WO2019225882A1 - Electrode lead assembly for secondary battery and method for manufacturing same - Google Patents

Electrode lead assembly for secondary battery and method for manufacturing same Download PDF

Info

Publication number
WO2019225882A1
WO2019225882A1 PCT/KR2019/005442 KR2019005442W WO2019225882A1 WO 2019225882 A1 WO2019225882 A1 WO 2019225882A1 KR 2019005442 W KR2019005442 W KR 2019005442W WO 2019225882 A1 WO2019225882 A1 WO 2019225882A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode lead
insulating member
electrode
sealing member
adhesive layer
Prior art date
Application number
PCT/KR2019/005442
Other languages
French (fr)
Korean (ko)
Inventor
정성헌
이병영
김현태
Original Assignee
(주)네패스디스플레이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)네패스디스플레이 filed Critical (주)네패스디스플레이
Publication of WO2019225882A1 publication Critical patent/WO2019225882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a pouch type secondary battery, and more particularly, to an electrode lead assembly for a secondary battery extending outward from an electrode assembly of an electrode cell accommodated in a pouch and a method of manufacturing the same.
  • secondary batteries are used as driving power sources for portable wireless devices and electric vehicles.
  • especially lithium secondary batteries have long life and high energy density, and demand is rapidly increasing.
  • a lithium battery is made of a flexible material, its shape can be freely designed.
  • lithium batteries are excellent in safety and light in weight, making them suitable for portable electronic devices.
  • Pouch-type lithium batteries are utilized for large-capacity batteries used in medium and large devices such as electric vehicles.
  • the pouch type secondary battery includes an electrode lead for electrical connection between the battery body and the outside when the electrode assembly is accommodated in a pouch which is an exterior material.
  • Such an electrode lead may shorten the electrode lead itself by a change in the pouch physically connected to the electrode lead when an abnormality occurs, thereby preventing explosion due to overcharging in advance, thereby improving stability and lifespan of the battery.
  • the use of the electrode lead to which the current blocking function is added may be used in any position where the physically connected portion is not limited to the inside of the pouch but can detect the change of the pouch shape.
  • the electrode lead when the electrode lead is composed of two-stage structure to implement the current blocking function, the electrode lead does not satisfy the same level of resistance as the one-stage structure and does not secure sufficient adhesion between the metal of the electrode lead and the insulating film. It does not secure the electrolyte resistance.
  • an embodiment of the present invention is to provide a secondary battery electrode lead assembly and a method of manufacturing the same that can effectively block the leakage of the electrolyte at the same time effectively performing the current blocking function.
  • an embodiment of the present invention is to provide a method of manufacturing an electrode lead assembly for a secondary battery that can improve the production efficiency by reducing the time required for the paste curing and film bonding process.
  • an embodiment of the present invention is to provide a method of manufacturing an electrode lead assembly for a secondary battery that can improve the airtightness between the insulating film on both sides of the electrode lead.
  • one side is connected to the electrode cell and the first electrode lead;
  • a second electrode lead disposed to face the first electrode lead to partially overlap the first electrode lead;
  • a conductive adhesive layer provided in an overlapping region between the first electrode lead and the second electrode lead;
  • a sealing member provided on the second electrode lead at the other end side of the first electrode lead;
  • an insulating member disposed to surround the sealing member and the overlapping region, the insulating member being disposed between each of the first electrode lead and the second electrode lead and an inner surface of the pouch.
  • the adhesive force between each of the first electrode lead and the second electrode lead and the conductive adhesive layer may be less than the adhesive force between the insulating member and the sealing member.
  • the first electrode lead and the second electrode lead is provided with an electrolytic resistant coating layer in a portion other than the overlap region, the width of the first electrode lead and the second electrode lead is the same, The length of the two-electrode lead may be longer than the length of the first electrode lead.
  • the ratio of the length of the second electrode lead to the length of the first electrode lead is 1: 3 to 1: 5, and the ratio of the area of the first electrode lead to the area of the overlapping region is 1: 2 to 1: 4.
  • the conductive adhesive layer may have a volume resistivity of 10 ⁇ 3 ⁇ ⁇ cm or less.
  • the sealing member has an inclined surface to compensate for the step difference between the first electrode lead and the second electrode lead, the thickness of the sealing member compared to the thickness of the first electrode lead and the second electrode lead 110 to 115%, and the sealing member may include the same material as the insulating member.
  • a bonding length between the sealing member and the second electrode lead is greater than a distance from one end of the second electrode lead to one end of the insulating member, and from the one end of the second electrode lead.
  • the distance to one end may be 2 mm or less.
  • the thickness of the insulating member may be 50 to 80% of the thickness of the first electrode lead and the second electrode lead.
  • the insulating member has a double or more laminated structure, and includes an insulating layer, a first adhesive layer, and a second adhesive layer, and at least a part of a space between the overlapping region and the insulating member is formed of the first adhesive layer. Can be filled by fusion.
  • the insulating member and the sealing member may be formed in a film shape.
  • one side is connected to the electrode cell and the first electrode lead;
  • a second electrode lead disposed to face the first electrode lead to partially overlap the first electrode lead;
  • a conductive adhesive layer provided in an overlapping region between the first electrode lead and the second electrode lead;
  • a sealing member provided on the second electrode lead at the other end side of the first electrode lead, wherein the first breaking force with respect to the entire region provided with the sealing member is the entire region provided with the conductive adhesive layer.
  • the electrode lead assembly for the secondary battery is provided to surround the sealing member and the overlapping region, the insulating member disposed between each of the first electrode lead and the second electrode lead and the inner surface of the pouch; Further, the third breaking force with respect to the entire area provided with the insulating member on the outside of each of the sealing member and the conductive adhesive layer may be less than the second breaking force.
  • a method comprising: partially plating a portion other than an overlapping region where a first electrode lead and a second electrode lead face each other with an electrolytic coating layer; Bonding the first electrode lead and the second electrode lead by applying a conductive paste to the overlapping region between the first electrode lead and the second electrode lead; Bonding a sealing member on the second electrode lead at the other end side of the first electrode lead; And bonding an insulating member to surround the sealing member and the overlapping region.
  • the method of manufacturing an electrode lead assembly for a secondary battery may include heating the first electrode lead and the second electrode lead to 120 to 200 ° C. to fill at least a portion of the space between the overlapping region and the insulating member.
  • the method may further include partially fusion bonding the insulating member.
  • the manufacturing method of the electrode lead assembly for secondary batteries is 4-8 seconds at 80 ⁇ 120 °C while pressing the pressure of 3 ⁇ 5kgf / cm2 after arranging the gloss adjustment sheet on the upper and lower sides of the insulating member
  • the heating may further include adjusting the glossiness of the insulating member.
  • the step of bonding the electrode lead is the coating of the conductive paste with a weight of 0.01 ⁇ 0.05mg / mm, 1 ⁇ at a temperature of 160 ⁇ 180 °C while pressing at a pressure of 5 ⁇ 10kgf / cm2
  • the conductive paste may be cured by heating for 10 minutes.
  • the step of bonding the insulating member may be heated to a temperature of 120 ⁇ 180 °C for 4-8 seconds while pressing at a pressure of 3 ⁇ 5kgf / cm2 to bond the insulating member.
  • the step of fusion welding may support both sides of the insulating member with a crimping tip to prevent sagging of the insulating member.
  • an electrode lead assembly for a secondary battery and a method of manufacturing the same may be configured to provide a current blocking function and leakage blocking of an electrolyte at the same time by configuring the electrode lead in two stages and adding a sealing member to the outside of the pouch. Reliability can be improved.
  • the present invention can improve resistance and adhesion while using an electrode lead having a two-stage structure by bonding the conductive region without plating to overlapping regions between the electrode leads.
  • the present invention can shorten the work time by adding pressure during paste curing or bonding process of each member, thereby improving productivity.
  • the airtightness between the electrode leads can be ensured between the insulating films and the reliability of the product can be improved.
  • FIG. 1 is a cross-sectional view illustrating a state in which an electrode lead assembly for a secondary battery according to an embodiment of the present invention is coupled to a pouch of a secondary battery;
  • FIG. 2 is a cross-sectional view illustrating a difference in breaking force of respective regions in FIG. 1;
  • FIG. 3 is a plan view of an electrode lead assembly for a secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along the X-ray of FIG.
  • FIG. 5 is a partially enlarged view of area A of FIG. 4;
  • FIG. 6 is a cross-sectional view taken along the line Y of FIG. 3;
  • FIG. 7 is a cross-sectional view illustrating a current blocking principle according to expansion of a secondary battery when overcharged in FIG. 1;
  • FIG. 8 is a flowchart illustrating a method of manufacturing an electrode lead assembly for a secondary battery according to an embodiment of the present invention
  • FIG. 9 is a plan view showing a partially plated state of an electrode lead
  • FIG. 10 is a cross-sectional view showing a bonding state of an electrode lead
  • FIG. 11 is a sectional view showing a bonding state of a sealing member
  • FIG. 12 is a plan view showing a bonding state of an insulating member
  • FIG. 13 is a cross-sectional view showing a bonding state of an insulating member
  • FIG. 14 is a cross-sectional view showing a step for joining an insulating member
  • 15 is a cross-sectional view showing a step for partially welding an insulating member
  • 16 is a cross-sectional view showing a state in which an insulating member is partially fused
  • 17 is a cross-sectional view showing a step for preventing sagging of an insulating member
  • the electrode lead assembly 100 for a secondary battery may include a first electrode lead 110, a second electrode lead 120, a conductive adhesive layer 130, and a sealing member 140. And an insulating member 150.
  • the electrode lead assembly 100 for a secondary battery is to pull out an electrode from the electrode cell 12 in the pouch 11 to the outside in the pouch type secondary battery.
  • the electrode lead assembly 100 for a secondary battery has a function of preventing the electrolyte solution contained in the pouch 11 from leaking out.
  • the electrode lead assembly 100 for the secondary battery has a structure in which the first electrode lead 110 and the second electrode lead 120 are stacked in two stages, thereby having a current blocking function.
  • the electrode lead assembly 100 for a secondary battery may be provided on at least one of both sides and a negative electrode of the secondary battery.
  • One side of the first electrode lead 110 is connected to the electrode cell 12 and the other side is electrically connected to the second electrode lead 120 through the conductive adhesive layer 130.
  • One side of the second electrode lead 120 is disposed to face the other side of the first electrode lead 110.
  • the second electrode lead 120 is disposed to overlap with a portion of the first electrode lead 110.
  • the first electrode lead 110 and the second electrode lead 120 may be made of metal.
  • the first electrode lead 110 and the second electrode lead 120 may include aluminum (Al) or copper (Cu).
  • the conductive adhesive layer 130 is provided in an overlapping region between the first electrode lead 110 and the second electrode lead 120.
  • the conductive adhesive layer 130 has a role of electrically connecting and bonding the first electrode lead 110 and the second electrode lead 120 at the same time.
  • the conductive adhesive layer 130 is broken when the inside of the pouch 11 is inflated due to overcharging or the like to separate the first electrode lead 110 and the second electrode lead 120.
  • the sealing member 140 is provided on the second electrode lead 120 at the other end side of the first electrode lead 110.
  • the sealing member 140 is to prevent the electrolyte inside the pouch 11 from leaking to the outside when the first electrode lead 110 and the second electrode lead 120 are separated.
  • the sealing member 140 is to improve the adhesive force between the electrode leads 110 and 120 and the insulating member 150.
  • the insulating member 150 is provided to surround the overlapping region between the sealing member 140 and the first electrode lead 110 and the second electrode lead 120. In this case, the insulating member 150 is disposed between each of the first electrode lead 110 and the second electrode lead 120 and the inner surface of the pouch 11.
  • the adhesive force between each of the first electrode lead 110 and the second electrode lead 120 and the conductive adhesive layer 130 may be smaller than the adhesive force between the insulating member 150 and the sealing member 140.
  • the adhesive force between the first electrode lead 110 and the second electrode lead 120 is 10 N / cm (UTM) or less, and the adhesive force between the insulating member 150 and the electrode leads 110 and 120 is 10 N / cm ( UTM).
  • the adhesive force between each component as described above may be described as the breaking force for each region.
  • the first breaking force with respect to the entire area A provided with the sealing member 140 is greater than the second breaking force with respect to the entire area B provided with the conductive adhesive layer 130.
  • the third breaking force with respect to the entirety of the region C in which the insulating member 150 is provided outside the sealing member 14 and the conductive adhesive layer 130 may be smaller than the third breaking force.
  • the second breaking force may have a size of 30 to 70% with respect to the first breaking force
  • the third breaking force may have a size of 0 to 30%.
  • the third breaking force is 0 when the insulating member 150 is not provided outside the sealing member 140 and the conductive adhesive layer 130.
  • the first electrode lead 110 and the second electrode lead 120 may be broken first to cut off the current.
  • a detailed configuration for implementing such a current interruption function will be described in more detail below.
  • the widths of the first electrode lead 110 and the second electrode lead 120 are the same, and the length L2 of the second electrode lead 120 is equal to the length of the first electrode lead 110. It may be longer than L1).
  • the ratio of the length L2 of the second electrode lead 120 to the length L1 of the first electrode lead 110 may be 1: 3 to 1: 5.
  • the length L1 of the first electrode lead 110 accommodated inside the pouch 11 is relatively large, thereby degrading the current blocking function. That is, when the length L1 of the first electrode lead 110 becomes longer, the conductive adhesive layer between the first electrode lead 110 and the second electrode lead 120 may expand due to expansion of the inside of the pouch 11 due to overcharge or the like. 130) the force to break is weakened.
  • the length L1 of the first electrode lead 110 becomes relatively long, the size of the pouch 11 for accommodating the first electrode lead 110 increases, which adversely affects the miniaturization of the secondary battery.
  • the ratio is greater than 1: 5
  • the length L2 of the second electrode lead 120 drawn out of the pouch 11 becomes unnecessarily large, resulting in an increase in material cost and waste of resources.
  • the overlapping region where the first electrode lead 110 and the second electrode lead 120 are bonded may be determined in consideration of the adhesive force and workability therebetween.
  • the ratio of the area of the first electrode lead 110 to the area of the overlapping region between the first electrode lead 110 and the second electrode lead 120 may be 1: 2 to 1: 4.
  • the width of the overlapping region between the first electrode lead 110 and the second electrode lead 120 ( The ratio of the length L1 of the first electrode lead 110 to W3) may be 1: 2 to 1: 4.
  • the current blocking function is deteriorated because the width W3 of the overlapping region between the first electrode lead 110 and the second electrode lead 120 increases relatively. That is, since the adhesive force between the first electrode lead 110 and the second electrode lead 120 increases, the first electrode lead 110 and the second electrode lead 120 are expanded due to the expansion of the inside of the pouch 11 due to overcharge or the like. The force at which the conductive adhesive layer 130 breaks between the layers becomes weak.
  • the width W3 of the overlapping region between the first electrode lead 110 and the second electrode lead 120 is relatively reduced, so that the first electrode lead 110 is reduced.
  • the adhesive force between the second electrode lead 120 decreases. Therefore, the conductive adhesive layer 130 between the first electrode lead 110 and the second electrode lead 120 is easily broken even by the small expansion inside the pouch 11 due to overcharge or the like, thereby lowering the reliability of the product.
  • the first electrode lead 110 and the second electrode lead 120 may be provided with electrolytic coating layers 112 and 122 at portions other than the overlap regions 110a and 120a. That is, since some of the first electrode lead 110 and the second electrode lead 120 are exposed to the electrolyte contained in the pouch 11, the first electrode lead 110 and the second electrode lead 120 may be plated with an electrolytic resistant material to prevent oxidation.
  • the coating layers 112 and 122 may include nickel (Ni).
  • the first electrode lead 110 and the second electrode lead through the conductive adhesive layer 130 may be increased to improve the resistance between the first electrode lead 110 and the second electrode lead 120 due to the two-stage structure.
  • the contact resistance is preferably minimized to be within 10% of the resistance of the first electrode lead.
  • the conductive adhesive layer 130 is preferably low in electrical conductivity.
  • the conductive adhesive layer 130 may have a volume resistivity of 10 ⁇ 3 ⁇ ⁇ cm or less to minimize contact resistance.
  • the electrical resistance between the first electrode lead 110 and the second electrode lead 120 is increased to prevent unnecessary power consumption and heat generation.
  • the thickness of the conductive adhesive layer 130 may be 20 ⁇ 100 ⁇ m.
  • the thickness of the conductive adhesive layer 130 is smaller than 20 ⁇ m, the adhesive force decreases and the contact resistance between the first electrode lead 110 and the second electrode lead 120 increases.
  • the thickness of the conductive adhesive layer 130 is greater than 100 ⁇ m, the overall thickness of the two-stage stacked structure of the first electrode lead 110 and the second electrode lead 120 increases to increase the thickness of the first electrode lead 110. Since the step difference between the second electrode lead 120 increases, adhesion between the first electrode lead 110 and the second electrode lead 120 and the insulating member 150 is inferior.
  • the conductive adhesive layer 130 may be formed of a material having a resistance to the electrolyte while providing the adhesive strength with the first electrode lead 110 and the second electrode lead 120 or more.
  • the conductive adhesive layer 130 may be made of a material whose characteristics such as drying conditions and viscosity match the process workability.
  • the sealing member 140 is to improve the adhesive force between the electrode leads 110 and 120 and the insulating member 150.
  • the sealing member 140 may include the same material as the insulating member 150. Thereby, adhesion of the sealing member 140 and the insulating member 150 is easy, and the adhesive force can be improved.
  • the junction length W2 between the sealing member 140 and the second electrode lead 120 is the distance W1 from one end of the second electrode lead 120 to one end of the insulating member 150. Can be greater than
  • the adhesion between the electrode leads 110 and 120 and the insulation member 150 by the sealing member 140 is greater than the adhesion between the first electrode lead 110 and the second electrode lead 120.
  • a break occurs first between the 110 and the second electrode lead 120 to cut off the current.
  • the sealing member 140 is to compensate for the step between the first electrode lead 110 and the second electrode lead 120 to improve the adhesion to the insulating member 150 when sealing the pouch 11.
  • the sealing member 140 may have an inclined surface to compensate for a step between the first electrode lead 110 and the second electrode lead 120.
  • the width of the sealing member 140 may be equal to the width of the first electrode lead 110 and the second electrode lead 120.
  • the thickness of the sealing member 140 may be 110 to 115% of the thickness t1 of the first electrode lead 110 and the thickness t2 of the second electrode lead 120.
  • the thickness of the sealing member 140 is smaller than 110% of the thicknesses t1 and t2 of the electrode leads 110 and 120, sufficient airtightness between the first electrode lead 110 and the second electrode lead 120 is ensured. can not do. That is, the electrolyte in the pouch 11 leaks to the outside, and reduces the stability of a product.
  • the step compensation effect between the first electrode lead 110 and the second electrode lead 120 Can not provide. That is, the flatness of the electrode lead assembly 100 for secondary batteries is lowered, and thus the adhesive force between each of the first electrode lead 110 and the second electrode lead 120 and the inner surface of the pouch 11 is lowered.
  • the distance W1 from one end of the second electrode lead 120 to one end of the insulating member 150 may be 2 mm or less.
  • the adhesive force between the insulating members 150 is greater than the adhesive force of the conductive adhesive layer 130 between the first electrode lead 110 and the second electrode lead 120. Therefore, the current blocking function between the first electrode lead 110 and the second electrode lead 120 is reduced. That is, the breakdown force of the conductive adhesive layer 130 is lowered because the insulating member 150 does not break even in the region corresponding to the distance W3 due to expansion inside the pouch 11 due to overcharge or the like.
  • the insulating member 150 may be made of an insulating and heat sealable material.
  • the insulating member 150 may be formed of any one or more material layers selected from polyimide (PI), polyprophylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and the like. Can be done.
  • the insulating member 150 may have a stack structure of two or more. Preferably, the insulating member 150 may have a triple or more stacked structure. Referring to FIG. 6, the insulating member 150 may include a first adhesive layer 151, an insulating layer 152, and a second adhesive layer 153.
  • the first adhesive layer 151 may be made of a material having excellent adhesive strength with the first electrode lead 110 and the second electrode lead 120.
  • the first adhesive layer 151 may be made of modified polypropylene to which maleic acid is added.
  • the second adhesive layer 153 may be made of a material having excellent adhesion with the pouch 11.
  • the second adhesive layer 153 may be made of CPP (non-stretched polypropylene film).
  • the insulating layer 152 may be configured to provide high insulation between the pouch 11 and the electrode leads 110 and 1200 and to improve adhesion to the adhesive layers 151 and 153.
  • the insulating layer 152 may be formed in the form of a nonwoven fabric (polyolefin-based, such as polyflopropylene).
  • the insulating layer 152 may be made of high crystallized polypropylene (HCPP).
  • the insulating member 150 may be easily bonded to the first electrode lead 110, the second electrode lead 120, and the pouch 11, and the adhesive force may increase.
  • At least a part 151 ′ of the space between the overlapping region between the first electrode lead 110 and the second electrode lead 120 and the insulating member 150 is formed on the first adhesive layer 151. Can be filled by fusion.
  • the insulating member 150 is attached to the first electrode lead 110 and the second electrode lead 120, only the electrode leads 110 and 120 are additionally heated to form the insulating member 150.
  • the first adhesive layer 151 may be further fused to fill the space 151 ′ between the overlapping region between the first electrode lead 110 and the second electrode lead 120 and the insulating member 150. Therefore, the space between the overlapping region between the first electrode lead 110 and the second electrode lead 120 and the insulating member 150 may be reduced or removed to a predetermined region (a).
  • the overall width of the insulating member 150 may be partially fused without being expanded to improve the adhesive force, and the overall flatness of the insulating member 150 may be increased.
  • the airtightness between the insulating member 150 can be improved.
  • the thickness of the insulating member 150 may be 50 to 80% of the thicknesses t1 and t2 of the lead electrodes 110 and 120.
  • the step of the lead electrodes 110 and 120 during welding for bonding the insulating members 150 may be reduced. The stretching is increased, so that the bonding with the lead electrodes 110 and 120 may not be sufficiently achieved, and the insulating property is deteriorated, resulting in insulation breakdown and leakage of the electrolyte during sealing of the pouch 11.
  • the thickness of the insulating member 150 is greater than 80% with respect to the thicknesses t1 and t2 of the lead electrodes 110 and 120, since the thickness of the insulating member 150 becomes unnecessarily large, the pouch 11 is subsequently sealed. There is a fear of secondary contamination due to increased working time and leakage of unwanted resin of the insulating member 150.
  • the sealing member 140 and the insulating member 150 may be formed in a film shape. As a result, when the sealing member 140 and the insulating member 150 are attached to the first electrode lead 110 and the second electrode lead 120, they can be easily bonded by fusion due to heating, and at the same time, the adhesion strength can be improved. Can be.
  • the adhesive force between the insulating member 150 and the electrode leads 110 and 120 is greater than the adhesive force between the electrode leads 110 and 120, breakage of the conductive adhesive layer 130 ′ occurs first, so that the first electrode lead 110 and the first electrode lead 110 may be formed.
  • the power applied from the outside through the second electrode lead 120 is cut off, and thus the current can be cut off.
  • the inner side of the pouch 11 is separated between the electrode leads 110 and 120 around the overlapping region between the first electrode lead 110 and the second electrode lead 120, but the outer side of the overlapping region is the sealing member 140. ) And adhesion may be maintained by the adhesive force of the insulating member 150.
  • the electrolyte solution in the pouch 11 is interrupted by the sealing member 140 and the insulating member 150, it can prevent that the pouch 11 leaks outside. Therefore, the current blocking function can be effectively performed and the leakage of the electrolyte can be reliably cut off, thereby improving the reliability of the product.
  • the method 200 of manufacturing an electrode lead assembly for a secondary battery includes steps of partially plating an electrode lead (S210), bonding an electrode lead (S220), bonding a sealing member (S230), and bonding an insulating member. (Step S240).
  • first, partial plating of the first electrode lead 110 and the second electrode lead 120 is performed with the electrolytic coating layer on portions other than the overlapping regions facing each other (step). S210).
  • the first electrode lead 110 and the second electrode lead 120 may be made of metal having the same width and different lengths.
  • the first electrode lead 110 and the second electrode lead to facilitate the separation efficiency between the electrode lead (110, 120) and the electrode lead (110, 120) as the electrode lead (110, 120) is composed of a two-stage stacked structure.
  • the length of 120 can be determined.
  • the length ratio of the second electrode lead 120 to the first electrode lead 110 may be 1: 3 to 1: 5.
  • the coating layer 112 may be formed by partial plating except for the portion 110a that is bonded to the second electrode lead 120 on one surface of the first electrode lead 110. That is, the upper surface of the first electrode lead 110 may be fully plated and the lower surface of the first electrode lead 110 may be partially plated.
  • the coating layer 122 may be formed by partially plating. That is, the lower surface of the second electrode lead 120 may be fully plated and the upper surface may be partially plated. At this time, the metal plate constituting the first electrode lead 110 and the second electrode lead 120 may be plated after masking the partial regions 110a and 120a.
  • the electrical resistance between the first electrode lead 110 and the second electrode lead 120 is reduced. At the same time, it is possible to improve contact resistance and adhesion with the conductive adhesive layer 130.
  • the areas of the unplated portions 110a and 120a may be determined in consideration of workability while providing sufficient adhesive force between the first electrode lead 110 and the second electrode lead 120.
  • the ratio of the area of the unplated portion 110a to the total area of the first electrode lead 110 may be 1: 2 to 1: 4.
  • the unplated portion 120a of the second electrode lead 120 may have the same area as the unplated portion 110a of the first electrode lead 110.
  • the coating layers 112 and 122 are for preventing oxidation of the first electrode lead 110 and the second electrode lead 120, resistance to the electrolyte, and adhesion to the insulating member 150.
  • first electrode lead 110 and the second electrode lead 120 may be surface treated to improve weldability for connection with the electrode cell 12 or the outside.
  • round processing may be performed at corners corresponding to the joint portion with the insulating member 150. That is, in FIG. 9, upper and lower edges of the first electrode lead 110 and the second electrode lead 120 may be rounded. As a result, the airtightness of the first electrode lead 110 and the second electrode lead 120 with the insulating member 150 can be improved.
  • Step S220 the conductive paste 130 is applied to the overlapping regions 110a and 120a between the first electrode lead 110 and the second electrode lead 120 to form the first electrode lead 110 and the second electrode lead 120.
  • the conductive paste 130 is coated on the unplated portion 120a of the second electrode lead 120, and the unplated portion of the first electrode lead 110 is disposed on the conductive paste 130.
  • 110a) are arranged to face each other.
  • the first electrode lead 110 and the second electrode lead 120 may be aligned so as not to leave the unplated portions 110a and 120a and the corners.
  • the amount of application of the conductive paste 130 may be determined such that leakage does not occur when the first electrode lead 110 and the second electrode lead 120 are bonded to each other, and the thickness becomes 20 to 100 ⁇ m after the curing process.
  • the conductive paste 130 may be coated to have a weight of 0.01 to 0.05 mg / mm 2 after application in consideration of adhesion and resistance between the first electrode lead 110 and the second electrode lead 120.
  • the conductive paste 130 may be formed of a material that provides a predetermined level of adhesion with the first electrode lead 110 and the second electrode lead 120 and minimizes contact resistance.
  • the conductive paste 130 may be resistant to the electrolyte, and may be made of a material whose characteristics such as drying conditions and viscosity match process processability.
  • the conventional process of heating to a predetermined temperature for curing the conductive paste 130 takes a lot of time.
  • a gap is generated between the first electrode lead 110 and the second electrode lead 120 by the volume expansion of the conductive paste 130 during curing, thereby increasing the resistance.
  • the present invention adds pressure to the electrode leads 110 and 120 simultaneously with heating. That is, the conductive paste 130 is heated and cured to a predetermined temperature while pressing the first electrode lead 110 and the second electrode lead 120 at a predetermined pressure.
  • first electrode lead 110 and the second electrode lead 120 For example, while pressing the first electrode lead 110 and the second electrode lead 120 at a pressure of 5 ⁇ 10kgf / cm2 and heated for 1 to 10 minutes at a temperature of 160 ⁇ 180 °C conductive paste 130 Can be cured.
  • the heating temperature of the conductive paste 130 is less than 160 ° C.
  • the time required for the conductive paste 130 to cure increases to increase the work time and consequently decrease the fishability.
  • the heating temperature of the conductive paste 130 is greater than 180 ° C., the curing property of the conductive paste 130 is lowered and the adhesion between the first electrode lead 110 and the second electrode lead 120 is lowered.
  • the heating time of the electrically conductive paste 130 is less than 1 minute, hardening of the electrically conductive paste 130 is not fully performed.
  • the heating time of the conductive paste 130 exceeds 10 minutes, the adhesion to the insulating member is lowered due to the metal surface oxidation, which is the electrode leads 110 and 120, and the productivity decreases due to unnecessary time increase.
  • the sealing member 140 is disposed on the second electrode lead 120 at the other end side of the first electrode lead 110 and bonded (step S230).
  • the sealing member 140 is to prevent the electrolyte solution inside the pouch 11 from leaking to the outside when the first electrode lead 110 and the second electrode lead 120 are separated.
  • the sealing member 140 may be disposed at a step between the first electrode lead 110 and the second electrode lead 120, and then bonded by fusion by heating.
  • the sealing member 140 since the sealing member 140 remains in a part of the first electrode lead 110, it may be removed for the planarization on the first electrode lead 110.
  • the sealing member 140 may be disposed above the second electrode lead 120 at the outer side of the first electrode lead 110.
  • the sealing member 140 is to improve the adhesive force between the electrode leads 110 and 120 and the insulating member 150.
  • the sealing member 140 may include the same material as the insulating member 150. Thereby, adhesion with the insulating member 150 is easy and adhesive force can be improved.
  • the sealing member 140 is to compensate for the step between the first electrode lead 110 and the second electrode lead 120 to improve the adhesion to the insulating member 150 when sealing the pouch 11.
  • the width of the sealing member 140 may be equal to the width of the first electrode lead 110 and the second electrode lead 120.
  • the thickness of the sealing member 140 may be 110 to 115% of the thickness t1 of the first electrode lead 110 and the thickness t2 of the second electrode lead 120.
  • the flatness of the secondary battery electrode lead assembly 100 may be uniformly formed by compensating for the step difference caused by the two-stage structure of the first electrode lead 110 and the second electrode lead 120. Thereby, workability at the time of joining the insulating member 150 and the pouch 11 which are a later process can be ensured.
  • the sealing member 140 may have an inclined surface to compensate for the step difference between the first electrode lead 110 and the second electrode lead 120.
  • the insulating member 150 is bonded to surround the overlapping region between the sealing member 140 and the first electrode lead 110 and the second electrode lead 120 (step S240).
  • the insulating member 150 may have a width greater than the width of the first electrode lead 110 and the second electrode lead 120.
  • the insulating member 150 may satisfy a bonding force with the first electrode lead 110, the second electrode lead 120, and the pouch 11 at the same time, and may be a material having resistance to the electrolyte.
  • the insulating member 150 is disposed to surround the overlapping region between the sealing member 140 and the first electrode lead 110 and the second electrode lead 120.
  • the insulating member 150 overlaps between the first electrode lead 110 and the second electrode lead 120 to facilitate separation between the first electrode lead 110 and the second electrode lead 120 when the current is interrupted. It may be arranged to be biased toward the region side.
  • the distance W1 from one end of the second electrode lead 120 to one end of the insulating member 150 may be 2 mm or less (see FIG. 4).
  • the thickness and width of the insulating member 150 may be determined in consideration of the change in fusion and the stretching due to the step according to the two-stage structure of the electrode leads 110 and 120.
  • the thickness of the insulating member 150 may be 50 to 80% of the thicknesses t1 and t2 of the lead electrodes 110 and 120.
  • pressure tips 21 to 26 having heaters are separately disposed on upper and lower portions of the insulating member 150 to be fused.
  • separate pressurizing tips 21 to 26 may be disposed by separating the insulating member 150 and the electrode leads 110 and 120 so as to uniformly transfer sufficient heat during fusion.
  • each pressurizing tip 21 to 26 may individually adjust the temperature so that a temperature difference does not occur for each position.
  • the electrode leads tips 23 to 26 may be individually adjusted to adjust by the step difference between the electrode leads 110 and 120.
  • the tips 21 and 22 for the insulating member perform a fusion process for a predetermined time while setting the temperature to the melting point level of the insulating member 150 and pressing to a predetermined temperature.
  • the insulating member 150 may be bonded by heating at a temperature of 120 to 180 ° C. for 4 to 8 seconds while pressing at a pressure of 3 to 5 kgf / cm 2.
  • the flatness may not be uniformly formed by the step between the first electrode lead 110 and the second electrode lead 120.
  • pressurized at a pressure greater than 5 kgf / cm 2 the stretching of the insulating member 150 increases, thereby lowering the insulation of the insulating member 150 or the tolerance of the dimensions required for the design.
  • the electrode leads tips 23 to 26 are heated to a constant temperature to maintain the temperature of the insulating member 150 for the compression time.
  • the first electrode lead 110 and the second electrode lead 120 are heated to 120 to 200 ° C.
  • the fusion characteristics are lowered due to the nonuniformity of the temperature at the edge portion of the insulating member 150.
  • the insulating member 150 is drawn to the first electrode lead 110 and the second electrode lead 120 side does not satisfy the size specifications.
  • the method 200 of manufacturing an electrode lead assembly for a secondary battery may further include partially fusion bonding the insulating member (S250).
  • the insulation members 150 and the tips 21 to 26 on the electrode leads 110 and 120 are heated and pressed, and fusion between the electrode leads 110 and 120 and the insulation member 150 is performed. Due to the two-stage lead structure compared to the structure, the flatness of the electrode leads 110 and 120 is uniformly maintained, the thickness is maintained so that the insulation of the insulating member 150 is not destroyed, and the adhesion strength is not increased. It is not easy to secure.
  • the present invention is performed by dividing the fusion section of the insulating member 150 into one or more times according to characteristics. That is, it may be performed by dividing the temporary section for determining the position of the insulating member 150 on the electrode leads 110, 120, the bubble removing section between the insulating member 150 and the section for securing the surface airtightness and edge tightness.
  • the provisional section is the same as described with reference to step S240.
  • the insulation member 150 is compressed, only the first electrode lead 110 and the second electrode lead 120 are heated using the electrode tips 22 to 26.
  • the first electrode lead 110 and the second electrode lead 120 are heated to 120 to 200 ° C. for 4 to 8 seconds.
  • the space between the insulating member 150 and the electrode leads 110 and 120 may be reduced or removed to a predetermined region (a).
  • the insulating member 150 may be planarized as a whole to remove external defects.
  • the airtightness between the electrode leads 110 and 120 and the insulating member 150 may be improved at both sides of the insulating member 150.
  • the insulating member 150 extends to both sides of the first electrode lead 110 and the second electrode lead 120, sag may occur due to heating of the electrode leads 110 and 120 during the airtightness securing process.
  • the present invention uses a tip 27 for supporting the left and right sides of the insulating member 150.
  • the tip 27 for preventing sagging of the insulating member may have a concave shape having a receiving portion of the insulating member 150.
  • the electrode leads 110 and 120 are heated while the tip 27 for preventing sagging of the insulating member is disposed in the width direction of the insulating member 150.
  • the sag-prevention tip 27 supports both sides 150a of the insulating member 150, and accommodates the electrode lead two-stage stacked structure so as not to contact the recessed portion. Thereby, sagging of the width direction of the insulating member 150 can be prevented.
  • urethane or Teflon tape can be prevented from leaving marks on the insulating member 150 by the sagging preventing tip 27.
  • the manufacturing method 200 of the electrode lead assembly for the secondary battery may further include adjusting the gloss of the insulating member (S260).
  • the insulating member 150 since the insulating member 150 is formed in a film form, it generally has a gloss. At this time, since the alignment means used in the process is made of an optical element, when using the insulating member 150 having a gloss, the alignment error is likely to occur due to the reflection of light.
  • the present invention changes the insulating member 150 to matt or adjusts the glossiness. That is, after the fusion of the insulating member 150 is completed, the overall glossiness of the insulating member 150 may be selectively adjusted to be glossy or matte by additional fusion.
  • the insulating member 150 may be intimately contacted with air as much as possible within a few seconds after the heat of the electrode leads 110 and 120 has not cooled.
  • the insulating member 150 can be adjusted to be matt.
  • the insulating member 150 may be manufactured to be polished through natural cooling without additional sealing cooling such as a pressing tip.
  • the gloss adjustment sheet may be separately attached to the upper and lower surfaces of the insulating member 150.
  • the gloss adjustment sheet 30 is disposed on the upper and lower sides of the insulating member 150, and pressurized and heated by the pressure tips 28 and 29.
  • the gloss adjustment sheet 30 has elasticity so as to be completely in contact with the insulating member 150 side.
  • the pressing tips 28 and 29 are heated to a temperature at which the height of the insulating member 150 does not change, and the gloss adjusting sheet 30 is pressed at a predetermined pressure to closely adhere to the insulating member 150.
  • the glossiness of the insulating member 150 may be adjusted by heating the pressing tips 28 and 29 at a pressure of 3 to 5 kgf / cm 2 for 4 to 8 seconds at 80 to 120 ° C.
  • the glossiness of the insulating member 150 by the glossiness adjusting sheet 30 is not fully expressed.
  • the insulating member 150 is melted to deform the standard, such as height.
  • the present invention can improve the reliability of the product by providing a current blocking function and leakage blocking of the electrolyte at the same time, and can improve the resistance and adhesion while using the electrode lead of the two-stage structure, can shorten the time required for work Productivity can be improved, and since the airtightness with an insulating film can be ensured on both sides of an electrode lead, reliability of a product can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Provided are an electrode lead assembly for a secondary battery and a method for manufacturing same. An electrode lead assembly for a secondary battery according to an embodiment of the present invention comprises: a first electrode lead having one side connected to an electrode cell; a second electrode lead disposed opposite to the first electrode lead to partially overlap the first electrode lead; a conductive adhesive layer disposed in an overlapping area between the first electrode lead and the second electrode lead; a sealing member disposed on the second electrode lead at the end of the other side of the first electrode lead; and an insulating member disposed to surround the sealing member and the overlapping area and disposed between an inner surface of a pouch and each of the first electrode lead and the second electrode lead.

Description

이차 전지용 전극 리드 조립체 및 그의 제조 방법Electrode Lead Assembly for Secondary Battery and Manufacturing Method Thereof
본 발명은 파우치형 이차 전지에 관한 것으로, 특히, 파우치 내에 수용되는 전극셀의 전극조립체로부터 외부로 연장되는 이차 전지용 전극 리드 조립체 및 그의 제조 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pouch type secondary battery, and more particularly, to an electrode lead assembly for a secondary battery extending outward from an electrode assembly of an electrode cell accommodated in a pouch and a method of manufacturing the same.
일반적으로 이차 전지는 휴대용 무선기기, 전기 자동차 등의 구동용 전원으로 사용되고 있다. 그 중에서 특히 리튬 이차 전지는 수명이 길고 에너지 밀도가 높은 특징이 있어서, 수요가 급격하게 증가하고 있다. 최근, 리튬전지는 유연성을 갖는 소재로 제조되기 때문에 그 형상을 자유롭게 설계할 수 있다. 또한, 리튬 전지는 안전성이 우수하고, 무게가 가벼워서 휴대용 전자기기에 적합하다. In general, secondary batteries are used as driving power sources for portable wireless devices and electric vehicles. Among them, especially lithium secondary batteries have long life and high energy density, and demand is rapidly increasing. In recent years, since a lithium battery is made of a flexible material, its shape can be freely designed. In addition, lithium batteries are excellent in safety and light in weight, making them suitable for portable electronic devices.
전기 자동차와 같은 중대형 기기에 사용되는 대용량 전지는 파우치(pouch)형 리튬 전지가 활용되고 있다. 여기서, 파우치형 이차 전지는 전극조립체를 외장재인 파우치에 수납할 때, 전지 본체와 외부와의 전기적인 연결을 위하여 전극 리드를 구비한다. Pouch-type lithium batteries are utilized for large-capacity batteries used in medium and large devices such as electric vehicles. Here, the pouch type secondary battery includes an electrode lead for electrical connection between the battery body and the outside when the electrode assembly is accommodated in a pouch which is an exterior material.
한편, 이차 전지는 과충방전시 전해액의 분해 반응 과정에서 열이 수반되므로 전지의 발화 및 폭발 등의 발생가능성이 있기 때문에 안전성 요구가 더욱 높아지고 있다. 전지셀 내부의 안정성을 향상시키기 위해 전류 차단(CI; Current Interrupt)기능이 부가된 전극 리드가 제안되고 있다.On the other hand, since the secondary battery is accompanied by heat during the decomposition reaction of the electrolyte during overcharging and discharging, there is a possibility that the battery may be ignited and exploded, and thus safety requirements are further increased. In order to improve stability inside a battery cell, an electrode lead to which a current interrupt (CI) function is added has been proposed.
이와 같은 전극 리드는 이상발생시 전극 리드와 물리적으로 연결된 파우치의 변화에 의해 전극 리드 자체가 단락됨으로써 과충전에 의한 폭발을 사전에 차단하므로 배터리의 안정성 및 수명을 향상시킬 수 있다. 여기서, 전류 차단 기능이 부가된 전극 리드의 사용은 물리적으로 연결된 부분이 파우치 내부에만 국한되는 것이 아니라 파우치 형상이 변화됨을 감지할 수 있는 위치에는 모두 사용될 수 있다. Such an electrode lead may shorten the electrode lead itself by a change in the pouch physically connected to the electrode lead when an abnormality occurs, thereby preventing explosion due to overcharging in advance, thereby improving stability and lifespan of the battery. Here, the use of the electrode lead to which the current blocking function is added may be used in any position where the physically connected portion is not limited to the inside of the pouch but can detect the change of the pouch shape.
파우치형 이차 전지에서 전류 차단 기능을 구현하기 위해 전극 리드를 2단 구조로 구성하는 경우, 1단 구조와 동등한 수준의 저항을 만족하지 못하고, 전극 리드의 금속과 절연 필름 사이에 충분한 접착력을 확보하지 못하며, 그로 인해 내전해액성을 확보하지 못한다. In the case of the pouch type secondary battery, when the electrode lead is composed of two-stage structure to implement the current blocking function, the electrode lead does not satisfy the same level of resistance as the one-stage structure and does not secure sufficient adhesion between the metal of the electrode lead and the insulating film. It does not secure the electrolyte resistance.
또한, 한정된 장착 공간에 잦은 진동과 강한 충격 등에 노출되는 모터에 의해 동력을 받아 움직이는 파워 툴에 적용되는 EV 용일 경우 진동에 내성이 가능한 수준의 금속 접착력과 더불어 전류 차단 기능을 작동하기 위한 일정수준의 접착력도 동시 만족하는 방안이 요구되고 있다. In addition, for EVs applied to a power tool driven by a motor exposed to frequent vibrations and strong shocks in a limited mounting space, a level of metal adhesion that can withstand vibrations and a certain level to operate a current blocking function There is a demand for a method of satisfying the adhesive force at the same time.
상기와 같은 종래 기술의 문제점을 해결하기 위해, 본 발명의 일 실시예는 전류 차단 기능을 효과적으로 수행하는 동시에 전해액의 누설을 안정적으로 차단할 수 있는 이차 전지용 전극 리드 조립체 및 그의 제조 방법을 제공하고자 한다.In order to solve the problems of the prior art as described above, an embodiment of the present invention is to provide a secondary battery electrode lead assembly and a method of manufacturing the same that can effectively block the leakage of the electrolyte at the same time effectively performing the current blocking function.
또한, 본 발명의 일 실시예는 페이스트 경화 및 필름 접합 공정시 작업 소요 시간을 단축하여 제조 효율성을 향상시킬 수 있는 이차 전지용 전극 리드 조립체의 제조 방법을 제공하고자 한다.In addition, an embodiment of the present invention is to provide a method of manufacturing an electrode lead assembly for a secondary battery that can improve the production efficiency by reducing the time required for the paste curing and film bonding process.
또한, 본 발명의 일 실시예는 전극 리드의 양측에서 절연 필름과의 사이에 기밀성을 향상시킬 수 있는 이차 전지용 전극 리드 조립체의 제조 방법을 제공하고자 한다.In addition, an embodiment of the present invention is to provide a method of manufacturing an electrode lead assembly for a secondary battery that can improve the airtightness between the insulating film on both sides of the electrode lead.
위와 같은 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 일측이 전극셀에 연결되며 제1전극 리드; 상기 제1전극 리드와 일부가 중첩되도록 상기 제1전극 리드와 대향하여 배치되는 제2전극 리드; 상기 제1전극 리드와 상기 제2전극 리드 사이의 중첩 영역에 구비되는 도전성 접착층; 상기 제1전극 리드의 타측 단부측에서 상기 제2전극 리드 상에 구비되는 밀봉 부재; 및 상기 밀봉 부재 및 상기 중첩 영역을 둘러쌓도록 구비되되, 상기 제1전극 리드 및 상기 제2전극 리드 각각과 파우치의 내면 사이에 배치되는 절연 부재;를 포함하는 이차 전지용 전극 리드 조립체가 제공된다. According to an aspect of the present invention for solving the above problems, one side is connected to the electrode cell and the first electrode lead; A second electrode lead disposed to face the first electrode lead to partially overlap the first electrode lead; A conductive adhesive layer provided in an overlapping region between the first electrode lead and the second electrode lead; A sealing member provided on the second electrode lead at the other end side of the first electrode lead; And an insulating member disposed to surround the sealing member and the overlapping region, the insulating member being disposed between each of the first electrode lead and the second electrode lead and an inner surface of the pouch.
일 실시예에서, 상기 제1전극 리드 및 상기 제2전극 리드 각각과 상기 도전성 접착층 사이의 접착력은 상기 절연 부재와 상기 밀봉 부재 사이의 접착력보다 작을 수 있다. In one embodiment, the adhesive force between each of the first electrode lead and the second electrode lead and the conductive adhesive layer may be less than the adhesive force between the insulating member and the sealing member.
일 실시예에서, 상기 제1전극 리드 및 상기 제2전극 리드는 상기 중첩 영역 이외의 부분에 내전해성 코팅층이 구비되며, 상기 제1전극 리드와 상기 제2전극 리드의 폭은 동일하고, 상기 제2전극 리드의 길이는 상기 제1전극 리드의 길이보다 길 수 있다. In one embodiment, the first electrode lead and the second electrode lead is provided with an electrolytic resistant coating layer in a portion other than the overlap region, the width of the first electrode lead and the second electrode lead is the same, The length of the two-electrode lead may be longer than the length of the first electrode lead.
일 실시예에서, 상기 제1전극 리드의 길이에 대한 상기 제2전극 리드의 길이의 비율은 1:3 ~ 1:5이고, 상기 중첩 영역의 면적에 대한 상기 제1전극 리드의 면적의 비율은 1:2 ~ 1:4일 수 있다.In one embodiment, the ratio of the length of the second electrode lead to the length of the first electrode lead is 1: 3 to 1: 5, and the ratio of the area of the first electrode lead to the area of the overlapping region is 1: 2 to 1: 4.
일 실시예에서, 상기 도전성 접착층은 10-3 Ω·cm이하의 체적 고유저항을 가질 수 있다.In one embodiment, the conductive adhesive layer may have a volume resistivity of 10 −3 Ω · cm or less.
일 실시예에서, 상기 밀봉 부재는 상기 제1전극 리드와 상기 제2전극 리드 사이의 단차를 보상하도록 경사면을 갖고, 상기 밀봉 부재의 두께는 상기 제1전극 리드 및 상기 제2전극 리드의 두께 대비 110~115%일 수 있으며, 상기 밀봉 부재는 상기 절연 부재와 동종 재료를 포함할 수 있다.In one embodiment, the sealing member has an inclined surface to compensate for the step difference between the first electrode lead and the second electrode lead, the thickness of the sealing member compared to the thickness of the first electrode lead and the second electrode lead 110 to 115%, and the sealing member may include the same material as the insulating member.
일 실시예에서, 상기 밀봉 부재와 상기 제2전극 리드 사이의 접합길이는 상기 제2전극 리드의 일단으로부터 상기 절연 부재의 일단까지의 거리보다 크고, 상기 제2전극 리드의 일단으로부터 상기 절연 부재의 일단까지의 거리는 2㎜ 이하일 수 있다.In an exemplary embodiment, a bonding length between the sealing member and the second electrode lead is greater than a distance from one end of the second electrode lead to one end of the insulating member, and from the one end of the second electrode lead. The distance to one end may be 2 mm or less.
일 실시예에서, 상기 절연 부재의 두께는 상기 제1전극 리드 및 상기 제2전극 리드의 두께에 대하여 50~80%일 수 있다.In one embodiment, the thickness of the insulating member may be 50 to 80% of the thickness of the first electrode lead and the second electrode lead.
일 실시예에서, 상기 절연 부재는 2중 이상의 적층구조를 가지며, 절연층, 제1접착층 및 제2접착층을 포함하고, 상기 중첩 영역과 상기 절연 부재 사이의 공간의 적어도 일부는 상기 제1접착층의 융착에 의해 채워질 수 있다. In an embodiment, the insulating member has a double or more laminated structure, and includes an insulating layer, a first adhesive layer, and a second adhesive layer, and at least a part of a space between the overlapping region and the insulating member is formed of the first adhesive layer. Can be filled by fusion.
일 실시예에서, 상기 절연 부재 및 상기 밀봉 부재는 필름 형상으로 이루어질 수 있다. In one embodiment, the insulating member and the sealing member may be formed in a film shape.
본 발명의 다른 측면에 따르면, 일측이 전극셀에 연결되며 제1전극 리드; 상기 제1전극 리드와 일부가 중첩되도록 상기 제1전극 리드와 대향하여 배치되는 제2전극 리드; 상기 제1전극 리드와 상기 제2전극 리드 사이의 중첩 영역에 구비되는 도전성 접착층; 및 상기 제1전극 리드의 타측 단부측에서 상기 제2전극 리드 상에 구비되는 밀봉 부재;를 포함하고, 상기 밀봉 부재가 구비된 영역 전체에 대한 제1파단력은 상기 도전성 접착층이 구비된 영역 전체에 대한 제2파단력보다 큰 이차 전지용 전극 리드 조립체가 제공된다. According to another aspect of the invention, one side is connected to the electrode cell and the first electrode lead; A second electrode lead disposed to face the first electrode lead to partially overlap the first electrode lead; A conductive adhesive layer provided in an overlapping region between the first electrode lead and the second electrode lead; And a sealing member provided on the second electrode lead at the other end side of the first electrode lead, wherein the first breaking force with respect to the entire region provided with the sealing member is the entire region provided with the conductive adhesive layer. An electrode lead assembly for a secondary battery that is greater than a second breaking force for a is provided.
일 실시예에서, 상기 이차 전지용 전극 리드 조립체는 상기 밀봉 부재 및 상기 중첩 영역을 둘러쌓도록 구비되되, 상기 제1전극 리드 및 상기 제2전극 리드 각각과 파우치의 내면 사이에 배치되는 절연 부재;를 더 포함하고, 상기 밀봉 부재 및 상기 도전성 접착층 각각의 외측에서 상기 절연 부재가 구비된 영역 전체에 대한 제3파단력은 상기 제2파단력보다 작을 수 있다.In one embodiment, the electrode lead assembly for the secondary battery is provided to surround the sealing member and the overlapping region, the insulating member disposed between each of the first electrode lead and the second electrode lead and the inner surface of the pouch; Further, the third breaking force with respect to the entire area provided with the insulating member on the outside of each of the sealing member and the conductive adhesive layer may be less than the second breaking force.
본 발명의 또 다른 측면에 따르면, 제1전극 리드와 제2전극 리드가 대향하는 중첩 영역 이외의 부분에 내전해성 코팅층으로 부분 도금하는 단계; 상기 제1전극 리드와 상기 제2전극 리드 사이의 상기 중첩 영역에 도전성 페이스트를 도포하여 상기 제1전극 리드와 상기 제2전극 리드를 접합하는 단계; 상기 제1전극 리드의 타측 단부측에서 상기 제2전극 리드 상에 밀봉 부재를 접합하는 단계; 및 상기 밀봉 부재 및 상기 중첩 영역을 둘러쌓도록 절연 부재를 접합하는 단계;를 포함하는 이차 전지용 전극 리드 조립체의 제조 방법이 제공된다. According to still another aspect of the present invention, there is provided a method, comprising: partially plating a portion other than an overlapping region where a first electrode lead and a second electrode lead face each other with an electrolytic coating layer; Bonding the first electrode lead and the second electrode lead by applying a conductive paste to the overlapping region between the first electrode lead and the second electrode lead; Bonding a sealing member on the second electrode lead at the other end side of the first electrode lead; And bonding an insulating member to surround the sealing member and the overlapping region.
일 실시예에서, 상기 이차 전지용 전극 리드 조립체의 제조 방법은 상기 제1전극 리드 및 상기 제2전극 리드 각각을 120~200℃로 가열하여 상기 중첩 영역과 상기 절연 부재 사이의 공간의 적어도 일부가 채워지도록 상기 절연 부재를 부분 융착하는 단계를 더 포함할 수 있다.In an embodiment, the method of manufacturing an electrode lead assembly for a secondary battery may include heating the first electrode lead and the second electrode lead to 120 to 200 ° C. to fill at least a portion of the space between the overlapping region and the insulating member. The method may further include partially fusion bonding the insulating member.
일 실시예에서, 상기 이차 전지용 전극 리드 조립체의 제조 방법은 광택조정용 시트를 상기 절연 부재의 상하측에 배치한 후 3~5㎏f/㎠의 압력으로 가압하면서 80~120℃에서 4~8초 동안 가열하여 상기 절연 부재의 광택도를 조정하는 단계를 더 포함할 수 있다.In one embodiment, the manufacturing method of the electrode lead assembly for secondary batteries is 4-8 seconds at 80 ~ 120 ℃ while pressing the pressure of 3 ~ 5kgf / ㎠ after arranging the gloss adjustment sheet on the upper and lower sides of the insulating member The heating may further include adjusting the glossiness of the insulating member.
일 실시예에서, 상기 전극 리드를 접합하는 단계는 0.01~0.05㎎/㎟의 중량으로 상기 도전성 페이스트를 도포하고, 5~10㎏f/㎠의 압력으로 가압하면서 160~180℃의 온도로 1~10분 동안 가열하여 상기 도전성 페이스트를 경화시킬 수 있다. In one embodiment, the step of bonding the electrode lead is the coating of the conductive paste with a weight of 0.01 ~ 0.05mg / ㎜, 1 ~ at a temperature of 160 ~ 180 ℃ while pressing at a pressure of 5 ~ 10kgf / ㎠ The conductive paste may be cured by heating for 10 minutes.
일 실시예에서, 상기 절연 부재를 접합하는 단계는 3~5㎏f/㎠의 압력으로 가압하면서 120~180℃의 온도로 4~8초 동안 가열하여 절연 부재를 접합할 수 있다.In one embodiment, the step of bonding the insulating member may be heated to a temperature of 120 ~ 180 ℃ for 4-8 seconds while pressing at a pressure of 3 ~ 5kgf / ㎠ to bond the insulating member.
일 실시예에서, 상기 부분 융착하는 단계는 상기 절연 부재의 처짐을 방지하도록 압착용 팁으로 상기 절연 부재의 양측을 지지할 수 있다.In one embodiment, the step of fusion welding may support both sides of the insulating member with a crimping tip to prevent sagging of the insulating member.
본 발명의 일 실시예에 따른 이차 전지용 전극 리드 조립체 및 그의 제조 방법은 전극 리드를 2단으로 구성하고 파우치의 외측에 밀봉 부재를 부가함으로써, 전류 차단 기능 및 전해액의 누설 차단을 동시에 제공하므로 제품의 신뢰성을 향상시킬 수 있다. According to an embodiment of the present invention, an electrode lead assembly for a secondary battery and a method of manufacturing the same may be configured to provide a current blocking function and leakage blocking of an electrolyte at the same time by configuring the electrode lead in two stages and adding a sealing member to the outside of the pouch. Reliability can be improved.
또한, 본 발명은 전극 리드 사이의 중첩 영역에 도금을 하지 않고 도전성 접착층을 통하여 접합함으로써, 2단 구조의 전극 리드를 이용하면서도 저항 및 부착력을 향상시킬 수 있다. In addition, the present invention can improve resistance and adhesion while using an electrode lead having a two-stage structure by bonding the conductive region without plating to overlapping regions between the electrode leads.
또한, 본 발명은 페이스트 경화 또는 각 부재의 접합 공정시 압력을 부가함으로써 작업 소요시간을 단축할 수 있어 생산성을 향상시킬 수 있다. In addition, the present invention can shorten the work time by adding pressure during paste curing or bonding process of each member, thereby improving productivity.
또한, 본 발명은 절연 부재의 부착 후 전극 리드만을 추가로 가열하여 절연 부재의 내측을 융착시킴으로써, 전극 리드의 양측에서 절연 필름과의 사이의 기밀성을 보장할 수 있으므로 제품의 신뢰성을 향상시킬 수 있다. In addition, according to the present invention, by further heating only the electrode lead after the attachment of the insulating member to fuse the inner side of the insulating member, the airtightness between the electrode leads can be ensured between the insulating films and the reliability of the product can be improved. .
도 1은 본 발명의 실시예에 따른 이차 전지용 전극 리드 조립체가 이차 전지의 파우치에 결합된 상태를 도시한 단면도,1 is a cross-sectional view illustrating a state in which an electrode lead assembly for a secondary battery according to an embodiment of the present invention is coupled to a pouch of a secondary battery;
도 2는 도 1에서 각 영역들의 파단력의 차이를 설명하기 위한 단면도,FIG. 2 is a cross-sectional view illustrating a difference in breaking force of respective regions in FIG. 1;
도 3은 본 발명의 실시예에 따른 이차 전지용 전극 리드 조립체의 평면도,3 is a plan view of an electrode lead assembly for a secondary battery according to an embodiment of the present invention;
도 4는 도 3의 X선을 따라 절단한 단면도,4 is a cross-sectional view taken along the X-ray of FIG.
도 5는 도 4의 A 영역의 부분 확대도,FIG. 5 is a partially enlarged view of area A of FIG. 4;
도 6은 도 3의 Y선을 따라 절단한 단면도, 6 is a cross-sectional view taken along the line Y of FIG. 3;
도 7은 도 1에서 과충전시 이차 전지의 팽창에 따른 전류 차단 원리를 도시한 단면도, FIG. 7 is a cross-sectional view illustrating a current blocking principle according to expansion of a secondary battery when overcharged in FIG. 1;
도 8은 본 발명의 실시예에 따른 이차 전지용 전극 리드 조립체의 제조 방법을 도시한 흐름도,8 is a flowchart illustrating a method of manufacturing an electrode lead assembly for a secondary battery according to an embodiment of the present invention;
도 9는 전극 리드의 부분 도금 상태를 도시한 평면도,9 is a plan view showing a partially plated state of an electrode lead;
도 10은 전극 리드의 접합 상태를 도시한 단면도,10 is a cross-sectional view showing a bonding state of an electrode lead;
도 11은 밀봉 부재의 접합 상태를 도시한 단면도,11 is a sectional view showing a bonding state of a sealing member;
도 12는 절연 부재의 접합 상태를 도시한 평면도,12 is a plan view showing a bonding state of an insulating member;
도 13은 절연 부재의 접합 상태를 도시한 단면도, 13 is a cross-sectional view showing a bonding state of an insulating member;
도 14는 절연 부재를 접합하기 위한 공정을 도시한 단면도, 14 is a cross-sectional view showing a step for joining an insulating member;
도 15는 절연 부재를 부분 융착하기 위한 공정을 도시한 단면도, 15 is a cross-sectional view showing a step for partially welding an insulating member;
도 16은 절연 부재를 부분 융착한 상태를 도시한 단면도, 16 is a cross-sectional view showing a state in which an insulating member is partially fused;
도 17은 절연 부재의 처짐을 방지하기 위한 공정을 도시한 단면도, 그리고,17 is a cross-sectional view showing a step for preventing sagging of an insulating member, and
도 18은 절연 시트의 광택도를 조정하기 위한 공정을 도시한 단면도이다.It is sectional drawing which shows the process for adjusting the glossiness of an insulating sheet.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
이하에서는 도면을 참조하여 본 발명의 실시예에 따른 이차 전지용 전극 리드 조립체를 보다 상세히 설명하도록 한다. Hereinafter, with reference to the drawings will be described in more detail the electrode lead assembly for a secondary battery according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 이차 전지용 전극 리드 조립체(100)는 제1전극 리드(110), 제2전극 리드(120), 도전성 접착층(130), 밀봉 부재(140) 및 절연 부재(150)를 포함한다. 1, the electrode lead assembly 100 for a secondary battery according to an exemplary embodiment of the present invention may include a first electrode lead 110, a second electrode lead 120, a conductive adhesive layer 130, and a sealing member 140. And an insulating member 150.
여기서, 이차 전지용 전극 리드 조립체(100)는 파우치형 이차 전지에서 파우치(11) 내의 전극셀(12)로부터 외부로 전극을 인출하기 위한 것이다. 이때, 이차 전지용 전극 리드 조립체(100)는 파우치(11) 내에 수용되는 전해액이 외부로 유출되는 것을 방지하는 기능을 갖는다. Here, the electrode lead assembly 100 for a secondary battery is to pull out an electrode from the electrode cell 12 in the pouch 11 to the outside in the pouch type secondary battery. In this case, the electrode lead assembly 100 for a secondary battery has a function of preventing the electrolyte solution contained in the pouch 11 from leaking out.
아울러, 이차 전지용 전극 리드 조립체(100)는 제1전극 리드(110) 및 제2전극 리드(120)가 2단으로 적층되는 구조를 가지며, 이에 의해 전류 차단 기능을 갖는다. In addition, the electrode lead assembly 100 for the secondary battery has a structure in which the first electrode lead 110 and the second electrode lead 120 are stacked in two stages, thereby having a current blocking function.
이와 같은 이차 전지용 전극 리드 조립체(100)는 이차 전지의 양측 및 음극 중 적어도 하나에 구비될 수 있다. The electrode lead assembly 100 for a secondary battery may be provided on at least one of both sides and a negative electrode of the secondary battery.
제1전극 리드(110)는 일측이 전극셀(12)에 연결되고 타측이 도전성 접착층(130)을 통하여 제2전극 리드(120)에 전기적으로 연결된다. One side of the first electrode lead 110 is connected to the electrode cell 12 and the other side is electrically connected to the second electrode lead 120 through the conductive adhesive layer 130.
제2전극 리드(120)는 일측이 제1전극 리드(110)의 타측과 대항하여 배치된다. 이때, 제2전극 리드(120)는 제1전극 리드(110)의 일부와 중첩되도록 배치된다. 여기서, 제1전극 리드(110) 및 제2전극 리드(120)는 금속으로 이루어질 수 있다. 일례로, 제1전극 리드(110) 및 제2전극 리드(120)는 알루미늄(Al) 또는 구리(Cu)를 포함할 수 있다. One side of the second electrode lead 120 is disposed to face the other side of the first electrode lead 110. In this case, the second electrode lead 120 is disposed to overlap with a portion of the first electrode lead 110. Here, the first electrode lead 110 and the second electrode lead 120 may be made of metal. For example, the first electrode lead 110 and the second electrode lead 120 may include aluminum (Al) or copper (Cu).
도전성 접착층(130)은 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역에 구비된다. 또한 도전성 접착층(130)은 제1전극 리드(110)와 제2전극 리드(120)를 전기적으로 연결하는 동시에 접합하는 역할을 갖는다. 아울러, 도전성 접착층(130)은 과충전 등에 의한 파우치(11) 내부의 팽창시 파단되어 제1전극 리드(110)와 제2전극 리드(120)를 분리시킨다. The conductive adhesive layer 130 is provided in an overlapping region between the first electrode lead 110 and the second electrode lead 120. In addition, the conductive adhesive layer 130 has a role of electrically connecting and bonding the first electrode lead 110 and the second electrode lead 120 at the same time. In addition, the conductive adhesive layer 130 is broken when the inside of the pouch 11 is inflated due to overcharging or the like to separate the first electrode lead 110 and the second electrode lead 120.
밀봉 부재(140)는 제1전극 리드(110)의 타측 단부측에서 제2전극 리드(120) 상에 구비된다. 또한 밀봉 부재(140)는 제1전극 리드(110)와 제2전극 리드(120)의 분리시 파우치(11) 내부의 전해액이 외부로 누설되는 것을 방지하기 위한 것이다. 아울러, 밀봉 부재(140)는 전극 리드(110,120)와 절연 부재(150) 사이의 접착력을 향상시키기 위한 것이다. The sealing member 140 is provided on the second electrode lead 120 at the other end side of the first electrode lead 110. In addition, the sealing member 140 is to prevent the electrolyte inside the pouch 11 from leaking to the outside when the first electrode lead 110 and the second electrode lead 120 are separated. In addition, the sealing member 140 is to improve the adhesive force between the electrode leads 110 and 120 and the insulating member 150.
절연 부재(150)는 밀봉 부재(140) 및 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역을 둘러쌓도록 구비된다. 이때, 절연 부재(150)는 제1전극 리드(110) 및 제2전극 리드(120) 각각과 파우치(11)의 내면 사이에 배치된다.The insulating member 150 is provided to surround the overlapping region between the sealing member 140 and the first electrode lead 110 and the second electrode lead 120. In this case, the insulating member 150 is disposed between each of the first electrode lead 110 and the second electrode lead 120 and the inner surface of the pouch 11.
여기서, 제1전극 리드(110) 및 제2전극 리드(120) 각각과 도전성 접착층(130) 사이의 접착력은 절연 부재(150)와 밀봉 부재(140) 사이의 접착력보다 작을 수 있다. 일례로, 제1전극 리드(110)와 제2전극 리드(120) 사이의 접착력은 10N/㎝(UTM) 이하이고, 절연 부재(150)와 전극 리드(110,120) 사이의 접착력은 10N/㎝(UTM) 이상일수 있다. Here, the adhesive force between each of the first electrode lead 110 and the second electrode lead 120 and the conductive adhesive layer 130 may be smaller than the adhesive force between the insulating member 150 and the sealing member 140. For example, the adhesive force between the first electrode lead 110 and the second electrode lead 120 is 10 N / cm (UTM) or less, and the adhesive force between the insulating member 150 and the electrode leads 110 and 120 is 10 N / cm ( UTM).
한편, 상술한 바와 같은 각 구성요소 사이의 접착력은 영역별 파단력으로 설명될 수 있다. 도 2를 참조하면, 밀봉 부재(140)가 구비된 영역(A) 전체에 대한 제1파단력은 도전성 접착층(130)이 구비된 영역(B) 전체에 대한 제2파단력보다 크다. 아울러, 밀봉 부재(14) 및 도전성 접착층(130) 각각의 외측에서 절연 부재(150)가 구비되는 영역(C) 전체에 대한 제3파단력은 제3파단력보다 작을 수 있다. On the other hand, the adhesive force between each component as described above may be described as the breaking force for each region. Referring to FIG. 2, the first breaking force with respect to the entire area A provided with the sealing member 140 is greater than the second breaking force with respect to the entire area B provided with the conductive adhesive layer 130. In addition, the third breaking force with respect to the entirety of the region C in which the insulating member 150 is provided outside the sealing member 14 and the conductive adhesive layer 130 may be smaller than the third breaking force.
일례로, 제1파단력에 대하여 제2파단력은 30~70%의 크기를 갖고, 제3파단력은 0~30%의 크기를 가질 수 있다. 여기서, 제3파단력이 0이라는 것은 절연 부재(150)가 밀봉 부재(140) 및 도전성 접착층(130)의 외측에 구비되지 않은 경우이다. For example, the second breaking force may have a size of 30 to 70% with respect to the first breaking force, and the third breaking force may have a size of 0 to 30%. Here, the third breaking force is 0 when the insulating member 150 is not provided outside the sealing member 140 and the conductive adhesive layer 130.
결과적으로, (A)영역 전체에 대한 제1파단력, (B)영역 전체에 대한 제2파단력 및 (C)영역 전체에 대한 제3파단력은 순차적으로 작아진다.As a result, the first breaking force for the entire area (A), the second breaking force for the whole area (B) and the third breaking force for the whole area (C) are sequentially reduced.
이에 의해, 과충전 등에 의한 파우치(11) 내부의 팽창시 제1전극 리드(110)와 제2전극 리드(120) 사이가 먼저 파단되어 전류를 차단할 수 있다. 이와 같은 전류 차단 기능을 구현하기 위한 구체적인 구성을 이하에 더 상세하게 설명한다. As a result, when the inside of the pouch 11 is expanded due to overcharging or the like, the first electrode lead 110 and the second electrode lead 120 may be broken first to cut off the current. A detailed configuration for implementing such a current interruption function will be described in more detail below.
도 3을 참조하면, 제1전극 리드(110)와 제2전극 리드(120)의 폭은 동일하고, 제2전극 리드(120)의 길이(L2)는 제1전극 리드(110)의 길이(L1)보다 길 수 있다. 일례로, 제1전극 리드(110)의 길이(L1)에 대한 제2전극 리드(120)의 길이(L2)의 비율을 1:3 ~ 1:5일 수 있다. Referring to FIG. 3, the widths of the first electrode lead 110 and the second electrode lead 120 are the same, and the length L2 of the second electrode lead 120 is equal to the length of the first electrode lead 110. It may be longer than L1). For example, the ratio of the length L2 of the second electrode lead 120 to the length L1 of the first electrode lead 110 may be 1: 3 to 1: 5.
여기서, 상기 비율이 1:3보다 작은 경우, 파우치(11) 내부에 수용되는 제1전극 리드(110)의 길이(L1)가 상대적으로 커지기 때문에 전류 차단 기능이 저하된다. 즉, 제1전극 리드(110)의 길이(L1)가 길어지면, 과충전 등에 따른 파우치(11) 내부의 팽창에 의해 제1전극 리드(110)와 제2전극 리드(120) 사이의 도전성 접착층(130)이 파단되는 힘이 약해진다. In this case, when the ratio is smaller than 1: 3, the length L1 of the first electrode lead 110 accommodated inside the pouch 11 is relatively large, thereby degrading the current blocking function. That is, when the length L1 of the first electrode lead 110 becomes longer, the conductive adhesive layer between the first electrode lead 110 and the second electrode lead 120 may expand due to expansion of the inside of the pouch 11 due to overcharge or the like. 130) the force to break is weakened.
이 경우, 제1전극 리드(110)의 길이(L1)가 상대적으로 길어지므로 제1전극 리드(110)를 수용하기 위한 파우치(11)의 크기가 증가하여 이차 전지의 소형화에 악영향을 미친다. 반면, 상기 비율이 1:5보다 큰 경우, 파우치(11)의 외부로 인출되는 제2전극 리드(120)의 길이(L2)가 불필요하게 커지게 되므로 재료비의 증가 및 자원의 낭비를 초래한다.In this case, since the length L1 of the first electrode lead 110 becomes relatively long, the size of the pouch 11 for accommodating the first electrode lead 110 increases, which adversely affects the miniaturization of the secondary battery. On the other hand, if the ratio is greater than 1: 5, the length L2 of the second electrode lead 120 drawn out of the pouch 11 becomes unnecessarily large, resulting in an increase in material cost and waste of resources.
이때, 제1전극 리드(110)와 제2전극 리드(120)가 접합되는 중첩 영역은 그 사이의 접착력 및 작업성을 고려하여 결정될 수 있다. 일례로, 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역의 면적에 대한 제1전극 리드(110)의 면적의 비율은 1:2 ~ 1:4일 수 있다. In this case, the overlapping region where the first electrode lead 110 and the second electrode lead 120 are bonded may be determined in consideration of the adhesive force and workability therebetween. For example, the ratio of the area of the first electrode lead 110 to the area of the overlapping region between the first electrode lead 110 and the second electrode lead 120 may be 1: 2 to 1: 4.
도 3을 참조하면, 제1전극 리드(110)와 제2전극 리드(120)가 동일한 폭을 갖는 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역의 폭(W3)에 대한 제1전극 리드(110)의 길이(L1)의 비율은 1:2 ~ 1:4일 수 있다. Referring to FIG. 3, when the first electrode lead 110 and the second electrode lead 120 have the same width, the width of the overlapping region between the first electrode lead 110 and the second electrode lead 120 ( The ratio of the length L1 of the first electrode lead 110 to W3) may be 1: 2 to 1: 4.
여기서, 상기 비율이 1:2보다 작은 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역의 폭(W3)이 상대적으로 증가하기 때문에 전류 차단 기능이 저하된다. 즉, 제1전극 리드(110)와 제2전극 리드(120) 사이의 접착력이 증가하기 때문에 과충전 등에 따른 파우치(11) 내부의 팽창에 의해 제1전극 리드(110)와 제2전극 리드(120) 사이의 도전성 접착층(130)이 파단되는 힘이 약해진다. Here, when the ratio is smaller than 1: 2, the current blocking function is deteriorated because the width W3 of the overlapping region between the first electrode lead 110 and the second electrode lead 120 increases relatively. That is, since the adhesive force between the first electrode lead 110 and the second electrode lead 120 increases, the first electrode lead 110 and the second electrode lead 120 are expanded due to the expansion of the inside of the pouch 11 due to overcharge or the like. The force at which the conductive adhesive layer 130 breaks between the layers becomes weak.
아울러, 전극셀(12)에 연결하기 위해 전극조립체에 연결되는 부위가 상대적으로 작아지기 때문에 작업 효율성이 떨어진다. In addition, since the portion connected to the electrode assembly to be connected to the electrode cell 12 is relatively small, the work efficiency is low.
반면, 상기 비율이 1:4보다 큰 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역의 폭(W3)이 상대적으로 감소하기 때문에, 제1전극 리드(110)와 제2전극 리드(120) 사이의 접착력이 감소한다. 따라서 과충전 등에 의한 파우치(11) 내부의 작은 팽창에 의해서도 제1전극 리드(110)와 제2전극 리드(120) 사이의 도전성 접착층(130)이 쉽게 파단되어 제품의 신뢰성을 저하시킨다. On the other hand, when the ratio is greater than 1: 4, the width W3 of the overlapping region between the first electrode lead 110 and the second electrode lead 120 is relatively reduced, so that the first electrode lead 110 is reduced. And the adhesive force between the second electrode lead 120 decreases. Therefore, the conductive adhesive layer 130 between the first electrode lead 110 and the second electrode lead 120 is easily broken even by the small expansion inside the pouch 11 due to overcharge or the like, thereby lowering the reliability of the product.
도 5를 참조하면, 제1전극 리드(110) 및 제2전극 리드(120)는 중첩 영역(110a,120a) 이외의 부분에 내전해성 코팅층(112,122)이 구비될 수 있다. 즉, 제1전극 리드(110) 및 제2전극 리드(120)는 일부가 파우치(11) 내에 수용되는 전해액에 노출되기 때문에 산화 방지 등을 위해 내전해성 물질로 도금될 수 있다. 일례로, 코팅층(112,122)은 니켈(Ni)을 포함할 수 있다.Referring to FIG. 5, the first electrode lead 110 and the second electrode lead 120 may be provided with electrolytic coating layers 112 and 122 at portions other than the overlap regions 110a and 120a. That is, since some of the first electrode lead 110 and the second electrode lead 120 are exposed to the electrolyte contained in the pouch 11, the first electrode lead 110 and the second electrode lead 120 may be plated with an electrolytic resistant material to prevent oxidation. For example, the coating layers 112 and 122 may include nickel (Ni).
여기서, 도전성 접착층(130)이 접착되는 중첩 영역(110a,120a)은 내전해성 코팅층(112,122)이 구비되지 않기 때문에, 도전성 접착층(130)을 통한 제1전극 리드(110) 및 제2전극 리드(120) 사이의 전기전도도가 증가하여 2단 구조에 의한 제1전극 리드(110)와 제2전극 리드(120) 사이의 저항을 개선할 수 있다. Here, since the overlapping regions 110a and 120a to which the conductive adhesive layer 130 is adhered are not provided with the electrolytic resistant coating layers 112 and 122, the first electrode lead 110 and the second electrode lead through the conductive adhesive layer 130 ( The electrical conductivity between the 120 may be increased to improve the resistance between the first electrode lead 110 and the second electrode lead 120 due to the two-stage structure.
이때, 제1전극 리드(110)와 제2전극 리드(120)는 2단 적층 구조로 이루어지기 때문에 1단 전극 리드 대비 저항의 10% 이내가 되도록 접촉 저항이 최소화되는 것이 바람직하다. In this case, since the first electrode lead 110 and the second electrode lead 120 are formed in a two-stage stacked structure, the contact resistance is preferably minimized to be within 10% of the resistance of the first electrode lead.
이를 위해 도전성 접착층(130)은 전기전도도가 낮은 것이 바람직하다. 일례로, 도전성 접착층(130)은 접촉 저항을 최소화하기 위해 10-3 Ω·cm이하의 체적 고유저항을 가질 수 있다. 여기서, 도전성 접착층(130)의 체적 고유저항이 10-3 Ω·cm 보다 큰 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 전기저항이 증가하여 불필요한 전력 소모 및 발열을 초래한다. To this end, the conductive adhesive layer 130 is preferably low in electrical conductivity. For example, the conductive adhesive layer 130 may have a volume resistivity of 10 −3 Ω · cm or less to minimize contact resistance. In this case, when the volume resistivity of the conductive adhesive layer 130 is greater than 10 −3 Ω · cm, the electrical resistance between the first electrode lead 110 and the second electrode lead 120 is increased to prevent unnecessary power consumption and heat generation. Cause.
아울러, 도전성 접착층(130)의 두께는 20~100㎛일 수 있다. 여기서, 도전성 접착층(130)의 두께가 20㎛보다 작은 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 접착력 저하 및 접촉저항이 상승한다. 반면, 도전성 접착층(130)의 두께가 100㎛보다 큰 경우, 제1전극 리드(110)와 제2전극 리드(120)의 2단 적층 구조의 전체 두께가 증가하여 제1전극 리드(110)와 제2전극 리드(120) 사의 단차가 증가하므로 제1전극 리드(110) 및 제2전극 리드(120) 각각과 절연 부재(150)와의 밀착성이 떨어진다. In addition, the thickness of the conductive adhesive layer 130 may be 20 ~ 100㎛. Here, when the thickness of the conductive adhesive layer 130 is smaller than 20 μm, the adhesive force decreases and the contact resistance between the first electrode lead 110 and the second electrode lead 120 increases. On the other hand, when the thickness of the conductive adhesive layer 130 is greater than 100 μm, the overall thickness of the two-stage stacked structure of the first electrode lead 110 and the second electrode lead 120 increases to increase the thickness of the first electrode lead 110. Since the step difference between the second electrode lead 120 increases, adhesion between the first electrode lead 110 and the second electrode lead 120 and the insulating member 150 is inferior.
또한, 도전성 접착층(130)은 제1전극 리드(110) 및 제2전극 리드(120)와의 일정 수준 이상의 접착력을 제공하는 동시에 전해액에 대한 내성을 갖는 재료로 이루어질 수 있다. 아울러, 도전성 접착층(130)은 건조조건과 점도 등의 특성이 공정 작업성에 부합되는 재료로 이루어질 수 있다. In addition, the conductive adhesive layer 130 may be formed of a material having a resistance to the electrolyte while providing the adhesive strength with the first electrode lead 110 and the second electrode lead 120 or more. In addition, the conductive adhesive layer 130 may be made of a material whose characteristics such as drying conditions and viscosity match the process workability.
밀봉 부재(140)는 전극 리드(110,120)와 절연 부재(150) 사이의 접착력을 향상시키기 위한 것이다. 여기서, 밀봉 부재(140)는 절연 부재(150)와 동종 재료를 포함할 수 있다. 이에 의해, 밀봉 부재(140)와 절연 부재(150)의 접착이 용이하고 그 접착력을 향상시킬 수 있다. The sealing member 140 is to improve the adhesive force between the electrode leads 110 and 120 and the insulating member 150. Here, the sealing member 140 may include the same material as the insulating member 150. Thereby, adhesion of the sealing member 140 and the insulating member 150 is easy, and the adhesive force can be improved.
도 4를 참조하면, 밀봉 부재(140)와 제2전극 리드(120) 사이의 접합 길이(W2)는 제2전극 리드(120)의 일단으로부터 절연 부재(150)의 일단까지의 거리(W1)보다 클 수 있다. Referring to FIG. 4, the junction length W2 between the sealing member 140 and the second electrode lead 120 is the distance W1 from one end of the second electrode lead 120 to one end of the insulating member 150. Can be greater than
이에 의해, 밀봉 부재(140)에 의한 전극 리드(110,120)와 절연 부재(150) 사이의 접착력이 제1전극 리드(110)와 제2전극 리드(120) 사이의 접착력보다 크기 때문에 제1전극 리드(110)와 제2전극 리드(120) 사이 파단이 먼저 발생함으로써 전류를 차단할 수 있다. As a result, the adhesion between the electrode leads 110 and 120 and the insulation member 150 by the sealing member 140 is greater than the adhesion between the first electrode lead 110 and the second electrode lead 120. A break occurs first between the 110 and the second electrode lead 120 to cut off the current.
아울러, 밀봉 부재(140)는 파우치(11) 실링시 절연 부재(150)와의 부착력을 향상시키도록 제1전극 리드(110)와 제2전극 리드(120) 사이의 단차를 보상하기 위한 것이다. 도 4를 참조하면, 밀봉 부재(140)는 제1전극 리드(110)와 제2전극 리드(120) 사이의 단차를 보상하도록 경사면을 가질 수 있다. 이때, 밀봉 부재(140)는 그 폭이 제1전극 리드(110) 및 제2전극 리드(120)의 폭과 동일할 수 있다.In addition, the sealing member 140 is to compensate for the step between the first electrode lead 110 and the second electrode lead 120 to improve the adhesion to the insulating member 150 when sealing the pouch 11. Referring to FIG. 4, the sealing member 140 may have an inclined surface to compensate for a step between the first electrode lead 110 and the second electrode lead 120. In this case, the width of the sealing member 140 may be equal to the width of the first electrode lead 110 and the second electrode lead 120.
아울러, 밀봉 부재(140)의 두께는 제1전극 리드(110)의 두께(t1) 및 제2전극 리드(120)의 두께(t2) 대비 110~115%일 수 있다. 여기서, 밀봉 부재(140)의 두께가 전극 리드(110,120)의 두께(t1,t2) 대비 110%보다 작은 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 기밀성을 충분히 확보하지 못한다. 즉, 파우치(11) 내의 전해액이 외부로 누설되어 제품의 안정성을 저하시킨다. In addition, the thickness of the sealing member 140 may be 110 to 115% of the thickness t1 of the first electrode lead 110 and the thickness t2 of the second electrode lead 120. Here, when the thickness of the sealing member 140 is smaller than 110% of the thicknesses t1 and t2 of the electrode leads 110 and 120, sufficient airtightness between the first electrode lead 110 and the second electrode lead 120 is ensured. can not do. That is, the electrolyte in the pouch 11 leaks to the outside, and reduces the stability of a product.
반면, 밀봉 부재(140)의 두께가 전극 리드(110,120)의 두께(t1,t2) 대비 115%보다 큰 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 단차 보상효과를 제공하지 못한다. 즉, 이차 전지용 전극 리드 조립체(100)의 평탄도가 저하되고, 따라서 제1전극 리드(110) 및 제2전극 리드(120) 각각과 파우치(11) 내면의 접착력이 저하된다.On the other hand, when the thickness of the sealing member 140 is greater than 115% of the thickness (t1, t2) of the electrode leads (110, 120), the step compensation effect between the first electrode lead 110 and the second electrode lead 120 Can not provide. That is, the flatness of the electrode lead assembly 100 for secondary batteries is lowered, and thus the adhesive force between each of the first electrode lead 110 and the second electrode lead 120 and the inner surface of the pouch 11 is lowered.
이때, 제2전극 리드(120)의 일단으로부터 절연 부재(150)의 일단까지의 거리(W1)는 2㎜ 이하일 수 있다.In this case, the distance W1 from one end of the second electrode lead 120 to one end of the insulating member 150 may be 2 mm or less.
여기서, 상기 거리(W1)가 2㎜보다 큰 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 도전성 접착층(130)의 접착력보다 절연 부재(150)들 사이의 접착력이 크기 때문에, 제1전극 리드(110)와 제2전극 리드(120) 사이의 전류 차단 기능이 저하된다. 즉, 과충전 등에 의한 파우치(11) 내부의 팽창으로 의해서도 상기 거리(W3)에 대응하는 영역에서 절연 부재(150)가 파단되지 않고 접합을 유지하기 때문에 도전성 접착층(130)의 파단력이 저하된다.Here, when the distance W1 is larger than 2 mm, the adhesive force between the insulating members 150 is greater than the adhesive force of the conductive adhesive layer 130 between the first electrode lead 110 and the second electrode lead 120. Therefore, the current blocking function between the first electrode lead 110 and the second electrode lead 120 is reduced. That is, the breakdown force of the conductive adhesive layer 130 is lowered because the insulating member 150 does not break even in the region corresponding to the distance W3 due to expansion inside the pouch 11 due to overcharge or the like.
절연 부재(150)는 절연성 및 열 융착성 재질로 이루어질 수 있다. 일례로, 절연 부재(150)는 폴리이미드(PI: polyimide), 폴리프로필렌(PP: polyprophylene), 폴리에틸렌(PE: polyethylene) 및 폴리에틸렌 테레프탈레이트(PET: polyethylene terephthalate) 등으로부터 선택된 어느 하나 이상의 물질 층으로 이루어질 수 있다. The insulating member 150 may be made of an insulating and heat sealable material. For example, the insulating member 150 may be formed of any one or more material layers selected from polyimide (PI), polyprophylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and the like. Can be done.
이때, 절연 부재(150)는 2중 이상의 적층구조를 가질 수 있다. 바람직하게는 절연 부재(150)는 3중 이상의 적층 구조를 가질 수 있다. 도 6을 참조하면, 절연 부재(150)는 제1접착층(151), 절연층(152) 및 제2접착층(153)을 포함할 수 있다.In this case, the insulating member 150 may have a stack structure of two or more. Preferably, the insulating member 150 may have a triple or more stacked structure. Referring to FIG. 6, the insulating member 150 may include a first adhesive layer 151, an insulating layer 152, and a second adhesive layer 153.
여기서, 제1접착층(151)은 제1전극 리드(110) 및 제2전극 리드(120)와의 접착력이 우수한 재질로 이루어질 수 있다. 일례로, 제1접착층(151)은 말레산이 첨가된 변성 폴리프로필렌으로 이루어질 수 있다. 또한 제2접착층(153)은 파우치(11)와의 접착력이 우수한 재질로 이루어질 수 있다. 일례로, 제2접착층(153)은 CPP(무연신 폴리프로필렌 필름)으로 이루어질 수 있다.Here, the first adhesive layer 151 may be made of a material having excellent adhesive strength with the first electrode lead 110 and the second electrode lead 120. For example, the first adhesive layer 151 may be made of modified polypropylene to which maleic acid is added. In addition, the second adhesive layer 153 may be made of a material having excellent adhesion with the pouch 11. For example, the second adhesive layer 153 may be made of CPP (non-stretched polypropylene film).
절연층(152)은 파우치(11)와 전극 리드들(110,1200) 사이에 높은 절연성을 제공하는 동시에 접착층들(151,153)과의 접착력을 향상시킬 수 있는 형태로 구성될 수 있다. 일례로, 절연층(152)은 부직포(폴리플로필렌 등의 폴리올레핀 계열) 형태로 이루어질 수 있다. 또한 절연층(152)은 고결정화 폴리프로필렌(HCPP)으로 이루어질 수 있다.The insulating layer 152 may be configured to provide high insulation between the pouch 11 and the electrode leads 110 and 1200 and to improve adhesion to the adhesive layers 151 and 153. In one example, the insulating layer 152 may be formed in the form of a nonwoven fabric (polyolefin-based, such as polyflopropylene). In addition, the insulating layer 152 may be made of high crystallized polypropylene (HCPP).
이에 의해, 절연 부재(150)는 제1전극 리드(110), 제2전극 리드(120), 및 파우치(11)와의 접합이 용이하고 접착력이 증가할 수 있다.As a result, the insulating member 150 may be easily bonded to the first electrode lead 110, the second electrode lead 120, and the pouch 11, and the adhesive force may increase.
이때, 도 6을 참조하면, 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역과 절연 부재(150) 사이 공간의 적어도 일부(151')는 제1접착층(151)의 융착에 의해 채워질 수 있다. 6, at least a part 151 ′ of the space between the overlapping region between the first electrode lead 110 and the second electrode lead 120 and the insulating member 150 is formed on the first adhesive layer 151. Can be filled by fusion.
즉, 후술하는 바와 같이, 절연 부재(150)가 제1전극 리드(110) 및 제2전극 리드(120)에 부착된 후, 전극 리드(110,120) 만을 추가로 가열함으로써, 절연 부재(150)의 제1접착층(151)이 추가로 융착되어 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역과 절연 부재(150) 사이의 공간(151')으로 채워질 수 있다. 따라서 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역과 절연 부재(150) 사이 공간이 일정 영역(a)으로 축소되거나 제거될 수 있다. That is, as will be described later, after the insulating member 150 is attached to the first electrode lead 110 and the second electrode lead 120, only the electrode leads 110 and 120 are additionally heated to form the insulating member 150. The first adhesive layer 151 may be further fused to fill the space 151 ′ between the overlapping region between the first electrode lead 110 and the second electrode lead 120 and the insulating member 150. Therefore, the space between the overlapping region between the first electrode lead 110 and the second electrode lead 120 and the insulating member 150 may be reduced or removed to a predetermined region (a).
이에 의해, 절연 부재(150)의 전체 폭이 확장되지 않고 부분적으로 융착되어 접착력을 향상시킬 수 있는 동시에, 절연 부재(150)의 전체적인 평탄도를 증가시킬 수 있다. 아울러, 제1전극 리드(110) 및 제2전극 리드(120)의 측면에서, 절연 부재(150)와의 사이에 기밀성을 향상시킬 수 있다. As a result, the overall width of the insulating member 150 may be partially fused without being expanded to improve the adhesive force, and the overall flatness of the insulating member 150 may be increased. In addition, in the side surfaces of the first electrode lead 110 and the second electrode lead 120, the airtightness between the insulating member 150 can be improved.
절연 부재(150)의 두께는 리드 전극(110,120)의 두께(t1,t2)에 대하여 50~80%일 수 있다. 여기서, 절연 부재(150)의 두께가 리드 전극(110,120)의 두께(t1,t2)에 대하여 50%보다 작은 경우, 절연 부재(150)의 접합을 위한 융착시 리드 전극(110,120)의 단차에 의한 연신이 증가하여 리드 전극(110,120)과의 접합이 충분히 달성되지 못하게 되고, 또한 절연특성이 저하되어 이후 파우치(11) 실링시 절연파괴 및 전해액의 누설을 초래한다. The thickness of the insulating member 150 may be 50 to 80% of the thicknesses t1 and t2 of the lead electrodes 110 and 120. Here, when the thickness of the insulating member 150 is smaller than 50% with respect to the thicknesses t1 and t2 of the lead electrodes 110 and 120, the step of the lead electrodes 110 and 120 during welding for bonding the insulating members 150 may be reduced. The stretching is increased, so that the bonding with the lead electrodes 110 and 120 may not be sufficiently achieved, and the insulating property is deteriorated, resulting in insulation breakdown and leakage of the electrolyte during sealing of the pouch 11.
반면, 절연 부재(150)의 두께가 리드 전극(110,120)의 두께(t1,t2)에 대하여 80%보다 큰 경우, 절연 부재(150)의 두께가 불필요하게 커지게 됨으로 인해 이후 파우치(11) 실링시 작업 시간의 증가 및 절연 부재(150)의 원치 않는 레진의 누액으로 2차 오염의 우려가 있다. On the other hand, when the thickness of the insulating member 150 is greater than 80% with respect to the thicknesses t1 and t2 of the lead electrodes 110 and 120, since the thickness of the insulating member 150 becomes unnecessarily large, the pouch 11 is subsequently sealed. There is a fear of secondary contamination due to increased working time and leakage of unwanted resin of the insulating member 150.
여기서, 밀봉 부재(140) 및 절연 부재(150)는 필름 형상으로 이루어질 수 있다. 이에 의해, 밀봉 부재(140) 및 절연 부재(150)를 제1전극 리드(110) 및 제2전극 리드(120)에 부착시 가열에 따른 융착에 의해 용이하게 접합할 수 있는 동시에 접착력을 향상시킬 수 있다. Here, the sealing member 140 and the insulating member 150 may be formed in a film shape. As a result, when the sealing member 140 and the insulating member 150 are attached to the first electrode lead 110 and the second electrode lead 120, they can be easily bonded by fusion due to heating, and at the same time, the adhesion strength can be improved. Can be.
도 7을 참조하면, 이차 전지의 과충전에 의해 전극셀(12)의 팽창 및 전해액의 과열로 인하여 파우치(11) 내부가 팽창하면, 제1전극 리드(110)와 제2전극 리드(120) 사이에 접합된 도전성 접착층(130')이 파단된다. Referring to FIG. 7, when the inside of the pouch 11 expands due to expansion of the electrode cell 12 and overheating of the electrolyte due to overcharging of a secondary battery, between the first electrode lead 110 and the second electrode lead 120. The conductive adhesive layer 130 'bonded to the breakage is broken.
여기서, 절연 부재(150)와 전극 리드(110,120) 사이의 접착력이 전극 리드(110,120) 사이의 접착력보다 크기 때문에, 도전성 접착층(130')의 파단이 먼저 발생하여 제1전극 리드(110)와 제2전극 리드(120)가 분리됨으로써 제2전극 리드(120)를 통하여 외부에서 인가되는 전원이 차단되고 따라서 전류 차단이 이루어질 수 있다. Here, since the adhesive force between the insulating member 150 and the electrode leads 110 and 120 is greater than the adhesive force between the electrode leads 110 and 120, breakage of the conductive adhesive layer 130 ′ occurs first, so that the first electrode lead 110 and the first electrode lead 110 may be formed. By separating the two-electrode lead 120, the power applied from the outside through the second electrode lead 120 is cut off, and thus the current can be cut off.
이때, 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역을 중심으로 파우치(11)의 내부 측은 전극 리드(110,120) 사이가 분리되지만, 중첩 영역의 외측은 밀봉 부재(140)와 절연 부재(150)의 접착력에 의해 접착이 유지될 수 있다.At this time, the inner side of the pouch 11 is separated between the electrode leads 110 and 120 around the overlapping region between the first electrode lead 110 and the second electrode lead 120, but the outer side of the overlapping region is the sealing member 140. ) And adhesion may be maintained by the adhesive force of the insulating member 150.
이에 의해, 파우치(11) 내부의 전해액이 밀봉 부재(140) 및 절연 부재(150)에 의해 차단되기 때문에 파우치(11) 외부로 누설되는 것을 방지할 수 있다. 따라서 전류 차단 기능을 효과적으로 수행하는 동시에 전해액의 누설을 안정적으로 차단할 수 있어 제품의 신뢰성을 향상시킬 수 있다. Thereby, since the electrolyte solution in the pouch 11 is interrupted by the sealing member 140 and the insulating member 150, it can prevent that the pouch 11 leaks outside. Therefore, the current blocking function can be effectively performed and the leakage of the electrolyte can be reliably cut off, thereby improving the reliability of the product.
이하, 도 8 내지 도 18을 참조하여 본 발명의 이차 전지용 전극 리드 조립체의 제조 방법을 설명한다.Hereinafter, a method of manufacturing the electrode lead assembly for a secondary battery of the present invention will be described with reference to FIGS. 8 to 18.
이차 전지용 전극 리드 조립체의 제조 방법(200)은 전극 리드를 부분 도금하는 단계(S210), 전극 리드를 접합하는 단계(S220), 밀봉 부재를 접합하는 단계(S230), 및 절연 부재를 접합하는 단계(단계 S240)를 포함한다. The method 200 of manufacturing an electrode lead assembly for a secondary battery includes steps of partially plating an electrode lead (S210), bonding an electrode lead (S220), bonding a sealing member (S230), and bonding an insulating member. (Step S240).
보다 상세히 설명하면, 도 8에 도시된 바와 같이, 먼저, 제1전극 리드(110)와 제2전극 리드(120)가 접착되도록 대향하는 중첩 영역 이외의 부분에 내전해성 코팅층으로 부분 도금한다(단계 S210). In more detail, as shown in FIG. 8, first, partial plating of the first electrode lead 110 and the second electrode lead 120 is performed with the electrolytic coating layer on portions other than the overlapping regions facing each other (step). S210).
여기서, 제1전극 리드(110) 및 제2전극 리드(120)는 동일한 폭을 갖고 서로 다른 길이를 갖는 금속으로 이루어질 수 있다. 이때, 전극 리드(110,120)가 2단 적층 구조로 구성됨에 따른 파우치(11) 내부의 공간 효율 및 전극 리드(110,120) 사이의 분리 동작을 용이하게 하도록 제1전극 리드(110) 및 제2전극 리드(120)의 길이가 결정될 수 있다. 일례로, 제1전극 리드(110)에 대한 제2전극 리드(120)의 길이 비율은 1:3 ~ 1:5일 수 있다. Here, the first electrode lead 110 and the second electrode lead 120 may be made of metal having the same width and different lengths. At this time, the first electrode lead 110 and the second electrode lead to facilitate the separation efficiency between the electrode lead (110, 120) and the electrode lead (110, 120) as the electrode lead (110, 120) is composed of a two-stage stacked structure. The length of 120 can be determined. For example, the length ratio of the second electrode lead 120 to the first electrode lead 110 may be 1: 3 to 1: 5.
도 9를 참조하면, 제1전극 리드(110)의 일면에서 제2전극 리드(120)와 접합되는 부분(110a)을 제외하고, 부분 도금하여 코팅층(112)을 형성할 수 있다. 즉, 제1전극 리드(110)는 상면은 전체 도금되고 하면은 부분 도금될 수 있다. 유사하게 제2전극 리드(120)의 일면에서 제1전극 리드(110)와 접합되는 부분(120a)을 제외하고 부분 도금하여 코팅층(122)을 형성할 수 있다. 즉, 제2전극 리드(120)는 하면은 전체 도금되고 상면은 부분 도금될 수 있다. 이때, 제1전극 리드(110) 및 제2전극 리드(120)를 이루는 금속 플레이트에서 일부 영역(110a,120a)을 마스킹한 후 도금을 진행할 수 있다.Referring to FIG. 9, the coating layer 112 may be formed by partial plating except for the portion 110a that is bonded to the second electrode lead 120 on one surface of the first electrode lead 110. That is, the upper surface of the first electrode lead 110 may be fully plated and the lower surface of the first electrode lead 110 may be partially plated. Similarly, except for the portion 120a that is bonded to the first electrode lead 110 on one surface of the second electrode lead 120, the coating layer 122 may be formed by partially plating. That is, the lower surface of the second electrode lead 120 may be fully plated and the upper surface may be partially plated. At this time, the metal plate constituting the first electrode lead 110 and the second electrode lead 120 may be plated after masking the partial regions 110a and 120a.
이와 같이, 제1전극 리드(110)와 제2전극 리드(120)가 접합되는 부분을 도금하지 않음으로써, 제1전극 리드(110)와 제2전극 리드(120) 사이의 전기저항을 감소시키는 동시에 도전성 접착층(130)과의 접촉저항 개선과 접착력을 향상시킬 수 있다. As such, by not plating a portion where the first electrode lead 110 and the second electrode lead 120 are joined, the electrical resistance between the first electrode lead 110 and the second electrode lead 120 is reduced. At the same time, it is possible to improve contact resistance and adhesion with the conductive adhesive layer 130.
아울러, 제1전극 리드(110)와 제2전극 리드(120) 사이의 접착력을 충분히 제공하는 동시에 작업성을 고려하여 미도금 부분(110a,120a)의 면적이 결정될 수 있다. 일례로, 제1전극 리드(110)의 전체 면적에 대한 미도금 부분(110a)의 면적 비율은 1:2 ~ 1:4일 수 있다. 여기서, 제2전극 리드(120)의 미도금 부분(120a)은 제1전극 리드(110)의 미도금 부분(110a)과 동일 면적일 수 있다. In addition, the areas of the unplated portions 110a and 120a may be determined in consideration of workability while providing sufficient adhesive force between the first electrode lead 110 and the second electrode lead 120. For example, the ratio of the area of the unplated portion 110a to the total area of the first electrode lead 110 may be 1: 2 to 1: 4. Here, the unplated portion 120a of the second electrode lead 120 may have the same area as the unplated portion 110a of the first electrode lead 110.
여기서, 코팅층(112,122)은 제1전극 리드(110) 및 제2전극 리드(120)의 산화방지 및 전해액에 대한 내성 향상과 절연 부재(150)와의 접착력을 향상시키기 위한 것이다. Here, the coating layers 112 and 122 are for preventing oxidation of the first electrode lead 110 and the second electrode lead 120, resistance to the electrolyte, and adhesion to the insulating member 150.
아울러, 제1전극 리드(110) 및 제2전극 리드(120)는 전극셀(12) 또는 외부와의 연결을 위한 용접성을 향상시키기 위한 표면처리가 수행될 수 있다.In addition, the first electrode lead 110 and the second electrode lead 120 may be surface treated to improve weldability for connection with the electrode cell 12 or the outside.
선택적으로, 절연 부재(150)와의 접합부분에 대응하는 모서리에 라운드 가공을 수행할 수 있다. 즉, 도 9에서 제1전극 리드(110) 및 제2전극 리드(120)의 상단 및 하단 모서리를 라운드 가공할 수 있다. 이에 의해, 제1전극 리드(110) 및 제2전극 리드(120)의 모서리 부분에서 절연 부재(150)와의 기밀성을 향상시킬 수 있다. Optionally, round processing may be performed at corners corresponding to the joint portion with the insulating member 150. That is, in FIG. 9, upper and lower edges of the first electrode lead 110 and the second electrode lead 120 may be rounded. As a result, the airtightness of the first electrode lead 110 and the second electrode lead 120 with the insulating member 150 can be improved.
다음으로, 제1전극 리드(110)와 제2전극 리드(120) 사이 중첩 영역(110a,120a)에 도전성 페이스트(130)를 도포하여 제1전극 리드(110)와 제2전극 리드(120)를 접합한다(단계 S220).Next, the conductive paste 130 is applied to the overlapping regions 110a and 120a between the first electrode lead 110 and the second electrode lead 120 to form the first electrode lead 110 and the second electrode lead 120. (Step S220).
도 10을 참조하면, 제2전극 리드(120)의 미도금 부분(120a)에 도전성 페이스트(130)를 도포하고, 도전성 페이스트(130)의 상측에 제1전극 리드(110)의 미도금 부분(110a)이 대향하도록 배치한다. 이때, 제1전극 리드(110)와 제2전극 리드(120)가 미도금 부분(110a,120a) 및 모서리를 벗어나지 않도록 정렬할 수 있다.Referring to FIG. 10, the conductive paste 130 is coated on the unplated portion 120a of the second electrode lead 120, and the unplated portion of the first electrode lead 110 is disposed on the conductive paste 130. 110a) are arranged to face each other. In this case, the first electrode lead 110 and the second electrode lead 120 may be aligned so as not to leave the unplated portions 110a and 120a and the corners.
여기서, 제1전극 리드(110)와 제2전극 리드(120)의 접합시 누액이 발생되지 않고, 경화공정 이후 두께가 20~100㎛가 되도록 도전성 페이스트(130)의 도포량이 결정될 수 있다. 일례로, 제1전극 리드(110)와 제2전극 리드(120) 사이의 접착력 및 저항을 고려하여 도전성 페이스트(130)는 도포 후 중량이 0.01~0.05㎎/㎟가 되도록 도포될 수 있다.Here, the amount of application of the conductive paste 130 may be determined such that leakage does not occur when the first electrode lead 110 and the second electrode lead 120 are bonded to each other, and the thickness becomes 20 to 100 μm after the curing process. For example, the conductive paste 130 may be coated to have a weight of 0.01 to 0.05 mg / mm 2 after application in consideration of adhesion and resistance between the first electrode lead 110 and the second electrode lead 120.
아울러, 도전성 페이스트(130)는 제1전극 리드(110) 및 제2전극 리드(120)와의 일정 수준 이상의 접착력을 제공하는 동시에 접촉 저항이 최소화되는 재료로 이루어질 수 있다. 또한, 도전성 페이스트(130)는 전해액에 대한 내성을 가지며, 건조조건과 점도 등의 특성이 공정 작업성에 부합되는 재료로 이루어질 수 있다. In addition, the conductive paste 130 may be formed of a material that provides a predetermined level of adhesion with the first electrode lead 110 and the second electrode lead 120 and minimizes contact resistance. In addition, the conductive paste 130 may be resistant to the electrolyte, and may be made of a material whose characteristics such as drying conditions and viscosity match process processability.
여기서, 도전성 페이스트(130)의 경화를 위해 일정 온도로 가열하는 기존 공정은 많은 시간이 소요된다. 아울러, 경화 진행중 도전성 페이스트(130)의 부피 팽창에 의해 제1전극 리드(110)와 제2전극 리드(120) 사이에 간극이 발생하여 저항이 증가하게 된다. Here, the conventional process of heating to a predetermined temperature for curing the conductive paste 130 takes a lot of time. In addition, a gap is generated between the first electrode lead 110 and the second electrode lead 120 by the volume expansion of the conductive paste 130 during curing, thereby increasing the resistance.
이를 해결하기 위해, 본 발명은 가열과 동시에 전극 리드(110,120)에 압력을 부가한다. 즉, 제1전극 리드(110) 및 제2전극 리드(120)를 일정 압력으로 가압하면서 도전성 페이스트(130)를 일정 온도로 가열하여 경화시킨다. In order to solve this problem, the present invention adds pressure to the electrode leads 110 and 120 simultaneously with heating. That is, the conductive paste 130 is heated and cured to a predetermined temperature while pressing the first electrode lead 110 and the second electrode lead 120 at a predetermined pressure.
이에 의해, 도전성 페이스트(130)의 경화 시간을 단축시킴으로써 생산성을 향상시킬 수 있다. 아울러, 경화시 발생될 수 있는 제1전극 리드(110)와 제2전극 리드(120) 사이의 간극을 최소화할 수 있다.Thereby, productivity can be improved by shortening the hardening time of the electrically conductive paste 130. FIG. In addition, the gap between the first electrode lead 110 and the second electrode lead 120 which may be generated during curing may be minimized.
일례로, 5~10㎏f/㎠의 압력으로 제1전극 리드(110) 및 제2전극 리드(120)를 가압하면서 160~180℃의 온도로 1~10분 동안 가열하여 도전성 페이스트(130)를 경화시킬 수 있다. For example, while pressing the first electrode lead 110 and the second electrode lead 120 at a pressure of 5 ~ 10kgf / ㎠ and heated for 1 to 10 minutes at a temperature of 160 ~ 180 ℃ conductive paste 130 Can be cured.
여기서, 전극 리드(110,120)의 가압력이 5㎏f/㎠보다 작은 경우, 제1전극 리드(110) 및 제2전극 리드(120)와의 접착력이 충분히 확보되기 이전에 경화가 진행되기 때문에 접착력이 약해진다. 반면, 전극 리드(110,120)의 가압력이 10㎏f/㎠보다 큰 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 도전성 페이스트(130)의 누액량이 증가하여 실질적으로 전극 리드(110,120) 사이의 접착력 및 저항 특성이 저하된다. In this case, when the pressing force of the electrode leads 110 and 120 is less than 5 kgf / cm 2, since the curing proceeds before sufficient adhesion between the first electrode lead 110 and the second electrode lead 120 is sufficiently secured, the adhesion strength is weak. Become. On the other hand, when the pressing force of the electrode leads 110 and 120 is greater than 10 kgf / cm 2, the amount of leakage of the conductive paste 130 between the first electrode lead 110 and the second electrode lead 120 increases to substantially increase the electrode lead. Adhesion and resistance properties between (110, 120) are degraded.
또한, 도전성 페이스트(130)의 가열 온도가 160℃보다 작은 경우, 도전성 페이스트(130)가 경화되는 시간이 증가하여 작업 소요시간이 증가하고 결과적으로 생선성이 감소한다. 반면, 도전성 페이스트(130)의 가열 온도가 180℃보다 큰 경우, 도전성 페이스트(130)의 경화 특성이 저하되어 제1전극 리드(110)와 제2전극 리드(120) 사이의 접착력이 저하된다.In addition, when the heating temperature of the conductive paste 130 is less than 160 ° C., the time required for the conductive paste 130 to cure increases to increase the work time and consequently decrease the fishability. On the other hand, when the heating temperature of the conductive paste 130 is greater than 180 ° C., the curing property of the conductive paste 130 is lowered and the adhesion between the first electrode lead 110 and the second electrode lead 120 is lowered.
또한, 도전성 페이스트(130)의 가열 시간이 1분 미만인 경우, 도전성 페이스트(130)의 경화가 충분히 이루어지지 않는다. 반면, 도전성 페이스트(130)의 가열 시간이 10분을 초과하는 경우, 전극 리드(110,120)인 메탈 표면 산화 등의 영향으로 절연부재와의 밀착력이 저하되며, 불필요한 시간 증가로 생산성이 떨어진다.In addition, when the heating time of the electrically conductive paste 130 is less than 1 minute, hardening of the electrically conductive paste 130 is not fully performed. On the other hand, when the heating time of the conductive paste 130 exceeds 10 minutes, the adhesion to the insulating member is lowered due to the metal surface oxidation, which is the electrode leads 110 and 120, and the productivity decreases due to unnecessary time increase.
다음으로, 제1전극 리드(110)의 타측 단부측에서 제2전극 리드(120) 상에 밀봉 부재(140)를 배치하여 접합한다(단계 S230). 여기서, 밀봉 부재(140)는 제1전극 리드(110)와 제2전극 리드(120)의 분리시 파우치(11) 내부의 전해액이 외부로 누설되는 것을 방지하기 위한 것이다. Next, the sealing member 140 is disposed on the second electrode lead 120 at the other end side of the first electrode lead 110 and bonded (step S230). Here, the sealing member 140 is to prevent the electrolyte solution inside the pouch 11 from leaking to the outside when the first electrode lead 110 and the second electrode lead 120 are separated.
도 11을 참조하면, 밀봉 부재(140)를 제1전극 리드(110)와 제2전극 리드(120) 사이의 단차에 배치한 후, 가열에 의해 융착시킴으로써 접합할 수 있다. 여기서, 밀봉 부재(140)가 제1전극 리드(110)의 일부에 잔존하기 때문에 제1전극 리드(110) 상의 평탄화를 위해 이를 제거할 수 있다. 결과적으로, 밀봉 부재(140)를 제1전극 리드(110)의 외곽측에서 제2전극 리드(120)의 상측에 배치할 수 있다. Referring to FIG. 11, the sealing member 140 may be disposed at a step between the first electrode lead 110 and the second electrode lead 120, and then bonded by fusion by heating. Here, since the sealing member 140 remains in a part of the first electrode lead 110, it may be removed for the planarization on the first electrode lead 110. As a result, the sealing member 140 may be disposed above the second electrode lead 120 at the outer side of the first electrode lead 110.
이에 의해, 과충전 등에 따른 파우치(11) 내부의 팽창에 의해 제1전극 리드(110)와 제2전극 리드(120)가 분리되는 경우에도, 절연 부재(150)와의 접착을 유지함으로써, 전해액의 누설을 차단할 수 있다.As a result, even when the first electrode lead 110 and the second electrode lead 120 are separated by the expansion of the inside of the pouch 11 due to overcharging or the like, the adhesion of the insulating member 150 is maintained, thereby preventing leakage of the electrolyte solution. Can be blocked.
밀봉 부재(140)는 전극 리드(110,120)와 절연 부재(150) 사이의 접착력을 향상시키기 위한 것이다. 여기서, 밀봉 부재(140)는 절연 부재(150)와 동종 재료를 포함할 수 있다. 이에 의해, 절연 부재(150)와의 접착이 용이하고 접착력을 향상시킬 수 있다. The sealing member 140 is to improve the adhesive force between the electrode leads 110 and 120 and the insulating member 150. Here, the sealing member 140 may include the same material as the insulating member 150. Thereby, adhesion with the insulating member 150 is easy and adhesive force can be improved.
아울러, 밀봉 부재(140)는 파우치(11) 실링시 절연 부재(150)와의 접착력을 향상시키도록 제1전극 리드(110)와 제2전극 리드(120) 사이의 단차를 보상하기 위한 것이다. 이때, 밀봉 부재(140)는 그 폭이 제1전극 리드(110) 및 제2전극 리드(120)의 폭과 동일할 수 있다. In addition, the sealing member 140 is to compensate for the step between the first electrode lead 110 and the second electrode lead 120 to improve the adhesion to the insulating member 150 when sealing the pouch 11. In this case, the width of the sealing member 140 may be equal to the width of the first electrode lead 110 and the second electrode lead 120.
또한, 밀봉 부재(140)의 두께는 제1전극 리드(110)의 두께(t1) 및 제2전극 리드(120)의 두께(t2) 대비 110~115%일 수 있다.In addition, the thickness of the sealing member 140 may be 110 to 115% of the thickness t1 of the first electrode lead 110 and the thickness t2 of the second electrode lead 120.
이와 같이 제1전극 리드(110)와 제2전극 리드(120)의 2단 구조에 의해 발생하는 단차를 보상함으로써 이차 전지용 전극 리드 조립체(100)의 전체 평탄도를 균일하게 형성할 수 있다. 이에 의해, 이후 공정인 절연 부재(150) 및 파우치(11) 접합시 작업 용이성을 확보할 수 있다.As such, the flatness of the secondary battery electrode lead assembly 100 may be uniformly formed by compensating for the step difference caused by the two-stage structure of the first electrode lead 110 and the second electrode lead 120. Thereby, workability at the time of joining the insulating member 150 and the pouch 11 which are a later process can be ensured.
이때, 밀봉 부재(140)는 제1전극 리드(110)와 제2전극 리드(120) 사이의 단차를 보상하도록 경사면을 가질 수 있다. In this case, the sealing member 140 may have an inclined surface to compensate for the step difference between the first electrode lead 110 and the second electrode lead 120.
다음으로, 밀봉 부재(140) 및 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역을 둘러쌓도록 절연 부재(150)를 접합한다(단계 S240). 여기서, 절연 부재(150)는 제1전극 리드(110) 및 제2전극 리드(120)의 폭보다 큰 폭을 가질 수 있다. 또한, 절연 부재(150)는 제1전극 리드(110) 및 제2전극 리드(120), 파우치(11)와의 접착력을 동시에 만족하며, 전해액에 대한 내성을 갖는 재질일 수 있다. Next, the insulating member 150 is bonded to surround the overlapping region between the sealing member 140 and the first electrode lead 110 and the second electrode lead 120 (step S240). Here, the insulating member 150 may have a width greater than the width of the first electrode lead 110 and the second electrode lead 120. In addition, the insulating member 150 may satisfy a bonding force with the first electrode lead 110, the second electrode lead 120, and the pouch 11 at the same time, and may be a material having resistance to the electrolyte.
도 12 및 도 13을 참조하면, 절연 부재(150)를 밀봉 부재(140) 및 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역을 둘러쌓도록 배치한다. 이때, 절연 부재(150)는 전류 차단시 제1전극 리드(110)와 제2전극 리드(120) 사이의 분리가 용이하도록 제1전극 리드(110)와 제2전극 리드(120) 사이의 중첩 영역 측으로 치우치게 배치될 수 있다. 일례로, 제2전극 리드(120)의 일단으로부터 절연 부재(150)의 일단까지의 거리(W1)는 2㎜ 이하일 수 있다(도 4 참조).12 and 13, the insulating member 150 is disposed to surround the overlapping region between the sealing member 140 and the first electrode lead 110 and the second electrode lead 120. In this case, the insulating member 150 overlaps between the first electrode lead 110 and the second electrode lead 120 to facilitate separation between the first electrode lead 110 and the second electrode lead 120 when the current is interrupted. It may be arranged to be biased toward the region side. For example, the distance W1 from one end of the second electrode lead 120 to one end of the insulating member 150 may be 2 mm or less (see FIG. 4).
여기서, 절연 부재(150)의 두께 및 폭은 융착시 변화와 전극 리드(110,120)의 2단 구조에 따른 단차에 의한 연신 등을 고려하여 결정될 수 있다. 일례로, 절연 부재(150)의 두께는 리드 전극(110,120)의 두께(t1,t2)에 대하여 50~80%일 수 있다. Here, the thickness and width of the insulating member 150 may be determined in consideration of the change in fusion and the stretching due to the step according to the two-stage structure of the electrode leads 110 and 120. For example, the thickness of the insulating member 150 may be 50 to 80% of the thicknesses t1 and t2 of the lead electrodes 110 and 120.
도 14를 참조하면, 절연 부재(150)의 융착을 위해 상부 및 하부에 별도로 히터가 구비된 가압 팁(21~26)이 배치된다. 여기서, 융착시 충분한 열을 균일하게 전달할 수 있도록 절연 부재(150)와 전극 리드(110,120) 측을 구분하여 별도의 가압 팁(21~26)을 배치할 수 있다. Referring to FIG. 14, pressure tips 21 to 26 having heaters are separately disposed on upper and lower portions of the insulating member 150 to be fused. Here, separate pressurizing tips 21 to 26 may be disposed by separating the insulating member 150 and the electrode leads 110 and 120 so as to uniformly transfer sufficient heat during fusion.
즉, 각 가압 팁(21~26)은 위치별로 온도차가 발생하지 않도록 개별로 온도를 조정할 수 있다. 또한, 전극 리드용 팁(23~26)은 전극 리드(110,120)의 단차 차이만큼 조정하도록 개별 조정될 수 있다.That is, each pressurizing tip 21 to 26 may individually adjust the temperature so that a temperature difference does not occur for each position. In addition, the electrode leads tips 23 to 26 may be individually adjusted to adjust by the step difference between the electrode leads 110 and 120.
이때, 절연 부재용 팁(21,22)은 절연 부재(150)의 용융점 수준으로 온도를 설정하고 일정 온도로 가압하면서 일정 시간동안 융착 공정을 수행한다. 일례로, 3~5㎏f/㎠의 압력으로 가압하면서 120~180℃의 온도로 4~8초 동안 가열하여 절연 부재(150)를 접합할 수 있다.At this time, the tips 21 and 22 for the insulating member perform a fusion process for a predetermined time while setting the temperature to the melting point level of the insulating member 150 and pressing to a predetermined temperature. For example, the insulating member 150 may be bonded by heating at a temperature of 120 to 180 ° C. for 4 to 8 seconds while pressing at a pressure of 3 to 5 kgf / cm 2.
여기서, 3㎏f/㎠보다 작은 압력으로 가압하는 경우, 제1전극 리드(110)와 제2전극 리드(120) 사이의 단차에 의해 평탄도를 균일하게 형성하지 못한다. 반면, 5㎏f/㎠보다 큰 압력으로 가압하는 경우, 절연 부재(150)의 연신이 증가하고, 그로 인해 절연 부재(150)의 절연성이 저하되거나 설계에 필요한 치수의 공차가 저하된다.In this case, when the pressure is applied at a pressure smaller than 3 kgf / cm 2, the flatness may not be uniformly formed by the step between the first electrode lead 110 and the second electrode lead 120. On the other hand, when pressurized at a pressure greater than 5 kgf / cm 2, the stretching of the insulating member 150 increases, thereby lowering the insulation of the insulating member 150 or the tolerance of the dimensions required for the design.
또한, 120℃보다 작은 온도로 가열하는 경우, 절연 부재(150)가 융착되는 시간이 증가하여 작업 소요시간이 증가하고 결과적으로 생산성이 감소한다. 반면, 180℃보다 높은 온도로 가열하는 경우, 절연 부재(150)의 연신이 증가되어 이후 진행될 파우치(11)와의 접착력 및 전체적인 절연성 저하의 우려가 있으며, 특히 절연 부재(150)의 용융점을 초과하는 경우 본연의 특성을 상실한다.In addition, when heating to a temperature less than 120 ℃, the time that the insulating member 150 is fused increases the work required time is increased and consequently the productivity is reduced. On the other hand, when heated to a temperature higher than 180 ℃, the stretching of the insulating member 150 is increased, there is a fear of the adhesive strength with the pouch 11 to be carried out and the overall insulation deterioration, in particular exceeding the melting point of the insulating member 150 If you lose the original characteristics.
또한, 4초보다 짧은 시간 동안 가열하는 경우, 절연 부재(150)의 융착이 충분히 이루어지지 않는다. 반면, 8초보다 긴 시간 동안 가열하는 경우, 절연 부재(150)의 연신이 증가하여 크기의 규격을 만족하지 못한다. In addition, when heating for less than 4 seconds, fusion of the insulating member 150 is not made sufficiently. On the other hand, when heating for a time longer than 8 seconds, the stretching of the insulating member 150 is increased to satisfy the size specification.
아울러, 전극 리드용 팁(23~26)은 절연 부재(150)의 온도를 압착 시간 동안 유지하기 위해 일정한 온도로 가열한다. 일례로, 120~200℃로 제1전극 리드(110) 및 제2전극 리드(120)를 가열한다. In addition, the electrode leads tips 23 to 26 are heated to a constant temperature to maintain the temperature of the insulating member 150 for the compression time. For example, the first electrode lead 110 and the second electrode lead 120 are heated to 120 to 200 ° C.
여기서, 120℃보다 낮은 온도로 가열하는 경우, 절연 부재(150)의 가장 자리 부위에서 온도의 불균일로 인하여 융착 특성이 저하된다. 반면, 200℃보다 높은 온도로 가열하는 경우, 절연 부재(150)가 제1전극 리드(110) 및 제2전극 리드(120) 측으로 연신되어 크기의 규격을 만족하지 못한다.Here, in the case of heating to a temperature lower than 120 ° C, the fusion characteristics are lowered due to the nonuniformity of the temperature at the edge portion of the insulating member 150. On the other hand, when heated to a temperature higher than 200 ℃, the insulating member 150 is drawn to the first electrode lead 110 and the second electrode lead 120 side does not satisfy the size specifications.
한편, 이차 전지용 전극 리드 조립체의 제조 방법(200)은 절연 부재를 부분 융착하는 단계(S250)를 더 포함할 수 있다.Meanwhile, the method 200 of manufacturing an electrode lead assembly for a secondary battery may further include partially fusion bonding the insulating member (S250).
여기서, 절연 부재(150) 및 전극 리드(110,120) 측의 팁(21~26)을 가열 및 가압하며, 전극 리드(110,120)와 절연 부재(150) 사이의 융착을 진행하는데, 기존의 1단 리드 구조 대비 2단 리드 구조로 인해 전극 리드(110,120)의 평탄도를 균일하게 맞추고, 절연 부재(150)의 절연이 파괴되지 않도록 두께를 유지하며 절연 부재(150)의 폭이 증가되지 않는 수준으로 접착력을 확보하는 것이 용이하지 않다.In this case, the insulation members 150 and the tips 21 to 26 on the electrode leads 110 and 120 are heated and pressed, and fusion between the electrode leads 110 and 120 and the insulation member 150 is performed. Due to the two-stage lead structure compared to the structure, the flatness of the electrode leads 110 and 120 is uniformly maintained, the thickness is maintained so that the insulation of the insulating member 150 is not destroyed, and the adhesion strength is not increased. It is not easy to secure.
이를 위해 본 발명은 절연 부재(150)의 융착 구간을 특성에 맞게 1회 이상의 복수로 구분하여 수행한다. 즉, 전극 리드(110,120) 상에서 절연 부재(150)의 위치를 결정하기 위한 가접 구간, 절연 부재(150) 사이의 기포제거 구간 및 면기밀성 및 에지 기밀성을 확보하기 위한 구간으로 구분하여 수행할 수 있다. 여기서, 가접 구간은 단계 S240을 참조하여 설명한 바와 동일하다. To this end, the present invention is performed by dividing the fusion section of the insulating member 150 into one or more times according to characteristics. That is, it may be performed by dividing the temporary section for determining the position of the insulating member 150 on the electrode leads 110, 120, the bubble removing section between the insulating member 150 and the section for securing the surface airtightness and edge tightness. . Here, the provisional section is the same as described with reference to step S240.
도 15를 참조하면, 절연 부재(150)의 압착 이후, 전극 리드용 팁(22~26)을 이용하여 제1전극 리드(110) 및 제2전극 리드(120) 만을 가열한다. 이때, 절연 부재(150)에서 제1전극 리드(110) 및 제2전극 리드(120)와 접촉되는 부위의 제1접착층(151)이 충분이 융착될 수 있도록 절연 부재(150)의 용융 온도로 수초 이내로 가열할 수 있다. 일례로, 120~200℃로 4~8초 동안 제1전극 리드(110) 및 제2전극 리드(120)를 가열한다. Referring to FIG. 15, after the insulation member 150 is compressed, only the first electrode lead 110 and the second electrode lead 120 are heated using the electrode tips 22 to 26. At this time, the first adhesive layer 151 of the portion in contact with the first electrode lead 110 and the second electrode lead 120 in the insulating member 150 at a melting temperature of the insulating member 150 to be fused sufficiently It can be heated within a few seconds. For example, the first electrode lead 110 and the second electrode lead 120 are heated to 120 to 200 ° C. for 4 to 8 seconds.
여기서, 120℃보다 낮은 온도로 가열하는 경우, 절연 부재(150)의 가장 자리 부위에서 절연 부재(150)의 추가 융착이 발생하지 않는다. 반면, 200℃보다 높은 온도로 가열하는 경우, 절연 부재(150)가 제1전극 리드(110) 및 제2전극 리드(120) 측으로 연신되어 크기의 규격을 만족하지 못한다. Here, in the case of heating to a temperature lower than 120 ° C, further fusion of the insulating member 150 does not occur at the edge portion of the insulating member 150. On the other hand, when heated to a temperature higher than 200 ℃, the insulating member 150 is drawn to the first electrode lead 110 and the second electrode lead 120 side does not satisfy the size specifications.
또한, 4초보다 짧은 시간 동안 가열하는 경우, 절연 부재(150)의 융착이 충분히 이루어지지 않는다. 반면, 8초보다 긴 시간 동안 가열하는 경우, 생산성이 떨어지며, 절연 부재(150)의 연신이 증가하여 크기의 규격을 만족하지 못한다. In addition, when heating for less than 4 seconds, fusion of the insulating member 150 is not made sufficiently. On the other hand, when heating for a time longer than 8 seconds, productivity is lowered, the stretching of the insulating member 150 is increased to meet the size specification.
도 16을 참조하면, 절연 부재(150)의 제1접착층(151)이 융착됨에 따라 절연 부재(150)와 전극 리드(110,120) 사이의 공간(b)의 적어도 일부가 융착된 제1접착층(151)에 의해 채워질 수 있다. 따라서 절연 부재(150)와 전극 리드(110,120) 사이 공간이 일정 영역(a)으로 축소되거나 제거될 수 있다. Referring to FIG. 16, as the first adhesive layer 151 of the insulating member 150 is fused, at least a portion of the space b between the insulating member 150 and the electrode leads 110 and 120 is fused to the first adhesive layer 151. Can be filled by). Therefore, the space between the insulating member 150 and the electrode leads 110 and 120 may be reduced or removed to a predetermined region (a).
이에 의해, 절연 부재(150)의 폭이 확장되지 않으면서도 접착력을 향상시킬 수 있다. 아울러, 절연 부재(150)를 전체적으로 평탄화하여 외관적인 결함을 제거할 수 있다. 또한, 절연 부재(150)의 양측에서 전극 리드(110,120)와 절연 부재(150) 사이의 기밀성을 향상시킬 수 있다. Thereby, adhesive force can be improved, without the width | variety of the insulating member 150 extended. In addition, the insulating member 150 may be planarized as a whole to remove external defects. In addition, the airtightness between the electrode leads 110 and 120 and the insulating member 150 may be improved at both sides of the insulating member 150.
이때, 절연 부재(150)는 제1전극 리드(110) 및 제2전극 리드(120)의 양측으로 연장 형성되기 때문에 기밀성 확보 공정 중에 전극 리드(110,120)의 가열에 따라 처짐이 발생할 수 있다. In this case, since the insulating member 150 extends to both sides of the first electrode lead 110 and the second electrode lead 120, sag may occur due to heating of the electrode leads 110 and 120 during the airtightness securing process.
이를 방지하기 위해, 본 발명은 절연 부재(150)의 좌우측을 지지하기 위한 팁(27)을 사용한다. 도 17을 참조하면, 절연 부재의 처짐 방지용 팁(27)은 절연 부재(150)의 수용부를 갖는 오목한 형상일 수 있다. In order to prevent this, the present invention uses a tip 27 for supporting the left and right sides of the insulating member 150. Referring to FIG. 17, the tip 27 for preventing sagging of the insulating member may have a concave shape having a receiving portion of the insulating member 150.
즉, 절연 부재의 처짐 방지용 팁(27)을 절연 부재(150)의 폭 방향으로 배치한 상태에서 전극 리드(110,120)를 가열한다. 이때, 처짐 방지용 팁(27)은 절연 부재(150)의 양측(150a)을 지지하고, 전극 리드 2단 적층 구조를 오목부에 수용하되 접촉되지 않도록 배치한다. 이에 의해, 절연 부재(150)의 폭 방향 처짐을 방지할 수 있다.That is, the electrode leads 110 and 120 are heated while the tip 27 for preventing sagging of the insulating member is disposed in the width direction of the insulating member 150. At this time, the sag-prevention tip 27 supports both sides 150a of the insulating member 150, and accommodates the electrode lead two-stage stacked structure so as not to contact the recessed portion. Thereby, sagging of the width direction of the insulating member 150 can be prevented.
선택적으로, 절연 부재의 처짐 방지용 팁(27)의 적용시, 우레탄 또는 테프론 테이프를 처짐 방지용 팁(27)에 의한 자국이 절연 부재(150)에 남지 않도록 할 수 있다. Optionally, upon application of the sagging prevention tip 27 of the insulating member, urethane or Teflon tape can be prevented from leaving marks on the insulating member 150 by the sagging preventing tip 27.
한편, 이차 전지용 전극 리드 조립체의 제조 방법(200)은 절연 부재의 광택을 조정하는 단계(S260)를 더 포함할 수 있다.Meanwhile, the manufacturing method 200 of the electrode lead assembly for the secondary battery may further include adjusting the gloss of the insulating member (S260).
여기서, 절연 부재(150)는 필름 형태로 이루어지기 때문에, 일반적으로 유광을 갖는다. 이때, 공정 상에서 사용되는 정렬 수단들은 광학 소자로 이루어지기 때문에 유광을 갖는 절연 부재(150)를 사용하는 경우, 광의 반사에 의해 정렬 오차가 발생할 가능성이 크다. Here, since the insulating member 150 is formed in a film form, it generally has a gloss. At this time, since the alignment means used in the process is made of an optical element, when using the insulating member 150 having a gloss, the alignment error is likely to occur due to the reflection of light.
이를 방지하기 위해, 본 발명은 절연 부재(150)를 무광으로 변경하거나 광택도를 조정한다. 즉, 절연 부재(150)의 융착이 완료된 이후 추가 융착에 의해 절연 부재(150)의 전체적인 광택도를 유광 및 무광으로 선택적으로 조정할 수 있다.To prevent this, the present invention changes the insulating member 150 to matt or adjusts the glossiness. That is, after the fusion of the insulating member 150 is completed, the overall glossiness of the insulating member 150 may be selectively adjusted to be glossy or matte by additional fusion.
이때, 절연 부재(150) 융착(단계 S250) 또는 기밀성 확보(단계 S250) 공정이후에 전극 리드(110,120)의 열이 식지 않은 수초 이내에 최대한 공기와 접촉되지 않고 완전밀착이 가능하도록 절연 부재(150)의 압착 팁으로 가압함으로써, 절연 부재(150)를 무광으로 조정할 수 있다. 아울러, 압착 팁 등과 같이 별도의 밀폐 냉각 없이 자연 냉각을 통해 절연 부재(150)를 유광으로 제조할 수 있다.At this time, after the welding of the insulating member 150 (step S250) or the securing of airtightness (step S250), the insulating member 150 may be intimately contacted with air as much as possible within a few seconds after the heat of the electrode leads 110 and 120 has not cooled. By pressing with the crimping tip of the insulating member 150, the insulating member 150 can be adjusted to be matt. In addition, the insulating member 150 may be manufactured to be polished through natural cooling without additional sealing cooling such as a pressing tip.
또한, 절연 부재(150)의 광택도를 원하는 수준으로 조정하는 경우, 절연 부재(150)의 상하면에 광택조정용 시트를 별도로 부착할 수 있다.In addition, when adjusting the glossiness of the insulating member 150 to a desired level, the gloss adjustment sheet may be separately attached to the upper and lower surfaces of the insulating member 150.
도 18을 참조하면, 절연 부재(150)의 상하측에 광택조정용 시트(30)를 배치하고 가압 팁(28,29)으로 가압 및 가열한다. 여기서, 광택조정용 시트(30)는 절연 부재(150) 측으로 완전히 밀착될 수 있도록 탄성을 갖는 것이 바람직하다. Referring to FIG. 18, the gloss adjustment sheet 30 is disposed on the upper and lower sides of the insulating member 150, and pressurized and heated by the pressure tips 28 and 29. Here, it is preferable that the gloss adjustment sheet 30 has elasticity so as to be completely in contact with the insulating member 150 side.
이때, 가압 팁(28,29)은 절연 부재(150)의 높이가 변경되지 않는 온도로 가열되며 광택조정용 시트(30)가 절연 부재(150)에 밀착되도록 일정 압력으로 가압된다. At this time, the pressing tips 28 and 29 are heated to a temperature at which the height of the insulating member 150 does not change, and the gloss adjusting sheet 30 is pressed at a predetermined pressure to closely adhere to the insulating member 150.
일례로, 가압 팁(28,29)을 3~5㎏f/㎠의 압력으로 가압하면서 80~120℃에서 4~8초 동안 가열하여 절연 부재(150)의 광택도를 조정할 수 있다. For example, the glossiness of the insulating member 150 may be adjusted by heating the pressing tips 28 and 29 at a pressure of 3 to 5 kgf / cm 2 for 4 to 8 seconds at 80 to 120 ° C.
여기서, 3㎏f/㎠보다 작은 압력으로 가압하는 경우, 광택조정용 시트(30)가 절연 부재(150)에 충분히 압착되지 않는다. 반면, 5㎏f/㎠보다 큰 압력으로 가압하는 경우, 절연 부재(150)의 변형을 초래한다.Here, when pressurizing with a pressure smaller than 3 kgf / cm <2>, the glossiness adjusting sheet 30 is not fully crimped | bonded by the insulating member 150. FIG. On the other hand, if the pressure is greater than 5 kgf / cm 2, the insulation member 150 is deformed.
또한, 80℃보다 작은 온도로 가열하는 경우, 광택조정용 시트(30)에 의한 절연 부재(150)의 광택이 충분히 발현되지 않는다. 반면, 120℃보다 높은 온도로 가열하는 경우, 절연 부재(150)가 용융되어 높이 등의 규격이 변형된다.In addition, when heating to temperature less than 80 degreeC, the glossiness of the insulating member 150 by the glossiness adjusting sheet 30 is not fully expressed. On the other hand, when heated to a temperature higher than 120 ℃, the insulating member 150 is melted to deform the standard, such as height.
또한, 4초보다 짧은 시간 동안 가열하는 경우, 광택조정용 시트(30)에 의한 절연 부재(150)의 광택이 충분히 발현되지 않는다. 반면, 8초보다 긴 시간 동안 가열하는 경우, 생산성이 떨어지며, 불필요한 가열에 의한 자원의 낭비를 초래한다.In addition, when heating for less than 4 seconds, the glossiness of the insulating member 150 by the glossiness adjusting sheet 30 is not fully expressed. On the other hand, when heating for a time longer than 8 seconds, the productivity is lowered, resulting in waste of resources by unnecessary heating.
이와 같은 방법에 의해. 본 발명은 전류 차단 기능 및 전해액의 누설 차단을 동시에 제공하므로 제품의 신뢰성을 향상시킬 수 있고, 2단 구조의 전극 리드를 이용하면서도 저항 및 부착력을 향상시킬 수 있으며, 작업 소요시간을 단축할 수 있어 생산성을 향상시킬 수 있고, 전극 리드의 양측에서 절연 필름과의 사이의 기밀성을 보장할 수 있으므로 제품의 신뢰성을 향상시킬 수 있다. By such a method. The present invention can improve the reliability of the product by providing a current blocking function and leakage blocking of the electrolyte at the same time, and can improve the resistance and adhesion while using the electrode lead of the two-stage structure, can shorten the time required for work Productivity can be improved, and since the airtightness with an insulating film can be ensured on both sides of an electrode lead, reliability of a product can be improved.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention may add components within the same scope. Other embodiments may be easily proposed by changing, deleting, adding, etc., but this will also fall within the scope of the present invention.

Claims (18)

  1. 일측이 전극셀에 연결되며 제1전극 리드;One side is connected to the electrode cell and the first electrode lead;
    상기 제1전극 리드와 일부가 중첩되도록 상기 제1전극 리드와 대향하여 배치되는 제2전극 리드; A second electrode lead disposed to face the first electrode lead to partially overlap the first electrode lead;
    상기 제1전극 리드와 상기 제2전극 리드 사이의 중첩 영역에 구비되는 도전성 접착층; A conductive adhesive layer provided in an overlapping region between the first electrode lead and the second electrode lead;
    상기 제1전극 리드의 타측 단부측에서 상기 제2전극 리드 상에 구비되는 밀봉 부재; 및 A sealing member provided on the second electrode lead at the other end side of the first electrode lead; And
    상기 밀봉 부재 및 상기 중첩 영역을 둘러쌓도록 구비되되, 상기 제1전극 리드 및 상기 제2전극 리드 각각과 파우치의 내면 사이에 배치되는 절연 부재;An insulating member disposed to surround the sealing member and the overlapping region, the insulating member being disposed between each of the first electrode lead and the second electrode lead and an inner surface of the pouch;
    를 포함하는 이차 전지용 전극 리드 조립체.Electrode lead assembly for a secondary battery comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1전극 리드 및 상기 제2전극 리드 각각과 상기 도전성 접착층 사이의 접착력은 상기 절연 부재와 상기 밀봉 부재 사이의 접착력보다 작은 이차 전지용 전극 리드 조립체.And an adhesive force between each of the first electrode lead and the second electrode lead and the conductive adhesive layer is smaller than the adhesive force between the insulating member and the sealing member.
  3. 제1항에 있어서, The method of claim 1,
    상기 제1전극 리드 및 상기 제2전극 리드는 상기 중첩 영역 이외의 부분에 내전해성 코팅층이 구비되며,The first electrode lead and the second electrode lead are provided with an electrolytic resistant coating layer at portions other than the overlap region.
    상기 제1전극 리드와 상기 제2전극 리드의 폭은 동일하고, The width of the first electrode lead and the second electrode lead is the same,
    상기 제2전극 리드의 길이는 상기 제1전극 리드의 길이보다 긴 이차 전지용 전극 리드 조립체.And a length of the second electrode lead longer than that of the first electrode lead.
  4. 제3항에 있어서,The method of claim 3,
    상기 제1전극 리드의 길이에 대한 상기 제2전극 리드의 길이의 비율은 1:3 ~ 1:5이고, The ratio of the length of the second electrode lead to the length of the first electrode lead is 1: 3 to 1: 5,
    상기 중첩 영역의 면적에 대한 상기 제1전극 리드의 면적의 비율은 1:2 ~ 1:4인 이차 전지용 전극 리드 조립체.The ratio of the area of the first electrode lead to the area of the overlap region is 1: 2 ~ 1: 4 for the electrode lead assembly for secondary batteries.
  5. 제1항에 있어서, The method of claim 1,
    상기 도전성 접착층은 10-3 Ω·cm이하의 체적 고유저항을 갖는 이차 전지용 전극 리드 조립체.And the conductive adhesive layer has a volume resistivity of 10 −3 Ω · cm or less.
  6. 제1항에 있어서,The method of claim 1,
    상기 밀봉 부재는 상기 제1전극 리드와 상기 제2전극 리드 사이의 단차를 보상하도록 경사면을 갖고, The sealing member has an inclined surface to compensate for the step between the first electrode lead and the second electrode lead,
    상기 밀봉 부재의 두께는 상기 제1전극 리드 및 상기 제2전극 리드의 두께 대비 110~115%이며,The thickness of the sealing member is 110 to 115% of the thickness of the first electrode lead and the second electrode lead,
    상기 밀봉 부재는 상기 절연 부재와 동종 재료를 포함하는 이차 전지용 전극 리드 조립체.The sealing member is a secondary battery electrode lead assembly including the same material as the insulating member.
  7. 제1항에 있어서,The method of claim 1,
    상기 밀봉 부재와 상기 제2전극 리드 사이의 접합길이는 상기 제2전극 리드의 일단으로부터 상기 절연 부재의 일단까지의 거리보다 크고,The bonding length between the sealing member and the second electrode lead is greater than the distance from one end of the second electrode lead to one end of the insulating member,
    상기 제2전극 리드의 일단으로부터 상기 절연 부재의 일단까지의 거리는 2㎜이하인 이차 전지용 전극 리드 조립체.And a distance from one end of the second electrode lead to one end of the insulating member is 2 mm or less.
  8. 제1항에 있어서,The method of claim 1,
    상기 절연 부재의 두께는 상기 제1전극 리드 및 상기 제2전극 리드의 두께에 대하여 50~80%인 이차 전지용 전극 리드 조립체.The thickness of the insulating member is an electrode lead assembly for secondary batteries 50 to 80% of the thickness of the first electrode lead and the second electrode lead.
  9. 제1항에 있어서,The method of claim 1,
    상기 절연 부재는 2중 이상의 적층구조를 가지며, 절연층, 제1접착층 및 제2접착층을 포함하고,The insulating member has a double or more laminated structure, and includes an insulating layer, a first adhesive layer and a second adhesive layer,
    상기 중첩 영역과 상기 절연 부재 사이의 공간의 적어도 일부는 상기 제1접착층의 융착에 의해 채워지는 이차 전지용 전극 리드 조립체.At least a part of the space between the overlapping region and the insulating member is filled by fusion of the first adhesive layer.
  10. 제1항에 있어서,The method of claim 1,
    상기 절연 부재 및 상기 밀봉 부재는 필름 형상으로 이루어지는 이차 전지용 전극 리드 조립체.And the insulating member and the sealing member have a film shape.
  11. 일측이 전극셀에 연결되며 제1전극 리드;One side is connected to the electrode cell and the first electrode lead;
    상기 제1전극 리드와 일부가 중첩되도록 상기 제1전극 리드와 대향하여 배치되는 제2전극 리드; A second electrode lead disposed to face the first electrode lead to partially overlap the first electrode lead;
    상기 제1전극 리드와 상기 제2전극 리드 사이의 중첩 영역에 구비되는 도전성 접착층; 및A conductive adhesive layer provided in an overlapping region between the first electrode lead and the second electrode lead; And
    상기 제1전극 리드의 타측 단부측에서 상기 제2전극 리드 상에 구비되는 밀봉 부재;를 포함하고, And a sealing member provided on the second electrode lead at the other end side of the first electrode lead.
    상기 밀봉 부재가 구비된 영역 전체에 대한 제1파단력은 상기 도전성 접착층이 구비된 영역 전체에 대한 제2파단력보다 큰 이차 전지용 전극 리드 조립체.And a first breaking force for the entire region provided with the sealing member is greater than a second breaking force for the entire region provided with the conductive adhesive layer.
  12. 제11항에 있어서, The method of claim 11,
    상기 밀봉 부재 및 상기 중첩 영역을 둘러쌓도록 구비되되, 상기 제1전극 리드 및 상기 제2전극 리드 각각과 파우치의 내면 사이에 배치되는 절연 부재;를 더 포함하고, An insulating member disposed to surround the sealing member and the overlapping region, the insulating member being disposed between each of the first electrode lead and the second electrode lead and an inner surface of the pouch;
    상기 밀봉 부재 및 상기 도전성 접착층 각각의 외측에서 상기 절연 부재가 구비된 영역 전체에 대한 제3파단력은 상기 제2파단력보다 작은 이차 전지용 전극 리드 조립체.And a third breaking force with respect to the entire area in which the insulating member is provided outside the sealing member and the conductive adhesive layer, is smaller than the second breaking force.
  13. 제1전극 리드와 제2전극 리드가 대향하는 중첩 영역 이외의 부분에 내전해성 코팅층으로 부분 도금하는 단계; Partially plating the portion of the first electrode lead and the second electrode lead with an electrolytic resistant coating layer at portions other than the overlapping regions;
    상기 제1전극 리드와 상기 제2전극 리드 사이의 상기 중첩 영역에 도전성 페이스트를 도포하여 상기 제1전극 리드와 상기 제2전극 리드를 접합하는 단계;Bonding the first electrode lead and the second electrode lead by applying a conductive paste to the overlapping region between the first electrode lead and the second electrode lead;
    상기 제1전극 리드의 타측 단부측에서 상기 제2전극 리드 상에 밀봉 부재를 접합하는 단계; 및 Bonding a sealing member on the second electrode lead at the other end side of the first electrode lead; And
    상기 밀봉 부재 및 상기 중첩 영역을 둘러쌓도록 절연 부재를 접합하는 단계; Bonding an insulating member to surround the sealing member and the overlapping region;
    를 포함하는 이차 전지용 전극 리드 조립체의 제조 방법.Method of manufacturing an electrode lead assembly for a secondary battery comprising a.
  14. 제13항에 있어서, The method of claim 13,
    상기 제1전극 리드 및 상기 제2전극 리드 각각을 120~200℃로 가열하여 상기 중첩 영역과 상기 절연 부재 사이의 공간의 적어도 일부가 채워지도록 상기 절연 부재를 부분 융착하는 단계를 더 포함하는 이차 전지용 전극 리드 조립체의 제조 방법.Heating the first electrode lead and the second electrode lead to 120 ° C. to 200 ° C. to partially fuse the insulation member to fill at least a portion of the space between the overlapping region and the insulation member. A method of making an electrode lead assembly.
  15. 제14항에 있어서, The method of claim 14,
    광택조정용 시트를 상기 절연 부재의 상하측에 배치한 후 3~5㎏f/㎠의 압력으로 가압하면서 80~120℃에서 4~8초 동안 가열하여 상기 절연 부재의 광택도를 조정하는 단계를 더 포함하는 이차 전지용 전극 리드 조립체의 제조 방법.After arranging the sheet for adjusting the gloss on the upper and lower sides of the insulating member, the step of adjusting the glossiness of the insulating member by heating for 4 to 8 seconds at 80 ~ 120 ℃ while pressing at a pressure of 3 ~ 5kgf / ㎠ Method of manufacturing an electrode lead assembly for a secondary battery comprising.
  16. 제13항에 있어서,The method of claim 13,
    상기 전극 리드를 접합하는 단계는 0.01~0.05㎎/㎟의 중량으로 상기 도전성 페이스트를 도포하고, 5~10㎏f/㎠의 압력으로 가압하면서 160~180℃의 온도로 1~10분 동안 가열하여 상기 도전성 페이스트를 경화시키는 이차 전지용 전극 리드 조립체의 제조 방법.Bonding the electrode lead is applied to the conductive paste with a weight of 0.01 ~ 0.05mg / ㎜, heated to a temperature of 160 ~ 180 ℃ for 1-10 minutes while pressing at a pressure of 5 ~ 10kgf / ㎠ The manufacturing method of the electrode lead assembly for secondary batteries which hardens the said conductive paste.
  17. 제13항에 있어서,The method of claim 13,
    상기 절연 부재를 접합하는 단계는 3~5㎏f/㎠의 압력으로 가압하면서 120~180℃의 온도로 4~8초 동안 가열하여 절연 부재를 접합하는 이차 전지용 전극 리드 조립체의 제조 방법.Bonding the insulating member is a method of manufacturing an electrode lead assembly for a secondary battery for bonding the insulating member by heating for 4 to 8 seconds at a temperature of 120 ~ 180 ℃ while pressing at a pressure of 3 ~ 5kgf / ㎠.
  18. 제14항에 있어서,The method of claim 14,
    상기 부분 융착하는 단계는 상기 절연 부재의 처짐을 방지하도록 압착용 팁으로 상기 절연 부재의 양측을 지지하는 이차 전지용 전극 리드 조립체의 제조 방법.Wherein the step of fusion welding secondary battery electrode lead assembly for supporting both sides of the insulating member with a pressing tip to prevent sagging of the insulating member.
PCT/KR2019/005442 2018-05-25 2019-05-08 Electrode lead assembly for secondary battery and method for manufacturing same WO2019225882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180059543A KR102083162B1 (en) 2018-05-25 2018-05-25 Electrode lead assembly for secondary battery and method for manufacturing the same
KR10-2018-0059543 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225882A1 true WO2019225882A1 (en) 2019-11-28

Family

ID=68615943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005442 WO2019225882A1 (en) 2018-05-25 2019-05-08 Electrode lead assembly for secondary battery and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102083162B1 (en)
WO (1) WO2019225882A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114830430A (en) * 2020-02-10 2022-07-29 株式会社Lg新能源 Electrode assembly including electrode lead coupling parts coupled via adhesion parts and spot welding, and pouch-type battery cell including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210137785A (en) 2020-05-11 2021-11-18 주식회사 엘지에너지솔루션 Secondary battery and method for manufacturing the same
KR20210139081A (en) 2020-05-13 2021-11-22 주식회사 엘지에너지솔루션 Secondary battery
KR102370744B1 (en) * 2020-06-01 2022-03-07 주식회사 엘디케이 Current interrupt lead tap and system for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225378A (en) * 2013-05-16 2014-12-04 株式会社日立製作所 Sealant for tab lead, tab lead and lithium ion secondary battery
KR101601135B1 (en) * 2013-05-31 2016-03-08 주식회사 엘지화학 Secondary battery and Electrode lead assembly applied for the same
KR101601123B1 (en) * 2013-05-28 2016-03-08 주식회사 엘지화학 Secondary battery comprising two electrode lead detachable from each other
KR20160125920A (en) * 2015-04-22 2016-11-01 주식회사 엘지화학 Secondary battery with improved stability
KR101734703B1 (en) * 2015-11-04 2017-05-11 현대자동차주식회사 Battery Cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354028B2 (en) * 1998-08-20 2009-10-28 大日本印刷株式会社 Battery case with safety valve
JP4132588B2 (en) * 2000-06-16 2008-08-13 Tdk株式会社 Electrochemical devices
JP2005044523A (en) * 2003-07-22 2005-02-17 Toyota Motor Corp Current break structure of secondary battery and secondary battery having the structure
KR101192077B1 (en) * 2009-11-02 2012-10-17 삼성에스디아이 주식회사 Secondary battery and battery pack using the same
KR20160120089A (en) 2015-04-07 2016-10-17 주식회사 엘지화학 A lead member for a secondary battery and a pouch type secondary battery comprising the same
KR101984265B1 (en) * 2015-07-03 2019-05-30 주식회사 엘지화학 Pouch type secondary battery and method of fabricating the same
KR102055853B1 (en) * 2015-08-31 2019-12-13 주식회사 엘지화학 Pouch type lithium secondary battery with improved safety
KR20180033972A (en) * 2016-09-27 2018-04-04 현대자동차주식회사 Battery cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225378A (en) * 2013-05-16 2014-12-04 株式会社日立製作所 Sealant for tab lead, tab lead and lithium ion secondary battery
KR101601123B1 (en) * 2013-05-28 2016-03-08 주식회사 엘지화학 Secondary battery comprising two electrode lead detachable from each other
KR101601135B1 (en) * 2013-05-31 2016-03-08 주식회사 엘지화학 Secondary battery and Electrode lead assembly applied for the same
KR20160125920A (en) * 2015-04-22 2016-11-01 주식회사 엘지화학 Secondary battery with improved stability
KR101734703B1 (en) * 2015-11-04 2017-05-11 현대자동차주식회사 Battery Cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114830430A (en) * 2020-02-10 2022-07-29 株式会社Lg新能源 Electrode assembly including electrode lead coupling parts coupled via adhesion parts and spot welding, and pouch-type battery cell including the same
CN114830430B (en) * 2020-02-10 2024-02-06 株式会社Lg新能源 Electrode assembly including electrode lead coupling parts coupled by means of adhesive parts and spot welding and pouch-type battery cell including the same

Also Published As

Publication number Publication date
KR102083162B1 (en) 2020-03-02
KR20190134201A (en) 2019-12-04

Similar Documents

Publication Publication Date Title
WO2019225882A1 (en) Electrode lead assembly for secondary battery and method for manufacturing same
WO2013042948A2 (en) Porous electrode assembly and secondary cell including same
WO2017052296A1 (en) Battery module
WO2018124494A2 (en) Bus bar assembly and frame assembly
WO2019107764A1 (en) Battery module provided with end frame
WO2014109481A1 (en) Secondary battery comprising integrated anode lead and cathode lead, and manufacturing method therefor
WO2012173435A2 (en) Part for secondary battery, method for manufacturing same, and secondary battery and multi-battery system manufactured using the part
WO2017146369A1 (en) Battery cell and method for manufacturing such battery cell
WO2019088714A1 (en) Battery module comprising bus bar assembly
WO2021080207A1 (en) Contact jig for secondary battery tab laser welding, and welding method
WO2016010294A1 (en) Hollow-type secondary battery
WO2019135505A1 (en) Laser welding apparatus comprising laser beam blocking block
WO2018221818A1 (en) Battery module
WO2022139451A1 (en) Electrode assembly and secondary battery comprising same
WO2019045447A1 (en) Secondary battery, manufacturing method therefor, and pressing block for manufacturing secondary battery
WO2018221836A1 (en) Battery pack and manufacturing method therefor
WO2019146872A1 (en) Secondary battery and manufacturing method therefor
WO2023063540A1 (en) Battery manufacturing method
WO2023096062A1 (en) Riveting structure for electrode terminal, and battery cell, battery pack, and vehicle comprising same
WO2018117657A1 (en) Pouch-type secondary battery
WO2021194282A1 (en) Apparatus and method for manufacturing unit cell
WO2023243988A1 (en) Electrode assembly, and method for manufacturing electrode assembly
WO2019160333A1 (en) Terminal case having improved secondary battery state estimation function
WO2024010250A1 (en) Pouch-type secondary battery having protective film with improved adhesion and method for manufacturing same
WO2019235714A1 (en) Cylindrical secondary battery including adhesive portion including gas generating material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807081

Country of ref document: EP

Kind code of ref document: A1