WO2019225294A1 - パイプ構造体およびトラス構造体およびこれらを用いた人工衛星 - Google Patents

パイプ構造体およびトラス構造体およびこれらを用いた人工衛星 Download PDF

Info

Publication number
WO2019225294A1
WO2019225294A1 PCT/JP2019/017890 JP2019017890W WO2019225294A1 WO 2019225294 A1 WO2019225294 A1 WO 2019225294A1 JP 2019017890 W JP2019017890 W JP 2019017890W WO 2019225294 A1 WO2019225294 A1 WO 2019225294A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
moisture
intermediate member
pipe structure
diameter side
Prior art date
Application number
PCT/JP2019/017890
Other languages
English (en)
French (fr)
Inventor
和規 高垣
一史 関根
久米 将実
壮平 鮫島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19807035.1A priority Critical patent/EP3798137A4/en
Priority to US17/049,577 priority patent/US20210047057A1/en
Priority to JP2019546418A priority patent/JP6645634B1/ja
Publication of WO2019225294A1 publication Critical patent/WO2019225294A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/228Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being stacked in parallel layers with fibres of adjacent layers crossing at substantial angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/78Moulding material on one side only of the preformed part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/06Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions for securing layers together; for attaching the product to another member, e.g. to a support, or to another product, e.g. groove/tongue, interlocking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2096/00Use of specified macromolecular materials not provided for in a single one of main groups B29K2001/00 - B29K2095/00, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • B29K2995/0069Permeability to liquids; Adsorption non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7502Supports, machine frames or beds, worktables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites

Definitions

  • the present invention relates to a truss structure used in an optical observation satellite or the like and a pipe structure which is a constituent member thereof.
  • Optical observation satellites are expected to be able to capture high-resolution images with excellent readability and stable image quality. For this purpose, it is required to maintain stable optical observation performance on the orbit for a long time. In order to realize such an optical observation satellite, a large mirror and a supporting structure having high rigidity and high dimensional stability that support it are necessary.
  • a truss structure in which a plurality of fiber reinforced plastic (FRP: Fiber Reinforced Plastics) pipes and metal joints are coupled (for example, patent documents). 1). Although such a truss structure is highly rigid, there is a problem in dimensional stability because the FRP pipe that absorbs and expands moisture on the ground undergoes dehumidification and shrinkage in outer space, resulting in distortion in the structure.
  • FRP Fiber Reinforced Plastics
  • JP 58-71119 A page 2-3, FIG. 3
  • JP 2017-219811 page 9, FIG. 5
  • This invention has been made to solve the above-described problems. By reliably preventing moisture absorption of the FRP pipe, it is possible to prevent exhaustion and shrinkage in outer space, and to improve dimensional stability. An excellent pipe structure and truss structure are obtained.
  • a pipe structure according to the present invention includes a fiber reinforced plastic pipe, a moisture-proof foil covering the outer peripheral surface and the inner peripheral surface of the pipe, and a metal intermediate member fitted to the end of the pipe.
  • the end of the moisture-proof foil is sandwiched between the pipe and the intermediate member.
  • the truss structure according to the present invention is composed of the above-described pipe structure and a metal joint joined to intermediate members of the plurality of pipe structures.
  • the end portions of the moisture-proof foil covering the outer peripheral surface and the inner peripheral surface of the pipe are sandwiched in close contact between the pipe and the intermediate member, so that moisture absorption is reliably prevented and exhausted in outer space. Wet shrinkage can be prevented. As a result, a pipe structure and a truss structure excellent in dimensional stability can be obtained.
  • FIG. 1 is a schematic view of a truss structure according to Embodiment 1 for carrying out the present invention.
  • the truss structure 1 of the present embodiment includes a pipe structure 2 and a joint 3.
  • FIG. 2 is a schematic diagram of an artificial satellite 10 using the truss structure 1 of the present embodiment.
  • the truss structure 1 according to the present embodiment is a three-dimensionally configured support structure for supporting the reflecting mirror 35 and the like mounted on the artificial satellite.
  • FIG. 3 is a perspective view showing, in cross section, a connection portion between the pipe structure 2 and the joint 3 according to the present embodiment.
  • each member is shown separately for easy understanding, but all members are actually fastened.
  • the pipe structure 2 includes an intermediate member 4 for fastening with the joint 3, a pipe 5, and moisture-proof foils 11 and 12.
  • the intermediate member 4 is connected to both ends of the pipe 5. ing.
  • the intermediate member 4 and the pipe 5 have a cylindrical shape.
  • the intermediate member 4 has a shape that can be fitted to the joint 3 and the pipe 5.
  • the shape of the joint 3 on the side opposite to the side in contact with the intermediate member 4 is integrated with the other joint to constitute the truss structure shown in FIG. 1, but the structure is omitted. .
  • the joint 3 and the intermediate member 4 are made of metal, and the pipe 5 is made of fiber reinforced plastic.
  • a metal constituting the joint 3 and the intermediate member 4 for example, a super invar alloy made of iron, nickel and cobalt can be used.
  • the fiber reinforced plastic constituting the pipe 5 for example, a carbon fiber reinforced plastic obtained by impregnating a cyanate resin into a high elastic carbon fiber K13C (manufactured by Mitsubishi Chemical Corporation) or T800S (manufactured by Toray Industries, Inc.) can be used.
  • the pipe structure 2 is fastened and fixed by, for example, bolts and nuts using the through holes 6 formed in the joint 3 and the through holes 7 of the intermediate member 4 formed corresponding to the positions.
  • the pipe 5 has convex portions 8 projecting toward the intermediate member 4 at both ends.
  • the intermediate member 4 has a recess 9 formed at a position where the intermediate member 4 is fitted with the protrusion 8 of the pipe 5.
  • the moisture-proof foils 11 and 12 covering the surface of the pipe 5 are disposed on the outer peripheral surface and the inner peripheral surface of the pipe 5, respectively.
  • the end portions of the moisture-proof foils 11 and 12 are tightly sandwiched between the pipe 5 and the intermediate member 4.
  • an aluminum foil can be used as the moisture-proof foils 11 and 12.
  • the intermediate member 4, the pipe 5, and the moisture-proof foils 11 and 12 are integrated in a pipe structure manufacturing process described later.
  • FIG. 4 is a schematic cross-sectional view of the truss structure 1 in which the joint 3, the intermediate member 4, the pipe 5, and the moisture-proof foils 11 and 12 are integrated.
  • the joint 3 and the intermediate member 4 are fastened so that the position of the through hole 6 formed in the joint 3 matches the position of the through hole 7 of the intermediate member 4.
  • the intermediate member 4 and the pipe 5 are fastened with the end portions of the moisture-proof foils 11 and 12 being sandwiched therebetween. In this way, the pipe structure 2 and the joint 3 are fastened to constitute the truss structure 1 shown in FIG.
  • FIG. 5 is a schematic cross-sectional view of the pipe structure 2 of the present embodiment.
  • the pipe 5 has a cylindrical shape, and convex portions 8 that protrude in the axial direction toward the intermediate member 4 side are formed at both ends.
  • the intermediate member 4 has a recess 9 formed at a position where the intermediate member 4 is fitted with the protrusion 8 of the pipe 5.
  • the outer peripheral side of the pipe 5 is covered with a moisture-proof foil 11, and the end of the moisture-proof foil 11 exists up to the outer peripheral surface of the convex portion 8, and is sandwiched between the inner peripheral surface of the concave portion 9 of the intermediate member.
  • the inner peripheral side of the pipe 5 is also covered with the moisture-proof foil 12, and the end of the moisture-proof foil 12 exists up to the end face of the tip of the pipe 5 and is sandwiched between the end face of the recess 9 of the intermediate member. .
  • 6 and 7 are explanatory views showing the manufacturing process of the pipe structure 2 in the present embodiment.
  • the moisture-proof foil 12 is disposed on the outer peripheral surface of the cylindrical mandrel 21.
  • a plurality of prepregs are stacked in a cylindrical shape on the outer peripheral side of the moisture-proof foil 12.
  • a prepreg is a semi-cured sheet produced by impregnating carbon fibers with a resin.
  • the axial length of the plurality of prepregs stacked on the outer peripheral side is shortened.
  • a laminate of a plurality of prepregs in a cylindrical shape is called a prepreg laminate 22.
  • the moisture-proof foil 11 is arranged on the outer peripheral side of the outermost prepreg. As shown in FIG. 6A, when the length in the axial direction (longitudinal direction) of the prepreg laminate 22 is l and the length in the radial direction of the end portion of the prepreg laminate 22 is m, the moisture-proof foils 11 and 12 The length in the axial direction is longer than l and shorter than l + m / 2. The end portions of the moisture-proof foil 11 and the moisture-proof foil 12 are bent along the end portions of the prepreg laminate 22.
  • the intermediate member 4 is disposed so as to be in close contact with the end of the prepreg laminate 22. At this time, the end portions of the moisture-proof foil 11 and the moisture-proof foil 12 are sandwiched between the prepreg laminate 22 and the intermediate member 4.
  • the mandrel 21, the prepreg laminate 22, and the intermediate member 4 are covered with the bagging film 23 and sealed with the bagging film 23 and the sealing material 24.
  • These members are installed in an autoclave apparatus, and are heated by pressurizing from the outside of the bagging film 23 while discharging the sealed air with an exhaust pump (not shown). For example, the pressure is maintained at 120 ° C. for 3 hours under a pressure of 3 atmospheres. The pressurizing condition and heating condition are appropriately set depending on the resin used for the prepreg.
  • the pipe structure is completed by cooling to room temperature and removing from the autoclave apparatus and removing the bagging film 23 and the mandrel 21.
  • the resin component of the prepreg laminate 22 is once melted, and the prepreg laminate 22 and the intermediate member 4 are integrated into a FRP pipe.
  • the end part of the moisture-proof foil 11 and the moisture-proof foil 12 is closely_contact
  • the pipe structure immediately after completion is in a state where moisture has been removed by being heated under pressure in the autoclave apparatus.
  • the pipe structure manufactured in such a process does not contain moisture. Further, the outer peripheral surface and inner peripheral surface of the FRP pipe are covered with moisture-proof foil, and the end portion of the moisture-proof foil is tightly sandwiched between the pipe and the intermediate member. Will not peel from the pipe. Therefore, moisture absorption of the FRP pipe can be reliably prevented. As a result, it is possible to prevent moisture from shrinking in outer space, so that a pipe structure and a truss structure excellent in dimensional stability can be obtained. In addition, moisture absorption / extraction does not occur in the metal intermediate member and the joint.
  • FIG. 8 is a cross-sectional view showing the configuration of a measurement system for measuring the thermal expansion coefficient in the longitudinal direction (axial direction) of the pipe structure in the present embodiment.
  • the joint 3 is connected to both ends of the pipe structure 2 as shown in FIGS. 3 and 4.
  • laser reflecting mirrors 31 are bonded and fixed to the outer surfaces of the joints 3 connected to both ends of the pipe structure 2.
  • the pipe structure 2 is placed on the sample support base 32 and placed in the constant temperature and humidity chamber 33.
  • the laser reflecting mirror 31 is irradiated with laser light, and the reflected light is received to receive the pipe structure 2.
  • the amount of deformation can be measured.
  • the temperature and humidity of the constant temperature and humidity chamber 33 were controlled, and the time change of the deformation amount of the pipe structure 2 was measured.
  • the FRP pipe portion of the pipe structure 2 used for the measurement has an inner diameter of 50 mm, an outer diameter of 55 mm, and a length of 300 mm.
  • materials for the FRP pipe two types of prepregs were used: a prepreg impregnated with cyanate resin in K13C (manufactured by Mitsubishi Chemical Corporation) and a prepreg impregnated with cyanate resin in T800S (manufactured by Toray Industries, Inc.).
  • the thermal expansion coefficient in the longitudinal direction (axial direction) of the FRP pipe is within ⁇ 0.1 ppm / K. Designed.
  • Aluminum foil was used for the moisture-proof foil.
  • Super Invar was used as a material for the joint 3 and the intermediate member.
  • the thermal deformation of the pipe structure in the temperature change range ( ⁇ 10K) experienced by the support structure of the large mirror of the optical observation satellite is about ⁇ 0.3 ⁇ m. Therefore, if the maximum shrinkage due to the moisture exhaustion shrinkage is 0.5 ⁇ m, it is almost the same as the thermal deformation, so that there is no problem as a support structure for the large mirror of the optical observation satellite.
  • the pipe structure without moisture-proof foil expands by 5 ⁇ m on the ground. Therefore, the maximum amount of moisture contraction in the outer space of the pipe structure without moisture-proof foil is 5 ⁇ m, which is deformed more than thermal deformation, causing a problem in dimensional stability.
  • the outer peripheral surface and inner peripheral surface of the FRP pipe are covered with moisture-proof foil, and the end portion of the moisture-proof foil is tightly sandwiched between the pipe and the intermediate member. It is possible to prevent moisture absorption of the pipe made. As a result, it is possible to prevent moisture from shrinking in outer space, so that a pipe structure and a truss structure excellent in dimensional stability can be obtained.
  • the both end portions of the pipe are provided with convex portions protruding toward the intermediate member, and the intermediate member is provided with a concave portion at a position where it is fitted with the convex portion of the pipe. Is not necessary. If the end portion of the moisture-proof foil covering the outer peripheral surface and the inner peripheral surface of the pipe is tightly sandwiched between the pipe and the intermediate member, moisture absorption of the FRP pipe can be prevented.
  • an aluminum foil is used as the moisture-proof foil.
  • a material other than aluminum foil may be used as long as it does not allow moisture to permeate.
  • nickel foil, titanium foil, copper foil, or western foil (copper zinc alloy foil) may be used as the moisture-proof foil.
  • a laminate obtained by laminating these metal foils with, for example, a polyester resin can be used as a moisture-proof foil.
  • the cylindrical pipe structure has been described, but the cross section may be polygonal as long as it is cylindrical.
  • the joint 3 and the intermediate member 4 are bolts using the through-hole 6 formed in the joint 3 and the through-hole 7 of the intermediate member 4 formed corresponding to the position. It can be fastened and fixed by other methods. For example, mechanical fastening methods such as rivet joining and screw joining, and metallurgical joining methods such as fusion joining and pressure joining can be used. It may be used.
  • the prepreg composed of carbon fibers has been described.
  • glass fibers or ceramic fibers other than carbon fibers may be used.
  • FIG. 1 The pipe structure according to the first embodiment has one convex portion at both ends of the pipe, but in the second embodiment, a pipe structure having two or more convex portions will be described.
  • FIG. 9 is an explanatory view showing a manufacturing process of the pipe structure 2 in the present embodiment.
  • FIG. 9E is a schematic diagram of the pipe structure 2 that has completed the lamination process.
  • the intermediate member 4 has one concave portion corresponding to each of a plurality of convex portions of the pipe.
  • the divided intermediate members 4a to 4d having are prepared.
  • the pipe is composed of a prepreg laminate 22 in which a plurality of prepregs 22a are laminated.
  • the moisture-proof foil 12 on the inner peripheral side is disposed on the mandrel 21, and a plurality of prepregs 22a are stacked thereon.
  • the length of the prepreg 22a in the axial direction is appropriately set so as to correspond to the plurality of convex portions of the pipe.
  • the length of the two prepregs 22a in the portion serving as a convex portion is increased in the axial direction, and the two prepregs 22a thereon are shortened.
  • the laminated thickness h1 of the prepreg is substantially matched with the thickness of the divided intermediate member 4a.
  • the end of the moisture-proof foil 12 is bent along the end of the prepreg 22a.
  • the divided intermediate member 4a is arranged.
  • the end portion of the moisture-proof foil 12 is surely sandwiched between the prepreg laminate and the divided intermediate member 4a.
  • a plurality of prepregs 22a are stacked on the divided intermediate member 4a and the already stacked prepregs.
  • the length of the prepreg 22a in the axial direction is appropriately set so as to correspond to the plurality of convex portions of the pipe.
  • the laminated thickness h2 of the prepreg is substantially matched with the thickness of the divided intermediate member 4b.
  • the divided intermediate member 4b is arranged. Thereafter, the lamination of the prepreg 22a and the lamination of the divided intermediate member are repeated.
  • the moisture-proof foil 11 on the outer peripheral side is disposed, and the end of the moisture-proof foil 11 is bent along the end of the prepreg 22a.
  • the divided intermediate member 4d is arranged from above, and the stacking process of the pipe structure 2 is completed.
  • the pipe structure 2 is completed by pressurizing and heating the pipe structure 2 in which the lamination process is completed using the autoclave apparatus described in the first embodiment.
  • the pipe structure manufactured by such a process covers the outer peripheral surface and the inner peripheral surface of the FRP pipe with moisture-proof foil, and the end of the moisture-proof foil between the pipe and the intermediate member, as in the first embodiment. Since it is in close contact with each other, moisture absorption of the FRP pipe can be reliably prevented.
  • Embodiment 3 In the pipe structure described in the first embodiment and the second embodiment, it is important that the end portion of the moisture-proof foil is securely stuck between the pipe and the intermediate member.
  • the third embodiment a configuration will be described in which the end portion of the moisture-proof foil is securely stuck between the pipe and the intermediate member.
  • FIG. 10 is a schematic cross-sectional view of the pipe structure 2 of the present embodiment.
  • the pipe structure of the present embodiment is a pipe structure including the plurality of convex portions described in the second embodiment, and FIG. 10 shows a portion of the convex portion located on the outermost periphery in the radial direction.
  • the convex part 8 located in the outermost periphery of the pipe 5 of this Embodiment is comprised by the prepreg 22a of 4 layers.
  • the orientation direction of the carbon fibers of the two layers of prepregs 22a on the inner diameter side is set in a direction parallel to the axial direction of the pipe structure.
  • the orientation direction of the carbon fibers of the two-layer prepreg 22a on the outer diameter side is perpendicular to the axial direction of the pipe structure. Is set.
  • the thermal expansion coefficient of a prepreg is anisotropic with respect to the orientation direction of the carbon fiber, and the thermal expansion coefficient in a direction parallel to the orientation direction of the carbon fiber is a thermal expansion coefficient in a direction perpendicular to the orientation direction of the carbon fiber.
  • the convex portion 8 located on the outermost periphery of the pipe of the present embodiment is divided into two regions with respect to the radial direction of the pipe, and the thermal expansion coefficient in the axial direction of the region on the outer diameter side is the inner diameter. It becomes larger than the thermal expansion coefficient in the axial direction of the region on the side.
  • the convex portion 8 located on the innermost periphery of the pipe 5 is constituted by four layers of the prepreg 22a, and the orientation direction of the carbon fibers of the two layers of the prepreg 22a on the inner diameter side is set in the axial direction.
  • the orientation direction of the carbon fibers of the two-layer prepreg 22a on the outer diameter side is set in a direction parallel to the axial direction.
  • the convex portion located on the outermost periphery in the cooling step is It will warp toward the outside in the radial direction. This is because the outer peripheral region shrinks more greatly in the cooling step because the axial thermal expansion coefficient of the outer diameter side region is larger than the axial thermal expansion coefficient of the inner diameter side region. Therefore, the moisture-proof foil 11 is pressed toward the outer side in the radial direction so as to be in close contact with the intermediate member 4. At the same time, the convex portion located on the innermost circumference warps inward in the radial direction. Therefore, the moisture-proof foil 12 is pressed toward the inner side in the radial direction to be brought into close contact with the intermediate member 4.
  • the pipe structure of the present embodiment is pressed in a direction in which the moisture-proof foils 11 and 12 are in close contact with the intermediate member 4 in the cooling process when the pipe structure is completed using an autoclave device.
  • the end portion of the moisture-proof foil is securely stuck between the pipe and the intermediate member, so that moisture absorption can be prevented more reliably.
  • the pipe structure having a plurality of convex portions is divided into two regions having different thermal expansion coefficients in both the convex portion located on the outermost periphery and the convex portion located on the innermost periphery.
  • only one of the convex portions may be used.
  • the convex portion is divided into two regions, and the orientation directions of the carbon fibers in each region are orthogonal to each other, but they are not necessarily orthogonal.
  • the cooling process it is sufficient if there is a difference in the coefficient of thermal expansion necessary for the moisture-proof foil to be pressed in the direction in which the moisture-proof foil is in close contact with the intermediate member. That's fine.
  • FIG. 11 is a schematic cross-sectional view of the pipe structure 2 of the present embodiment.
  • the pipe structure of the present embodiment is a pipe structure including the plurality of convex portions described in the second embodiment, and FIG. 11 shows a portion of the convex portion located on the outermost periphery in the radial direction.
  • the outer peripheral surface and the inner peripheral surface of the concave portion of the intermediate member 4 corresponding to the convex portion 8 located on the outermost outer periphery of the pipe 5 are roughened. ing.
  • the roughened intermediate member 4 bites into the prepreg 22a.
  • the end portion of the moisture-proof foil is securely stuck between the pipe and the intermediate member, so that moisture absorption can be prevented more reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Textile Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Physics & Mathematics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

繊維強化プラスチック製のパイプ5と、このパイプ5の外周面および内周面をそれぞれ覆う防湿箔11、12と、パイプ5の端部に嵌め合わされた金属製の中間部材4とを備えており、防湿箔11、12の端部が、パイプ5と中間部材4との間に密着して挟み込まれているものである。この構成とすることにより、確実にFRP製パイプの吸湿を防止することにより、宇宙空間で排湿収縮することを防ぐことができ、寸法安定性に優れたパイプ構造体を得ることができる。

Description

パイプ構造体およびトラス構造体およびこれらを用いた人工衛星
 この発明は、光学観測衛星などで用いられるトラス構造体と、その構成部材であるパイプ構造体に関する。
 光学観測衛星では、判読性に優れ安定した画質の高分解能画像を撮影できることが望まれている。そのためには、長期にわたって軌道上で安定した光学観測性能を維持可能なことが求められている。そのような光学観測衛星の実現には、大型鏡とそれを支える高剛性で寸法安定性の高い支持構造体とが必要である。
 高剛性で寸法安定性の高い支持構造体の一つとして、繊維強化プラスチック(FRP:Fiber Reinforced Plastics)製パイプと金属製継手とを複数結合したトラス構造体が知られている(例えば、特許文献1参照)。このようなトラス構造体は高剛性ではあるが、地上で吸湿膨張したFRP製パイプが宇宙空間で排湿収縮することで構造にゆがみが生じるため寸法安定性に問題がある。
 一方、人工衛星に搭載されるFRP製ミラー構造体において、FRPの吸湿および排湿に伴う悪影響を避けるために、FRPの表面を金属箔層やメッキ層などの防湿層で覆うことが知られている(例えば、特許文献2参照)。
特開昭58-71119号公報(2-3頁、第3図) 特開2017-219811号公報(9頁、図5)
 しかしながら、FRP製パイプの表面を防湿層で覆った場合、パイプと防湿層の熱膨張率が異なるため防湿箔がパイプから剥離し、防湿効果が保持できないという課題がある。
 この発明は、上述のような課題を解決するためになされたもので、確実にFRP製パイプの吸湿を防止することにより、宇宙空間で排湿収縮することを防ぐことができ、寸法安定性に優れたパイプ構造体およびトラス構造体を得るものである。
 この発明に係るパイプ構造体は、繊維強化プラスチック製のパイプと、このパイプの外周面および内周面をそれぞれ覆う防湿箔と、パイプの端部に嵌め合わされた金属製の中間部材とを備えており、防湿箔の端部が、パイプと中間部材との間に密着して挟み込まれているものである。
 また、この発明に係るトラス構造体は、上述のパイプ構造体と、複数のパイプ構造体の中間部材に接合された金属製の継ぎ手とで構成されたものである。
 この発明は、パイプの外周面および内周面をそれぞれ覆う防湿箔の端部が、パイプと中間部材との間に密着して挟み込まれているので、確実に吸湿を防止して宇宙空間で排湿収縮を防ぐことができる。その結果、寸法安定性に優れたパイプ構造体およびトラス構造体を得ることができる。
この発明の実施の形態1を示すトラス構造体の模式図である。 この発明の実施の形態1を示す人工衛星の模式図である。 この発明の実施の形態1を示すトラス構造体の斜視図である。 この発明の実施の形態1を示すトラス構造体の断面模式図である。 この発明の実施の形態1を示すパイプ構造体の断面模式図である。 この発明の実施の形態1を示すパイプ構造体の製造工程の説明図である。 この発明の実施の形態1を示すパイプ構造体の製造工程の説明図である。 この発明の実施の形態1を示すパイプ構造体の測定系の断面図である。 この発明の実施の形態2を示すパイプ構造体の製造工程の説明図である。 この発明の実施の形態3を示すパイプ構造体の断面模式図である。 この発明の実施の形態4を示すパイプ構造体の断面模式図である。
 以下、本発明を実施するためのパイプ構造体およびトラス構造体並びにパイプ構造体の製造方法を、図面を用いて説明する。なお、図面の説明においては、同一部分または相当部分には同一符号を付し、重複する説明を省略する。
実施の形態1.
 図1は、この発明を実施するための実施の形態1に係るトラス構造体の模式図である。図1に示すように、本実施の形態のトラス構造体1は、パイプ構造体2と継ぎ手3とで構成されている。図2は、本実施の形態のトラス構造体1を使用した人工衛星10の模式図である。図2に示すように、本実施の形態のトラス構造体1は、人工衛星に搭載される反射鏡35などを支えるための3次元的に構成された支持構造体である。
 図3は、本実施の形態のパイプ構造体2と継ぎ手3との接続部分を断面で示した斜視図である。図3では理解しやすいように各部材を分離して示しているが、実際にはすべての部材が締結されている。図3に示すように、パイプ構造体2は、継ぎ手3と締結するための中間部材4とパイプ5と防湿箔11、12とで構成されており、パイプ5の両端に中間部材4が接続されている。中間部材4およびパイプ5は円筒形状の形状である。中間部材4は継ぎ手3とパイプ5に嵌め合わせ可能な形状である。図3において、継ぎ手3の中間部材4と接する側と反対側の形状は、図1に示すトラス構造体を構成するために他の継ぎ手と一体となっているがその構造は省略し示している。
 継ぎ手3および中間部材4は金属で構成されており、パイプ5は繊維強化プラスチックで構成されている。継ぎ手3および中間部材4を構成する金属としては、例えば鉄、ニッケルおよびコバルトからなるスーパーインバー合金を用いることができる。パイプ5を構成する繊維強化プラスチックとしては、例えば、高弾性炭素繊維K13C(三菱ケミカル社製)またはT800S(東レ社製)にシアネート樹脂を含侵させた炭素繊維強化プラスチックを用いることができる。
 パイプ構造体2は、継ぎ手3に形成された貫通孔6とその位置に対応して形成された中間部材4の貫通孔7とを用いて、例えばボルトとナットとで締結固定される。
 パイプ5は、両端部に中間部材4側に突出した凸部8が形成されている。中間部材4は、パイプ5の凸部8と嵌め合わせる位置に凹部9が形成されている。
 パイプ5の外周面および内周面にはパイプ5の表面を覆う防湿箔11,12がそれぞれ配置されている。この防湿箔11、12の端部は、パイプ5と中間部材4との間に密着して挟み込まれている。防湿箔11、12は、例えばアルミニウム箔を用いることができる。中間部材4、パイプ5および防湿箔11、12は、後述するパイプ構造体の製造工程において一体化される。
 図4は、継ぎ手3、中間部材4、パイプ5および防湿箔11、12が一体化されたトラス構造体1の断面模式図である。図4に示すように、継ぎ手3と中間部材4とは、継ぎ手3に形成された貫通孔6の位置と中間部材4の貫通孔7の位置とを一致させて締結されている。また、中間部材4とパイプ5とは、防湿箔11、12の端部を挟み込んで締結されている。このようにパイプ構造体2と継ぎ手3とが締結されて、図1に示すトラス構造体1を構成している。
 図5は、本実施の形態のパイプ構造体2の断面模式図である。パイプ5は、筒状の形状であり両端部に中間部材4側に向かって軸方向に突出した凸部8が形成されている。中間部材4は、パイプ5の凸部8と嵌め合わせる位置に凹部9が形成されている。パイプ5の外周側は防湿箔11で覆われており、防湿箔11の端部は凸部8の外周面まで存在し、中間部材の凹部9の内周面との間に挟みこまれている。パイプ5の内周側も防湿箔12で覆われており、防湿箔12の端部はパイプ5の先端部の端面まで存在し、中間部材の凹部9の端面との間に挟みこまれている。
 次に、本実施の形態のパイプ構造体2の製造方法について説明する。図6および図7は、本実施の形態におけるパイプ構造体2の製造工程を示す説明図である。
 始めに、図6(a)に示すように、円柱状のマンドレル21の外周面に防湿箔12を配置する。防湿箔12の外周側にプリプレグを円筒形状に複数枚重ねる。プリプレグとは、炭素繊維に樹脂を含侵して作製された半硬化状態のシートである。このとき、軸方向に突出した凸部8を形成するために、外周側に重ねる複数枚のプリプレグの軸方向の長さは短くする。このプリプレグを円筒形状に複数枚重ねたものをプリプレグ積層体22と呼ぶ。
 最外周のプリプレグの外周側に防湿箔11を配置する。図6(a)に示すように、プリプレグ積層体22の軸方向(長手方向)の長さをl、プリプレグ積層体22の端部の径方向の長さをmとすると、防湿箔11、12の軸方向の長さはlよりも長くl+m/2よりも短くする。防湿箔11および防湿箔12の端部は、プリプレグ積層体22の端部に沿うように折り曲げる。
 次に、図6(b)に示すように、プリプレグ積層体22の端部に密着するように中間部材4を配置する。このとき、防湿箔11および防湿箔12の端部は、プリプレグ積層体22と中間部材4との間に挟みこまれている。
 次に、図7に示すように、マンドレル21、プリプレグ積層体22および中間部材4をバギングフィルム23で覆い、バギングフィルム23とシール材24とで密閉する。これらの部材をオートクレーブ装置内に設置し、密閉された内部の空気を排気ポンプ(図示せず)で排出しながらバギングフィルム23の外部から加圧して加熱する。例えば3気圧に加圧した状態で120℃で3時間保持する。加圧条件および加熱条件は、プリプレグに用いる樹脂のよって適宜設定される。最後に、室温に冷却してオートクレーブ装置から取り出し、バギングフィルム23およびマンドレル21を取り除くことによって、パイプ構造体を完成させる。
 このような工程によって、プリプレグ積層体22の樹脂成分が一旦溶融し、プリプレグ積層体22と中間部材4とが一体となってFRP製のパイプとなる。また、オートクレーブ装置内において加圧条件下で加熱されたことにより、防湿箔11および防湿箔12の端部は、パイプと中間部材との間に密着して挟み込まれている。さらに、オートクレーブ装置内において加圧条件下で加熱されたことで、完成直後のパイプ構造体は水分が抜けた状態となっている。
 このような工程で作製されたパイプ構造体は水分を含まない。また、FRP製のパイプの外周面および内周面は防湿箔で覆われており、防湿箔の端部はパイプと中間部材との間に密着して挟み込まれているので、冷却後でも防湿箔がパイプから剥離することはない。そのため、確実にFRP製パイプの吸湿を防止することができる。その結果、宇宙空間で排湿収縮することを防ぐことができるので、寸法安定性に優れたパイプ構造体およびトラス構造体を得ることができる。なお、金属製の中間部材および継ぎ手では吸排湿は発生しない。
 本実施の形態で得られるパイプ構造体の寸法安定性を測定した結果の一例について説明する。図8は、本実施の形態におけるパイプ構造体の長手方向(軸方向)の熱膨張係数を測定するための測定系の構成を示す断面図である。図8において、パイプ構造体2の両端には、図3および図4で示したように、継ぎ手3が接続されている。図8に示すように、パイプ構造体2の両端に接続された継ぎ手3の外面にレーザー反射鏡31がそれぞれ接着固定されている。このパイプ構造体2をサンプル支持台32に載置して、恒温恒湿槽33内に配置する。恒温恒湿槽33の窓を介してレーザー反射鏡31に対向して配置されたレーザー変位計34を用いて、レーザー反射鏡31へレーザー光を照射しその反射光を受光してパイプ構造体2の変形量を測定することができる。恒温恒湿槽33の温度および湿度を制御して、パイプ構造体2の変形量の時間変化を測定した。
 測定に用いたパイプ構造体2のFRP製のパイプの部分は、内径が50mm、外径が55mm、長さが300mmである。FRP製パイプの材料として、K13C(三菱ケミカル社製)にシアネート樹脂を含侵させたプリプレグと、T800S(東レ社製)にシアネート樹脂を含侵させたプリプレグとの2種類のプリプレグを用いた。この2種類のプリプレグ積層枚数の割合と、それぞれのプリプレグの繊維配向角を設計することにより、FRP製パイプの長手方向(軸方向)の熱膨張率を±0.1ppm/K以内となるように設計した。防湿箔には、アルミニウム箔を使用した。継ぎ手3および中間部材の材料として、スーパーインバーを用いた。
 恒温恒湿槽33内を温度25±2℃、湿度50±10%RHの環境とし、300時間経過後のパイプ構造体2の長手方向の変形量を測定した結果、長手方向に0.5μm膨張していることがわかった。なお、比較のため、防湿箔のないパイプ構造体を作製して同じ条件で変形量を測定した結果は、長手方向に5μm膨張する結果となった。地上での0.5μmの膨張であれば、宇宙空間での排湿収縮は最大0.5μmと予想される。
 一方、光学観測衛星の大型鏡の支持構造体が受ける温度変化範囲(±10K)におけるパイプ構造体の熱変形は±0.3μm程度である。したがって、排湿収縮に起因する収縮が最大0.5μmであれば熱変形と同程度であるので、光学観測衛星の大型鏡の支持構造体として問題ない範囲である。
 しかしながら、防湿箔のないパイプ構造体では地上では5μm膨張してしまう。そのため、防湿箔のないパイプ構造体の宇宙空間での排湿収縮は最大5μmとなり、熱変形以上に変形するため寸法安定性に問題が生じる。
 本実施の形態のように、FRP製のパイプの外周面および内周面を防湿箔で覆い、防湿箔の端部をパイプと中間部材との間に密着して挟み込んでいるので、確実にFRP製パイプの吸湿を防止しすることができる。その結果、宇宙空間で排湿収縮することを防ぐことができるので、寸法安定性に優れたパイプ構造体およびトラス構造体を得ることができる。
 なお、本実施の形態において、パイプの両端部には中間部材側に突出した凸部を設け、中間部材にはパイプの凸部と嵌め合わせる位置に凹部が設けているが、凸部と凹部とはなくてもよい。パイプの外周面および内周面の表面を覆う防湿箔の端部がパイプと中間部材との間に密着して挟み込まれていれば、FRP製パイプの吸湿を防止することができる。
 また、本実施の形態においては、防湿箔としてアルミニウム箔を用いたが、水分を透過させない素材であればアルミニウム箔以外の材料でもよい。例えば、防湿箔としてニッケル箔、チタン箔、銅箔、洋箔(銅亜鉛合金箔)などを用いてもよい。また、電気的に絶縁性が必要であれば、これらの金属箔を例えばポリエステル樹脂などでラミネートしたものを防湿箔として用いることもできる。
 また、本実施の形態においては、円筒形状のパイプ構造体として説明したが、筒状であれば断面が多角形であってもよい。
 また、本実施の形態においては、継ぎ手3と中間部材4とは、継ぎ手3に形成された貫通孔6とその位置に対応して形成された中間部材4の貫通孔7とを用いて、ボルトとナットとで締結固定しているが、それ以外の方法で締結固定してもよい、例えば、リベット接合やねじ接合などの機械的締結方法や、溶融接合や圧着接合などの冶金的接合方法を用いてもよい。
 なお、本実施の形態では炭素繊維で構成されたプリプレグで説明したが、炭素繊維以外の、例えばガラス繊維、セラミック繊維などを用いてもよい。
実施の形態2.
 実施の形態1のパイプ構造体は、パイプの両端部にひとつの凸部を備えていたが実施の形態2では、2つ以上の凸部を備えたパイプ構造体について説明する。
 図9は、本実施の形態におけるパイプ構造体2の製造工程を示す説明図である。図9(e)は、積層工程を完了したパイプ構造体2の模式図になるが、図9(e)に示すように中間部材4として、パイプの複数の凸部にそれぞれ対応した1つの凹部をもつ分割中間部材4a~4dを用意する。パイプは、複数のプリプレグ22aが積層されたプリプレグ積層体22で構成されている。
 始めに、図9(a)に示すように、マンドレル21の上に内周側の防湿箔12を配置し、その上にプリプレグ22aを複数枚重ねる。このときパイプの複数の凸部に対応するように、プリプレグ22aの軸方向の長さを適宜設定する。図9(a)の例では、凸部となる部分の2枚のプリプレグ22aの軸方向の長さを長くし、その上の2枚のプリプレグ22aをそれより短くしている。このときプリプレグの積層厚みh1は、分割中間部材4aの厚みとほぼ一致させる。防湿箔12の端部は、プリプレグ22aの端部に沿うように折り曲げる。
 次に、図9(b)に示すように、分割中間部材4aを配置する。このとき、図9(b)の右側に示した拡大図に示すように、防湿箔12の端部が確実に、プリプレグ積層体と分割中間部材4aとの間に挟みこまれるようにする。
 次に、図9(c)に示すように、分割中間部材4aおよび既に積層されたプリプレグの上にプリプレグ22aを複数枚重ねる。このときパイプの複数の凸部に対応するように、プリプレグ22aの軸方向の長さを適宜設定する。このときプリプレグの積層厚みh2は、分割中間部材4bの厚みとほぼ一致させる。
 次に、図9(d)に示すように、分割中間部材4bを配置する。これ以降、プリプレグ22aの積層と分割中間部材との積層を繰り返す。
 次に、図9(e)に示すように、最上層のプリプレグ22a配置した後、外周側の防湿箔11を配置し、防湿箔11の端部をプリプレグ22aの端部に沿うように折り曲げる。その上から分割中間部材4dを配置してパイプ構造体2の積層工程を完了させる。
 最後に、積層工程が完了したパイプ構造体2を、実施の形態1で説明したオートクレーブ装置を用いて加圧および加熱することでパイプ構造体2を完成させる。
 このような工程で作製されたパイプ構造体は、実施の形態1と同様に、FRP製のパイプの外周面および内周面を防湿箔で覆い、防湿箔の端部をパイプと中間部材との間に密着して挟み込んでいるので、確実にFRP製パイプの吸湿を防止しすることができる。
 また、パイプに形成された凸部を径方向に複数有するので、パイプと中間部材との接合がより強固になり、パイプ構造体の強度が向上する。
実施の形態3.
 実施の形態1および実施の形態2で説明したパイプ構造体において、防湿箔の端部がパイプと中間部材との間に確実に密着して挟み込まれていることが重要である。実施の形態3においては、防湿箔の端部がパイプと中間部材との間に確実に密着して挟み込まれる構成について説明する。
 図10は、本実施の形態のパイプ構造体2の断面模式図である。本実施の形態のパイプ構造体は、実施の形態2で説明した複数の凸部を備えたパイプ構造体であり、図10は、径方向の最外周に位置する凸部の部分を示している。図10に示すように、本実施の形態のパイプ5の最外周に位置する凸部8は、4層のプリプレグ22aで構成されている。この4層のプリプレグ22aのうち、内径側の2層のプリプレグ22aの炭素繊維の配向方向は、パイプ構造体の軸方向と平行な方向に設定されている。また、パイプ5の最外周に位置する凸部8の4層のプリプレグ22aのうち、外径側の2層のプリプレグ22aの炭素繊維の配向方向は、パイプ構造体の軸方向と直交する方向に設定されている。
 一般に、プリプレグの熱膨張係数は炭素繊維の配向方向に対して異方性をもち、炭素繊維の配向方向に平行な方向の熱膨張係数は、炭素繊維の配向方向に直交する方向の熱膨張係数に比べて小さい。したがって、本実施の形態のパイプの最外周に位置する凸部8は、パイプの径方向に対して2つの領域に区分されており、外径側の領域の軸方向の熱膨張係数が、内径側の領域の軸方向の熱膨張係数より大きくなる。
 同様に、図示はしていないが、パイプ5の最内周に位置する凸部8を4層のプリプレグ22aで構成し、内径側の2層のプリプレグ22aの炭素繊維の配向方向を、軸方向と直交する方向に設定し、外径側の2層のプリプレグ22aの炭素繊維の配向方向を軸方向と平行な方向に設定する。
 このように構成されたパイプを用いて実施の形態2で説明したパイプ構造体を作製すると、オートクレーブ装置を用いてパイプ構造体を完成させたときに、冷却工程において最外周に位置する凸部は径方向外側へ向かって反ることになる。なぜなら、外径側の領域の軸方向の熱膨張係数が、内径側の領域の軸方向の熱膨張係数より大きいので、冷却工程において外周側の領域がより大きく収縮するためである。そのため、防湿箔11を径方向外側に向かって押し付けて中間部材4へ密着させることなる。同時に、最内周に位置する凸部は径方向内側へ向かって反ることになる。そのため、防湿箔12を径方向内側に向かって押し付けて中間部材4へ密着させることなる。
 本実施の形態のパイプ構造体は、オートクレーブ装置を用いてパイプ構造体を完成させたときに、冷却工程において防湿箔11、12が中間部材4へ密着する方向に押し付けられる。その結果、防湿箔の端部がパイプと中間部材との間に確実に密着して挟み込まれるので、より確実に吸湿を防止しすることができる。
 なお、本実施の形態においては、複数の凸部を備えたパイプ構造体の最外周に位置する凸部と最内周に位置する凸部との両方において熱膨張係数の異なる2つの領域に区分したが、どちらか一方の凸部のみでもよい。
 また、本実施の形態においては、凸部を2つの領域に区分し、それぞれの領域の炭素繊維の配向方向を互いに直交する方向としているが、必ずしも直交している必要はない。冷却工程において、防湿箔が中間部材へ密着する方向に押し付けられる作用が生じるのに必要な熱膨張係数の差が存在すればよいので、それぞれの領域の炭素繊維の配向方向が互いに交差していればよい。
実施の形態4.
 図11は、本実施の形態のパイプ構造体2の断面模式図である。本実施の形態のパイプ構造体は、実施の形態2で説明した複数の凸部を備えたパイプ構造体であり、図11は、径方向の最外周に位置する凸部の部分を示している。図11に示すように、本実施の形態のパイプ構造体においては、パイプ5の最外周に位置する凸部8に対応する中間部材4の凹部の外周面および内周面の表面を粗面化している。
 本実施の形態のパイプ構造体は、オートクレーブ装置を用いてパイプ構造体を加圧して加熱するときに、粗面化された中間部材4がプリプレグ22aに食い込む。その結果、防湿箔の端部がパイプと中間部材との間に確実に密着して挟み込まれるので、より確実に吸湿を防止しすることができる。
 なお、本実施の形態においては複数の凸部を備えたパイプ構造体で説明したが、1つの凸部を備えたパイプ構造体にも適用できる。
1 トラス構造体、 2 パイプ構造体、 3 継ぎ手、 4 中間部材、 5 パイプ、 6、7 貫通孔、 8凸部、 9 凹部、 10 人工衛星、11、12 防湿箔、 21 マンドレル、 22 プリプレグ積層体、 22a プリプレグ、 23 バギングフィルム、 24 シール材、 31 レーザー反射鏡、 32 サンプル支持台、 33 恒温恒湿槽、 34 レーザー変位計 35 反射鏡

Claims (11)

  1. 繊維強化プラスチック製のパイプと、
    このパイプの外周面および内周面をそれぞれ覆う防湿箔と、
    前記パイプの端部に嵌め合わされた金属製の中間部材と
    を備えたパイプ構造体であって、
    前記防湿箔の端部は、前記パイプと前記中間部材との間に密着して挟み込まれている
    ことを特徴とするパイプ構造体。
  2. 前記パイプは、前記パイプの端部に軸方向に突出した凸部を有する
    ことを特徴とする請求項1に記載のパイプ構造体。
  3. 前記パイプは、前記凸部を径方向に複数有する
    ことを特徴とする請求項2に記載のパイプ構造体。
  4. 複数の前記凸部のうち径方向の最外周に位置する凸部は、前記パイプの径方向に対して2つの領域に区分されており、
    外径側の領域の軸方向の熱膨張係数が、内径側の領域の軸方向の熱膨張係数より大きい
    ことを特徴とする請求項3に記載のパイプ構造体。
  5. 複数の前記凸部のうち径方向の最内周に位置する凸部は、前記パイプの径方向に対して2つの領域に区分されており、
    内径側の領域の軸方向の熱膨張係数が、外径側の領域の軸方向の熱膨張係数より大きい
    ことを特徴とする請求項3に記載のパイプ構造体。
  6. 前記外径側の領域の繊維強化プラスチックの繊維の配向方向に対して、前記内径側の領域の繊維強化プラスチックの繊維の配向方向が交差している
    ことを特徴とする請求項4または5に記載のパイプ構造体。
  7. 前記外径側の領域の繊維強化プラスチックの繊維の配向方向に対して、前記内径側の領域の繊維強化プラスチックの繊維の配向方向が直交している
    ことを特徴とする請求項6に記載のパイプ構造体。
  8. 防湿フィルムを介して前記パイプと対向する前記中間部材の表面が粗面である
    ことを特徴とする請求項1~7のいずれか1項に記載のパイプ構造体。
  9. 複数の請求項1~8のいずれか1項に記載のパイプ構造体と、
    複数の前記パイプ構造体の中間部材に接合された金属製の継ぎ手と
    で構成されたことを特徴とするトラス構造体。
  10. 請求項1~8のいずれか1項に記載のパイプ構造体を用いた
    ことを特徴とする人工衛星。
  11. 請求項9に記載のトラス構造体を用いた
    ことを特徴とする人工衛星。
PCT/JP2019/017890 2018-05-23 2019-04-26 パイプ構造体およびトラス構造体およびこれらを用いた人工衛星 WO2019225294A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19807035.1A EP3798137A4 (en) 2018-05-23 2019-04-26 PIPE STRUCTURE AND LATTICE STRUCTURE, AND ARTIFICIAL SATELLITE USING SUCH STRUCTURES
US17/049,577 US20210047057A1 (en) 2018-05-23 2019-04-26 Pipe structure, truss structure, and artificial satellite using the same
JP2019546418A JP6645634B1 (ja) 2018-05-23 2019-04-26 パイプ構造体およびトラス構造体およびこれらを用いた人工衛星

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-099011 2018-05-23
JP2018099011 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225294A1 true WO2019225294A1 (ja) 2019-11-28

Family

ID=68615963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017890 WO2019225294A1 (ja) 2018-05-23 2019-04-26 パイプ構造体およびトラス構造体およびこれらを用いた人工衛星

Country Status (4)

Country Link
US (1) US20210047057A1 (ja)
EP (1) EP3798137A4 (ja)
JP (1) JP6645634B1 (ja)
WO (1) WO2019225294A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4039451A1 (en) * 2021-02-04 2022-08-10 B/E Aerospace, Inc. Metal composite joints for composite rods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047817A1 (ja) * 2016-09-09 2018-03-15 三菱電機株式会社 姿勢制御装置、姿勢制御システム、地上局、人工衛星、姿勢制御方法及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871119A (ja) 1981-10-23 1983-04-27 Mitsubishi Heavy Ind Ltd チユ−ブ状複合材料の継手の製作方法
JPH05116233A (ja) * 1991-10-30 1993-05-14 Yokohama Rubber Co Ltd:The 繊維補強熱可塑性樹脂パイプの製造方法
JPH0733073B2 (ja) * 1990-11-29 1995-04-12 三菱電機株式会社 繊維強化複合材製パイプ構造体とその製造方法
US20120132310A1 (en) * 2009-02-10 2012-05-31 Composite Atlantic Limited Composite tubular parts with complex shapes
JP2016221865A (ja) * 2015-06-01 2016-12-28 三菱電機株式会社 複合材パイプ及び複合材パイプの製造方法
JP2017219811A (ja) 2016-06-10 2017-12-14 三菱重工業株式会社 Frp製ミラー構造体、frp製ミラー構造体の製造方法、および、望遠鏡

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB415769A (en) * 1933-03-01 1934-09-03 Cape Asbestos Company Ltd Improvements in or relating to insulation or non-conducting coverings for heat and sound
JPS51140817U (ja) * 1975-05-07 1976-11-12
US4259821A (en) * 1977-06-29 1981-04-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Lightweight structural columns
US5143407A (en) * 1991-02-25 1992-09-01 Emmet Cokeh Pipe coupling with copper sleeve engaging copper lined pipe
US6293311B1 (en) * 1998-05-22 2001-09-25 Pmd Holdings Corp. Multilayer composite pipe fluid conduit system using multilayer composite pipe and method of making the composite
US6199595B1 (en) * 1998-06-04 2001-03-13 Jerry G. Baker Insulated marine pipe apparatus and method of installation
FR2816389B1 (fr) * 2000-11-08 2003-05-30 Coflexip Embout pour conduite flexible
GB0111347D0 (en) * 2001-05-10 2001-07-04 Mckechnie Components Ltd Pipes and manufacture of such pipes
EP1606544B1 (en) * 2003-03-26 2010-10-20 Wellstream International Limited End fitting for a flexible pipe, pipe assembly and method of assembling the pipe assembly
KR100715427B1 (ko) * 2005-07-12 2007-05-09 한국과학기술원 복합재료와 금속으로 이루어진 경량 붐 어셈블리
FR2899665B1 (fr) * 2006-04-06 2010-09-10 Saltel Ind "conduite flexible a embouts d'extremite integres"
GB2439147A (en) * 2006-06-16 2007-12-19 Wellstream Int Ltd Pipe or hose connector
GB0621543D0 (en) * 2006-10-30 2006-12-06 Wellstream Int Ltd Testing and venting pipe annulus
US7946313B2 (en) * 2008-03-05 2011-05-24 Vo Dang The Flexible pipe
ES2375651T3 (es) * 2008-10-02 2012-03-05 Leister Technologies Ag Manguito de unión por inducción para la unión por fusión de cuerpos de termopl�?stico soldables.
EP2486222A4 (en) * 2009-10-05 2016-06-08 Nat Oilwell Varco Denmark Is FREE AND FLEXIBLE ELEODUCEL SYSTEM HAVING FIBER OPTIC SENSOR INSTALLED INSIDE
EP2601039B1 (en) * 2010-08-02 2015-03-18 Lubrizol Advanced Materials, Inc. A fluid handling assembly having a robust insert
NL2005306C2 (nl) * 2010-09-02 2012-03-05 Tersia Nederland B V Koppelstuk voor meerlaagse leidingen, lasapparaaat voor het verbinden van het koppelstuk met meerlaagse leidingen, werkwijze van koppelen en een samenstel verkregen via de werkwijze.
FR2965602B1 (fr) * 2010-10-04 2013-08-16 Electronique Ind De L Ouest Tronico Tube destine a transporter des substances et assemblage de tubes correspondant
TW201237296A (en) * 2010-12-09 2012-09-16 Lubrizol Advanced Mat Inc Fluid handling assembly having a multilayered composite pipe employing a mechanical coupling and method of assembling the fluid handling assembly
US8844873B2 (en) * 2011-09-23 2014-09-30 The Boeing Company Stabilizer torque box assembly and method
EP2780621A4 (en) * 2011-11-16 2015-08-19 Deepflex Inc END PIECE FOR A TUBE
MY174099A (en) * 2012-06-26 2020-03-09 Baker Hughes Energy Tech Uk Limited Assembly and seal test
CN104508449B (zh) * 2012-06-26 2017-12-05 Ge英国石油和天然气有限公司 用于超深水域应用的居间密封
DK2864749T3 (en) * 2012-06-26 2018-07-02 Ge Oil & Gas Uk Ltd FLEXIBLE PIPE AND METHOD FOR FITTING FLEXIBLE PIPE
BR112015011387A2 (pt) * 2012-11-20 2017-07-11 Nat Oilwell Varco Denmark Is conjunto de um tubo flexível e um encaixe de extremidade
FR3006414B1 (fr) * 2013-05-29 2015-07-03 Technip France Conduite flexible de transport de fluide, utilisation et procede associes
US9285063B2 (en) * 2013-06-22 2016-03-15 Mark L. Jones Connection fitting for connecting thermoplastic pipes
IL231306A0 (en) * 2014-03-04 2014-08-31 Huliot A C S Ltd Electromagnetic induction welding of liquid distribution systems
GB201412515D0 (en) * 2014-07-15 2014-08-27 Sigma Prec Components Uk Ltd End fittings for fibre reinforced polymer matrix composite pipes
US10227145B2 (en) * 2015-02-27 2019-03-12 Space Systems/Loral, Llc Truss structure
JP2016221784A (ja) * 2015-05-28 2016-12-28 大成プラス株式会社 Cfrpパイプと金属部品の一体組立品とその接着方法
DE102015110401B4 (de) * 2015-06-29 2019-08-01 Brugg Rohrsysteme Gmbh Verfahren und Vorrichtung zur Beschichtung einer Rohrleitung
FR3046452B1 (fr) * 2015-12-31 2018-02-16 Technip France Embout de connexion d'une ligne flexible, dispositif de mesure et procede associe
PT3580046T (pt) * 2017-03-13 2022-03-03 Huliot Agricultural Cooperative Soc Ltd Conector de tubo soldável por indução que tem aros de boca de encaixes soldáveis por indução isolados termicamente
GB2563645B (en) * 2017-06-22 2020-03-11 Magma Global Ltd End fitting for a composite pipe
US11204114B2 (en) * 2019-11-22 2021-12-21 Trinity Bay Equipment Holdings, LLC Reusable pipe fitting systems and methods
US11402050B1 (en) * 2021-02-17 2022-08-02 Trinity Bay Equipment Holdings, LLC Pipe fitting internal liner systems and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871119A (ja) 1981-10-23 1983-04-27 Mitsubishi Heavy Ind Ltd チユ−ブ状複合材料の継手の製作方法
JPS619135B2 (ja) * 1981-10-23 1986-03-20 Mitsubishi Heavy Ind Ltd
JPH0733073B2 (ja) * 1990-11-29 1995-04-12 三菱電機株式会社 繊維強化複合材製パイプ構造体とその製造方法
JPH05116233A (ja) * 1991-10-30 1993-05-14 Yokohama Rubber Co Ltd:The 繊維補強熱可塑性樹脂パイプの製造方法
US20120132310A1 (en) * 2009-02-10 2012-05-31 Composite Atlantic Limited Composite tubular parts with complex shapes
JP2016221865A (ja) * 2015-06-01 2016-12-28 三菱電機株式会社 複合材パイプ及び複合材パイプの製造方法
JP2017219811A (ja) 2016-06-10 2017-12-14 三菱重工業株式会社 Frp製ミラー構造体、frp製ミラー構造体の製造方法、および、望遠鏡

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3798137A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4039451A1 (en) * 2021-02-04 2022-08-10 B/E Aerospace, Inc. Metal composite joints for composite rods
US12036749B2 (en) 2021-02-04 2024-07-16 B/E Aerospace, Inc. Metal composite joints for composite rods

Also Published As

Publication number Publication date
EP3798137A4 (en) 2021-07-21
JPWO2019225294A1 (ja) 2020-06-11
US20210047057A1 (en) 2021-02-18
EP3798137A1 (en) 2021-03-31
JP6645634B1 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
US7669729B2 (en) Tank for very low temperature liquids
WO2019225294A1 (ja) パイプ構造体およびトラス構造体およびこれらを用いた人工衛星
US6060166A (en) Flexible graphite fiber thermal shunt
US4635071A (en) Electromagnetic radiation reflector structure
CN101828063B (zh) 复合物凸缘、包括凸缘的管和制造凸缘的方法
US7710348B2 (en) Furlable shape-memory reflector
US10710333B2 (en) Heat transport structure and manufacturing method thereof
US9022745B2 (en) Composite material panel structure and manufacturing method
US20090321978A1 (en) Process for manufacturing a panel made of a thermoplastic composite
EP2492083A2 (en) Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
EP4147866A1 (en) Systems and methods for making and/or using composite tube structures formed of hybrid laminates
JPH04303627A (ja) Cfrp製光学用筒
WO2016185743A1 (ja) ハニカムコア、ハニカムサンドイッチ構造体およびハニカムコアの製造方法
JP5096107B2 (ja) 樹脂構造体の製造方法
US20230254946A1 (en) Extensible mast, production method therefor, photovoltaic paddle, and outer space structure
CN107074608A (zh) 用于形成具有精密表面的制品的工艺
JP6820737B2 (ja) Frp締結構造の製造方法及びfrp締結構造
US20170341340A1 (en) Bonded structure, method for manufacturing the same, and bonding state detection method
JP6512949B2 (ja) 複合材パイプの製造方法
JP2017219811A (ja) Frp製ミラー構造体、frp製ミラー構造体の製造方法、および、望遠鏡
JP7499964B2 (ja) リボン積層体、ハニカムコア前駆体、ハニカムコア、円筒状構造体、人工衛星用セントラルシリンダ、及び、リボン積層体製造方法
JP4408393B2 (ja) タンクの複合材継手の成形方法
WO2022249960A1 (ja) 断熱容器、及びそれを用いた脊磁計
JP2958920B2 (ja) 複合ローラおよびその製造方法
JP2022016915A (ja) 薄板ミラー構造体およびその製造方法、ならびに望遠鏡

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019546418

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019807035

Country of ref document: EP

Effective date: 20201223