WO2019224414A1 - Dynamic force microscopy method and microscope for simultaneously obtaining topographical images and force maps - Google Patents

Dynamic force microscopy method and microscope for simultaneously obtaining topographical images and force maps Download PDF

Info

Publication number
WO2019224414A1
WO2019224414A1 PCT/ES2019/070342 ES2019070342W WO2019224414A1 WO 2019224414 A1 WO2019224414 A1 WO 2019224414A1 ES 2019070342 W ES2019070342 W ES 2019070342W WO 2019224414 A1 WO2019224414 A1 WO 2019224414A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
sample
micro lever
excitation
micro
Prior art date
Application number
PCT/ES2019/070342
Other languages
Spanish (es)
French (fr)
Inventor
Ricardo García García
Carlos ALVAREZ AMO
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2019224414A1 publication Critical patent/WO2019224414A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode
    • G01Q60/34Tapping mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • G01Q10/065Feedback mechanisms, i.e. wherein the signal for driving the probe is modified by a signal coming from the probe itself

Definitions

  • the present invention relates to a method of using an atomic force microscope, exciting the micro lever at a lower frequency than the resonant frequency, the amplitude of the oscillation and the force exerted being the parameters that remain constant during the process of Acquisition of a topography image.
  • the microlever deflection and the excitation force are used to directly determine the instantaneous force and, from it, quantify the nanomechanical properties of a sample to be measured.
  • This method allows to obtain an image of the topography of the surface and, at the same time, to obtain the dependence of the force with respect to the distance of the tip of the microscope and the surface of the sample.
  • Various physical properties of the material can be determined from the dependence of force on distance.
  • the present dynamic force microscopy method finds application in the field of scientific research and technological sectors that require topographic characterization and determination with high spatial resolution of the interactions between the microscope probe and the sample. These sectors include pharmacy, food, micro and nanotechnology, polymers, etc.
  • the method is applicable to all types of samples, whether they are formed by organic, polymeric, biological, semiconductor, metallic or inorganic materials and the sample being immersed in a liquid, gaseous or vacuum medium.
  • the force microscope also called atomic force microscope in this invention or AFM, (for the acronym for atomic force microscopy) allows the acquisition of high resolution images of a wide range of materials. Therefore, it has become one of the most relevant techniques for characterizing properties on a nanometric scale.
  • AFM Atomic force microscopes
  • force microscopy One of the singularities of force microscopy is its ability to obtain information on various physical properties of a material such as Young's modulus, Hamaker's constant, adhesion force or viscoelasticity coefficient. This capability is generically known as force spectroscopy (HJ Butt, B. Capella and M. Kappl, “Forcé Measurements with the Atomic Forcé Microscope: Technique, Interpretation and Applications” Surf. Sci. Rep. 59 1 -152 (2005)) .
  • Force spectroscopy requires the determination of the dependence of force interaction with distance at each point on the surface.
  • the acquisition of force curves simultaneously with the acquisition of the topographic image has resulted in a powerful microscopy method that is generically known as force volume.
  • force volume These methods operate at low frequencies (1 -100 Flz) typically far from the resonance frequency of the tips that can be found in the range between 20-200 kHz, which implies that the acquisition of a force map requires times of several tens of minutes
  • the pulsed force method (A. Rosa-Zeiser, E. Weilandt, S. Hild and O. Marti.
  • dynamic AFM methods such as bimodal, described in US 7958563 B2 and US 7921466 B2 and in several scientific publications (ET Herruzo, AP Perrino, R. Garc ⁇ a, "Fast nanomechanical spectroscopy of soft matter", Nat. Commun. 5, 3126 (2014); Labuda, A .; Kocun, M .; Meinhold, W .; Walters, D .; Proksch, R. Generalized Hertz Model for Bimodal Nanomechanical Mapping. Beilstein J. Nanotechnol. 7, 970-982 (2014)) allow obtaining simultaneously the topography and certain properties of the material such as Young's modulus or viscosity coefficient.
  • the bimodal method is a parametric method and does not allow to obtain directly the dependence of force against distance or time.
  • the present invention relates to a dynamic force microscopy method that combines the acquisition of surface images (typically topography) with the determination of the force curve as a function of time or distance at each point of the surface, and from it quantify the non-topographic properties of the material.
  • the method is based on exciting the microscope's micro lever at a lower frequency than the resonance frequency, obtaining a surface image with a feedback that maintains a constant value of the force and other feedback that maintains the amplitude of the micro lever's oscillation at a constant value using two feedback loops; a first feedback loop exerted on the force that is applied on the sample and a second feedback loop exerted on the amplitude of the oscillation (Figure 1).
  • a feedback loop controls the maximum force that is exerted in each cycle on the F peak sample (9) by the tip, responsible for regulating the average distance between the tip of the micro lever and the sample (10) until it is it reaches a fixed value, which remains constant, of the total force, thus controlling topographic feedback (1 1).
  • FIG. 2 shows a schematic of the procedure to obtain the instantaneous force from the microscope feedback parameters and loops.
  • optimal conditions have been obtained that allow for speed and resolution on the contributions of the force exerted on the sample to be improved.
  • the instantaneous deflection of the micro lever, the excitation force as a function of the time produced by its oscillation and the sinusoidal behavior of the deflection of the micro lever are used to determine the force in function of the time exerted on the sample.
  • k, z, A sp , w 0 , F d (t) are, respectively, the force constant, instantaneous deflection, the reference amplitude of the oscillation, the angular frequency of excitation and the amplitude of the excitation force of the micro lever;
  • DO represents the relationship between the angular frequency of excitation of the micro lever and the angular frequency of resonance, always fulfilling the condition w ⁇ w 0 .
  • the deflection of the micro lever can be approximated as
  • the force exerted on the sample can then be expressed as
  • this dynamic force microscopy method allows the dependence of force on time and / or distance to be determined by the following procedure: a) place on the head of a force microscope (1) a micro lever (2) with a tip at its end (3), which interacts with the sample (4), the tip presenting at least one vibration mode
  • b) have two elements, an excitation unit) (5) to vibrate the micro lever (2) and a displacement unit (6) to move the micro lever (2) on the sample (4) or part of it ;
  • the excitation frequency of the micro lever is much lower than the resonance frequency of the micro lever, preferably at least 10 times lower.
  • step (b) of the method in which the excitation signal is generated the micro lever is excited according to a sinusoidal signal of a lower frequency (but which can be of the same order of magnitude unlike the prior art methods that work at much lower frequencies), than the resonance frequency of the micro lever, expressed according to the following mathematical relationship:
  • F d (t) F 0 (t) COS (27 r / t) (E.4)
  • F 0 the excitation amplitude of the excitation force
  • f the excitation frequency.
  • the amplitude of the excitation force is calculated at each instant from the feedback loop of the amplitude of the micro lever as:
  • A, A sp , P, I are, respectively, the amplitude of the oscillation, the value of the reference amplitude, the proportional gain and the integral gain.
  • step (i) of the dynamic force microscopy method the deflection of the micro lever, z, and the excitation force is used to find the instantaneous force between the tip and the sample according to the following mathematical relationship:
  • step (j) the instantaneous distance between the tip and the sample is determined from the equation
  • d a 0 + z (t) + z c - A sp eos 2nft (E.7)
  • a 0 is a molecular parameter, as reference is worth 0.165 nm
  • z c is the average height of the micro lever on the sample yz ( t) deflection.
  • the average distance between the tip of the micro lever and the sample is optionally controlled by keeping constant the maximum value of the force between the tip and the sample, F ts (t) in another feedback loop, while the micro lever moves to the length and width of the sample.
  • step (k) of the method the data shown in the force curves are converted into parametric maps of sample properties, by adjusting the force curve to different interaction models.
  • the force of interaction can be modeled according to Sneddon's theory (Sneddon, IN “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile.” 1965, International Journal of Engineering Science, 3 47-57.), And Young's effective module, E eff, is determined from the following equation
  • d —d (when d £ 0) (E.9) where d is the distance between the tip and the sample.
  • the microscope's micro lever operates in an attractive or non-contact regime, and the interaction force between the tip and the sample is modeled according to the following model Mathematician, known as Van der Waals model:
  • the force of viscoelastic interaction between the tip and the sample is modeled according to the following mathematical model:
  • h is the viscosity coefficient of the sample
  • a is a coefficient that depends on the geometry and the Poisson coefficient
  • the tip-micro lever system can be placed on a heterogeneous sample to measure various mechanical properties such as the effective Young's modulus, E eff of the sample, the viscosity coefficient and / or Hamaker's constant, H, of the interface.
  • the measurement can be carried out by having the sample immersed in liquid.
  • the measurement can be performed by having the sample immersed in a gaseous medium.
  • the measurement can be carried out by having the sample empty.
  • the invention comprises a system that implements the dynamic force microscopy method of the present invention, in particular the system may comprise an atomic force microscope.
  • Figure 1 Shows a diagram of the operation of dynamic force microscopy method of the invention under the existence of two feedback loops, one acting on the maximum force exerted on the sample and another acting on the amplitude of oscillation.
  • Figure 2 Shows a scheme of the method object of the present invention with the observables and values necessary to determine the interaction force between the tip and the sample.
  • Figure 3 Shows a scheme of the method object of the present invention that includes the most relevant steps of the method.
  • Figure 5 Shows a comparative graph between the simulated force curve and that obtained by applying the method described in the present invention reconstruction performed by the method. The graph has been generated from the data in Figure 4.
  • Figure 6 Shows the results of a simulation of the method object of the present invention with the different signals as a function of time that allow determining the interaction force as a function of time for an elastic sample of 1 kPa of Young's modulus.
  • Figure 7 Shows a comparative graph of a numerical simulation where the force is compared as a function of the distance of the model and that obtained by applying the method described in the present invention reconstruction carried out by the method.
  • the graph has been generated from the data in Figure 6.
  • Figure 8 Shows the results of a simulation of the method object of the present invention with the different signals as a function of time that allow determining the interaction force as a function of time.
  • Figure 9 Shows a comparative graph between where the force is compared according to the distance of the model and that obtained by applying the method described in this invention (numerical simulation). The graph has been generated from the data in Figure 8.
  • Figure 10 Shows the results of a simulation of the method object of the present invention with the different signals as a function of time that allow to determine the attractive interaction force as a function of time.
  • Figure 1 1 Shows a comparative graph between where the force is compared according to the distance of the model and that obtained by applying the method described in the present invention (numerical simulation). The graph has been generated from the data in Figure 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The invention relates to a dynamic force microscopy method for acquiring images of surfaces and directly determining the force exerted on a material, which also makes it possible to quantify the non-topographical properties, based on exciting the microlever of a force microscope at a frequency lower than the resonance frequency and maintaining constant the oscillation amplitude thereof and the force that is exerted on the surface while an image is acquired.

Description

MÉTODO DINAMICO DE MICROSCOPIA DE FUERZAS Y MICROSCOPIO PARA ADQUIRIR DE FORMA SIMULTANEA IMÁGENES DE TOPOGRAFIA Y MAPAS DE DYNAMIC METHOD OF FORCE MICROSCOPY AND MICROSCOPE TO SIMULTANEOUSLY PURCHASE IMAGES OF TOPOGRAPHY AND MAPS OF
FUERZA FORCE
DESCRIPCIÓN DESCRIPTION
OBJETO DE LA INVENCIÓN Y SECTOR DE LA TÉCNICA OBJECT OF THE INVENTION AND SECTOR OF THE TECHNIQUE
La presente invención se refiere a un método de utilización de un microscopio de fuerza atómica, excitando la micropalanca a una frecuencia menor que la frecuencia de resonancia, siendo la amplitud de la oscilación y la fuerza ejercida los parámetros que se mantienen constantes durante el proceso de adquisición de una imagen de la topografía. Se utiliza la deflexión de la micropalanca y la fuerza de excitación para determinar de forma directa la fuerza instantánea y, a partir de la misma, cuantificar las propiedades nanomecánicas de una muestra a medir. The present invention relates to a method of using an atomic force microscope, exciting the micro lever at a lower frequency than the resonant frequency, the amplitude of the oscillation and the force exerted being the parameters that remain constant during the process of Acquisition of a topography image. The microlever deflection and the excitation force are used to directly determine the instantaneous force and, from it, quantify the nanomechanical properties of a sample to be measured.
Este método permite obtener una imagen de la topografía de la superficie y, al mismo tiempo, obtener la dependencia de la fuerza con respecto a la distancia de la punta del microscopio y la superficie de la muestra. A partir de la dependencia de la fuerza con las distancia se pueden determinar diversas propiedades físicas del material. This method allows to obtain an image of the topography of the surface and, at the same time, to obtain the dependence of the force with respect to the distance of the tip of the microscope and the surface of the sample. Various physical properties of the material can be determined from the dependence of force on distance.
El presente método dinámico de microscopía de fuerzas encuentra aplicación en el ámbito de la investigación científica y sectores tecnológicos que requieran la caracterización topográfica y la determinación con alta resolución espacial de las interacciones entre la sonda del microscopio y la muestra. Entre esos sectores se mencionan farmacia, alimentación, micro y nanotecnología, polímeros, etc. El método es aplicable a todo tipo de muestras, ya estén formadas por materiales orgánicos, poliméricos, biológicos, semiconductores, metálicos o inorgánicos y estando la muestra inmersa en un medio líquido, gaseoso o en vacio. The present dynamic force microscopy method finds application in the field of scientific research and technological sectors that require topographic characterization and determination with high spatial resolution of the interactions between the microscope probe and the sample. These sectors include pharmacy, food, micro and nanotechnology, polymers, etc. The method is applicable to all types of samples, whether they are formed by organic, polymeric, biological, semiconductor, metallic or inorganic materials and the sample being immersed in a liquid, gaseous or vacuum medium.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
EL microscopio de fuerzas también llamado microscopio de fuerza atómica en esta invención o AFM, (por las siglas en inglés de atomic forcé microscopy) permite la adquisición de imágenes a alta resolución de un amplio rango de materiales. Por ello se ha convertido en una de las técnicas más relevantes para la caracterización de propiedades a escala nanométrica. Como consecuencia de su gran resolución espacial (lateral y vertical), los microscopios de fuerza atómica (AFM) se han introducido tanto en laboratorios de investigación como en departamentos de innovación y control de calidad en diversos sectores industriales (microelectrónica, polímeros, alimentación). The force microscope also called atomic force microscope in this invention or AFM, (for the acronym for atomic force microscopy) allows the acquisition of high resolution images of a wide range of materials. Therefore, it has become one of the most relevant techniques for characterizing properties on a nanometric scale. As a result of their large spatial resolution (lateral and vertical), the Atomic force microscopes (AFM) have been introduced both in research laboratories and in innovation and quality control departments in various industrial sectors (microelectronics, polymers, food).
Una de las singularidades de la microscopía de fuerzas es su capacidad para obtener información sobre diversas propiedades físicas de un material como el módulo de Young, la constante de Hamaker, la fuerza de adhesión o el coeficiente de viscoelasticidad. Esta capacidad se conoce genéricamente como espectroscopia de fuerzas (H.J. Butt, B. Capella and M. Kappl, “Forcé Measurements with the Atomic Forcé Microscope: Technique, Interpretation and Applications” Surf. Sci. Rep. 59 1 -152 (2005)). One of the singularities of force microscopy is its ability to obtain information on various physical properties of a material such as Young's modulus, Hamaker's constant, adhesion force or viscoelasticity coefficient. This capability is generically known as force spectroscopy (HJ Butt, B. Capella and M. Kappl, “Forcé Measurements with the Atomic Forcé Microscope: Technique, Interpretation and Applications” Surf. Sci. Rep. 59 1 -152 (2005)) .
La espectroscopia de fuerzas requiere la determinación de la dependencia de fuerza de interacción con la distancia en cada punto de la superficie. La adquisición de curvas de fuerza de forma simultánea con la adquisición de la imagen topográfica ha dado lugar a un poderoso método de microscopía que de forma genérica de conoce como forcé volume. Estos métodos funcionan a frecuencias bajas (1 -100 Flz) típicamente lejos de la frecuencia de resonancia de las puntas que puede encontrase en el rango entre 20-200 kHz, lo cual implica que la adquisición de un mapa de fuerzas requiera tiempos de varias decenas de minutos. El método de la fuerza pulsada (A. Rosa-Zeiser, E. Weilandt, S. Hild y O. Marti. “The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning torce microscopy: pulsed-force mode operation”. Measurement Science and Technology 8(1 1 ), 1333 (1997)) hace oscilar el piezoeléctrico que mueve la muestra en sentido vertical a frecuencias de entre 100 Flz y 2 kHz, lo que permite la determinación de propiedades mecánicas de forma más rápida, aunque la fuerza máxima aplicada es relativamente elevada (de decenas de nN). Una variación del método anterior es el método de‘jumping mode’ que permite reducir la fuerza lateral ejercida sobre la muestra durante la acquisición de la imagen (F. Moreno-Flerrero, P. J. de Pablo, J. Colchero, J. Gómez-Herrero, A.M.Baró, 'The role of shear torces in scanning torce microscopy: a comparison between the jumping mode and tapping mode”, Surface Science 453, 152-158 (2000). Más recientemente, se ha realizado una actualización de los métodos basados en la adquisición de curvas de fuerza como se describe en la invención del documento de patente US 20120131702 A1‘peak torce tapping’, donde se introducen ciertas mejoras como es el uso de desplazamientos sinusoidales y en el uso de la fuerza máxima como parámetro de realimentación. Este método permite obtener las curvas de fuerza frente a la distancia y a partir de las mismas extraer propiedades nanomecánicas como el módulo de Young (Medalsy, D. I.; Muller, D. J. Nanomechanichal Properties of Proteins and Membranes Depend on Loading Rate and Electrostaic Interactions. ACS Nano 7, 2642 - 2650 (2013)). Este método aunque se ha aplicado con frecuencias de varios kHz presenta problemas de estabilidad en la determinación de la fuerza cuando la frecuencia del movimiento de la punta se aumenta debido a las contribuciones de la fuerzas hidrodinámicas e inerciales que no son consideradas en el citado método. El algoritmo empleado en peal forcé tapping no es valido cuando la frecuencia se aproxima a la frecuencia de resonancia de la punta. Las características de este método le impiden determinar propiedades disipativas como la viscosidad. Los valores de esas fuerzas dependen de la relación de frecuencias entre la frecuencia del movimiento y la frecuencia de resonancia de la micropalanca (C.A. Amo and R. García,“Fundamental High-Speed Limits in Single Molecule, Single-Cell, and Nanoscale Forcé Spectroscopies”, ACS Nano 10, 71 17-7124 (2016). Esos factores impiden que la caracterización de la superficie pueda efectuarse a altas frecuencias con las micropalancas disponibles en la actualidad. Force spectroscopy requires the determination of the dependence of force interaction with distance at each point on the surface. The acquisition of force curves simultaneously with the acquisition of the topographic image has resulted in a powerful microscopy method that is generically known as force volume. These methods operate at low frequencies (1 -100 Flz) typically far from the resonance frequency of the tips that can be found in the range between 20-200 kHz, which implies that the acquisition of a force map requires times of several tens of minutes The pulsed force method (A. Rosa-Zeiser, E. Weilandt, S. Hild and O. Marti. “The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning torce microscopy: pulsed-force mode operation.” Measurement Science and Technology 8 (1 1), 1333 (1997)) oscillates the piezo that moves the sample vertically at frequencies between 100 Flz and 2 kHz, which allows the determination of mechanical properties more quickly, although the force Maximum applied is relatively high (tens of nN). A variation of the previous method is the 'jumping mode' method that allows to reduce the lateral force exerted on the sample during image acquisition (F. Moreno-Flerrero, PJ de Pablo, J. Colchero, J. Gómez-Herrero, AMBaró, 'The role of shear torces in scanning torce microscopy: a comparison between the jumping mode and tapping mode ”, Surface Science 453, 152-158 (2000). More recently, an update on acquisition-based methods has been made of force curves as described in the invention of US patent document 20120131702 A1'peak twisting tapping ', where certain improvements are introduced such as the use of sinusoidal displacements and the use of maximum force as a feedback parameter. allows to obtain the force curves against distance and from them extract nanomechanical properties such as Young's module (Medalsy, DI; Muller, DJ Nanomechanichal Properties of Proteins and Membranes Dep end on Loading Rate and Electrostaic Interactions. ACS Nano 7, 2642-2650 (2013)). Although this method has been applied with frequencies of several kHz, it presents stability problems in the determination of the force when the frequency of the movement of the tip is increased due to the contributions of the hydrodynamic and inertial forces that are not considered in said method. The algorithm used in peal forced tapping is not valid when the frequency approaches the resonance frequency of the tip. The characteristics of this method prevent it from determining dissipative properties such as viscosity. The values of these forces depend on the frequency relationship between the frequency of the movement and the resonance frequency of the micro lever (CA Amo and R. García, “Fundamental High-Speed Limits in Single Molecule, Single-Cell, and Nanoscale Forcé Spectroscopies ", ACS Nano 10, 71 17-7124 (2016). These factors prevent surface characterization from being carried out at high frequencies with the micro-levers currently available.
Por otra parte, los métodos dinámicos AFM como los bimodales, descritos en los documentos de patente US 7958563 B2 y US 7921466 B2 y en varias publicaciones científicas (E.T. Herruzo, A.P. Perrino, R. García,“Fast nanomechanical spectroscopy of soft matter”, Nat. Commun. 5, 3126 (2014); Labuda, A.; Kocun, M.; Meinhold, W.; Walters, D.; Proksch, R. Generalized Hertz Model for Bimodal Nanomechanical Mapping. Beilstein J. Nanotechnol. 7, 970-982 (2014)) permiten la obtención de forma simultánea de la topografía y ciertas propiedades del material como el módulo de Young o el coeficiente de viscosidad. El método bimodal es un método paramétrico y no permite obtener de forma directa la dependencia de la fuerza frente a la distancia o al tiempo. On the other hand, dynamic AFM methods such as bimodal, described in US 7958563 B2 and US 7921466 B2 and in several scientific publications (ET Herruzo, AP Perrino, R. García, "Fast nanomechanical spectroscopy of soft matter", Nat. Commun. 5, 3126 (2014); Labuda, A .; Kocun, M .; Meinhold, W .; Walters, D .; Proksch, R. Generalized Hertz Model for Bimodal Nanomechanical Mapping. Beilstein J. Nanotechnol. 7, 970-982 (2014)) allow obtaining simultaneously the topography and certain properties of the material such as Young's modulus or viscosity coefficient. The bimodal method is a parametric method and does not allow to obtain directly the dependence of force against distance or time.
En resumen, ninguno de los métodos expuestos con anterioridad resuelven los problemas que se afrontarían al adquirir imágenes de alta resolución en topografía, a alta velocidad y de forma simultánea con la adquisición en cada punto de la superficie de la curva de fuerza frente a la distancia con un elevado grado de precisión numérica y control de la fuerza ejercida sobre la muestra. A partir de las curvas de fuerza frente a distancia es posible obtener diversas propiedades mecánicas como el módulo de Young. El método propuesto por la presente invención proporciona una solución a los problemas anteriores. In summary, none of the methods described above solve the problems that would be faced when acquiring high resolution images in topography, at high speed and simultaneously with the acquisition at each point of the surface of the force curve versus distance with a high degree of numerical precision and control of the force exerted on the sample. From the force versus distance curves it is possible to obtain various mechanical properties such as Young's modulus. The method proposed by the present invention provides a solution to the above problems.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere a un método dinámico de microscopía de fuerzas que combina la adquisición de imágenes de la superficie (típicamente topografía) con la determinación de la curva de fuerza en función del tiempo o de la distancia en cada punto de la superficie, y a partir de la misma cuantificar las propiedades no topográficas del material. El método está basado en excitar la micropalanca del microscopio a una frecuencia menor que la frecuencia de resonancia, obtener una imagen de la superficie con una realimentación que mantiene un valor constante de la fuerza y otra realimentación que mantiene la amplitud de oscilación de la micropalanca a un valor constante utilizando dos bucles de realimentación; un primer bucle de realimentación ejercido sobre la fuerza que se aplica sobre la muestra y un segundo bucle de realimentación ejercido sobre la amplitud de la oscilación (figura 1 ). The present invention relates to a dynamic force microscopy method that combines the acquisition of surface images (typically topography) with the determination of the force curve as a function of time or distance at each point of the surface, and from it quantify the non-topographic properties of the material. The method is based on exciting the microscope's micro lever at a lower frequency than the resonance frequency, obtaining a surface image with a feedback that maintains a constant value of the force and other feedback that maintains the amplitude of the micro lever's oscillation at a constant value using two feedback loops; a first feedback loop exerted on the force that is applied on the sample and a second feedback loop exerted on the amplitude of the oscillation (Figure 1).
De esta manera un bucle de realimentación controla la fuerza máxima que en cada ciclo se ejerce sobre la muestra Fpeak (9) por la punta, responsable de regular la distancia media entre la punta de la micropalanca y la muestra (10) hasta que se alcanza un valor fijo, que se mantiene constante, de la fuerza total, controlando así la realimentación topográfica (1 1 ). In this way a feedback loop controls the maximum force that is exerted in each cycle on the F peak sample (9) by the tip, responsible for regulating the average distance between the tip of the micro lever and the sample (10) until it is it reaches a fixed value, which remains constant, of the total force, thus controlling topographic feedback (1 1).
Y el bucle de realimentación de la amplitud A (8), varía la amplitud de excitación de la micropalanca mediante una fuerza de excitación (5), manteniendo constante dicha amplitud,And the feedback loop of the amplitude A (8), varies the excitation amplitude of the micro lever by an excitation force (5), keeping said amplitude constant,
ASp. A S p.
En cada punto de la superficie, se miden en función del tiempo la deflexión de la micropalanca y la fuerza de excitación. A partir de ellas y de la determinación de las componentes hidrodinámica e inercial de la fuerza se obtiene la fuerza de interacción en función del tiempo. La Figura 2 muestra un esquema del procedimiento para obtener la fuerza instantánea a partir de los parámetros y bucles de realimentación del microscopio. At each point on the surface, the deflection of the micro lever and the excitation force are measured as a function of time. From them and from the determination of the hydrodynamic and inertial components of the force, the interaction force is obtained as a function of time. Figure 2 shows a schematic of the procedure to obtain the instantaneous force from the microscope feedback parameters and loops.
En una realización del método de la presente invención se han obtenido unas condiciones óptimas que permiten mejorar la rapidez y resolución sobre las contribuciones de la fuerza ejercida sobre la muestra. Para encontrar la estimación requerida que permite un mejor funcionamiento, para ello se emplean la deflexión instantánea de la micropalanca, la fuerza de excitación en función del tiempo que produce su oscilación y el comportamiento sinusoidal de la deflexión de la micropalanca para determinar la fuerza en función del tiempo ejercida sobre la muestra. La selección de los anteriores párametros proviene de la descripción de la ecuación del movimiento del sistema, que según el método dinámico de microscopía de fuerzas, objeto de la presente invención, definimos como:
Figure imgf000006_0001
In one embodiment of the method of the present invention, optimal conditions have been obtained that allow for speed and resolution on the contributions of the force exerted on the sample to be improved. To find the required estimate that allows a better performance, the instantaneous deflection of the micro lever, the excitation force as a function of the time produced by its oscillation and the sinusoidal behavior of the deflection of the micro lever are used to determine the force in function of the time exerted on the sample. The selection of the above parameters comes from the description of the equation of the movement of the system, which according to the dynamic method of force microscopy, object of the present invention, we define as:
Figure imgf000006_0001
donde k, z, Asp, w0, Fd (t) son, respectivamente, la constante de fuerza, la deflexión instantánea, la amplitud de referencia de la oscilación, la frecuencia angular de excitación y la amplitud de la fuerza de excitación de la micropalanca; DO representa la relación entre la frecuencia angular de excitación de la micropalanca y la frecuencia angular de resonancia, siempre cumpliéndose la condición w<w0. where k, z, A sp , w 0 , F d (t) are, respectively, the force constant, instantaneous deflection, the reference amplitude of the oscillation, the angular frequency of excitation and the amplitude of the excitation force of the micro lever; DO represents the relationship between the angular frequency of excitation of the micro lever and the angular frequency of resonance, always fulfilling the condition w <w 0 .
Según el método dinámico de microscopía de fuerzas, objeto de esta invención, la deflexión de la micropalanca se puede aproximar como According to the dynamic force microscopy method, object of this invention, the deflection of the micro lever can be approximated as
z(t) = z0 + Asp eos wί (E.2)z (t) = z 0 + A sp eos wί (E.2)
Según el método dinámico de microscopía de fuerzas, objeto de esta invención, la fuerza ejercida sobre la muestra se puede expresar entonces como
Figure imgf000007_0001
According to the dynamic method of force microscopy, object of this invention, the force exerted on the sample can then be expressed as
Figure imgf000007_0001
Fts = kz(t) + Fin + Fhd - Fd(t) eos wί (E3.b) donde w=w/w0 . F ts = kz (t) + F in + F hd - F d (t) eos wί (E3.b) where w = w / w 0 .
Así suponiendo E.1 se utiliza el presente método dinámico de microscopía de fuerzas que permite determinar la dependencia de la fuerza frente al tiempo y/o la distancia mediante el siguiente procedimiento: a) colocar en la cabeza de un microscopio de fuerzas (1 ) una micropalanca (2) con una punta en su extremo (3), que interactúa con la muestra (4), presentando la punta al menos un modo de vibración Thus, assuming E.1, this dynamic force microscopy method is used, which allows the dependence of force on time and / or distance to be determined by the following procedure: a) place on the head of a force microscope (1) a micro lever (2) with a tip at its end (3), which interacts with the sample (4), the tip presenting at least one vibration mode
b) disponer de dos elementos, una unidad de excitación) (5) para hacer vibrar a la micropalanca (2) y una unidad de desplazamiento (6) para desplazar a la micropalanca (2) sobre la muestra (4) o parte de ella; b) have two elements, an excitation unit) (5) to vibrate the micro lever (2) and a displacement unit (6) to move the micro lever (2) on the sample (4) or part of it ;
c) enviar a la unidad de excitación (5), asociada a la micropalanca de la cabeza del microscopio de fuerzas (1 ) la señal de excitación generada por (5) uy que hacen vibrar a la micropalanca) c) send to the excitation unit (5), associated with the micro lever of the microscope head of forces (1) the excitation signal generated by (5) and which make the micro lever vibrate)
d) calibrar los siguientes parámetros asociados a la operación de la micropalanca según se describe en la literatura especializada (A. Labuda, M. Kocun, M. Lysy, T. Walsh, J. Meinhold, T. Proksch, W. Meinhold, C. Anderson, R. Proksch,“Calibration of higher eigenmodes of cantilevers” Review of Scientific Instruments 87. 073705 (20016) ): d) calibrate the following parameters associated with the operation of the micro lever as described in the specialized literature (A. Labuda, M. Kocun, M. Lysy, T. Walsh, J. Meinhold, T. Proksch, W. Meinhold, C Anderson, R. Proksch, “Calibration of higher eigenmodes of cantilevers” Review of Scientific Instruments 87. 073705 (20016)):
- constante de fuerzas, k; - force constant, k;
- factor de calidad, Q;  - quality factor, Q;
- frecuencia de resonancia de la micropalanca, f0, w0=2pί0; - sensibilidad óptica del fotodiodo o del sistema de detección que tuviese el sistema - resonance frequency of the micro lever, f 0, w 0 = 2pί 0 ; - optical sensitivity of the photodiode or detection system of the system
- radio, R, de la punta de la micropalanca;  - radius, R, of the tip of the micro lever;
d) detectar, mediante un sistema adaptado al efecto, la señal de deflexión de la micropalancad) detect, by means of a system adapted to the effect, the microlever deflection signal
(7); (7);
e) detectar, mediante un sistema adaptado al efecto, la deflexión de la micropalanca; e) detect, by means of a system adapted to this effect, the deflection of the micro lever;
f) estimar la contribución inercial a la fuerza mediante la hipótesis de una deflexión sinusoidal a partir de:
Figure imgf000008_0001
f) estimate the inertial contribution to the force through the hypothesis of a sinusoidal deflection from:
Figure imgf000008_0001
g) estimar la contribución a la fuerza debido al término hidrodinámico a partir de:
Figure imgf000008_0002
g) estimate the contribution to force due to the hydrodynamic term from:
Figure imgf000008_0002
h) comprobar que se cumplen las siguientes condiciones según las siguientes etapas: h) check that the following conditions are met according to the following stages:
h.1 ) la frecuencia de excitación de la micropalanca es mucho menor que la frecuencia de resonancia de la micropalanca, preferentemente al menos 10 veces menor.  h.1) the excitation frequency of the micro lever is much lower than the resonance frequency of the micro lever, preferably at least 10 times lower.
h.2) verificar que la fuerza inercial F¡ es mucho menor que al menos otro de los componentes de la ecuación E.3b que contribuyen a calcular la fuerza total ejercida sobre la muestra.  h.2) verify that the inertial force F¡ is much less than at least one of the components of equation E.3b that contribute to calculate the total force exerted on the sample.
i) fijar los bucles de realimentación que comprenden i) set the feedback loops that comprise
- un bucle de realimentación que controla la fuerza máxima que en cada ciclo se ejerce sobre la muestra Fpeak (9) por la punta, responsable de regular la distancia media entre la punta de la micropalanca y la muestra (10) hasta que se alcanza un valor fijo, que se mantiene constante, de la fuerza total, controlando así la realimentación topográfica (1 1 ). - a feedback loop that controls the maximum force that is exerted on each cycle on the F peak sample (9) by the tip, responsible for regulating the average distance between the tip of the micro lever and the sample (10) until it is reached a fixed value, which remains constant, of the total force, thus controlling topographic feedback (1 1).
-un bucle de realimentación de la amplitud A (8), donde se hace variar la amplitud de excitación de la micropalanca mediante una fuerza de excitación (5), manteniendo constante dicha amplitud, Asp. j) detectar, mediante un sistema, (7) adaptado al efecto, típicamente un fotodiodo, la señal de deflexión de la palanca y a a partir de ella obtener la curva de fuerzas en función del tiempo o de la distancia , -a feedback loop of the amplitude A (8), where the amplitude of excitation of the micro lever is varied by an excitation force (5), keeping said amplitude constant, A sp. j) detect, by means of a system, (7) adapted to the effect, typically a photodiode, the signal of deflection of the lever and from it obtain the curve of forces as a function of time or distance,
k) adquirir una imagen de topografía mediante y asociar a cada pixel de la misma una curva de fuerzas k) acquire a topography image by and associate a force curve with each pixel of it
Se puede transformar mediante el empleo de fórmulas analíticas, la fuerza en función de la separación punta-muestra en mapas paramétricos de las propiedades de la muestra y así obtener todo tipo de propiedades mecánicas, eléctricas, etc de la muestra de forma cualitativa e incluso cuantitativa. It can be transformed through the use of analytical formulas, the force as a function of the tip-sample separation in parametric maps of the properties of the sample and thus Obtain all kinds of mechanical, electrical, etc. properties of the sample qualitatively and even quantitatively.
Según el presente método dinámico de microsocopía de fuerzas, en la etapa (b) del método en el que se genera la señal de excitación, la micropalanca es excitada según una señal sinusoidal de una frecuencia menor (pero que puede ser del mismo orden de magnitud al contrario que los métodos del estado de la técnica que trabajan a frecuencias mucho más bajas), que la frecuencia de resonancia de la micropalanca, expresada según la siguiente relación matemática: According to the present dynamic force microsocopy method, in step (b) of the method in which the excitation signal is generated, the micro lever is excited according to a sinusoidal signal of a lower frequency (but which can be of the same order of magnitude unlike the prior art methods that work at much lower frequencies), than the resonance frequency of the micro lever, expressed according to the following mathematical relationship:
Fd(t) = F0(t ) COS(27 r/t) (E.4) donde F0 es la amplitud de excitación de la fuerza de excitación y f es la frecuencia de excitación. La amplitud de la fuerza de excitación se calcula en cada instante a partir del lazo de realimentación de la amplitud de la micropalanca como:
Figure imgf000009_0001
F d (t) = F 0 (t) COS (27 r / t) (E.4) where F 0 is the excitation amplitude of the excitation force and f is the excitation frequency. The amplitude of the excitation force is calculated at each instant from the feedback loop of the amplitude of the micro lever as:
Figure imgf000009_0001
donde A, Asp, P, I son, respectivamente, la amplitud de la oscilación, el valor de la amplitud de referencia, la ganancia proporcional y la ganancia integral. where A, A sp , P, I are, respectively, the amplitude of the oscillation, the value of the reference amplitude, the proportional gain and the integral gain.
Según una posible forma de realización, en la etapa (i) del método dinámico de microscopía de fuerzas, se utiliza la deflexión de la micropalanca, z, y la fuerza de excitación para hallar la fuerza instantánea entre la punta y la muestra según la siguiente relación matemática:  According to a possible embodiment, in step (i) of the dynamic force microscopy method, the deflection of the micro lever, z, and the excitation force is used to find the instantaneous force between the tip and the sample according to the following mathematical relationship:
kA  kA
Fts = kz(t )— d(t) eos 2p ft+-^- sin 2nft (E.6) F ts = kz (t) - d (t) eos 2p ft + - ^ - sin 2nft (E.6)
Esta fórmula es válida siempre que se cumpla la condición h.2, de otra manera la fuerza se calcula mediante la expresión E.3a. This formula is valid as long as condition h.2 is met, otherwise the force is calculated by the expression E.3a.
Según el presente método dinámico de microscopía de fuerzas, en la etapa (j) la distancia instantánea entre la punta y la muestra se determina a partir de la ecuación, According to the present dynamic force microscopy method, in step (j) the instantaneous distance between the tip and the sample is determined from the equation,
d = a0 + z(t) + zc— Asp eos 2nft (E.7) donde a0 es un parámetro molecular, como referencia vale 0.165 nm, zc es la altura media de la micropalanca sobre la muestra y z(t) la deflexión. La distancia media entre la punta de la micropalanca y la muestra se controla, opcionalmente, manteniendo constante el valor máximo de la fuerza entre la punta y la muestra, Fts(t) en otro lazo de realimentación, mientras la micropalanca se desplaza a lo largo y ancho de la muestra. d = a 0 + z (t) + z c - A sp eos 2nft (E.7) where a 0 is a molecular parameter, as reference is worth 0.165 nm, z c is the average height of the micro lever on the sample yz ( t) deflection. The average distance between the tip of the micro lever and the sample is optionally controlled by keeping constant the maximum value of the force between the tip and the sample, F ts (t) in another feedback loop, while the micro lever moves to the length and width of the sample.
Según una posible forma de realización, en la etapa (k) del método los datos mostrados en las curvas de fuerzas se convierten en mapas paramétricos de propiedades de la muestra, mediante el ajuste de la curva de fuerzas a distintos modelos de interacción. En un caso particular la fuerza de interacción se puede modelar de acuerdo a la teoría de Sneddon (Sneddon, I. N. “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile”. 1965, International Journal of Engineering Science, 3 47-57. ), y el módulo de Young efectivo, Eeff, se determina a partir de la ecuación siguiente According to a possible embodiment, in step (k) of the method the data shown in the force curves are converted into parametric maps of sample properties, by adjusting the force curve to different interaction models. In a particular case the force of interaction can be modeled according to Sneddon's theory (Sneddon, IN “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile.” 1965, International Journal of Engineering Science, 3 47-57.), And Young's effective module, E eff, is determined from the following equation
F = aEgffSP (E.8) donde <5 es la indentación; a es un coeficiente que depende de la geometría y el coeficiente de Poisson y b es un factor geométrico que depende de la forma de la punta. Por ejemplo para una punta semi-esférica a=4/3 R1/2 y b=3/2. La indentación se determina a partir F = aE g ffSP (E.8) where <5 is the indentation; a is a coefficient that depends on the geometry and the Poisson coefficient and b is a geometric factor that depends on the shape of the tip. For example for a semi-spherical tip a = 4/3 R 1/2 and b = 3/2. Indentation is determined from
d =—d ( cuando d £ 0) (E.9) donde d es la distancia entre la punta y la muestra.  d = —d (when d £ 0) (E.9) where d is the distance between the tip and the sample.
Según una forma de realización del presente método dinámico para cuantificar propiedades no topográficas en microscopía de fuerzas, la micropalanca del microscopio opera en régimen atractivo o de no contacto, y la fuerza de interacción entre la punta y la muestra se modela de acuerdo al siguiente modelo matemático, conocido como modelo de Van der Waals: According to an embodiment of the present dynamic method for quantifying non-topographic properties in force microscopy, the microscope's micro lever operates in an attractive or non-contact regime, and the interaction force between the tip and the sample is modeled according to the following model Mathematician, known as Van der Waals model:
H R  H R
Fvdw ( d ) = - - G F vdw ( d ) = - - G
6d (E.10) donde H es la constante de Hamaker.  6d (E.10) where H is Hamaker's constant.
Según una forma de realización del presente método dinámico para cuantificar propiedades no topográficas en microscopía de fuerzas, la fuerza de interacción viscoelástica entre la punta y la muestra se modela de acuerdo al siguiente modelo matemático: According to an embodiment of the present dynamic method for quantifying non-topographic properties in force microscopy, the force of viscoelastic interaction between the tip and the sample is modeled according to the following mathematical model:
Figure imgf000010_0001
Figure imgf000010_0001
donde h es el coeficiente de viscosidad de la muestra; a es un coeficiente que depende de la geometría y el coeficiente de Poisson y b es un factor geométrico que depende de la forma de la punta. Por ejemplo para una punta semi-esférica a=4/3 R1/2 y b=3/2 where h is the viscosity coefficient of the sample; a is a coefficient that depends on the geometry and the Poisson coefficient and b is a geometric factor that depends on the shape of the tip. For example for a semi-spherical tip a = 4/3 R 1/2 and b = 3/2
Según el método dinámico para cuantificar propiedades no topográficas objeto de la presente invención, el sistema punta-micropalanca se puede situar sobre una muestra heterogénea para medir diversas propiedades mecánicas como el módulo de Young effectivo, Eeff de la muestra, el coeficiente de viscosidad y/o la constante de Hamaker, H, de la interfase. Según una forma del presente método dinámico para cuantificar propiedades no topográficas en microscopía de fuerzas, objeto de la presente invención, la medida se puede realizar teniendo la muestra inmersa en líquido. According to the dynamic method to quantify non-topographic properties object of the present invention, the tip-micro lever system can be placed on a heterogeneous sample to measure various mechanical properties such as the effective Young's modulus, E eff of the sample, the viscosity coefficient and / or Hamaker's constant, H, of the interface. According to a form of the present dynamic method for quantifying non-topographic properties in force microscopy, object of the present invention, the measurement can be carried out by having the sample immersed in liquid.
Según una forma de realización del presente método dinámico para cuantificar propiedades no topográficas en microscopía de fuerzas, objeto de la presente invención, la medida se puede realizar teniendo la muestra inmersa en un medio gaseoso. According to an embodiment of the present dynamic method for quantifying non-topographic properties in force microscopy, object of the present invention, the measurement can be performed by having the sample immersed in a gaseous medium.
Según una forma del presente método dinámico para cuantificar propiedades no topográficas en microscopía de fuerzas, objeto de la presente invención, la medida se puede realizar teniendo la muestra en vacío. According to a form of the present dynamic method for quantifying non-topographic properties in force microscopy, object of the present invention, the measurement can be carried out by having the sample empty.
La invención comprende un sistema que implementa el método dinámico de microscopía de fuerzas de la presente invención, en particular el sistema puede comprender un microscopio de fuerza atómica. The invention comprises a system that implements the dynamic force microscopy method of the present invention, in particular the system may comprise an atomic force microscope.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Las siguientes figuras muestran diversas formas de realización del presente método dinámico de microscopía de fuerzas para medir de forma simultánea la topografía y los mapas de fuerzas. The following figures show various embodiments of the present dynamic force microscopy method to simultaneously measure topography and force maps.
Figura 1 : Muestra un esquema del funcionamiento de método dinámico de microscopía de fuerzas de la invención bajo la existencia de dos bucles de realimentación, uno actuando sobre la fuerza máxima ejercida sobre la muestra y otro actuando sobre la amplitud de oscilación. Figure 1: Shows a diagram of the operation of dynamic force microscopy method of the invention under the existence of two feedback loops, one acting on the maximum force exerted on the sample and another acting on the amplitude of oscillation.
Figura 2: Muestra un esquema del método objeto de la presente invención con los observables y valores necesarios para determinar la fuerza de interacción entre la punta y la muestra. Figure 2: Shows a scheme of the method object of the present invention with the observables and values necessary to determine the interaction force between the tip and the sample.
Figura 3. Muestra un esquema del método objeto de la presente invención que incluye las etapas más relevantes del método. Figure 3. Shows a scheme of the method object of the present invention that includes the most relevant steps of the method.
Figura 4: Muestra los resultados de una simulación del método objeto de la presente invención con las diferentes señales en función del tiempo que permiten determinar la fuerza de interacción en función del tiempo para una muestra elástica de 1 GPa de módulo de Young. La fuerza del modelo está descrita por la E.8 para una punta de radio R= 5 nm. Figura 5: Muestra una gráfica comparativa entre la curva de fuerzas simuladas y la obtenida mediante la aplicación del método descrito en la presente invención reconstrucción efectuada por el método. La gráfica se ha generado a partir de los datos de la Figura 4. Figure 4: Shows the results of a simulation of the method object of the present invention with the different signals as a function of time that allow determining the interaction force as a function of time for an elastic sample of 1 GPa of Young's modulus. The strength of the model is described by E.8 for a tip of radius R = 5 nm. Figure 5: Shows a comparative graph between the simulated force curve and that obtained by applying the method described in the present invention reconstruction performed by the method. The graph has been generated from the data in Figure 4.
Figura 6: Muestra los resultados de una simulación del método objeto de la presente invención con las diferentes señales en función del tiempo que permiten determinar la fuerza de interacción en función del tiempo para una muestra elástica de 1 kPa de módulo de Young. La fuerza del modelo está descrita por la E.8 para una punta de radio R= 500 nm. Figure 6: Shows the results of a simulation of the method object of the present invention with the different signals as a function of time that allow determining the interaction force as a function of time for an elastic sample of 1 kPa of Young's modulus. The strength of the model is described by E.8 for a tip of radius R = 500 nm.
Figura 7: Muestra una gráfica comparativa de una simulación numérica donde se compara la fuerza en función de la distancia del modelo y la obtenida mediante la aplicación del método descrito en presente invención reconstrucción efectuada por el método. La gráfica se ha generado a partir de los datos de la Figura 6. Figure 7: Shows a comparative graph of a numerical simulation where the force is compared as a function of the distance of the model and that obtained by applying the method described in the present invention reconstruction carried out by the method. The graph has been generated from the data in Figure 6.
Figura 8: Muestra los resultados de una simulación del método objeto de la presente invención con las diferentes señales en función del tiempo que permiten determinar la fuerza de interacción en función del tiempo. La fuerza del modelo está descrita por la E.10 para una muestra con Fl= 10 18 J. Radio R= 50 nm. Figure 8: Shows the results of a simulation of the method object of the present invention with the different signals as a function of time that allow determining the interaction force as a function of time. The strength of the model is described by E.10 for a sample with Fl = 10 18 J. Radius R = 50 nm.
Figura 9: Muestra una gráfica comparativa entre donde compara la fuerza en función de la distancia del modelo y la obtenida mediante la aplicación del método descrito en presente invención (simulación numérica). La gráfica se ha generado a partir de los datos de la Figura 8. Figure 9: Shows a comparative graph between where the force is compared according to the distance of the model and that obtained by applying the method described in this invention (numerical simulation). The graph has been generated from the data in Figure 8.
Figura 10: Muestra los resultados de una simulación del método objeto de la presente invención con las diferentes señales en función del tiempo que permiten determinar la la fuerza de interacción atractiva en función del tiempo. La fuerza del modelo está descrita por la E.1 1 para una muestra con Eeff= 10 kPa, h= 100 Pa s. Radio R= 300 nm. Figure 10: Shows the results of a simulation of the method object of the present invention with the different signals as a function of time that allow to determine the attractive interaction force as a function of time. The strength of the model is described by E.1 1 for a sample with E eff = 10 kPa, h = 100 Pa s. Radius R = 300 nm.
Figura 1 1 : Muestra una gráfica comparativa entre donde compara la fuerza en función de la distancia del modelo y la obtenida mediante la aplicación del método descrito en presente invención (simulación numérica). La gráfica se ha generado a partir de los datos de la Figura 10.  Figure 1 1: Shows a comparative graph between where the force is compared according to the distance of the model and that obtained by applying the method described in the present invention (numerical simulation). The graph has been generated from the data in Figure 10.

Claims

REIVINDICACIONES
1 . Método de caracterización de materiales basado en microscopía de fuerza para adquisición de imágenes de la superficie de una muestra (4) junto con la determinación de la curva de fuerza en cada punto de la superficie de la muestra (4), donde se efectúa un desplazamiento de una punta (3) de una micropalanca (2) respecto a la muestra (4) o viceversa mientras se aplica excitación de una micropalanca a una frecuencia inferior a la frecuencia de resonancia, estando el método caracterizado por que comprende: 1 . Material characterization method based on force microscopy for image acquisition of the surface of a sample (4) together with the determination of the force curve at each point on the surface of the sample (4), where a displacement is made of a tip (3) of a micro lever (2) with respect to the sample (4) or vice versa while excitation of a micro lever is applied at a frequency lower than the resonant frequency, the method being characterized by comprising:
- obtener una imagen de la superficie de la muestra (4) aplicando un primer bucle de realimentación donde se mantiene un valor constante de la fuerza máxima que se ejerce sobre la muestra (4), y  - obtain an image of the surface of the sample (4) by applying a first feedback loop where a constant value of the maximum force exerted on the sample (4) is maintained, and
- obtener una imagen de la superficie de la muestra (4) aplicando un segundo bucle de realimentación donde se mantiene un valor constante de la amplitud de oscilación de la micropalanca (2).  - obtain an image of the surface of the sample (4) by applying a second feedback loop where a constant value of the oscillation amplitude of the micro lever (2) is maintained.
2. Método según reivindicación 1 caracterizado por que comprende: 2. Method according to claim 1 characterized in that it comprises:
a) colocar en la cabeza de un microscopio de fuerzas (1 ) la micropalanca (2) con la punta (3) en su extremo libre de tal manera que interactúa con la muestra (4), donde la punta (3) presenta al menos un modo de vibración, a) place the micro lever (2) with the tip (3) at its free end on the head of a force microscope (1) so that it interacts with the sample (4), where the tip (3) has at least a vibration mode,
b) disponer una unidad de excitación) (5) para hacer vibrar a la micropalanca (2) y una unidad de desplazamiento (6) para desplazar a la micropalanca (2) sobre al menos parte de la muestra (4); b) arrange an excitation unit) (5) to vibrate the micro lever (2) and a displacement unit (6) to move the micro lever (2) over at least part of the sample (4);
c) excitar la micropalanca (2) mediante la unidad de excitación (5) asociada a la micropalanca (2), haciéndola vibrar ; c) excite the micro lever (2) by the excitation unit (5) associated with the micro lever (2), making it vibrate;
d) indicar: - la constante de fuerzas, k; d) indicate: - the force constant, k;
- el factor de calidad, Q;  - the quality factor, Q;
- la frecuencia de resonancia de la micropalanca, f0, w0=2pί0; - the resonance frequency of the micro lever, f 0, w 0 = 2pί 0 ;
- la inversa de la sensibilidad óptica del fotodiodo; y  - the inverse of the optical sensitivity of the photodiode; and
- el radio, R, de la punta de la micropalanca; e) detectar, la señal de deflexión de la micropalanca (7);  - the radius, R, of the tip of the micro lever; e) detect the deflection signal of the micro lever (7);
f) estimar la contribución inercial a la fuerza mediante : f) estimate the inertial contribution to the force by:
kAsp kA sp
Fi = — 7G- eos út  Fi = - 7G- eos út
siendo:  being:
k: constante de fuerzas, w: frecuencia angular de excitación k: force constant, w: angular excitation frequency
Asp·. amplitud A sp ·. amplitude
g) estimar la contribución a la fuerza debido al debido al término hidrodinámico mediante
Figure imgf000014_0001
h) comprobar:
g) estimate the contribution to force due to the hydrodynamic term by
Figure imgf000014_0001
h) check:
h.1 ) que la frecuencia de vibración de la micropalanca (2) es inferior a la frecuencia de resonancia del modo de vibración más próximo;  h.1) that the vibration frequency of the micro lever (2) is lower than the resonance frequency of the closest vibration mode;
h.2) que la amplitud de vibración de la micropalanca (2) es mayor que la longitud de escala de la fuerza de interacción, y  h.2) that the amplitude of vibration of the micro lever (2) is greater than the scale length of the interaction force, and
h.3) comparar el valor de la fuerza inercial con el de los otros componentes de la fuerza ejercida sobre la muestra (4).  h.3) compare the value of the inertial force with that of the other components of the force exerted on the sample (4).
i) fijar los bucles de realimentación de realimentación donde:  i) set the feedback feedback loops where:
-fijar el primer bucle de realimentación, que controla el valor de la fuerza máxima que en cada ciclo se ejerce sobre la muestra Fpeak, comprende aproximar la micropalanca (2) a la muestra (4), o viceversa, hasta que se alcanza un valor fijo, que se mantiene constante, de la fuerza total, y -fix the first feedback loop, which controls the value of the maximum force that is exerted on each cycle on the sample F pea k, comprises approximating the micro lever (2) to the sample (4), or vice versa, until it is reached a fixed value, which remains constant, of the total force, and
-fijar el segundo bucle de realimentación de la amplitud A, comprende hacer variar la amplitud de excitación de la micropalanca mediante una fuerza de excitación para mantener constante la amplitud a un valor de referencia Asp„ -fixing the second feedback loop of the amplitude A, comprises varying the excitation amplitude of the micro lever by means of an excitation force to keep the amplitude constant at a reference value A sp „
j) adquirir al menos una imagen de la superficie de la muestra (4) ,y  j) acquire at least one image of the sample surface (4), and
k) asociar a cada pixel de la misma una curva de fuerzas según E.3a o E6. Se utilizará E.6 si la fuerza inercial es comparable a alguno de los otros componentes de la fuerza ejercida sobre la muestra.  k) associate to each pixel of it a curve of forces according to E.3a or E6. E.6 will be used if the inertial force is comparable to any of the other components of the force exerted on the sample.
3. Método según una cualquiera de las reivindicaciones 1 o 2, caracterizado por que comprende transformar datos de las curvas de fuerzas en mapas paramétricos de propiedades de la muestra (4) mediante ajuste de la curva de fuerzas a distintos modelos de interacción. 3. Method according to any one of claims 1 or 2, characterized in that it comprises transforming force curve data into parametric maps of sample properties (4) by adjusting the force curve to different interaction models.
4. Método según una cualquiera de las reivindicaciones anteriores, caracterizado por que la micropalanca (2) es excitada mediante al menos una de: excitación mecánica, excitación eléctrica, magnética, excitación térmica y excitación fototérmica. Method according to any one of the preceding claims, characterized in that the micro lever (2) is excited by at least one of: mechanical excitation, electrical, magnetic excitation, thermal excitation and photothermal excitation.
5. Método según una cualquiera de las reivindicaciones anteriores , caracterizado por que la caracterización comprende medir propiedades mecánicas de la muestra (4) seleccionadas de entre el grupo consistente en: Módulo de Young efectivo, Eeff, la viscosidad h, y la constante de Hamaker. Method according to any one of the preceding claims, characterized in that the characterization comprises measuring mechanical properties of the sample (4) selected from the group consisting of: Effective Young's modulus, E eff , viscosity h, and the constant of Hamaker
6. Método según cualquiera de las reivindicaciones anteriores, caracterizado por que la muestra (4) se encuentra: inmersa en líquido o en vacío. Method according to any of the preceding claims, characterized in that the sample (4) is: immersed in liquid or in vacuum.
7. Microscopio de fuerza (1 ) caracterizado por que se encuentra adaptado para llevar a cabo el método descrito en una cualquiera de las reivindicaciones 1 a 6. 7. Force microscope (1) characterized in that it is adapted to carry out the method described in any one of claims 1 to 6.
PCT/ES2019/070342 2018-05-23 2019-05-23 Dynamic force microscopy method and microscope for simultaneously obtaining topographical images and force maps WO2019224414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201830497 2018-05-23
ES201830497A ES2732721B2 (en) 2018-05-23 2018-05-23 DYNAMIC METHOD OF FORCE MICROSCOPY AND MICROSCOPE TO ACQUIRE SIMULTANEOUSLY TOPOGRAPHY IMAGES AND FORCE MAPS

Publications (1)

Publication Number Publication Date
WO2019224414A1 true WO2019224414A1 (en) 2019-11-28

Family

ID=68609790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070342 WO2019224414A1 (en) 2018-05-23 2019-05-23 Dynamic force microscopy method and microscope for simultaneously obtaining topographical images and force maps

Country Status (2)

Country Link
ES (1) ES2732721B2 (en)
WO (1) WO2019224414A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045818A1 (en) * 2006-07-04 2009-04-08 Consejo Superior de Investigaciones Cientificas (CSIC) Method for using an atomic force microscope
US20090139315A1 (en) * 2007-11-30 2009-06-04 Chikuang Charles Wang Non-destructive ambient dynamic mode afm amplitude versus distance curve acquisition
US20120131702A1 (en) * 2008-11-13 2012-05-24 Bruker Nano, Inc. Method and Apparatus of Using Peak Force Tapping Mode to Measure Physical Properties of a Sample

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045818A1 (en) * 2006-07-04 2009-04-08 Consejo Superior de Investigaciones Cientificas (CSIC) Method for using an atomic force microscope
US20090139315A1 (en) * 2007-11-30 2009-06-04 Chikuang Charles Wang Non-destructive ambient dynamic mode afm amplitude versus distance curve acquisition
US20120131702A1 (en) * 2008-11-13 2012-05-24 Bruker Nano, Inc. Method and Apparatus of Using Peak Force Tapping Mode to Measure Physical Properties of a Sample

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMO, C. ET AL.: "Fundamental High-Speed Limits in Single-Molecule, Single- Cell and Nanoscale Force Spectroscopies", ACS NANO, vol. 10, no. 7, 2016, pages 7117 - 7124, XP055656143, DOI: 10.1021/acsnano.6b03262 *
ROSA-ZEISER, A. ET AL.: "The simultaneous measurement of elastic, electrosctatic and adhesive properties by scanning force microscopy: pulsed-force mode operation", MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 8, no. 11, 1997, pages 1333 - 1338, XP020064364, [retrieved on 20190206], DOI: 10.1088/0957-0233/8/11/020 *

Also Published As

Publication number Publication date
ES2732721B2 (en) 2021-08-05
ES2732721A1 (en) 2019-11-25

Similar Documents

Publication Publication Date Title
US10444258B2 (en) AM/FM measurements using multiple frequency atomic force microscopy
Jalili et al. A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences
Kis et al. Nanomechanics of microtubules
Bennewitz Friction force microscopy
US9696342B2 (en) Quantitative measurements using multiple frequency atomic force microscopy
US10556793B2 (en) Thermal measurements using multiple frequency atomic force microscopy
US8555711B2 (en) Material property measurements using multiple frequency atomic fore microscopy
JP2007532916A (en) Method and apparatus for obtaining quantitative measurements using a probe-based instrument
Solares et al. Numerical analysis of dynamic force spectroscopy using the torsional harmonic cantilever
Abdi et al. Dynamics of the nanoneedle probe in trolling mode AFM
Van Vliet Instrumentation and experimentation
Yang et al. Frequency-dependent viscoelasticity measurement by atomic force microscopy
ES2732721B2 (en) DYNAMIC METHOD OF FORCE MICROSCOPY AND MICROSCOPE TO ACQUIRE SIMULTANEOUSLY TOPOGRAPHY IMAGES AND FORCE MAPS
Sikora Quantitative normal force measurements by means of atomic force microscopy towards the accurate and easy spring constant determination
Damircheli Geometrical parameters of rectangular AFM cantilevers producing highest sensitivity in excitation of second mode in air environment
Karhu et al. Quantitative friction-force measurements by longitudinal atomic force microscope imaging
ES2781793B2 (en) METHOD AND BIMODAL SYSTEM TO QUANTIFY INTERACTIONS AND LONG-RANGE PROPERTIES IN FORCE MICROSCOPY
Solares et al. Exploration of AFM imaging artifacts occurring at sharp surface features when using short carbon nanotube probes and possible mitigation with real-time force spectroscopy
Modigunta et al. Atomic Force Microscopy: An Advanced Imaging Technique—From Molecules to Morphologies
Murali et al. Jeevan Kumar Reddy Modigunta, Selvamani Vadivel
Jolandan Scanning probe microscopy of biomaterials and nanoscale biomechanics
Perrino Atomic force microscopy dynamic modes for the quantification of nanomechanical properties: From polymers to membrane proteins
Palacio et al. Calibration of Normal and Lateral Forces in Cantilevers Used in Atomic Force Microscopy
Giocondo et al. Atomic Force Spectroscopies: A Toolbox for Probing the Biological Matter
Raman et al. Cantilever dynamics and nonlinear effects in atomic force microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806577

Country of ref document: EP

Kind code of ref document: A1