WO2019223710A1 - 一种以沙枣为原料生产燃料乙醇的方法 - Google Patents

一种以沙枣为原料生产燃料乙醇的方法 Download PDF

Info

Publication number
WO2019223710A1
WO2019223710A1 PCT/CN2019/087919 CN2019087919W WO2019223710A1 WO 2019223710 A1 WO2019223710 A1 WO 2019223710A1 CN 2019087919 W CN2019087919 W CN 2019087919W WO 2019223710 A1 WO2019223710 A1 WO 2019223710A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ethanol
ethanol
fermentation
liquid
jujube
Prior art date
Application number
PCT/CN2019/087919
Other languages
English (en)
French (fr)
Inventor
刘力强
吕晓燕
刘林
Original Assignee
黑龙江锦绣大地生物工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黑龙江锦绣大地生物工程有限公司 filed Critical 黑龙江锦绣大地生物工程有限公司
Priority to US17/059,106 priority Critical patent/US20210222207A1/en
Publication of WO2019223710A1 publication Critical patent/WO2019223710A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention relates to the field of ethanol production, in particular to a method for producing fuel ethanol by using date plant as a raw material.
  • ethanol As a food and chemical raw material, ethanol has always been the leading product in the fermentation industry. For a long time, ethanol has been produced by microbial fermentation, and the raw materials are mostly crops such as corn, wheat, sweet sorghum, cassava, and sweet potatoes.
  • application number 201410662601.9 discloses a method for preparing ethanol, comprising: pulverizing a starch raw material to form a large granular starchy raw material; adding water and a high temperature resistant amylase to the large granular starchy raw material and mixing and stirring to form a first mash Performing a gelatinization treatment on the first mash, to form a second mash; a liquefaction treatment; a saccharification treatment on the second mash, after the liquefaction, to form a third mash; Liquid for fermentation.
  • the viscosity of the starchy raw material mash can be controlled within a process-acceptable range when the starchy raw material having a larger granularity is used.
  • the viscosity and liquid saccharification effect of the large-sized starchy mash is well controlled, it effectively solves the transportation difficulties and incomplete liquid saccharification that occur in the prior art when large-sized starchy mash is used for ethanol production. Problems, further reducing energy consumption in the production process.
  • corn stalks are used as raw materials to produce ethanol.
  • Tianjin University registered the application number 201711404719.1 in 2017 (the name of the invention is the process of making ethanol from corn stalks), but its conversion rate It is relatively low, there is a problem of equipment corrosion, and the possibility of industrialization is relatively weak at present.
  • the basic national conditions of China with a large population and small cultivated land seriously restrict the large-scale development of the industrial production of fuel ethanol from starchy materials such as corn, wheat and cassava.
  • the production of fuel ethanol using corn and other grains as raw materials is not sustainable because it competes with humans and livestock for food.
  • the "National Renewable Energy Medium and Long-Term Development Plan” proposes that biofuel ethanol and ethanol gasoline for vehicles will reach the development target of 10 million tons per year by 2020.
  • Elaeagnusangustifolia L.
  • alias Silver Willow (Golden Willow), Guizhou Willow (Henan), Silver Willow (Liaoning), etc.
  • This tree species grows in semi-arid, arid, semi-desert, desert areas, and is distributed in China's northwest desert, semi-desert region, North China, Shandong, and Northeast China.
  • it is known as the "treasure tree" of deserts and saline-alkali lands.
  • the whole body of P. eutropha is treasured: the leaf contains 4% protein, crude fat 2.4%, and sugar 15.7%. It is a high-quality feed.
  • the jujube pulp powder contains 6.76 to 7.94% of crude protein, 1.34% of crude fat, and 43 to 59% of sugar. It can be used for non-staple food processing and can also replace grain.
  • the Chinese jujube flower is fragrant and fragrant, can extract aromatic oil, and is a good source of honey.
  • Rhizobium has root nodule bacteria, which can fix nitrogen and improve soil.
  • the oil content of the seed kernels of P. jujube is 20.69%, which can be used to produce clean fuel (biodiesel); P. jujube trees can be used to build P.
  • P. jujube economic forests, shelter forests, and can be cultivated into scenic forests to green and beautify cities.
  • the sugar, protein and vitamins contained in P. jujube fruit can meet the needs of yeast growth and fermentation, so in theory P. jujube is a very good Raw materials for the production of fuel ethanol fermentation.
  • the invention provides a method for producing fuel ethanol by using jujube as a raw material.
  • the jujube is denucleated, and the pulp is added with process water with a pH of 3.5 to 5.0 to obtain jujube pulp; the jujube pulp is liquefied or solid-liquid separated; the clear liquid mash enters the fermentation tank, antibiotics are added, and the wine mother or active dry yeast is added; fermentation To obtain a fermented mature mash; the mature mash is distilled, dehydrated, and condensed to obtain an ethanol liquid, and a denaturant is added to obtain a finished fuel ethanol.
  • a method for producing fuel ethanol by using jujube as raw material includes the following steps:
  • Pre-treatment remove impurities and fruit cores from the jujube, and add process water with a pH of 3.5 to 5.0 to obtain the jujube pulp; control the mass concentration of the jujube pulp to 15-30%, and reduce the sugar content 15-20%;
  • the liquefaction treatment includes cooking the jujube pulp, and the liquefaction treatment refers to a process of dissolving the sugar contained in the date from a solid sugar to a liquid sugar;
  • the cooking process is: jujube pulp is heated to 85-105 ° C through a multi-stage ejector, and sent to a cooking tank for cooking and holding for 30-180min; jujube pulp mash liquid is cooled by a heat exchanger to mash liquid to 20-35 ° C ;
  • the liquefaction treatment includes enzymolysis and cooking of jujube pulp by adding a pectinase-reducing enzyme such as pectinase.
  • a pectinase-reducing enzyme such as pectinase.
  • the process is as follows: the jujube pulp is preheated to 30-60 ° C through a first-stage ejector and added at a ratio of 0.05-0.1%.
  • Pectinase is kept for 1 to 2 hours, then the jujube pulp is heated to 85-105 ° C through a multi-stage ejector, and sent to a cooking tank for cooking and holding for 30 to 180 minutes to obtain jujube pulp mash; the jujube pulp mash is heat-exchanged The device cools the mash to 20 ⁇ 35 °C;
  • the jujube pulp can be preheated by using one-time steam preheating, or by using the waste heat recovered from the mash cooling process to perform heat exchange preheating or using the waste heat recovered from the distillation dehydration section to perform preheating;
  • Fermentation The juice of jujube pulp directly enters the fermentation tank. In the tank, yeast is added, and fermentation produces alcohol. The fermentation process passes sterile air to maintain the vitality of the yeast and obtain mature mash.
  • the fermentation time of the mash in the fermentation tank is 36 to 60 hours; the alcohol content of the fermented mature mash has reached 7 to 11% (v / v); heat will be released during the fermentation process, and the fermentation temperature is guaranteed by cooling outside the tank Stability; fermentation temperature is 28 ⁇ 35 °C; fermentation tank adopts vertical mixer;
  • the fermentation time of the mash in the fermentation tank is 36 to 48 hours;
  • the anhydrous raw materials are sent to the molecular sieve system after preheating, and then dewatered through the molecular sieve bed after the evaporator and superheater to obtain fuel ethanol wine gas. After cooling, the fuel ethanol wine gas is 99.5% fuel ethanol;
  • the whole process of the present invention adopts waste heat recovery technology to recover waste waste heat in the distillation and dehydration stages for preheating anhydrous raw materials or heating mash or mature mash.
  • the present invention also provides a method for producing fuel ethanol by using date plants as raw materials, including the following steps: pretreatment of date plants, beating, liquefaction treatment, fermentation, distillation and dehydration of ethanol.
  • a method for producing fuel ethanol by using jujube as raw material includes the following steps:
  • Pre-treatment remove impurities and fruit cores from D. jujuba, and add process water with pH 3.5-5.0 to beat to obtain jujube pulp. Control the mass concentration of jujube pulp to 15-30% and reduce the sugar content 15-20%. Jujube pulp in this range can be directly applied to raw material fermentation without adding amylase and saccharifying enzyme for liquid saccharification in the subsequent fermentation stage, which simplifies the steps and reduces the cost;
  • the solid-liquid separation refers to a process of separating insoluble matter such as rinds, fibers, and the like from mash;
  • the solid-liquid separation is a step of beating, grinding, washing, and separating treatment
  • the solid-liquid separation is a plurality of processing steps such as beating, grinding, washing, and separating;
  • the solid-liquid separation refers to a treatment process in which multiple steps of grinding, washing, and separation are performed using a filter press and / or a butterfly centrifuge and / or a double cone centrifuge and / or a decanter centrifuge. ;
  • the liquefaction treatment includes enzymolysis and cooking of jujube pulp by adding a pectinase-reducing enzyme such as pectinase.
  • a pectinase-reducing enzyme such as pectinase.
  • the process is as follows: the jujube pulp is preheated to 30-60 ° C through a first-stage ejector and added at a ratio of 0.05-0.1%.
  • Pectinase is kept for 1 to 2 hours, then the jujube pulp is heated to 85-105 ° C through a multi-stage ejector, and sent to a cooking tank for cooking and holding for 30 to 180 minutes to obtain jujube pulp mash; the jujube pulp mash is heat-exchanged The device cools the mash to 20 ⁇ 35 °C;
  • the liquefaction treatment further includes enzymatic hydrolysis and cooking of jujube pulp by adding pectinase and other viscosity-reducing enzymes, solid-liquid separation, and multi-effect evaporation and concentration.
  • the process is as follows: the jujube pulp is preheated to 30 ⁇ Add pectinase at 60 °C, 0.05 ⁇ 0.1%, keep it for 1 ⁇ 2 hours, then heat the date pulp to 85 ⁇ 105 °C through a multi-stage ejector, and send it to the cooking tank for cooking and heat preservation for 30 ⁇ 180min. Grind, wash, and separate multiple times, collect the supernatant, and perform multi-effect evaporation and concentration. The concentrated supernatant is directly sent to the fermentation tank. After separation, the solid is composted or dried to produce feed;
  • the jujube pulp can be preheated by using one-time steam preheating, or by using the waste heat recovered from the mash cooling process to perform preheating or reheating by using the waste heat recovered from the distillation dehydration section;
  • the multi-effect evaporation and concentration refers to the evaporation and concentration of the clear liquid by a multi-effect evaporator with one effect or more;
  • Fermentation The jujube pulp decoction directly enters the fermentation tank. In the tank, yeast is added to produce mature mash, and sterile air is passed into the fermentation process to maintain the vitality of the yeast;
  • the anhydrous raw materials are sent to the molecular sieve system after preheating, and then dewatered through the molecular sieve bed after the evaporator and superheater to obtain fuel ethanol wine gas. After cooling, the fuel ethanol wine gas is 99.5% fuel ethanol;
  • the whole process of the present invention adopts waste heat recovery technology to recover waste waste heat in the distillation and dehydration stages for preheating anhydrous raw materials or heating mash or mature mash.
  • the present invention has the following advantages and effects:
  • the sugar content of date is very high, and it is easy to be used by yeast. At the same time, the rich content of protein, vitamins and mineral elements of P. jujuba is beneficial to the fermentation and growth of yeast.
  • the process does not need to add amylase and saccharifying enzyme for liquid saccharification. It can also directly apply raw material fermentation technology, which saves energy and simplifies the production process.
  • the use of differential pressure distillation technology, waste heat recovery technology, and tritium heat exchange technology, combined with high alcohol content fermentation, can greatly reduce energy consumption, and can make the overall steam consumption less than 3.0 tons / ton of alcohol. It is 15-30% lower than the current fuel ethanol based on starch.
  • the present invention has no special requirements on the date plant as a raw material, which can effectively widen the use of date plant and make full use of the date plant resources.
  • solid-liquid treatment is a process of separating insolubles such as jujube skin and fibers from jujube pulp. Since jujube peel and fibers in jujube pulp still contain 5-10% sugar, the solid Liquid separation adopts multiple grinding, washing, and separation to soften the jujube skin and fibers in the jujube pulp to reduce the residue of sugar in the insoluble solids, so that the sugar is fully released, and the peels and fibers of the date plant are abraded in the distillation section. Blocking equipment.
  • the liquefaction treatment section in the process of the present invention uses the addition of pectinase and other viscosity-reducing enzymes, followed by cooking treatment, solid-liquid separation, multi-effect evaporation and concentration, because the jujube skin and fibers in the jujube pulp still carry 5-10%.
  • the sugar content can be softened by cooking, the solid sugar state can be dissolved into a liquid sugar state, and the sugar content can be fully released.
  • the addition of pectinase can reduce the viscosity of jujube pulp and reduce the sugar content in insoluble solids.
  • the residue of sugar makes full release of sugar, and also avoids the problem of sharp increase in energy consumption in the fermentation and distillation section due to the poor viscosity and fluidity of jujube pulp.
  • the sugar yield in the date can be increased by 5-9%, which greatly improves the utilization rate of raw materials and reduces the cost of raw material consumption.
  • the sugar alcohol conversion rate and production efficiency of the method of the present invention are basically consistent with the fermentation with starch such as corn. Under the premise of not consuming food resources, a new biological resource is used to produce bioenergy and broaden Source of raw materials for bioenergy.
  • FIG. 1 is a schematic flow chart of Embodiment 1 of a process for producing fuel ethanol by using date plant as a raw material;
  • FIG. 2 is a schematic flow chart of Embodiment 2 of a process for producing fuel ethanol by using date of the fern;
  • FIG. 3 is a process flow chart of Embodiment 1 of a process for producing fuel ethanol by using date plant as a raw material;
  • Embodiment 4 is a process flow chart of Embodiment 2 of a process for producing fuel ethanol by using date plant as a raw material;
  • Embodiment 5 is a process flow chart of Embodiment 3 of a process for producing fuel ethanol by using date plant as a raw material;
  • FIG. 6 is a process flow chart of Embodiment 4 of a process for producing fuel ethanol by fermenting date plants
  • FIG. 7 is a simplified flowchart of Embodiment 5 of a process for producing fuel ethanol by fermenting date plants;
  • Fig. 8 is a process flow chart of Embodiment 5 of a process for producing fuel ethanol by using date plant as a raw material.
  • the slurry is pumped to the spray liquefier, and the discharge temperature of the steam ejector is controlled to be 95-105 ° C to obtain heated mash.
  • the heated mash is sent to a cooking column for cooking. After ripening the mash, the temperature was reduced to 60 to 65 ° C. to obtain liquefied mash.
  • the liquefied mash is adjusted in the saccharification tank (equipped with a stirrer) with sulfuric acid to adjust the pH value, and then the saccharifying enzyme is added for saccharification.
  • the saccharified mash is pumped by a pump through a two-stage plate cooler to be gradually cooled, and cooled to 28-33 ° C. Transfer to fermentation section.
  • the fermentation section adopts intermittent fermentation. Yeast is added to the yeast from the mother's tank. The fermentation time is 60 hours and the temperature is 33 ° C. After the fermentation is over, the resulting fermented mash is sent to the distillation and dehydration section.
  • the alcohol vapor (95.8% V / V) is obtained; the waste is sent to the waste residue treatment section; the alcohol vapor is sent to the molecular sieve dehydration section to obtain the anhydrous ethanol product steam.
  • the anhydrous ethanol product steam is condensed to obtain 43.0kg fuel ethanol product; product mass fraction is 99.5%, water content is less than 0.5%, and meets the national standard GB18350-2013 for denatured fuel ethanol.
  • the waste mash obtained after distillation is subjected to solid-liquid separation treatment.
  • the separated clear liquid is reused as water for the liquid chemical industry.
  • the rest is sent to an evaporation and concentration device to produce a thick slurry.
  • the thick slurry and solid residue are mixed, dried, pelletized, and cooled to obtain DDGS feed with less than 11.5% moisture.
  • the total steam consumption of the whole section is 3.9-4.0 tons / ton of fuel ethanol (including the comprehensive treatment section of waste residue).
  • Example 1 the process for producing fuel ethanol by using date plant as raw material is as follows:
  • the jujube pulp is heated to 85-100 ° C through a multi-stage ejector, and sent to a cooking tank for cooking and holding for 50-90min; the jujube mash liquid is cooled by a heat exchanger to 28-35 ° C;
  • the jujube slurry mash directly enters the fermentation tank, is connected with yeast, and is stirred and fermented at 30-34 ° C for 36-40 hours; in the tank, yeast is used to ferment alcohol to produce alcohol, and sterile air is passed into the fermentation process to maintain the vitality of the yeast.
  • yeast is used to ferment alcohol to produce alcohol
  • sterile air is passed into the fermentation process to maintain the vitality of the yeast.
  • the liquid residual sugar concentration is lower than 0.5%, the fermentation is terminated to obtain a fermented mature mash.
  • the mature mash is preheated to above 70 ° C and then sent to the distillation system. After differential pressure distillation, 95% volume alcohol is extracted from the liquid phase of the rectification tower as an anhydrous raw material;
  • the anhydrous raw materials are sent to the molecular sieve system after preheating, and then dewatered through the molecular sieve bed after the evaporator and superheater to obtain fuel ethanol wine gas.
  • the fuel ethanol wine gas is 9.04kg fuel ethanol with a mass fraction of 99.5%;
  • the waste heat generated during the cooling of fuel ethanol alcohol gas is recovered.
  • the recovered waste heat can be used to preheat anhydrous raw materials to realize heat recovery and reduce costs; the steam consumption in the distillation and dehydration section is 1.4 ⁇ 1.6 tons / ton of fuel ethanol.
  • the waste sludge discharged from the distillation dehydration system is subjected to solid-liquid separation, evaporation and concentration, and part of the waste water is reused for intermediate water.
  • Dry distillers grains are used to produce DDG or mixed with liquid distillers grains to produce DDGS.
  • the total steam consumption of the whole section is 3.4 to 3.6 tons / ton of fuel ethanol (including the integrated waste treatment section).
  • the process is similar to the fuel ethanol process using starch as raw material, and the process technology is reliable.
  • the process of cooking and sterilization does not require the addition of amylase and saccharifying enzyme, which saves production costs.
  • Example 2 the process for producing fuel ethanol by using date plant as raw material is as follows:
  • the jujube pulp is separated by solid-liquid, and the clear liquid mash is sent directly to the fermentation tank; after separation, the solid is composted or dried to produce feed;
  • the clear liquid mash is directly entered into the fermentation tank, the yeast is added, the bacteriostatic agent is added, and the fermentation is stirred at 30 to 34 ° C for 36 to 40 hours.
  • yeast is used to ferment alcohol to produce alcohol.
  • the fermentation process is passed into sterile air to maintain Yeast vigor. Fermentation is terminated when the residual sugar concentration in the mash is less than 0.5% to obtain a mature fermented mash.
  • the mature mash is preheated to above 70 ° C and then sent to the distillation workshop. After differential pressure distillation, 95% by volume of alcohol is extracted from the liquid phase of the rectification tower as an anhydrous raw material;
  • Anhydrous raw materials are sent to the molecular sieve system after preheating, and then dewatered through the molecular sieve bed after the evaporator and superheater to obtain fuel ethanol wine gas. After cooling the fuel ethanol wine gas, 7.85 kg of fuel ethanol with a mass fraction of 99.5% is obtained. During the cooling of wine gas, the waste heat generated during the cooling of fuel ethanol wine gas is recovered. The recovered waste heat can be used to preheat anhydrous raw materials to achieve heat recovery and reduce costs;
  • the waste sludge discharged from the distillation dehydration system is subjected to solid-liquid separation, evaporation and concentration, and part of the waste water is reused for intermediate water.
  • Dry distillers grains are used to produce DDG or mixed with liquid distillers grains to produce DDGS.
  • the date raw material contains higher sugars that can be directly fermented. Therefore, the raw material fermentation method is used to separate solid-liquid from the date juice, and then the fermentation is performed according to the clear liquid fermentation process.
  • the advantage of the process of this embodiment is that the mash does not need to be cooked, and the liquid fermentation process is used. Therefore, the process is simple.
  • the steam consumption of fuel ethanol is less than 3.0 tons / ton of alcohol, and the overall steam consumption is even lower than that of traditional corn.
  • the level of steam consumption for fuel ethanol production is lower than the cost of fuel ethanol produced from corn and cassava.
  • Example 3 the process for producing fuel ethanol by using date plant as raw material is as follows:
  • the jujube pulp is preheated to 30-60 ° C through a first-stage sprayer, and pectinase is added at a rate of 0.05-0.1%, and it is kept for 1 to 2 hours. Then, the jujube pulp is heated to 85-100 ° C through a multi-stage sprayer and sent to The cooking tank is heated for 30 to 180 minutes.
  • the jujube pulp mash and the preheated jujube pulp are heat exchanged, the jujube pulp is preheated, and then the jujube pulp mash is cooled to 20 to 35 by a cooling water heat exchanger. °C
  • the jujube pulp mash directly enters the fermentation tank, connects to the yeast, and ferments for 36 to 40 hours.
  • yeast is used to ferment alcohol to produce alcohol.
  • Sterile air is passed into the fermentation process to maintain the vitality of the yeast.
  • the final alcohol content of fermentation is 11 to 14% (V / V), the residual sugar concentration is lower than 0.5%, and mature mash is obtained;
  • the mature mash is preheated to above 70 ° C and sent to the distillation workshop. After differential pressure distillation, 95% volume alcohol is extracted from the liquid phase of the rectification tower as an anhydrous raw material;
  • Anhydrous raw materials are sent to the molecular sieve system after preheating, and then dewatered through the molecular sieve bed after the evaporator and superheater to obtain fuel ethanol wine gas.
  • the fuel ethanol wine gas is 54kg with a mass fraction of 99.5% fuel ethanol.
  • the waste heat generated during the cooling of fuel ethanol wine gas is recovered. The recovered waste heat can be used to preheat subsequent anhydrous raw materials to achieve heat recovery and reduce costs;
  • the waste sludge discharged from the distillation dehydration system is subjected to solid-liquid separation, evaporation and concentration, and part of the waste water is reused for intermediate water.
  • Dry distillers grains are used to produce DDG or mixed with liquid distillers grains to produce DDGS.
  • the advantage of the process of this embodiment is that the jujube pulp is subjected to enzymatic hydrolysis to perform full-material fermentation, which can well solve the problem of the fluidity of the mash, it is not easy to block the pipeline, the sugar in the raw material is completely released, and the sugar alcohol conversion rate is high. The sugar alcohol conversion is greater than 45%. After the cooking enzyme treatment, the sugar yield in the date was increased by 2.5-4.0% compared with Example 1 when the sugar content of the fermented mash was maintained above 16%.
  • Example 4 the process of producing fuel ethanol by using date plant as raw material is as follows:
  • Jujube pulp undergoes three solid-liquid separation treatments (as shown in Figure 6) including beating, washing, and separation.
  • the clear liquid is collected and concentrated by multi-effect evaporation.
  • the waste heat recovered in the distillation dehydration section is used for pre-processing. Heat, preheat and enter the multi-effect evaporator for evaporation and concentration; the concentrated mash solution is sent directly to the fermentation tank; the separated solids are composted or dried to produce feed;
  • the clarified liquid directly enters the fermentation tank, connects with the yeast, adds the bacteriostatic agent, and ferments for 36 to 40 hours.
  • yeast is used to ferment alcohol to produce alcohol, and sterile air is passed into the fermentation process to maintain the vitality of the yeast. 8-9% (V / V), the residual sugar concentration is less than 0.5%, and mature mash is obtained;
  • the mature mash is preheated to above 70 ° C and sent to the distillation workshop. After differential pressure distillation, 95% volume alcohol is extracted from the liquid phase of the rectification tower as an anhydrous raw material;
  • Anhydrous raw materials are sent to the molecular sieve system after preheating, and then dewatered through the molecular sieve bed after the evaporator and superheater to obtain fuel ethanol wine gas. After the fuel ethanol wine gas is cooled, 41 kg of fuel ethanol with a mass fraction of 99.5% is obtained. During the gas cooling process, the waste heat generated during the cooling of fuel ethanol wine gas is recovered. The recovered waste heat can be used to preheat anhydrous raw materials to achieve heat recovery and reduce costs;
  • the waste sludge discharged from the distillation dehydration system is subjected to solid-liquid separation, evaporation and concentration, and part of the waste water is reused for intermediate water.
  • Dry distillers grains are used to produce DDG or mixed with liquid distillers grains to produce DDGS.
  • the sugar yield in P. jujube can be increased by 2.0 to 5.0% compared to Example 1 while the sugar content of the fermented mash is maintained at 15% or more.
  • the raw material fermentation is performed, and the waste steam in the distillation and dehydration section is subjected to waste heat recovery.
  • the clear liquid after the solid-liquid separation of the pulp is heated and evaporated and concentrated, and the mature mash is preheated, which can reduce the steam consumption by 20-30%.
  • the steam consumption of the process is 2.8 to 3.0 tons / ton of fuel ethanol. Because this process adopts the raw material fermentation process, the process does not need to add enzyme preparations, which greatly saves production costs.
  • Example 5 the process of producing fuel ethanol by using date plant as raw material is as follows:
  • the waste heat of the jujube pulp from the distillation and dehydration section is preheated to 30-60 ° C by a heat exchanger.
  • Pectinase is added at a rate of 0.05-0.1%, and it is held for 1 to 2 hours.
  • the jujube pulp is heated by a multi-stage ejector. To 85 ⁇ 100 °C, send to the cooking tank for cooking and holding for 30 ⁇ 180min;
  • the supernatant is collected and concentrated by multi-effect evaporation, and the clear night is concentrated to a sugar content of 16 to 24%.
  • the concentrated clear water is directly sent to the fermentation tank; the solids are separated after the separation. Producing feed after composting or drying;
  • the clarified liquid is subjected to mash heat exchange with mature mashed liquid through a heat exchanger, and then the mashed liquid is cooled to 20 to 35 ° C by cooling water; the clarified liquid directly enters the fermentation tank, is connected to yeast, and is fermented for 36 to 48 hours; in the tank In the fermentation process, yeast is used to produce alcohol.
  • yeast is used to produce alcohol.
  • the fermentation process is followed by sterile air to maintain the vitality of the yeast.
  • the final alcohol content of the fermentation is 11 to 14% (V / V) and the residual sugar concentration is less than 0.5% to obtain mature mash.
  • the mature mash is preheated to a temperature above 70 ° C through mash heat exchange and sent to the distillation workshop. After differential pressure distillation, 95% volume alcohol is extracted from the liquid phase of the rectification tower as an anhydrous raw material;
  • the anhydrous raw materials are sent to the molecular sieve system after preheating, and then dewatered through the molecular sieve bed after the evaporator and superheater to obtain fuel ethanol wine gas. After cooling the fuel ethanol wine gas, 57 kg of fuel ethanol with a mass fraction of 99.5% is obtained. During the gas cooling process, the waste heat generated during the cooling of fuel ethanol wine gas is recovered. The recovered waste heat can be used to preheat anhydrous raw materials to achieve heat recovery and reduce costs;
  • the waste sludge discharged from the distillation dehydration system is subjected to solid-liquid separation, evaporation and concentration, and part of the waste water is reused for intermediate water.
  • Dry distillers grains are used to produce DDG or mixed with liquid distillers grains to produce DDGS.
  • the sugar content of the date can be increased by 5.0 to 9.0% compared to Example 1 while the fermented mash has a sugar content of more than 16%.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

沙枣为原料生产燃料乙醇的工艺方法,包括沙枣的预处理,打浆,固液分离或液化处理,发酵,乙醇的蒸馏、脱水;工艺方法简单,糖醇转化效率与以玉米等淀粉质为原料发酵时基本保持一致,在不耗费粮食资源的前提下,采用了一种新的非粮生物资源沙枣来生产液体生物能源,拓宽了燃料乙醇生产原料的种类。

Description

一种以沙枣为原料生产燃料乙醇的方法 技术领域
本发明涉及乙醇生产领域,尤其涉及以沙枣为原料生产燃料乙醇的方法。
背景技术
乙醇作为食品、化工原料,一直以来都是发酵行业的主导产品。长期以来,乙醇都由微生物发酵生产,原料多以农作物如:玉米、小麦、甜高粱、木薯、红薯等为主。如申请号201410662601.9公开了一种制备乙醇的方法,包括:将淀粉原料粉碎以形成大颗粒淀粉质原料;向所述大颗粒淀粉质原料中加水及耐高温淀粉酶并混合搅拌以形成第一醪液;对所述第一醪液进行糊化处理以形成第二醪液;液化处理;对液化处理后的所述第二醪液进行糖化处理以形成第三醪液;对所述第三醪液进行发酵。根据本发明的方法,可以在利用颗粒度较大的淀粉质原料的情况下,将淀粉质原料醪液的粘度控制在工艺可接受的范围内。同时,由于很好地控制了大颗粒淀粉质醪液的粘度和液糖化效果,因此有效地解决了现有技术中使用大颗粒淀粉质醪液进行乙醇生产时出现的输送困难及液糖化不完全的问题,进一步减低了生产工艺中的能源消耗。
除此以外,也有一些以玉米秸秆等作为原料来做生产乙醇,比如天津大学就在2017年注册了申请号为201711404719.1(发明名称为以玉米秸秆为原料制取乙醇的工艺),但其转化率比较低,存在设备 腐蚀问题,在当前进行产业化的可能性比较弱,目前,我国人口多耕地少的基本国情严重制约以玉米、小麦和木薯等淀粉质原料生产燃料乙醇的产业规模化发展,而且以玉米等粮食为原料的燃料乙醇生产由于与人、畜争粮,因此不可持续发展。而《国家可再生能源中长期发展规划》中提出生物燃料乙醇及车用乙醇汽油到2020年达到1000万吨/年的发展目标。2017年,国家发展改革委、国家能源局等十五部门联合印发《有关扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》,明确扩大生物燃料乙醇生产和推广使用车用乙醇汽油,要在保障国家粮食安全基础上,立足国内供应,科学有序推进生物燃料乙醇生产和车用乙醇汽油推广使用,着力处理超期超标粮食,增强粮食市场调控能力和提升质量安全水平;着力提高农林废弃物资源综合利用技术水平,推动先进生物能源产业发展;着力落实东北振兴战略部署,建设生物燃料乙醇产业基地,为促进我国替代化石能源、减排温室气体、培育农业农村发展新动能做出新贡献。到2020年,在全国范围内推广使用车用乙醇汽油,基本实现全覆盖,市场化运行机制初步建立,先进生物液体燃料创新体系初步构建。
因此,探索新的非粮生物质原料来源代替以玉米等粮食作物生产燃料乙醇,不与人争粮,不与粮争地,不破坏生态环境,是我国生物乙醇产业发展的基本方针,也是发展农村经济的方向。
沙枣(Elaeagnusangustifolia L.),别名:银柳胡颓子(东北木本植物图志、)、桂香柳(河南)、银柳(辽宁)等。该树种生长于半干旱、干旱、半荒漠、荒漠地区,在我国的西北荒漠、半荒漠地区、华 北、山东及东北地区均有分布,沙枣也是极少能在戈壁滩上生存下来的树种之一,被誉为沙漠和盐碱地的“宝树”。
沙枣全身是宝:叶含蛋白质4%、粗脂肪2.4%、糖15.7%,是优质的饲料。沙枣果肉粉含粗蛋白6.76~7.94%、粗脂肪1.34%、糖43~59%,可用于副食品加工,也可以代替粮食。沙枣花霞郁清香,可提取芳香油,又是很好的蜜源。沙枣根有根瘤菌,可固氮改善土壤。沙枣种子仁含油量20.69%,可用于生产清洁燃料(生物柴油);沙枣树可营造沙枣经济林、防护林,并能育成风景林,绿化美化城市。鉴于沙枣树作为植物在恢复植被、造林方面有良好的前景;果实沙枣果中所含的糖、蛋白质、维生素等可满足酵母菌生长发酵的需要,因此理论上沙枣是一种很好的燃料乙醇发酵生产的原料。
本申请人为了解决现有以玉米、小麦和木薯等淀粉质原料生产燃料乙醇的产业规模化发展受限的问题,研究开发了一种以沙枣为原料生产燃料乙醇的工艺方法。
发明内容
本发明提供了一种以沙枣为原料生产燃料乙醇的方法。
本发明的技术方案包括以下步骤:
包括沙枣的预处理,打浆,液化处理,发酵,乙醇的蒸馏、脱水。将沙枣去核,加pH3.5~5.0的工艺水打浆,得到枣浆;枣浆进行液化或固液分离;清液醪液进入发酵罐,加入抗生素,接入酒母或活性干酵母;发酵,得到发酵成熟醪液;成熟醪液经过蒸馏、脱水后,冷凝后得到乙醇液体,加入变性剂,得到成品 燃料乙醇。
优选地,一种以沙枣为原料生产燃料乙醇的方法,包括以下步骤:
(1)预处理:将沙枣去除杂质和果核,加入pH3.5~5.0的工艺水打浆,得枣浆,控制枣浆的质量浓度为15~30%,还原糖度15~20%;
(2)液化处理:枣浆固液分离,清液醪液进入发酵罐;固体进行堆肥或干燥处理生产饲料;
优选地,液化处理包括对枣浆进行蒸煮,所述的液化处理是指将沙枣所含的糖分从固体糖分态溶解变成液体糖的处理过程;
其中,蒸煮过程是:枣浆经过多级喷射器将枣浆加热至85~105℃,送往蒸煮罐进行蒸煮保温30~180min;枣浆醪液经换热器冷却醪液至20~35℃;
优选地,液化处理包括对枣浆添加果胶酶等降粘酶进行酶解、蒸煮处理,其过程为:枣浆经过一级喷射器预热至30~60℃,0.05~0.1%的比例加入果胶酶,保温1~2小时,然后经过多级喷射器将枣浆加热至85~105℃,送往蒸煮罐进行蒸煮保温30~180min,得到枣浆醪液;枣浆醪液经换热器冷却醪液至20~35℃;
所述枣浆预热,可以使用一次蒸汽预热,也可以使用从醪液冷却过程回收的余热进行醪醪换热预热或采用蒸馏脱水工段回收的余热进行预热;
(3)发酵:枣浆清醪液直接进入发酵罐,在罐内,加入酵母,发酵生成酒精,发酵过程通入无菌空气以保持酵母活力,得到成熟醪液;
其中,醪液在发酵罐的发酵时间为36~60小时;发酵成熟醪液的酒精度达到7~11%(v/v);在发酵过程中会有热量放出,通过罐外冷却保证发酵温度的稳定;发酵温度为28~35℃;发酵罐采用立式搅拌器;
进一步地,醪液在发酵罐的发酵时间为36~48小时;
(4)乙醇蒸馏脱水:将工段(3)的成熟醪预热至70℃以上后送至蒸馏车间,经差压蒸馏后,从精馏塔液相采出体积分数为95%的酒精作为无水原料;
无水原料经预热后送至分子筛***,经蒸发器、过热器后进分子筛床脱水,得到燃料乙醇酒气,燃料乙醇酒气冷却后即为质量分数为99.5%的燃料乙醇;
向质量分数为99.5%的燃料乙醇添加变性剂后得到成品燃料乙醇,产品质量符合国家标准GB18350-2013;
优选地,本发明全工艺采用余热回收技术,对蒸馏、脱水工段的废余热进行回收,用于预热无水原料或加热醪液或成熟醪液。
本发明还提供了一种以沙枣为原料生产燃料乙醇的方法,包括以下步骤:沙枣的预处理,打浆,液化处理,发酵,乙醇的蒸馏、脱水。
优选地,一种以沙枣为原料生产燃料乙醇的方法,包括以下步骤:
(1)预处理:将沙枣去除杂质和果核,加入pH3.5~5.0的工艺水打浆,得枣浆,控制枣浆的质量浓度为15~30%,还原糖度15~20%,在此范围内的枣浆在后续的发酵阶段可无需添加淀粉酶、糖化酶进行液糖化直接应用生料发酵,简化步骤,降低了成本;
(2)液化处理:枣浆固液分离,清液进入发酵罐进行发酵;固体进行堆肥或干燥处理生产饲料;
所述的固液分离为指从栆浆中分离栆皮、纤维等不溶物的过程;
所述的固液分离为一次打浆研磨、洗涤、分离处理步骤;
进一步地,所述的固液分离为一次以上的多次的打浆研磨、洗涤、分离等处理步骤;
优选地,所述固液分离为指利用压滤机和/或蝶式离心机和/或双锥离心机和/或卧螺式离心机进行多次的研磨、洗涤、分离等步骤的处理过程;
优选地,液化处理包括对枣浆添加果胶酶等降粘酶进行酶解、蒸煮处理,其过程为:枣浆经过一级喷射器预热至30~60℃,0.05~0.1%的比例加入果胶酶,保温1~2小时,然后经过多级喷射器将枣浆加热至85~105℃,送往蒸煮罐进行蒸煮保温30~180min,得到枣浆醪液;枣浆醪液经换热器冷却醪液至20~35℃;
优选地,液化处理还包括对枣浆添加果胶酶等降粘酶进行酶解、蒸煮处理,固液分离、多效蒸发浓缩,其过程为:枣浆经过一级喷射器预热至30~60℃,0.05~0.1%的比例加入果胶酶,保温1~2小时,然后经过多级喷射器将枣浆加热至85~105℃,送往蒸煮罐进行蒸煮保温30~180min,枣浆经过多次研磨、洗涤、分离,将清液收集,并进行多效蒸发浓缩,浓缩后的清醪液直接送往发酵罐,分离后固体进行堆肥处理或者烘干后生产饲料;
所述枣浆预热,可以使用一次蒸汽预热,也可以使用从醪液冷却 过程回收的余热进行醪醪换热预热或采用蒸馏脱水工段回收的余热进行预热;
所述的多效蒸发浓缩是指用一效或一效以上的多效蒸发器对清液进行蒸发浓缩;
(3)发酵:枣浆清醪液直接进入发酵罐,在罐内,加入酵母,发酵生成成熟醪液,发酵过程通入无菌空气以保持酵母活力;
(4)乙醇蒸馏脱水:将发酵完毕的成熟醪液预热至70℃以上后送至蒸馏车间,经差压蒸馏后,从精馏塔液相采出体积分数为95%的酒精作为无水原料;
无水原料经预热后送至分子筛***,经蒸发器、过热器后进分子筛床脱水,得到燃料乙醇酒气,燃料乙醇酒气冷却后即为质量分数为99.5%的燃料乙醇;
向质量分数为99.5%的燃料乙醇中添加变性剂后得到成品燃料乙醇,产品质量符合国家标准GB18350-2013;
优选地,本发明全工艺采用余热回收技术,对蒸馏、脱水工段的废余热进行回收,用于预热无水原料或加热醪液或成熟醪液。
本发明相对于现有技术具有如下的优点及效果:
1、沙枣的含糖量十分高,易于被酵母菌利用。同时沙枣的蛋白质、维生素和矿物元素含量丰富,有利于酵母菌的发酵生长。
2、由于沙枣含可发酵糖较高,过程无需加入淀粉酶、糖化酶进行液糖化,也可以直接应用生料发酵技术,节省能耗, 使得生产工艺大为简化。
3、本发明工艺中,采用差压蒸馏技术与余热回收技术、醪醪换热技术,配合高酒分发酵,可以使能耗大幅降低,最高可使整体蒸汽消耗低于3.0吨/吨酒精,比目前以淀粉为原料的燃料乙醇低15~30%。
4、本发明对作为原料的沙枣没有特殊要求,可有效拓宽沙枣的用途,使沙枣类资源得到充分利用。
5、本发明工艺中的液化处理工段,固液处理是从枣浆中分离枣皮、纤维等不溶物的过程,由于枣浆中的枣皮和纤维仍然带有5~10%的糖分,固液分离采用多次研磨、洗涤、分离,可将枣浆中的枣皮和纤维软化减少糖分在不溶性固形物中的残留,使得糖分充分释放,而且也避免了沙枣果皮、纤维在蒸馏工段磨损、堵塞设备的问题。
6、本发明工艺中的液化处理工段,采用添加果胶酶等降粘酶,再进行蒸煮处理,固液分离、多效蒸发浓缩,因为枣浆中枣皮和纤维仍然带有5~10%的糖分,采用蒸煮的方法可将栆皮和纤维软化,将固体糖状态溶解变成液体糖状态,将糖分充分释放;采用添加果胶酶可降低枣浆的粘度,减少糖分在不溶性固形物中的残留,使得糖分充分释放,也避免了由于枣浆粘度流动性差导致发酵蒸馏工段的能耗急剧上升的问题。采用此液化处理,可将沙枣中的糖分得率提高5~9%,大大提高了原料的利用率,减少了原料消耗成 本。
7、本发明方法的糖醇转化率、生产效率与以玉米等淀粉质为原料发酵时基本保持一致,在不耗费粮食资源的前提下,采用了一种新的生物资源来生产生物能源,拓宽了生物能源的原料来源。
附图说明
图1为以沙枣为原料发酵生产燃料乙醇的工艺的实施例1的流程原理图;
图2为以沙枣为原料发酵生产燃料乙醇的工艺的实施例2的流程原理图;
图3为以沙枣为原料发酵生产燃料乙醇的工艺的实施例1的工艺流程图;
图4为以沙枣为原料发酵生产燃料乙醇的工艺的实施例2的工艺流程图;
图5为以沙枣为原料发酵生产燃料乙醇的工艺的实施例3的工艺流程图;
图6为以沙枣为原料发酵生产燃料乙醇的工艺的实施例4的工艺流程图;
图7为以沙枣为原料发酵生产燃料乙醇的工艺的实施例5的简化流程图;
图8为以沙枣为原料发酵生产燃料乙醇的工艺的实施例5的工艺 流程图。
具体实施方式
对比例1
对比例1以玉米为原料发酵生产燃料乙醇的工艺:
将143.2kg玉米(淀粉含量为65%,水分质量含量为14%)粉碎预液化罐,加入拌料水,α-淀粉酶,得到干物质质量含量为26.5%的粉浆,在预液化罐中,上述粉浆由直接蒸汽加热至80~90℃。
然后粉浆通过泵送去喷射液化器,控制蒸汽喷射器出料温度为95~105℃,得到加热后的醪液。将加热后的醪液送入蒸煮柱进行蒸煮熟化。熟化后的醪液降温至60~65℃,得到液化醪。
液化醪在糖化罐(配备搅拌器)内用硫酸调节pH值,然后加入糖化酶进行糖化,糖化后的醪液由泵输送经两级板式冷却器进行逐级冷却,冷却至28~33℃,送往发酵工段。
发酵工段采用间歇式发酵,醪液加入从酒母罐过来的酵母,发酵时间为60h,温度为33℃。发酵结束后,得到的发酵成熟醪送去蒸馏和脱水工段。
发酵成熟醪蒸馏后,得到的酒精蒸汽(95.8%V/V);废醪去往废糟处理工段;酒精蒸汽送往分子筛脱水工段,得到无水乙醇成品蒸汽,无水乙醇成品蒸汽冷凝后得到43.0kg燃料乙醇产品;产品质量分数为99.5%,含水量<0.5%,符合变性燃料乙醇国家标准GB18350-2013。
蒸馏后得到的废醪经固液分离处理,分离出的清液部分回用作液 化工段用水,其余进蒸发浓缩装置生产浓浆,将浓浆与固渣混合,经干燥、造粒、冷却得到水分小于11.5%的DDGS饲料。全工段总的蒸汽消耗为3.9-4.0吨/吨燃料乙醇(含废糟综合处理工段)。
实施例1
请参阅图1、图3,实施例1以沙枣为原料发酵生产燃料乙醇的工艺如下:
将40kg已经去除杂质和果核的沙枣粉,加入pH3.5~5.0的工艺水打浆,得枣浆,控制枣浆的质量浓度为20~30%,糖度15%~17%左右;
枣浆经过多级喷射器将枣浆加热至85~100℃,送往蒸煮罐进行蒸煮保温50~90min;枣浆醪液经换热器冷却醪液至28~35℃;
枣浆醪液直接进入发酵罐,接入酵母,在30~34℃下搅拌发酵36~40h;在罐内,通过酵母,发酵生成酒精,发酵过程通入无菌空气以保持酵母活力,当醪液残糖浓度低于0.5%时终止发酵,得到发酵成熟醪液;
成熟醪液预热至70℃以上后送至蒸馏***,经差压蒸馏后,从精馏塔液相采出体积分数为95%的酒精作为无水原料;
无水原料经预热后送至分子筛***,经蒸发器、过热器后进分子筛床脱水,得到燃料乙醇酒气,燃料乙醇酒气冷却后得到9.04kg质量分数为99.5%的燃料乙醇;在燃料乙醇酒气的冷却过程中,对燃料乙醇酒气冷却过程中产生的余热回收,回收的余热可用于对无水原料 进行预热,实现热量的回收利用,降低成本;蒸馏和脱水工段蒸汽消耗为1.4~1.6吨/吨燃料乙醇。
向质量分数为99.5%的燃料乙醇中添加变性剂后得到成品燃料乙醇,产品质量符合国家标准GB18350-2013(如表1所示);
表1燃料乙醇检验结果
Figure PCTCN2019087919-appb-000001
蒸馏脱水***排出的废醪经固液分离、蒸发浓缩,部分废水进行中水回用。固体酒糟干燥生产DDG或与蒸发浓缩后的液体酒糟混合生产DDGS。全工段总的蒸汽消耗为3.4~3.6吨/吨燃料乙醇(含废糟综合处理工段)。
对照对比例1的工艺过程,该工艺与玉米等淀粉质为原料的燃料乙醇工艺相似,工艺技术可靠,并且该工艺蒸煮灭菌过程无需添加淀粉酶和糖化酶,节约了生产成本。
实施例2
请参阅图2、图4,实施例2以沙枣为原料发酵生产燃料乙醇的工艺如下:
将30kg已经去除杂质和果核的沙枣粉,加入pH3.5~5.0的工艺水打浆,得枣浆,控制枣浆的质量浓度为20~30%,糖度10~15%左右;
枣浆经过固液分离,清体醪液直接送往发酵罐;分离后固体进行堆肥处理或者烘干后生产饲料;
清体醪液直接进入发酵罐,接入酵母,加入抑菌剂,在30~34℃下搅拌发酵36~40h;在罐内,通过酵母,发酵生成酒精,发酵过程通入无菌空气以保持酵母活力,当醪液残糖浓度低于0.5%时终止发酵,得到发酵成熟醪;
成熟醪预热至70℃以上后送至蒸馏车间,经差压蒸馏后,从精馏塔液相采出体积分数为95%的酒精作为无水原料;
无水原料经预热后送至分子筛***,经蒸发器、过热器后进分子筛床脱水,得到燃料乙醇酒气,燃料乙醇酒气冷却后得到7.85kg质量分数为99.5%的燃料乙醇;在燃料乙醇酒气的冷却过程中,对燃料乙醇酒气冷却过程中产生的余热回收,回收的余热可用于对无水原料进行预热,实现热量的回收利用,降低成本;
向质量分数为99.5%的燃料乙醇中添加变性剂后得到成品燃料乙醇,产品质量符合国家标准GB18350-2013(如表2所示);
表2燃料乙醇检验结果
Figure PCTCN2019087919-appb-000002
Figure PCTCN2019087919-appb-000003
蒸馏脱水***排出的废醪经固液分离、蒸发浓缩,部分废水进行中水回用。固体酒糟干燥生产DDG或与蒸发浓缩后的液体酒糟混合生产DDGS。
与对比例1中的玉米等淀粉质原料相比,沙枣原料含可直接发酵糖较高,因此采用生料发酵方法,对沙枣浆进行固液分离,然后按照清液发酵工艺进行发酵。
该实施例的工艺优点在于,醪液无需蒸煮,采用清液发酵工艺,因此工艺简单,配合余热回收技术,燃料乙醇的所耗蒸汽<3.0吨/吨酒精,整体蒸汽消耗达到甚至低于传统玉米燃料乙醇生产汽耗水平,生产的过程成本比玉米、木薯为原料的燃料乙醇低。
实施例3
请参阅图5,实施例3以沙枣为原料发酵生产燃料乙醇的工艺如下:
将220kg已经去除杂质和果核的沙枣粉,加入pH3.5~5.0含营养盐的工艺水,打浆,得枣浆,控制枣浆的质量浓度为20~35%,糖度为16~20%;
枣浆经过一级喷射器预热至30~60℃,0.05~0.1%的比例加入果胶酶,保温1~2小时,然后经过多级喷射器将枣浆加热至85~ 100℃,送往蒸煮罐进行蒸煮保温30~180min;枣浆醪液与未预热的枣浆进行醪醪换热,对枣浆进行预热,然后枣浆醪液再经冷却水换热器冷却至20~35℃;
枣浆醪液直接进入发酵罐,接入酵母,发酵36~40h;在罐内,通过酵母,发酵生成酒精,发酵过程通入无菌空气以保持酵母活力,发酵最终酒精度为11~14%(V/V),残糖浓度低于0.5%,得到成熟醪液;
成熟醪液预热至70℃以上后送至蒸馏车间,经差压蒸馏后,从精馏塔液相采出体积分数为95%的酒精作为无水原料;
无水原料经预热后送至分子筛***,经蒸发器、过热器后进分子筛床脱水,得到燃料乙醇酒气,燃料乙醇酒气冷却后得到54kg质量分数为99.5%的燃料乙醇;在燃料乙醇酒气的冷却过程中,对燃料乙醇酒气冷却过程中产生的余热回收,回收的余热可用于对后续无水原料进行预热,实现热量的回收利用,降低成本;
向质量分数为99.5%的燃料乙醇添加变性剂后得到成品燃料乙醇,产品质量符合国家标准GB18350-2013(如表3所示);
表3燃料乙醇检验结果
Figure PCTCN2019087919-appb-000004
Figure PCTCN2019087919-appb-000005
蒸馏脱水***排出的废醪经固液分离、蒸发浓缩,部分废水进行中水回用。固体酒糟干燥生产DDG或与蒸发浓缩后的液体酒糟混合生产DDGS。
该实施例的工艺优点在于,枣浆经过酶解后进行全料发酵,能很好解决醪液的流动性问题,不容易堵塞管路,原料中的糖分释放完全,糖醇转化率较高,糖醇转化率大于45%。经过蒸煮酶处理,在发酵醪糖度保持在16%以上的情况下,沙枣中的糖分得率比实施例1可提高2.5~4.0%。
实施例4
请参阅图6,实施例4以沙枣为原料发酵生产燃料乙醇的工艺如下:
将175kg已经去除杂质和果核的沙枣粉,加入pH3.5~5.0的工艺水打浆,得枣浆,控制枣浆的质量浓度为15~30%,糖度15%左右;
枣浆经过三次打浆、洗涤、分离等固液分离处理(如图6所示),将清液收集,并进行多效蒸发浓缩,清液进入蒸发器前,利用蒸馏脱水工段回收的余热进行预热,预热后进入多效蒸发器进行蒸发浓缩;浓缩后的清醪液直接送往发酵罐;分离后固体进行堆肥处理或者烘干后生产饲料;
清醪液直接进入发酵罐,接入酵母,加入抑菌剂,发酵36~40h;在罐内,通过酵母,发酵生成酒精,发酵过程通入无菌空气以保持酵母活力;发酵最终酒精度为8~9%(V/V),残糖浓度低于0.5%,得到成熟醪液;
成熟醪液预热至70℃以上后送至蒸馏车间,经差压蒸馏后,从精馏塔液相采出体积分数为95%的酒精作为无水原料;
无水原料经预热后送至分子筛***,经蒸发器、过热器后进分子筛床脱水,得到燃料乙醇酒气,燃料乙醇酒气冷却后得到41kg质量分数为99.5%的燃料乙醇;在燃料乙醇酒气的冷却过程中,对燃料乙醇酒气冷却过程中产生的余热回收,回收的余热可用于对无水原料进行预热,实现热量的回收利用,降低成本;
向质量分数为99.5%的燃料乙醇添加变性剂后得到成品燃料乙醇,产品质量符合国家标准GB18350-2013(如表4所示);
表4燃料乙醇检验结果
Figure PCTCN2019087919-appb-000006
蒸馏脱水***排出的废醪经固液分离、蒸发浓缩,部分废水进行中水回用。固体酒糟干燥生产DDG或与蒸发浓缩后的液体酒糟混合生产DDGS。
经过固液分离、研磨、洗涤和多效蒸发,在发酵醪糖度保持在 15%以上的情况下,沙枣中的糖分得率比实施例1可提高2.0~5.0%;醪液不经过蒸煮直接进行生料发酵,并对蒸馏脱水工段的废蒸汽进行余热回收,将栆浆固液分离后的清液进行加热蒸发浓缩、成熟醪液预热,能减少20~30%的蒸汽消耗,全工艺过程的蒸汽消耗为2.8~3.0吨/吨燃料乙醇。该工艺过程由于采用生料发酵工艺,过程无需添加酶制剂,大大节约了生产成本。
实施例5
请参阅图7、图8,实施例5以沙枣为原料发酵生产燃料乙醇的工艺如下:
将220kg已经去除杂质和果核的沙枣粉,加入pH3.5~5.0含营养盐的工艺水,打浆,得枣浆,控制枣浆的质量浓度为20~35%;
枣浆经过来至蒸馏脱水工段的蒸汽余热经换热器预热至30~60℃,0.05~0.1%的比例加入果胶酶,保温1~2小时,然后经过多级喷射器将枣浆加热至85~100℃,送往蒸煮罐进行蒸煮保温30~180min;
枣浆经过多次研磨、洗涤、分离,将清液收集,并进行多效蒸发浓缩,将清夜浓缩至糖度为16~24%;浓缩后的清醪液直接送往发酵罐;分离后固体进行堆肥处理或者烘干后生产饲料;
清醪液经换热器与成熟醪液进行醪醪换热,再经冷却水换热冷却醪液至20~35℃;清液直接进入发酵罐,接入酵母,发酵36~48h;在罐内,通过酵母,发酵生成酒精,发酵过程通入无菌空气以保持酵 母活力,发酵最终酒精度为11~14%(V/V),残糖浓度低于0.5%,得到成熟醪液;
成熟醪液经醪醪换热预热至70℃以上后送至蒸馏车间,经差压蒸馏后,从精馏塔液相采出体积分数为95%的酒精作为无水原料;
无水原料经预热后送至分子筛***,经蒸发器、过热器后进分子筛床脱水,得到燃料乙醇酒气,燃料乙醇酒气冷却后得到57kg质量分数为99.5%的燃料乙醇;在燃料乙醇酒气的冷却过程中,对燃料乙醇酒气冷却过程中产生的余热回收,回收的余热可用于对无水原料进行预热,实现热量的回收利用,降低成本;
向质量分数为99.5%的燃料乙醇添加变性剂后得到成品燃料乙醇,产品质量符合国家标准GB18350-2013(如表5所示);
表5燃料乙醇检验结果
Figure PCTCN2019087919-appb-000007
Figure PCTCN2019087919-appb-000008
蒸馏脱水***排出的废醪经固液分离、蒸发浓缩,部分废水进行中水回用。固体酒糟干燥生产DDG或与蒸发浓缩后的液体酒糟混合生产DDGS。
经过蒸煮、固液分离、研磨、洗涤和多效蒸发,在发酵醪糖度保持在16%以上的情况下,沙枣中的糖分得率比实施例1可提高5.0~9.0%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (15)

  1. 一种以沙枣为原料生产燃料乙醇的方法,其特征在于,包括以下步骤:沙枣的预处理及打浆,液化处理,发酵,乙醇蒸馏、脱水;其中:
    (1)预处理及打浆:将沙枣去核,加pH3.5~5.0的工艺水打浆,得到枣浆,控制枣浆的质量浓度为15~30%;
    (2)液化处理:枣浆进行液化处理;
    (3)发酵:接入活性干酵母;发酵,得到发酵成熟醪液;
    (4)乙醇蒸馏、脱水:成熟醪液经过蒸馏、脱水后,冷凝后得到乙醇液体,加入变性剂,得到成品燃料乙醇;
    所述乙醇蒸馏、脱水具体为:
    将成熟醪液预热至70℃以上后送至蒸馏车间,经差压蒸馏后,从精馏塔液相采出体积分数为95%的酒精作为无水原料;
    无水原料经预热后送至分子筛***,经蒸发器、过热器后进分子筛床脱水,得到燃料乙醇酒气,燃料乙醇酒气冷却后即为质量分数为99.5%的燃料乙醇;
    向质量分数为99.5%的燃料乙醇中添加变性剂后得到成品燃料乙醇;
    所述的成熟醪液预热,可以直接利用一次蒸汽预热,也可以使用从蒸馏脱水工段回收的余热进行预热。
  2. 根据权利要求1所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,所述液化处理包括以下步骤:
    枣浆经过固液分离,清体醪液直接送往发酵罐;分离后固体进行 堆肥处理或者烘干后生产饲料。
  3. 根据权利要求1所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,所述液化处理包括以下步骤:
    枣浆经过一级喷射器预热至30~60℃,0.05~0.1%的比例加入果胶酶,保温1~2小时,然后经过多级喷射器将枣浆加热至85~105℃,送往蒸煮罐进行蒸煮保温30~180min,得到枣浆醪液;枣浆醪液经换热器冷却醪液至20~35℃。
  4. 根据权利要求1所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,所述液化处理采用多级低压蒸汽喷射后蒸煮的连续蒸煮工艺,使混合浆液受热均匀;所述的多级蒸汽喷射为一级或一级以上蒸汽喷射。
  5. 根据权利要求2所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,所述发酵中的醪液在发酵罐的时间在36~60小时;发酵成熟醪液的酒精度达到7~11%(v/v);在发酵过程中会有热量放出,通过罐外冷却保证发酵温度的稳定;发酵温度为28~35℃;发酵罐采用立式搅拌器。
  6. 根据权利要求2所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,还包括废糟综合处理工段;
    所述废糟综合处理工段的处理过程包括:对所述乙醇蒸馏、脱水工段排出的废糟进行固液分离,分离后的湿糟去做固体生物肥料或干燥,分离后的清液部分回用,部分进入液体肥储罐。
  7. 根据权利要求1所述的以沙枣为原料生产燃料乙醇的方法,其特 征在于,还包括后续的副产品回收利用工段,所述副产品回收利用工段包括液体二氧化碳回收,沼气的生产、提纯、净化和杂醇油的精密分离。
  8. 一种以沙枣为原料生产燃料乙醇的方法,其特征在于,包括以下步骤:沙枣的预处理及打浆,液化处理,发酵,乙醇蒸馏、脱水;
    其中
    (1)预处理及打浆:将沙枣去核,加pH3.5~5.0的工艺水打浆,得到枣浆,控制枣浆的质量浓度为15~30%;
    (2)液化处理:枣浆进行液化处理;
    (3)发酵:接入活性干酵母;发酵,得到发酵成熟醪液;
    (4)乙醇蒸馏、脱水:成熟醪液经过蒸馏、脱水后,冷凝后得到乙醇液体,加入变性剂,得到成品燃料乙醇。
  9. 根据权利要求8所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,所述液化处理包括以下步骤:
    枣浆经过固液分离,清体醪液直接送往发酵罐;分离后固体进行堆肥处理或者烘干后生产饲料;
    其中,固液分离为一次或多次打浆研磨、洗涤、分离的过程。
  10. 根据权利要求8所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,所述固液分离为利用压滤机和/或蝶式离心机和/或双锥离心机和/或卧螺式离心机进行多次的研磨、洗涤、分离。
  11. 根据权利要求8所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,所述液化处理还包括枣浆经过一级喷射器预热至30~60℃, 0.05~0.1%的比例加入果胶酶,保温1~2小时,然后经过多级喷射器将枣浆加热至85~105℃,送往蒸煮罐进行蒸煮保温30~180min,枣浆经过多次研磨、洗涤、分离,将清液收集,并进行多效蒸发浓缩,浓缩后的清醪液直接送往发酵罐,分离后固体进行堆肥处理或者烘干后生产饲料;
    所述枣浆预热,可以选择如下方式之一:
    一次蒸汽预热;
    从醪液冷却过程回收的余热进行醪醪换液余热;
    采用蒸馏脱水工段回收的余热进行预热。
  12. 根据权利要求8所述的一种利用沙枣发酵生产燃料乙醇的方法,其特征在于,所述乙醇蒸馏、脱水具体为:
    将成熟醪液预热至70℃以上后送至蒸馏车间,经差压蒸馏后,从精馏塔液相采出体积分数为95%的酒精作为无水原料;
    无水原料经预热后送至分子筛***,经蒸发器、过热器后进分子筛床脱水,得到燃料乙醇酒气,燃料乙醇酒气冷却后即为质量分数为99.5%的燃料乙醇;
    向质量分数为99.5%的燃料乙醇中添加变性剂后得到成品燃料乙醇;
    所述的成熟醪液预热,可以直接利用一次蒸汽预热,也可以使用从蒸馏脱水工段回收的余热进行预热。
  13. 根据权利要求9或10所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,所述发酵中的醪液在发酵罐的时间在36~60小时,发 酵成熟醪液的酒精度达到9~13%(v/v),在发酵过程中会有热量放出,通过罐外冷却保证发酵温度的稳定,发酵温度为28~35℃,发酵罐采用搅拌器搅拌。
  14. 根据权利要求9或10所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,还包括废糟综合处理工段;
    所述废糟综合处理工段的处理过程包括:对所述乙醇蒸馏、脱水工段排出的废糟进行固液分离,分离后的湿糟去做固体生物肥料或干燥,分离后的清液部分回用,部分进入液体肥储罐。
  15. 根据权利要求8所述的以沙枣为原料生产燃料乙醇的方法,其特征在于,还包括后续的副产品回收利用工段;
    所述副产品回收利用工段包括液体二氧化碳回收,沼气的生产、提纯、净化和杂醇油的精密分离。
PCT/CN2019/087919 2018-05-25 2019-05-22 一种以沙枣为原料生产燃料乙醇的方法 WO2019223710A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/059,106 US20210222207A1 (en) 2018-05-25 2019-05-22 Method for producing ethanol fuel by using elaeagnus angustifolia l. as raw material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810520574.X 2018-05-25
CN201810520574.XA CN108913723B (zh) 2018-05-25 2018-05-25 一种以沙枣为原料生产燃料乙醇的方法

Publications (1)

Publication Number Publication Date
WO2019223710A1 true WO2019223710A1 (zh) 2019-11-28

Family

ID=64409913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087919 WO2019223710A1 (zh) 2018-05-25 2019-05-22 一种以沙枣为原料生产燃料乙醇的方法

Country Status (3)

Country Link
US (1) US20210222207A1 (zh)
CN (1) CN108913723B (zh)
WO (1) WO2019223710A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108913723B (zh) * 2018-05-25 2019-06-21 黑龙江锦绣大地生物工程有限公司 一种以沙枣为原料生产燃料乙醇的方法
CN109536538A (zh) * 2018-12-28 2019-03-29 黑龙江大学 一种沙枣与玉米联合制备乙醇的方法
CN111118070A (zh) * 2019-12-16 2020-05-08 黑龙江锦绣大地生物工程有限公司 一种以沙枣果实为原料生产燃料乙醇及沙枣多糖的方法
CN113648821A (zh) * 2021-08-13 2021-11-16 宁夏首朗吉元新能源科技有限公司 一种铁合金尾气的处理方法及处理***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475966A (zh) * 2008-12-29 2009-07-08 刘明全 一种用海枣制备乙醇的方法
CN107974467A (zh) * 2017-12-06 2018-05-01 广东中科天元新能源科技有限公司 一种以淀粉质和木质纤维素为原料生产燃料乙醇的工艺
CN108913723A (zh) * 2018-05-25 2018-11-30 黑龙江锦绣大地生物工程有限公司 一种以沙枣为原料生产燃料乙醇的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010808B (zh) * 2010-07-20 2012-09-05 山西悦卜林创业投资有限公司 红枣酒及其生产工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475966A (zh) * 2008-12-29 2009-07-08 刘明全 一种用海枣制备乙醇的方法
CN107974467A (zh) * 2017-12-06 2018-05-01 广东中科天元新能源科技有限公司 一种以淀粉质和木质纤维素为原料生产燃料乙醇的工艺
CN108913723A (zh) * 2018-05-25 2018-11-30 黑龙江锦绣大地生物工程有限公司 一种以沙枣为原料生产燃料乙醇的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIAN, XIAOJU ET AL.: "Study on the Processing Technology of Elaeagnus Angustifolia Fruit Wine", JOURNAL OF ANHUI AGRICULTURAL SCIENCES, vol. 39, no. 2, 10 January 2011 (2011-01-10), pages 832- 833 - 844, XP055657315 *

Also Published As

Publication number Publication date
CN108913723B (zh) 2019-06-21
CN108913723A (zh) 2018-11-30
US20210222207A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
CN108103112B (zh) 一种以玉米淀粉质为原料生产燃料乙醇的工艺
WO2019223710A1 (zh) 一种以沙枣为原料生产燃料乙醇的方法
CN101555495B (zh) 乙醇导向秸秆生物炼制全封闭集成***
CN102286544B (zh) 一种淀粉基燃料乙醇的清洁生产方法
CN101358214B (zh) 利用秸秆生产糠醛耦合联产丙酮和丁醇的方法
CN101648847B (zh) 燃料乙醇与食用酒精复合工艺
CN103993042B (zh) 一种木质纤维素类物质联产生物乙醇和普鲁兰糖的方法
CN104177195A (zh) 一种叶面喷施型花卉专用肥及其制备方法
CN101597555A (zh) 甘蔗酒的制造方法
CN102911986A (zh) 一种淀粉质原料液化糖化工艺
CN107974467A (zh) 一种以淀粉质和木质纤维素为原料生产燃料乙醇的工艺
CN100540671C (zh) 酒精生产的混合原料发酵工艺
CN206901972U (zh) 一种厨余垃圾废水处理生产线
CN206901971U (zh) 一种基于厨余垃圾废水的发酵与蒸馏处理生产线
CN101085992A (zh) 野生植物淀粉资源如橡子淀粉替代粮食生产乙醇的办法
CN102220379B (zh) 不需要外部化石能淀粉质原料发酵生产无水乙醇的方法
CN102250964A (zh) 一种淀粉质原料酒精生产工艺
CN102174595A (zh) 一种连续固态发酵餐厨垃圾生产丁醇的方法
CN106893682B (zh) 一种液化醪扩培酵母菌的方法及其应用和发酵乙醇的方法
CN102978244A (zh) 一种木薯原料浓醪发酵生产酒精的工艺
CN102605003A (zh) 薯类原料酒精生产方法
CN206747231U (zh) 一种餐厨垃圾无害化处理生产线
CN107354185A (zh) 一种提高木薯发酵生产燃料乙醇得率的工艺
CN103773812A (zh) 一种橡实制备燃料乙醇及资源化利用的方法
CN102174590B (zh) 一种玉米连续固态发酵-产物气提耦合分离的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807928

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19807928

Country of ref document: EP

Kind code of ref document: A1