WO2019225017A1 - Device generating at least either ions or ozone - Google Patents

Device generating at least either ions or ozone Download PDF

Info

Publication number
WO2019225017A1
WO2019225017A1 PCT/JP2018/020216 JP2018020216W WO2019225017A1 WO 2019225017 A1 WO2019225017 A1 WO 2019225017A1 JP 2018020216 W JP2018020216 W JP 2018020216W WO 2019225017 A1 WO2019225017 A1 WO 2019225017A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
hole
plate
metal plate
insulating plate
Prior art date
Application number
PCT/JP2018/020216
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 寛治
秋山 豊
敏宏 坪井
純一 河西
Original Assignee
株式会社Mirai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Mirai filed Critical 株式会社Mirai
Priority to PCT/JP2018/020216 priority Critical patent/WO2019225017A1/en
Priority to PCT/JP2019/020398 priority patent/WO2019225683A1/en
Priority to JP2020520358A priority patent/JP6775865B2/en
Priority to CN201980035151.1A priority patent/CN112189381B/en
Publication of WO2019225017A1 publication Critical patent/WO2019225017A1/en
Priority to JP2020164384A priority patent/JP6806399B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the present invention relates to an apparatus that generates at least one of ions and ozone in connection with corona discharge (hereinafter, simply referred to as an apparatus).
  • Corona discharge is known as one method for efficiently generating small negative ions (hereinafter sometimes referred to as negative ions).
  • a high voltage difference is generated between the needle electrode and the plate electrode, and the corona discharge is generated between them.
  • Plasma is generated near the tip of the needle, generating positive ions and negative ions. If the high voltage applied to the needle electrode is negative, positive ions are attracted in the direction of the needle electrode by the electric field. Negative ions are attracted in the direction of the plate electrode. Some of these negative ions are released into the atmosphere.
  • ozone which is a molecule composed of three oxygen atoms.
  • the flow of negative ions is called ion wind, and the flow of ozone is called ozone wind.
  • Patent Document 1 As an apparatus for generating corona discharge, for example, there is a configuration disclosed in Patent Document 1 (FIG. 3A). An apparatus is disclosed in which a plurality of metal bodies respectively attached to a plurality of metal plates are opposed to each other to generate a plurality of corona discharges (FIGS. 6 and 8) to generate at least one of ions and ozone. Metal bodies are disclosed in various shapes (needle, pencil, triangular pyramid, quadrangular pyramid, or cylinder).
  • FIG. 1 An apparatus for generating corona discharge (FIGS. 1, 7, 9, and 10) by causing metal bodies (needles) respectively corresponding to a plurality of metal plates having a plurality of cavity patterns to face each other is disclosed.
  • the Also disclosed is an apparatus for generating corona discharge (FIG. 3) by causing a plurality of metal plates (blades) to face each other.
  • an apparatus for generating a corona discharge (FIG. 5) by inserting a metal rod having a plurality of metal projections into a hollow cylindrical metal and causing the metal projections to face each other in the cylinder.
  • FIG. 19 As an apparatus for generating corona discharge, for example, there is a cylindrical configuration disclosed in Patent Document 3 (FIGS. 14, 15, and 19).
  • the cylindrical configuration can be best understood from FIG. 19 along the longitudinal direction of the discharge electrode 21, the first circumferential chamber S 1, the second stage circumferential chamber S 2, and the first gas reservoir 26.
  • the shielding gas outflow passage 25 and the first gas reservoir 26 located on the inner peripheral side of the first gas reservoir 26 are arranged in an overlapping manner in the radial direction.
  • the shielding gas outflow passage 25 extends in the form of a thin and long cylinder along the outer periphery of the discharge electrode 21 from the longitudinal intermediate portion of the discharge electrode 21 to the tip 21b. Therefore, the clean gas passing through the shielding gas outflow passage 25 is laminarized and flows downward through the center opening 207 toward the work in a state of surrounding the tip 21b of the discharge electrode 21. Therefore, it is disclosed that the sheath effect on the tip 21b of the discharge electrode 21 is improved and the contamination prevention effect of the discharge electrode 21 is improved.
  • the measurement graph of the ion amount shown in FIG. 11 of Patent Document 1 is 0.7 ⁇ 10000 Ion / cm 3.
  • One side surface of the apparatus for generating at least one of ions and ozone according to the present invention includes a first metal plate having a first through hole, a metal rod penetrating the first through hole, and at least a first metal plate.
  • covers a metal rod, and maintains the electrical insulation with a 1st metal plate and a metal rod, It is characterized by the above-mentioned.
  • FIG. 8 is a first characteristic diagram of the ozone amount related to FIG. 7.
  • FIG. 8 is a second characteristic diagram of the ozone amount related to FIG. 7.
  • FIG. 8 is a third characteristic diagram of the ozone amount related to FIG. 7.
  • FIG. 8 is a fourth characteristic diagram of the ozone amount related to FIG. 7.
  • FIG. 1, FIG. 2 and FIG. 3 are a cross-sectional view, a plan view, and a schematic view simply illustrating the first embodiment of the present invention (a part of an apparatus that mainly generates ions).
  • a metal rod 1 Metal Rod
  • a covering 2 insulating material; Insulating film or Insulating material
  • a metal plate 3 first metal plate; Metal plate or) Metal substrate
  • through hole 12 first through hole
  • resist 4 first resist
  • insulating plate 5 first insulating plate; Insulating plate
  • insulating plate of metal plate 3 A through-hole 6 (third through-hole) and a through-hole 13 (second through-hole) each 5 has are disclosed.
  • a conductive metal rod 1 for example, tin-plated annealed copper wire
  • a covering 2 for example, silicone rubber
  • the covering 2 is coated so as to be in close contact with the metal rod 1.
  • the tip of the metal bar 1 (position P2 side) is an electrode with the metal exposed.
  • the metal rod 1 and the cover 2 are made of an insulating plate 5 extending in the XY direction (for example, FR-4 (which is formed into a plate shape by impregnating an epoxy resin into a glass fiber cloth and applying a thermosetting treatment). It extends from the position P1 to the position P2 through the through hole 13 of Flame Retardant Type 4)).
  • Positions P1 and P2 indicate the Z axis.
  • the metal rod 1 and the covering 2 further penetrate through a through-hole 12 included in a metal plate 3 of a conductor (for example, a metallizing pattern such as a copper foil).
  • the cover 2 maintains electrical insulation between the metal rod 1 and the metal plate 3 in the portion of the through hole 12.
  • a resist 4 made of a nonconductor (insulating material) that is an insulator covers the metal plate 3.
  • the diameter of the through hole 13 is substantially equal to the diameter of the covering 2 including the diameter of the metal rod 1.
  • the metal plate 3 has a circular shape having a through hole 12.
  • the diameter of the through hole 12 is larger than the diameter of the through hole 13.
  • the insulating plate 5 has a plurality of through holes 6 (for example, they are each circular). The plurality of through holes 6 are arranged in a circle so as to surround the metal plate 3 around the metal rod 1.
  • FIG. 1 is a cross-sectional view appropriately showing FIG. 2, and can be easily understood by the business operator.
  • a conductive metal rod 1 is a cathode to which a negative voltage (for example, minus 6,000 V) is supplied.
  • the metal plate 3 is an anode to which a positive voltage (for example, ground voltage 0V; GND) is supplied.
  • a corona discharge region C1 is generated.
  • the corona discharge area C ⁇ b> 1 is a three-dimensional dome-shaped image based on the tip of the metal rod 1 and the metal plate 3.
  • Air atmosphere
  • ions negative ions
  • ozone having a directionality from position P2 to position P1 are generated.
  • the first embodiment is an apparatus mainly aimed at the generation amount of ions (that is, ion-rich), which is determined from structural design, electrical design, and the like.
  • the corona discharge region C1 covers a part of the metal rod 1 from the viewpoint of the Z axis.
  • the corona discharge region includes a part of the cathode”.
  • This structural design can be thought of as an “umbrella and its axis”. Therefore, it is not necessary to secure a corona discharge region alone as compared with the conventional “structural design corresponding to the cathode and anode”, and the apparatus can be downsized.
  • the anode (metal plate 3) is disposed on the wind source side of the ion wind and the ozone wind, and the cathode (the tip of the metal rod 1) is disposed on the lee side of the ion wind and the ozone wind. Therefore, the amount of contaminants attached to the metal plate 3 (anode side) can be suppressed. Therefore, improvement in maintainability can be expected. Furthermore, since the resist 4 covers the metal plate 3, the amount of contaminants attached to the metal plate 3 can be extremely suppressed.
  • the length of the tip (position P2 side) of the exposed metal rod 1 regardless of the covering 2 is 1 mm.
  • the length with which the covering 2 covers the metal rod 1 is 14 mm.
  • the thickness of the insulating plate 5 is 1.6 mm.
  • the diameter of the through hole 13 included in the insulating plate 5 is 3.2 mm.
  • the diameter of the through hole 6 included in the insulating plate 5 is 6 mm.
  • the diameter of the metal plate 3 is 10 mm.
  • the diameter of the through hole 12 included in the metal plate 3 is 5 mm.
  • the arrangement interval between the two upper and lower through holes 6 in the X direction in FIG. 2 is 8 mm.
  • the arrangement interval between the two through holes 6 in the middle stage is 16 mm.
  • the arrangement pitch of the three through holes 6 in the Y direction in FIG. 2 is 7 mm. Some of these are also described in FIGS. 14 and 15 described later.
  • the amount of generated ions was measured. It measured 530 ⁇ 10,000 Ion / cm 3. Measurement conditions were set to 300 mm from the apparatus.
  • the amount of ions when using another metal plate having a diameter smaller than that of the metal plate 3 is 420 ⁇ 10,000. Ion / cm3 was measured.
  • the diameter of the reduced metal plate is 8 mm.
  • the diameter of the through-hole which the metal plate made small was smaller than that of the through-hole 12, and was 4.5 mm. It can be understood that the amount of ions generated is larger when the diameter is larger, like the metal plate 3 and the through hole 12. In other words, as in the first embodiment, it is desirable that the diameter of the through hole 12 included in the metal plate 3 is larger than the diameter of the through hole 13 included in the insulating plate 5.
  • the covering 2 is one element that forms the preferred corona discharge shown in FIG.
  • a discharge with an absolute voltage of 6 kV occurs at the shortest distance between the metal rod 1 and the metal plate 3.
  • the diameter of the through hole 13 of the insulating plate 5 is made larger, it is considered that the covering 2 can be eliminated.
  • the most efficient corona discharge shape is a three-dimensional hemispherical dome. Accordingly, it is preferable that the through hole 12, the through hole 13, and the through hole 6 have a circular shape as in the first embodiment.
  • FIGS. 4, 5 and 6 are a cross-sectional view, a plan view and a schematic view simply illustrating a second embodiment of the present invention (a part of an apparatus mainly composed of ozone generation).
  • the same contents as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 4 sectional view and FIG. 5 (plan view), a metal plate 7 (second metal plate), a through hole 14 (fourth through hole) included in the metal plate 2, and a resist 8 (second resist).
  • An insulating plate 9 (second insulating plate), and a through hole 10 (sixth through hole) and a through hole 11 (fifth through hole) respectively included in the second insulating plate 9 are newly disclosed.
  • the insulating plate 9, the metal plate 7, and the resist 8 are disposed on the position P2 side.
  • the characteristics of the insulating plate 9, the through hole 10, and the through hole 11 extending in the XY direction correspond to the characteristics of the insulating plate 5, the through hole 6, and the through hole 13.
  • the characteristics of the resist 8 correspond to the characteristics of the resist 4.
  • the features of the metal plate 7 correspond to the features of the metal plate 3.
  • the diameter of the through hole 14 is larger than the diameter of the through hole 11.
  • the plurality of through holes 10 are arranged in a circle so as to surround the metal
  • a conductive metal rod 1 is a cathode to which a negative voltage (for example, minus 6,000 V) is supplied.
  • the metal plate 7 is an anode to which a positive voltage (for example, ground voltage 0V) is supplied.
  • the metal plate 3 is in a floating state where no voltage is supplied.
  • a corona discharge region C2 is generated.
  • the corona discharge area C ⁇ b> 2 is a dome-shaped image based on the tip of the metal rod 1 and the metal plate 7.
  • Air atmosphere
  • Air is electrolyzed by the corona discharge region to generate ions (negative ions) and ozone.
  • the second embodiment is an apparatus mainly aimed at the amount of ozone generated (that is, ozone rich), which is determined from structural design, electrical design, and the like.
  • FIG. 6 (schematic diagram)
  • the metal plate 3 is in a floating state to which no voltage is supplied. Details will be described later with reference to FIG. 7 and characteristic tables 1 to 4.
  • the corona discharge region C2 is independently interposed between the metal rod 1 and the metal plate 7, and the metal plate 5 that suppresses ozone generation sandwiches the tip of the metal rod 1. It faces the metal plate 7.
  • an insulating plate 9 is disposed between the anode (metal plate 7) and the metal rod 1.
  • the cathode the tip of the metal rod 1 is disposed on the wind source side of the ion wind and the ozone wind.
  • the insulating plate 9 is disposed on the leeward side of the ion wind and the ozone wind together with the metal plate 7.
  • the insulating plate 9 can suppress the amount of contaminants attached to the metal plate 7 (anode side). Therefore, improvement in maintainability can be expected.
  • the resist 8 covers the metal plate 7, the amount of contaminants attached to the metal plate 7 can be extremely suppressed.
  • the thickness of the insulating plate 9 is 1.6 mm.
  • the diameter of the through hole 11 included in the insulating plate 9 is 3.2 mm.
  • the diameter of the through hole 10 included in the insulating plate 9 is 6 mm.
  • the diameter of the metal plate 7 is 8 mm. It is smaller than the diameter (10 mm) of the metal plate 3.
  • the diameter of the through hole 14 included in the metal plate 7 is 4.5 mm.
  • the arrangement interval between the two upper and lower through holes 10 in the X direction in FIG. 5 is 8 mm.
  • the arrangement interval between the two through holes 6 in the middle stage is 16 mm.
  • the arrangement pitch of the three through holes 6 in the Y direction in FIG. 5 is 7 mm.
  • the amount of generated ozone was measured. It measured 0.05 ppm or less.
  • the measuring condition was set to 50 mm from the apparatus.
  • the standard value (0.05 ppm or less) defined by JIS (Japanese Industrial Standard) is an index.
  • the amount of ozone when a different metal plate having a diameter larger than that of the metal plate 7 was used was measured to be 0.05 ppm or more. Therefore, it can be understood that the amount of ozone generated is better when the metal plate 7 having a smaller diameter is used as in the second embodiment.
  • the size of the through hole 11 is related to the amount of ozone generated. For example, if the size of the through hole 11 is reduced, the amount of ozone generated decreases. Further, from this viewpoint, the through hole 11 may not be provided. In this case, the amount of ozone generated is the smallest value.
  • the anode and the cathode are opposed to each other and the anode and the floating electrode are opposed to each other
  • the metal plate 3 (floating electrode), or the metal plate 3 (floating electrode) and the insulating plate 5 are added or deleted, the amount of ozone generated can be controlled. Details will be described later with reference to FIG. 7 and characteristic tables 1 to 4.
  • FIG. 7 is a cross-sectional view simply illustrating a third embodiment of the present invention (a part of an apparatus mainly composed of ozone generation).
  • the same contents as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 7 discloses four devices in Case 1 to Case 4.
  • Case 4 corresponds to the second embodiment (FIG. 4).
  • Reference numeral 15 denotes a substrate that supports the metal rod 1 and supplies a negative voltage to the metal rod 1 to serve as a cathode.
  • the substrate 15 may have the same characteristics as the insulating plate 5.
  • Reference numeral 16 denotes a support that supports the substrate 15 and the insulating plate 5.
  • the distance D between the electrode from which the covering 2 that is the tip of the metal rod 1 is exposed and the substrate 15 is 15 mm.
  • Case 3 discloses a metal plate 40 associated with the insulating plate 9. The metal plate 40 is disposed on the metal rod 1 side that is inverted with respect to the arrangement of the metal plate 7 of the Case 4 device.
  • the metal plate 40 has the same characteristics as the metal plate 7.
  • Case 2 has a structure in which the insulating plate 5 and the metal plate 3 are excluded from the Case 4.
  • Case 1 has a structure in which the insulating plate 5 and the metal plate 3 are excluded from Case 3.
  • the distance (mm) to the metal plate 7 or 40 corresponding to the tip of the metal rod 1 is indicated by X1 to X4, respectively, from the viewpoint of the Z axis.
  • FIG. 8 to 11 are characteristic diagrams showing ozone generation amounts (ppm) corresponding to the distances X1 to X4 corresponding to Case 1 to Case 4 disclosed in FIG. 7, respectively.
  • FIG. 8 compares the ozone generation amounts of Case1 and Case2.
  • the metal plate 40 in Case 1 is located on the side of the insulating plate 9 facing the metal rod 1, but the metal plate 7 in Case 2 is located on the side of the insulating plate 9 that does not face the metal rod 1 (back surface). Yes.
  • the distance X2 in the Case 2 apparatus can be made smaller than the distance X1 in the Case 1 apparatus.
  • FIG. 9 compares the ozone generation amounts of Case 3 and Case 4.
  • Case 3 and Case 4 employ a floating potential metal plate 3 and a corresponding insulating plate 5 as grid electrodes. Further, the metal plates 7 and 40 for the insulating plate 9 are the same as Cases 2 and 1, respectively.
  • the distance X4 in the Case 4 apparatus can be made smaller than the distance X3 in the Case 3 apparatus. Furthermore, it can be understood that the presence of the insulating plate 5 in Case 3 and Case 4 further reduces the amount of ozone generation in absolute amount with respect to Case 1 and Case 2.
  • FIG. 10 compares the ozone generation amounts of Case1 and Case3.
  • FIG. 11 compares the ozone generation amounts of Case2 and Case4. It can be understood that the presence of the insulating plates 5 of Case 3 and Case 4 is effective in controlling the amount of ozone generated.
  • Case 2 and Case 4 shown in FIG. 11 are effective in the amount of ozone generated by the customer.
  • the Case 2 apparatus can obtain the maximum sterilizing ability in a space where no human body exists. Furthermore, the amount of contaminants attached to the metal plate 7 can be minimized.
  • the Case 4 device can efficiently generate ozone with a small device structure in a space where a human body or the like exists. Furthermore, the amount of contaminants attached to the metal plate 7 can be minimized.
  • the standard value which JIS (Japanese Industrial Standard) defines in the space where a human body etc. exists is 0.05 ppm or less.
  • FIG. 12 is a cross-sectional view simply illustrating a fourth embodiment of the present invention (a part of a system incorporating a device mainly composed of ions and a device mainly composed of ozone).
  • the same contents as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • a system 100 includes a housing, a fan 220 that is a blower, a PWR 210 that is a power supply device, a module 200 that generates ions and ozone, and a connection portion D1 that supports the module 200 on the housing.
  • the PWR 210 is supplied with power from the outside of the system 100, generates a DC voltage of ⁇ 6 Kv indicated by the mark S, and supplies it to the module 200.
  • the PWR 210 also supplies a predetermined voltage to the fan 220.
  • the fan 220 sucks external air 230 from a suction port (which corresponds to the broken line portion on the left side) of the housing, and discharges air 231 and 232 from the discharge ports 228 and 229 of the housing. This induces a wind flow from position P1 to position P2.
  • the fan 220 has a role of assisting ozone wind or ion wind caused by the module 200 itself as described above.
  • the module 200 includes three devices corresponding to Example 1 (devices mainly responsible for the generation of ions) 201 to 203 and one device corresponding to Example 2 and Case 4 (of ozone). (Device mainly for generation) 204. These devices 201 to 204 are arranged side by side in the Y direction as shown in FIG. 12 is a cross-sectional view and is not shown in the figure. However, as will be described later with reference to FIGS. 13 to 17, two devices 201 to 204 are arranged in the X direction. . The devices 201 to 204 are supplied with a voltage of ⁇ 6 Kv from the PWR 210 and GND.
  • the module 200 is composed of five insulating plates B1 to B5.
  • the insulating plate B1 that supports the metal rod 1 of the device 204, the insulating plate B2 that supports the metal rod 1 of the devices 201 to 203, and the metal plate 246 of the devices 201 to 203 (FIG. 15).
  • Insulating plate B3 that supports (1)), and insulating plates B4 and B5 as safety functions (prevention of electric shock).
  • the insulating plate B3 corresponds to the insulating plate 5 (FIG. 1).
  • the insulating plate B2 also serves as the insulating plate of the device 204 and corresponds to the insulating plate 5 in FIG.
  • the insulating plate B4 also serves as the insulating plate of the device 204 and corresponds to the insulating plate 9 in FIG.
  • the features of the devices 201 to 204 are as described above.
  • the five insulating plates B1 to B5 are respectively supported by supports 233, 234, and 235 corresponding to the support 16 shown in FIG.
  • the dimensions (mm) of each part of the module 200 are shown in FIG.
  • the exposed length L1 of the metal rod 1 is 1 mm.
  • the length L2 that the covering 2 covers the metal rod is 14 mm.
  • the distance L3 from the tip of each metal rod 1 of the devices 201 to 203 to the insulating plate B4 is 1.6 mm.
  • the distance L4 from the tip of the metal rod 1 of the device 204 to the insulating plate B4 is 8.2 mm.
  • a distance L5 from the tip of the metal rod 1 of the device 204 to the metal plate 3 of the insulating plate B2 is 8.4 mm.
  • the distance L6 between the insulating plate B4 and the insulating plate B5 is 1 mm.
  • the length L7 of the portion that supports the insulating plate B1 and the insulating plate B2, and the length L8 of the portion that supports the insulating plate B2 and the insulating plate B3 are each 5 mm.
  • the length L9 of the support 234 that supports the insulating plate B3 and the insulating plate B4 is 10 mm.
  • the length L10 of the part which supports the insulating board B2 and the insulating board B4 among the support bodies 235 is 16.6 mm.
  • each insulating plate, each metal plate, each metal rod, and each covering body have the same characteristics.
  • the manufacturing process of an insulating board can be simplified by making the standard of the hole which each insulating board has respectively the same.
  • the insulating plates B1, B2, B3, B4, and B5 can be obtained from one large insulating substrate.
  • the insulating plate B2 also serves as the insulating plate of the device 204, the manufacturing cost of the module 200 is reduced.
  • the use of the insulating plate B4 also as the insulating plate of the device 204 reduces the manufacturing cost of the module 200.
  • the manufacturing cost of the system 100 can be reduced by combining the devices (devices mainly composed of ions) 201 to 203 and the device (device mainly composed of ozone generation) 204 as one module. Further, as shown in FIGS. 13 to 17 described later, the manufacturing cost can be reduced by mounting a plurality of devices (devices mainly using ions) 201 to 203 on one insulating substrate. Further, as shown in FIGS. 13 to 17 to be described later, the manufacturing cost can be reduced by mounting a plurality of devices (devices mainly composed of ozone) 204 on one insulating substrate. Note that the insulating substrate B1 of the device 204 and the insulating substrate B2 of the device 203 can be realized by one insulating substrate.
  • the five insulating plates can be reduced to four insulating plates. This is because the insulating substrates B1 and B2 can be realized by one insulating substrate.
  • the arrangement of the holes 236 and 238 provided in the insulating plates B4 and B5 is preferably not synchronized with the arrangement of the discharge ports 228 and 229 provided in the housing.
  • FIG. 13 to 17 are plan views of the insulating plates B1 to B5 constituting the module 200 disclosed in the fourth embodiment (FIG. 12) of the present invention.
  • FIG. 13 is a plan view showing the insulating plate B1 from the side surface of the position P1.
  • FIG. 14 is a plan view showing the insulating plate B2 from the side surface of the position P1.
  • FIG. 15 is a plan view showing the insulating plate B3 from the side surface of the position P2.
  • FIG. 16 is a plan view showing the insulating plate B4 from the side surface of the position P2.
  • FIG. 17 is a plan view showing the insulating plate B5 from the side surface of the position P1.
  • Insulating plate B1 shown in FIG. 13 corresponds to two devices 204 arranged in the X direction.
  • Insulating plate B2 shown in FIG. 14 corresponds to devices 201, 202, 203 arranged in two in the X direction, that is, a total of six devices, and devices 204 arranged in two in the X direction.
  • the insulating plate B3 shown in FIG. 15 corresponds to the devices 201, 202, and 203 arranged in the X direction, that is, a total of six devices.
  • Insulating plate B4 shown in FIG. 16 corresponds to devices 201, 202, 203 arranged in two in the X direction, that is, a total of six devices, and devices 204 arranged in two in the X direction.
  • Insulating plate B5 (fourth insulating plate) shown in FIG. 17 corresponds to two devices 204 arranged in the X direction.
  • Each of the five insulating plates B1 to B5 has a plurality of identical holes (there are six holes per device. Representatively, the holes 236 in FIG. 16 and the holes 238 in FIG. 17 are indicated by reference numerals). Have. This is for efficiently flowing the ozone wind and ion wind from the position P1 to the position P2, and improves the blowing efficiency of the fan 220.
  • the holes included in each of the plurality of insulating plates are realized by at least one of the same number of holes and the same size of holes arranged in synchronization with each other.
  • a metallized metal plate 240 is attached to the insulating plate B1.
  • the metal rod 1 is soldered to the metallized portions 240a and 240b located at the centers of the six holes.
  • the metallized portion 240c located on the upper side of the insulating plate B1 is a connection portion to which ⁇ 6 Kv is supplied from the power supply device PWR210.
  • two metalized metal plates 242 and 244 are attached to the insulating plate B2.
  • the first metal plate 242 supports the metal bars 1 of the devices 201, 202, and 203.
  • the first metal plate 242 is disposed on the insulating plate B2 on the position P1 side.
  • the second metal plate 244 in FIG. 14 is disposed on the insulating plate B2 on the position P2 side. Therefore, the second metal plate 244 is represented by a dotted line.
  • the metallized portion 242a located above the insulating plate B2 is a connection portion to which ⁇ 6 Kv is supplied from the power supply device PWR210.
  • the second metal plate 244 located below the insulating plate B2 is electrically floating.
  • the first and second metal plates 242 and 244 have the same characteristics as the metal plate 240 of FIG.
  • a metalized metal plate 246 is attached to the insulating plate B3.
  • the GND potential is supplied to the metallized portion 246a located at the center of the six holes as shown in FIG.
  • a metallized metal plate 248 is attached to the insulating plate B4.
  • the GND potential is supplied to the metallized portion 248a located at the center of the six holes as shown in FIG.
  • a portion of the insulating plate B4 corresponding to the devices 201, 202, and 203 is not provided with a metallized substrate.
  • the metallized substrate is not attached to the part corresponding to the device 204.
  • holes typically holes 250, 252, 254, 256, 258 for the support 234 in FIG. 12 are formed as shown in FIGS. 17
  • the supports 234 and 235 in FIG. 12 may reach the insulating plate B5.
  • a polygonal hole 260 is provided on the right side as a relief hole for soldering.
  • FIG. 18 is a cross-sectional view simply illustrating a fifth embodiment of the present invention (a part of a system incorporating a device mainly composed of ions and a device mainly composed of ozone).
  • the same contents as those in the first to fourth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • a switch SW that executes electrical control is further added.
  • the switch SW. Has one input terminal 262 and two output terminals 264, 266.
  • the switch SW. Controls the control signal Sig.
  • the ground potential GND connected to the input terminal 262 is supplied to one of the two output terminals 264 and 266 connected to the metal plate 3 and the metal plate 7 respectively.
  • the other metal plate not selected is electrically floating.
  • the devices 201 to 203 and the device 204 of the fourth embodiment shown in FIG. 12 can all have the same structure.
  • the flexibility of the module 200 shown in FIG. 12 can be enhanced.
  • the devices 201 to 204 of FIG. 12 are changed to the same structure as that of the fifth embodiment of FIG.
  • the system 100 can flexibly control the ratio of the ion generation amount and the ozone generation amount.
  • the switch SW. Is connected to the control signal Sig. The function of not selecting either of the two output terminals may be provided. Accordingly, the system 100 can flexibly control the absolute values of the ion generation amount and the ozone generation amount.
  • the metal rod 1 may be a needle or may have various other shapes (a pencil, a triangular pyramid, a quadrangular pyramid, or a cylinder).
  • the metal rod 1 may be an electric wire (Wire) or a stranded wire.
  • the metal rod 1 may be a carbon fiber.
  • the tip of the metal rod may be a sharp needle.
  • the insulating material 2 may have a two-layer structure of an insulator and a skin.
  • the first metal plate 3 and the second metal plate 7 may be stainless steel.
  • the metal plate may be a metal sheet or a metal film (conductive flexible material).
  • the first insulating plate 5 and the second insulating plate 9 are a paper phenol substrate (FR-1, 2), a paper epoxy substrate (FR-3), a glass composite substrate (CEM-3), a glass polyimide substrate, and a fluorine substrate. It may be a glass PPO substrate.
  • the shape of the through hole 6 is not limited to a circle with a predetermined radius. For example, an ellipse may be used. It may be a shape other than a circle.
  • the arrangement of the plurality of through holes 6 is not limited to a circular arrangement.
  • the ring-shaped metal plate 3 having the through hole 12 may include the through hole 6 included in the first insulating plate 5 or may be disposed outside the through hole 6.
  • the positive voltage is not limited to the ground voltage 0 V (GND).
  • the relationship between the absolute values of the cathode and anode voltages may be interchanged.
  • An alternating signal may be supplied to the cathode and anode. Further, a predetermined bias value may be given to the AC signal.
  • the first to fifth embodiments can be appropriately combined regardless of whether they are specified or not specified in this specification.
  • the technical scope of the present invention is not limited to the above-described embodiments or combinations thereof, but extends to the matters described in the claims and equivalents or variations thereof.
  • the present invention can be used for an apparatus that generates at least one of ions and ozone in connection with a corona discharge.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Plasma Technology (AREA)

Abstract

Provided is an ion or ozone generation device that is highly efficient and inexpensive. The present invention has, for example: a first metal plate (3) having a first through-hole (12); a metal rod (1) that passes through the first through-hole (12); and an insulating material (2) that is in close contact with the metal rod (1) and covers the metal rod (1), in at least a section where same passes through the first through-hole (12), and electrically insulates the first metal plate (3) and the metal rod (1). In addition, the present invention ideally has: a second through-hole (13) corresponding to the first through-hole (12); and has a first insulating plate (5) that supports the first metal plate (3). Furthermore, the insulating material (2) is ideally in close contact with the metal rod (1) and covers the metal rod (1) in a section where same passes through the second through-hole (13). The present invention ideally also has a resist (4) that covers the first metal plate (3). Corona discharge occurs between the tip of the metal rod (1) and the first metal plate (3) regardless of the insulating material (2).

Description

イオン及びオゾンの少なくともいずれか一方を発生する装置Apparatus for generating at least one of ions and ozone
 本発明は、コロナ放電(Corona discharge)に関連して少なくともイオン及びオゾンの少なくともいずれか一方を発生する装置(以下、単に装置と呼ぶことがある)に関する。 The present invention relates to an apparatus that generates at least one of ions and ozone in connection with corona discharge (hereinafter, simply referred to as an apparatus).
 大気中に存在する帯電微粒子は、分子の電離とその後の化学反応によって生成する小イオンと、小イオンが電気的に中性のエアロゾル(aerosol) に付着してできる大イオンに大別できる。負極性の小イオン(以下、マイナスイオンと呼ぶことがある)を効率的に発生させる方法の一つにコロナ放電が知られている。コロナ放電は、例えば、針状電極と平板電極間に高電圧差を生じさせてそれらの間にコロナ放電を生じさせる。針の先端付近ではプラズマが発生し、正イオンと負イオンが発生する。針状電極に印加する高電圧が負極性であれば、正イオンは電界によって針電極の方向に吸引される。負イオンは平板電極の方向に吸引される。この負イオンの一部が大気中に放出される。コロナ放電時には、正負イオンだけでなく3つの酸素原子からなる分子であるオゾン(O3)も生成される。負イオンの流れをイオン風、オゾンの流れをオゾン風と呼ぶ。 Charged fine particles existing in the atmosphere can be broadly classified into small ions generated by ionization of molecules and subsequent chemical reaction, and large ions formed by small ions adhering to an electrically neutral aerosol. Corona discharge is known as one method for efficiently generating small negative ions (hereinafter sometimes referred to as negative ions). In the corona discharge, for example, a high voltage difference is generated between the needle electrode and the plate electrode, and the corona discharge is generated between them. Plasma is generated near the tip of the needle, generating positive ions and negative ions. If the high voltage applied to the needle electrode is negative, positive ions are attracted in the direction of the needle electrode by the electric field. Negative ions are attracted in the direction of the plate electrode. Some of these negative ions are released into the atmosphere. During corona discharge, not only positive and negative ions, but also ozone (O3), which is a molecule composed of three oxygen atoms, is generated. The flow of negative ions is called ion wind, and the flow of ozone is called ozone wind.
 コロナ放電を発生させる装置として、例えば特許文献1に開示された構成(図3A)がある。複数の金属板にそれぞれ付属する複数の金属体を互いに対向させ、複数のコロナ放電(図6、図8)を発生させて少なくともイオン及びオゾンのいずれか一方を発生する装置が、開示される。金属体は、様々な形状(針(needle)、ペンシル、三角錐、四角錐、または円柱)が、開示される。 As an apparatus for generating corona discharge, for example, there is a configuration disclosed in Patent Document 1 (FIG. 3A). An apparatus is disclosed in which a plurality of metal bodies respectively attached to a plurality of metal plates are opposed to each other to generate a plurality of corona discharges (FIGS. 6 and 8) to generate at least one of ions and ozone. Metal bodies are disclosed in various shapes (needle, pencil, triangular pyramid, quadrangular pyramid, or cylinder).
 コロナ放電を発生させる装置として、例えば特許文献2に開示された複数の構成がある。複数の空洞パターンを有する複数の金属板にそれぞれ対応する金属体(針(needle))を対向させ、コロナ放電(図1、図7、図9、及び図10)を発生させる装置が、開示される。また、複数の金属板(ブレード)を互いに対向させ、コロナ放電(図3)を発生させる装置が、開示される。また、空洞を有する円筒金属に複数の金属突起部を有する金属棒を挿入し、金属突起部を円筒内で対向させ、コロナ放電(図5)を発生させる装置が、開示される。 As a device for generating corona discharge, for example, there are a plurality of configurations disclosed in Patent Document 2. An apparatus for generating corona discharge (FIGS. 1, 7, 9, and 10) by causing metal bodies (needles) respectively corresponding to a plurality of metal plates having a plurality of cavity patterns to face each other is disclosed. The Also disclosed is an apparatus for generating corona discharge (FIG. 3) by causing a plurality of metal plates (blades) to face each other. Also disclosed is an apparatus for generating a corona discharge (FIG. 5) by inserting a metal rod having a plurality of metal projections into a hollow cylindrical metal and causing the metal projections to face each other in the cylinder.
 コロナ放電を発生させる装置として、例えば特許文献3に開示された円筒形の構成(図14、図15、図19)がある。放電電極21と、放電電極21が貫通する円形リング部421を有する接地電極部材42と、放電電極21の外周面に接して位置するシールド用ガス流出通路25が、開示される。詳細には、円筒形の構成は、図19から最も良く理解できるように、放電電極21の長手方向に沿って、第1円周チャンバS1、第2段円周チャンバS2、第1ガス溜め26を直列に配列し、そして、この第1ガス溜め26の内周側に位置するシールド用ガス流出通路25と第1ガス溜め26とを径方向に重複した態様で配置する。シールド用ガス流出通路25は、放電電極21の長手方向中間部分から先端21bに至るまで放電電極21の外周に沿って肉薄の長い円筒状に延びている。よって、このシールド用ガス流出通路25内を通過するクリーンガスは層流化されて放電電極21の先端21bを包囲した状態でワークに向けて中心開放口部207を通じて下方に流出する。従って、放電電極21の先端21bに対するシース効果を向上して、放電電極21の汚染防止効果を向上する、ことが開示される。 As an apparatus for generating corona discharge, for example, there is a cylindrical configuration disclosed in Patent Document 3 (FIGS. 14, 15, and 19). A discharge electrode 21, a ground electrode member 42 having a circular ring portion 421 through which the discharge electrode 21 passes, and a shielding gas outflow passage 25 positioned in contact with the outer peripheral surface of the discharge electrode 21 are disclosed. Specifically, the cylindrical configuration can be best understood from FIG. 19 along the longitudinal direction of the discharge electrode 21, the first circumferential chamber S 1, the second stage circumferential chamber S 2, and the first gas reservoir 26. Are arranged in series, and the shielding gas outflow passage 25 and the first gas reservoir 26 located on the inner peripheral side of the first gas reservoir 26 are arranged in an overlapping manner in the radial direction. The shielding gas outflow passage 25 extends in the form of a thin and long cylinder along the outer periphery of the discharge electrode 21 from the longitudinal intermediate portion of the discharge electrode 21 to the tip 21b. Therefore, the clean gas passing through the shielding gas outflow passage 25 is laminarized and flows downward through the center opening 207 toward the work in a state of surrounding the tip 21b of the discharge electrode 21. Therefore, it is disclosed that the sheath effect on the tip 21b of the discharge electrode 21 is improved and the contamination prevention effect of the discharge electrode 21 is improved.
特開2016-225160号公報Japanese Unexamined Patent Publication No. 2016-225160 特許第5773231号公報Japanese Patent No. 5773231 特開2009-163949号公報JP 2009-163949 A
 装置の小型化を目指しつつ性能を向上するために、単位面積(または単位容量)当たりのイオン及び又はオゾン風の量、イオン及び又はオゾン風の方向の指向性、電極の汚染量の減少によるメンテナンス性の向上、及び製造コストの減少、の少なくともいずれか一つを、更に高める必要がある。 Maintenance by reducing the amount of ions and / or ozone wind per unit area (or unit volume), directivity in the direction of ions and / or ozone wind, and the amount of contamination of electrodes in order to improve performance while aiming for downsizing of the device It is necessary to further increase at least one of improvement in performance and reduction in manufacturing cost.
 イオン風の量について、例えば特許文献1に開示された構成において、特許文献1の図11が示すイオン量の測定グラフは、0.7×10000 Ion/cm3である。 Regarding the amount of ion wind, for example, in the configuration disclosed in Patent Document 1, the measurement graph of the ion amount shown in FIG. 11 of Patent Document 1 is 0.7 × 10000 Ion / cm 3.
 装置の小型化について、例えば、特許文献1の図1(D)に開示された構成が示すY方向のギャップG5の寸法約5mmを含めた装置全体の大きさを、更に小さくする要求がある。しかしながら、陽電極と陰電極をそれぞれ構成する金属板、円筒、等の形状およびコロナ放電領域を含めた装置全体の大きさを小さくしなければならないという課題を有する。この理由は、少なくとも「陽極と陰極が対向の位置関係」であると考える。また、特許文献3が開示する円筒形の構成は、構造が複雑であり且つ部品点数を増大させるため、小型化及びコスト削減が困難である。 Regarding downsizing of the device, for example, there is a demand for further reducing the size of the entire device including the dimension of the gap G5 in the Y direction indicated by the configuration disclosed in FIG. However, there is a problem that the size of the entire apparatus including the shape of the metal plate, cylinder, etc., and the corona discharge region, which respectively constitute the positive electrode and the negative electrode, must be reduced. The reason is considered to be at least “positional relationship between the anode and the cathode”. Further, the cylindrical configuration disclosed in Patent Document 3 has a complicated structure and increases the number of parts, so that it is difficult to reduce the size and cost.
 メンテナンス性の向上について、例えば、特許文献2の図7に開示された構成が示す第1の導電体51A及び第2の導電体51Bの汚染量を減少する要求がある。しかしながら、第1の導電体51A/第2の導電体51Bと電極50との間で生じたコロナ放電にさらされた汚染物が、イオン風(左方向への風の流れ)の向きによって、第1の導電体51A/第2の導電体51Bに付着する。これは、第1の導電体51A/第2の導電体51Bが、コロナ放電領域に対して風下に位置するからである。よって、導電体の汚染を減少させることが難しい。これは、少なくとも「陽極と陰極が対向の位置関係」であることが課題の一つであると考える。また、特許文献3が開示するシース効果を向上して放電電極21の汚染防止効果を向上する円筒形の構成は、小型化及びコスト削減を抑制する。 Regarding improvement of maintainability, for example, there is a demand to reduce the amount of contamination of the first conductor 51A and the second conductor 51B shown in the configuration disclosed in FIG. However, the contaminants exposed to the corona discharge generated between the first conductor 51A / second conductor 51B and the electrode 50 are affected by the direction of the ion wind (wind flow to the left). It adheres to the first conductor 51A / second conductor 51B. This is because the first conductor 51A / second conductor 51B is located leeward with respect to the corona discharge region. Therefore, it is difficult to reduce the contamination of the conductor. It is considered that one of the problems is that at least “the positional relationship between the anode and the cathode is opposite”. Moreover, the cylindrical structure which improves the sheath effect which patent document 3 discloses and improves the contamination prevention effect of the discharge electrode 21 suppresses size reduction and cost reduction.
 本発明のイオン及びオゾンの少なくともいずれか一方を発生する装置の一つの側面は、第1の貫通孔を有する第1の金属板と、第1の貫通孔を貫通する金属棒と、少なくとも第1の貫通孔を貫通する部分において、金属棒に密着させて金属棒を被覆して第1の金属板と金属棒との電気的絶縁を維持する絶縁材と、を有することを特徴とする。 One side surface of the apparatus for generating at least one of ions and ozone according to the present invention includes a first metal plate having a first through hole, a metal rod penetrating the first through hole, and at least a first metal plate. In the part which penetrates the through-hole of this, it has an insulating material which adhere | attaches a metal rod and coat | covers a metal rod, and maintains the electrical insulation with a 1st metal plate and a metal rod, It is characterized by the above-mentioned.
本発明の第1の実施例を簡素に例示する断面図。Sectional drawing which illustrates 1st Example of this invention simply. 図1の平面図。The top view of FIG. 図1のコロナ放電を示す模式図。The schematic diagram which shows the corona discharge of FIG. 本発明の第2の実施例を簡素に例示する断面図。Sectional drawing which illustrates 2nd Example of this invention simply. 図4の平面図。The top view of FIG. 図4のコロナ放電を示す模式図。The schematic diagram which shows the corona discharge of FIG. 本発明の第3の実施例を簡素に示す断面図。Sectional drawing which shows the 3rd Example of this invention simply. 図7に関連するオゾン量の第1の特性図。FIG. 8 is a first characteristic diagram of the ozone amount related to FIG. 7. 図7に関連するオゾン量の第2の特性図。FIG. 8 is a second characteristic diagram of the ozone amount related to FIG. 7. 図7に関連するオゾン量の第3の特性図。FIG. 8 is a third characteristic diagram of the ozone amount related to FIG. 7. 図7に関連するオゾン量の第4の特性図。FIG. 8 is a fourth characteristic diagram of the ozone amount related to FIG. 7. 本発明の第4の実施例を簡素に示す断面図。Sectional drawing which shows the 4th Example of this invention simply. 図8が開示する基板B1の平面図。The top view of board | substrate B1 which FIG. 8 discloses. 図8が開示する基板B2の平面図。The top view of board | substrate B2 which FIG. 8 discloses. 図8が開示する基板B3の平面図。The top view of board | substrate B3 which FIG. 8 discloses. 図8が開示する基板B4の平面図。The top view of board | substrate B4 which FIG. 8 discloses. 図8が開示する基板B5の平面図。The top view of board | substrate B5 which FIG. 8 discloses. 本発明の第5の実施例を簡素に示す断面図。Sectional drawing which shows the 5th Example of this invention simply.
1   金属棒
2    被覆体
3、7、40、246  金属板
4、8  レジスト
5、9、B1、B2、B3、B4、B5  絶縁板
6、10、11、12、13、14、236、238、250、252、254、256、258  貫通孔
15  基板
16、233、234、235  支持体
100 システム
200 モジュール
210 電源装置PWR
220 送風機ファン
228、229   排出口
C1、C2 コロナ放電領域
D1  接続部
SW. スイッチ
Sig. 制御信号
1 Metal rod 2 Cover 3, 7, 40, 246 Metal plate 4, 8 Resist 5, 9, B1, B2, B3, B4, B5 Insulating plate 6, 10, 11, 12, 13, 14, 236, 238, 250, 252, 254, 256, 258 Through-hole 15 Substrate 16, 233, 234, 235 Support 100 System 200 Module 210 Power supply PWR
220 Blower fan 228, 229 Discharge port C1, C2 Corona discharge area D1 Connection part SW. Switch Sig. Control signal
 図1、図2及び図3は、本発明の第1の実施例(イオンの発生を主体とする装置の一部)を簡素に例示する断面図、平面図及び模式図である。 FIG. 1, FIG. 2 and FIG. 3 are a cross-sectional view, a plan view, and a schematic view simply illustrating the first embodiment of the present invention (a part of an apparatus that mainly generates ions).
 図1(断面図)及び図2(平面図)において、金属棒1(Metal Rod)、被覆体2(絶縁材;Insulating film or Insulating material)、金属板3(第1の金属板;Metal plate or Metal substrate)、金属板3が有する貫通孔12(第1の貫通孔;Through hole)、レジスト4(第1のレジスト)、絶縁板5(第1の絶縁板;Insulating plate)、及び、絶縁板5がそれぞれ有する貫通孔6(第3の貫通孔)及び貫通孔13(第2の貫通孔)が、開示される。導電体の金属棒1(例えば、スズメッキ軟銅線)は、絶縁材である被覆体2(例えば、シリコーンゴム)で被覆されている。つまり、被覆体2は、金属棒1に密着するように被膜する。金属棒1の先端(ポジションP2側)は、金属が露出して電極となっている。金属棒1及び被覆体2は、図2に示すようにXY方向に延在する絶縁板5(例えば、ガラス繊維の布にエポキシ樹脂をしみ込ませ熱硬化処理を施し板状にしたFR-4(Flame Retardant Type 4))が有する貫通孔13を介してポジションP1からポジションP2へ延在する。尚、ポジションP1及びP2は、Z軸を示す。金属棒1及び被覆体2は、更に、導電体の金属板3(例えば、銅箔等のメタライズ(metallizing)パターン)が有する貫通孔12を貫通する。被覆体2は、貫通孔12の部分において、金属棒1と金属板3との電気的絶縁を維持する。絶縁体である不導体(絶縁性の材料)のレジスト4は、金属板3を覆う。貫通孔13の直径は、金属棒1の直径を含む被覆体2の直径に実質的に等しい。金属板3は、貫通孔12を有する円形である。貫通孔12の直径は、貫通孔13の直径よりも大きい。絶縁板5は、複数の貫通孔6(例えば、それらはそれぞれ円形)を有する。複数の貫通孔6は、金属棒1を中心に金属板3を取り囲む様に円形に配置される。尚、図1は図2を適宜に示す断面であり、当該事業者であれば容易に理解できる。 In FIG. 1 (cross-sectional view) and FIG. 2 (plan view), a metal rod 1 (Metal Rod), a covering 2 (insulating material; Insulating film or Insulating material), a metal plate 3 (first metal plate; Metal plate or) Metal substrate), through hole 12 (first through hole), resist 4 (first resist), insulating plate 5 (first insulating plate; Insulating plate), and insulating plate of metal plate 3 A through-hole 6 (third through-hole) and a through-hole 13 (second through-hole) each 5 has are disclosed. A conductive metal rod 1 (for example, tin-plated annealed copper wire) is covered with a covering 2 (for example, silicone rubber) that is an insulating material. That is, the covering 2 is coated so as to be in close contact with the metal rod 1. The tip of the metal bar 1 (position P2 side) is an electrode with the metal exposed. As shown in FIG. 2, the metal rod 1 and the cover 2 are made of an insulating plate 5 extending in the XY direction (for example, FR-4 (which is formed into a plate shape by impregnating an epoxy resin into a glass fiber cloth and applying a thermosetting treatment). It extends from the position P1 to the position P2 through the through hole 13 of Flame Retardant Type 4)). Positions P1 and P2 indicate the Z axis. The metal rod 1 and the covering 2 further penetrate through a through-hole 12 included in a metal plate 3 of a conductor (for example, a metallizing pattern such as a copper foil). The cover 2 maintains electrical insulation between the metal rod 1 and the metal plate 3 in the portion of the through hole 12. A resist 4 made of a nonconductor (insulating material) that is an insulator covers the metal plate 3. The diameter of the through hole 13 is substantially equal to the diameter of the covering 2 including the diameter of the metal rod 1. The metal plate 3 has a circular shape having a through hole 12. The diameter of the through hole 12 is larger than the diameter of the through hole 13. The insulating plate 5 has a plurality of through holes 6 (for example, they are each circular). The plurality of through holes 6 are arranged in a circle so as to surround the metal plate 3 around the metal rod 1. FIG. 1 is a cross-sectional view appropriately showing FIG. 2, and can be easily understood by the business operator.
 図3(模式図)において、導電体の金属棒1は、負電圧(例えば、マイナス6,000V)が供給される陰極である。金属板3は、正電圧(例えば、グランド電圧0V;GND)が供給される陽極である。すると、コロナ放電領域C1が生ずる。コロナ放電領域C1は、金属棒1の先端と金属板3を基準とする立体的なドーム型のイメージである。コロナ放電領域によって、空気(大気)が電気分解されてポジションP2からポジションP1の方向性を有するイオン(負イオン)及びオゾンが発生する。他方、後述するファンがポジションP1からポジションP2の方向へ風の流れ(エアーフロー20)を形成する。ファンが形成するエアフロ―20の風速が強いので、生成されたP2からP1の方向性を有するイオン及びオゾンは、結果的にポジションP1からポジションP2の方向性有するイオン風及びオゾン風となる。よって、最終的に、絶縁板5が有する貫通孔6にイオン及びオゾンの流れが生ずる。つまり、イオン風及びオゾン風は、後述するファンによって、それらの流れの方向が所定の方向(ポジションP1からポジションP2の方向)へ確実化され、且つその風量が加速される。第1の実施例は、主にイオンの発生量を狙った(即ち、イオンリッチ)装置であり、それは構造設計、電気設計、等から決定される。 In FIG. 3 (schematic diagram), a conductive metal rod 1 is a cathode to which a negative voltage (for example, minus 6,000 V) is supplied. The metal plate 3 is an anode to which a positive voltage (for example, ground voltage 0V; GND) is supplied. Then, a corona discharge region C1 is generated. The corona discharge area C <b> 1 is a three-dimensional dome-shaped image based on the tip of the metal rod 1 and the metal plate 3. Air (atmosphere) is electrolyzed by the corona discharge region, and ions (negative ions) and ozone having a directionality from position P2 to position P1 are generated. On the other hand, a fan described later forms a wind flow (air flow 20) from the position P1 to the position P2. Since the wind speed of the airflow 20 formed by the fan is strong, the generated ions and ozone having the direction from P2 to P1 become the ion wind and ozone wind having the direction from position P1 to position P2. Therefore, finally, the flow of ions and ozone occurs in the through hole 6 of the insulating plate 5. In other words, the flow of the ion wind and the ozone wind is ensured in a predetermined direction (the direction from the position P1 to the position P2) by a fan described later, and the air volume is accelerated. The first embodiment is an apparatus mainly aimed at the generation amount of ions (that is, ion-rich), which is determined from structural design, electrical design, and the like.
 第1の実施例において、Z軸の視点において、コロナ放電領域C1が金属棒1の一部を内包するように覆っている。言い換えれば、「コロナ放電領域が陰極の一部を内包する構造設計」であるといえる。この構造設計は、「傘とその軸」の様に考えることができる。よって、従来の「陰極と陽極が対応する構造設計」と比べてコロナ放電領域を単独で確保する必要がないから、装置の小型化が可能である。更に、陽極(金属板3)がイオン風及びオゾン風の風元側に配置され、陰極(金属棒1の先端部)がイオン風及びオゾン風の風下側に配置される。よって、金属板3(陽極側)に汚染物が付着する量を抑制できる。従って、メンテナンス性の向上が期待できる。更に、レジスト4が金属板3を覆っているので、金属板3に付着する汚染物の量を極端に抑制できる。 In the first embodiment, the corona discharge region C1 covers a part of the metal rod 1 from the viewpoint of the Z axis. In other words, it can be said that “the corona discharge region includes a part of the cathode”. This structural design can be thought of as an “umbrella and its axis”. Therefore, it is not necessary to secure a corona discharge region alone as compared with the conventional “structural design corresponding to the cathode and anode”, and the apparatus can be downsized. Furthermore, the anode (metal plate 3) is disposed on the wind source side of the ion wind and the ozone wind, and the cathode (the tip of the metal rod 1) is disposed on the lee side of the ion wind and the ozone wind. Therefore, the amount of contaminants attached to the metal plate 3 (anode side) can be suppressed. Therefore, improvement in maintainability can be expected. Furthermore, since the resist 4 covers the metal plate 3, the amount of contaminants attached to the metal plate 3 can be extremely suppressed.
 第1の実施例において、被覆体2によらず露出した金属棒1の先端(ポジションP2側)の長さは1mmである。被覆体2が金属棒1を被覆する長さは、14mmである。絶縁板5の厚さは、1.6mmである。絶縁板5が有する貫通孔13の直径は、3.2mmである。絶縁板5が有する貫通孔6の直径は、6mmである。金属板3の直径は、10mmである。金属板3が有する貫通孔12の直径は、5mmである。図2におけるX方向のそれぞれ上下2つの貫通孔6の配置間隔は、8mmである。中段2つの貫通孔6の配置間隔は、16mmである。図2におけるY方向の3つの貫通孔6の配置ピッチは、7mmである。これらは、後述する図14及び15にもそれらの一部が記載されている。 In the first embodiment, the length of the tip (position P2 side) of the exposed metal rod 1 regardless of the covering 2 is 1 mm. The length with which the covering 2 covers the metal rod 1 is 14 mm. The thickness of the insulating plate 5 is 1.6 mm. The diameter of the through hole 13 included in the insulating plate 5 is 3.2 mm. The diameter of the through hole 6 included in the insulating plate 5 is 6 mm. The diameter of the metal plate 3 is 10 mm. The diameter of the through hole 12 included in the metal plate 3 is 5 mm. The arrangement interval between the two upper and lower through holes 6 in the X direction in FIG. 2 is 8 mm. The arrangement interval between the two through holes 6 in the middle stage is 16 mm. The arrangement pitch of the three through holes 6 in the Y direction in FIG. 2 is 7 mm. Some of these are also described in FIGS. 14 and 15 described later.
 第1の実施例において、発生したイオンの量を測定した。それは、530×10,000 Ion/cm3を測定した。測定条件は、装置から300mmに測定器を設定した。 In the first example, the amount of generated ions was measured. It measured 530 × 10,000 Ion / cm 3. Measurement conditions were set to 300 mm from the apparatus.
 この結果に対して、図示しないが、金属板3よりも直径サイズを小さくした別の金属板(以下「小さくした金属板」と称する)を用いた場合のイオンの量は、420×10,000 Ion/cm3を測定した。小さくした金属板の直径は、8mmである。小さくした金属板が有する貫通孔の直径は、貫通孔12のそれよりも小さく、4.5mmとした。発生するイオンの量は、金属板3及び貫通孔12のように直径が大きい方が多いことが理解できる。言い換えれば、第1の実施例のように、金属板3が有する貫通孔12の直径は、絶縁板5が有する貫通孔13の直径よりも大きいことが望ましい。 In contrast to this result, although not shown, the amount of ions when using another metal plate having a diameter smaller than that of the metal plate 3 (hereinafter referred to as “small metal plate”) is 420 × 10,000. Ion / cm3 was measured. The diameter of the reduced metal plate is 8 mm. The diameter of the through-hole which the metal plate made small was smaller than that of the through-hole 12, and was 4.5 mm. It can be understood that the amount of ions generated is larger when the diameter is larger, like the metal plate 3 and the through hole 12. In other words, as in the first embodiment, it is desirable that the diameter of the through hole 12 included in the metal plate 3 is larger than the diameter of the through hole 13 included in the insulating plate 5.
 第1の実施例において、被覆体2は図3が示す好ましいコロナ放電を形成する一つの要素である。例えば、被覆体2を削除すると、金属棒1と金属板3の最も短い距離の場所で絶対電圧6kVの放電が起きるからである。但し、絶縁板5が有する貫通孔13の直径をより大きくすれば、被覆体2は無くすことも可能と考える。 In the first embodiment, the covering 2 is one element that forms the preferred corona discharge shown in FIG. For example, if the covering 2 is deleted, a discharge with an absolute voltage of 6 kV occurs at the shortest distance between the metal rod 1 and the metal plate 3. However, if the diameter of the through hole 13 of the insulating plate 5 is made larger, it is considered that the covering 2 can be eliminated.
 第1の実施例において、コロナ放電の形状が最も効率的なのは、立体的な半球型であるドームである。してみると、第1の実施例のように貫通孔12、貫通孔13及び貫通孔6の形状を円形とするのが好ましい。 In the first embodiment, the most efficient corona discharge shape is a three-dimensional hemispherical dome. Accordingly, it is preferable that the through hole 12, the through hole 13, and the through hole 6 have a circular shape as in the first embodiment.
 図4、図5及び図6は、本発明の第2の実施例(オゾンの発生を主体とする装置の一部)を簡素に例示する断面図、平面図及び模式図である。第1の実施例と同一の内容は同一の符号によって、それらの説明を省略する。 FIGS. 4, 5 and 6 are a cross-sectional view, a plan view and a schematic view simply illustrating a second embodiment of the present invention (a part of an apparatus mainly composed of ozone generation). The same contents as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図4(断面図)及び図5(平面図)において、金属板7(第2の金属板)、金属板2が有する貫通孔14(第4の貫通孔)、レジスト8(第2のレジスト)、絶縁板9(第2の絶縁板)、及び第2の絶縁板9がそれぞれ有する貫通孔10(第6の貫通孔)及び貫通孔11(第5の貫通孔)が、新たに開示される。絶縁板9、金属板7及びレジスト8は、ポジションP2側に配置される。XY方向に延在する絶縁板9、貫通孔10及び貫通孔11の特徴は、絶縁板5、貫通孔6及び貫通孔13のそれぞれの特徴に対応する。レジスト8の特徴は、レジスト4の特徴に対応する。金属板7の特徴は、金属板3の特徴に対応する。貫通孔14の直径は、貫通孔11の直径よりも大きい。複数の貫通孔10は、金属棒1を中心に金属板7を取り囲む様に円形に配置される。 4 (sectional view) and FIG. 5 (plan view), a metal plate 7 (second metal plate), a through hole 14 (fourth through hole) included in the metal plate 2, and a resist 8 (second resist). , An insulating plate 9 (second insulating plate), and a through hole 10 (sixth through hole) and a through hole 11 (fifth through hole) respectively included in the second insulating plate 9 are newly disclosed. . The insulating plate 9, the metal plate 7, and the resist 8 are disposed on the position P2 side. The characteristics of the insulating plate 9, the through hole 10, and the through hole 11 extending in the XY direction correspond to the characteristics of the insulating plate 5, the through hole 6, and the through hole 13. The characteristics of the resist 8 correspond to the characteristics of the resist 4. The features of the metal plate 7 correspond to the features of the metal plate 3. The diameter of the through hole 14 is larger than the diameter of the through hole 11. The plurality of through holes 10 are arranged in a circle so as to surround the metal plate 7 around the metal rod 1.
 図6(模式図)において、導電体の金属棒1は、負電圧(例えば、マイナス6,000V)が供給される陰極である。金属板7は、正電圧(例えば、グランド電圧0V)が供給される陽極である。金属板3は、電圧が供給されないフローティングである。すると、コロナ放電領域C2が生ずる。コロナ放電領域C2は、金属棒1の先端と金属板7を基準とするドーム型のイメージである。コロナ放電領域によって、空気(大気)が電気分解されてイオン(負イオン)及びオゾンが発生する。それらの幾つかは、ポジションP1からポジションP2へのイオン風及びオゾン風となり、絶縁板9が有する貫通孔10にエアー30の流れが生ずる。尚、イオン風及びオゾン風は、後述するファンによって、それらの流れの方向が所定の方向(ポジションP1からポジションP2の方向)へ確実化され、且つその風量が加速される。第2の実施例は、主にオゾンの発生量を狙った(即ち、オゾンリッチ)装置であり、それは構造設計、電気設計等から決定される。 In FIG. 6 (schematic diagram), a conductive metal rod 1 is a cathode to which a negative voltage (for example, minus 6,000 V) is supplied. The metal plate 7 is an anode to which a positive voltage (for example, ground voltage 0V) is supplied. The metal plate 3 is in a floating state where no voltage is supplied. Then, a corona discharge region C2 is generated. The corona discharge area C <b> 2 is a dome-shaped image based on the tip of the metal rod 1 and the metal plate 7. Air (atmosphere) is electrolyzed by the corona discharge region to generate ions (negative ions) and ozone. Some of them become ion wind and ozone wind from the position P1 to the position P2, and the flow of the air 30 is generated in the through hole 10 of the insulating plate 9. In addition, the flow direction of the ion wind and the ozone wind is ensured in a predetermined direction (direction from the position P1 to the position P2) by a fan described later, and the air volume is accelerated. The second embodiment is an apparatus mainly aimed at the amount of ozone generated (that is, ozone rich), which is determined from structural design, electrical design, and the like.
 ここで、図6(模式図)において、金属板3は、電圧が供給されないフローティング(floating)である。詳細は、後述する図7及び特性表1から4で説明する。 Here, in FIG. 6 (schematic diagram), the metal plate 3 is in a floating state to which no voltage is supplied. Details will be described later with reference to FIG. 7 and characteristic tables 1 to 4.
 第2の実施例において、コロナ放電領域C2が金属棒1と金属板7との間に独立して介在し、且つ、オゾン発生を抑制する金属板5が、金属棒1の先端を挟むように金属板7と対向する。言い換えれば、「Z軸の視点において、陽極と陰極が対向の位置関係であり、且つ陽極とフローティング極が対向の関係、である構造設計」といえる。よって、コロナ放電によって発生するオゾンの量を制御可能である。更に、絶縁板9が、陽極(金属板7)と金属棒1との間に配置される。言い換えれば、陰極(金属棒1の先端部)がイオン風及びオゾン風の風元側に配置される。絶縁板9は、金属板7と共にイオン風及びオゾン風の風下側に配置される。しかし、絶縁板9は、金属板7(陽極側)に汚染物が付着する量を抑制できる。従って、メンテナンス性の向上が期待できる。更に、レジスト8が金属板7を覆っているので、金属板7に付着する汚染物の量を極端に抑制できる。 In the second embodiment, the corona discharge region C2 is independently interposed between the metal rod 1 and the metal plate 7, and the metal plate 5 that suppresses ozone generation sandwiches the tip of the metal rod 1. It faces the metal plate 7. In other words, it can be said that “a structural design in which the anode and the cathode are opposed to each other and the anode and the floating electrode are opposed to each other from the viewpoint of the Z axis”. Therefore, the amount of ozone generated by corona discharge can be controlled. Further, an insulating plate 9 is disposed between the anode (metal plate 7) and the metal rod 1. In other words, the cathode (the tip of the metal rod 1) is disposed on the wind source side of the ion wind and the ozone wind. The insulating plate 9 is disposed on the leeward side of the ion wind and the ozone wind together with the metal plate 7. However, the insulating plate 9 can suppress the amount of contaminants attached to the metal plate 7 (anode side). Therefore, improvement in maintainability can be expected. Furthermore, since the resist 8 covers the metal plate 7, the amount of contaminants attached to the metal plate 7 can be extremely suppressed.
 第2の実施例において、絶縁板9の厚さは、1.6mmである。絶縁板9が有する貫通孔11の直径は、3.2mmである。絶縁板9が有する貫通孔10の直径は、6mmである。金属板7の直径は、8mmである。それは、金属板3の直径(10mm)よりも小さい。金属板7が有する貫通孔14の直径は、4.5mmである。図5におけるX方向のそれぞれ上下2つの貫通孔10の配置間隔は、8mmである。中段2つの貫通孔6の配置間隔は、16mmである。図5におけるY方向の3つの貫通孔6の配置ピッチは、7mmである。これらは、後述する図16にもそれらの一部が記載されている。 In the second embodiment, the thickness of the insulating plate 9 is 1.6 mm. The diameter of the through hole 11 included in the insulating plate 9 is 3.2 mm. The diameter of the through hole 10 included in the insulating plate 9 is 6 mm. The diameter of the metal plate 7 is 8 mm. It is smaller than the diameter (10 mm) of the metal plate 3. The diameter of the through hole 14 included in the metal plate 7 is 4.5 mm. The arrangement interval between the two upper and lower through holes 10 in the X direction in FIG. 5 is 8 mm. The arrangement interval between the two through holes 6 in the middle stage is 16 mm. The arrangement pitch of the three through holes 6 in the Y direction in FIG. 5 is 7 mm. Some of these are also described in FIG.
 第2の実施例において、発生したオゾンの量を測定した。それは、0.05ppm以下を測定した。測定条件は、装置から50mmに測定器を設定した。尚、JIS(日本工業規格)が定める基準値(0.05ppm以下)が指標である。 In the second example, the amount of generated ozone was measured. It measured 0.05 ppm or less. The measuring condition was set to 50 mm from the apparatus. In addition, the standard value (0.05 ppm or less) defined by JIS (Japanese Industrial Standard) is an index.
 この結果に対して、図示しないが、金属板7よりも直径サイズを大きくした別の金属板を用いた場合のオゾンの量は、0.05ppm以上を測定した。よって、発生するオゾンの量は、第2の実施例のように直径が小さい金属板7を用いた方が少なくて良好であることが理解できる。更に、この結果に対して、図示しないが、貫通孔11(第5の貫通孔)のサイズは、発生するオゾンの量に関連する。例えば、貫通孔11のサイズを小さくすれば発生するオゾンの量は減少する。また、この視点において、貫通孔11を設けなくても良い。この場合、発生するオゾンの量は、最も少ない値となる。 In contrast to this result, although not shown, the amount of ozone when a different metal plate having a diameter larger than that of the metal plate 7 was used was measured to be 0.05 ppm or more. Therefore, it can be understood that the amount of ozone generated is better when the metal plate 7 having a smaller diameter is used as in the second embodiment. Furthermore, although not shown with respect to this result, the size of the through hole 11 (fifth through hole) is related to the amount of ozone generated. For example, if the size of the through hole 11 is reduced, the amount of ozone generated decreases. Further, from this viewpoint, the through hole 11 may not be provided. In this case, the amount of ozone generated is the smallest value.
 第2の実施例において、「Z軸の視点において、陽極と陰極が対向の位置関係であり、且つ陽極とフローティング極が対向の関係」は図6が示す好ましいコロナ放電を形成する一つの要素である。例えば、金属板3(フローティング極)、若しくは金属板3(フローティング極)及び絶縁板5を追加または削除すると、発生するオゾン量を制御できるからである。詳細は、後述する図7及び特性表1から4で説明する。 In the second embodiment, “in the viewpoint of the Z axis, the anode and the cathode are opposed to each other and the anode and the floating electrode are opposed to each other” is one element that forms a preferable corona discharge shown in FIG. is there. For example, if the metal plate 3 (floating electrode), or the metal plate 3 (floating electrode) and the insulating plate 5 are added or deleted, the amount of ozone generated can be controlled. Details will be described later with reference to FIG. 7 and characteristic tables 1 to 4.
 図7は、本発明の第3の実施例(オゾンの発生を主体とする装置の一部)を簡素に例示する断面図である。第1及び第2の実施例と同一の内容は同一の符号によって、それらの説明を省略する。 FIG. 7 is a cross-sectional view simply illustrating a third embodiment of the present invention (a part of an apparatus mainly composed of ozone generation). The same contents as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図7(断面図)は、4つの装置をCase1からCase4で開示する。Case4は、第2の実施例(図4)に対応する。符号15は、金属棒1を支持し、金属棒1に負電圧を供給して陰極とする基板である。基板15は、絶縁板5と同一の特性であってもよい。符号16は、基板15と絶縁板5を支持する支持体である。金属棒1の先端である被覆体2が露出した電極と基板15の距離Dは、15mmである。Case3は、絶縁板9に付随する金属板40を開示する。金属板40は、Case4の装置の金属板7の配置に対して反転した金属棒1側に配置される。金属板40は、金属板7と同一特性を有する。Case2は、Case4に対して絶縁板5及び金属板3を排除した構造である。Case1は、Case3に対して絶縁板5及び金属板3を排除した構造である。Case1からCase4において、金属棒1の先端とそれぞれ対応する金属板7又は金属板40までの距離(mm)は、Z軸の視点において、それぞれX1からX4で示される。 FIG. 7 (cross-sectional view) discloses four devices in Case 1 to Case 4. Case 4 corresponds to the second embodiment (FIG. 4). Reference numeral 15 denotes a substrate that supports the metal rod 1 and supplies a negative voltage to the metal rod 1 to serve as a cathode. The substrate 15 may have the same characteristics as the insulating plate 5. Reference numeral 16 denotes a support that supports the substrate 15 and the insulating plate 5. The distance D between the electrode from which the covering 2 that is the tip of the metal rod 1 is exposed and the substrate 15 is 15 mm. Case 3 discloses a metal plate 40 associated with the insulating plate 9. The metal plate 40 is disposed on the metal rod 1 side that is inverted with respect to the arrangement of the metal plate 7 of the Case 4 device. The metal plate 40 has the same characteristics as the metal plate 7. Case 2 has a structure in which the insulating plate 5 and the metal plate 3 are excluded from the Case 4. Case 1 has a structure in which the insulating plate 5 and the metal plate 3 are excluded from Case 3. In Case 1 to Case 4, the distance (mm) to the metal plate 7 or 40 corresponding to the tip of the metal rod 1 is indicated by X1 to X4, respectively, from the viewpoint of the Z axis.
 図8から図11の特性図は、図7が開示するCase1からCase4にそれぞれ対応する距離X1から距離X4に対応するオゾン発生量(ppm)を示す特性図である。図8は、Case1とCase2のオゾン発生量を比較している。Case1における金属板40は、絶縁板9の金属棒1に対面する側に位置しているが、Case2における金属板7は、絶縁板9の金属棒1に対面しない側(裏面)に位置している。所定のオゾン量を発生するために、Case1の装置における距離X1対して、Case2の装置における距離X2は小さくすることができる。つまり、金属棒1の先端(陰極)と金属板7の間に絶縁板9を挟むCase2の構造は、最も効率よいオゾン発生量が期待できる。すなわち装置の小型化が達成できる。また、金属板7の汚染物による汚れの付着量も、金属板40よりも少ないことが理解できる。これは、メンテナンスコストの削減が期待できる。図9は、Case3とCase4のオゾン発生量を比較している。Case3及びCase4は、フローティング電位の金属板3及び対応する絶縁板5をグリッド電極として採用している。更に、絶縁板9に対する金属板7及び40は、それぞれCase2及び1とそれぞれ同様である。所定のオゾン量を発生するために、Case3の装置における距離X3に対して、Case4の装置における距離X4は、小さくすることができる。更に、Case3およびCase4における絶縁板5の存在は、オゾン発生量をCase1及びCase2に対して絶対量で更に少なくすることが理解できる。図10は、Case1とCase3のオゾン発生量を比較している。図11は、Case2とCase4のオゾン発生量を比較している。Case3およびCase4の絶縁板5の存在は、オゾン発生量を制御する側面において有効であることが理解できる。ここで、顧客が求めるオゾン発生量において、図11に示すCase2とCase4の装置は、それぞれ有効である。例えば、Case2の装置は、人体等が存在しない空間において、最大の殺菌能力が得られる。更に、金属板7の汚染物の付着量を最小にできる。例えば、Case4の装置は、人体等が存在する空間において、小さな装置構造で効率的にオゾンが発生できる。更に、金属板7の汚染物の付着量を最小にできる。尚、人体等が存在する空間においてJIS(日本工業規格)が定める基準値は、0.05ppm以下である。 8 to 11 are characteristic diagrams showing ozone generation amounts (ppm) corresponding to the distances X1 to X4 corresponding to Case 1 to Case 4 disclosed in FIG. 7, respectively. FIG. 8 compares the ozone generation amounts of Case1 and Case2. The metal plate 40 in Case 1 is located on the side of the insulating plate 9 facing the metal rod 1, but the metal plate 7 in Case 2 is located on the side of the insulating plate 9 that does not face the metal rod 1 (back surface). Yes. In order to generate a predetermined amount of ozone, the distance X2 in the Case 2 apparatus can be made smaller than the distance X1 in the Case 1 apparatus. That is, the structure of Case 2 in which the insulating plate 9 is sandwiched between the tip (cathode) of the metal rod 1 and the metal plate 7 can be expected to produce the most efficient ozone generation amount. That is, downsizing of the apparatus can be achieved. Further, it can be understood that the amount of dirt attached due to contaminants on the metal plate 7 is also smaller than that of the metal plate 40. This can be expected to reduce maintenance costs. FIG. 9 compares the ozone generation amounts of Case 3 and Case 4. Case 3 and Case 4 employ a floating potential metal plate 3 and a corresponding insulating plate 5 as grid electrodes. Further, the metal plates 7 and 40 for the insulating plate 9 are the same as Cases 2 and 1, respectively. In order to generate a predetermined amount of ozone, the distance X4 in the Case 4 apparatus can be made smaller than the distance X3 in the Case 3 apparatus. Furthermore, it can be understood that the presence of the insulating plate 5 in Case 3 and Case 4 further reduces the amount of ozone generation in absolute amount with respect to Case 1 and Case 2. FIG. 10 compares the ozone generation amounts of Case1 and Case3. FIG. 11 compares the ozone generation amounts of Case2 and Case4. It can be understood that the presence of the insulating plates 5 of Case 3 and Case 4 is effective in controlling the amount of ozone generated. Here, Case 2 and Case 4 shown in FIG. 11 are effective in the amount of ozone generated by the customer. For example, the Case 2 apparatus can obtain the maximum sterilizing ability in a space where no human body exists. Furthermore, the amount of contaminants attached to the metal plate 7 can be minimized. For example, the Case 4 device can efficiently generate ozone with a small device structure in a space where a human body or the like exists. Furthermore, the amount of contaminants attached to the metal plate 7 can be minimized. In addition, the standard value which JIS (Japanese Industrial Standard) defines in the space where a human body etc. exists is 0.05 ppm or less.
 図12は、本発明の第4の実施例(イオンの発生を主体とする装置とオゾンの発生を主体とする装置を組み込んだシステムの一部)を簡素に例示する断面図である。第1から第3の実施例と同一の内容は同一の符号によって、それらの説明を省略する。 FIG. 12 is a cross-sectional view simply illustrating a fourth embodiment of the present invention (a part of a system incorporating a device mainly composed of ions and a device mainly composed of ozone). The same contents as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図12において、システム100は、筐体、送風機であるファン(Fan)220、電源装置であるPWR210、及びイオン及びオゾンを発生するモジュール200、並びにモジュール200を筐体に支持する接続部D1を有する。PWR210は、システム100の外部から電源が供給され、マークSで示される直流の-6Kvの電圧を発生し、モジュール200へ供給する。PWR210は、ファン220へも所定電圧を供給する。ファン220は、筐体が有する吸引口(それは左側の破線部に対応する)から外部のエアー230を吸引し、筐体が有する排出口228、229からエアー231、232を排出する。これはポジションP1からポジションP2への風の流れを誘引している。ファン220は、前述したようにモジュール200自身が引き起こすオゾン風もしくはイオン風をアシストする役割を持つ。 In FIG. 12, a system 100 includes a housing, a fan 220 that is a blower, a PWR 210 that is a power supply device, a module 200 that generates ions and ozone, and a connection portion D1 that supports the module 200 on the housing. . The PWR 210 is supplied with power from the outside of the system 100, generates a DC voltage of −6 Kv indicated by the mark S, and supplies it to the module 200. The PWR 210 also supplies a predetermined voltage to the fan 220. The fan 220 sucks external air 230 from a suction port (which corresponds to the broken line portion on the left side) of the housing, and discharges air 231 and 232 from the discharge ports 228 and 229 of the housing. This induces a wind flow from position P1 to position P2. The fan 220 has a role of assisting ozone wind or ion wind caused by the module 200 itself as described above.
 図12が示す断面図において、モジュール200は、実施例1に対応する3つの装置(イオンの発生を主体とする装置)201~203と、実施例2及びCase4に対応する1つの装置(オゾンの発生を主体とする装置)204を有する。それら装置201~204は、図12に示す通り、Y方向に並べて配置されている。また図12は断面図であるため同図には示されていないが、図13~図17を用いて後述するように、装置201~204は、各々、X方向に2つずつ配列されている。各装置201~204には、PWR210から-6Kvの電圧、及びGNDが供給される。モジュール200は、5枚の絶縁板B1~B5で構成される。ポジションP1側からポジションP2側に向かって、装置204の金属棒1をサポートする絶縁板B1、装置201~203の金属棒1をサポートする絶縁板B2、装置201~203の金属板246(図15)をサポートする絶縁板B3、安全機能(感電防止)としての絶縁板B4及びB5である。絶縁板B3は、絶縁板5(図1)に対応する。絶縁板B2は、装置204の絶縁板を兼用していて、図4の絶縁板5に相当する。絶縁板B4は、装置204の絶縁板を兼用していて、図4の絶縁板9に相当する。装置201~204の特徴は、前述したとおりである。5つの絶縁板B1~B5は、図7で示した支持体16に相当する支持体233、234、235でそれぞれサポートされる。モジュール200の各部の寸法(mm)は、図12に示される。金属棒1の露出長さL1は、1mmである。被覆体2が金属棒を被覆する長さL2は、14mmである。装置201~203のそれぞれの金属棒1の先端から絶縁板B4までの距離L3は、1.6mmである。装置204の金属棒1の先端から絶縁板B4までの距離L4は、8.2mmである。装置204の金属棒1の先端から絶縁板B2の金属板3までの距離L5は、8.4mmである。絶縁板B4と絶縁板B5の距離L6は、1mmである。支持体234のうち、絶縁板B1と絶縁板B2を支持する部分の長さL7、並びに絶縁板B2と絶縁板B3を支持する部分の長さL8は、それぞれ5mmである。支持体234のうち、絶縁板B3と絶縁板B4を支持する部分の長さL9は、10mmである。支持体235のうち、絶縁板B2と絶縁板B4を支持する部分の長さL10は、16.6mmである。モジュール200の製造コストを削減するために、各絶縁板、各金属板、各金属棒、及び各被覆体は、それぞれ同一の特性を有することが望ましい。例えば、各絶縁板がそれぞれ有する孔の規格を同一にすることで、絶縁板の製造工程を簡素にできる。大きな1枚の絶縁基板から、絶縁板B1、B2、B3、B4、B5を得ることができる。更に、絶縁板B2が装置204の絶縁板を兼用することで、モジュール200の製造コストが削減される。絶縁板B4が装置204の絶縁板を兼用することは、モジュール200の製造コストを削減する。更に、装置(イオンの発生を主体とする装置)201~203と、装置(オゾンの発生を主体とする装置)204を一つのモジュールとすることで、システム100の製造コストを削減できる。更に、後述する図13~図17で示されるように、複数の装置(イオンの発生を主体とする装置)201~203を一つの絶縁基板に搭載することで、製造コストを削減できる。更に、後述する図13~図17で示されるように、複数の装置(オゾンの発生を主体とする装置)204を一つの絶縁基板に搭載することで、製造コストを削減できる。尚、装置204の絶縁基板B1と装置203の絶縁基板B2を、ひとつの絶縁基板で実現できる。例えば、既に述べたように、装置204の金属棒1の先端から絶縁板B4までの距離L4(8.2mm)を維持しながら、装置203の金属棒1の先端から絶縁板B4までの距離L3を、絶縁板B1と絶縁板B2を支持する部分の長さL7(5mm)分加算して1.6mmから6.6mmにする。これによって、5枚の絶縁板を4枚の絶縁板に削減できる。絶縁基板B1とB2を、ひとつの絶縁基板で実現できるからである。また、安全機能(感電防止)としての絶縁板B4及びB5が有する孔236、238(図16、図17参照)の径は、筐体が有する排出口228、229の径よりも小さいことが望ましい。絶縁板B4及びB5が有する孔236、238の配置は、筐体が有する排出口228、229の配置とシンクロしないことが望ましい。 In the cross-sectional view shown in FIG. 12, the module 200 includes three devices corresponding to Example 1 (devices mainly responsible for the generation of ions) 201 to 203 and one device corresponding to Example 2 and Case 4 (of ozone). (Device mainly for generation) 204. These devices 201 to 204 are arranged side by side in the Y direction as shown in FIG. 12 is a cross-sectional view and is not shown in the figure. However, as will be described later with reference to FIGS. 13 to 17, two devices 201 to 204 are arranged in the X direction. . The devices 201 to 204 are supplied with a voltage of −6 Kv from the PWR 210 and GND. The module 200 is composed of five insulating plates B1 to B5. From the position P1 side toward the position P2 side, the insulating plate B1 that supports the metal rod 1 of the device 204, the insulating plate B2 that supports the metal rod 1 of the devices 201 to 203, and the metal plate 246 of the devices 201 to 203 (FIG. 15). Insulating plate B3 that supports (1)), and insulating plates B4 and B5 as safety functions (prevention of electric shock). The insulating plate B3 corresponds to the insulating plate 5 (FIG. 1). The insulating plate B2 also serves as the insulating plate of the device 204 and corresponds to the insulating plate 5 in FIG. The insulating plate B4 also serves as the insulating plate of the device 204 and corresponds to the insulating plate 9 in FIG. The features of the devices 201 to 204 are as described above. The five insulating plates B1 to B5 are respectively supported by supports 233, 234, and 235 corresponding to the support 16 shown in FIG. The dimensions (mm) of each part of the module 200 are shown in FIG. The exposed length L1 of the metal rod 1 is 1 mm. The length L2 that the covering 2 covers the metal rod is 14 mm. The distance L3 from the tip of each metal rod 1 of the devices 201 to 203 to the insulating plate B4 is 1.6 mm. The distance L4 from the tip of the metal rod 1 of the device 204 to the insulating plate B4 is 8.2 mm. A distance L5 from the tip of the metal rod 1 of the device 204 to the metal plate 3 of the insulating plate B2 is 8.4 mm. The distance L6 between the insulating plate B4 and the insulating plate B5 is 1 mm. Of the support 234, the length L7 of the portion that supports the insulating plate B1 and the insulating plate B2, and the length L8 of the portion that supports the insulating plate B2 and the insulating plate B3 are each 5 mm. The length L9 of the support 234 that supports the insulating plate B3 and the insulating plate B4 is 10 mm. The length L10 of the part which supports the insulating board B2 and the insulating board B4 among the support bodies 235 is 16.6 mm. In order to reduce the manufacturing cost of the module 200, it is desirable that each insulating plate, each metal plate, each metal rod, and each covering body have the same characteristics. For example, the manufacturing process of an insulating board can be simplified by making the standard of the hole which each insulating board has respectively the same. The insulating plates B1, B2, B3, B4, and B5 can be obtained from one large insulating substrate. Furthermore, since the insulating plate B2 also serves as the insulating plate of the device 204, the manufacturing cost of the module 200 is reduced. The use of the insulating plate B4 also as the insulating plate of the device 204 reduces the manufacturing cost of the module 200. Further, the manufacturing cost of the system 100 can be reduced by combining the devices (devices mainly composed of ions) 201 to 203 and the device (device mainly composed of ozone generation) 204 as one module. Further, as shown in FIGS. 13 to 17 described later, the manufacturing cost can be reduced by mounting a plurality of devices (devices mainly using ions) 201 to 203 on one insulating substrate. Further, as shown in FIGS. 13 to 17 to be described later, the manufacturing cost can be reduced by mounting a plurality of devices (devices mainly composed of ozone) 204 on one insulating substrate. Note that the insulating substrate B1 of the device 204 and the insulating substrate B2 of the device 203 can be realized by one insulating substrate. For example, as already described, the distance L3 from the tip of the metal rod 1 of the device 203 to the insulating plate B4 while maintaining the distance L4 (8.2 mm) from the tip of the metal rod 1 of the device 204 to the insulating plate B4. Is added by the length L7 (5 mm) of the portion supporting the insulating plate B1 and the insulating plate B2 to be 1.6 mm to 6.6 mm. Thus, the five insulating plates can be reduced to four insulating plates. This is because the insulating substrates B1 and B2 can be realized by one insulating substrate. Moreover, it is desirable that the diameters of the holes 236 and 238 (see FIGS. 16 and 17) of the insulating plates B4 and B5 as a safety function (prevention of electric shock) are smaller than the diameters of the discharge ports 228 and 229 of the housing. . The arrangement of the holes 236 and 238 provided in the insulating plates B4 and B5 is preferably not synchronized with the arrangement of the discharge ports 228 and 229 provided in the housing.
 図13から図17は、本発明の第4の実施例(図12)が開示するモジュール200を構成する各絶縁板B1~B5の平面図である。図13は、絶縁板B1をポジションP1の側面から示した平面図である。図14は、絶縁板B2をポジションP1の側面から示した平面図である。図15は、絶縁板B3をポジションP2の側面から示した平面図である。図16は、絶縁板B4をポジションP2の側面から示した平面図である。図17は、絶縁板B5をポジションP1の側面から示した平面図である。図13が示す絶縁板B1は、X方向に2つ配列された装置204に対応する。図14が示す絶縁板B2は、それぞれX方向に2つずつ配列された装置201、202、203すなわち計6つの装置と、X方向に2つ配列された装置204とに対応する。図15が示す絶縁板B3は、それぞれX方向に2つずつ配置された装置201、202、203すなわち計6つの装置に対応する。図16が示す絶縁板B4は、それぞれX方向に2つずつ配列された装置201、202、203すなわち計6つの装置と、X方向に2つ配列された装置204とに対応する。図17が示す絶縁板B5(第4の絶縁板)は、X方向に2つ配列された装置204に対応する。5つの絶縁板B1~B5は、それぞれ同一の複数の孔(それは各装置辺り6つの孔である。代表して図16の孔236、図17の孔238を符号を付して図示する)を有する。これは、オゾン風及びイオン風を効率よくポジションP1からポジションP2へ流すためであり、ファン220の送風効率も向上させる。例えば、複数の絶縁板がそれぞれ有する孔は、互いに同期して配置される、同一数の複数の孔を有する、同一サイズの孔を有する、の少なくともいずれか一つによって、実現される。図13において、絶縁板B1にはメタライズされた1つの金属板240が付されている。6つの孔の中心に位置するメタライズ部240a、240bには、金属棒1が半田付けされる。絶縁板B1の上部に位置するメタライズ部240cは、電源装置PWR210から-6Kvが供給される接続部である。図14において、絶縁板B2にはメタライズされた2つの金属板242、244が付されている。第1の金属板242は、装置201、202、203のそれぞれの金属棒1を支持する。第1の金属板242はポジションP1側の絶縁板B2に配置される。図14の第2の金属板244は、ポジションP2側の絶縁板B2に配置される。よって、第2の金属板244は点線で表現されている。第1の金属板242のうち、絶縁板B2の上部に位置するメタライズ部242aは、電源装置PWR210から-6Kvが供給される接続部である。絶縁板B2の下部に位置する第2の金属板244は電気的にフローティングである。第1及び第2の金属板242、244は、図13の金属板240と同様の特性である。図15において、絶縁板B3にはメタライズされた1つの金属板246が付されている。6つの孔の中心に位置するメタライズ部246aには、図12に示すようにGND電位が供給される。図16において、絶縁板B4にはメタライズされた1つの金属板248が付されている。6つの孔の中心に位置するメタライズ部248aには、図12に示すようにGND電位が供給される。絶縁板B4のうち装置201、202、203に対応する部分にはメタライズ基板は付されない。図17において、装置204に対応する部分にはメタライズ基板は付されない。各絶縁板B1~B5には、それぞれ周辺部に互いを支持する支持体のために孔(代表して図12の支持体234のための孔250、252、254、256、258を図13~図17に示す)が設けられている。尚、図12の支持体234、235は、絶縁板B5に到達してもよい。図17の絶縁体B5には、右側に多角形の孔260が、半田付けのための逃げ穴として設けられている。 13 to 17 are plan views of the insulating plates B1 to B5 constituting the module 200 disclosed in the fourth embodiment (FIG. 12) of the present invention. FIG. 13 is a plan view showing the insulating plate B1 from the side surface of the position P1. FIG. 14 is a plan view showing the insulating plate B2 from the side surface of the position P1. FIG. 15 is a plan view showing the insulating plate B3 from the side surface of the position P2. FIG. 16 is a plan view showing the insulating plate B4 from the side surface of the position P2. FIG. 17 is a plan view showing the insulating plate B5 from the side surface of the position P1. Insulating plate B1 shown in FIG. 13 corresponds to two devices 204 arranged in the X direction. Insulating plate B2 shown in FIG. 14 corresponds to devices 201, 202, 203 arranged in two in the X direction, that is, a total of six devices, and devices 204 arranged in two in the X direction. The insulating plate B3 shown in FIG. 15 corresponds to the devices 201, 202, and 203 arranged in the X direction, that is, a total of six devices. Insulating plate B4 shown in FIG. 16 corresponds to devices 201, 202, 203 arranged in two in the X direction, that is, a total of six devices, and devices 204 arranged in two in the X direction. Insulating plate B5 (fourth insulating plate) shown in FIG. 17 corresponds to two devices 204 arranged in the X direction. Each of the five insulating plates B1 to B5 has a plurality of identical holes (there are six holes per device. Representatively, the holes 236 in FIG. 16 and the holes 238 in FIG. 17 are indicated by reference numerals). Have. This is for efficiently flowing the ozone wind and ion wind from the position P1 to the position P2, and improves the blowing efficiency of the fan 220. For example, the holes included in each of the plurality of insulating plates are realized by at least one of the same number of holes and the same size of holes arranged in synchronization with each other. In FIG. 13, a metallized metal plate 240 is attached to the insulating plate B1. The metal rod 1 is soldered to the metallized portions 240a and 240b located at the centers of the six holes. The metallized portion 240c located on the upper side of the insulating plate B1 is a connection portion to which −6 Kv is supplied from the power supply device PWR210. In FIG. 14, two metalized metal plates 242 and 244 are attached to the insulating plate B2. The first metal plate 242 supports the metal bars 1 of the devices 201, 202, and 203. The first metal plate 242 is disposed on the insulating plate B2 on the position P1 side. The second metal plate 244 in FIG. 14 is disposed on the insulating plate B2 on the position P2 side. Therefore, the second metal plate 244 is represented by a dotted line. Of the first metal plate 242, the metallized portion 242a located above the insulating plate B2 is a connection portion to which −6 Kv is supplied from the power supply device PWR210. The second metal plate 244 located below the insulating plate B2 is electrically floating. The first and second metal plates 242 and 244 have the same characteristics as the metal plate 240 of FIG. In FIG. 15, a metalized metal plate 246 is attached to the insulating plate B3. The GND potential is supplied to the metallized portion 246a located at the center of the six holes as shown in FIG. In FIG. 16, a metallized metal plate 248 is attached to the insulating plate B4. The GND potential is supplied to the metallized portion 248a located at the center of the six holes as shown in FIG. A portion of the insulating plate B4 corresponding to the devices 201, 202, and 203 is not provided with a metallized substrate. In FIG. 17, the metallized substrate is not attached to the part corresponding to the device 204. In each of the insulating plates B1 to B5, holes (typically holes 250, 252, 254, 256, 258 for the support 234 in FIG. 12 are formed as shown in FIGS. 17) is provided. Note that the supports 234 and 235 in FIG. 12 may reach the insulating plate B5. In the insulator B5 of FIG. 17, a polygonal hole 260 is provided on the right side as a relief hole for soldering.
 図18は、本発明の第5の実施例(イオンの発生を主体とする装置とオゾンの発生を主体とする装置を組み込んだシステムの一部)を簡素に例示する断面図である。第1から4の実施例と同一の内容は同一の符号によって、それらの説明を省略する。 FIG. 18 is a cross-sectional view simply illustrating a fifth embodiment of the present invention (a part of a system incorporating a device mainly composed of ions and a device mainly composed of ozone). The same contents as those in the first to fourth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図18において、更に、電気的な制御を実行するスイッチSW.が付加される。スイッチSW.は、一つの入力端子262と、二つの出力端子264、266を有する。スイッチSW.は、制御信号Sig.によって、入力端子262に接続される接地電位GNDを、金属板3及び金属板7にそれぞれ接続される二つの出力端子264、266のいずれか一方に供給する。選択されなかった他方の金属板は、電気的にフローティングである。第5の実施例によれば、図12に示した第4の実施例の装置201~203及び装置204をすべて同一の構造にできる。更に、図12に示したモジュール200のフレキシビリティーを高めることができる。例えば、図12の装置201~204を図18の第5の実施例と同一の構造に変更し、それぞれが有する複数のスイッチSW.に、それぞれ対応する複数の制御信号Sig.を与えることで、各装置に異なる制御を実行することができる。その結果、システム100はイオン発生量及びオゾン発生量のレシオをフレキシブルに制御できる。尚、更にスイッチSW.は、制御信号Sig.によって二つの出力端子のいずれも選択しない機能を持たせても良い。これによって、システム100はイオン発生量及びオゾン発生量の絶対値をフレキシブルに制御できる。 In FIG. 18, a switch SW that executes electrical control is further added. The switch SW. Has one input terminal 262 and two output terminals 264, 266. The switch SW. Controls the control signal Sig. Thus, the ground potential GND connected to the input terminal 262 is supplied to one of the two output terminals 264 and 266 connected to the metal plate 3 and the metal plate 7 respectively. The other metal plate not selected is electrically floating. According to the fifth embodiment, the devices 201 to 203 and the device 204 of the fourth embodiment shown in FIG. 12 can all have the same structure. Furthermore, the flexibility of the module 200 shown in FIG. 12 can be enhanced. For example, the devices 201 to 204 of FIG. 12 are changed to the same structure as that of the fifth embodiment of FIG. 18, and a plurality of control signals Sig. By giving, different control can be executed for each device. As a result, the system 100 can flexibly control the ratio of the ion generation amount and the ozone generation amount. Furthermore, the switch SW. Is connected to the control signal Sig. The function of not selecting either of the two output terminals may be provided. Accordingly, the system 100 can flexibly control the absolute values of the ion generation amount and the ozone generation amount.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で他の様々な形態で実施可能である。例えば、金属棒1は、針(needle)であってもよいし、その他様々な形状(ペンシル、三角錐、四角錐、または円柱)であってもよい。更に、金属棒1は、電線(Wire)であってもよいし、撚り線(Strand wire)であってもよい。更に、金属棒1は、カーボンファイバーであってもよい。金属棒の先端の形状は、鋭利なニードルであってもよい。絶縁材2は、絶縁体と外皮の2層構造であってもよい。第1の金属板3及び第2の金属板7は、ステンレスでもよい。また、金属板は、金属シートまたは金属フィルム(導電性のフレキシブルな材料)であっても良い。第1の絶縁板5及び第2の絶縁板9は、紙フェノール基板(FR-1,2)、紙エポキシ基板(FR-3)、ガラスコンポジット基板(CEM-3)、ガラスポリイミド基板、フッ素基板、ガラスPPO基板、等であってもよい。貫通孔6の形状は、所定の半径の円形に限られない。例えば、楕円でもよい。円形以外の形状であってもよい。複数の貫通孔6の配置は、円形配置に限られない。貫通孔12を有するリング状の金属板3は、第1の絶縁板5が有する貫通孔6を含んでいても良いし、貫通孔6の外側に配置されても良い。正電圧は、グランド電圧0V(GND)に限られない。陰極と陽極の電圧の絶対値の関係を入れ替えても良い。交流信号が、陰極と陽極に供給されても良い。更に、交流信号に所定値のバイアス値を与えても良い。第1の実施例から第5の実施例を、本明細書において明記または明示されていないに係わらず適宜組み合わせることができる。本発明の技術的範囲は、上述した複数の実施例またはそれらの組み合わせに限定されず、特許請求の範囲に記載された事項とその均等物または変形物まで及ぶ。 As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the main point of this invention, it can implement with another various form. For example, the metal rod 1 may be a needle or may have various other shapes (a pencil, a triangular pyramid, a quadrangular pyramid, or a cylinder). Furthermore, the metal rod 1 may be an electric wire (Wire) or a stranded wire. Furthermore, the metal rod 1 may be a carbon fiber. The tip of the metal rod may be a sharp needle. The insulating material 2 may have a two-layer structure of an insulator and a skin. The first metal plate 3 and the second metal plate 7 may be stainless steel. Further, the metal plate may be a metal sheet or a metal film (conductive flexible material). The first insulating plate 5 and the second insulating plate 9 are a paper phenol substrate (FR-1, 2), a paper epoxy substrate (FR-3), a glass composite substrate (CEM-3), a glass polyimide substrate, and a fluorine substrate. It may be a glass PPO substrate. The shape of the through hole 6 is not limited to a circle with a predetermined radius. For example, an ellipse may be used. It may be a shape other than a circle. The arrangement of the plurality of through holes 6 is not limited to a circular arrangement. The ring-shaped metal plate 3 having the through hole 12 may include the through hole 6 included in the first insulating plate 5 or may be disposed outside the through hole 6. The positive voltage is not limited to the ground voltage 0 V (GND). The relationship between the absolute values of the cathode and anode voltages may be interchanged. An alternating signal may be supplied to the cathode and anode. Further, a predetermined bias value may be given to the AC signal. The first to fifth embodiments can be appropriately combined regardless of whether they are specified or not specified in this specification. The technical scope of the present invention is not limited to the above-described embodiments or combinations thereof, but extends to the matters described in the claims and equivalents or variations thereof.
 本発明は、コロナ放電(Corona discharge)に関連して少なくともイオン及びオゾンの少なくともいずれか一方を発生する装置に利用することができる。 The present invention can be used for an apparatus that generates at least one of ions and ozone in connection with a corona discharge.

Claims (25)

  1.  第1の貫通孔を有する第1の金属板と、
     前記第1の貫通孔を貫通する金属棒と、
     少なくとも前記第1の貫通孔を貫通する部分において、前記金属棒に密着させて前記金属棒を被覆して前記第1の金属板と前記金属棒との電気的絶縁を維持する絶縁材と、を有し、イオン及びオゾンの少なくともいずれか一方を発生する装置。
    A first metal plate having a first through hole;
    A metal rod penetrating the first through hole;
    An insulating material that maintains electrical insulation between the first metal plate and the metal rod by covering the metal rod in close contact with the metal rod at least in a portion that penetrates the first through hole; A device for generating at least one of ions and ozone.
  2.  前記第1の貫通孔に対応する第2の貫通孔を有し、前記第1の金属板を支持する第1の絶縁板を更に有する、請求項1に記載の装置。 The apparatus according to claim 1, further comprising a first insulating plate having a second through hole corresponding to the first through hole and supporting the first metal plate.
  3.  前記金属棒の先端は、前記絶縁材によらず電極が露出している、請求項2に記載の装置。 The apparatus according to claim 2, wherein an electrode is exposed at a tip of the metal bar regardless of the insulating material.
  4.  前記電極を挟むように前記第1の金属板と対向する第2の金属板を更に有する、請求項3に記載の装置。 4. The apparatus according to claim 3, further comprising a second metal plate facing the first metal plate so as to sandwich the electrode.
  5.  前記絶縁材は、更に、前記第2の貫通孔を貫通する部分において、前記金属棒に密着させて前記金属棒を被覆する、請求項3から4いずれか一項に記載の装置。 The apparatus according to any one of claims 3 to 4, wherein the insulating material further covers the metal rod in close contact with the metal rod in a portion penetrating the second through hole.
  6.  前記第1の金属板は、前記金属棒の先端と前記第1の絶縁板の間に配置される、請求項5に記載の装置。 The apparatus according to claim 5, wherein the first metal plate is disposed between a tip of the metal bar and the first insulating plate.
  7.  前記第1の金属板を前記第1の絶縁板との間に挟むように配置される、第1のレジストを更に有する、請求項6に記載の装置。 The apparatus according to claim 6, further comprising a first resist arranged so as to sandwich the first metal plate with the first insulating plate.
  8.  前記第1の貫通孔は、前記第2の貫通孔よりも大きい、請求項5から7いずれか一項に記載の装置。 The device according to any one of claims 5 to 7, wherein the first through hole is larger than the second through hole.
  9.  前記第1の絶縁板は、前記第1及び第2の貫通孔に対応してそれらの周辺に配置される複数の第3の貫通孔を含む、請求項5から8いずれか一項に記載の装置。 9. The first insulating plate according to claim 5, wherein the first insulating plate includes a plurality of third through holes arranged around the first and second through holes corresponding to the first and second through holes. apparatus.
  10.  前記第1、第2及び第3の貫通孔の少なくとも一つは、円形である、請求項9に記載の装置。 10. The apparatus according to claim 9, wherein at least one of the first, second and third through holes is circular.
  11.  前記第2の金属板は、第4の貫通孔を含み、
     前記第4の貫通孔に対応する第5の貫通孔を有し、前記第2の金属板を支持する第2の絶縁板を更に有する、請求項4に記載の装置。
    The second metal plate includes a fourth through hole,
    The apparatus according to claim 4, further comprising a second insulating plate having a fifth through hole corresponding to the fourth through hole and supporting the second metal plate.
  12.  前記第2の絶縁板は、前記金属棒の先端と前記第2の金属板の間に配置される、請求項11に記載の装置。 The apparatus according to claim 11, wherein the second insulating plate is disposed between a tip of the metal bar and the second metal plate.
  13.  前記第2の金属板を前記第2の絶縁板との間に挟むように配置される、第2のレジストを更に有する、請求項12に記載の装置。 13. The apparatus according to claim 12, further comprising a second resist arranged so as to sandwich the second metal plate with the second insulating plate.
  14.  前記第4の貫通孔は、前記第5の貫通孔よりも大きい、請求項11から13いずれか一項に記載の装置。 The apparatus according to any one of claims 11 to 13, wherein the fourth through hole is larger than the fifth through hole.
  15.  前記第2の絶縁板は、前記第4及び第5の貫通孔に対応してそれらの周辺に配置される、複数の第6の貫通孔を含む、請求項11から14いずれか一項に記載の装置。 The second insulating plate includes a plurality of sixth through holes arranged around the fourth and fifth through holes so as to correspond to the fourth and fifth through holes. Equipment.
  16.  前記第4、第5及び第6の貫通孔の少なくとも一つは、円形である、請求項15に記載の装置。 The apparatus according to claim 15, wherein at least one of the fourth, fifth and sixth through holes is circular.
  17.  前記金属棒に第1の電圧を、前記第1の金属板に第2の電圧を供給する電源回路を更に有する、請求項1に記載の装置。 The apparatus according to claim 1, further comprising a power supply circuit that supplies a first voltage to the metal rod and a second voltage to the first metal plate.
  18.  前記金属棒に第1の電圧を、前記第2の金属板に第2の電圧を供給する電源回路を更に有する、請求項4に記載の装置。 The apparatus according to claim 4, further comprising a power supply circuit that supplies a first voltage to the metal rod and a second voltage to the second metal plate.
  19.  前記第1の金属板の電位はフローティングである、請求項18に記載の装置。 The apparatus according to claim 18, wherein the potential of the first metal plate is floating.
  20.  前記金属棒の先端を間に挟むように前記第1の絶縁板と対向する第3の絶縁板を更に有する、請求項3に記載の装置。 4. The apparatus according to claim 3, further comprising a third insulating plate facing the first insulating plate so as to sandwich a tip end of the metal rod.
  21.  前記第2の金属板を間に挟むように前記第2の絶縁板と対向する第4の絶縁板を更に有する、請求項11から16いずれか一項に記載の装置。 The apparatus according to any one of claims 11 to 16, further comprising a fourth insulating plate facing the second insulating plate so as to sandwich the second metal plate therebetween.
  22.  前記第1の金属板と、前記第1の貫通孔を貫通する金属棒の先端との間でコロナ放電領域が形成される、請求項1に記載の装置。 The apparatus according to claim 1, wherein a corona discharge region is formed between the first metal plate and a tip of a metal rod penetrating the first through hole.
  23.  前記第2の金属板と、前記第1の貫通孔を貫通する金属棒の先端との間でコロナ放電領域が形成される、請求項4に記載の装置。 The apparatus according to claim 4, wherein a corona discharge region is formed between the second metal plate and a tip of a metal rod penetrating the first through hole.
  24.  前記第1及び第2の金属板の電位をそれぞれ制御可能にするスイッチを更に有する、請求項4に記載の装置。 The apparatus according to claim 4, further comprising a switch capable of controlling a potential of each of the first and second metal plates.
  25.  前記スイッチは、前記第1及び第2の金属板のいずれか一方を第1の電位に制御し、前記第1及び第2の金属板のいずれか他方を電気的にフローティングに制御する、請求項24に記載の装置。 The switch controls one of the first and second metal plates to a first potential, and controls the other of the first and second metal plates to be electrically floating. 24. Device according to 24.
PCT/JP2018/020216 2018-05-25 2018-05-25 Device generating at least either ions or ozone WO2019225017A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/020216 WO2019225017A1 (en) 2018-05-25 2018-05-25 Device generating at least either ions or ozone
PCT/JP2019/020398 WO2019225683A1 (en) 2018-05-25 2019-05-23 Device generating at least either ions or ozone
JP2020520358A JP6775865B2 (en) 2018-05-25 2019-05-23 A device that generates at least one of ions and ozone
CN201980035151.1A CN112189381B (en) 2018-05-25 2019-05-23 Device for generating at least either of ions and ozone
JP2020164384A JP6806399B1 (en) 2018-05-25 2020-09-30 A device that generates at least one of ions and ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020216 WO2019225017A1 (en) 2018-05-25 2018-05-25 Device generating at least either ions or ozone

Publications (1)

Publication Number Publication Date
WO2019225017A1 true WO2019225017A1 (en) 2019-11-28

Family

ID=68616145

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/020216 WO2019225017A1 (en) 2018-05-25 2018-05-25 Device generating at least either ions or ozone
PCT/JP2019/020398 WO2019225683A1 (en) 2018-05-25 2019-05-23 Device generating at least either ions or ozone

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020398 WO2019225683A1 (en) 2018-05-25 2019-05-23 Device generating at least either ions or ozone

Country Status (3)

Country Link
JP (2) JP6775865B2 (en)
CN (1) CN112189381B (en)
WO (2) WO2019225017A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113993263B (en) * 2021-11-15 2024-03-22 安徽工业大学 Atmospheric pressure plasma generator, preparation method and plasma generating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054088A (en) * 2010-09-01 2012-03-15 Koganei Corp Ion generation device
JP2013073886A (en) * 2011-09-29 2013-04-22 Yamagata Univ Ionizer
WO2014002453A1 (en) * 2012-06-27 2014-01-03 パナソニック株式会社 Electricity discharging unit and air cleaning device using same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554872B2 (en) * 2002-03-27 2010-09-29 九州日立マクセル株式会社 Blower
CN2730850Y (en) * 2004-09-13 2005-10-05 奕盛光电有限公司 Ozone generator
CN2730851Y (en) * 2004-09-13 2005-10-05 奕盛光电有限公司 Ozone generator
JP4747328B2 (en) * 2008-07-31 2011-08-17 シャープ株式会社 Ion generator and electrical equipment
CN101771242B (en) * 2010-03-11 2012-05-23 马骧彬 Negative oxygen ion generator
CN102695353B (en) * 2012-05-31 2015-08-12 浙江工商大学 High voltage is utilized to produce gas plasma electric discharge elementary cell and reactor
CN104428012B (en) * 2012-06-27 2016-11-09 松下知识产权经营株式会社 Discharge cell and employ its air cleaner
JP5461736B1 (en) * 2013-05-13 2014-04-02 株式会社 片野工業 Ion / ozone wind generator and method
JP5613347B1 (en) * 2014-05-12 2014-10-22 株式会社 片野工業 Ion / ozone wind generator and method
JP5773231B1 (en) * 2014-12-18 2015-09-02 株式会社Mirai Ion and ozone wind generator and manufacturing method thereof
JP6581401B2 (en) * 2015-06-17 2019-09-25 エクレール株式会社 A device that generates wind of ions and ozone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054088A (en) * 2010-09-01 2012-03-15 Koganei Corp Ion generation device
JP2013073886A (en) * 2011-09-29 2013-04-22 Yamagata Univ Ionizer
WO2014002453A1 (en) * 2012-06-27 2014-01-03 パナソニック株式会社 Electricity discharging unit and air cleaning device using same

Also Published As

Publication number Publication date
JP2021036521A (en) 2021-03-04
WO2019225683A1 (en) 2019-11-28
JP6775865B2 (en) 2020-10-28
JP6806399B1 (en) 2021-01-06
JPWO2019225683A1 (en) 2020-10-08
CN112189381A (en) 2021-01-05
CN112189381B (en) 2021-09-21

Similar Documents

Publication Publication Date Title
US20130206982A1 (en) Ion mobility tube
US7438747B2 (en) Negative ion generator
JPH04500430A (en) Built-in gas discharge indicator
JP2004363088A (en) Ion generating element, ion generator, and electric device
JP6542053B2 (en) Plasma electrode structure and plasma induced flow generator
KR102190030B1 (en) Plasma generating apparatus
WO2019225017A1 (en) Device generating at least either ions or ozone
JP2007294180A (en) Ion generating device and electrical apparatus incorporating the same
JP2006222019A (en) Ion generating element
US7706121B2 (en) Ion generator
CN102044847B (en) Ion generating device
JP2006302573A (en) Ion generating element and ion generating device using this
JP2004006152A (en) Ion generation element and device, ion generating element manufacture base, electric apparatus incorporating ion generating element manufacture base and ion genarating device
JP2014224013A (en) Discharge element
JP3210591U (en) Air cleaner
KR20190083519A (en) plasma generation for flexible electrode and plasma generation apparatus utilizing the same
JPH04155707A (en) Pressure sensitive electric conductive body
JP6195487B2 (en) Ion generator and electrical equipment
JP2006228513A (en) Ion generating element and ion generator mounting the same
CN217883925U (en) PCB electrostatic discharge protection structure, PCB and electrical appliance
JPH09308837A (en) Air cleaner
EP2579694A1 (en) Ceramic printed circuit board structure
US20220320833A1 (en) Ionic Air Flow Generator, With Emitter And Collector Stripes
WO2023228798A1 (en) Expansion/contraction device
JP2020024845A (en) Method for controlling ionic wind generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/04/2021)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18919953

Country of ref document: EP

Kind code of ref document: A1