN112970204B (zh) 用于定时感知波束管理的***和方法
JP2020191682A (ja) 通信を実行するための方法および装置
JP2020115677A (ja) ユーザ装置及び基地局による方法
JP2020182173A (ja) 基地局装置、端末装置、通信方法、および、集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024316

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019811525

Country of ref document: EP

Effective date: 20201210

ENP Entry into the national phase

Ref document number: 112020024316

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201127