WO2019228278A1 - 一种层厚可变的切片方法、3d打印方法及3d打印的产品 - Google Patents

一种层厚可变的切片方法、3d打印方法及3d打印的产品 Download PDF

Info

Publication number
WO2019228278A1
WO2019228278A1 PCT/CN2019/088402 CN2019088402W WO2019228278A1 WO 2019228278 A1 WO2019228278 A1 WO 2019228278A1 CN 2019088402 W CN2019088402 W CN 2019088402W WO 2019228278 A1 WO2019228278 A1 WO 2019228278A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
slice
layer thickness
thickness
slicing
Prior art date
Application number
PCT/CN2019/088402
Other languages
English (en)
French (fr)
Inventor
彭凡
刘轶
周志军
Original Assignee
共享智能铸造产业创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共享智能铸造产业创新中心有限公司 filed Critical 共享智能铸造产业创新中心有限公司
Priority to JP2020565982A priority Critical patent/JP7110399B2/ja
Priority to EP19810523.1A priority patent/EP3812134B1/en
Publication of WO2019228278A1 publication Critical patent/WO2019228278A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/57Metering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the technical field of additive manufacturing, and in particular, to a layered slicing method with variable layer thickness and a 3D printing method thereof.
  • 3D printing originated in the United States at the end of the 19th century, and is also known as 3D printing or rapid prototyping technology. Due to technical constraints at the time, it did not get further development and promotion until the 1980s. After decades of development and continuous improvement, 3D printing technology has developed from the earliest photo-curing process, fused deposition molding process (FDM process), selective laser sintering technology (SLS process), and three-dimensional printing process (3DP process). Various processes for making rapid prototyping products. The 3D printing technology using laser sintering technology and fused deposition molding technology can directly generate various parts from computer graphics data because it does not require machining and any molds, saving production costs and research and development time, and greatly improving production efficiency. Therefore, it has been widely used in many fields such as mechanical parts, jewelry molds, customized products and medical organs.
  • FDM process fused deposition molding process
  • SLS process selective laser sintering technology
  • 3DP process three-dimensional printing process
  • the common feature of the above types of 3D printing is that based on digital 3D model files, the 3D model is cut into several layers according to a certain layer thickness using slicing technology, and the 3D solid is converted into a stack of 2D printed layers Technology, and then use powder-like metals or plastics and other adhesive materials to build objects by layer printing.
  • the slice layer thickness is a very critical parameter for 3D printing, which has a great impact on printing efficiency, printing accuracy, and surface quality. Since the essence of 3D printing is the superposition of several thin slices of a certain thickness, a " Step effect. " In the prior art, the thickness of each layer of a slice is generally fixed, as shown in FIG. 1.
  • the thinner the slice layer thickness ⁇ the finer the printed entity and the higher the accuracy, but the lower the efficiency and the higher the cost.
  • the slice thickness can be increased, but the thickness After the slices are layered, the "step effect" is obvious after printing on the part with a large slope of the outer contour, and the surface quality and accuracy will be significantly reduced.
  • various types of 3D printing technologies and devices on the market weigh the relationship between the above factors when printing specific entities. Using the best and single layer thickness for slicing and printing cannot fully utilize the efficiency and accuracy of the device.
  • the present application provides a slice method of a three-dimensional model with variable layer thickness to overcome the above problems.
  • the purpose of the present application is to achieve such a method of slicing a three-dimensional model with variable layer thickness, which in turn includes the following steps:
  • the thickness ⁇ is a function of the minimum value ⁇ min and the slice layer is set corresponding to each of the inner and outer parts of the contour of the slope angle [alpha], the minimum angle ⁇ min and the slope of the layer thickness of the slice to a function ⁇ ;
  • the present application also provides a 3D printing method with a variable layer thickness based on the above-mentioned slicing method.
  • the method includes the above-mentioned slicing method with a variable layer thickness and a control process of inputting a slice file into a 3D printing device for hierarchical printing.
  • control process of layered printing in the above printing method of the present application includes the following steps in order:
  • the print control unit adjusts the lifting distance of the work surface, the amount of material spread by the laying device, and the amount of molding agent of the inkjet device to print the current layer according to the slice data of each layer of the slice file until the printing of the entire product is completed.
  • the paving amount of the paving device is adjusted by adjusting the walking speed of the paving device, the vibration frequency of the paving device, the amplitude of the paving device, and / or the discharge diameter of the paving device. to realise.
  • the amount of the molding agent used in the inkjet device is adjusted by adjusting the walking speed, the ejection frequency, the ejection voltage, and the resolution of the inkjet device.
  • the present application also provides a 3D printed product printed by using the 3D printing method with variable layer thickness.
  • the product is sliced and sliced according to the slice method with variable layer thickness, and the layer thickness is changed according to the sliced layer thickness.
  • the surface quality of the product is fine and there is no step effect visible to the naked eye.
  • the last object of the present application is to provide a control component for implementing the 3D printing method with variable layer thickness.
  • FIG. 1 is a schematic cross-sectional view of a model after a fixed layer thickness slice process in the prior art.
  • FIG. 2 is a schematic cross-sectional profile perpendicular to the slice direction.
  • FIG. 3 is a schematic cross-sectional view of a model after slicing using a slicing method of a three-dimensional model with variable layer thickness according to the present application.
  • FIG. 4 is a flowchart of a 3D printing method with variable layer thickness in the present application.
  • the method for slicing a three-dimensional model with a variable layer thickness in this embodiment which is used in the three-dimensional model slicing of a product 3D printing, specifically includes the following steps:
  • the 3D model of the product is input into the 3D slicing software.
  • the 3D slicing software analyzes and recognizes the internal and external contours of the 3D model to determine the slope angle of each slice position relative to the slice direction.
  • the minimum value ⁇ min of each slope angle ⁇ is used to determine the current
  • the basis of the thickness of the slice layer; as shown in Figure 2 is the outer contour of one of the sections of the three-dimensional model perpendicular to the slice direction, the slice direction of the three-dimensional model is horizontal.
  • contour A and contour B and The slope angles in the slice direction are ⁇ 1 and ⁇ 2, and the minimum slope angle in the cross-section direction is ⁇ 1.
  • the minimum slope angles ⁇ i and ⁇ 1 of other sections of the three-dimensional model of the part perpendicular to the slice direction are obtained.
  • Step effect set the thickness of the 3D model as a vertical plane to a slightly thicker slice thickness to meet the quality accuracy and improve efficiency; reduce the slice thickness where the internal and external contours of the 3D model are beveled or curved to ensure good Surface quality and accuracy.
  • the method of the present application realizes the double guarantee of efficiency and quality during 3D printing by setting a single three-dimensional entity with multiple variable layer thickness slicing methods, thereby greatly improving the printing efficiency of the device, reducing the printing cost, and promoting the industry of 3D printing in various fields. Application protection.
  • This embodiment is a method for continuously performing a layer thickness-variable 3D printing method on the basis of Embodiment 1.
  • the slice file in the .bmp format obtained in Embodiment 1 is input to a 3D printing device for layered printing control.
  • the specific process is:
  • the first step is to import the slice thickness file of the variable thickness .bmp format obtained in the embodiment into the print control part of the 3D printing device;
  • the print control part adjusts the lifting distance of the work surface, the amount of material spreading in the laying device, and the amount of molding agent in the inkjet device to print the current layer according to the slice data of each layer of the slice file until the printing of the entire product is completed.
  • the laying amount of the laying device is adjusted by adjusting the walking speed of the laying device, the vibration frequency of the laying device, the amplitude of the laying device, and / or the discharge of the laying device.
  • the caliber is realized; in order to further facilitate the adjustment of the amount of inkjet, the amount of molding agent used in the inkjet device is adjusted by adjusting the walking speed, ejection frequency, ejection voltage, and resolution of the inkjet device.
  • the product printed by the 3D printing method of this embodiment has a fine surface quality and no step effect visible to the naked eye.
  • the slicing method and printing method of the three-dimensional model with variable layer thickness of the present application are suitable for 3DP powder printing, FDM fused deposition molding printing and sintering technology of various industrial products, and SLS selective laser sintering technology for slicing control technology. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

本申请涉及增材制造技术领域内一种层厚可变的切片方法、3D打印方法及3D打印的产品,其中层厚可变的切片方法包括如下步骤:分析识别三维模型的内外轮廓每个切片位置相对切片方向的斜率角α,并确定同一切片位置处各斜率角α的最小值α min;设定各内外轮廓部位对应的斜率角α的最小值α min与切片层的厚度δ的函数关系,斜率角最小值α min与切片层厚度δ成一次函数关系;确定整个产品三维模型各部位对应的各切片层的厚度。本申请的方法,根据产品轮廓不同,进行不同层厚的切片打印,可以消除等层厚切片产生的台阶效应,提高产品质量,并兼顾打印效率。

Description

一种层厚可变的切片方法、3D打印方法及3D打印的产品
相关申请的交叉引用
本申请要求于2018年05月31日提交中国专利局的申请号为201810546163.8、名称为“一种层厚可变的切片方法、3D打印方法及3D打印的产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及增材制造技术领域,特别涉及一种可变层厚的分层切片方法及其3D打印方法。
背景技术
3D打印起源于19世纪末的美国,又被称为三维打印或快速成型技术,由于当时技术条件的限制,直到20世纪80年代开始才得到进一步的发展与推广。经过几十年的发展与不断改进,3D打印技术已经从最早的光固化工艺,发展出熔融沉积成型工艺(FDM工艺)、选择性激光烧结技术(SLS工艺)和三维印刷工艺(3DP工艺)等多种制作快速成型产品的工艺。而其中运用激光烧结技术和熔融沉积成型技术的3D打印技术由于其无需机械加工和任何模具,就可以从计算机图形数据中直接生成各种零件,节省了生产成本与研发时间,大幅提高了生产效率,因而在机械零件、珠宝模具、定制版产品以及医学器官等多个领域都得到了最广泛的应用。
上述各类3D打印的共同特点是一种以数字三维模型文件为基础,运用切片技术将三维模型按一定的层厚切成若干层薄片,将三维实体转化为若干层二维打印的薄片堆叠而成,再运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。切片层厚是3D打印非常关键的一个参数,对打印效率、打印精度和表面质量等有很大的影响,由于3D打印的本质是若干个一定厚度的薄片叠加而成,在边界上会形成“台阶效应”。现有技术中的切片一般切片的各层厚度是固定的,如图1所示。理论上,切片层厚δ越薄,打印出来的实体越精细,精度越高,但效率也越低,随之成本也会升高;为了追求高效率与低成本可以增加切片厚度,但等厚度切片分层后,外轮廓斜率大的部位打印后“台阶效应”明显,表面质量与精度会明显下降。目前市面上的各类3D打印技术与设备在打印特定的实体时均权衡上述因素之间的关系,采用最佳的和单一的层厚进行切片与打印,无法充分发挥设备的效率与精度。
发明内容
本申请针对现有技术中单一固定层厚切片及打印方法兼顾打印效率和精度的要求,提供一种层厚可变的三维模型的切片方法,以克服上述问题。
本申请的目的是这样实现的,一种层厚可变的三维模型的切片方法,依次包括如下步骤:
分析识别三维模型的内外轮廓每个切片位置相对切片方向的斜率角α,并确定同一切片位置处各斜率角α的最小值α min
设定各内外轮廓部位对应的斜率角α的最小值α min与切片层的厚度δ的函数关系,斜率角最小值α min与切片层厚度δ成一次函数关系;
确定整个产品三维模型各部位对应的各切片层的厚度。
本申请的层厚可变的三维模型的切片方法,进行三维模型切片时,根据不同外轮廓部位相对切片方向的斜率角,设定不同的切片层厚度,为降低非竖直轮廓部位切片产生的“台阶效应”,将三维模型轮廓为竖直面的部位设置稍厚的切片厚度,以满足质量精度的同时提高效率;三维模型内外轮廓为斜面或曲面的地方减小切片厚度,以确保获得良好的表面质量及精度。本申请方法将三维实体进行多个不同厚度的分层切片,实现3D打印时效率与质量的双重保障,从而大幅提高设备打印效率,降低打印成本,为推进3D打印在各领域的产业化应用提供保障。
为精确确定斜率角与切片层厚的函数关系,所述斜率角最小值α min与切片层的厚度δ的函数关系为δ=k*sinα min,其中k的取值范围为0.1-1,打印质量要求越高k取值越小。
本申请还提供一种基于上述切片方法进行的层厚可变的3D打印方法,该方法包括上述层厚可变的切片方法和将切片文件输入3D打印设备进行分层打印的控制过程。
本申请的上述打印方法中的分层打印的控制过程依次包括如下步骤:
将层厚可变的切片文件导入3D打印设备的打印控制部件;
打印控制部件根据切片文件每层切片数据,调整工作台面的升降距离、铺料装置的铺料量和喷墨装置成型剂用量进行当前层的打印,直至完成整个产品的打印。
为进一步方便调整铺料量,所述铺料装置的铺料量的调整通过调整铺料装置的行走速度、铺料装置的振动频率、铺料装置的振幅和/或铺料装置的出料口径来实现。
为进一步方便调整喷墨量,所述喷墨装置成型剂用量的调整通过调整喷墨装置的行走速度、喷射频率、喷射电压和分辨率等来实现。
本申请还提供一种采用上述层厚可变的3D打印方法打印的3D打印的产品,该产品按上述层厚可变的切片方法分层切片后,按所切的层厚进行变层厚的3D打印而成,产品表面质量精细,无肉眼可见的台阶效应。
本申请最后一个目的,还提供一种实现上述层厚可变的3D打印方法的控制部件。
附图说明
图1为现有技术中固定层厚切片处理后的模型截面示意图。
图2为与切片方向垂直的截面轮廓示意图。
图3为采用本申请的层厚可变的三维模型的切片方法切片处理后模型截面示意图。
图4为本申请的层厚可变的3D打印方法的流程图。
具体实施方式
实施例1
本实施例的层厚可变的三维模型的切片方法,用于产品3D打印的三维模型切片中,具体包括如下步骤:
首先,将产品的三维模型输入三维切片软件中,三维切片软件分析识别三维模型的内外轮廓每个切片位置相对切片方向的斜率角,同一切片位置处以各斜率角α的最小值α min为确定当前切片层厚度的依据;如图2所示为三维模型与切片方向垂直的其中一个截面的外轮廓,该三维模型的切片方向为水平方向,图中的外轮廓图形中,轮廓A和轮廓B与切片方向的斜率角分别为α1和α2,该截面方向的最小斜率角为α1,该部位三维模型的其它与切片方向垂直的截面的最小斜率角αi与α1求得最小值为α min为27°,即为轮廓A和轮廓B对应的当前部位确定切片层厚度依据的最小斜率角α min=27°;同理,轮廓C所在的切片厚度处为圆弧形截面,在该圆弧形截面所在的切片厚度范围内,最小斜率角在α n=45°与90°之间递减,此处确定各切片层位置的最小斜率角α min时需逐层按当前轮廓位置的最小斜率角分层确定;然后,根据各轮廓对应的最小斜率角α min按公式δ=k*sinα min分别确定各切片层的厚度,此处δ按0.5取值,δ=0.5*sin27°=0.23mm,所以轮廓A和轮廓B对应的三维模型的部位的切片层厚按0.23进行切片,其它斜率角为90°的部位按δ=0.5mm的层厚进行切片;轮廓C对应的三维模型的切层高度范围内的切片从弧形轮廓的上边缘至中心斜率角为90°的高度处切片层厚从δ=0.5*sin45°=0.35mm~0.5mm递增,然后再从中心向下边缘切片层厚从0.5mm~0.35mm递减,至此,三维模型各切片位置对应的切片层厚已经确定;最后,按上述过程确定的各切片位置的切片层厚对三维模型进行切片,切片结果如图3所示,并将切片数据存储为.cli格式的层厚可变的切片文件,再装将.cli格式的切片文件处理为.bmp格式的切片文件。
本申请的层厚可变的三维模型的切片方法,进行三维模型切片时,根据不同外轮廓部位相对切片方向的斜率角,设定不同的切片层厚度,为降低非竖直轮廓部位切片产生的“台阶效应”,将三维模型轮廓为竖直面的部位设置稍厚的切片厚度,以满足质量精度的同时提高效率;三维模型内外轮廓为斜面或曲面的地方减小切片厚度,以确保获得良好的表面质量及精度。本申请方法通过将单个三维实体设置多种可变层厚的切片方法,实现3D打印时效率与质量的双重保障,从而大幅提高设备打印效率,降低打印成本,为推进3D打印在各领域的产业化应用提供保障。
实施例2
本实施例为在实施例1的基础上继续进行层厚可变的3D打印方法,如图4所示,将实施例1所得的.bmp格式的切片文件输入3D打印设备进行分层打印的控制的具体过程为:
第一步,将实施例得到的层厚可变.bmp格式的切片文件导入3D打印设备的打印控制部件;
第二步,打印控制部件根据切片文件每层切片数据,调整工作台面的升降距离、铺料装置的铺料量和喷墨装置成型剂用量进行当前层的打印,直至完成整个产品的打印;本步中,为进一步方便调整铺料量,铺料装置的铺料量的调整通过调整铺料装置的行走速度、铺料装置的振动频率、铺料装置的振幅和/或铺料装置的出料口径来实现;为进一步方便调整喷墨量,喷墨装置成型剂用量的调整通过调整喷墨装置的行走速度、喷射频率、喷射电压和分辨率等来实现。
通过本实施例的3D打印方法打印的产品,表面质量精细,无肉眼可见的台阶效应。
本申请的上述层厚可变的三维模型的切片方法和打印方法,适用于各类工业产品的3DP铺粉打印、FDM熔融沉积成型打印和烧结技术以及SLS选择性激光烧结技术的切片控制技术中。

Claims (8)

  1. 一种层厚可变的切片方法,用于产品3D打印的三维模型的分层切片,其特征在于,包括如下步骤:
    分析识别三维模型的内外轮廓每个切片位置相对切片方向的斜率角α,并确定同一切片位置处各斜率角α的最小值α min
    设定各内外轮廓部位对应的斜率角α的最小值α min与切片层的厚度δ的函数关系,斜率角最小值α min与切片层厚度δ成一次函数关系;
    确定整个产品三维模型各部位对应的各切片层的厚度。
  2. 根据权利要求1所述的层厚可变的切片方法,其特征在于,所述斜率角最小值α min与切片层的厚度δ的函数关系为δ=k*sinα min,其中k的取值范围为0.1-1,打印质量要求越高k取值越小。
  3. 一种层厚可变的3D打印方法,其特征在于,包括权利要求1或2所述的层厚可变的切片方法和将切片文件输入3D打印设备进行分层打印的控制过程。
  4. 根据权利要求3所述的层厚可变的3D打印方法,其特征在于,所述分层打印的控制过程包括如下步骤:
    将层厚可变的切片文件导入3D打印设备的打印控制部件;
    所述打印控制部件根据所述切片文件每层切片数据,调整工作台面的升降距离、铺料装置的铺料量和喷墨装置成型剂用量进行当前层的打印,直至完成整个产品的打印。
  5. 根据权利要求4所述的层厚可变的3D打印方法,其特征在于,所述铺料装置的铺料量的调整通过调整所述铺料装置的行走速度、所述铺料装置的振动频率、所述铺料装置的振幅和/或所述铺料装置的出料口径来实现。
  6. 根据权利要求4所述的层厚可变的3D打印方法,其特征在于,所述喷墨装置成型剂用量的调整通过调整所述喷墨装置的行走速度、喷射频率、喷射电压和分辨率等来实现。
  7. 一种3D打印产品,其特征在于,所述3D打印产品由权利要求3-6中任意一项所述的层厚可变的3D打印方法制成。
  8. 一种变层厚打印的3D打印设备,其特征在于,所述3D打印设备上设有实现权利要求3-6中任意一项所述的层厚可变的3D打印方法的控制部件。
PCT/CN2019/088402 2018-05-31 2019-05-24 一种层厚可变的切片方法、3d打印方法及3d打印的产品 WO2019228278A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020565982A JP7110399B2 (ja) 2018-05-31 2019-05-24 厚み変更可能なスライス方法、3dプリント方法及び3dプリント製品
EP19810523.1A EP3812134B1 (en) 2018-05-31 2019-05-24 Layer-thickness variable slicing method, 3d printing method and 3d printed product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810546163.8 2018-05-31
CN201810546163.8A CN108995219B (zh) 2018-05-31 2018-05-31 一种层厚可变的切片方法、3d打印方法及3d打印的产品

Publications (1)

Publication Number Publication Date
WO2019228278A1 true WO2019228278A1 (zh) 2019-12-05

Family

ID=64574137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088402 WO2019228278A1 (zh) 2018-05-31 2019-05-24 一种层厚可变的切片方法、3d打印方法及3d打印的产品

Country Status (4)

Country Link
EP (1) EP3812134B1 (zh)
JP (1) JP7110399B2 (zh)
CN (1) CN108995219B (zh)
WO (1) WO2019228278A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112475320A (zh) * 2020-09-28 2021-03-12 西安增材制造国家研究院有限公司 一种多螺旋切片方法
CN113136646A (zh) * 2021-03-01 2021-07-20 西安理工大学 一种个性化定制护具产品的方法
CN113477943A (zh) * 2021-07-21 2021-10-08 西安赛隆金属材料有限责任公司 一种金属材料的增材制造方法
CN113560597A (zh) * 2021-05-31 2021-10-29 东方电气集团东方电机有限公司 一种水轮机转轮增减材复合制造方法
CN113865958A (zh) * 2021-09-22 2021-12-31 卡尔蔡司(上海)管理有限公司 制造三维结构的方法
CN113996884A (zh) * 2021-11-26 2022-02-01 西南交通大学 弯曲空心结构件电弧熔丝增材制造方法
CN114179352A (zh) * 2021-11-15 2022-03-15 华中科技大学 一种基于有限元网格驱动的结构件的增材制造方法
CN114491993A (zh) * 2022-01-11 2022-05-13 深圳快造科技有限公司 数据处理方法、装置、服务器及存储介质
WO2022132461A1 (en) * 2020-12-14 2022-06-23 Entegris, Inc. Multi-layer composites with varied layer thicknesses, and related methods
CN114734060A (zh) * 2022-04-18 2022-07-12 深圳市华阳新材料科技有限公司 一种铺粉打印方法
CN114850497A (zh) * 2022-05-19 2022-08-05 深圳市华阳新材料科技有限公司 一种交替成形打印方法
CN115023308A (zh) * 2020-01-29 2022-09-06 西门子能源环球有限责任两合公司 3d打印方法和工具
WO2023040290A1 (zh) * 2021-09-17 2023-03-23 珠海赛纳三维科技有限公司 三维物体打印方法、数据处理装置及计算机设备
CN117681438A (zh) * 2024-02-02 2024-03-12 北京航空航天大学 基于灰度调控的3d打印矫治器的方法和***

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108995219B (zh) * 2018-05-31 2021-04-20 共享智能铸造产业创新中心有限公司 一种层厚可变的切片方法、3d打印方法及3d打印的产品
CN110216380B (zh) * 2019-05-31 2021-02-12 河南科技大学 一种预置焊丝后重熔的增材制造方法
CN112743040B (zh) * 2019-10-29 2023-09-08 共享智能装备有限公司 3d打印方法、打印机及储存介质
CN111016179B (zh) * 2019-12-02 2021-11-23 西安铂力特增材技术股份有限公司 一种基于增材制造的变层厚剖分计算方法
CN112008980B (zh) * 2020-02-24 2022-12-13 清锋(北京)科技有限公司 一种3d打印模型处理方法及***
CN112549553B (zh) * 2020-10-27 2023-03-10 共享智能装备有限公司 3d打印方法及3d打印机
CN112477486B (zh) * 2020-11-27 2022-09-13 苏州铼赛智能科技有限公司 浮雕模型的切片数据处理方法、***及3d打印方法
CN114799205A (zh) * 2021-01-21 2022-07-29 中航迈特粉冶科技(北京)有限公司 一种零件增材制造方法、设备及计算机存储介质
CN113043597B (zh) * 2021-03-01 2022-02-08 武汉理工大学 分区域切片方法、3d打印方法、装置和存储介质
CN113134629A (zh) * 2021-04-21 2021-07-20 中国工程物理研究院机械制造工艺研究所 一种基于多段耦合调控性能的激光增材制造方法
CN113119455B (zh) * 2021-04-29 2023-06-23 杭州捷诺飞生物科技股份有限公司 3d打印设备及3d打印***
CN113275601B (zh) * 2021-05-20 2023-01-17 王祥宇 一种变层厚扫描的切片方法
CN113306151A (zh) * 2021-06-09 2021-08-27 深圳市汉森软件有限公司 3d打印分层处理方法、装置、设备及存储介质
WO2023162890A1 (ja) * 2022-02-22 2023-08-31 キョーラク株式会社 造形物及びその製造方法、造形データの作成方法
CN115430844B (zh) * 2022-11-09 2023-04-07 四川工程职业技术学院 一种变层厚金属零件激光选区熔化成形方法
CN116100808B (zh) * 2023-01-05 2024-04-19 南京航空航天大学 一种基于动态轮廓偏置离散的空间曲面打印路径规划方法
CN116275113B (zh) * 2023-04-21 2023-10-20 北京易加三维科技有限公司 变层厚金属3d打印方法及***
CN116512603A (zh) * 2023-07-03 2023-08-01 易加三维增材技术(杭州)有限公司 零件打印方法、装置、电子设备及非易失性存储介质
CN116872499B (zh) * 2023-08-03 2023-12-19 武汉必盈生物科技有限公司 一种可变层高的3d打印方法及***

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721600A (en) * 1995-10-06 1998-02-24 Nec Corporation Reflective liquid crystal display with optical compensation plates
JP3970914B1 (ja) * 2006-06-30 2007-09-05 飛騨フォレスト株式会社 シート状積層体の製造方法
WO2010003883A2 (de) * 2008-07-08 2010-01-14 Bego Medical Gmbh Verfahren zum schichtweisen herstellen stark geneigter flächen
WO2014020801A1 (ja) * 2012-07-31 2014-02-06 株式会社ソニー・コンピュータエンタテインメント 画像処理装置、画像処理方法、および画像ファイルのデータ構造
CN103934569A (zh) * 2014-04-28 2014-07-23 南京先进激光技术研究院 一种基于选择性激光烧结的分层切片方法
CN104503711A (zh) * 2014-11-17 2015-04-08 杭州先临三维科技股份有限公司 一种3d打印的自适应分层方法
CN104708824A (zh) * 2015-03-12 2015-06-17 中国科学院重庆绿色智能技术研究院 一种保留模型特征的3d打印自适应切片方法
CN106547969A (zh) * 2016-11-02 2017-03-29 浙江大学 一种基于t样条曲面的三维打印切片方法
CN106671422A (zh) * 2016-12-20 2017-05-17 华南理工大学 一种制备生物支架的自适应直接切片方法
CN106915076A (zh) * 2017-05-12 2017-07-04 西安理工大学 一种适用于熔融沉积成型的分层厚度设计方法
CN107336433A (zh) * 2017-07-13 2017-11-10 武汉工程大学 一种3d打印自适应厚度分层方法
JP2018012227A (ja) * 2016-07-20 2018-01-25 大和マーク株式会社 寄木材の製造方法、寄木材、及び寄木製品
CN108995219A (zh) * 2018-05-31 2018-12-14 共享智能铸造产业创新中心有限公司 一种层厚可变的切片方法、3d打印方法及3d打印的产品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398193B1 (en) * 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
US5596504A (en) * 1995-04-10 1997-01-21 Clemson University Apparatus and method for layered modeling of intended objects represented in STL format and adaptive slicing thereof
JP3570138B2 (ja) * 1997-01-28 2004-09-29 松下電工株式会社 三次元光造形用データ作成方法
JP3873571B2 (ja) * 2000-03-28 2007-01-24 松下電工株式会社 光造形機用データ作成方法及びその装置
JP2002067171A (ja) * 2000-08-25 2002-03-05 Canon Inc 目的物生成装置、目的物生成方法、及び記憶媒体
JP2007093996A (ja) * 2005-09-28 2007-04-12 Sharp Corp 表示装置の駆動回路、表示装置および表示装置の駆動方法
JP4518168B2 (ja) * 2008-03-21 2010-08-04 富士ゼロックス株式会社 関連文書提示システム及びプログラム
JP2016124230A (ja) * 2015-01-06 2016-07-11 ローランドディー.ジー.株式会社 3次元造形物の形状判定装置、および、それを備えた3次元造形装置
US10005230B2 (en) * 2016-05-10 2018-06-26 Xerox Corporation Electrostatic 3-D printer controlling layer thickness using feedback loop to transfer device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721600A (en) * 1995-10-06 1998-02-24 Nec Corporation Reflective liquid crystal display with optical compensation plates
JP3970914B1 (ja) * 2006-06-30 2007-09-05 飛騨フォレスト株式会社 シート状積層体の製造方法
WO2010003883A2 (de) * 2008-07-08 2010-01-14 Bego Medical Gmbh Verfahren zum schichtweisen herstellen stark geneigter flächen
WO2014020801A1 (ja) * 2012-07-31 2014-02-06 株式会社ソニー・コンピュータエンタテインメント 画像処理装置、画像処理方法、および画像ファイルのデータ構造
CN103934569A (zh) * 2014-04-28 2014-07-23 南京先进激光技术研究院 一种基于选择性激光烧结的分层切片方法
CN104503711A (zh) * 2014-11-17 2015-04-08 杭州先临三维科技股份有限公司 一种3d打印的自适应分层方法
CN104708824A (zh) * 2015-03-12 2015-06-17 中国科学院重庆绿色智能技术研究院 一种保留模型特征的3d打印自适应切片方法
JP2018012227A (ja) * 2016-07-20 2018-01-25 大和マーク株式会社 寄木材の製造方法、寄木材、及び寄木製品
CN106547969A (zh) * 2016-11-02 2017-03-29 浙江大学 一种基于t样条曲面的三维打印切片方法
CN106671422A (zh) * 2016-12-20 2017-05-17 华南理工大学 一种制备生物支架的自适应直接切片方法
CN106915076A (zh) * 2017-05-12 2017-07-04 西安理工大学 一种适用于熔融沉积成型的分层厚度设计方法
CN107336433A (zh) * 2017-07-13 2017-11-10 武汉工程大学 一种3d打印自适应厚度分层方法
CN108995219A (zh) * 2018-05-31 2018-12-14 共享智能铸造产业创新中心有限公司 一种层厚可变的切片方法、3d打印方法及3d打印的产品

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023308B (zh) * 2020-01-29 2024-06-21 西门子能源环球有限责任两合公司 3d打印方法和工具
CN115023308A (zh) * 2020-01-29 2022-09-06 西门子能源环球有限责任两合公司 3d打印方法和工具
CN112475320B (zh) * 2020-09-28 2023-05-16 西安增材制造国家研究院有限公司 一种多螺旋切片方法
CN112475320A (zh) * 2020-09-28 2021-03-12 西安增材制造国家研究院有限公司 一种多螺旋切片方法
WO2022132461A1 (en) * 2020-12-14 2022-06-23 Entegris, Inc. Multi-layer composites with varied layer thicknesses, and related methods
US11911822B2 (en) 2020-12-14 2024-02-27 Entegris, Inc. Multi-layer composites with varied layer thicknesses and related methods
CN113136646B (zh) * 2021-03-01 2022-09-09 西安理工大学 一种个性化定制护具产品的方法
CN113136646A (zh) * 2021-03-01 2021-07-20 西安理工大学 一种个性化定制护具产品的方法
CN113560597A (zh) * 2021-05-31 2021-10-29 东方电气集团东方电机有限公司 一种水轮机转轮增减材复合制造方法
CN113477943A (zh) * 2021-07-21 2021-10-08 西安赛隆金属材料有限责任公司 一种金属材料的增材制造方法
WO2023040290A1 (zh) * 2021-09-17 2023-03-23 珠海赛纳三维科技有限公司 三维物体打印方法、数据处理装置及计算机设备
CN113865958A (zh) * 2021-09-22 2021-12-31 卡尔蔡司(上海)管理有限公司 制造三维结构的方法
CN114179352A (zh) * 2021-11-15 2022-03-15 华中科技大学 一种基于有限元网格驱动的结构件的增材制造方法
CN113996884A (zh) * 2021-11-26 2022-02-01 西南交通大学 弯曲空心结构件电弧熔丝增材制造方法
CN114491993A (zh) * 2022-01-11 2022-05-13 深圳快造科技有限公司 数据处理方法、装置、服务器及存储介质
CN114734060A (zh) * 2022-04-18 2022-07-12 深圳市华阳新材料科技有限公司 一种铺粉打印方法
CN114850497A (zh) * 2022-05-19 2022-08-05 深圳市华阳新材料科技有限公司 一种交替成形打印方法
CN117681438A (zh) * 2024-02-02 2024-03-12 北京航空航天大学 基于灰度调控的3d打印矫治器的方法和***
CN117681438B (zh) * 2024-02-02 2024-04-05 北京航空航天大学 基于灰度调控的3d打印矫治器的方法和***

Also Published As

Publication number Publication date
JP2021525187A (ja) 2021-09-24
CN108995219B (zh) 2021-04-20
EP3812134B1 (en) 2022-06-29
EP3812134A4 (en) 2021-07-28
JP7110399B2 (ja) 2022-08-01
CN108995219A (zh) 2018-12-14
EP3812134A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2019228278A1 (zh) 一种层厚可变的切片方法、3d打印方法及3d打印的产品
Boschetto et al. Modelling micro geometrical profiles in fused deposition process
Bhushan et al. An overview of additive manufacturing (3D printing) for microfabrication
US10898954B2 (en) Heat treatment to anneal residual stresses during additive manufacturing
CN105935770B (zh) 一种基于电子束熔丝成型的增材制造装置
CN105431791B (zh) 用于制造三维物体的方法
CN107803987B (zh) 用于增材制造的自适应分层处理方法、***及增材制造设备
US8452440B2 (en) Method of forming an article
US11969944B2 (en) 3D printer based on liquid-solid chemical reaction deposition and operating methods thereof
CN105965018B (zh) 一种电子束熔丝近净增材制造方法
CN106426907B (zh) 一种非连续填充激光增材制造高效率的扫描方法
CN109759586B (zh) 一种内通道结构的无支撑分层切片方法
CN110385855B (zh) 一种零件的增材制造方法
CN109501272A (zh) 一种用于增材制造中悬垂特征结构的分层方法及其增材制造方法
CN106975749B (zh) 一种基于増材制造的粉床自适应铺粉方法
TW201826054A (zh) 立體列印裝置與立體列印方法
Pascu et al. Fused deposition modeling design rules for plastics
CN114918370B (zh) 一种适用于增减材制造自适应切片的砂型成型方法
KR20180003333A (ko) 3차원 프린터
CN110369581B (zh) 一种凸曲台件的成形方法
CN111605031A (zh) 一种基于分层制片与多工序控形控性的增材制造方法
CN108124436A (zh) 粉末烧结3d打印***及其供粉方法
CN205888079U (zh) 金属工件的激光3d打印***
TWI585558B (zh) 立體列印方法
CN106583724B (zh) 一种复杂表面垂直金属薄壁件的激光快速成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019810523

Country of ref document: EP

Effective date: 20210111