WO2019227852A1 - 上覆采空区遗留矿柱应力集中的压裂解除方法 - Google Patents

上覆采空区遗留矿柱应力集中的压裂解除方法 Download PDF

Info

Publication number
WO2019227852A1
WO2019227852A1 PCT/CN2018/113595 CN2018113595W WO2019227852A1 WO 2019227852 A1 WO2019227852 A1 WO 2019227852A1 CN 2018113595 W CN2018113595 W CN 2018113595W WO 2019227852 A1 WO2019227852 A1 WO 2019227852A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
row
hydraulic fracturing
coal
packer
Prior art date
Application number
PCT/CN2018/113595
Other languages
English (en)
French (fr)
Inventor
黄炳香
邵鲁英
赵兴龙
陈树亮
Original Assignee
中国矿业大学
徐州佑学矿业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 徐州佑学矿业科技有限公司 filed Critical 中国矿业大学
Priority to CA3084096A priority Critical patent/CA3084096C/en
Priority to US16/768,889 priority patent/US11299954B2/en
Publication of WO2019227852A1 publication Critical patent/WO2019227852A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/127Packers; Plugs with inflatable sleeve
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C45/00Methods of hydraulic mining; Hydraulic monitors
    • E21C45/02Means for generating pulsating fluid jets
    • E21C45/04Means for generating pulsating fluid jets by use of highly pressurised liquid
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/06Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/02Fluid rotary type drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D7/00Shaft equipment, e.g. timbering within the shaft
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Definitions

  • the invention relates to a compressive cracking removal method for stress concentration of a remaining pillar in an overburden, and belongs to the technical field of mining.
  • coal mines use long-wall mining.
  • the return air lane or transport lane on the side of the goaf is generally separated from the goaf by leaving a coal pillar.
  • coal pillars can play a role of airtightness, thereby isolating harmful gases in the goaf, preventing air leakage and coal spontaneous ignition.
  • the width of the reserved coal pillar is generally determined according to the thickness, hardness and integrity of the coal seam.
  • the method of increasing the coal pillar is generally used to arrange the roadway of the lower coal below the goaf of the upper coal. You can also use reinforced roadway support to reduce the deformation of the roadway, such as using the combined support technology of anchor rods, anchor cables, steel sheds, and supporting wooden columns.
  • the arrangement of enlarged coal pillars has the following problems: (a) two-layer coal: increased coal pillar loss of the lower coal, reduced coal recovery rate, and wasted resources; (b) multi-layer coal: multiple coal seams Mining, using the arrangement of increasing the coal pillars, causes the coal pillars to stay larger and larger, which wastes a lot of resources; once the width of the coal pillars is unfavorably set, it will also cause the phenomenon of instability of the coal pillars, which will bring great harm to safety production. Hidden danger.
  • the combined support technology using anchor rods, anchor cables, steel sheds, and supporting wooden columns will greatly increase the support cost of the roadway.
  • the delineated danger zone implements large-diameter pressure relief drilling of coal seams, strong powder discharge, reducing bearing capacity, and transferring stress; methods such as mining protective layers and pre-drained coal seams can also be used.
  • the most common method is to use explosives to crush coal pillars to relieve the stress concentration of the coal pillars.
  • the method of using explosives to crush coal pillars has the following problems:
  • the present invention provides a compressive cracking removal method for stress concentration of the remaining pillars in the overburden to reduce the width of the lower coal pillars, increase the coal recovery rate, and reduce Deformation of the lower coal roadway effectively solves the problems of underground pressure across the coal pillar at the working face of the lower coal seam, rockburst and coal and gas outburst problems during the mining of the lower coal seam, etc.
  • the safety factor is high, the method is simple, the construction is convenient, the cost is reduced .
  • the present invention provides a compressive cracking removal method for stress concentration in a remaining mine pillar in an overburden, which includes the following steps:
  • three rows of fracturing drilled holes are constructed at a set depth in the direction of the coal pillars in the roadway obliquely to the upper goaf with a drilling rig.
  • the first hole of the fracturing drilled holes in the first row hits the top of the coal pillar.
  • the middle hole is about 1m above, and the final hole position of the second row of cracking drill holes is about 1m above the middle of the coal pillar.
  • the third hole of the cracking hole is set at 3/4 of the coal pillar section;
  • the second step is to install and debug the hydraulic fracturing high-pressure pump and hydraulic fracturing pulse pump;
  • the third step is to send the packer to the area to be fractured, and then connect the high-pressure seal installation rod, the conversion joint and the high-pressure pipeline in sequence, and pass the high-pressure pipeline through the three-way valve to the hydraulic fracture pulse respectively.
  • the pump is connected to a hydraulic fracturing high-pressure pump;
  • the fourth step is to perform high-pressure hydraulic fracturing on the old top area in the first row of boreholes, and then perform pulse hydraulic fracturing on the coal pillar area in the first row of boreholes;
  • the fifth step is to perform pulse hydraulic fracturing on the second row of boreholes
  • the sixth step is to perform pulse hydraulic fracturing on the coal pillar area in the third row of boreholes, and then perform pulse hydraulic fracturing again on the floor area in the third row of boreholes.
  • the weight of the overburden stratum first acts on the hard old roof of the goaf, then acts on the stable coal pillar through the hard roof, and then the downward stress propagation through the coal pillar affects the mining of the lower coal seam. This stress cannot be removed and can only be transferred. Therefore, the stress concentration of the remaining coal pillars must be reduced to achieve the purpose of transferring stress to the goaf.
  • the roof is cracked to optimize the stress of the roof.
  • a row of boreholes is fractured under high pressure, so that the boreholes on the hard top plate above the coal pillar are directionally fractured, thereby effectively optimizing the stress above the coal pillar and reducing the source of force; for the coal pillar itself, it mainly produces There may be many dense cracks, crushing coal pillars, reducing the stiffness of the coal pillars, thereby reducing the bearing capacity of the coal pillars; through hydraulic fracturing, the rock stratum of the coal pillar floor is weakened, thereby reducing the ability to transmit stress concentration.
  • the specific steps of hydraulic fracturing the first row of boreholes are as follows:
  • the specific steps of performing pulsed hydraulic fracturing on the second row of drill holes in the fifth step are as follows:
  • the coal pillar and the coal pillar floor adopt pulse fracturing.
  • the pulsating water pressure is transmitted as a sine wave.
  • pulsating pressure wave is transmitted to the interface between water and coal body at the crack tip, pulsating incident waves and pulsating reflected waves are generated.
  • Pressure wave reflection, superposition, reciprocation, etc. which cause the phenomenon of pulsating pressure wave amplitude expansion, pressure increase and so on; and due to the effect of friction resistance, the pressure increase phenomenon also occurs at the tip of the crack; coupled with the pulsating pressure on the coal body Fatigue damage occurs, so pulsating pressure waves can produce more cracks with less pulsating pressure.
  • the first row of cracking holes and the third row of cracking holes adopt receding section hydraulic fracturing, which further improves the utilization rate of drilling.
  • the order of drilling and hydraulic fracturing drilling are in accordance with the first fracturing drilling in the first row, the first fracturing drilling in the second row, the first fracturing drilling in the third row, and the first The second row of cracked drill holes, the second row of second cracked drill holes, the third row of second cracked drill holes ... constructed sequentially; the hydraulic cracking sequence is the same as the drilling construction sequence, and the two are performed simultaneously , Parallel operation, matching construction speed.
  • a group of cracking areas is set on the old top above the coal pillar for directional cracking; three groups of cracking areas are set on the coal pillar; and a group of cracking areas is set on the bottom plate below the coal pillar.
  • the cracking position of the roof above the coal pillar is generally selected in the elastoplastic deformation coal pillar Directly above the center of the coal pillar; when the width of the coal pillar is large, you can also consider cracking the roof above the sides of the coal pillar; because the coal pillar is the main load bearing area for stress concentration, the cracking locations are three And are located in the middle of the coal pillar and on both sides of the coal pillar, the three cracking positions are selected within the range of the coal pillar that is elastoplastic; the selection of the cracking position of the bottom plate below the coal pillar and the cracking position of the roof According to the same, the cracking position is at the hard floor directly below the center of the coal pillar, and the cracking of the floor is pulsed hydraulic cracking,
  • the core of the method of the present invention is to first optimize the stress of the roof by directional fracturing the roof and reduce the source of the force; secondly, pulse fracturing the coal pillars to generate a gap network, weakening the stiffness of the coal pillars, and reducing the bearing capacity of the coal pillars; Fractured rock strata on the floor of a coal pillar weaken its ability to transmit stress concentration.
  • the coal and rock masses have multiple cracks, which split the coal and rock strata into blocks or layers of a certain size and shape, destroying the integrity of the rock and coal seam and reducing the strength of the rock mass to achieve fragmentation and overburden.
  • This method is beneficial to the treatment of the overlying remaining coal pillars, reduces the width of the lower coal pillars, improves the coal recovery rate, reduces the deformation of the lower coal roadways, and effectively solves the coal passing face in the lower coal seams.
  • FIG. 1 is a construction plan view of a hydraulic fracturing borehole in the present invention
  • FIG. 2 is a sectional view taken along the line A-A in FIG. 1;
  • FIG. 3 is a diagram of a hydraulic fracturing device used in the method of the present invention.
  • the average thickness of the lower coal seam of a certain mine is 10m; the roof of the lower coal seam is coarse sandstone, with an average thickness of 6m; the thickness of the upper coal seam is 4m; the upper coal seam is directly covered with gravel coarse sandstone, with an average thickness of 4m; .
  • the cross-section of the two grooves on the working face is a rectangular cross-section.
  • the support method is the combined support of anchor rods, anchor cables and metal nets. The two-lane grooves are all driven along the floor.
  • two layers of coal pillars are arranged overlapping, and the width of the coal pillars on the two working faces is 35 m.
  • a pressure cracking removal method for stress concentration in a remaining mine pillar in an overburden the specific steps are as follows:
  • a drilling rig is used to construct three rows of cracked drill holes in the direction of the coal pillars in the goaf at the upper level of the roadway 1 at an interval of 1.2 m from the floor.
  • the final hole position of the cracking drill hole is about 1m above the middle of the top of the coal pillar.
  • the second hole of the crack hole is about 1m above the middle of the coal pillar.
  • the third row is cracking.
  • the position of the final drilling hole is 3/4 of the section of the coal pillar 14; the drilling lengths are 28m, 23m, and 25m, and the drilling diameter is 75mm.
  • the layout of the boreholes should be based on geological data to avoid geological structural belts such as faults as much as possible to avoid the influence of geological structures on the coal pillar fracturing effect.
  • the second step is to install and debug the hydraulic fracturing high-pressure pump 23 and the hydraulic fracturing pulse pump 26;
  • the third step is to send the packer 21 to the area to be fractured of the hole to be fractured, and then connect the high-pressure seal installation rod 20, the conversion joint 18 and the high-pressure pipeline 15 in order, and pass the high-pressure pipeline 15 through the three-way valve 27 Respectively connected with the hydraulic fracturing pulse pump 26 and the hydraulic fracturing high pressure pump 23;
  • the fourth step is to first turn off the hydraulic fracturing pulse pump 26, turn on the hydraulic fracturing high pressure pump 23, perform high pressure hydraulic fracturing on the first bore in the first row, and then close the hydraulic fracturing high pressure pump 23 to turn on the hydraulic fracturing pulse.
  • the fifth step is to close the hydraulic fracturing high-pressure pump 23, turn on the hydraulic fracturing pulse pump 26, and perform pulse hydraulic fracturing on the first bore in the second row;
  • the high-pressure sealing installation rod 20 is connected to a high-pressure pipeline 15 connected to a hydraulic fracturing high-pressure pump 23 and a hydraulic fracturing pulse pump 26.
  • the hand pressure pump 22 is used to inject high-pressure water into the packer 21, so that the packer 21 expands and seals.
  • the high-pressure pipeline 15 is provided with a pressure relief valve 17 and a hydraulic fracture measurement and control instrument 16;
  • the hydraulic fracturing high-pressure pump 23 is turned off and the hydraulic fracturing pulse pump 26 is turned on to perform pulse hydraulic fracturing on the first borehole in the third row; the specific steps are as follows:
  • step 4 to step 6 Repeat step 4 to step 6 until all three rows of fractured drill holes complete the hydraulic fracture in sequence; the hydraulic fracture sequence is the same as the drilling construction sequence, the two are performed in parallel, parallel operation, the construction speed is matched, and the drilling can be advanced construction.
  • the first row of cracking holes and the third row of cracking holes adopt receding section hydraulic fracturing, which further improves the utilization rate of drilling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Earth Drilling (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种上覆采空区遗留矿柱应力集中的压裂解除方法,首先是定向压裂顶板,优化顶板的应力,减小力的来源;其次是脉冲压裂煤柱,产生缝隙网络,弱化煤柱(14)刚度,减小煤柱的承载能力;最后是脉冲压裂煤柱底板岩层,减弱其传递应力集中的能力。利用钻机在巷道(1)斜向上层采空区煤柱方向分别间隔施工压裂钻孔至设定深度,一个斜向压裂孔可以采用后退分段压裂顶板、煤柱、底板,顶板定向压裂位置在煤柱上方老顶(5)正中间偏上1m左右。此方法减小下层煤煤柱的宽度,提高煤炭的采出率,减小下层煤巷道的变形,有效解决下煤层工作面的过煤柱的矿压问题、冲击地压和下煤层开采时的煤与瓦斯突出问题等,同时安全系数高、方法简单、施工方便、成本降低。

Description

上覆采空区遗留矿柱应力集中的压裂解除方法 技术领域
本发明涉及一种上覆采空区遗留矿柱应力集中的压裂解除方法,属于矿山开采技术领域。
背景技术
井工煤矿大多采用长壁开采,采空区侧的回风平巷或运输平巷一般采用留设煤柱的方式来与采空区隔离,一方面保障采空侧巷道围岩稳定,另一方面煤柱可以起到密闭作用,从而隔离采空区的有害气体,防治漏风和煤自然发火等。留设煤柱的宽度一般根据煤层的厚度、硬度及完整性等来确定。
非煤井工矿大多采用房柱式开采,为了开采矿层的围岩控制等,开采后会留下大量矿柱。
井工矿常出现近距离煤层或者矿层组开采,除开采解放层外,一般采用下行开采,当开采煤柱或者矿柱下方煤层或者矿体时,会出现应力集中问题,从而造成下位巷道的大变形,下煤层工作面过煤柱的矿压问题以及工作面异常来压或压架,冲击地压,下煤层开采时的煤与瓦斯突出问题等等。
当出现下位巷道的大变形问题时,为了保证煤柱的稳定性及减小巷道变形,一般采用加大煤柱的方法,把下层煤的巷道布置在上层煤采空区的下方。还可以采用加强巷道支护来减小巷道的变形,譬如利用锚杆、锚索、钢棚、支设木柱联合支护工艺。但是采用加大煤柱的布置方式存在以下问题:(a)两层煤:增加了下层煤的煤柱损失,降低了煤炭的采出率,浪费了资源;(b)多层煤:多煤层开采,采用加大煤柱的布置方式,导致煤柱越留越大,浪费了大量的资源;一旦煤柱宽度留设不利,还会造成煤柱失稳现象,给安全生产带来极大的隐患。采用锚杆、锚索、钢棚、支设木柱联合支护工艺会大大增加了巷道支护费用。
当出现下煤层工作面过煤柱的矿压问题时,一般采用加强顶板管理,保证液压支架接顶严密,支撑强度达到规程规定,严禁出现空顶和不接顶现象。还要加强现场管理,规范职工现场行为,保持正常出勤,采取一系列措施保证安全工作和正常组织生产。但是采用加强顶板管理和加强现场管理的措施,并没有真正解除上覆采空区遗留煤柱应力集中问题,受采动影响,还是很容易发生安全事故。
当出现下煤层开采时的冲击地压和煤与瓦斯突出问题时,可以采用注水湿润煤体,注水能够改变煤体物理力学性质,弱化煤体结构,降低煤体的冲击倾向性;还可以对圈定的危险区实施煤层大直径卸压钻孔,强排粉,降低承载能力,转移应力;也可以采用开采保护层和预抽煤层瓦斯等方法。但是采用煤层注水的方法解决冲击地压问题效果并不明显,而且注水时间较长;采用打设大直径卸压钻孔,通常要布置密集的钻孔,钻孔数量多,劳动成本大;开 采保护层受煤层间距的限制。
为了解决上述问题,最常见的方法是利用***破碎煤柱,从而解除煤柱的应力集中,但是采用***破碎煤柱的方法存在以下问题:
a.传统的***放顶安全管理复杂:涉及到***、***的管理运输,放炮要严格执行“一炮三检制”和“三人连锁放炮制”;
b.存在安全隐患:实践表明,大规模***瞬时产生的大量CO等有害气体给矿井通风安全管理造成巨大影响;对于高瓦斯矿井,***破碎煤柱由于存在***火花诱导瓦斯***的隐患而不宜采用;
c.***经济成本高:破碎煤柱时,炮眼之间的间距一般很小,所以需要大量的火药和***等火工品。
发明内容
为了克服现有技术存在的各种不足,本发明提供一种上覆采空区遗留矿柱应力集中的压裂解除方法,减小下层煤煤柱的宽度,提高煤炭的采出率,减小下层煤巷道的变形,有效解决下煤层工作面的过煤柱的矿压问题、冲击地压和下煤层开采时的煤与瓦斯突出问题等,同时安全系数高、方法简单、施工方便、成本降低。
为了解决上述问题,本发明一种上覆采空区遗留矿柱应力集中的压裂解除方法,包括以下步骤:
第一步,用钻机在巷道斜向上层采空区煤柱方向,分别间隔施工三排致裂钻孔至设定深度,其中第一排致裂钻孔终孔位置打在煤柱上方老顶正中间偏上1m左右,第二排致裂钻孔终孔位置打在煤柱的正中间偏上1m左右,第三排致裂钻孔终孔位置打在煤柱断面3/4处;
第二步、安装水力致裂高压泵和水力致裂脉冲泵并调试;
第三步、将封隔器送至待致裂钻孔的待致裂区域,并依次连接高压密封安装杆、转换接头及高压管路,将高压管路通过三通阀分别与水力致裂脉冲泵和水力致裂高压泵相连;
第四步、对第一排钻孔中老顶区域进行高压水力致裂,然后对第一排钻孔中煤柱区域进行脉冲水力致裂;
第五步、对第二排钻孔进行脉冲水力致裂;
第六步、对第三排钻孔中煤柱区域进行脉冲水力致裂,然后对第三排钻孔中底板区域再次进行脉冲水力致裂。
由于近距离煤层群上部煤层采空后,上覆岩层的重量首先作用在采空区坚硬老顶,然后通过坚硬顶板作用于稳定煤柱,再通过煤柱向下应力传播,影响下部煤层的采掘活动,而这 应力是无法被卸除的,只能被转移,因此要降低遗留煤柱的应力集中程度,实现应力向采空区转移的目的,致裂顶板来优化顶板的应力,通过对第一排钻孔进行高压致裂,使煤柱上方坚硬顶板上的钻孔被定向致裂,从而有效优化了煤柱上方的应力,减小力的来源;对于煤柱本身,则主要是产生尽可能多的密集裂缝,破碎煤柱,减小煤柱的刚度,从而减小煤柱的承载能力;通过水力致裂使煤柱底板岩层被弱化,从而减弱传递应力集中的能力。
具体的,第四步中对第一排钻孔进行水力致裂的具体步骤如下:
(a)将高压密封安装杆与封隔器连接,将封隔器送至第一排第一个致裂钻孔内相应的第一排钻孔老顶致裂区,然后在高压密封安装杆上连接与水力致裂高压泵和水力致裂脉冲泵相连的高压管路,利用手压泵通过高压细软管向封隔器注入高压水,使封隔器膨胀封孔;所述高压管路上设有泄压阀和水力致裂测控仪;
(b)关闭开关阀II,开启开关阀I,开启水力致裂高压泵,通过高压管路向钻孔内注入高压水进行水力致裂;当水力致裂测控仪监测到的施工压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂高压泵,打开泄压阀;
(c)采用分段后退式压裂,将封隔器退出至相应第一排钻孔煤柱致裂区,重新封孔,关闭开关阀I,开启开关阀II,利用水力致裂脉冲泵重新致裂;
(d)取出封隔器和高压密封安装杆。
具体的,第五步中对第二排钻孔进行脉冲水力致裂的具体步骤如下:
(a)将高压密封安装杆与封隔器连接,将封隔器送至第二排第一个致裂钻孔内相应第二排钻孔煤柱致裂区,然后在高压密封安装杆上连接与水力致裂高压泵和水力致裂脉冲泵相连的高压管路,利用手压泵向封隔器注入高压水,使封隔器膨胀封孔;所述高压管路上设有泄压阀和水力致裂测控仪;
(b)关闭开关阀I,开启开关阀II,开启水力致裂脉冲泵,通过高压管路向第二排第一个致裂钻孔内注入脉冲水进行水力致裂;当水力致裂测控仪监测到的施工压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂脉冲泵,打开泄压阀;
(c)取出封隔器和高压密封安装杆。
具体的,第六步中对第三排钻孔进行水力致裂的具体步骤如下:
(a)将高压密封安装杆与封隔器连接,将封隔器送至第三排第一个致裂钻孔内相应第三排钻孔煤柱致裂区,然后在高压密封安装杆上连接与与水力致裂高压泵和水力致裂脉冲泵相连的高压管路,利用手压泵向封隔器注入高压水,使封隔器膨胀封孔;所述高压管路上设有泄压阀和水力致裂测控仪;
(b)关闭开关阀I,开启开关阀II,开启水力致裂脉冲泵,通过高压管路向第三排第一 个致裂钻孔内注入脉冲水进行水力致裂;当水力致裂测控仪监测到的施工压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂脉冲泵,打开泄压阀;
(c)采用分段后退式压裂,将封隔器退出至相应第三排钻孔底板致裂区,重新封孔,再次关闭开关阀I,开启开关阀II,开启水力致裂脉冲泵重新致裂;
(d)取出封隔器和高压密封安装杆。
煤柱和煤柱底板采用脉冲压裂的方式,脉动水压力以正弦波的方式传播,脉动压力波传递到水与煤体在裂隙尖端交界面上时,产生脉动入射波与脉动反射波,脉动压力波的反射、叠加、往复等,由此而引起脉动压力波振幅的扩大、压力增加等现象;且由于摩擦阻力的作用,在裂隙尖端也产生增大压力现象;加之脉动压力会对煤体产生疲劳损伤所以脉动压力波在较小的脉动压力作用下可以产生更多的裂缝。
第一排致裂孔和第三排致裂孔采用后退分段式水力致裂,进一步提高了钻孔的利用率。
具体步骤如下:
(a)开启水力致裂高压泵或水力致裂脉冲泵;
(b)向一个致裂钻孔内注水,进行一次循环水力致裂;
(c)当水力致裂测控仪监测到致裂钻孔的水压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂高压泵或水力致裂脉冲泵,打开泄压阀,完成此次循环水力致裂;
(d)接着将封隔器向钻孔的孔口方向退后5~20m,再次进行一次循环水力致裂;
(e)退出封隔器,完成后退分段式水力致裂。
进一步的,钻孔和水力致裂钻孔的顺序均按照第一排第一个致裂钻孔、第二排第一个致裂钻孔、第三排第一个致裂钻孔、第一排第二个致裂钻孔、第二排第二个致裂钻孔、第三排第二个致裂钻孔……依次施工;水力致裂顺序与钻孔施工顺序相同,两者同步进行,平行作业,施工速度匹配。
进一步的,煤柱上方的老顶设置一组致裂区域进行定向致裂;煤柱上设置三组致裂区域;煤柱下方的底板设置一组致裂区域。
煤柱两侧工作面开采后,由于采空区上方顶板弯曲下沉,煤柱边缘受顶板弯曲下沉影响出现变形破碎,所以煤柱上方顶板的致裂位置一般选择在处于弹塑性变形煤柱的正上方也就是煤柱中心位置上方;当煤柱宽度较大时,也可以考虑在煤柱两侧上方致裂顶板;由于煤柱是应力集中的主要承载区,因此致裂位置为三处,且分别设在煤柱的中间以及煤柱的两侧,三处致裂位置选择在处于弹塑性变形的煤柱范围内;煤柱下方底板的致裂位置的选择与顶板致裂位置的选择依据相同,致裂位置为煤柱中心正下方的坚硬底板处,且底板致裂采用脉冲水力致裂,充分破碎,减弱其传递应力集中的能力。
本发明方法的核心在于首先通过定向压裂顶板优化顶板的应力,减小力的来源;其次是脉冲压裂煤柱,产生缝隙网络,弱化煤柱刚度减小煤柱的承载能力;最后是脉冲压裂煤柱底板岩层,减弱其传递应力集中的能力。
通过在煤柱上方的老顶内布置一排致裂孔,煤柱内布置三排致裂孔,煤柱下方坚硬底板布置一排致裂孔,并分别利用高压和脉冲水力致裂第一排钻孔,脉冲水力致裂第二排钻孔,脉冲水力致裂第三排钻孔,从而使致裂孔在高压和脉冲水的作用下,裂缝沿致裂钻孔的预制缝起裂和扩展;并通过控制致裂钻孔的间距,使相邻钻孔的水压裂缝带贯通,实现上覆煤柱、煤柱坚硬顶板及煤柱坚硬底板水力致裂。在给定的空间上使煤岩体产生多条裂缝,把煤层和岩层***为一定尺寸和形状的块体或分层,破坏岩石和煤层的整体性和降低岩体的强度,达到破碎上覆煤柱、煤柱上方坚硬老顶以及煤柱下方坚硬底板的效果。这种方法有利于上覆遗留煤柱的处理,减小了下层煤煤柱的宽度,提高了煤炭的采出率,减小了下层煤巷道的变形,有效解决了下煤层工作面的过煤柱的矿压问题、冲击地压和下煤层开采时的煤与瓦斯突出问题等。消除了利用***破碎煤柱带来的安全隐患及火工品管理隐患,降低了吨煤成本。且此方法简单,施工方便,安全可靠,效果好,具有广泛的实用性。
附图说明
图1为本发明中水力致裂钻孔的施工平面图;
图2为图1中A-A向剖面图;
图3为本发明方法中所使用到的水力致裂设备图;
图中:1、巷道;2、第一排第一个致裂钻孔;3、第二排第一个致裂钻孔;4、第三排第一个致裂钻孔;5、煤柱上方老顶;6、煤柱上方直接顶和老顶;7、煤柱下方底板;8、煤层;9、第一排钻孔煤柱致裂区;10、第三排钻孔底板致裂区;11、第二排钻孔煤柱致裂区;12、第一排钻孔老顶致裂区;13、第三排钻孔煤柱致裂区;14、煤柱;15、高压管路;16、水力致裂测控仪;17、泄压阀;18、转换接头;19、高压细软管;20、高压密封安装杆;21、封隔器;22、手压泵;23、水力致裂高压泵;24、开关阀I;25、开关阀II;26、水力致裂脉冲泵;27、三通阀。
具体实施方式
下面结合附图对本发明做详细的阐述。
某矿下部煤层平均厚度10m;下部煤层顶板为粗砂岩,平均厚度6m;上部煤层厚度4m; 上部煤层直接顶为含砾粗砂岩,平均厚度为4m;上部煤层老顶为砂岩,平均厚度为4m。工作面两顺槽断面均为矩形断面,支护方式为锚杆、锚索、金属网联合支护,两顺槽巷均沿底板掘进;进风巷规格为:宽×高=(5.3×3.5)m 2,回风巷规格为:宽×高=(4.6×3.5)m 2;两层煤柱重叠布置,两工作面煤柱宽度为35m。
一种上覆采空区遗留矿柱应力集中的压裂解除方法,具体步骤如下:
如图1和图2所示,第一步、用钻机在巷道1斜向上层采空区煤柱方向,分别间隔施工三排致裂钻孔,开孔位置距离底板1.2m,其中第一排致裂钻孔终孔位置打在煤柱上方老顶5正中间偏上1m左右,第二排致裂钻孔终孔位置打在煤柱14的正中间偏上1m左右,第三排致裂钻孔终孔位置打在煤柱14断面3/4处;钻孔长度分别为28m、23m和25m,钻孔直径75mm。钻孔的布置要根据地质资料尽量避开断层等地质构造带,避免地质构造对煤柱压裂效果的影响。
第二步、安装水力致裂高压泵23和水力致裂脉冲泵26并调试;
第三步、将封隔器21送至待致裂钻孔的待致裂区域,并依次连接高压密封安装杆20、转换接头18及高压管路15,将高压管路15通过三通阀27分别与水力致裂脉冲泵26和水力致裂高压泵23相连;
第四步、首先关闭水力致裂脉冲泵26,打开水力致裂高压泵23,对第一排第一个钻孔进行高压水力致裂,然后闭水力致裂高压泵23,打开水力致裂脉冲泵26,对第一排第一个钻孔进行脉冲水力致裂;
具体步骤如下:
(a)将高压密封安装杆20与封隔器21连接,将封隔器21送至第一排第一个致裂钻孔2内相应的第一排钻孔老顶致裂区12,然后在高压密封安装杆20上连接与水力致裂高压泵23和水力致裂脉冲泵26相连的高压管路15,利用手压泵22通过高压细软管19向封隔器21注入高压水,使封隔器21膨胀封孔;所述高压管路15上设有泄压阀17和水力致裂测控仪16;
(b)关闭开关阀II25,开启开关阀I24,开启水力致裂高压泵23,通过高压管路15向钻孔内注入高压水进行水力致裂;当水力致裂测控仪16监测到的施工压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂高压泵23,打开泄压阀17;
(c)采用分段后退式压裂,将封隔器21退出至相应第一排钻孔煤柱致裂区9,重新封孔,关闭开关阀I24,开启开关阀II25,利用水力致裂脉冲泵26重新致裂;
(d)取出封隔器21和高压密封安装杆20。
第五步、关闭水力致裂高压泵23,打开水力致裂脉冲泵26,对第二排第一个钻孔进行脉冲水力致裂;
具体步骤如下:
(a)将高压密封安装杆20与封隔器21连接,将封隔器21送至第二排第一个致裂钻孔3内相应第二排钻孔煤柱致裂区11,然后在高压密封安装杆20上连接与水力致裂高压泵23和水力致裂脉冲泵26相连的高压管路15,利用手压泵22向封隔器21注入高压水,使封隔器21膨胀封孔;所述高压管路15上设有泄压阀17和水力致裂测控仪16;
(b)关闭开关阀I24,开启开关阀II25,开启水力致裂脉冲泵26,通过高压管路15向第二排第一个致裂钻孔3内注入脉冲水进行水力致裂;当水力致裂测控仪16监测到的施工压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂脉冲泵26,打开泄压阀17;
(c)取出封隔器21和高压密封安装杆20。
第六步,关闭水力致裂高压泵23,打开水力致裂脉冲泵26,对第三排第一个钻孔进行脉冲水力致裂;具体步骤如下:
(a)将高压密封安装杆20与封隔器21连接,将封隔器21送至第三排第一个致裂钻孔4内相应第三排钻孔煤柱致裂区13,然后在高压密封安装杆20上连接与与水力致裂高压泵23和水力致裂脉冲泵26相连的高压管路15,利用手压泵22向封隔器21注入高压水,使封隔器21膨胀封孔;所述高压管路15上设有泄压阀17和水力致裂测控仪16;
(b)关闭开关阀I24,开启开关阀II25,开启水力致裂脉冲泵26,通过高压管路15向第三排第一个致裂钻孔4内注入脉冲水进行水力致裂;当水力致裂测控仪16监测到的施工压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂脉冲泵26,打开泄压阀17;
(c)采用分段后退式压裂,将封隔器21退出至相应第三排钻孔底板致裂区10,重新封孔,关闭开关阀I24,开启开关阀II25,开启水力致裂脉冲泵26重新致裂;
(d)取出封隔器21和高压密封安装杆20。
重复第四步至第六步,直至所有三排致裂钻孔依次完成水力致裂;水力致裂顺序与钻孔施工顺序相同,两者同步进行,平行作业,施工速度匹配,钻孔可以提前施工。
第一排致裂孔和第三排致裂孔采用后退分段式水力致裂,进一步提高了钻孔的利用率。
具体步骤如下:
(a)开启水力致裂高压泵23或水力致裂脉冲泵26;
(b)向一个致裂钻孔内注水,进行一次循环水力致裂;
(c)当水力致裂测控仪16监测到致裂钻孔的水压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂高压泵23或水力致裂脉冲泵26,打开泄压阀17,完成此次循环 水力致裂;
(d)接着将封隔器21向钻孔的孔口方向退后5~20m,再次进行一次循环水力致裂;
(e)退出封隔器21,完成后退分段式水力致裂。
尽管根据有限数量的实施例描述了本发明,但是受益于上面的描述,本技术领域内的技术人员明白,在由此描述的本发明的范围内,可以设想其它实施例。此外,应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。

Claims (6)

  1. 一种上覆采空区遗留矿柱应力集中的压裂解除方法,其特征在于,包括以下步骤:
    第一步,用钻机在巷道(1)斜向上层采空区煤柱方向,分别间隔施工三排致裂钻孔至设定深度,其中第一排致裂钻孔终孔位置打在煤柱上方老顶(5)正中间偏上1m左右,第二排致裂钻孔终孔位置打在煤柱(14)的正中间偏上1m左右,第三排致裂钻孔终孔位置打在煤柱(14)断面3/4处;
    第二步、安装水力致裂高压泵(23)和水力致裂脉冲泵(26)并调试;
    第三步、将封隔器(21)送至待致裂钻孔的待致裂区域,并依次连接高压密封安装杆(20)、转换接头(18)及高压管路(15),将高压管路(15)通过三通阀(27)分别与水力致裂脉冲泵(26)和水力致裂高压泵(23)相连;
    第四步、对第一排钻孔中老顶(5)区域进行高压水力致裂,然后对第一排钻孔中煤柱(14)区域进行脉冲水力致裂;
    第五步、对第二排钻孔进行脉冲水力致裂;
    第六步、对第三排钻孔中煤柱(14)区域进行脉冲水力致裂,然后对第三排钻孔中底板(7)区域再次进行脉冲水力致裂。
  2. 根据权利要求1所述的上覆采空区遗留矿柱应力集中的压裂解除方法,其特征在于,第四步中对第一排钻孔进行水力致裂的具体步骤如下:
    (a)将高压密封安装杆(20)与封隔器(21)连接,将封隔器(21)送至第一排第一个致裂钻孔(2)内相应的第一排钻孔老顶致裂区(12),然后在高压密封安装杆(20)上连接与水力致裂高压泵(23)和水力致裂脉冲泵(26)相连的高压管路(15),利用手压泵(22)通过高压细软管(19)向封隔器(21)注入高压水,使封隔器(21)膨胀封孔;所述高压管路(15)上设有泄压阀(17)和水力致裂测控仪(16);
    (b)关闭开关阀II(25),开启开关阀I(24),开启水力致裂高压泵(23),通过高压管路(15)向钻孔内注入高压水进行水力致裂;当水力致裂测控仪(16)监测到的施工压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂高压泵(23),打开泄压阀(17);
    (c)采用分段后退式压裂,将封隔器(21)退出至相应第一排钻孔煤柱致裂区(9),重新封孔,关闭开关阀I(24),开启开关阀II(25),利用水力致裂脉冲泵(26)重新致裂;
    (d)取出封隔器(21)和高压密封安装杆(20)。
  3. 根据权利要求1所述的上覆采空区遗留矿柱应力集中的压裂解除方法,其特征在于,第五步中对第二排钻孔进行水力致裂的具体步骤如下:
    (a)将高压密封安装杆(20)与封隔器(21)连接,将封隔器(21)送至第二排第一个 致裂钻孔(3)内相应第二排钻孔煤柱致裂区(11),然后在高压密封安装杆(20)上连接与水力致裂高压泵(23)和水力致裂脉冲泵(26)相连的高压管路(15),利用手压泵(22)向封隔器(21)注入高压水,使封隔器(21)膨胀封孔;所述高压管路(15)上设有泄压阀(17)和水力致裂测控仪(16);
    (b)关闭开关阀I(24),开启开关阀II(25),开启水力致裂脉冲泵(26),通过高压管路(15)向第二排第一个致裂钻孔(3)内注入脉冲水进行水力致裂;当水力致裂测控仪(16)监测到的施工压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂脉冲泵(26),打开泄压阀(17);
    (c)取出封隔器(21)和高压密封安装杆(20)。
  4. 根据权利要求1所述的上覆采空区遗留矿柱应力集中的压裂解除方法,其特征在于,第六步中对第三排钻孔进水力致裂的具体步骤如下:
    (a)将高压密封安装杆(20)与封隔器(21)连接,将封隔器(21)送至第三排第一个致裂钻孔(4)内相应第三排钻孔煤柱致裂区(13),然后在高压密封安装杆(20)上连接与与水力致裂高压泵(23)和水力致裂脉冲泵(26)相连的高压管路(15),利用手压泵(22)向封隔器(21)注入高压水,使封隔器(21)膨胀封孔;所述高压管路(15)上设有泄压阀(17)和水力致裂测控仪(16);
    (b)关闭开关阀I(24),开启开关阀II(25),开启水力致裂脉冲泵(26),通过高压管路(15)向第三排第一个致裂钻孔(4)内注入脉冲水进行水力致裂;当水力致裂测控仪(16)监测到的施工压力小于5MPa时或煤岩层“出汗”超过5~7min时,关闭水力致裂脉冲泵(26),打开泄压阀(17);
    (c)采用分段后退式压裂,将封隔器(21)退出至相应第三排钻孔底板致裂区(10),重新封孔,再次关闭开关阀I(24),开启开关阀II(25),开启水力致裂脉冲泵(26)重新致裂;
    (d)取出封隔器(21)和高压密封安装杆(20)。
  5. 根据权利要求1至4任一权利要求所述的上覆采空区遗留矿柱应力集中的压裂解除方法,其特征在于,钻孔和水力致裂钻孔的顺序均按照第一排第一个致裂钻孔、第二排第一个致裂钻孔、第三排第一个致裂钻孔、第一排第二个致裂钻孔、第二排第二个致裂钻孔、第三排第二个致裂钻孔……第一排第N个致裂钻孔、第二排第N个致裂钻孔、第三排第N个致裂钻孔依次施工;水力致裂顺序与钻孔施工顺序相同,两者同步进行,平行作业,施工速度匹配。
  6. 根据权利要求5所述的上覆采空区遗留矿柱应力集中的压裂解除方法,其特征在于, 煤柱上方老顶(5)设置一组致裂区域进行定向致裂;煤柱内(14)设置三组致裂区域;煤柱下方底板(7)设置一组致裂区域。
PCT/CN2018/113595 2018-05-31 2018-11-02 上覆采空区遗留矿柱应力集中的压裂解除方法 WO2019227852A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3084096A CA3084096C (en) 2018-05-31 2018-11-02 Fracturing relief method for stress concentration of remaining ore pillars in overlying goaf
US16/768,889 US11299954B2 (en) 2018-05-31 2018-11-02 Fracturing relief method for stress concentration of remaining ore pillars in overlying goaf

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810549872.1A CN108894787B (zh) 2018-05-31 2018-05-31 上覆采空区遗留矿柱应力集中的压裂解除方法
CN201810549872.1 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019227852A1 true WO2019227852A1 (zh) 2019-12-05

Family

ID=64343744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113595 WO2019227852A1 (zh) 2018-05-31 2018-11-02 上覆采空区遗留矿柱应力集中的压裂解除方法

Country Status (4)

Country Link
US (1) US11299954B2 (zh)
CN (1) CN108894787B (zh)
CA (1) CA3084096C (zh)
WO (1) WO2019227852A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593908A (zh) * 2020-12-10 2021-04-02 山西晋城无烟煤矿业集团有限责任公司 一种煤层气垂直压裂井洞穴扩径增产方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108894787B (zh) * 2018-05-31 2019-08-27 中国矿业大学 上覆采空区遗留矿柱应力集中的压裂解除方法
CN110130895B (zh) * 2019-05-27 2020-08-07 太原理工大学 一种弱化遗留煤柱潜在破坏面的煤柱破坏方法
CN110230493B (zh) * 2019-05-27 2020-08-07 太原理工大学 一种遗留煤柱的切角破坏方法
CN110259447A (zh) * 2019-06-07 2019-09-20 太原理工大学 煤矿井下定向射孔压裂切顶卸压护巷方法
CN110374594B (zh) * 2019-06-13 2020-11-03 太原理工大学 微波加热弱化下伏煤层开采厚硬顶板强矿压的方法和装置
CN110318755B (zh) * 2019-06-13 2021-01-01 太原理工大学 一种微波加热上行致裂残采区遗留煤柱的方法和装置
CN110374595B (zh) * 2019-06-13 2020-12-15 太原理工大学 微波加热u式消减厚硬顶板及遗留煤柱复合强矿压的方法
CN110714764B (zh) * 2019-12-10 2020-10-13 山西工程技术学院 一种近距离上覆残留煤柱卸压方法
CN111364995B (zh) * 2020-03-26 2021-02-12 中国矿业大学(北京) 一种综放沿空煤巷稳定顶板-煤柱结构的构建方法
CN111608630B (zh) * 2020-06-22 2021-02-09 中国矿业大学 一种煤层群高位顶板水力压裂井下施工方法
CN111927453B (zh) * 2020-07-22 2022-09-13 中国矿业大学(北京) 一种上邻近层煤炭资源回收并减弱其应力集中的方法
CN112081570A (zh) * 2020-10-23 2020-12-15 河南理工大学 基于水力切割技术的煤层顶板定向切缝设备
WO2022120504A1 (es) * 2020-12-11 2022-06-16 Georock S.A. Sistema y método de fracturamiento hidráulico por metodología multietapa dinámica
CN113006796B (zh) * 2021-04-14 2021-11-23 中国矿业大学 煤与接触共生油页岩压裂共采方法
CN113062739B (zh) * 2021-04-15 2023-04-25 神华神东煤炭集团有限责任公司 采空区水害与强矿压灾害协同治理方法
CN113338925B (zh) * 2021-06-30 2022-07-15 中国矿业大学 一种多煤层开采大巷遗留煤柱源头压裂防动载压架方法
CN114109483B (zh) * 2021-11-24 2024-04-19 天地科技股份有限公司 一种动载冲击地压巷道围岩稳定性控制方法
CN114428006B (zh) * 2021-12-31 2024-01-30 中国矿业大学 一种弱胶结岩石岩样制备装置及制备方法
CN114673499B (zh) * 2022-03-18 2024-06-21 中煤地生态环境科技有限公司 一种防治冲击地压的方法
CN114810005B (zh) * 2022-05-19 2022-12-23 贵州大学 煤巷水平切缝-二氧化碳***协同作用的煤层致裂方法
CN115749713B (zh) * 2022-10-14 2023-06-16 中国矿业大学 岩层变频脉冲缝网压裂方法与装备
CN116104538B (zh) * 2023-03-16 2023-10-10 山东省地质矿产勘查开发局第五地质大队(山东省第五地质矿产勘查院) 基于矿区地层稳定性勘察的采空区快速达稳方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948055A (en) * 1974-09-03 1976-04-06 Continental Oil Company Method for controlling stress and increasing the strength of support members in coal mines
RU2487246C1 (ru) * 2012-02-27 2013-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" Способ дегазации угленосной толщи
CN103758570A (zh) * 2014-01-14 2014-04-30 中国矿业大学 一种水力致裂控制临空巷道强矿压的方法
US20160356138A1 (en) * 2012-10-25 2016-12-08 Solvay Sa In situ method for sealing undesirable transverse fractures under hydraulic pressure during lithological displacement of an evaporite deposit
CN106368701A (zh) * 2016-09-27 2017-02-01 吴拥政 利用水力压裂卸压控制回采巷道留巷的方法及装置
CN107304676A (zh) * 2016-04-22 2017-10-31 黑龙江龙煤鹤岗矿业有限责任公司 一种遗留煤柱下冲击地压的防治方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU922280A1 (ru) * 1980-01-05 1982-04-23 Всесоюзный научно-исследовательский и проектно-конструкторский угольный институт "КНИУИ" Способ управлени труднообрушаемой кровлей
CN103527198B (zh) * 2013-10-21 2016-02-24 中国矿业大学 切眼坚硬顶板/顶煤水力致裂控制方法
CN105019935A (zh) * 2014-04-16 2015-11-04 郑州大学 一种井上井下联合卸压消突煤层快速掘巷法
CN104564137B (zh) * 2015-01-19 2017-01-18 中国矿业大学 双介质垛式支撑坚硬顶板的煤矿采空区处理方法及装置
CN105909228B (zh) * 2016-06-29 2018-10-09 中国矿业大学(北京) 脉冲高压水力割缝-压裂装置及方法
CN106703874B (zh) * 2017-01-05 2020-10-13 煤炭科学技术研究院有限公司 一种井下煤层多点脉冲水压致裂方法
CN107083959A (zh) * 2017-06-02 2017-08-22 天地科技股份有限公司 一种沿空留巷方法
CN108894787B (zh) * 2018-05-31 2019-08-27 中国矿业大学 上覆采空区遗留矿柱应力集中的压裂解除方法
CN108894784A (zh) * 2018-07-20 2018-11-27 中铁十九局集团矿业投资有限公司 一种坚硬顶板定向酸化压裂控顶卸压方法
CN109958421B (zh) * 2019-03-19 2020-07-03 中国矿业大学(北京) 一种预裂缝水力压裂切顶卸压施工方法及钻孔机具
CN111271120A (zh) * 2020-01-22 2020-06-12 天地科技股份有限公司 一种煤矿冲击地压动静载荷分源解危方法
CN111927456B (zh) * 2020-09-10 2022-04-19 山东科技大学 一种动载深部采区煤柱失稳卸-固-让多级防治方法
CN112554888B (zh) * 2020-11-19 2022-08-02 山东科技大学 一种边界煤柱下巷道的卸压-补强协同维护方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948055A (en) * 1974-09-03 1976-04-06 Continental Oil Company Method for controlling stress and increasing the strength of support members in coal mines
RU2487246C1 (ru) * 2012-02-27 2013-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" Способ дегазации угленосной толщи
US20160356138A1 (en) * 2012-10-25 2016-12-08 Solvay Sa In situ method for sealing undesirable transverse fractures under hydraulic pressure during lithological displacement of an evaporite deposit
CN103758570A (zh) * 2014-01-14 2014-04-30 中国矿业大学 一种水力致裂控制临空巷道强矿压的方法
CN107304676A (zh) * 2016-04-22 2017-10-31 黑龙江龙煤鹤岗矿业有限责任公司 一种遗留煤柱下冲击地压的防治方法
CN106368701A (zh) * 2016-09-27 2017-02-01 吴拥政 利用水力压裂卸压控制回采巷道留巷的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593908A (zh) * 2020-12-10 2021-04-02 山西晋城无烟煤矿业集团有限责任公司 一种煤层气垂直压裂井洞穴扩径增产方法
CN112593908B (zh) * 2020-12-10 2022-05-17 山西晋城无烟煤矿业集团有限责任公司 一种煤层气垂直压裂井洞穴扩径增产方法

Also Published As

Publication number Publication date
US20210348471A1 (en) 2021-11-11
US11299954B2 (en) 2022-04-12
CA3084096A1 (en) 2019-12-05
CA3084096C (en) 2021-03-02
CN108894787B (zh) 2019-08-27
CN108894787A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
WO2019227852A1 (zh) 上覆采空区遗留矿柱应力集中的压裂解除方法
Liu et al. The position of hydraulic fracturing to initiate vertical fractures in hard hanging roof for stress relief
CN102678120B (zh) 冲击地压卸压解危方法
WO2017096674A1 (zh) 特大采场空间远近场井上下协同顶板控制方法
CN108678747A (zh) 一种脉冲水力致裂控制顶煤冒放性的方法及设备
CN112593936B (zh) 一种深部矿井多灾害区域超前综合防治方法
CN109139092B (zh) 一种治理深埋煤层冲击与瓦斯灾害的一孔多用施工方法
CN111502662B (zh) 一种冲击地压矿井超前煤体深部卸压浅部加固的防治方法
CN107503747A (zh) 一种静态***双效致裂弱化顶板方法
CN107120137B (zh) 一种煤巷掘进沿煤层底板深孔预裂***抽采方法
CN112282806B (zh) 一种厚煤层强采动巷道***卸压与长锚杆协同控顶方法
WO2024077842A1 (zh) 岩层变频脉冲缝网压裂方法与装备
CN102518436A (zh) 煤矿巷道掘进时构造型冲击地压防治方法
CN107152279A (zh) 旺格维利回采工作面顶板水力压裂弱化方法及装置
CN113982582A (zh) 一种煤矿井下采煤工作面水力压裂处理端头三角区悬顶的方法
CN112983418A (zh) 一种煤矿井下采煤工作面回撤通道水力压裂卸压的方法
Li et al. Trial of small gateroad pillar in top coal caving longwall mining of large mining height
CN109372508A (zh) 煤矿井下液压定向切顶设备及其施工方法
CN103061732A (zh) 煤层顶板中2-3米厚坚硬中砂岩层的水力致裂方法
Yang et al. Research on the technology of small coal pillars of gob‐side entry retained in deep mines based on the roof cutting for pressure unloading in the lower key stratum
CN114320292A (zh) 一种基于溶液改性作用的煤层冲击地压防治方法
CN110985123A (zh) 一种高压水力预裂解危冲击矿压顺槽巷道钻孔布置方法
CN109025999B (zh) 一种一场三用的顶煤弱化方法
Konicek Destressing
CN103541711A (zh) 采煤工作面端头悬顶小孔径水力致裂控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3084096

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920304

Country of ref document: EP

Kind code of ref document: A1