WO2019227661A1 - 一种氮化硅陶瓷及其制备方法 - Google Patents

一种氮化硅陶瓷及其制备方法 Download PDF

Info

Publication number
WO2019227661A1
WO2019227661A1 PCT/CN2018/098401 CN2018098401W WO2019227661A1 WO 2019227661 A1 WO2019227661 A1 WO 2019227661A1 CN 2018098401 W CN2018098401 W CN 2018098401W WO 2019227661 A1 WO2019227661 A1 WO 2019227661A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
nitriding
silicon powder
mass ratio
catalyst
Prior art date
Application number
PCT/CN2018/098401
Other languages
English (en)
French (fr)
Inventor
郭伟明
吴利翔
牛文彬
林锐霖
陈志伟
程艳玲
林华泰
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2019227661A1 publication Critical patent/WO2019227661A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention belongs to the technical field of ceramics, and particularly relates to a Si 3 N 4 ceramic and a preparation method thereof.
  • Si 3 N 4 ceramic material As a structural material, Si 3 N 4 ceramic material has excellent mechanical properties, such as high hardness, high strength, wear resistance, high temperature resistance, and physical and chemical stability. It can be widely used in structural parts, catalyst carriers, and filter materials. And heat dissipation materials. However, it is precisely because of its excellent mechanical properties that it limits the variety of processing. If it is impossible to obtain ceramic materials with complex shapes by traditional processing techniques alone, it is difficult to meet the high-end requirements of personalization, refinement, lightweight and complexity. The need for rapid product manufacturing has limited the development and application of high-performance ceramic products. Therefore, the development of a molding process that can obtain ceramic materials of any complex shape has huge application scenarios.
  • the mainstream molding process of Si 3 N 4 ceramics is additive manufacturing, but the phenomenon of shrinkage of the sample after sintering seriously affects the accuracy of ceramic preparation.
  • the conventional method is: by estimating the shrinkage of the ceramic after sintering, compensation is made when designing the model.
  • this method is not only complicated to implement, but also needs to ensure that the sample can shrink uniformly in the three-dimensional direction. What is more serious is that the shrinkage is too serious, which may damage its final structure, produce cracks or bulge.
  • an object of the present invention is to provide a Si 3 N 4 ceramic and a preparation method thereof.
  • the specific technical solution is as follows:
  • a Si 3 N 4 ceramic is prepared from raw materials including silicon powder, a nitriding catalyst, and a sintering aid.
  • the silicon powder is subjected to nitriding treatment of the nitriding catalyst to generate Si 3 N 4 .
  • the mass ratio of silicon powder is (1-20): (80-99);
  • the nitriding catalyst is selected from ZrO 2 , TiO 2 or Eu 2 O 3 ;
  • the sintering aid is MgO and Re 2 O 3 , and the Re is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu.
  • the mass ratio of the Si 3 N 4 and the sintering assistant is (80-99) :( 1-20).
  • the mass ratio of the MgO and Re 2 O 3 is (30-60): (40-70).
  • the mass ratio of the silicon powder and the nitriding catalyst is 95: 5
  • the mass ratio of the Si 3 N 4 and the sintering aid is 90:10
  • a method for preparing the Si 3 N 4 ceramic includes the following steps:
  • step b) mixing the mixed powder of step a) with a dispersant and performing spray granulation to obtain spherical particles;
  • step b) mixing the spherical particles of step b) with a premixed solvent to obtain a ceramic slurry
  • step d) placing the ceramic slurry of step c) under a preset light source wavelength to perform light curing molding and degreasing to obtain a degreased body;
  • step d) heating the degreased body of step d) to the first temperature at a first heating rate, and performing a nitriding treatment in a nitrogen atmosphere to obtain a nitrided product; heating the nitrided product to a second temperature at a second heating rate Sintering was performed at a temperature to obtain the Si 3 N 4 ceramic.
  • the pressure of the nitrogen atmosphere in step e) is 5 MPa to 10 MPa.
  • the first heating rate is 20 ° C / min
  • the first temperature is 1250 ° C to 1600 ° C
  • the holding time is 0.5h to 24h;
  • the second heating rate is 10 ° C / min
  • the second temperature is 1600 ° C to 2000 ° C
  • the holding time is 0.5h to 24h.
  • the volume percentage content of the spherical particles in the ceramic slurry is 45% to 70%
  • the purity of the silicon powder is 95% to 100%, and the particle diameter is less than 10 ⁇ m.
  • the dispersant is at least one selected from the group consisting of oleic acid, stearic acid, polyvinylpyrrolidone, sodium hexametaphosphate, sodium polyacrylate, ester quaternary ammonium salt, and polyethylene glycol octylphenyl ether.
  • the mixing mass ratio of the mixed powder and the dispersant is (95-99.99): (0.01-5).
  • the present invention provides a Si 3 N 4 ceramic.
  • the raw materials for the preparation include: silicon powder, a nitriding catalyst, and a sintering aid.
  • the mass ratio of the nitriding catalyst to Si is (1-20): (80). ⁇ 99), the nitriding catalyst is ZrO 2 , TiO 2 or Eu 2 O 3 , and the sintering aid is MgO and Re 2 O 3 .
  • the nitriding catalyst can accelerate the nitriding rate of silicon powder. After the silicon powder undergoes a nitriding treatment, the volume of the silicon powder expands, which can compensate for samples that will shrink during sintering and molding. When the solid content of the material is stable, the accuracy of the ceramic sample is guaranteed.
  • Si 3 N 4 ceramics In the preparation of the above-mentioned Si 3 N 4 ceramics, by mixing a mixture of silicon powder, a nitriding catalyst and a sintering aid with a ball mill, and then spraying and granulating, spherical particles having a proper size range and good sphericity are obtained, and the fluidity is good.
  • the spherical particles are mixed with a pre-mixed solvent to form a ceramic slurry, which is sequentially subjected to light curing molding and degreasing to obtain a degreased body; then, the degreased body is sequentially subjected to nitriding treatment and sintering to obtain a high-quality Density, dimensionally stable and complex shape silicon nitride ceramics.
  • Si 3 N 4 ceramics of any complex shape can be prepared through the above technical scheme, the relative density is greater than 95%, the hardness is 16 GPa to 22 GPa, and the fracture toughness is 9 MPa ⁇ m 1/2 to 14 MPa ⁇ m 1/2 .
  • the flexural strength is 1000 MPa to 1500 MPa.
  • the present invention has the following advantages:
  • Silicon nitride ceramics are formed by light curing 3D printing, which has extremely high resolution, up to 25 ⁇ m.
  • the present invention provides a Si 3 N 4 ceramic and a preparation method thereof.
  • the method for preparing the Si 3 N 4 ceramic of the present invention includes the following steps:
  • the mass ratio of silicon powder to the nitriding catalyst is preferably (80 to 99): (1 to 20), more preferably (90 to 99): (1 to 100), and most preferably 95: 5; the nitriding catalyst is ZrO 2. Any of TiO 2 and Eu 2 O 3 .
  • the mass ratio of the nitriding catalyst to the silicon powder is less than 1:99, incomplete nitriding may occur, and even the phenomenon of melting silicon occurs at a faster heating rate.
  • the residual silicon is a defect in the Si 3 N 4 ceramics. Will greatly reduce the performance of ceramic preparation; when the mass ratio of nitriding catalyst and silicon powder is higher than 20:80, although nitriding catalyst can promote the rapid nitriding of silicon powder, too much nitriding catalyst will introduce by-products.
  • the mass ratio of Si 3 N 4 to the sintering aid is (80 to 99): (1 to 20), more preferably (90 to 99): (1 to 10), and most preferably 90:10.
  • the sintering aid is MgO and Re 2 O 3 , and the mass ratio of MgO and Re 2 O 3 is (30-60): (40-70), more preferably (50-60): (40-50), and most preferably 55:45;
  • Re is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu.
  • the purity of the silicon powder is 99%; the particle size is less than 10 ⁇ m, preferably 0.1 ⁇ m to 10 ⁇ m, and most preferably 0.1 ⁇ m;
  • Nitriding catalyst purity is 99%; particle size is ⁇ 10 ⁇ m;
  • the purity of MgO powder is 99%, and the purity of Re 2 O 3 powder is 99.9%.
  • the above proportioned silicon powder, nitriding catalyst and sintering aid are mixed, placed in a planetary ball mill, using ethanol as a solvent, and Si 3 N 4 balls as a ball milling medium, and the ball-to-material ratio is (1 to 5): 1 , Ball milling and mixing for 4-18 hours, and after drying, Si 3 N 4 -ZrO 2 -MgO-Y 2 O 3 mixed powder is obtained.
  • the mixed powder was mixed with a dispersant and spray-granulated to obtain spherical particles having a particle size of 1 ⁇ m.
  • the mixing mass ratio of the mixed powder and the dispersant is preferably (95 to 99.99): (0.01 to 5), more preferably (99 to 99.99): (0.01 to 1), and most preferably 99.95: 0.05 ;
  • the dispersant is at least one selected from the group consisting of oleic acid, stearic acid, polyvinylpyrrolidone, sodium hexametaphosphate, sodium polyacrylate, ester quaternary ammonium salt, and polyethylene glycol octylphenyl ether.
  • the spherical particles and the premixed solvent are mixed to obtain a ceramic slurry.
  • the solid content (ie, spherical particle content) of the ceramic slurry is preferably 45% to 70%, more preferably 50% to 70%, and most preferably 60%;
  • the pre-mixed solvent includes: 10 parts by weight to 90 parts by weight, 10 parts by weight to 90 parts by weight of oligomer, 0.1 parts by weight to 5 parts by weight, photosensitizers 0.1 to 5 parts by weight, sensitizer 0.1 parts by weight to 5 parts by weight, defoaming agent 0.1 to 5 parts by weight;
  • the monomer is selected from at least one of hexanediol diacrylate, alkoxyacrylate, polyurethane diacrylate, polyurethane acrylate, polyurethane hexaacrylate, pentaerythritol acrylate, and tripropylene glycol diacrylate;
  • the oligomer is selected from at least one of acrylate, amine acrylate, and silane acrylate;
  • the photoinitiator is selected from (2,4,6-trimethylbenzoyl) diphenylphosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, 2,4,6 -Ethyl trimethylbenzoyl phosphate, bis 2,6-difluoro-3-pyrrolephenylferrocene, 2-isopropylthioanthrone, 4-phenylbenzophenone, and 2-benzene At least one of benzyl-2-dimethylamine-1- (4-morpholine benzylphenyl) butanone;
  • the photosensitizer is selected from m-tetrahydroxyphenyl chlorin, protoporphyrin tin, benzoporphyrin derivative, benzoporphyrin derivative monoacid, toluene, phthalocyanine, and N-aspartyl dihydrogen At least one of porphyrins;
  • the sensitizer is at least one selected from the group consisting of aliphatic tertiary amines, ethanolamine-based tertiary amines, tertiary amine-type benzoates, and acryloxy tertiary amines;
  • the antifoaming agent is selected from one or more of BASF-8034A, BASF-NXZ and BYK-555.
  • the ceramic slurry was subjected to light curing molding at a wavelength of a light source of 300 nm to 460 nm, and the thickness of the printed layer was 25 ⁇ m to 30 ⁇ m to obtain a molded original body; and then degreased to obtain a degreased body.
  • the light curing molding and degreasing described in this actual step are conventional technical means, and the specific condition parameters thereof can be adjusted according to the actual product needs, which are not repeated here one by one.
  • the degreased green body is heated to a temperature of 1200 ° C to 1600 ° C at a temperature increase rate of 20 ° C / min, and the reaction is held for 0.5h to 4h in a nitrogen atmosphere to obtain a nitrided product.
  • the nitrogen pressure was 5 MPa.
  • the nitrided product is heated to a temperature of 1600 ° C. to 2000 ° C. at a heating rate of 10 ° C./min, and a heat-retaining reaction is performed for 0.5 to 4 hours to obtain the Si 3 N 4 ceramic.
  • a Si 3 N 4 ceramic is prepared.
  • the specific steps for preparing the ceramic are as follows:
  • MgO: Y 2 O 3 55% %: 45% by weight;
  • the purity of the silicon powder is 99%, and the particle size is 0.1 ⁇ m;
  • Nitriding catalyst ZrO 2 has a purity of 99% and a particle size of 0.5 ⁇ m;
  • the purity of MgO powder is 99%, and the purity of Y 2 O 3 powder is 99%.
  • the mixed powder was mixed with 0.03% oleic acid as a dispersant and spray-granulated to obtain spherical particles having a particle size of 1 ⁇ m.
  • the spherical particles and the premixed solvent are mixed to obtain a ceramic slurry.
  • the solid content (ie, spherical particle content) of the ceramic slurry is 50%;
  • the premixed solvent includes: 20 parts by weight of monomers, 78 parts by weight of oligomers, 0.5 parts by weight of photoinitiator, 0.5 parts by weight of photosensitizer, 0.5 parts by weight of sensitizer, and 0.5 parts by weight of defoamer;
  • the monomer was selected as diol diacrylate, the oligomer was selected as acrylate, the photoinitiator was selected as (2,4,6-trimethylbenzoyl) diphenylphosphine oxide, and the photosensitizer was selected as benzo.
  • the ceramic slurry was subjected to photo-curing molding at a wavelength of 355 nm light source, and the thickness of the printed layer was 30 ⁇ m to obtain a molded original green body; and then degreased to obtain a degreased green body.
  • the light curing molding and degreasing described in this actual step are conventional technical means, and the specific condition parameters thereof can be adjusted according to the actual product needs, which are not repeated here one by one.
  • the degreased body was heated to 1400 ° C at a heating rate of 20 ° C / min, and the reaction was kept under a nitrogen atmosphere for 2 hours to obtain a nitrided product.
  • the nitrogen pressure may be maintained at about one atmosphere.
  • the nitridation product was heated to 1800 ° C at a heating rate of 10 ° C / min, and the nitrogen pressure was maintained at 5 MPa, and the temperature was maintained for 2 hours to obtain the Si 3 N 4 ceramic.
  • the performance of the Si 3 N 4 ceramic prepared in this example was measured.
  • the relative density was 99%
  • the hardness was 18 GPa
  • the fracture toughness was 10 MPa ⁇ m 1/2
  • the bending strength was 1200 MPa.
  • Example 1 The difference between this embodiment and Example 1 lies in: the nitriding catalyst TiO 2 ; the nitrogen pressure during high temperature sintering is 10 MPa.
  • the remaining points are basically the same as those in Embodiment 1, and are not repeated here one by one.
  • the performance of the Si 3 N 4 ceramic prepared in this example was measured.
  • the relative density was 99%
  • the hardness was 20 GPa
  • the fracture toughness was 12 MPa ⁇ m 1/2
  • the bending strength was 1200 MPa.
  • Example 1 The difference between this embodiment and Example 1 lies in: the nitriding catalyst Eu 2 O 3 ; the nitriding treatment for 4 h; the sintering temperature is 1900 ° C .; and the nitrogen pressure during high temperature sintering is 10 MPa.
  • the remaining points are basically the same as those in Embodiment 1, and are not repeated here one by one.
  • the performance of the Si 3 N 4 ceramic prepared in this example was measured.
  • the relative density was 99%
  • the hardness was 20 GPa
  • the fracture toughness was 12 MPa ⁇ m 1/2
  • the bending strength was 1200 MPa.
  • Example 1 The difference between this embodiment and Example 1 is that: the nitriding catalyst TiO 2 ; the nitrogen pressure during high-temperature sintering is 10 MPa; and the sintering temperature is 1900 ° C.
  • the remaining points are basically the same as those in Embodiment 1, and are not repeated here one by one.
  • the performance of the Si 3 N 4 ceramic prepared in this example was measured.
  • the relative density was 99%
  • the hardness was 21 GPa
  • the fracture toughness was 13 MPa ⁇ m 1/2
  • the bending strength was 1300 MPa.

Abstract

一种Si 3N 4陶瓷及其制备方法,提供的Si 3N 4陶瓷包括:硅粉、氮化催化剂和烧结助剂;硅粉经氮化催化剂氮化处理后生成Si 3N 4,氮化催化剂与硅粉的质量比为(1~20)∶(80~99);氮化催化剂选自ZrO 2、TiO 2或Eu 2O 3;烧结助剂为MgO和Re 2O 3,Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。制备时,依次进行配料混合、制粒、形成陶瓷浆料,再依次光固化成型、脱脂、氮化处理和高温烧结,即可。

Description

一种氮化硅陶瓷及其制备方法 技术领域
本发明属于陶瓷技术领域,具体涉及一种Si 3N 4陶瓷及其制备方法。
背景技术
Si 3N 4陶瓷材料作为一种结构材料,具有优异的力学性能,例如高硬度、高强、耐磨、耐高温、物理化学稳定性等优异性能,可广泛应用于结构件、催化剂载体、过滤材料和散热材料等多个方面。然而,正是因为其优异的力学性能限制了其加工的多样性,如果仅仅依靠传统的加工工艺无法得到具有复杂形状的陶瓷材料,难以满足对个性化、精细化、轻量化和复杂化的高端产品快速制造的需求,限制了高性能陶瓷产品的开发与应用。因而,开发一种可获得任意复杂形状的陶瓷材料的成型工艺具有巨大的应用场景。
目前,Si 3N 4陶瓷的主流成型工艺为增材制造工艺,但其在烧结后样品出现收缩的现象,严重影响到陶瓷制备的精度。为了解决该方法,常规的做法是:通过估算陶瓷烧结后的收缩率,在设计模型时进行补偿。然而,该法不仅实施起来比较复杂,而且需要保证样品能在三维方向均匀收缩,更严重的是收缩太严重可能破坏其最终结构,产生裂纹或者鼓包。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种Si 3N 4陶瓷及其制备方法,其具体技术方案如下:
一种Si 3N 4陶瓷,其制备原材料包括:硅粉、氮化催化剂和烧结助剂;所述硅粉经所述氮化催化剂氮化处理后生成Si 3N 4,所述氮化催化剂与硅粉的质量比为(1~20)∶(80~99);
所述氮化催化剂选自ZrO 2、TiO 2或Eu 2O 3
所述烧结助剂为MgO和Re 2O 3,所述Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
优选的,所述Si 3N 4和烧结助剂的质量比为(80~99)∶(1~20)。
优选的,所述MgO和Re 2O 3的质量比为(30~60)∶(40~70)。
优选的,所述硅粉和所述氮化催化剂的质量比为95∶5,所述Si 3N 4和烧 结助剂的质量比为90∶10,所述MgO和Re 2O 3的质量比为55∶45。
一种上述Si 3N 4陶瓷的制备方法,包括以下步骤:
a)按配比称取硅粉、氮化催化剂和烧结助剂,混合球磨,得到混合粉体;
b)将步骤a)的混合粉体与分散剂混合,进行喷雾制粒,得到球形颗粒;
c)将步骤b)的球形颗粒与预混溶剂混合,得到陶瓷浆料;
d)将步骤c)的陶瓷浆料置于预置光源波长下进行光固化成型,脱脂,得到脱脂坯体;
e)将步骤d)的脱脂坯体以第一升温速率升温至第一温度,在氮气气氛下进行氮化处理,得到氮化产物;将所述氮化产物以第二升温速率升温至第二温度进行烧结,得到所述Si 3N 4陶瓷。
优选的,步骤e)所述氮气气氛的压力为5MPa~10MPa。
优选的,步骤e)所述第一升温速率为20℃/min,所述第一温度为1250℃~1600℃,保温时间为0.5h~24h;
所述第二升温速率为10℃/min,所述第二温度为1600℃~2000℃,保温时间为0.5h~24h。
优选的,所述陶瓷浆料中所述球形颗粒的体积百分比含量为45%~70%;
所述硅粉的纯度为95%~100%,粒径小于10μm。
优选的,所述分散剂选自油酸、硬脂酸、聚乙烯吡咯烷酮、六偏磷酸钠、聚丙烯酸钠、酯基季铵盐和聚乙二醇辛基苯基醚中的至少一种。
优选的,所述混合粉末与分散剂的混合质量比为(95~99.99)∶(0.01~5)。
综上所述,本发明提供了一种Si 3N 4陶瓷,其制备原材料包括:硅粉、氮化催化剂和烧结助剂,氮化催化剂与Si的质量比为(1~20)∶(80~99),氮化催化剂为ZrO 2、TiO 2或Eu 2O 3,烧结助剂为MgO和Re 2O 3。在氮源存在的高温条件下,氮化催化剂可加快硅粉氮化速率,硅粉在经过氮化处理后体积膨胀,可对烧结成型会发生收缩的样品进行补偿,使得产品的尺寸在陶瓷浆料固含量稳定的情况下不变,保证陶瓷样品的精度。
在制备上述Si 3N 4陶瓷时,通过将硅粉、氮化催化剂和烧结助剂的混合物混合球磨,然后喷雾制粒,获得具有恰当粒径范围和良好球形度的球形颗粒,流动性良好,成型性能优异;然后,将球形颗粒与预混溶剂混合形成陶瓷浆料,依次经过光固化成型、脱脂,得到脱脂坯体;接着,脱脂坯体依次进行 氮化处理和烧结,即得具有高致密度、尺寸稳定且形状复杂的氮化硅陶瓷。
经实验证明,通过上述技术方案可制备任意复杂形状的Si 3N 4陶瓷,其相对密度大于95%,硬度为16GPa~22GPa,断裂韧性为9MPa·m 1/2~14MPa·m 1/2,抗弯强度为1000MPa~1500MPa。
与现有技术相比,本发明具有下述优点:
1)选用低成本的硅粉为原料快速制备氮化硅,极大的降低制造成本;
2)通过利用硅粉氮化体积膨胀对样品收缩进行补偿,实现复杂形状氮化硅陶瓷净尺寸成型;
3)氮化硅陶瓷采用光固化3D打印成型,具有极高的分辨率,最高达到25μm。
具体实施方式
为了解决现有技术中,陶瓷坯体在高温烧结后出现收缩的现象,本发明提供了一种Si 3N 4陶瓷及其制备方法。
本发明Si 3N 4陶瓷的制备方法包括以下步骤:
1、配料
硅粉与氮化催化剂的质量比优选为(80~99)∶(1~20),较优选为(90~99)∶(1~100),最优选为95∶5;氮化催化剂为ZrO 2、TiO 2何Eu 2O 3中的任意一种。
当氮化催化剂与硅粉的质量比低于1∶99,可能出现氮化不完全,甚至在较快的升温速率下出现熔硅现象,残余的硅在Si 3N 4陶瓷中作为一种缺陷会极大地降低制备陶瓷的性能;当氮化催化剂与硅粉的质量比高于20∶80,氮化催化剂虽然可以促进硅粉的快速氮化,但是过多的氮化催化剂会引入副产物,例如TiO 2作为氮化催化剂添加量超过20%时,过多的TiO 2会与Si 3N 4反应产生Si 2N 2O的副产物,作为主相的Si 3N 4则被消耗,得不到本申请所需的Si 3N 4陶瓷。
Si 3N 4和烧结助剂的质量比为(80~99)∶(1~20),较优选为(90~99)∶(1~10),最优选为90∶10。
烧结助剂为MgO和Re 2O 3,MgO和Re 2O 3的质量比为(30~60)∶(40~70),较优选为(50~60)∶(40~50),最优选为55∶45;
其中,Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、 Ho、Er、Tm、Yb或Lu。
硅粉的纯度为99%;粒径小于10μm,优选为0.1μm~10μm,最优选为0.1μm;
氮化催化剂纯度为99%;粒径为<10μm;
MgO粉纯度为99%,Re 2O 3粉纯度为99.9%。
2、混合球磨
将上述配比的硅粉、氮化催化剂和烧结助剂混合,置于行星式球磨机中,以乙醇为溶剂,以Si 3N 4球为球磨介质,球料比为(1~5)∶1,球磨混合4~18h,干燥后得到Si 3N 4-ZrO 2-MgO-Y 2O 3混合粉体。
3、喷雾制粒
将混合粉体与分散剂混合,进行喷雾制粒,得到球形颗粒,粒径为1μm。
在本发明中,混合粉体与分散剂的混合质量比优选为(95~99.99)∶(0.01~5),较优选为(99~99.99)∶(0.01~1),最优选为99.95∶0.05;
分散剂选自油酸、硬脂酸、聚乙烯吡咯烷酮、六偏磷酸钠、聚丙烯酸钠、酯基季铵盐和聚乙二醇辛基苯基醚中的至少一种。
4、制备陶瓷浆料
将球形颗粒和预混溶剂进行混合,得到陶瓷浆料。
其中,陶瓷浆料的固含量(即球形颗粒含量)优选为45%~70%,较优选为50%~70%,最优选为60%;
预混溶剂包括:单体10重量份~90重量份,低聚物10重量份~90重量份,光引发剂0.1重量份~5重量份,光敏剂0.1重量份~5重量份,增感剂0.1重量份~5重量份,消泡剂0.1重量份~5重量份;
单体选自已二醇二丙烯酸酯、烷氧基丙烯酸酯、聚氨酯二丙烯酸酯、聚氨酯丙烯酸酯、聚氨酯六丙烯酸酯、季戊四醇丙烯酸酯、三丙二醇二丙烯酸酯中的至少一种;
低聚物选自丙烯酸酯、丙烯酸胺和硅烷丙烯酸酯中的至少一种;
光引发剂选自(2,4,6-三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2,4,6-三甲基苯甲酰基磷酸乙酯、双2,6-二氟-3-吡咯苯基二茂铁、2-异丙基硫杂蒽酮、4-苯基二苯甲酮和2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮中的至少一种;
光敏剂选自间-四羟基苯基二氢卟酚、初卟啉锡、苯卟啉衍生物、苯并卟 啉衍生物单酸、亚甲苯兰、酞青类和N-天门冬酰基二氢卟酚中的至少一种;
增感剂选自脂肪族叔胺、乙醇胺类叔胺、叔胺型苯甲酸酯和丙烯酰氧基叔胺中的至少一种;
消泡剂选自巴斯夫-8034A、巴斯夫-NXZ和毕克-555中的一种或多种。
5、固化成型、脱脂
将陶瓷浆料置于300nm~460nm光源波长下进行光固化成型,打印层厚度为25μm~30μm,得到成型的原始坯体;然后脱脂,得到脱脂坯体。
本实步骤所述光固化成型和脱脂为常规技术手段,其具体条件参数可根据实际产品需要进行调节,此处不再一一赘述。
6、氮化处理
将脱脂坯体以20℃/min的升温速率升温至1200℃~1600℃,在氮气气氛下保温反应0.5h~4h,得到氮化产物。其中,氮气压力为5MPa。
7、高温烧结
将氮化产物以10℃/min的升温速率升温至1600℃~2000℃,保温反应0.5h~4h,得到所述Si 3N 4陶瓷。
下面将结合本发明的实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例制备了一种Si 3N 4陶瓷,其制备的具体步骤如下:
1、配料
在本实施例中,硅粉∶氮化催化剂=95wt%∶5wt%,Si 3N 4∶烧结助剂(MgO-Y 2O 3)=90wt%∶10wt%,MgO∶Y 2O 3=55wt%∶45wt%;
硅粉纯度为99%,粒径0.1μm;
氮化催化剂ZrO 2纯度为99%,粒径为0.5μm;
MgO粉纯度为99%,Y 2O 3粉纯度为99%。
2、混合球磨
将上述配比的硅粉、氮化催化剂和烧结助剂混合,置于行星式球磨机中,以乙醇为溶剂,以Si 3N 4球为球磨介质,球磨混合8h,干燥后得到Si 3N 4- ZrO 2-MgO-Y 2O 3混合粉体。
3、喷雾制粒
将混合粉体与分散剂0.03%油酸混合,进行喷雾制粒,得到球形颗粒,粒径为1μm。
4、制备陶瓷浆料
将球形颗粒和预混溶剂进行混合,得到陶瓷浆料。
其中,陶瓷浆料的固含量(即球形颗粒含量)为50%;
预混溶剂包括:单体20重量份,低聚物78重量份,光引发剂0.5重量份,光敏剂0.5重量份,增感剂0.5重量份,消泡剂0.5重量份;
单体选为已二醇二丙烯酸酯,低聚物选为丙烯酸酯,光引发剂选为(2,4,6-三甲基苯甲酰基)二苯基氧化膦,光敏剂选为苯并卟啉衍生物单酸,增感剂选为脂肪族叔胺,消泡剂选为巴斯夫-8034A。
5、固化成型、脱脂
将陶瓷浆料置于355nm光源波长下进行光固化成型,打印层厚度为30μm,得到成型的原始坯体;然后脱脂,得到脱脂坯体。
本实步骤所述光固化成型和脱脂为常规技术手段,其具体条件参数可根据实际产品需要进行调节,此处不再一一赘述。
6、氮化处理
将脱脂坯体以20℃/min的升温速率升温至1400℃,在氮气气氛下保温反应2h,得到氮化产物。其中,氮气压力保持为一个大气压左右即可。
7、高温烧结
将氮化产物以10℃/min的升温速率升温至1800℃,并保持氮气压力为5MPa,保温反应2h,得到所述Si 3N 4陶瓷。
对本实施例制得的Si 3N 4陶瓷进行性能检测,测得其相对密度为99%,硬度为18GPa,断裂韧性为10MPa·m 1/2,抗弯强度为1200MPa。
实施例2
本实施例与实施例1的区别在于:氮化催化剂TiO 2;高温烧结时的氮气压力为10MPa。其余地方与实施例1基本相同,此处不再一一赘述。
对本实施例制得的Si 3N 4陶瓷进行性能检测,测得其相对密度为99%,硬度为20GPa,断裂韧性为12MPa·m 1/2,抗弯强度为1200MPa。
实施例3
本实施例与实施例1的区别在于:氮化催化剂Eu 2O 3;氮化处理4h;烧结温度为1900℃;高温烧结时的氮气压力为10MPa。其余地方与实施例1基本相同,此处不再一一赘述。
对本实施例制得的Si 3N 4陶瓷进行性能检测,测得其相对密度为99%,硬度为20GPa,断裂韧性为12MPa·m 1/2,抗弯强度为1200MPa。
实施例4
本实施例与实施例1的区别在于:氮化催化剂TiO 2;高温烧结时的氮气压力为10MPa;烧结温度为1900℃。其余地方与实施例1基本相同,此处不再一一赘述。
对本实施例制得的Si 3N 4陶瓷进行性能检测,测得其相对密度为99%,硬度为21GPa,断裂韧性为13MPa·m 1/2,抗弯强度为1300MPa。

Claims (10)

  1. 一种Si 3N 4陶瓷,其特征在于,其制备原材料包括:硅粉、氮化催化剂和烧结助剂;所述硅粉经所述氮化催化剂氮化处理后生成Si 3N 4,所述氮化催化剂与硅粉的质量比为(1~20)∶(80~99);
    所述氮化催化剂选自ZrO 2、TiO 2或Eu 2O 3
    所述烧结助剂为MgO和Re 2O 3,所述Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
  2. 根据权利要求1所述的Si 3N 4陶瓷,其特征在于,所述Si 3N 4和烧结助剂的质量比为(80~99)∶(1~20)。
  3. 根据权利要求1或2所述的Si 3N 4陶瓷,其特征在于,所述MgO和Re 2O 3的质量比为(30~60)∶(40~70)。
  4. 根据权利要求1至3任意一项所述的Si 3N 4陶瓷,其特征在于,所述硅粉和所述氮化催化剂的质量比为95∶5,所述Si 3N 4和烧结助剂的质量比为90∶10,所述MgO和Re 2O 3的质量比为55∶45。
  5. 一种权利要求1至4任意一项所述的Si 3N 4陶瓷的制备方法,其特征在于,包括以下步骤:
    a)按配比称取硅粉、氮化催化剂和烧结助剂,混合球磨,得到混合粉体;
    b)将步骤a)的混合粉体与分散剂混合,进行喷雾制粒,得到球形颗粒;
    c)将步骤b)的球形颗粒与预混溶剂混合,得到陶瓷浆料;
    d)将步骤c)的陶瓷浆料置于预置光源波长下进行光固化成型,脱脂,得到脱脂坯体;
    e)将步骤d)的脱脂坯体以第一升温速率升温至第一温度,在氮气气氛下进行氮化处理,得到氮化产物;将所述氮化产物以第二升温速率升温至第二温度进行烧结,得到所述Si 3N 4陶瓷。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤e)所述氮气气氛的压力为5MPa~10MPa。
  7. 根据权利要求5所述的制备方法,其特征在于,步骤e)所述第一升温速率为20℃/min,所述第一温度为1250℃~1600℃,保温时间为0.5h~24h;
    所述第二升温速率为10℃/min,所述第二温度为1600℃~2000℃,保温时间为0.5h~24h。
  8. 根据权利要求5所述的制备方法,其特征在于,所述陶瓷浆料中所述球形颗粒的体积百分比含量为45%~70%;
    所述硅粉的纯度为95%~100%,粒径小于10μm。
  9. 根据权利要求5所述的制备方法,其特征在于,所述分散剂选自油酸、硬脂酸、聚乙烯吡咯烷酮、六偏磷酸钠、聚丙烯酸钠、酯基季铵盐和聚乙二醇辛基苯基醚中的至少一种。
  10. 根据权利要求5所述的制备方法,其特征在于,所述混合粉末与分散剂的混合质量比为(95~99.99)∶(0.01~5)。
PCT/CN2018/098401 2018-05-31 2018-08-03 一种氮化硅陶瓷及其制备方法 WO2019227661A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810553737.4 2018-05-31
CN201810553737.4A CN108558411B (zh) 2018-05-31 2018-05-31 一种Si3N4陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
WO2019227661A1 true WO2019227661A1 (zh) 2019-12-05

Family

ID=63552664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098401 WO2019227661A1 (zh) 2018-05-31 2018-08-03 一种氮化硅陶瓷及其制备方法

Country Status (2)

Country Link
CN (1) CN108558411B (zh)
WO (1) WO2019227661A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796208B (zh) * 2019-03-28 2022-04-19 西安增材制造国家研究院有限公司 一种Si3N4陶瓷结构件及其制备方法
CN110483062A (zh) * 2019-08-21 2019-11-22 广东工业大学 一种高性能氮化硅陶瓷及其制备方法和应用
CN111533561A (zh) * 2020-07-06 2020-08-14 佛山华骏特瓷科技有限公司 氮化硅基陶瓷球及其制备方法和应用
CN112341206A (zh) * 2020-11-05 2021-02-09 衡阳凯新特种材料科技有限公司 一种稀土镨钬稳定氮化硅陶瓷的成型方法
CN114621014B (zh) * 2022-03-09 2023-05-09 中国科学院上海硅酸盐研究所 一种高强度高热导氮化硅陶瓷材料及其制备方法
CN116813354A (zh) * 2023-06-06 2023-09-29 东莞理工学院 一种原位制备氮化硅陶瓷的方法、制得的氮化硅陶瓷及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104909765A (zh) * 2015-06-01 2015-09-16 广东工业大学 一种低成本、快速制备高性能Si3N4陶瓷球的方法
CN105884376A (zh) * 2016-04-01 2016-08-24 广东工业大学 一种硅粉流延制备氮化硅陶瓷基板的方法
CN106699191A (zh) * 2017-01-20 2017-05-24 广东工业大学 一种基于光固化成型的3d打印制备氮化硅陶瓷的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106810215B (zh) * 2017-01-18 2022-08-16 重庆摩方科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104909765A (zh) * 2015-06-01 2015-09-16 广东工业大学 一种低成本、快速制备高性能Si3N4陶瓷球的方法
CN105884376A (zh) * 2016-04-01 2016-08-24 广东工业大学 一种硅粉流延制备氮化硅陶瓷基板的方法
CN106699191A (zh) * 2017-01-20 2017-05-24 广东工业大学 一种基于光固化成型的3d打印制备氮化硅陶瓷的方法

Also Published As

Publication number Publication date
CN108558411A (zh) 2018-09-21
CN108558411B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2019227661A1 (zh) 一种氮化硅陶瓷及其制备方法
CN109794603B (zh) 一种3dp法三维打印的粉料和粘结剂及成形工艺
CN109761615B (zh) 一种光固化氮化铝陶瓷浆料及氮化铝陶瓷的制备方法
CN109400123B (zh) 一种细晶氧化铝陶瓷及其制备方法和应用
CN104909765A (zh) 一种低成本、快速制备高性能Si3N4陶瓷球的方法
WO2022183564A1 (zh) 一种可控网络陶瓷/金属复合材料制备工艺
CN104291814A (zh) 陶瓷耳机及制造方法
CN113735590B (zh) 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
CN112159226A (zh) 一种光固化氧化锆陶瓷浆料及其制备方法与应用
CN110803919A (zh) 一种3d打印用陶瓷粉末及其制备方法
CN113548903B (zh) 一种碳化硅增强氮化硅陶瓷及其制备方法
CN102992776B (zh) 一种h-BN/VC可加工陶瓷的制备方法
CN103011821B (zh) 一种h-BN/TiC可加工陶瓷的制备方法
CN103011826B (zh) 一种h-BN/ZrB2可加工陶瓷的制备方法
CN102964126B (zh) 一种h-BN/VB2可加工陶瓷的制备方法
CN102976761B (zh) 一种h-BN/ZrC可加工陶瓷的制备方法
KR20150123470A (ko) 세라믹 코어 및 이의 제조방법
CN102992774B (zh) 一种h-BN/HfB2可加工陶瓷的制备方法
CN112171848A (zh) 一种光固化碳化硅陶瓷浆料及其制备方法与应用
CN102992768B (zh) 一种h-BN/HfC可加工陶瓷的制备方法
CN110483062A (zh) 一种高性能氮化硅陶瓷及其制备方法和应用
CN103011820B (zh) 一种h-BN/NbC可加工陶瓷的制备方法
CN102992773B (zh) 一种h-BN/AlON可加工陶瓷的制备方法
KR102649336B1 (ko) 질화알루미늄 소결체의 제조 방법
CN115806433B (zh) 一种激光3d打印碳化硅复合陶瓷制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920292

Country of ref document: EP

Kind code of ref document: A1