WO2019223665A1 - 下行数据的传输方法、网络设备及终端 - Google Patents

下行数据的传输方法、网络设备及终端 Download PDF

Info

Publication number
WO2019223665A1
WO2019223665A1 PCT/CN2019/087689 CN2019087689W WO2019223665A1 WO 2019223665 A1 WO2019223665 A1 WO 2019223665A1 CN 2019087689 W CN2019087689 W CN 2019087689W WO 2019223665 A1 WO2019223665 A1 WO 2019223665A1
Authority
WO
WIPO (PCT)
Prior art keywords
wide
narrow
terminal
beams
information
Prior art date
Application number
PCT/CN2019/087689
Other languages
English (en)
French (fr)
Inventor
赵培尧
王昭诚
徐凯
庄宏成
孙彦良
张莉莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810893428.1A external-priority patent/CN110535579B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/057,462 priority Critical patent/US11395156B2/en
Publication of WO2019223665A1 publication Critical patent/WO2019223665A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method, a network device, and a terminal for transmitting downlink data.
  • MIMO Multiple-Input Multiple-Output
  • This MIMO technology can improve system capacity and spectrum efficiency, enabling the system to obtain higher transmission rates under limited spectrum resources. And system throughput.
  • spatial multiplexing gain can be obtained and the capacity of the communication channel can be increased.
  • a communication system including a base station, a wide beam terminal, and a narrow beam terminal is taken as an example.
  • the wide beam terminal can be understood as a terminal that is using a wide beam or is about to use a wide beam.
  • a narrow beam terminal can be understood as a terminal that is using a narrow beam or is about to use a narrow beam.
  • FIG. 1 is a schematic diagram of a method for transmitting downlink data provided by the prior art.
  • the base station receives a wide beam The widest beam with the largest reference signal received power (Reference Signaling Power, RSRP) fed back by the terminal and the narrowest beam with the largest RSRP fed back by the terminal.
  • RSRP Reference Signaling Power
  • the interference measurement needs to be performed on the widest beam with the largest RSRP and the narrowest beam with the largest RSRP.
  • the S103 base station sends orthogonal reference signals to the wide-beam terminal and the narrow-beam terminal, so that the wide-beam terminal and the narrow-beam terminal can measure the signal strength and interference intensity of the respective feedback beams according to the orthogonal reference signal, respectively. And feedback the respective measured signal strength and interference strength to the base station; Terminal to determine a wide beam and narrow-beam terminal based on the signal strength and interference strength of the feedback signal to interference ratio, and whether a downlink data transmission according to the determined ratio SIR obtained.
  • interference measurement needs to be performed first by sending an orthogonal reference signal.
  • This orthogonal reference signal will occupy a certain amount of time-frequency resources, resulting in a large overhead of interference measurement.
  • the wide-beam terminal and the The narrow-beam terminal can measure the signal strength and interference intensity of the respective feedback beams according to the orthogonal reference signal, and feed them back to the base station. It takes a certain amount of time, resulting in a large delay in interference measurement.
  • the present application provides a method, a network device, and a terminal for transmitting downlink data, so as to reduce the overhead and delay of interference measurement when transmitting downlink data.
  • an embodiment of the present application provides a method for transmitting downlink data.
  • the method for transmitting downlink data may include:
  • first beam feedback information includes information of a first wide beam to be used by the wide beam terminal and information of M wide beams whose signal quality satisfies a first condition, where M is greater than or An integer equal to 1
  • the second beam feedback information includes information of a second wide beam determined by the narrow beam terminal and information of N wide beams whose signal quality satisfies a second condition, where N is greater than or equal to An integer of 1
  • the method provided in the embodiment of the present application can directly determine whether to transmit downlink data to a wide-beam terminal and a narrow-beam terminal based on the first beam feedback information, the second beam feedback information, and the first narrow beam information.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams used for downlink transmission; or, the M wide beams are the signal quality of the alternative wide beams that is less than the first Threshold M wide beams;
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or, the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • determining whether to transmit downlink data to a wide beam terminal and a narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information includes:
  • both the signal-to-interference ratio of the wide-beam terminal and the signal-to-interference ratio of the narrow-beam terminal are greater than the third threshold, it is determined that downlink data is transmitted to the narrow-beam terminal on the first narrow beam and transmitted to the wide-beam terminal on the first wide beam. Downstream data.
  • the information of the first wide beam includes reference signal reception power RSRP of the first wide beam
  • the information of the first narrow beam includes RSRP of the first narrow beam. It is determined that the wide beam terminal and the narrow beam terminal are each S / N ratio, including:
  • a signal-to-interference ratio of the narrow-beam terminal is determined according to a ratio of the RSRP of the first narrow beam to the RSRP of the first wide beam among the N wide beams.
  • determining whether to transmit downlink data to a wide beam terminal and a narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information includes:
  • a third beam feedback message is received from the wide beam terminal;
  • the third beam feedback message includes information of P narrow beams whose signal quality satisfies the third condition; P is greater than Or an integer equal to 1;
  • the P narrow beams are P narrow beams whose signal quality in a candidate narrow beam covered by a first wide beam used for downlink transmission is less than a third threshold.
  • the first narrow beam is any of the P narrow beams, determining the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal;
  • both the signal-to-interference ratio of the wide-beam terminal and the signal-to-interference ratio of the narrow-beam terminal are greater than the fourth threshold, it is determined that downlink data is transmitted to the narrow-beam terminal on the first narrow beam and transmitted to the wide-beam terminal on the first wide beam. Downstream data.
  • the information of the first wide beam includes RSRP of the first wide beam
  • the information of the first narrow beam includes RSRP of the first narrow beam.
  • the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal are determined.
  • a signal-to-interference ratio of the narrow-beam terminal is determined according to a ratio of the RSRP of the first narrow beam to the RSRP of the first wide beam among the N wide beams.
  • the method for transmitting downlink data may further include:
  • the first narrow beam is not any of the P narrow beam information, it is determined that downlink data is not transmitted to the narrow beam terminal on the first narrow beam, and downlink data is not transmitted to the wide beam terminal on the first wide beam.
  • the method before receiving the third beam feedback message from the wide beam terminal, the method further includes:
  • the candidate narrow beams under the coverage of the first wide beam used for downlink transmission are scanned.
  • an embodiment of the present application further provides a method for transmitting downlink data.
  • the method for transmitting downlink data may include:
  • the candidate wide beam for downlink transmission scanned by the base station When the candidate wide beam for downlink transmission scanned by the base station is received, the information of the first wide beam to be used by the wide beam terminal and the information of the M wide beams whose signal quality meets the first condition are determined in the candidate wide beam.
  • M is an integer greater than or equal to 1;
  • the base station Send the first beam feedback information to the base station, where the first beam feedback information includes information of the first wide beam and information of the M wide beams.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams; or the M wide beams are the M wide beams with the signal quality less than the first threshold in the candidate wide beams Beam.
  • the method for transmitting downlink data may further include:
  • the candidate narrow beam is sent by the base station when it determines that the parent beam of the first narrow beam to be used by the narrow beam terminal is the first wide beam ;
  • P is an integer greater than or equal to 1;
  • the base station sends a third beam feedback message to the base station; the third beam feedback message includes information of the P narrow beams.
  • the P narrow beams are P narrow beams in which the signal quality of the candidate narrow beams is less than a third threshold.
  • an embodiment of the present application further provides a method for transmitting downlink data.
  • the method for transmitting downlink data may include:
  • N is an integer greater than or equal to 1;
  • the base station Sending second beam feedback information to the base station, where the second beam feedback information includes information of a second wide beam and information of N wide beams;
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beams. Beam.
  • an embodiment of the present application further provides a network device, and the network device may include:
  • a receiving unit configured to receive first beam feedback information from a wide beam terminal; wherein the first beam feedback information includes information of a first wide beam to be used by the wide beam terminal and information of M wide beams whose signal quality meets a first condition , M is an integer greater than or equal to 1;
  • the receiving unit is further configured to receive second beam feedback information from the narrow beam terminal.
  • the second beam feedback information includes information of the second wide beam determined by the narrow beam terminal and information of N wide beams whose signal quality meets the second condition.
  • N is an integer greater than or equal to 1;
  • the receiving unit is further configured to receive information of a first narrow beam to be used by the narrow beam terminal from the narrow beam terminal, where the first narrow beam is a narrow beam covered by a second wide beam;
  • a determining unit configured to determine whether to transmit downlink data to a wide beam terminal and a narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams used for downlink transmission; or, the M wide beams are the signal quality of the alternative wide beams that is less than the first Threshold M wide beams;
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or, the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • the determining unit is specifically configured to determine when the parent beam of the first narrow beam is any of the M wide beams, and the first wide beam is any of the N wide beams.
  • the information of the first wide beam includes reference signal reception power RSRP of the first wide beam
  • the information of the first narrow beam includes RSRP of the first narrow beam
  • the determining unit is specifically configured to determine the product of the RSRP and the parameter of the parent beam of the first narrow beam among the M wide beams; where the parameter is the square of the maximum gain difference; and according to the ratio of the RSRP of the first wide beam to the product, determine Signal-to-interference ratio of wide beam terminals;
  • the determining unit is further specifically configured to determine a signal-to-interference ratio of the narrow-beam terminal according to a ratio of the RSRP of the first narrow beam and the RSRP of the first wide beam among the N wide beams.
  • the determining unit is specifically configured to receive the third beam feedback message from the wide beam terminal when the parent beam of the first narrow beam is the first wide beam; the third beam feedback message includes signal quality Information of P narrow beams satisfying the third condition; P is an integer greater than or equal to 1; determining whether to transmit downlink data to the narrow beam terminal on the first narrow beam according to the first narrow beam and third beam feedback messages, and Downlink data is transmitted on the first wide beam to the wide beam terminal.
  • the P narrow beams are P narrow beams whose signal quality in a candidate narrow beam covered by a first wide beam used for downlink transmission is less than a third threshold.
  • the determining unit is specifically configured to determine the respective signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal if the first narrow beam is any of the P narrow beams; Both the signal-to-interference ratio and the signal-to-interference ratio of the narrow-beam terminal are greater than the fourth threshold, it is determined that downlink data is transmitted to the narrow-beam terminal on the first narrow beam, and downlink data is transmitted to the wide-beam terminal on the first wide beam.
  • the information of the first wide beam includes RSRP of the first wide beam
  • the information of the first narrow beam includes RSRP of the first narrow beam
  • a determining unit specifically configured to determine the signal-to-interference ratio of the wide-beam terminal according to the ratio of the RSRP of the first wide beam to the RSRP of the first narrow beam among the P narrow beams;
  • the ratio of the RSRP of the first wide beam in the medium determines the signal-to-interference ratio of the narrow-beam terminal.
  • the determining unit is further configured to, if the first narrow beam is not any of the P narrow beam information, determine that downlink data is not transmitted to the narrow beam terminal on the first narrow beam, and Downlink data is transmitted on the first wide beam to the wide beam terminal.
  • the network device may further include:
  • a scanning unit configured to stop scanning a candidate narrow beam under the first wide beam coverage for downlink transmission if P is greater than or equal to a fifth threshold
  • the scanning unit is further configured to scan a candidate narrow beam covered by a first wide beam used for downlink transmission.
  • an embodiment of the present application further provides a wide beam terminal.
  • the wide beam terminal may include:
  • a determining unit configured to determine, when receiving the candidate wide beam scanned by the base station for downlink transmission, in the candidate wide beam, the information and signal quality of the first wide beam to be used by the wide beam terminal satisfying the first condition M Information of a wide beam, M is an integer greater than or equal to 1;
  • the sending unit is configured to send the first beam feedback information to the base station, where the first beam feedback information includes information of the first wide beam and information of the M wide beams.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams; or, the M wide beams are the M wide beams whose signal quality is less than the first threshold in the candidate wide beams. Beam.
  • the wide beam terminal may further include:
  • a receiving unit configured to receive a candidate narrow beam that is scanned by a base station and covered by a first wide beam for downlink transmission; the candidate narrow beam is the base beam of the first narrow beam that the base station determines to be used by the narrow beam terminal as the first Sent in a wide beam;
  • the determining unit is further configured to determine, among the candidate narrow beams, information of P narrow beams whose signal quality meets a third condition; P is an integer greater than or equal to 1;
  • the sending unit is further configured to send a third beam feedback message to the base station; the third beam feedback message includes information of P narrow beams.
  • the P narrow beams are P narrow beams in which the signal quality of the candidate narrow beams is less than a third threshold.
  • an embodiment of the present application further provides a narrow beam terminal.
  • the narrow beam terminal may include:
  • a determining unit configured to determine, when receiving the candidate wide beams scanned by the base station for downlink transmission, N pieces of information and signal qualities of the second wide beams determined by the narrow beam terminal that satisfy the second condition among the candidate wide beams Wide beam information, N is an integer greater than or equal to 1;
  • a sending unit configured to send second beam feedback information to the base station, where the second beam feedback information includes information of a second wide beam and information of N wide beams;
  • the determining unit is further configured to determine, when receiving the candidate narrow beam under the second wide beam coverage scanned by the base station for downlink transmission, the candidate narrow beam to be used by the narrow beam terminal among the candidate narrow beams covered by the second wide beam.
  • the sending unit is further configured to send information of the first narrow beam to be used by the narrow beam terminal to the base station.
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam. Beam.
  • an embodiment of the present application further provides a network device, and the network device may include:
  • a receiver configured to receive first beam feedback information from a wide beam terminal; wherein the first beam feedback information includes information of a first wide beam to be used by the wide beam terminal and information of M wide beams whose signal quality satisfies a first condition , M is an integer greater than or equal to 1;
  • the receiver is further configured to receive second beam feedback information from the narrow beam terminal; wherein the second beam feedback information includes information of the second wide beam determined by the narrow beam terminal and information of N wide beams whose signal quality meets the second condition , N is an integer greater than or equal to 1;
  • the receiver is further configured to receive information of a first narrow beam to be used by the narrow beam terminal from the narrow beam terminal, where the first narrow beam is a narrow beam covered by a second wide beam;
  • the processor is configured to determine whether to transmit downlink data to the wide beam terminal and the narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams used for downlink transmission; or, the M wide beams are the signal quality of the alternative wide beams that is less than the first Threshold M wide beams;
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or, the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • determining whether to transmit downlink data to a wide beam terminal and a narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information includes:
  • the parent beam of the first narrow beam is any of the M wide beams
  • the first wide beam is any of the N wide beams
  • the information of the first wide beam includes a reference signal received power RSRP of the first wide beam
  • determining the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal includes:
  • the receiver is further configured to: when the parent beam of the first narrow beam is the first wide beam, receive a third beam feedback message from the wide beam terminal; the third beam feedback message includes signal quality Information of P narrow beams satisfying the third condition; P is an integer greater than or equal to 1;
  • Determining whether to transmit downlink data to the wide-beam terminal and the narrow-beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information includes: determining whether to determine whether the Downlink data is transmitted to a narrow beam terminal on a narrow beam, and downlink data is transmitted to a wide beam terminal on a first wide beam.
  • the first narrow beam is any of the P narrow beams, determine the respective signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal; if both the signal-to-interference ratio of the wide-beam terminal and the narrow-beam terminal are greater than the fourth The threshold, it is determined that downlink data is transmitted to the narrow beam terminal on the first narrow beam, and downlink data is transmitted to the wide beam terminal on the first wide beam.
  • the information of the first wide beam includes RSRP of the first wide beam
  • determining the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal includes: according to the RSRP of the first wide beam and the P narrow
  • the ratio of the RSRP of the first narrow beam in the beam determines the signal-to-interference ratio of the wide-beam terminal; and the signal-to-interference ratio of the narrow beam terminal is determined based on the ratio of the RSRP of the first narrow beam to the RSRP of the first wide beam of the N wide beams. ratio.
  • the processor is further configured to, if P is greater than or equal to a fifth threshold, stop scanning for a candidate narrow beam under a first wide beam coverage for downlink transmission.
  • the processor is further configured to scan a candidate narrow beam covered by a first wide beam used for downlink transmission.
  • an embodiment of the present application further provides a wide beam terminal, which is characterized in that the wide beam terminal may include:
  • a processor configured to determine, when receiving the candidate wide beam scanned by the base station for the downlink transmission, the information and signal quality of the first wide beam to be used by the wide beam terminal to meet the first condition in the candidate wide beam M
  • Information of a wide beam M is an integer greater than or equal to 1;
  • the transmitter is configured to send the first beam feedback information to the base station, where the first beam feedback information includes information of the first wide beam and information of the M wide beams.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams; or, the M wide beams are the M wide beams whose signal quality is less than the first threshold in the candidate wide beams. Beam.
  • the wide beam terminal may further include a receiver
  • a receiver configured to receive a candidate narrow beam covered by a first wide beam for downlink transmission scanned by a base station; the candidate narrow beam is a base beam of the first narrow beam to be used by the base station to determine the parent beam of the narrow beam terminal to be the first Sent in a wide beam;
  • a processor further configured to determine, among the candidate narrow beams, information of P narrow beams whose signal quality satisfies a third condition; P is an integer greater than or equal to 1;
  • the transmitter is further configured to send a third beam feedback message to the base station; the third beam feedback message includes information of P narrow beams.
  • an embodiment of the present application further provides a narrow beam terminal.
  • the narrow beam terminal may include:
  • a processor configured to determine, when receiving the candidate wide beams scanned by the base station for downlink transmission, information and signal quality of the second wide beam determined by the narrow beam terminal in the candidate wide beams that meet the second condition Wide beam information, N is an integer greater than or equal to 1;
  • a processor further configured to determine, when receiving the candidate narrow beam under the second wide beam coverage scanned by the base station for the downlink transmission, the candidate narrow beam to be used by the narrow beam terminal among the candidate narrow beams covered by the second wide beam First narrow beam;
  • the transmitter is further configured to send information of the first narrow beam to be used by the narrow beam terminal to the base station.
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beams. Beam.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the downlink described in any one of the first aspects is executed. Data transmission method.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method described in any one of the foregoing second aspects is executed.
  • an embodiment of the present application further provides a circuit system, which may include a processing circuit
  • the first beam feedback information is received from the wide beam terminal, the second beam feedback information is received from the narrow beam terminal, and the first narrow beam information to be used by the narrow beam terminal is received from the narrow beam terminal.
  • the first narrow beam is the second wide beam.
  • the processing circuit is configured to determine whether to transmit downlink data to the wide beam terminal and the narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information;
  • the beam feedback information includes information of the first wide beam to be used by the wide beam terminal and information of M wide beams whose signal quality satisfies the first condition, where M is an integer greater than or equal to 1, and the second beam feedback information includes the determination of the narrow beam terminal.
  • the information of the second wide beam and the information of N wide beams whose signal quality satisfies the second condition, N is an integer greater than or equal to 1.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams used for downlink transmission; or, the M wide beams are the signal quality of the alternative wide beams that is less than the first Threshold M wide beams;
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or, the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • determining whether to transmit downlink data to a wide beam terminal and a narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information includes:
  • the parent beam of the first narrow beam is any of the M wide beams
  • the first wide beam is any of the N wide beams
  • the information of the first wide beam includes a reference signal received power RSRP of the first wide beam
  • determining the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal includes:
  • the parent beam of the first narrow beam is a first wide beam, and it is determined whether to send signals to the wide beam terminal and the narrow beam according to the first beam feedback information, the second beam feedback information, and the first narrow beam information.
  • the terminal transmits downlink data, including:
  • the third beam feedback message includes Information of P narrow beams whose signal quality satisfies the third condition; P is an integer greater than or equal to 1.
  • determining whether to transmit downlink data to the narrow beam terminal on the first narrow beam according to the first narrow beam and the third beam feedback message includes:
  • the first narrow beam is any of the P narrow beams, determine the respective signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal; if both the signal-to-interference ratio of the wide-beam terminal and the narrow-beam terminal are greater than the fourth The threshold, it is determined that downlink data is transmitted to the narrow beam terminal on the first narrow beam, and downlink data is transmitted to the wide beam terminal on the first wide beam.
  • the information of the first wide beam includes RSRP of the first wide beam
  • determining the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal includes: according to the RSRP of the first wide beam and the P narrow
  • the ratio of the RSRP of the first narrow beam in the beam determines the signal-to-interference ratio of the wide-beam terminal; and the signal-to-interference ratio of the narrow beam terminal is determined based on the ratio of the RSRP of the first narrow beam to the RSRP of the first wide beam of the N wide beams. ratio.
  • determining whether to transmit downlink data to the narrow beam terminal on the first narrow beam according to the first narrow beam and the third beam feedback message further includes: if the first narrow beam is not P narrow beams Any one of the information is determined not to transmit downlink data to the narrow beam terminal on the first narrow beam, and not to transmit downlink data to the wide beam terminal on the first wide beam.
  • the processing circuit is further configured to, if P is greater than or equal to a fifth threshold, stop scanning the candidate narrow beams under the first wide beam coverage used for downlink transmission.
  • the processing circuit is further configured to scan a candidate narrow beam covered by a first wide beam used for downlink transmission.
  • an embodiment of the present application further provides a circuit system, which may include a processing circuit
  • the processing circuit is configured to, when receiving a candidate wide beam scanned by a base station for downlink transmission, determine in the candidate wide beam that the information and signal quality of the first wide beam to be used by the wide beam terminal satisfy the first For a condition of M wide beams, M is an integer greater than or equal to 1.
  • the M wide beams are M wide beams having the smallest signal quality among the candidate wide beams; or, the M wide beams are signal quality among the candidate wide beams. M wide beams smaller than the first threshold.
  • the processing circuit is further configured to: after receiving the candidate narrow beam covered by the first wide beam for downlink transmission scanned by the base station, Information of P narrow beams in the beam that determine the signal quality meeting the third condition; P is an integer greater than or equal to 1; the candidate narrow beam is the parent of the first narrow beam to be used by the base station when determining the narrow beam terminal The beam is sent when the first wide beam is used.
  • an embodiment of the present application further provides a circuit system, which may include a processing circuit
  • the processing circuit is configured to: when the candidate wide beam scanned by the base station for downlink transmission is received, determine the information and signal quality of the second wide beam determined by the narrow beam terminal in the candidate wide beam to meet the second Information of N wide beams under conditions, where N is an integer greater than or equal to 1;
  • the processing circuit is further configured to: after sending the second beam feedback information to the base station, when receiving the candidate narrow beam covered by the second wide beam for downlink transmission scanned by the base station,
  • the first narrow beam to be used by the narrow beam terminal is determined from the candidate narrow beams covered by the second wide beam; wherein the second beam feedback information includes the information of the second wide beam and the N number of beams. Wide beam information.
  • the N wide beams are N wide beams with the smallest signal quality among the candidate wide beams; or, the N wide beams are the signal quality among the candidate wide beams. N wide beams smaller than the second threshold.
  • an embodiment of the present application further provides a communication system including the network device shown in the fourth aspect, the wide beam terminal shown in the fifth aspect, and the narrow beam terminal shown in the sixth aspect, Or, it includes the network device shown in the seventh aspect, the wide beam terminal shown in the eighth aspect, and the narrow beam terminal shown in the ninth aspect.
  • the downlink data transmission method, network device, and terminal provided in the embodiments of the present application receive first beam feedback information from a wide beam terminal, where the first beam feedback information includes information about the first wide beam to be used by the wide beam terminal and Information of M wide beams whose signal quality satisfies the first condition; receiving second beam feedback information from the narrow beam terminal; wherein the second beam feedback information includes information of the second wide beam determined by the narrow beam terminal and the signal quality satisfies the second Information of N wide beams under conditions; and receiving information of a first narrow beam to be used by a narrow beam terminal from a narrow beam terminal, where the first narrow beam is a narrow beam covered by a second wide beam;
  • the beam feedback information, the second beam feedback information, and the information of the first narrow beam determine whether to transmit downlink data to the wide-beam terminal and the narrow-beam terminal.
  • FIG. 1 is a schematic diagram of a downlink data transmission method provided in the prior art
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method for transmitting downlink data according to an embodiment of the present application.
  • FIG. 6 is a diagram illustrating a relationship between spectral efficiency of a wide-beam terminal and a narrow-beam terminal as a function of a signal-to-noise ratio according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram of another downlink data transmission method according to an embodiment of the present application.
  • FIG. 8 is a relationship diagram between the spectral efficiency of another wide-beam terminal and a narrow-beam terminal as a function of a signal-to-noise ratio according to an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a wide beam terminal according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another wide beam terminal according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a narrow beam terminal according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of still another network device according to an embodiment of the present application.
  • 15 is a schematic structural diagram of still another wide beam terminal according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of still another narrow beam terminal according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various communication systems, for example, a Global System for Mobile (GSM) system, a Code Division Multiple Access (CDMA) system, and a Wideband Code Division Multiple Access (Wideband Code) Division Multiple Access Wireless (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE), 5G communication system or other systems that may appear in the future, some of the terms in this application are as follows Explanations will be made for easy understanding by those skilled in the art. It should be noted that when the solution of the embodiment of the present application is applied to a 5G system or other systems that may appear in the future, the names of network equipment and terminals may change, but this does not affect the implementation of the solution of the embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the communication system may be a cellular mobile communication network system.
  • the cellular mobile communication network system operates in a high frequency band (frequency> 6GHz), and may include network equipment and at least two Terminal equipment, the network equipment (such as a base station) is equipped with an antenna array, and beamforming is used to generate a directional beam for downlink signal transmission; and, the network equipment can simultaneously launch multiple beams at the same frequency for downlink multi-user MIMO transmission.
  • a high frequency band frequency> 6GHz
  • the network equipment such as a base station
  • beamforming is used to generate a directional beam for downlink signal transmission
  • the network equipment can simultaneously launch multiple beams at the same frequency for downlink multi-user MIMO transmission.
  • FIG. 2 please refer to FIG. 2.
  • the network equipment determines whether it can transmit to the wide-beam terminal and the narrow-beam terminal at the same time.
  • Data that is, when the network device determines whether the wide beam terminal and the narrow beam terminal can be scheduled at the same time, the network device needs to send orthogonal reference signals to the wide beam terminal and the narrow beam terminal, so that the wide beam terminal and the narrow beam terminal can respectively Cross-reference signals measure the signal strength and interference strength of the beams fed back, and feed back the measured signal strength and interference strength to the network equipment; so that the network equipment can determine the wide beam terminal and narrow beam according to the feedback signal strength and interference strength The signal-to-interference ratio of the terminal, and determines whether to perform downlink data transmission according to the obtained signal-to-interference ratio.
  • the orthogonal reference signal occupies a certain time-frequency resource, resulting in a large overhead of interference measurement.
  • the wide-beam terminal and the narrow-beam terminal can measure the signal strength and impact of the respective feedback beams according to the orthogonal reference signal, respectively.
  • the interference intensity and feedback to the network equipment it takes a certain amount of time, resulting in a large delay in interference measurement.
  • Terminal also known as terminal equipment, user equipment (UE) is a device that provides voice and / or data connectivity to users, such as handheld devices with wireless connectivity, vehicle-mounted devices , IoT devices, etc.
  • Common terminal devices include: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), and wearable devices.
  • wearable devices include: smart watches, smart bracelets, step counting ⁇ ⁇ And other.
  • Network equipment also known as Radio Access Network (RAN) equipment is a type of equipment that connects terminal equipment to the wireless network, and includes network equipment in various communication standards, such as including but not limited to : Base station, evolved Node B (eNB), radio network controller (RNC), node B (NB), network equipment controller (Base Station Controller, BSC), network equipment Transceiver Station (Base Transceiver Station, BTS), home network equipment (for example, Home NodeB, or Home NodeB, HNB), Baseband Unit (BBU), and so on.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • the network equipment includes network equipment of various frequency systems, such as, but not limited to, low-frequency network equipment and high-frequency network equipment.
  • an embodiment of the present application provides a method for transmitting downlink data.
  • One beam of feedback information includes information of a first wide beam to be used by a wide beam terminal and information of M wide beams whose signal quality satisfies a first condition; receiving second beam feedback information from a narrow beam terminal ;
  • the second beam feedback information includes information of the second wide beam determined by the narrow beam terminal and information of N wide beams whose signal quality satisfies the second condition; and receives the first narrow beam to be used by the narrow beam terminal from the narrow beam terminal.
  • the first narrow beam is the narrow beam covered by the second wide beam; in this way, it can be determined directly to the wide beam terminal and the narrow beam based on the first beam feedback information, the second beam feedback information, and the first narrow beam information.
  • the beam terminal transmits downlink data. Compared with the prior art, there is no need to send additional orthogonal reference signals for interference measurement. Low reference signal caused by resource overhead, while reducing the delay caused by interference measurements.
  • the transmission scenario of the downlink data can be divided into two scenarios.
  • the first scenario the wide beam to be used by the wide beam terminal and the The narrow beams to be used by the narrow beam terminal do not overlap.
  • FIG. 3 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • the second scenario the wide beam and The narrow beams to be used by the narrow beam terminal overlap, as shown in FIG. 4, which is a schematic diagram of another scenario provided by an embodiment of the present application.
  • a wide beam terminal can be understood as a terminal that is using a wide beam or is about to use a wide beam; a narrow beam terminal It can be understood as a terminal that is using a narrow beam or is about to use a narrow beam; the parent beam of the narrow beam can be understood that if the narrow beam is within the coverage of a wide beam, the wide beam is the parent beam of the narrow beam. For a narrow beam, it may correspond to one or more parent beams. In the following, a detailed embodiment will be used to describe the downlink data transmission method in two different scenarios.
  • FIG. 5 is a downlink data transmission provided by an embodiment of the present application.
  • a schematic diagram of a method. The method for transmitting downlink data may include:
  • the network device scans a candidate wide beam for downlink transmission.
  • the alternative wide beam may be understood as a wide beam to be used by a network device for downlink transmission.
  • the network device scans the candidate wide beam to the wide-beam terminal and the narrow-beam terminal, so that the wide-beam terminal and the narrow-beam terminal measure the candidate wide beam, thereby performing the following S502-S505:
  • the wide-beam terminal determines, among the candidate wide beams, information of a first wide beam to be used by the wide-beam terminal and information of M wide beams whose signal quality satisfies a first condition.
  • the M wide beams may be M wide beams having the smallest signal quality among the candidate wide beams used for downlink transmission; or, the M wide beams may be M among the candidate wide beams whose signal quality is less than the first threshold.
  • Wide beams can be understood as the wide beam to be used by the wide beam terminal.
  • the first wide beam may be the widest beam with the largest RSRP among all the candidate wide beams measured by the wide beam terminal.
  • the M wide beams determined by the wide beam terminal may be understood as M wide beams that have less interference with the first wide beam among the candidate wide beams.
  • the information of the first wide beam may include the RSRP of the first wide beam, and of course, the ID information of the first wide beam may also be included.
  • the information of each wide beam in the information of the M wide beams is also The RSRP of the wide beam may be included, and of course, the ID of the wide beam may also be included.
  • the wide-beam terminal may perform RSRP measurement on each of the candidate wide beams, thereby selecting the widest beam with the largest RSRP in the candidate wide beam.
  • the widest beam with the largest RSRP is determined as the first wide beam to be used; in addition, M wide beams with the smallest signal quality or M wide beams with a signal quality less than the first threshold are selected from the candidate wide beams. , Determine it as M wide beams that satisfy the first condition.
  • the first threshold may be set according to actual needs. Here, the number of the first threshold is not limited in the embodiment of the present application.
  • the candidate wide beams scanned by the network device for downlink transmission are ⁇ f 1 , ..., f A ⁇
  • the candidate (including wide-beam terminals and narrow-beam terminals) alternative receive wide beams are ⁇ w 1 , ..., w B ⁇ .
  • the wide beam terminal measures the channel quality (generally represented by RSRP) of all candidate wide beam pairs, so as to determine the information of the first wide beam to be used by the wide beam terminal in the candidate wide beam.
  • RSRP channel quality
  • w opt represents the first wide beam selected by the wide beam terminal
  • h represents the channel matrix
  • f i represents the i-th wide beam
  • k i represents the index of the i-th wide beam
  • k j represents the index of the j-th wide beam.
  • Index; after determining the M wide beams with the smallest signal quality, the ID information corresponding to the M wide beams and the ID of the wide beam and the RSRP value corresponding to each of the M wide beams can be further determined. For example, if M is equal to 1, then the M wide beams here may be the widest beam with the smallest RSRP.
  • a condition for determining whether a certain wide beam belongs to the M wide beams may be expressed as:
  • the ID information corresponding to the M wide beams and the ID of the wide beam and the RSRP value corresponding to each of the M wide beams can be further determined.
  • the first threshold here may be configured by a network device, and the terminal is notified in a broadcast channel.
  • the wide beam terminal sends the first beam feedback information to the network device.
  • the first beam feedback information includes information of a first wide beam and information of M wide beams.
  • the wide beam terminal After determining the first wide beam to be used and the M wide beams satisfying the first condition through S502, the wide beam terminal sends the first beam feedback information including the information of the first wide beam and the information of the M wide beams to
  • the network device is configured to enable the network device to receive the first beam feedback information, and thereby obtain, according to the first beam feedback information, information of the first wide beam to be used and information of the M wide beams selected by the wide beam terminal.
  • the narrow-beam terminal determines, among the candidate wide beams, information about the second wide beam determined by the narrow-beam terminal and information about N wide beams whose signal quality meets the second condition.
  • N is an integer greater than or equal to 1.
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • the second wide beam determined by it can be understood as the widest beam with the largest measured RSRP, that is, the widest beam with the best signal quality; the N wide beams determined can be understood as M wide beams in the candidate wide beam that have less interference with the second wide beam.
  • the information of the second wide beam may include the RSRP of the second wide beam, and of course, the ID information of the second wide beam may also be included.
  • the information of each wide beam in the information of the N wide beams is also The RSRP of the wide beam may be included, and of course, the ID of the wide beam may also be included.
  • the narrow-beam terminal can perform RSRP measurement on each of the candidate wide beams, thereby selecting the widest beam with the largest RSRP in the candidate wide beam.
  • the widest beam with the largest RSRP is determined as the second wide beam.
  • the N wide beams with the smallest signal quality or the N wide beams with a signal quality less than the first threshold are selected from the candidate wide beams and determined. N wide beams to satisfy the second condition.
  • the second threshold may be set according to actual needs. Here, the number of the second threshold is not limited in the embodiment of the present application.
  • the manner in which the narrow-beam terminal determines the second wide beam and the N wide beams that satisfy the second condition is the same as the wide-beam terminal in S502 described above determines the first wide beam and meets the first condition.
  • the manners of the M wide beams are similar, and reference may be made to the foregoing description of the wide beam terminal determining the first wide beam and the M wide beams satisfying the first condition in S502, and details are not described in the embodiment of the present application.
  • the narrow-beam terminal sends second beam feedback information to the network device.
  • the second beam feedback information includes information of a second wide beam and information of N wide beams.
  • the narrow-beam terminal determines the second wide beam and the N wide beams that satisfy the second condition through S504, it sends the second beam feedback information including the information of the second wide beam and the information of the N wide beams to the network device.
  • the network device is caused to receive the second beam feedback information, so as to obtain the information of the second wide beam and the information of the N wide beams according to the second beam feedback information.
  • S502-S503 there is no sequence between S502-S503 and S504-S505.
  • S502-S503 may be executed first, and then S504-S505 may be executed.
  • S504-S505 After S501, execute S504-S505 first, and then execute S502-S503.
  • the embodiment of this application is only after executing S501.
  • S502-S503 can be executed first, and then S504-S505 is executed as an example for description, but it does not mean that the embodiment of the present application is limited to this.
  • the network device may further perform the following S506:
  • the network device scans a candidate narrow beam covered by a second wide beam used for downlink transmission.
  • the candidate narrow beam can be understood as a narrow beam to be used by a network device for downlink transmission.
  • the network device scans the candidate narrow beam to the narrow beam terminal, so that the narrow beam terminal can measure the candidate narrow beam covered by the second wide beam, thereby performing the following S507-S508:
  • the narrow-beam terminal determines a first narrow beam to be used by the narrow-beam terminal from among the candidate narrow beams covered by the second wide-beam.
  • the first narrow beam can be understood as a narrow beam to be used by a narrow beam terminal.
  • the first narrow beam may be a narrow beam with the largest RSRP among all candidate narrow beams covered by the second wide beam measured by the narrow beam terminal.
  • the information of the first narrow beam may include RSRP of the first narrow beam, and of course, information such as the ID of the first narrow beam may also be included.
  • the narrow-beam terminal sends information about the first narrow beam to be used by the narrow-beam terminal to the network device.
  • the narrow-beam terminal determines the information of the first narrow beam to be used through S507, it sends the information of the first narrow beam to the network device, so as to obtain the information of the first narrow beam to be used.
  • the network device After the network device obtains the first beam feedback information, the second beam feedback information, and the first narrow beam information sent by the wide-beam terminal through the foregoing S501-S508, the network device may according to the first beam feedback information and the second beam feedback information And the first narrow beam information to determine whether to transmit downlink data to the wide beam terminal and the narrow beam terminal.
  • the following can be specifically performed through S509 -S510 implementation.
  • the network device determines the respective signal trunks of the wide beam terminal and the narrow beam terminal. ratio.
  • the network device can determine the signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal, and determine whether they are in the first narrow-beam according to the respective signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal.
  • Downlink data is transmitted upward to the narrow beam terminal, and downlink data is transmitted to the wide beam terminal on the first wide beam.
  • the network device may first determine the product of the RSRP of the parent beam of the first narrow beam of the M wide beams and the parameter; where the parameter is the square of the maximum gain difference; and The signal-to-interference ratio of the wide beam terminal is determined according to the ratio of the RSRP and the product of the first wide beam.
  • SIR w represents the signal-to-interference ratio of the wide-beam terminal W-UE
  • C represents the maximum gain difference between the wide beam and the narrow beam.
  • the network device may determine the signal-to-interference ratio of the narrow-beam terminal according to the ratio of the RSRP of the first narrow-beam to the RSRP of the first wide-beam of the N wide beams.
  • the network device determines to transmit downlink data to the narrow-beam terminal on the first narrow beam, and to The wide beam terminal transmits downlink data.
  • the third threshold may be set as needed.
  • the size of the third threshold is not further limited in the embodiment of the present application.
  • the network device can schedule the wide beam terminal and the narrow beam terminal at the same time to determine the direction on the first narrow beam.
  • the narrow beam terminal transmits downlink data, and transmits the downlink data to the wide beam terminal on the first wide beam.
  • the widest beam corresponding to the smallest RSRP in the M wide beam sets ⁇ w (a set of M wide beams in the first beam feedback information) sent by the wide beam terminal to the network device is
  • the narrowest corresponding RSRP wide beam in the N wide beam set ⁇ N (the set of N wide beams in the second beam feedback information) sent by the narrow beam terminal to the network device is Then the network device can give priority to meeting versus The wide-beam terminal and the narrow-beam terminal are scheduled together.
  • the signal-to-interference ratio of the scheduled wide-beam terminal and the narrow-beam terminal reaches the maximum at the same time, so that downlink data is transmitted to the narrow-beam terminal on the first narrow beam, and A wide beam transmits downlink data to a wide beam terminal.
  • the network device After the network device obtains the first beam feedback information, the second beam feedback information, and the first narrow beam information through the above S501-S508, respectively, when the parent beam of the first narrow beam is any one of the M wide beams, and When the first wide beam is any of the N wide beams, determine the respective signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal; if both the signal-to-interference ratio of the wide-beam terminal and the narrow-beam terminal are greater than the third threshold , It is determined that downlink data is transmitted to the narrow beam terminal on the first narrow beam, and downlink data is transmitted to the wide beam terminal on the first wide beam.
  • the downlink data transmission method provided in the embodiment of the present application directly determines whether to transmit downlink data to the wide-beam terminal and the narrow-beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information. Compared with the prior art, there is no need to send an additional orthogonal reference signal for interference measurement, thereby reducing the resource overhead caused by the reference signal and reducing the delay caused by the interference measurement.
  • the network equipment is equipped with two antenna arrays, of which the wide-beam antenna array is equipped with 4 antennas, and the narrow-beam antenna array is equipped with 16 antennas.
  • the beamforming capability of the terminal can be ignored.
  • the channel uses a 80% probability as a line-of-sight (LoS) channel and a 20% probability as a non-line-of-sight (NLoS) channel.
  • LoS line-of-sight
  • NNLoS non-line-of-sight
  • h LOS indicates a channel with a direct path
  • h NLOS indicates a channel with a non-direct path
  • indicates a large-scale fading coefficient
  • K R indicates a Rice channel K factor
  • indicates a channel departure angle
  • d indicates Antenna pitch vector.
  • the method for transmitting downlink data includes receiving first beam feedback information from a wide beam terminal, where the first beam feedback information includes information and signal quality of a first wide beam to be used by the wide beam terminal to satisfy the first Information of M wide beams under conditions; receiving second beam feedback information from the narrow beam terminal; wherein the second beam feedback information includes information of the second wide beam determined by the narrow beam terminal and N wide beams whose signal quality satisfies the second condition Beam information; and receive the first narrow beam information to be used by the narrow beam terminal from the narrow beam terminal, where the first narrow beam is a narrow beam covered by the second wide beam; in this way, the first beam feedback information, the first The two-beam feedback information and the first narrow-beam information determine whether to transmit downlink data to the wide-beam terminal and the narrow-beam terminal.
  • the above-mentioned embodiment shown in FIG. 5 describes in detail in a first scenario how to determine whether to move to a wide-beam terminal and a narrow-beam terminal when the wide-beam terminal to be used and the narrow-beam terminal to be used do not overlap with each other.
  • Technical solution for transmitting downlink data it should be noted that, in the embodiment shown in FIG. 5, after performing S508, that is, the network device obtains the first beam feedback information, the second beam feedback information, and the first narrow beam information sent by the wide beam terminal. After that, whether to transmit downlink data to the wide beam terminal and the narrow beam terminal can be determined according to the first beam feedback information, the second beam feedback information, and the first narrow beam information.
  • the parent beam of the first narrow beam is M wide
  • any of the beams and the first wide beam is any of the N wide beams
  • S509-S510 can be performed.
  • the respective signal-to-interference ratios determine whether to transmit downlink data to the wide-beam terminal and the narrow-beam terminal.
  • the parent beam of the first narrow beam is not any of the M wide beams, and the parent beam of the first narrow beam is the first wide beam, it means that there is an overlap between the first wide beam and the first narrow beam
  • the second scenario shown in the embodiment of the present application please refer to FIG. 4.
  • FIG. 7 is a schematic diagram of another method for transmitting downlink data according to an embodiment of the present application.
  • the method for transmitting downlink data Can include:
  • the network device scans the candidate narrow beam covered by the first wide beam used for downlink transmission.
  • the candidate narrow beam is sent by the network device when it is determined that the parent beam of the first narrow beam to be used by the narrow beam terminal is the first wide beam.
  • the candidate narrow beam can be understood as a narrow beam to be used by the network device for downlink transmission.
  • the network device may further The terminal scans the candidate narrow beams covered by the first wide beam, so that the wide beam terminal can measure each narrow beam of the candidate narrow beams covered by the first wide beam, thereby performing the following S702-S703:
  • the wide-beam terminal determines information of P narrow beams whose signal quality satisfies a third condition from among the narrow beam candidates.
  • the P narrow beams are P narrow beams whose signal quality is less than a third threshold in the candidate narrow beams covered by the first wide beam used for downlink transmission.
  • the third threshold may be set according to actual needs.
  • the number of the third threshold is not limited in the embodiment of the present application.
  • a wide beam terminal when determining P narrow beams, can measure channel quality among them, Represents the receiving beam of a wide-beam terminal, and h NW indicates the channel that the network device sends to the wide-beam terminal through a narrow beam. If the channel quality of a certain narrow beam is smaller than the third threshold value, it is determined that the narrow beam is one of the P narrow beams, so as to determine the narrow beams of which P signal quality is less than the third threshold value. After determining the P narrow beams of the narrow beam whose signal quality is less than the third threshold, the ID corresponding to the P narrow beams and the RSRP value corresponding to each of the P narrow beams may be further determined.
  • the information of each narrow beam in the information of the P narrow beams in the third condition may also include the RSRP of the narrow beam, and of course, the ID of the narrow beam may also be included. For example, if P is equal to 1, then the P wide beams here may be narrow beams with the smallest RSRP.
  • S703 The wide beam terminal sends a third beam feedback message to the network device.
  • the third beam feedback message includes information of P narrow beams.
  • the narrow beam terminal After determining the information of the P narrow beams whose signal quality satisfies the third condition among the candidate narrow beams through S703, the narrow beam terminal sends the third feedback information including the information of the P narrow beams satisfying the third condition to the network device. To enable the network device to receive the third beam feedback information, so as to obtain the information of the P narrow beams determined by the wide beam terminal according to the third beam feedback information.
  • the network device stops scanning the candidate narrow beams under the first wide beam coverage for downlink transmission.
  • the fifth threshold may be set according to actual needs.
  • the size of the fifth threshold is not further limited in the embodiment of the present application. It should be noted that, in the embodiment of the present application, when the fifth threshold value is 1, the wide beam terminal stops scanning after measuring any narrow beam whose RSRP is less than a set threshold.
  • the network device determines whether P is greater than or equal to the fifth threshold after receiving the third feedback information including information of P narrow beams that meet the third condition sent by the narrow-beam terminal, and stops scanning if it is greater than or equal to the fifth threshold
  • the candidate narrow beam covered by the first wide beam for downlink transmission and performs the following S705:
  • the network device determines respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal.
  • the network device can still determine the respective signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal, and determine whether to transmit downlink data to the narrow-beam terminal on the first narrow beam according to the respective signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal. And transmitting downlink data to the wide beam terminal on the first wide beam.
  • the network device may determine the signal-to-interference ratio of the wide-beam terminal according to the ratio of the RSRP of the first wide-beam to the RSRP of the first narrow-beam among the P wide beams.
  • the signal-to-interference ratio of the narrow-beam terminal may be determined according to a ratio of the RSRP of the first narrow-beam to the RSRP of the first wide-beam among the N wide beams.
  • the parent beam f W (N) of the N-UE in the overlapping scenario is the same as the wide beam f w of the W-UE.
  • SIR N represents the signal-to-interference ratio of the narrow-beam terminal
  • the signal-to-interference ratio of the N-UE is relatively stable, which is approximately equal to the gain difference between the narrow beam and the wide beam.
  • the terminal cannot determine the interference situation of the first narrow beam to the wide beam terminal, and thus cannot calculate the signal-to-interference ratio of the wide beam terminal.
  • the network device determines not to transmit downlink data to the narrow beam terminal on the first narrow beam, and does not transmit downlink data to the wide beam terminal on the first wide beam.
  • the fourth threshold may be set as required.
  • the size of the fourth threshold is not further limited in the embodiment of the present application.
  • the network device can schedule the wide beam terminal and the narrow beam terminal at the same time to determine the direction on the first narrow beam.
  • the narrow beam terminal transmits downlink data, and transmits the downlink data to the wide beam terminal on the first wide beam.
  • the narrow beam corresponding to the smallest RSRP among the P narrow beams ⁇ N (W) (a set of P narrow beams in the third beam feedback information ) sent by the wide beam terminal to the network device for Network devices can prioritize The wide-beam terminal and the narrow-beam terminal are scheduled together. At this time, the signal-to-interference ratio of the scheduled wide-beam terminal and the narrow-beam terminal reaches the maximum at the same time.
  • a wide beam transmits downlink data to a wide beam terminal.
  • the network equipment is equipped with two antenna arrays, of which the wide beam antenna array is equipped with 4 antennas, and the narrow beam antenna array is equipped with 16 antennas for downlink multi-user MIMO transmission.
  • the channel uses a 80% probability as a line-of-sight (LoS) channel and a 20% probability as a non-line-of-sight (NLoS) channel.
  • LoS line-of-sight
  • NNLoS non-line-of-sight
  • FIG. 8 which is provided in this embodiment of the present application.
  • Another relationship between the spectral efficiency of a wide-beam terminal and a narrow-beam terminal as a function of the signal-to-noise ratio can be seen in conjunction with FIG. 8, which considers two modes of correlated transmission and non-correlated transmission.
  • the downlink data transmission method has significantly improved performance, which indicates that the technical scheme shown in the embodiment of the present application can effectively reduce interference between terminals and improve the signal-to-interference ratio of the terminals.
  • the wide beam terminal in an overlapping scenario, is further scanned for the candidate narrow beam, so that the wide beam terminal measures and feeds back the P narrow beams that satisfy the third condition.
  • the network device can calculate the signal-to-interference ratio of the wide beam and narrow beam terminals to be scheduled according to the third beam feedback information of the wide beam feedback, the second beam feedback information of the narrow beam feedback, and the information of the first narrow beam, and according to the calculated The signal-to-interference ratio determines whether to transmit downlink data to the wide beam terminal and the narrow beam terminal.
  • the network device first scans the candidate wide beams for downlink transmission.
  • the candidate wide beams are wide beam 1, wide beam 2, wide beam 3, wide beam 4, and wide beam 5, respectively.
  • After measuring the beam determine the widest beam 1 with the largest RSRP measured as the first wide beam to be used, and determine the wide beam 2 and wide beam 3 with the smaller RSRP as the two wide beams that meet the first condition. And sending first beam feedback information to the network device.
  • the first beam feedback information may include RSRP of wide beam 1, ID of wide beam 1, RSRP of wide beam 2, ID of wide beam 2, RSRP of wide beam 3, and wide ID of beam 3.
  • the wide beam terminal 2 After the wide beam terminal 2 also measures these candidate wide beams, it determines the widest beam 2 with the largest RSRP measured as the first wide beam to be used, and determines the wide beams 1 and 4 with the smaller RSRP.
  • the first beam feedback information may include RSRP of wide beam 2, ID of wide beam 2, RSRP of wide beam 1, wide beam ID of 1, RSRP of wide beam 4, and ID of wide beam 4.
  • the narrow beam terminal 1 After the narrow beam terminal 1 measures these candidate wide beams, it determines the widest beam 1 with the largest RSRP measured as the second wide beam, and determines the wide beam 3 with the smaller RSRP as a wide beam that meets the first condition.
  • Beam, and sends second beam feedback information to the network device the second beam feedback information may include RSRP of wide beam 1, ID of wide beam 1, RSRP of wide beam 3, and ID of wide beam 3; the network device receives a narrow beam After the second beam feedback information fed back by the beam terminal 1, the candidate narrow beams covered by the wide beam 1 used for downlink transmission are scanned, and the candidate narrow beams are narrow beam 11, narrow beam 12, narrow beam 13 and narrow beam, respectively.
  • the narrow beam terminal 1 measures these candidate narrow beams, determines the narrow beam 12 with the largest RSRP measured as the first narrow beam to be used, and sets the RSRP of the first narrow beam 12 and the first narrow beam 12
  • the ID of the narrow beam 12 is transmitted to the network device.
  • the narrow beam terminal 2 After the narrow beam terminal 2 measures these candidate wide beams, it determines the widest beam 4 with the largest RSRP measured as the second wide beam, and determines the wide beam 1 and the wide beam 2 with the smaller RSRP to satisfy the first condition. And send second beam feedback information to the network device.
  • the second beam feedback information may include RSRP of wide beam 4, ID of wide beam 4, RSRP of wide beam 1, ID of wide beam 1, RSRP of beam 2 and ID of wide beam 2; after receiving the second beam feedback information fed back by the narrow beam terminal 2 from the network device, the candidate narrow beam covered by the wide beam 4 used for downlink transmission is scanned.
  • the beams are narrow beam 41, narrow beam 42, narrow beam 43 and narrow beam 44.
  • narrow beam terminal 4 measures these candidate narrow beams, it determines the narrow beam 42 with the largest RSRP measured as the first to be used. A narrow beam, and sends the RSRP of the first narrow beam 42 and the ID of the first narrow beam 42 to the network device.
  • the network device After receiving the above information fed back by the wide-beam terminal 1, the wide-beam terminal 2, the narrow-beam terminal 1, and the narrow-beam terminal 2, the network device will change the wide-beam terminal 1, the wide-beam terminal 2, the narrow-beam terminal 1, and the narrow-beam terminal. 2 Perform a pairwise combination, and determine whether the signal-to-interference ratio of the two terminals after the pairwise combination meets the conditions, and then determine whether the two terminals can schedule at the same time.
  • the first combination is wide beam terminal 1 and narrow beam terminal 1
  • the second combination is wide beam terminal 1 and narrow beam terminal 2
  • the third combination is wide beam 2 and narrow beam 1
  • the fourth combination is wide beam 2 and narrow beam 2.
  • the wide beam 1 to be used by the wide beam terminal 1 is one of the wide beams fed back by the narrow beam terminal 2 and meeting the second condition, and the narrow beam terminal 2 can be determined.
  • the narrow beam 42 to be used has less interference with the wide beam terminal 1, but the parent beam of the narrow beam 42 to be used by the narrow beam terminal 2 is not the wide beam 4 of the wide beam terminal 1 that meets the first condition.
  • the respective signal-to-interference ratios of the wide beam terminal 1 and the narrow beam terminal 2 cannot be calculated. It cannot be determined whether the wide beam terminal 1 and the narrow beam terminal 2 can be scheduled at the same time.
  • the wide beam can be determined.
  • the wide beam 2 to be used by the terminal 2 has less interference with the narrow beam 12 to be used by the narrow beam terminal 1, but the wide beam 2 to be used by the wide beam terminal 2 is not a wide beam satisfying the second condition fed back by the narrow beam terminal 1
  • One of them cannot determine the interference of the narrow beam 42 to be used by the narrow beam terminal 1 to the wide beam 2 to be used by the wide beam terminal 2, so it is impossible to calculate the respective signal trunks of the wide beam terminal 2 and the narrow beam terminal 1. Ratio, and thus it is impossible to determine whether the wide beam terminal 2 and the narrow beam terminal 1 can be scheduled at the same time.
  • the wide beam 2 to be used by the wide beam terminal 2 is one of the wide beams that the second beam terminal 2 satisfies the second condition, and the width to be used by the wide beam terminal 2 can be determined.
  • the interference of beam 2 on the narrow beam 42 to be used by the narrow beam terminal 2 is small, and the parent beam of the narrow beam 42 to be used by the narrow beam terminal 2 is the wide beam 4 which is a wide beam that meets the first condition and is fed back by the wide beam terminal 2.
  • the narrow beam 42 to be used by the narrow beam terminal 2 has less interference with the wide beam 2 to be used by the wide beam terminal 2, and at this time, the respective signal-to-interference ratios of the wide beam terminal 2 and the narrow beam terminal 2 can be calculated. If both the signal-to-interference ratios of the wide-beam terminal 2 and the narrow-beam terminal 2 are greater than the third threshold, it is determined that the wide-beam terminal 2 and the narrow-beam terminal 2 can be scheduled at the same time, that is, the wide-beam terminal 2 can be directed to the wide-beam terminal 2 Transmitting downlink data and transmitting downlink data to the narrow beam terminal 2 on the narrow beam 42.
  • there is no need to send an additional orthogonal reference signal for interference measurement thereby reducing the resource overhead caused by the reference signal.
  • the parent beam of the narrow beam 12 to be used by the narrow beam terminal 1 is the wide beam 1
  • the parent beam of the narrow beam 12 to be used by the narrow beam terminal 1 is the wide beam terminal 1 to be used.
  • Wide beam 1 it is determined that there is an overlap between the narrow beam 12 to be used by the narrow beam terminal 1 and the wide beam 1 to be used by the wide beam terminal 1.
  • the network device can further scan the coverage of the wide beam 1 used for downlink transmission.
  • Candidate narrow beams which are narrow beam 11, narrow beam 12, narrow beam 13, and narrow beam 14, respectively. After narrow beam terminal 1 measures these alternative narrow beams, the measured signal quality is small.
  • the three narrow beams are determined as P narrow beams that satisfy the third condition.
  • the three narrow beams are narrow beam 12, narrow beam 13, and narrow beam 14, and send third beam feedback information to the network device.
  • the beam feedback information may include the RSRP of the narrow beam 12, the ID of the narrow beam 12, the RSRP of the narrow beam 13, the ID of the narrow beam 13, the RSRP of the narrow beam 14, and the ID of the narrow beam 14; the network device receives feedback from the narrow beam terminal 1 Third beam feedback information After that, it can be determined that the narrow beam 12 to be used by the narrow beam terminal 1 is one of the three narrow beams that satisfy the third condition and fed back by the wide beam terminal 1, indicating that the narrow beam 12 to be used by the narrow beam terminal 1 is to the wide beam terminal 1.
  • the narrow beam 12 to be used by the narrow beam terminal 1 has little interference with the wide beam 1 to be used by the wide beam terminal 1.
  • the wide beam terminal 1 and the narrow beam terminal can be calculated. 1 for the respective signal-to-interference ratio. If the signal-to-interference ratios of the wide-beam terminal 1 and the narrow-beam terminal 1 are both greater than the fourth threshold, it is determined that the wide-beam terminal 1 and the narrow-beam terminal 1 can be scheduled at the same time, that is, the wide-beam terminal 1 Downlink data is transmitted upward to the wide beam terminal 1 and downlink data is transmitted to the narrow beam terminal 1 on the narrow beam 12.
  • there is no need to send additional orthogonal reference signals for interference measurement thereby reducing the reference signal band. In addition, it can reduce the resource cost and reduce the delay caused by interference measurement.
  • FIG. 9 is a schematic structural diagram of a network device 90 according to an embodiment of the present application.
  • the network device 90 may include:
  • the receiving unit 901 is configured to receive first beam feedback information from a wide-beam terminal.
  • the first beam feedback information includes information of a first wide beam to be used by the wide-beam terminal and a signal quality of M wide beams that meets a first condition.
  • Information, M is an integer greater than or equal to 1.
  • the receiving unit 901 is further configured to receive second beam feedback information from a narrow-beam terminal, where the second beam feedback information includes information of a second wide beam determined by the narrow-beam terminal and a signal quality of N wide beams that meets a second condition.
  • Information, N is an integer greater than or equal to 1.
  • the receiving unit 901 is further configured to receive information of a first narrow beam to be used by the narrow beam terminal from the narrow beam terminal, where the first narrow beam is a narrow beam covered by a second wide beam.
  • a determining unit 902 is configured to determine whether to transmit downlink data to a wide beam terminal and a narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams used for downlink transmission; or, the M wide beams are the M wide beams whose signal quality is less than the first threshold in the candidate wide beams. Beam.
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or, the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • the determining unit 902 is specifically configured to determine the wide-beam terminal and the wide-beam terminal when the parent beam of the first narrow beam is any of the M wide beams and the first wide beam is any of the N wide beams.
  • the information of the first wide beam includes the reference signal received power RSRP of the first wide beam
  • the information of the first narrow beam includes the RSRP of the first narrow beam
  • the determining unit 902 is specifically configured to determine the first of the M wide beams.
  • the product of the RSRP and the parameter of the parent beam of a narrow beam; where the parameter is the square of the maximum gain difference; and the signal-to-interference ratio of the wide beam terminal is determined according to the ratio of the RSRP of the first wide beam to the product.
  • the determining unit 902 is further specifically configured to determine the signal-to-interference ratio of the narrow-beam terminal according to the ratio of the RSRP of the first narrow beam to the RSRP of the first wide beam among the N wide beams.
  • the determining unit 902 is specifically configured to receive a third beam feedback message from the wide beam terminal when the parent beam of the first narrow beam is the first wide beam; the third beam feedback message includes that the signal quality satisfies a third condition Information of P narrow beams; P is an integer greater than or equal to 1; determining whether to transmit downlink data to the narrow beam terminal on the first narrow beam according to the first narrow beam and third beam feedback messages, and in the first wide beam The downlink data is transmitted up to the wide beam terminal.
  • the P narrow beams are P narrow beams whose signal quality is less than a third threshold in the candidate narrow beams covered by the first wide beam used for downlink transmission.
  • the determining unit 902 is specifically configured to determine the signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal if the first narrow-beam is any of the P narrow-beams; If the signal-to-interference ratio of the narrow beam terminal is greater than the fourth threshold, it is determined that downlink data is transmitted to the narrow beam terminal on the first narrow beam, and downlink data is transmitted to the wide beam terminal on the first wide beam.
  • the information of the first wide beam includes the RSRP of the first wide beam
  • the information of the first narrow beam includes the RSRP of the first narrow beam
  • the determining unit 902 is specifically configured to use the RSRP of the first wide beam and P narrow
  • the ratio of the RSRP of the first narrow beam in the beam determines the signal-to-interference ratio of the wide-beam terminal
  • the signal-to-interference ratio of the narrow beam terminal is determined based on the ratio of the RSRP of the first narrow beam to the RSRP of the first wide beam of the N wide beams. ratio.
  • the determining unit 902 is further configured to determine that if the first narrow beam is not any of the P narrow beam information, downlink data is not transmitted to the narrow beam terminal on the first narrow beam and is not on the first wide beam. The downlink data is transmitted up to the wide beam terminal.
  • the network device 90 may further include a scanning unit 903.
  • FIG. 10 is a schematic structural diagram of another network device 90 according to an embodiment of the present application.
  • the scanning unit 903 is configured to stop scanning the candidate narrow beam covered by the first wide beam for downlink transmission if P is greater than or equal to the fifth threshold.
  • the scanning unit 903 is further configured to scan a candidate narrow beam covered by a first wide beam used for downlink transmission.
  • the network device 90 shown in this embodiment of the present invention can execute the technical solution of the method for transmitting downlink data on the network device 90 side in any of the foregoing embodiments.
  • the implementation principles and beneficial effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a wide beam terminal 110 according to an embodiment of the present application.
  • the wide beam terminal 110 may include:
  • a determining unit 1101 is configured to determine, when receiving the candidate wide beam scanned by the base station for downlink transmission, that the information and signal quality of the first wide beam to be used by the wide beam terminal 110 meet the first condition in the candidate wide beam.
  • Information of M wide beams, M is an integer greater than or equal to 1.
  • the sending unit 1102 is configured to send first beam feedback information to the base station, where the first beam feedback information includes information of the first wide beam and information of the M wide beams.
  • the M wide beams are M wide beams having the smallest signal quality among the candidate wide beams; or, the M wide beams are M wide beams among which the signal quality is less than the first threshold.
  • the wide beam terminal 110 may further include a receiving unit 1103.
  • FIG. 12 is a schematic structural diagram of another wide beam terminal 110 according to an embodiment of the present application.
  • the receiving unit 1103 is configured to receive a candidate narrow beam under the coverage of the first wide beam scanned by the base station for downlink transmission.
  • the candidate narrow beam is the base beam of the first narrow beam that the base station determines to be used by the narrow beam terminal as the first narrow beam. Sent with a wide beam.
  • the determining unit 1101 is further configured to determine, among the candidate narrow beams, information of P narrow beams whose signal quality satisfies a third condition; P is an integer greater than or equal to 1.
  • the sending unit 1102 is further configured to send a third beam feedback message to the base station; the third beam feedback message includes information of P narrow beams.
  • the P narrow beams are P narrow beams in which the signal quality of the candidate narrow beams is less than a third threshold.
  • the wide-beam terminal 110 shown in the embodiment of the present invention can execute the technical solution of the method for transmitting downlink data on the wide-beam terminal 110 side in any of the foregoing embodiments.
  • the implementation principles and beneficial effects are similar, and will not be performed here. To repeat.
  • FIG. 13 is a schematic structural diagram of a narrow beam terminal 130 according to an embodiment of the present application.
  • the narrow beam terminal 130 may include:
  • a determining unit 1301 is configured to determine, when receiving the candidate wide beam scanned by the base station for downlink transmission, information and signal quality of the second wide beam determined by the narrow beam terminal 130 in the candidate wide beam that meet the second condition.
  • the sending unit 1302 is configured to send second beam feedback information to the base station, where the second beam feedback information includes information of a second wide beam and information of N wide beams.
  • the determining unit 1301 is further configured to determine that the narrow-beam terminal 130 is to be selected from the candidate narrow beams covered by the second wide beam when the candidate narrow beams covered by the second wide beam for downlink transmission are received by the base station.
  • the first narrow beam used.
  • the sending unit 1302 is further configured to send information of the first narrow beam to be used by the narrow beam terminal 130 to the base station.
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • the narrow-beam terminal 130 shown in this embodiment of the present invention can execute the technical solution of the method for transmitting downlink data on the narrow-beam terminal 130 side in any of the foregoing embodiments.
  • the implementation principles and beneficial effects are similar, and will not be performed here. To repeat.
  • FIG. 14 is a schematic structural diagram of still another network device 140 according to an embodiment of the present application.
  • the network device 140 may include:
  • the receiver 1401 is configured to receive first beam feedback information from a wide-beam terminal.
  • the first beam feedback information includes information of a first wide beam to be used by the wide-beam terminal and a signal quality of M wide beams that meets a first condition.
  • Information, M is an integer greater than or equal to 1.
  • the receiver 1401 is further configured to receive second beam feedback information from a narrow-beam terminal, where the second beam feedback information includes information of a second wide beam determined by the narrow-beam terminal and signal quality of N wide beams that meet a second condition.
  • Information, N is an integer greater than or equal to 1.
  • the receiver 1401 is further configured to receive information of a first narrow beam to be used by the narrow beam terminal from the narrow beam terminal, where the first narrow beam is a narrow beam covered by a second wide beam.
  • the processor 1402 is configured to determine whether to transmit downlink data to a wide beam terminal and a narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams used for downlink transmission; or, the M wide beams are the M wide beams whose signal quality is less than the first threshold in the candidate wide beams. Beam.
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or, the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • determining whether to transmit downlink data to the wide-beam terminal and the narrow-beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information includes: when the parent beam of the first narrow beam is M When any of the wide beams and the first wide beam is any of the N wide beams, determine the respective signal-to-interference ratios of the wide-beam terminal and the narrow-beam terminal; if the signal-to-interference ratio of the wide-beam terminal and the narrow-beam terminal are If the signal-to-interference ratio is greater than the third threshold, it is determined that downlink data is transmitted to the narrow beam terminal on the first narrow beam, and downlink data is transmitted to the wide beam terminal on the first wide beam.
  • the information of the first wide beam includes the reference signal received power RSRP of the first wide beam, and determining the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal includes determining the parent of the first narrow beam of the M wide beams.
  • the product of the RSRP of the beam and the parameter; where the parameter is the square of the maximum gain difference; and the signal-to-interference ratio of the wide-beam terminal is determined based on the ratio of the RSRP and the product of the first wide beam; according to the RSRP of the first narrow beam and N
  • the ratio of the RSRP of the first wide beam in the wide beam determines the signal-to-interference ratio of the narrow-beam terminal.
  • the receiver 1401 is further configured to receive a third beam feedback message from a wide beam terminal when the parent beam of the first narrow beam is the first wide beam; the third beam feedback message includes that the signal quality meets a third condition Information of P narrow beams; P is an integer greater than or equal to 1.
  • Determining whether to transmit downlink data to the wide-beam terminal and the narrow-beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information includes: determining whether to determine whether the Downlink data is transmitted to a narrow beam terminal on a narrow beam, and downlink data is transmitted to a wide beam terminal on a first wide beam.
  • determining whether to transmit downlink data to the narrow beam terminal on the first narrow beam and transmitting the downlink data to the wide beam terminal on the first wide beam according to the first narrow beam and the third beam feedback message includes: A narrow beam is any one of the P narrow beams, and then determine the signal-to-interference ratio of the wide-beam terminal and the narrow-beam terminal; if both the signal-to-interference ratio of the wide-beam terminal and the narrow-beam terminal are greater than the fourth threshold, It is determined that downlink data is transmitted to the narrow beam terminal on the first narrow beam, and downlink data is transmitted to the wide beam terminal on the first wide beam.
  • the information of the first wide beam includes RSRP of the first wide beam
  • determining the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal includes: according to the RSRP of the first wide beam and the first narrow one of the P narrow beams.
  • the ratio of the RSRP of the beams determines the signal-to-interference ratio of the wide-beam terminal; and the signal-to-interference ratio of the narrow-beam terminal is determined according to the ratio of the RSRP of the first narrow beam to the RSRP of the first wide beam of the N wide beams.
  • determining whether to transmit downlink data to the narrow beam terminal on the first narrow beam and transmitting the downlink data to the wide beam terminal on the first wide beam according to the first narrow beam and the third beam feedback message further includes: If the first narrow beam is not any of the P narrow beam information, it is determined that downlink data is not transmitted to the narrow beam terminal on the first narrow beam, and downlink data is not transmitted to the wide beam terminal on the first wide beam.
  • the processor 1402 is further configured to, if P is greater than or equal to a fifth threshold, stop scanning for a candidate narrow beam covered by a first wide beam for downlink transmission.
  • the processor 1402 is further configured to scan a candidate narrow beam covered by a first wide beam used for downlink transmission.
  • the network device 140 shown in this embodiment of the present invention can execute the technical solution of the method for transmitting downlink data on the network device 140 side in any of the foregoing embodiments.
  • the implementation principles and beneficial effects of the method are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of still another wide beam terminal 150 according to an embodiment of the present application.
  • the wide beam terminal 150 may include:
  • the processor 1501 is configured to determine, when receiving the candidate wide beam scanned by the base station for downlink transmission, that the information and signal quality of the first wide beam to be used by the wide beam terminal 150 meet the first condition in the candidate wide beam.
  • Information of M wide beams, M is an integer greater than or equal to 1.
  • the transmitter 1502 is configured to send the first beam feedback information to the base station, where the first beam feedback information includes information of the first wide beam and information of the M wide beams.
  • the M wide beams are M wide beams having the smallest signal quality among the candidate wide beams; or, the M wide beams are M wide beams among which the signal quality is less than the first threshold.
  • the wide-beam terminal 150 may further include a receiver 1503; the receiver 1503 is configured to receive a candidate narrow beam covered by a first wide beam for downlink transmission scanned by the base station; Sent when the parent beam of the first narrow beam to be used by the narrow beam terminal is determined to be the first wide beam.
  • the processor 1501 is further configured to determine, among the candidate narrow beams, information of P narrow beams whose signal quality meets a third condition; P is an integer greater than or equal to 1.
  • the transmitter 1502 is further configured to send a third beam feedback message to the base station; the third beam feedback message includes information of P narrow beams.
  • the wide-beam terminal 150 shown in the embodiment of the present invention can execute the technical solution of the method for transmitting downlink data on the wide-beam terminal 150 side shown in any of the foregoing embodiments.
  • the implementation principles and beneficial effects of the method are similar. To repeat.
  • FIG. 16 is a schematic structural diagram of still another narrow beam terminal 160 according to an embodiment of the present application.
  • the narrow beam terminal 160 may include:
  • the processor 1601 is configured to determine, when receiving the candidate wide beam scanned by the base station for downlink transmission, determining, among the candidate wide beams, the information and signal quality of the second wide beam determined by the narrow beam terminal 160 that meet the second condition.
  • the transmitter 1602 is configured to send second beam feedback information to the base station, where the second beam feedback information includes information of a second wide beam and information of N wide beams.
  • the processor 1601 is further configured to determine the narrow-beam terminal 160 to be selected from the candidate narrow beams covered by the second wide beam when the candidate narrow beams covered by the second wide beam for downlink transmission are received by the base station.
  • the first narrow beam used.
  • the transmitter 1602 is further configured to send information of the first narrow beam to be used by the narrow beam terminal 160 to the base station.
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • the narrow-beam terminal 160 shown in this embodiment of the present invention can implement the technical solution of the method for transmitting downlink data on the narrow-beam terminal 160 side in any of the foregoing embodiments.
  • the implementation principles and beneficial effects of the method are similar, and will not be performed here. To repeat.
  • An embodiment of the present application further provides a communication system.
  • the communication system includes the network device, the wide-beam terminal, and the narrow-beam terminal shown in any of the foregoing embodiments.
  • the implementation principles and beneficial effects of the communication system are similar, and are not described herein again.
  • An embodiment of the present application further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the downlink data on the network device side shown in any of the foregoing embodiments is executed.
  • the transmission method has similar implementation principles and beneficial effects, and is not repeated here.
  • An embodiment of the present application further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the downlink data on the wide beam terminal side shown in any of the foregoing embodiments is executed. Or the implementation of the downlink data transmission method on the wide-beam terminal side shown in any one of the above embodiments, the implementation principles and beneficial effects of the method are similar, which are not described here again.
  • An embodiment of the present application further provides a circuit system, which may include a processing circuit.
  • the first beam feedback information is received from the wide beam terminal, the second beam feedback information is received from the narrow beam terminal, and the first narrow beam information to be used by the narrow beam terminal is received from the narrow beam terminal.
  • the first narrow beam is the second wide beam.
  • the processing circuit is configured to determine whether to transmit downlink data to the wide beam terminal and the narrow beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information;
  • the beam feedback information includes information of the first wide beam to be used by the wide beam terminal and information of M wide beams whose signal quality satisfies the first condition, where M is an integer greater than or equal to 1, and the second beam feedback information includes the determination of the narrow beam terminal.
  • the information of the second wide beam and the information of N wide beams whose signal quality satisfies the second condition, N is an integer greater than or equal to 1.
  • the M wide beams are the M wide beams with the smallest signal quality among the candidate wide beams used for downlink transmission; or, the M wide beams are the M wide beams whose signal quality is less than the first threshold in the candidate wide beams. Beam.
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or, the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • determining whether to transmit downlink data to the wide-beam terminal and the narrow-beam terminal according to the first beam feedback information, the second beam feedback information, and the first narrow beam information includes:
  • the parent beam of the first narrow beam is any of the M wide beams
  • the first wide beam is any of the N wide beams
  • the information of the first wide beam includes the reference signal received power RSRP of the first wide beam, and determining the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal includes determining the parent of the first narrow beam of the M wide beams.
  • the product of the RSRP of the beam and the parameter; where the parameter is the square of the maximum gain difference; and the signal-to-interference ratio of the wide-beam terminal is determined based on the ratio of the RSRP of the first wide beam to the product; the RSRP of the first narrow beam and N
  • the ratio of the RSRP of the first wide beam in the wide beam determines the signal-to-interference ratio of the narrow-beam terminal.
  • the parent beam of the first narrow beam is a first wide beam
  • whether to transmit downlink data to the wide beam terminal and the narrow beam terminal is determined according to the first beam feedback information, the second beam feedback information, and the first narrow beam information
  • the method includes: determining whether to transmit downlink data to the narrow beam terminal on the first narrow beam and transmitting downlink data to the wide beam terminal on the first wide beam according to the first narrow beam and the third beam feedback message, wherein the third beam feedback
  • the message includes information of P narrow beams whose signal quality meets the third condition; P is an integer greater than or equal to 1.
  • determining whether to transmit downlink data to the narrow beam terminal on the first narrow beam according to the first narrow beam and the third beam feedback message includes: if the first narrow beam is any of the P narrow beams, determining The signal-to-interference ratio of the wide-beam terminal and the narrow-beam terminal; if both the signal-to-interference ratio of the wide-beam terminal and the narrow-beam terminal are greater than the fourth threshold, it is determined that downlink data is transmitted to the narrow-beam terminal on the first narrow beam And transmitting downlink data to the wide beam terminal on the first wide beam.
  • the information of the first wide beam includes RSRP of the first wide beam
  • determining the respective signal-to-interference ratios of the wide beam terminal and the narrow beam terminal includes: according to the RSRP of the first wide beam and the first narrow one of the P narrow beams.
  • the ratio of the RSRP of the beams determines the signal-to-interference ratio of the wide-beam terminal; and the signal-to-interference ratio of the narrow-beam terminal is determined according to the ratio of the RSRP of the first narrow beam to the RSRP of the first wide beam of the N wide beams.
  • determining whether to transmit downlink data to the narrow beam terminal on the first narrow beam according to the first narrow beam and third beam feedback messages further includes: if the first narrow beam is not any of the P narrow beam information , It is determined that downlink data is not transmitted to the narrow beam terminal on the first narrow beam, and downlink data is not transmitted to the wide beam terminal on the first wide beam.
  • the processing circuit is further configured to, if P is greater than or equal to a fifth threshold, stop scanning for a candidate narrow beam covered by a first wide beam for downlink transmission.
  • the processing circuit is further configured to scan a candidate narrow beam covered by a first wide beam used for downlink transmission.
  • the circuit system shown in the embodiment of the present invention can execute the technical solution of the method for transmitting downlink data on the network device side shown in any of the foregoing embodiments.
  • the implementation principle and beneficial effects are similar, and details are not described herein again.
  • An embodiment of the present application further provides a circuit system, which may include a processing circuit.
  • a processing circuit configured to determine, when receiving the candidate wide beam scanned by the base station for downlink transmission, in the candidate wide beam, the information and signal quality of the first wide beam to be used by the wide beam terminal satisfying the first condition M
  • M is an integer greater than or equal to 1.
  • the M wide beams are M wide beams having the smallest signal quality among the candidate wide beams; or, the M wide beams are M wide beams among which the signal quality is less than the first threshold.
  • the processing circuit is further configured to: after receiving the candidate narrow beam covered by the first wide beam for the downlink transmission scanned by the base station, determine in the candidate narrow beam that the signal quality satisfies the third condition P Information of narrow beams; P is an integer greater than or equal to 1; candidate narrow beams are sent by the base station when determining that the parent beam of the first narrow beam to be used by the narrow beam terminal is the first wide beam.
  • the wide beam terminal shown in the embodiments of the present invention can implement the technical solution of the method for transmitting downlink data on the wide beam terminal side shown in any of the foregoing embodiments.
  • the implementation principles and beneficial effects are similar, and details are not described herein again.
  • An embodiment of the present application further provides a circuit system, which may include a processing circuit.
  • a processing circuit configured to determine, when receiving candidate wide beams for downlink transmission scanned by a base station, information and signal quality of the second wide beam determined by the narrow beam terminal and satisfying the second condition among the candidate wide beams
  • N is an integer greater than or equal to 1.
  • the processing circuit is further configured to: after sending the second beam feedback information to the base station, when receiving the candidate narrow beam covered by the second wide beam for downlink transmission scanned by the base station, the Among the candidate narrow beams, the first narrow beam to be used by the narrow beam terminal is determined; wherein the second beam feedback information includes information of the second wide beam and information of N wide beams.
  • the N wide beams are the N wide beams with the smallest signal quality among the candidate wide beams; or the N wide beams are the N wide beams with the signal quality less than the second threshold in the candidate wide beam.
  • the narrow beam terminal shown in the embodiments of the present invention can execute the technical solution of the method for transmitting downlink data on the narrow beam terminal side shown in any of the foregoing embodiments.
  • the implementation principles and beneficial effects are similar, and details are not described herein again.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), or the like, which may implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present invention.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc.
  • Storage media The storage medium is located in the memory 1002, and the processor 1001 reads the instructions in the memory 1002 and completes the steps of the foregoing method in combination with its hardware.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware, or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种下行数据的传输方法、网络设备及终端,该方法包括:从宽波束终端接收第一波束反馈信息;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;从窄波束终端接收第二波束反馈信息;其中,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束;根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,从而实现在进行下行数据传输时,降低干扰测量的开销和时延。

Description

下行数据的传输方法、网络设备及终端
本申请要求2018年5月23日递交、申请号为201810504111.4的中国专利申请,以及2018年8月7日递交、申请号为201810893428.1的中国专利申请的优先权,上述申请的全文通过引用包含于本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种下行数据的传输方法、网络设备及终端。
背景技术
多输入输出(Multiple-Input Multiple-Output,MIMO)技术是通信***中的一项重要技术,该MIMO技术能够提高***容量和频谱效率,使得***能够在有限的频谱资源下获得更高的传输速率和***吞吐量。通过在通信***的接收端和发送端都采用多根天线,可以获得空间复用增益,并提高通信信道的容量。
现有技术中,在采用MIMO技术进行下行数据传输时,以通信***包括基站、宽波束终端和窄波束终端为例,其中,宽波束终端可以理解为正在使用宽波束或者即将使用宽波束的终端;窄波束终端可以理解为正在使用窄波束或即将使用窄波束的终端,请参见图1所示,图1为现有技术提供的一种下行数据的传输方法的示意图,基站在接收到宽波束终端反馈的参考信号接收功率(Reference Signal Receiving Power,RSRP)最大的宽波束及窄波束终端反馈的RSRP最大的窄波束,之后,需要对该RSRP最大的宽波束和RSRP最大的窄波束进行干扰测量,具体为:S103基站向宽波束终端和窄波束终端发送正交参考信号,使得宽波束终端和窄波束终端可以分别根据该正交参考信号测量各自反馈的波束的信号强度和受到的干扰强度,并向基站反馈各自测量的信号强度和干扰强度;使得基站可以根据反馈的信号强度和干扰强度确定宽波束终端和窄波束终端的信干比,并根据得到的信干比确定是否进行下行数据传输。
然而,采用现有的下行数据传输方法,需要先通过发送正交参考信号进行干扰测量,该正交参考信号会占用一定的时频资源,导致干扰测量的开销较大,此外,宽波束终端和窄波束终端可以分别根据该正交参考信号测量各自反馈的波束的信号强度和受到的干扰强度、并反馈给基站,需要占用一定的时间,从而导致干扰测量的时延较大。
发明内容
本申请提供一种下行数据的传输方法、网络设备及终端,在进行下行数据传输时,以降低干扰测量的开销和时延。
第一方面,本申请实施例提供一种下行数据的传输方法,该下行数据的传输方法可以包括:
从宽波束终端接收第一波束反馈信息;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
从窄波束终端接收第二波束反馈信息;其中,第二波束反馈信息包括窄波束终端确定的 第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束;
根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据。
由此可见,本申请实施例提的方法,可以直接根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,与现有技术相比,无需再额外发送正交参考信号进行干扰测量,从而降低了参考信号带来的资源开销,同时降低了干扰测量带来的延时。
在一种可能的实现方式中,M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束;
N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
在一种可能的实现方式中,根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,包括:
当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定宽波束终端和窄波束终端各自的信干比;
若宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,第一宽波束的信息包括第一宽波束的参考信号接收功率RSRP,第一窄波束的信息包括第一窄波束的RSRP,确定宽波束终端和窄波束终端各自的信干比,包括:
确定M个宽波束中第一窄波束的父波束的RSRP和参数的乘积;其中,参数为最大增益差的平方;
根据第一宽波束的RSRP与乘积的比值,确定宽波束终端的信干比;
根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
在一种可能的实现方式中,根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,包括:
当第一窄波束的父波束为第一宽波束时,则从宽波束终端接收第三波束反馈消息;第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;
根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,P个窄波束为用于下行发送的第一宽波束覆盖下的备选窄波束中信号质量小于第三阈值的P个窄波束。
在一种可能的实现方式中,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据,包括:
若第一窄波束为P个窄波束中的任一个,则确定宽波束终端和窄波束终端各自的信干比;
若宽波束终端的信干比和窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,第一宽波束的信息包括第一宽波束的RSRP,第一窄波束的 信息包括第一窄波束的RSRP,确定宽波束终端和窄波束终端各自的信干比,包括:
根据第一宽波束的RSRP与P个窄波束中第一窄波束的RSRP的比值,确定宽波束终端的信干比;
根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
在一种可能的实现方式中,该下行数据的传输方法还可以包括:
若第一窄波束不为P个窄波束信息中的任一个,则确定不在第一窄波束上向窄波束终端传输下行数据,且不在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据之前,还包括:
若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
在一种可能的实现方式中,从宽波束终端接收第三波束反馈消息之前,还包括:
扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
第二方面,本申请实施例还提供一种下行数据的传输方法,该下行数据的传输方法可以包括:
当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
向基站发送第一波束反馈信息;其中,第一波束反馈信息包括第一宽波束的信息和M个宽波束的信息。
在一种可能的实现方式中,M个宽波束为备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束。
在一种可能的实现方式中,该下行数据的传输方法还可以包括:
接收基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束;备选窄波束是基站在确定窄波束终端待使用的第一窄波束的父波束为第一宽波束时发送的;
在备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;
向基站发送第三波束反馈消息;第三波束反馈消息包括P个窄波束的信息。
在一种可能的实现方式中,P个窄波束为备选窄波束中信号质量小于第三阈值的P个窄波束。
第三方面,本申请实施例还提供一种下行数据的传输方法,该下行数据的传输方法可以包括:
当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
向基站发送第二波束反馈信息;其中,第二波束反馈信息包括第二宽波束的信息和N个宽波束的信息;
当接收到基站扫描的用于下行发送的第二宽波束覆盖下的备选窄波束时,在第二宽波束覆盖下的备选窄波束中确定窄波束终端待使用的第一窄波束;
向基站发送窄波束终端待使用的第一窄波束的信息。
在一种可能的实现方式中,N个宽波束为备选宽波束中信号质量最小的N个宽波束;或 者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
第四方面,本申请实施例还提供一种网络设备,该网络设备可以包括:
接收单元,用于从宽波束终端接收第一波束反馈信息;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
接收单元,还用于从窄波束终端接收第二波束反馈信息;其中,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
接收单元,还用于从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束;
确定单元,用于根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据。
在一种可能的实现方式中,M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束;
N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
在一种可能的实现方式中,确定单元,具体用于当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,第一宽波束的信息包括第一宽波束的参考信号接收功率RSRP,第一窄波束的信息包括第一窄波束的RSRP;
确定单元,具体用于确定M个宽波束中第一窄波束的父波束的RSRP和参数的乘积;其中,参数为最大增益差的平方;并根据第一宽波束的RSRP与乘积的比值,确定宽波束终端的信干比;
确定单元,还具体用于根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
在一种可能的实现方式中,确定单元,具体用于当第一窄波束的父波束为第一宽波束时,则从宽波束终端接收第三波束反馈消息;第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,P个窄波束为用于下行发送的第一宽波束覆盖下的备选窄波束中信号质量小于第三阈值的P个窄波束。
在一种可能的实现方式中,确定单元,具体用于若第一窄波束为P个窄波束中的任一个,则确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,第一宽波束的信息包括第一宽波束的RSRP,第一窄波束的信息包括第一窄波束的RSRP;
确定单元,具体用于根据第一宽波束的RSRP与P个窄波束中第一窄波束的RSRP的比值,确定宽波束终端的信干比;并根据第一窄波束的RSRP与N个宽波束中第一宽波束的 RSRP的比值,确定窄波束终端的信干比。
在一种可能的实现方式中,确定单元,还用于若第一窄波束不为P个窄波束信息中的任一个,则确定不在第一窄波束上向窄波束终端传输下行数据,且不在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,该网络设备还可以包括:
扫描单元,用于若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
在一种可能的实现方式中,扫描单元,还用于扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
第五方面,本申请实施例还提供一种宽波束终端,该宽波束终端可以包括:
确定单元,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
发送单元,用于向基站发送第一波束反馈信息;其中,第一波束反馈信息包括第一宽波束的信息和M个宽波束的信息。
在一种可能的实现方式中,M个宽波束为备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束。
在一种可能的实现方式中,该宽波束终端还可以包括:
接收单元,用于接收基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束;备选窄波束是基站在确定窄波束终端待使用的第一窄波束的父波束为第一宽波束时发送的;
确定单元,还用于在备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;
发送单元,还用于向基站发送第三波束反馈消息;第三波束反馈消息包括P个窄波束的信息。
在一种可能的实现方式中,P个窄波束为备选窄波束中信号质量小于第三阈值的P个窄波束。
第六方面,本申请实施例还提供一种窄波束终端,该窄波束终端可以包括:
确定单元,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
发送单元,用于向基站发送第二波束反馈信息;其中,第二波束反馈信息包括第二宽波束的信息和N个宽波束的信息;
确定单元,还用于当接收到基站扫描的用于下行发送的第二宽波束覆盖下的备选窄波束时,在第二宽波束覆盖下的备选窄波束中确定窄波束终端待使用的第一窄波束;
发送单元,还用于向基站发送窄波束终端待使用的第一窄波束的信息。
在一种可能的实现方式中,N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
第七方面,本申请实施例还提供一种网络设备,该网络设备可以包括:
接收器,用于从宽波束终端接收第一波束反馈信息;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
接收器,还用于从窄波束终端接收第二波束反馈信息;其中,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
接收器,还用于从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束;
处理器,用于根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据。
在一种可能的实现方式中,M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束;
N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
在一种可能的实现方式中,根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,包括:
当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,第一宽波束的信息包括第一宽波束的参考信号接收功率RSRP,确定宽波束终端和窄波束终端各自的信干比,包括:
确定M个宽波束中第一窄波束的父波束的RSRP和参数的乘积;其中,参数为最大增益差的平方;并根据第一宽波束的RSRP与乘积的比值,确定宽波束终端的信干比;根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
在一种可能的实现方式中,接收器,还用于当第一窄波束的父波束为第一宽波束时,则从宽波束终端接收第三波束反馈消息;第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;
根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,包括:根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据,包括:
若第一窄波束为P个窄波束中的任一个,则确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,第一宽波束的信息包括第一宽波束的RSRP,确定宽波束终端和窄波束终端各自的信干比,包括:根据第一宽波束的RSRP与P个窄波束中第一窄波束的RSRP的比值,确定宽波束终端的信干比;并根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
在一种可能的实现方式中,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据,还包括:若第一窄波束不为P个窄波束信息中的任一个,则确定不在第一窄波束上向窄波束终端传输下行数据,且不在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,处理器,还用于若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
在一种可能的实现方式中,处理器,还用于扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
第八方面,本申请实施例还提供一种宽波束终端,其特征在于,该宽波束终端可以包括:
处理器,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
发送器,用于向基站发送第一波束反馈信息;其中,第一波束反馈信息包括第一宽波束的信息和M个宽波束的信息。
在一种可能的实现方式中,M个宽波束为备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束。
在一种可能的实现方式中,该宽波束终端还可以包括接收器;
接收器,用于接收基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束;备选窄波束是基站在确定窄波束终端待使用的第一窄波束的父波束为第一宽波束时发送的;
处理器,还用于在备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;
发送器,还用于向基站发送第三波束反馈消息;第三波束反馈消息包括P个窄波束的信息。
第九方面,本申请实施例还提供一种窄波束终端,该窄波束终端可以包括:
处理器,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
发送器,用于向基站发送第二波束反馈信息;其中,第二波束反馈信息包括第二宽波束的信息和N个宽波束的信息;
处理器,还用于当接收到基站扫描的用于下行发送的第二宽波束覆盖下的备选窄波束时,在第二宽波束覆盖下的备选窄波束中确定窄波束终端待使用的第一窄波束;
发送器,还用于向基站发送窄波束终端待使用的第一窄波束的信息。
在一种可能的实现方式中,N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
第十方面,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,在计算机程序被处理器执行时,执行上述第一方面任一项所示的下行数据的传输方法。
第十一方面,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,在计算机程序被处理器执行时,执行上述第二方面任一项所示的下行数据的传输方法;或者执行上述第三方面任一项所示的下行数据的传输方法。
第十二方面,本申请实施例还提供一种电路***,该电路***可以包括处理电路;
在从宽波束终端接收第一波束反馈信息,从窄波束终端接收第二波束反馈信息,及从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束之后,处理电路,用于根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据;其中,第一波束反馈信息包括宽波束终 端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数。
在一种可能的实现方式中,M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束;
N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
在一种可能的实现方式中,根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,包括:
当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,第一宽波束的信息包括第一宽波束的参考信号接收功率RSRP,确定宽波束终端和窄波束终端各自的信干比,包括:
确定M个宽波束中第一窄波束的父波束的RSRP和参数的乘积;其中,参数为最大增益差的平方;并根据第一宽波束的RSRP与乘积的比值,确定宽波束终端的信干比;根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
在一种可能的实现方式中,第一窄波束的父波束为第一宽波束,根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,包括:
根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据,其中,第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数。
在一种可能的实现方式中,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,包括:
若第一窄波束为P个窄波束中的任一个,则确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,第一宽波束的信息包括第一宽波束的RSRP,确定宽波束终端和窄波束终端各自的信干比,包括:根据第一宽波束的RSRP与P个窄波束中第一窄波束的RSRP的比值,确定宽波束终端的信干比;并根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
在一种可能的实现方式中,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,还包括:若第一窄波束不为P个窄波束信息中的任一个,则确定不在第一窄波束上向窄波束终端传输下行数据,且不在第一宽波束上向宽波束终端传输下行数据。
在一种可能的实现方式中,处理电路,还用于若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
在一种可能的实现方式中,处理电路,还用于扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
第十三方面,本申请实施例还提供一种电路***,该电路***可以包括处理电路;
所述处理电路,用于当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数。
在一种可能的实现方式中,所述M个宽波束为所述备选宽波束中信号质量最小的M个宽波束;或者,所述M个宽波束为所述备选宽波束中信号质量小于第一阈值的M个宽波束。
在一种可能的实现方式中,所述处理电路,还用于:在接收到所述基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束之后,在所述备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;所述备选窄波束是所述基站在确定窄波束终端待使用的第一窄波束的父波束为所述第一宽波束时发送的。
第十四方面,本申请实施例还提供一种电路***,该电路***可以包括处理电路;
所述处理电路,用于当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
所述处理电路,还用于:在向所述基站发送第二波束反馈信息之后,当接收到基站扫描的用于下行发送的所述第二宽波束覆盖下的备选窄波束时,在所述第二宽波束覆盖下的备选窄波束中确定所述窄波束终端待使用的第一窄波束;其中,所述第二波束反馈信息包括所述第二宽波束的信息和所述N个宽波束的信息。
在一种可能的实现方式中,所述N个宽波束为所述备选宽波束中信号质量最小的N个宽波束;或者,所述N个宽波束为所述备选宽波束中信号质量小于第二阈值的N个宽波束。
第十五方面,本申请实施例还提供一种通信***,该通信***包括上述第四方面所示的网络设备、第五方面所示的宽波束终端及第六方面所示的窄波束终端,或者,包括上述第七方面所示的网络设备、第八方面所示的宽波束终端及第九方面所示的窄波束终端。
本申请实施例提供的下行数据的传输方法、网络设备及终端,通过从宽波束终端接收第一波束反馈信息;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息;从窄波束终端接收第二波束反馈信息;其中,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息;并从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束;这样就可以直接根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,与现有技术相比,无需再额外发送正交参考信号进行干扰测量,从而降低了参考信号带来的资源开销,同时降低了干扰测量带来的延时。
附图说明
图1为现有技术提供的一种下行数据的传输方法的示意图;
图2为本申请实施例提供的一种应用场景示意图;
图3为本申请实施例提供的一种场景的示意图;
图4为本申请实施例提供的另一种场景的示意图;
图5为本申请实施例提供的一种下行数据的传输方法的示意图;
图6为本申请实施例提供的一种宽波束终端和窄波束终端的频谱效率随信噪比变化关系 图;
图7为本申请实施例提供的另一种下行数据的传输方法的示意图;
图8为本申请实施例提供的另一种宽波束终端和窄波束终端的频谱效率随信噪比变化关系图;
图9为本申请实施例提供的一种网络设备的结构示意图;
图10为本申请实施例提供的另一种网络设备的结构示意图;
图11为本申请实施例提供的一种宽波束终端的结构示意图;
图12为本申请实施例提供的另一种宽波束终端的结构示意图;
图13为本申请实施例提供的一种窄波束终端的结构示意图;
图14为本申请实施例提供的又一种网络设备的结构示意图;
图15为本申请实施例提供的又一种宽波束终端的结构示意图;
图16为本申请实施例提供的又一种窄波束终端的结构示意图。
具体实施方式
本申请实施例可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***,码分多址(Code Division Multiple Access,CDMA)***,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)***,通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE),5G通信***或未来可能出现的其他***,以下对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。需要说明的是,当本申请实施例的方案应用于5G***或未来可能出现的其他***时,网络设备和终端的名称可能发生变化,但这并不影响本申请实施例方案的实施。
图2为本申请实施例提供的一种应用场景示意图,该通信***可以为蜂窝移动通讯网络***,该蜂窝移动通讯网络***工作于高频段(频率>6GHz),且可以包括网络设备和至少两个终端设备,该网络设备(例如基站)配备天线阵列,采用波束赋形产生定向波束进行下行信号传输;并且,网络设备能够同时同频打出多个波束,进行下行多用户MIMO传输。示例的,请参见图2所示,以该蜂窝移动通讯网络***包括网络设备、一个宽波束终端及一个窄波束终端为例,网络设备在确定是否可以同时向该宽波束终端和窄波束终端传输数据,即网络设备确定是否可以同时调度该宽波束终端和窄波束终端时,网络设备需要向宽波束终端和窄波束终端发送正交参考信号,使得宽波束终端和窄波束终端可以分别根据该正交参考信号测量各自反馈的波束的信号强度和受到的干扰强度,并向网络设备反馈各自测量的信号强度和干扰强度;使得网络设备可以根据反馈的信号强度和干扰强度确定宽波束终端和窄波束终端的信干比,并根据得到的信干比确定是否进行下行数据传输。但是,该正交参考信号会占用一定的时频资源,导致干扰测量的开销较大,此外,宽波束终端和窄波束终端可以分别根据该正交参考信号测量各自反馈的波束的信号强度和受到的干扰强度、并反馈给网络设备,需要占用一定的时间,从而导致干扰测量的时延较大。
其中,1)终端,又称为终端设备、用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备、物联网设备等。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,其中,可穿戴设备例如包括:智能手表、 智能手环、计步器等。
2)网络设备,又称为无线接入网(Radio Access Network,RAN)设备是一种将终端设备接入到无线网络的设备,其包括各种通信制式中的网络设备,例如包括但不限于:基站、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(Base Station Controller,BSC)、网络设备收发台(Base Transceiver Station,BTS)、家庭网络设备(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)等。
其中,网络设备,包括了各类频率制式的网络设备,例如包括但不限于:低频网络设备、高频网络设备。
3)“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
为了解决现有技术在下行数据的传输过程中,存在的干扰测量的开销和时延较大的问题,本申请实施例提供了一种下行数据的传输方法,该方法通过从宽波束终端接收第一波束反馈信息;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息;从窄波束终端接收第二波束反馈信息;其中,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息;并从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束;这样就可以直接根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,与现有技术相比,无需再额外发送正交参考信号进行干扰测量,从而降低了参考信号带来的资源开销,同时降低了干扰测量带来的延时。
需要说明的是,在本申请实施例中,在确定是否进行下行数据传输时,该下行数据的传输场景可以分为两种场景,在第一种场景下,宽波束终端待使用的宽波束和窄波束终端待使用的窄波束不存在重叠,请参见图3所示,图3为本申请实施例提供的一种场景的示意图;在第二种场景下,宽波束终端待使用的宽波束和窄波束终端待使用的窄波束存在重叠,请参见图4所示,图4为本申请实施例提供的另一种场景的示意图。在介绍本申请实施例提供的下行数据的传输方法之前,先对本申请实施例中涉及的几个名字进行解释,宽波束终端可以理解为正在使用宽波束或者即将使用宽波束的终端;窄波束终端可以理解为正在使用窄波束或即将使用窄波束的终端;窄波束的父波束可以理解若该窄波束在某一个宽波束的覆盖范围内,则该宽波束即为该窄波束的父波束。对于一个窄波束而言,其可以对应一个或多个父波束。下面,将通过详细的实施例对该两种不同场景下的下行数据的传输方法进行说明。
在第一种场景下,当宽波束终端待使用的宽波束和窄波束终端待使用的窄波束不存在重叠时,请参见图5,图5为本申请实施例提供的一种下行数据的传输方法的示意图,该下行数据的传输方法可以包括:
S501、网络设备扫描用于下行发送的备选宽波束。
其中,备选宽波束可以理解为网络设备待使用的用于下行发送的宽波束。网络设备通过向宽波束终端和窄波束终端扫描该备选宽波束,使得宽波束终端和窄波束终端对备选宽波束进行测量,从而执行下述S502-S505:
S502、宽波束终端在备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息。
其中,M为大于或等于1的整数。可选的,M个宽波束可以为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束可以为备选宽波束中信号质量小于第一阈值的M个宽波束。需要说明的是,第一宽波束可以理解为宽波束终端即将使用的宽波束。示例的,该第一宽波束可以为宽波束终端测量的所有备选宽波束中,RSRP最大的宽波束。对于宽波束终端而言,其确定的M个宽波束可以理解为备选宽波束中对第一宽波束干扰较小的M个宽波束。可选的,第一宽波束的信息可以包括第一宽波束的RSRP,当然,也可以包括第一宽波束的ID信息等;同样的,M个宽波束的信息中每一个宽波束的信息也可以包括该宽波束的RSRP,当然,也可以包括该宽波束的ID。
网络设备在扫描用于下行发送的备选宽波束之后,宽波束终端就可以对备选宽波束中的每一个宽波束进行RSRP测量,从而在该备选宽波束中选择RSRP最大的宽波束,并将该RSRP最大的宽波束确定为其待使用的第一宽波束;此外,还在该备选宽波束中选择信号质量最小的M个宽波束或者信号质量小于第一阈值的M个宽波束,将其确定为满足第一条件的M个宽波束。其中,第一阈值可以根据实际需要进行设置,在此,对于第一阈值具备为多少,本申请实施例不做进一步地限制。
示例的,在初始接入阶段,假设网络设备扫描用于下行发送的备选宽波束为{f 1,…,f A},终端(包括宽波束终端和窄波束终端)备选接收宽波束为{w 1,…,w B}。在宽波束初始接入阶段,宽波束终端会测量所有备选宽波束对的信道质量(一般用RSRP表示),从而在备选宽波束中确定宽波束终端待使用的第一宽波束的信息。在选择M个宽波束时,在一种可能的方式中,当M个宽波束为备选宽波束中信号质量最小的M个宽波束时,确定某一个宽波束是否属于M个宽波束的条件可以表示为:
Figure PCTCN2019087689-appb-000001
其中,w opt表示宽波束终端选择的第一宽波束,h表示信道矩阵,f i表示表示第i个宽波束,k i表示第i个宽波束的索引,k j表示第j个宽波束的索引;在确定信号质量最小的M个宽波束之后,可以进一步地确定M个宽波束对应的ID信息宽波束的ID和M个宽波束中每一个宽波束对应的RSRP值。示例的,若M等于1,则此处的M个宽波束可以为RSRP最小的宽波束。
在另一种可能的方式中,当M个宽波束为备选宽波束中信号质量小于第一阈值的宽波束时,确定某一个宽波束是否属于M个宽波束的条件可以表示为:
Figure PCTCN2019087689-appb-000002
同样的,在确定信号质量最小的M个宽波束之后,可以进一步确定M个宽波束对应的ID信息宽波束的ID和M个宽波束中每一个宽波束对应的RSRP值。需要说明的是,此处的第一阈值可以由网络设备进行配置,并在广播信道中通知终端。
S503、宽波束终端向网络设备发送第一波束反馈信息。
其中,第一波束反馈信息包括第一宽波束的信息和M个宽波束的信息。
宽波束终端在通过S502确定其待使用的第一宽波束和满足第一条件的M个宽波束之后,将包括第一宽波束的信息和M个宽波束的信息的第一波束反馈信息发送给网络设备,以使网络设备接收第一波束反馈信息,从而根据该第一波束反馈信息获取到宽波束终端选择的待使用的第一宽波束的信息和M个宽波束的信息。
S504、窄波束终端在备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息。
其中,N为大于或等于1的整数。可选的,N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。需要说明的是,对于窄波束终端而言,其确定的第二宽波束可以理解为其测量的RSRP最大的宽波束,即信号质量最好的宽波束;其确定的N个宽波束可以理解为备选宽波束中对第二宽波束干扰较小的M个宽波束。可选的,第二宽波束的信息可以包括第二宽波束的RSRP,当然,也可以包括第二宽波束的ID信息等;同样的,N个宽波束的信息中每一个宽波束的信息也可以包括该宽波束的RSRP,当然,也可以包括该宽波束的ID。
网络设备在扫描用于下行发送的备选宽波束之后,窄波束终端就可以对备选宽波束中的每一个宽波束进行RSRP测量,从而在该备选宽波束中选择RSRP最大的宽波束,并将该RSRP最大的宽波束确定为第二宽波束;此外,还在该备选宽波束中选择信号质量最小的N个宽波束或者信号质量小于第一阈值的N个宽波束,将其确定为满足第二条件的N个宽波束。其中,第二阈值可以根据实际需要进行设置,在此,对于第二阈值具备为多少,本申请实施例不做进一步地限制。
需要说明的是,在本申请实施例中,窄波束终端确定第二宽波束和满足第二条件的N个宽波束的方式与上述S502中宽波束终端确定第一宽波束和满足第一条件的M个宽波束的方式类似,可参考上述S502中宽波束终端确定第一宽波束和满足第一条件的M个宽波束的相关描述,在此,本申请实施例不再进行赘述。
S505、窄波束终端向网络设备发送第二波束反馈信息。
其中,第二波束反馈信息包括第二宽波束的信息和N个宽波束的信息。
窄波束终端在通过S504确定第二宽波束和满足第二条件的N个宽波束之后,将包括第二宽波束的信息和N个宽波束的信息的第二波束反馈信息发送给网络设备,以使网络设备接收第二波束反馈信息,从而根据该第二波束反馈信息获取到第二宽波束的信息和N个宽波束的信息。
需要说明的是,在本申请实施例中,S502-S503和S504-S505之间并无先后顺序,在执行完S501之后,可以先执行S502-S503,再执行S504-S505;也可以在执行完S501之后,先执行S504-S505,再执行S502-S503;当然,还可以在执行完S501之后,同时执行S502-S503和S504-S505,在此,本申请实施例只是以在执行完S501之后,可以先执行S502-S503,再执行S504-S505为例进行说明,但并不代表本申请实施例仅局限于此。
网络设备在接收到窄波束终端发送的包括第二宽波束的信息和满足第二条件的N个宽波束的信息之后,可以进一步执行下述S506:
S506、网络设备扫描用于下行发送的第二宽波束覆盖下的备选窄波束。
其中,备选窄波束可以理解为网络设备待使用的用于下行发送的窄波束。网络设备通过向窄波束终端扫描该备选窄波束,使得窄波束终端可以对第二宽波束覆盖下的备选窄波束进行测量,从而执行下述S507-S508:
S507、窄波束终端在第二宽波束覆盖下的备选窄波束中确定窄波束终端待使用的第一窄波束。
其中,第一窄波束可以理解为窄波束终端即将使用的窄波束。示例的,该第一窄波束可以为窄波束终端测量的第二宽波束覆盖下的所有备选窄波束中,RSRP最大的窄波束。可选的,第一窄波束的信息可以包括第一窄波束的RSRP,当然,也可以包括第一窄波束的ID等 信息。
S508、窄波束终端向网络设备发送窄波束终端待使用的第一窄波束的信息。
窄波束终端在通过S507确定待使用的第一窄波束的信息之后,将该第一窄波束的信息发送给网络设备,以使获取到其待使用的第一窄波束的信息。
网络设备在通过上述S501-S508获取到宽波束终端发送的第一波束反馈信息、第二波束反馈信息及第一窄波束的信息之后,就可以根据该第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,当宽波束终端待使用的宽波束和窄波束终端待使用的窄波束不存在重叠时,具体可以通过下述S509-S510实现。
S509、当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,网络设备确定宽波束终端和窄波束终端各自的信干比。
当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,说明宽波束终端待使用的第一宽波束和窄波束终端待使用的第一窄波束不存在重叠,此时网络设备可以确定宽波束终端和窄波束终端各自的信干比,并根据宽波束终端和窄波束终端各自的信干比确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,在确定宽波束终端的信干比时,网络设备可以先确定M个宽波束中第一窄波束的父波束的RSRP和参数的乘积;其中,参数为最大增益差的平方;并根据第一宽波束的RSRP与乘积的比值,确定宽波束终端的信干比。
具体的,可以通过
Figure PCTCN2019087689-appb-000003
确定宽波束终端的信干比,其中,SIR w表示宽波束终端W-UE的信干比,
Figure PCTCN2019087689-appb-000004
表示宽波束终端W-UE在宽波束初始接入阶段反馈的第一宽波束f w对应的RSRP,
Figure PCTCN2019087689-appb-000005
表示宽波束终端W-UE在宽波束初始接入阶段反馈的M个宽波束Ω w中第一窄波束的父波束f w(N)对应的RSRP,C表示宽波束与窄波束的最大增益差。
可选的,在确定窄波束终端的信干比时,网络设备可以根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
具体的,可以通过
Figure PCTCN2019087689-appb-000006
确定窄波束终端的信干比,其中,SIR N表示窄波束终端的信干比,
Figure PCTCN2019087689-appb-000007
表示窄波束终端在波束优化阶段反馈的第一窄波束f N对应的RSRP,
Figure PCTCN2019087689-appb-000008
表示窄波束终端反馈的N个宽波束Ω N中第一宽波束f w对应的RSRP。
S510、若宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则网络设备确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
其中,第三阈值可以实际需要进行设置,在此,对于第三阈值的大小,本申请实施例不做进一步地限制。
在通过S509分别确定宽波束终端的信干比和窄波束终端的信干比之后,就可以判断该宽波束终端的信干比和窄波束终端的信干比是否大于第三阈值,若该宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则说明宽波束终端待使用的第一宽波束对窄波束终端待使用的第一窄波束的干扰较小,且窄波束终端待使用的第一窄波束对宽波束终端待使用的第一宽波束的干扰较小,此时网络设备可以同时调度该宽波束终端和窄波束终端,从而确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
需要说明的是,宽波束终端向网络设备发送的M个宽波束集合Ω w(第一波束反馈信息中的M个宽波束组成的集合)中对应RSRP最小的宽波束为
Figure PCTCN2019087689-appb-000009
窄波束终端向网络设备发送的N个宽波束集合Ω N(第二波束反馈信息中的N个宽波束组成的集合)中对应RSRP最小的宽波束为
Figure PCTCN2019087689-appb-000010
则网络设备可以优先将满足
Figure PCTCN2019087689-appb-000011
Figure PCTCN2019087689-appb-000012
的宽波束终端和窄波束终端调度在一起,此时被调度的宽波束终端和窄波束终端的信干比同时达到最大,从而在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
网络设备在通过上述S501-S508分别获取到第一波束反馈信息、第二波束反馈信息及第一窄波束的信息之后,当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。由此可见,本申请实施例提供的下行数据的传输方法,是直接根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,与现有技术相比,无需再额外发送正交参考信号进行干扰测量,从而降低了参考信号带来的资源开销,同时降低了干扰测量带来的延时。
在实际应用过程中,采用本申请实施例所示的技术方案,对于一个单小区NR***,网络设备配备两个天线阵列,其中宽波束天线阵列配备4根天线,窄波束天线阵列配备16根天线,用于下行多用户MIMO传输。为简单起见,可以忽略终端的波束赋形能力,信道以80%概率为直射径(Line-of-sight,LoS)信道,以20%概率为非直射径(Non-line-of-sight,NLoS)信道,两种信道采用如下模型生成:
Figure PCTCN2019087689-appb-000013
Figure PCTCN2019087689-appb-000014
其中,h LOS表示表示有直射径情况下的信道,h NLOS表示表示非直射径情况下的信道,β表示大尺度衰落系数,K R表示莱斯信道K因子,θ表示信道离开角,d表示天线间距向量。假设宽波束阵列和窄波束阵列的信道离开角相同,则宽波束终端和窄波束终端的频谱效率随信噪比变化关系可以参见图6所示,图6为本申请实施例提供的一种宽波束终端和窄波束终端的频谱效率随信噪比变化关系图,结合图6可以看出,图6考虑了相关传输和非相关传输两种模式,采用本申请实施例所示的下行数据的传输方法,与现有技术中随机调度方案相比,性能有所提升,尤其是在非相干传输模式下,性能提升较为明显。
本申请实施例提供的下行数据的传输方法,通过从宽波束终端接收第一波束反馈信息;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息;从窄波束终端接收第二波束反馈信息;其中,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息;并从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束;这样就可以直接根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,与现有技术相比,无需再额外发送正交参考信号进行干扰测量,从而降低了参考信号带来的资源开销,同时降低了干扰测量带来的延时。
上述图5所示的实施例详细描述了在第一场景下,当宽波束终端待使用的宽波束和窄波 束终端待使用的窄波束不存在重叠时如何确定是否向宽波束终端和窄波束终端传输下行数据的技术方案。需要说明的是,在上述图5所示的实施例中,在执行完S508之后,即网络设备获取到宽波束终端发送的第一波束反馈信息、第二波束反馈信息及第一窄波束的信息之后,就可以根据该第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,说明第一宽波束和第一窄波束不存在重叠,可以执行S509-S510,根据宽波束终端和窄波束终端各自的信干比确定是否向宽波束终端和窄波束终端传输下行数据。相反的,当第一窄波束的父波束不为M个宽波束中的任一个,且第一窄波束的父波束为第一宽波束时,则说明第一宽波束和第一窄波束存在重叠,即本申请实施例所示的的第二场景,请结合图4所示,在该第二场景下,当宽波束终端待使用的宽波束和窄波束终端待使用的窄波束存在重叠时如何确定是否向宽波束终端和窄波束终端传输下行数据的技术方案,请参见图7所示,图7为本申请实施例提供的另一种下行数据的传输方法的示意图,该下行数据的传输方法可以包括:
S701、当第一窄波束的父波束为第一宽波束时,网络设备扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
其中,备选窄波束是网络设备在确定窄波束终端待使用的第一窄波束的父波束为第一宽波束时发送的。备选窄波束可以理解为网络设备待使用的用于下行发送的窄波束。
当第一窄波束的父波束为第一宽波束时,则说明宽波束待使用的第一宽波束和窄波束终端待使用的第一窄波束存在重叠,此时,网络设备可以进一步向宽波束终端扫描第一宽波束覆盖下的备选窄波束,使得宽波束终端可以对第一宽波束覆盖下的备选窄波束中的每一个窄波束进行测量,从而执行下述S702-S703:
S702、宽波束终端在备选窄波束中确定信号质量满足第三条件的P个窄波束的信息。
其中,P为大于或等于1的整数。可选的,P个窄波束为用于下行发送的第一宽波束覆盖下的备选窄波束中信号质量小于第三阈值的P个窄波束。其中,第三阈值可以根据实际需要进行设置,在此,对于第三阈值具备为多少,本申请实施例不做进一步地限制。
示例的,在确定P个窄波束时,宽波束终端可以测量信道质量
Figure PCTCN2019087689-appb-000015
其中,
Figure PCTCN2019087689-appb-000016
表示宽波束终端的接收波束,h N-W表示网络设备通过窄波束发送到宽波束终端的信道。若某一窄波束的信道质量小于第三阈值,则确定该窄波束为P个窄波束中的一个窄波束,从而确定该P个信号质量小于第三阈值的窄波束。在确定信号质量小于第三阈值的窄波束的P个窄波束之后,可以进一步确定P个窄波束对应的ID和P个窄波束中每一个窄波束对应的RSRP值。可选的,第三条件的P个窄波束的信息中每一个窄波束的信息也可以包括该窄波束的RSRP,当然,也可以包括该窄波束的ID。示例的,若P等于1,则此处的P个宽波束可以为RSRP最小的窄波束。
S703、宽波束终端向网络设备发送第三波束反馈消息。
其中,第三波束反馈消息包括P个窄波束的信息。
窄波束终端在通过S703在备选窄波束中确定信号质量满足第三条件的P个窄波束的信息之后,将包括满足第三条件的P个窄波束的信息的第三反馈信息发送给网络设备,以使网络设备接收该第三波束反馈信息,从而根据该第三波束反馈信息获取到宽波束终端确定的P个窄波束的信息。
S704、若P大于或等于第五阈值,则网络设备停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
其中,第五阈值可以根据实际需要进行设置,在此,对于第五阈值的大小,本申请实施例不做进一步地限制。需要说明的是,在本申请实施例中,当第五阈值为1时,宽波束终端测量到任意一个RSRP小于设定阈值的窄波束后即停止扫描。
网络设备在接收到窄波束终端发送的包括满足第三条件的P个窄波束的信息的第三反馈信息之后,判断P是否大于或等于第五阈值,若大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束,并执行下述S705:
S705、若第一窄波束为P个窄波束中的任一个,则网络设备确定宽波束终端和窄波束终端各自的信干比。
当第一窄波束为宽波束终端确定的P个窄波束中的任一个窄波束时,说明宽波束终端待使用的第一宽波束和窄波束终端待使用的第一窄波束虽然存在重叠,但此时网络设备依然可以确定宽波束终端和窄波束终端各自的信干比,并根据宽波束终端和窄波束终端各自的信干比确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,在确定宽波束终端的信干比时,网络设备可以根据第一宽波束的RSRP与P个宽波束中第一窄波束的RSRP的比值,确定宽波束终端的信干比。具体的,可以通过
Figure PCTCN2019087689-appb-000017
确定宽波束终端的信干比,其中,SIR w表示宽波束终端W-UE的信干比,
Figure PCTCN2019087689-appb-000018
表示宽波束终端W-UE在宽波束初始阶段反馈的第一宽波束f w的RSRP,
Figure PCTCN2019087689-appb-000019
表示宽波束终端W-UE在上述窄波束测量阶段反馈的P个窄波束中第一窄波束f N的RSRP。
可选的,在确定窄波束终端的信干比时,可以根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。具体的,由于重叠场景下N-UE的父波束f W(N)与W-UE的宽波束f w相同,因此,可以通过
Figure PCTCN2019087689-appb-000020
确定窄波束终端的信干比,其中,SIR N表示窄波束终端的信干比,
Figure PCTCN2019087689-appb-000021
表示窄波束终端N-UE在宽波束初始接入阶段反馈的N个宽波束中第一宽波束f W(N)对应的RSRP,
Figure PCTCN2019087689-appb-000022
表示窄波束终端N-UE在窄波束优化阶段反馈的第一窄波束f N对应的RSRP。需要注意的是,在重叠场景下,N-UE的信干比相对稳定,约等于窄波束与宽波束的增益差。
需要说明的是,若第一窄波束不为P个窄波束信息中的任一个,则终端无法确定第一窄波束对宽波束终端的干扰情况,从而无法计算宽波束终端的信干比,因此,网络设备确定不在第一窄波束上向窄波束终端传输下行数据,且不在第一宽波束上向宽波束终端传输下行数据。
S706、若宽波束终端的信干比和窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
其中,第四阈值可以实际需要进行设置,在此,对于第四阈值的大小,本申请实施例不做进一步地限制。
在通过S705分别确定宽波束终端的信干比和窄波束终端的信干比之后,就可以判断该宽波束终端的信干比和窄波束终端的信干比是否大于第四阈值,若该宽波束终端的信干比和窄波束终端的信干比均大于第四阈值,则说明宽波束终端待使用的第一宽波束对窄波束终端待使用的第一窄波束的干扰较小,且窄波束终端待使用的第一窄波束对宽波束终端待使用的第一宽波束的干扰较小,此时网络设备可以同时调度该宽波束终端和窄波束终端,从而确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
需要说明的是,在重叠场景下,宽波束终端向网络设备发送的P个窄波束Ω N(W)(第三波束反馈信息中的P个窄波束组成的集合)中对应RSRP最小的窄波束为
Figure PCTCN2019087689-appb-000023
网络设备可以优先将满足
Figure PCTCN2019087689-appb-000024
的宽波束终端和窄波束终端调度在一起,此时被调度的宽波束终端和窄波束终端的信干比同时达到最大,从而在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
在实际重叠场景下,同样对于一个单小区NR***,网络设备配备两个天线阵列,其中宽波束天线阵列配备4根天线,窄波束天线阵列配备16根天线,用于下行多用户MIMO传输。为简单起见,可以忽略终端的波束赋形能力,信道以80%概率为直射径(Line-of-sight,LoS)信道,以20%概率为非直射径(Non-line-of-sight,NLoS)信道,假设宽波束阵列和窄波束阵列的信道离开角相同,则宽波束终端和窄波束终端的频谱效率随信噪比变化关系可以参见图8所示,图8为本申请实施例提供的另一种宽波束终端和窄波束终端的频谱效率随信噪比变化关系图,结合图8可以看出,图8考虑了相关传输和非相关传输两种模式,采用本申请实施例所示的下行数据的传输方法,与现有技术中随机调度方案相比,性能明显提升,说明本申请实施例所示的技术方案能够有效降低终端之间的干扰,提升终端的信干比。
由此可见,本申请实施例提供的下行数据的传输方法,在重叠场景下,通过对宽波束终端进一步扫描备选窄波束,使得宽波束终端测量并反馈满足第三条件的P个窄波束,这样网络设备可以根据宽波束反馈的第三波束反馈信息、窄波束反馈的第二波束反馈信息及第一窄波束的信息计算待调度宽波束和窄波束终端的信干比,并根据计算得到的信干比确定是否向所述宽波束终端和所述窄波束终端传输下行数据。与现有技术相比,无需再额外发送正交参考信号进行干扰测量,仅需要宽波束终端进行波束扫描测量RSRP较小的窄波束,从而降低了参考信号带来的资源开销,同时降低了干扰测量带来的延时。
在详细描述完本申请的技术方案之后,为了更容易理解本申请实施例提供的下行数据的传输方法,下面将举例说明本申请实施例的技术方法。
在进行下行数据传输时,假设有2个宽波束终端和2个窄波束终端,当然,本申请实施例只是以有2个宽波束终端和2个窄波束终端为例进行说明,并不仅仅限于这种情况。网络设备先扫描用于下行发送的备选宽波束,该备选宽波束分别为宽波束1、宽波束2、宽波束3、宽波束4及宽波束5,宽波束终端1对这些备选宽波束进行测量之后,将其测量的RSRP最大的宽波束1确定为待使用的第一宽波束,同时将RSRP较小的宽波束2和宽波束3确定为满足第一条件的2个宽波束,并向网络设备发送第一波束反馈信息,该第一波束反馈信息可以包括宽波束1的RSRP、宽波束1的ID、宽波束2的RSRP、宽波束2的ID、宽波束3的RSRP及宽波束3的ID。宽波束终端2也会对这些备选宽波束进行测量之后,将其测量的RSRP最大的宽波束2确定为待使用的第一宽波束,同时将RSRP较小的宽波束1和宽波束4确定为满足第一条件的2个宽波束,并向网络设备发送第一波束反馈信息,该第一波束反馈信息可以包括宽波束2的RSRP、宽波束2的ID、宽波束1的RSRP、宽波束1的ID、宽波束4的RSRP及宽波束4的ID。窄波束终端1对这些备选宽波束进行测量之后,将其测量的RSRP 最大的宽波束1确定为第二宽波束,同时将RSRP较小的宽波束3确定为满足第一条件的1个宽波束,并向网络设备发送第二波束反馈信息,该第二波束反馈信息可以包括宽波束1的RSRP、宽波束1的ID、宽波束3的RSRP及宽波束3的ID;网络设备接收到窄波束终端1反馈的第二波束反馈信息之后,扫描的用于下行发送的宽波束1覆盖下的备选窄波束,该备选窄波束分别为窄波束11、窄波束12、窄波束13及窄波束14,窄波束终端1对这些备选窄波束进行测量之后,将其测量的RSRP最大的窄波束12确定为待使用的第一窄波束,并将该第一窄波束12的RSRP和第一窄波束12的ID发送给网络设备。窄波束终端2对这些备选宽波束进行测量之后,将其测量的RSRP最大的宽波束4确定为第二宽波束,同时将RSRP较小的宽波束1和宽波束2确定为满足第一条件的2个宽波束,并向网络设备发送第二波束反馈信息,该第二波束反馈信息可以包括宽波束4的RSRP、宽波束4的ID、宽波束1的RSRP、宽波束1的ID、宽波束2的RSRP及宽波束2的ID;网络设备接收到窄波束终端2反馈的第二波束反馈信息之后,扫描的用于下行发送的宽波束4覆盖下的备选窄波束,该备选窄波束分别为窄波束41、窄波束42、窄波束43及窄波束44,窄波束终端4对这些备选窄波束进行测量之后,将其测量的RSRP最大的窄波束42确定为待使用的第一窄波束,并将该第一窄波束42的RSRP和第一窄波束42的ID发送给网络设备。
网络设备在接收到宽波束终端1、宽波束终端2、窄波束终端1及窄波束终端2反馈的上述信息之后,会将宽波束终端1、宽波束终端2、窄波束终端1及窄波束终端2进行两两组合,并确定两两组合后的两个终端的信干比是否满足条件,进而确定两个终端是否可以同时调度。第一种组合为宽波束终端1和窄波束终端1,第二种组合为宽波束终端1和窄波束终端2,第三种组合为宽波束2和窄波束1,第四种组合为宽波束2和窄波束2。具体的,对于第二种组合而言,可以看出,宽波束终端1待使用的宽波束1为窄波束终端2反馈的满足第二条件的宽波束中的一个,则可以确定窄波束终端2待使用的窄波束42对宽波束终端1的干扰较小,但窄波束终端2待使用的窄波束42的父波束宽波束4不为宽波束终端1反馈的满足第一条件的宽波束中的一个,则无法确定宽波束终端1待使用的宽波束1对窄波束终端2待使用的窄波束42的干扰情况,因此,无法计算宽波束终端1和窄波束终端2各自的信干比,进而无法确定该宽波束终端1和窄波束终端2是否可以同时调度。
对于第三组合而言,可以看出,窄波束终端1待使用的窄波束12的父波束宽波束1为宽波束终端2反馈的满足第一条件的宽波束中的一个,则可以确定宽波束终端2待使用的宽波束2对窄波束终端1待使用的窄波束12的干扰较小,但宽波束终端2待使用的宽波束2不为窄波束终端1反馈的满足第二条件的宽波束中的一个,则却无法确定窄波束终端1待使用的窄波束42对宽波束终端2待使用的宽波束2的干扰情况,因此,无法计算宽波束终端2和窄波束终端1各自的信干比,进而无法确定该宽波束终端2和窄波束终端1是否可以同时调度。
对于第四种组合而言,可以看出,宽波束终端2待使用的宽波束2为窄波束终端2反馈的满足第二条件的宽波束中的一个,可以确定宽波束终端2待使用的宽波束2对窄波束终端2待使用的窄波束42的干扰较小,且窄波束终端2待使用的窄波束42的父波束宽波束4为宽波束终端2反馈的满足第一条件的宽波束中的一个,可以确定窄波束终端2待使用的窄波束42对宽波束终端2待使用的宽波束2的干扰较小,此时,可以计算宽波束终端2和窄波束终端2各自的信干比,若宽波束终端2和窄波束终端2各自的信干比均大于第三阈值,则确定该宽波束终端2和窄波束终端2可以同时调度,即可以在宽波束2上向宽波束终端2传输下行数据,且在窄波束42上向窄波束终端2传输下行数据,与现有技术相比,无需再额外发送正交参考信号进行干扰测量,从而降低了参考信号带来的资源开销,同时降低了干扰测量 带来的延时。
对于第一种组合而言,可以看出,窄波束终端1待使用的窄波束12的父波束为宽波束1,及窄波束1待使用的窄波束12的父波束为宽波束终端1待使用的宽波束1,则确定窄波束终端1待使用的窄波束12和宽波束终端1待使用的宽波束1存在重叠,此时,网络设备可以进一步扫描用于下行发送的宽波束1覆盖下的备选窄波束,该备选窄波束分别为窄波束11、窄波束12、窄波束13及窄波束14,窄波束终端1对这些备选窄波束进行测量之后,将其测量的信号质量较小的3个窄波束确定为满足第三条件的P个窄波束,该三个窄波束分别为窄波束12、窄波束13及窄波束14,并向网络设备发送第三波束反馈信息,该第三波束反馈信息可以包括窄波束12的RSRP、窄波束12的ID、窄波束13的RSRP、窄波束13的ID、窄波束14的RSRP及窄波束14的ID;网络设备接收到窄波束终端1反馈的第三波束反馈信息之后,可以确定窄波束终端1待使用的窄波束12为宽波束终端1反馈的满足第三条件的3个窄波束中的一个,说明窄波束终端1待使用的窄波束12对宽波束终端1待使用的宽波束1虽然存在重叠,但是窄波束终端1待使用的窄波束12对宽波束终端1待使用的宽波束1的干扰较小,此时,可以计算宽波束终端1和窄波束终端1各自的信干比,若宽波束终端1和窄波束终端1各自的信干比均大于第四阈值,则确定该宽波束终端1和窄波束终端1可以同时调度,即可以在宽波束1上向宽波束终端1传输下行数据,且在窄波束12上向窄波束终端1传输下行数据,与现有技术相比,无需再额外发送正交参考信号进行干扰测量,从而降低了参考信号带来的资源开销,同时降低了干扰测量带来的延时。
图9为本申请实施例提供的一种网络设备90的结构示意图,请参见图9所示,该网络设备90可以包括:
接收单元901,用于从宽波束终端接收第一波束反馈信息;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数。
接收单元901,还用于从窄波束终端接收第二波束反馈信息;其中,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数。
接收单元901,还用于从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束。
确定单元902,用于根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据。
可选的,M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束。
N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
可选的,确定单元902,具体用于当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,第一宽波束的信息包括第一宽波束的参考信号接收功率RSRP,第一窄波束的信息包括第一窄波束的RSRP;确定单元902,具体用于确定M个宽波束中第一窄波束的父波束的RSRP和参数的乘积;其中,参数为最大增益差的平方;并根据第一宽波束的RSRP 与乘积的比值,确定宽波束终端的信干比。
确定单元902,还具体用于根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
可选的,确定单元902,具体用于当第一窄波束的父波束为第一宽波束时,则从宽波束终端接收第三波束反馈消息;第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,P个窄波束为用于下行发送的第一宽波束覆盖下的备选窄波束中信号质量小于第三阈值的P个窄波束。
可选的,确定单元902,具体用于若第一窄波束为P个窄波束中的任一个,则确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,第一宽波束的信息包括第一宽波束的RSRP,第一窄波束的信息包括第一窄波束的RSRP;确定单元902,具体用于根据第一宽波束的RSRP与P个窄波束中第一窄波束的RSRP的比值,确定宽波束终端的信干比;并根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
可选的,确定单元902,还用于若第一窄波束不为P个窄波束信息中的任一个,则确定不在第一窄波束上向窄波束终端传输下行数据,且不在第一宽波束上向宽波束终端传输下行数据。
可选的,该网络设备90还可以包括扫描单元903,请参见图10所示,图10为本申请实施例提供的另一种网络设备90的结构示意图。其中,扫描单元903,用于若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
可选的,扫描单元903,还用于扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
本发明实施例所示的网络设备90,可以执行上述任一实施例所示的网络设备90侧的下行数据的传输方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图11为本申请实施例提供的一种宽波束终端110的结构示意图,请参见图11所示,该宽波束终端110可以包括:
确定单元1101,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定宽波束终端110待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数。
发送单元1102,用于向基站发送第一波束反馈信息;其中,第一波束反馈信息包括第一宽波束的信息和M个宽波束的信息。
可选的,M个宽波束为备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束。
可选的,该宽波束终端110还可以包括接收单元1103,请参见图12所示,图12为本申请实施例提供的另一种宽波束终端110的结构示意图。
接收单元1103,用于接收基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束;备选窄波束是基站在确定窄波束终端待使用的第一窄波束的父波束为第一宽波束时发送的。
确定单元1101,还用于在备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数。
发送单元1102,还用于向基站发送第三波束反馈消息;第三波束反馈消息包括P个窄波束的信息。
可选的,P个窄波束为备选窄波束中信号质量小于第三阈值的P个窄波束。
本发明实施例所示的宽波束终端110,可以执行上述任一实施例所示的宽波束终端110侧的下行数据的传输方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图13为本申请实施例提供的一种窄波束终端130的结构示意图,请参见图13所示,该窄波束终端130可以包括:
确定单元1301,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定窄波束终端130确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数。
发送单元1302,用于向基站发送第二波束反馈信息;其中,第二波束反馈信息包括第二宽波束的信息和N个宽波束的信息。
确定单元1301,还用于当接收到基站扫描的用于下行发送的第二宽波束覆盖下的备选窄波束时,在第二宽波束覆盖下的备选窄波束中确定窄波束终端130待使用的第一窄波束。
发送单元1302,还用于向基站发送窄波束终端130待使用的第一窄波束的信息。
可选的,N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
本发明实施例所示的窄波束终端130,可以执行上述任一实施例所示的窄波束终端130侧的下行数据的传输方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图14为本申请实施例提供的又一种网络设备140的结构示意图,示例的,请参见图14所示,该网络设备140可以包括:
接收器1401,用于从宽波束终端接收第一波束反馈信息;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数。
接收器1401,还用于从窄波束终端接收第二波束反馈信息;其中,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数。
接收器1401,还用于从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束。
处理器1402,用于根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据。
可选的,M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束。
N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
可选的,根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,包括:当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,第一宽波束的信息包括第一宽波束的参考信号接收功率RSRP,确定宽波束终 端和窄波束终端各自的信干比,包括:确定M个宽波束中第一窄波束的父波束的RSRP和参数的乘积;其中,参数为最大增益差的平方;并根据第一宽波束的RSRP与乘积的比值,确定宽波束终端的信干比;根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
可选的,接收器1401,还用于当第一窄波束的父波束为第一宽波束时,则从宽波束终端接收第三波束反馈消息;第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数。
根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,包括:根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据,包括:若第一窄波束为P个窄波束中的任一个,则确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,第一宽波束的信息包括第一宽波束的RSRP,确定宽波束终端和窄波束终端各自的信干比,包括:根据第一宽波束的RSRP与P个窄波束中第一窄波束的RSRP的比值,确定宽波束终端的信干比;并根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
可选的,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据,还包括:若第一窄波束不为P个窄波束信息中的任一个,则确定不在第一窄波束上向窄波束终端传输下行数据,且不在第一宽波束上向宽波束终端传输下行数据。
可选的,处理器1402,还用于若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
可选的,处理器1402,还用于扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
本发明实施例所示的网络设备140,可以执行上述任一实施例所示的网络设备140侧的下行数据的传输方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图15为本申请实施例提供的又一种宽波束终端150的结构示意图,示例的,请参见图15所示,该宽波束终端150可以包括:
处理器1501,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定宽波束终端150待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数。
发送器1502,用于向基站发送第一波束反馈信息;其中,第一波束反馈信息包括第一宽波束的信息和M个宽波束的信息。
可选的,M个宽波束为备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束。
可选的,该宽波束终端150还可以包括接收器1503;接收器1503,用于接收基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束;备选窄波束是基站在确定窄波束终端待使用的第一窄波束的父波束为第一宽波束时发送的。
处理器1501,还用于在备选窄波束中确定信号质量满足第三条件的P个窄波束的信息; P为大于或等于1的整数。
发送器1502,还用于向基站发送第三波束反馈消息;第三波束反馈消息包括P个窄波束的信息。
本发明实施例所示的宽波束终端150,可以执行上述任一实施例所示的宽波束终端150侧的下行数据的传输方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图16为本申请实施例提供的又一种窄波束终端160的结构示意图,示例的,请参见图16所示,该窄波束终端160可以包括:
处理器1601,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定窄波束终端160确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数。
发送器1602,用于向基站发送第二波束反馈信息;其中,第二波束反馈信息包括第二宽波束的信息和N个宽波束的信息。
处理器1601,还用于当接收到基站扫描的用于下行发送的第二宽波束覆盖下的备选窄波束时,在第二宽波束覆盖下的备选窄波束中确定窄波束终端160待使用的第一窄波束。
发送器1602,还用于向基站发送窄波束终端160待使用的第一窄波束的信息。
可选的,N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
本发明实施例所示的窄波束终端160,可以执行上述任一实施例所示的窄波束终端160侧的下行数据的传输方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
本申请实施例还提供一种通信***,该通信***包括上述任一实施例所示的网络设备、宽波束终端及窄波束终端,其实现原理以及有益效果与类似,此处不再进行赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,在计算机程序被处理器执行时,执行上述任一实施例所示的网络设备侧的下行数据的传输方法,其实现原理以及有益效果类似,此处不再进行赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,在计算机程序被处理器执行时,执行上述任一实施例所示的宽波束终端侧的下行数据的传输方法;或者执行上述任一实施例所示的宽波束终端侧的下行数据的传输方法,其实现原理以及有益效果类似,此处不再进行赘述。
本申请实施例还提供一种电路***,该电路***可以包括处理电路。
在从宽波束终端接收第一波束反馈信息,从窄波束终端接收第二波束反馈信息,及从窄波束终端接收窄波束终端待使用的第一窄波束的信息,第一窄波束为第二宽波束覆盖下的窄波束之后,处理电路,用于根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据;其中,第一波束反馈信息包括宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数,第二波束反馈信息包括窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数。
可选的,M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束。
N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
可选的,根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽 波束终端和窄波束终端传输下行数据,包括:
当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第三阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,第一宽波束的信息包括第一宽波束的参考信号接收功率RSRP,确定宽波束终端和窄波束终端各自的信干比,包括:确定M个宽波束中第一窄波束的父波束的RSRP和参数的乘积;其中,参数为最大增益差的平方;并根据第一宽波束的RSRP与乘积的比值,确定宽波束终端的信干比;根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
可选的,第一窄波束的父波束为第一宽波束,根据第一波束反馈信息、第二波束反馈信息及第一窄波束的信息确定是否向宽波束终端和窄波束终端传输下行数据,包括:根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据,其中,第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数。
可选的,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,包括:若第一窄波束为P个窄波束中的任一个,则确定宽波束终端和窄波束终端各自的信干比;若宽波束终端的信干比和窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向窄波束终端传输下行数据,且在第一宽波束上向宽波束终端传输下行数据。
可选的,第一宽波束的信息包括第一宽波束的RSRP,确定宽波束终端和窄波束终端各自的信干比,包括:根据第一宽波束的RSRP与P个窄波束中第一窄波束的RSRP的比值,确定宽波束终端的信干比;并根据第一窄波束的RSRP与N个宽波束中第一宽波束的RSRP的比值,确定窄波束终端的信干比。
可选的,根据第一窄波束和第三波束反馈消息确定是否在第一窄波束上向窄波束终端传输下行数据,还包括:若第一窄波束不为P个窄波束信息中的任一个,则确定不在第一窄波束上向窄波束终端传输下行数据,且不在第一宽波束上向宽波束终端传输下行数据。
可选的,处理电路,还用于若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
可选的,处理电路,还用于扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
本发明实施例所示的电路***,可以执行上述任一实施例所示的网络设备侧的下行数据的传输方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
本申请实施例还提供一种电路***,该电路***可以包括处理电路。
处理电路,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数。
可选的,M个宽波束为备选宽波束中信号质量最小的M个宽波束;或者,M个宽波束为备选宽波束中信号质量小于第一阈值的M个宽波束。
可选的,处理电路,还用于:在接收到基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束之后,在备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;备选窄波束是基站在确定窄波束终端待使用的第一窄波束的父波束为第一宽波束时发送的。
本发明实施例所示的宽波束终端,可以执行上述任一实施例所示的宽波束终端侧的下行数据的传输方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
本申请实施例还提供一种电路***,该电路***可以包括处理电路。
处理电路,用于当接收到基站扫描的用于下行发送的备选宽波束时,在备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数。
处理电路,还用于:在向基站发送第二波束反馈信息之后,当接收到基站扫描的用于下行发送的第二宽波束覆盖下的备选窄波束时,在第二宽波束覆盖下的备选窄波束中确定窄波束终端待使用的第一窄波束;其中,第二波束反馈信息包括第二宽波束的信息和N个宽波束的信息。
可选的,N个宽波束为备选宽波束中信号质量最小的N个宽波束;或者,N个宽波束为备选宽波束中信号质量小于第二阈值的N个宽波束。
本发明实施例所示的窄波束终端,可以执行上述任一实施例所示的窄波束终端侧的下行数据的传输方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
上述各个实施例中处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)等可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的指令,结合其硬件完成上述方法的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。

Claims (62)

  1. 一种下行数据的传输方法,其特征在于,包括:
    从宽波束终端接收第一波束反馈信息;其中,所述第一波束反馈信息包括所述宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
    从窄波束终端接收第二波束反馈信息;其中,所述第二波束反馈信息包括所述窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
    从所述窄波束终端接收所述窄波束终端待使用的第一窄波束的信息,所述第一窄波束为所述第二宽波束覆盖下的窄波束;
    根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据。
  2. 根据权利要求1所述的方法,其特征在于,
    所述M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,所述M个宽波束为所述备选宽波束中信号质量小于第一阈值的M个宽波束;
    所述N个宽波束为所述备选宽波束中信号质量最小的N个宽波束;或者,所述N个宽波束为所述备选宽波束中信号质量小于第二阈值的N个宽波束。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据,包括:
    当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定所述宽波束终端和所述窄波束终端各自的信干比;
    若所述宽波束终端的信干比和所述窄波束终端的信干比均大于第三阈值,则确定在所述第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  4. 根据权利要求3所述的方法,其特征在于,所述第一宽波束的信息包括所述第一宽波束的参考信号接收功率RSRP,所述第一窄波束的信息包括所述第一窄波束的RSRP,所述确定所述宽波束终端和所述窄波束终端各自的信干比,包括:
    确定所述M个宽波束中所述第一窄波束的父波束的RSRP和参数的乘积;其中,所述参数为最大增益差的平方;
    根据所述第一宽波束的RSRP与所述乘积的比值,确定所述宽波束终端的信干比;
    根据所述第一窄波束的RSRP与所述N个宽波束中所述第一宽波束的RSRP的比值,确定所述窄波束终端的信干比。
  5. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据,包括:
    当第一窄波束的父波束为所述第一宽波束时,则从宽波束终端接收第三波束反馈消息;所述第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或 等于1的整数;
    根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据,包括:
    若所述第一窄波束为所述P个窄波束中的任一个,则确定所述宽波束终端和所述窄波束终端各自的信干比;
    若所述宽波束终端的信干比和所述窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  7. 根据权利要求6所述的方法,其特征在于,所述第一宽波束的信息包括所述第一宽波束的RSRP,所述第一窄波束的信息包括所述第一窄波束的RSRP,所述确定所述宽波束终端和所述窄波束终端各自的信干比,包括:
    根据所述第一宽波束的RSRP与所述P个窄波束中所述第一窄波束的RSRP的比值,确定所述宽波束终端的信干比;
    根据所述第一窄波束的RSRP与所述N个宽波束中所述第一宽波束的RSRP的比值,确定所述窄波束终端的信干比。
  8. 根据权利要求6所述的方法,其特征在于,还包括:
    若所述第一窄波束不为所述P个窄波束信息中的任一个,则确定不在所述第一窄波束上向所述窄波束终端传输下行数据,且不在所述第一宽波束上向所述宽波束终端传输下行数据。
  9. 根据权利要求5-8任一项所述的方法,其特征在于,所述根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据之前,还包括:
    若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
  10. 根据权利要求5-9任一项所述的方法,其特征在于,所述从宽波束终端接收第三波束反馈消息之前,还包括:
    扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
  11. 一种下行数据的传输方法,其特征在于,包括:
    当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
    向所述基站发送第一波束反馈信息;其中,所述第一波束反馈信息包括所述第一宽波束的信息和所述M个宽波束的信息。
  12. 根据权利要求11所述的方法,其特征在于,
    所述M个宽波束为所述备选宽波束中信号质量最小的M个宽波束;或者,所述M个宽波束为所述备选宽波束中信号质量小于第一阈值的M个宽波束。
  13. 根据权利要求11或12所述的方法,其特征在于,还包括:
    接收所述基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束;所述备选窄波束是所述基站在确定窄波束终端待使用的第一窄波束的父波束为所述第一宽波束时发送的;
    在所述备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;
    向所述基站发送第三波束反馈消息;所述第三波束反馈消息包括所述P个窄波束的信息。
  14. 一种下行数据的传输方法,其特征在于,包括:
    当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
    向所述基站发送第二波束反馈信息;其中,所述第二波束反馈信息包括所述第二宽波束的信息和所述N个宽波束的信息;
    当接收到基站扫描的用于下行发送的所述第二宽波束覆盖下的备选窄波束时,在所述第二宽波束覆盖下的备选窄波束中确定所述窄波束终端待使用的第一窄波束;
    向所述基站发送所述窄波束终端待使用的第一窄波束的信息。
  15. 根据权利要求14所述的方法,其特征在于,
    所述N个宽波束为所述备选宽波束中信号质量最小的N个宽波束;或者,所述N个宽波束为所述备选宽波束中信号质量小于第二阈值的N个宽波束。
  16. 一种网络设备,其特征在于,包括:
    接收单元,用于从宽波束终端接收第一波束反馈信息;其中,所述第一波束反馈信息包括所述宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
    所述接收单元,还用于从窄波束终端接收第二波束反馈信息;其中,所述第二波束反馈信息包括所述窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
    所述接收单元,还用于从所述窄波束终端接收所述窄波束终端待使用的第一窄波束的信息,所述第一窄波束为所述第二宽波束覆盖下的窄波束;
    确定单元,用于根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据。
  17. 根据权利要求16所述的设备,其特征在于,
    所述M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,所述M个宽波束为所述备选宽波束中信号质量小于第一阈值的M个宽波束;
    所述N个宽波束为所述备选宽波束中信号质量最小的N个宽波束;或者,所述N个宽波束为所述备选宽波束中信号质量小于第二阈值的N个宽波束。
  18. 根据权利要求16或17所述的设备,其特征在于,
    所述确定单元,具体用于当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定所述宽波束终端和所述窄波束终端各自的信干 比;若所述宽波束终端的信干比和所述窄波束终端的信干比均大于第三阈值,则确定在所述第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  19. 根据权利要求18所述的设备,其特征在于,所述第一宽波束的信息包括所述第一宽波束的参考信号接收功率RSRP,所述第一窄波束的信息包括所述第一窄波束的RSRP;
    所述确定单元,具体用于确定所述M个宽波束中所述第一窄波束的父波束的RSRP和参数的乘积;其中,所述参数为最大增益差的平方;并根据所述第一宽波束的RSRP与所述乘积的比值,确定所述宽波束终端的信干比;
    所述确定单元,还具体用于根据所述第一窄波束的RSRP与所述N个宽波束中所述第一宽波束的RSRP的比值,确定所述窄波束终端的信干比。
  20. 根据权利要求16或17所述的设备,其特征在于,
    所述确定单元,具体用于当第一窄波束的父波束为所述第一宽波束时,则从宽波束终端接收第三波束反馈消息;所述第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  21. 根据权利要求20所述的设备,其特征在于,
    所述确定单元,具体用于若所述第一窄波束为所述P个窄波束中的任一个,则确定所述宽波束终端和所述窄波束终端各自的信干比;若所述宽波束终端的信干比和所述窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  22. 根据权利要求21所述的设备,其特征在于,所述第一宽波束的信息包括所述第一宽波束的RSRP,所述第一窄波束的信息包括所述第一窄波束的RSRP;
    所述确定单元,具体用于根据所述第一宽波束的RSRP与所述P个窄波束中所述第一窄波束的RSRP的比值,确定所述宽波束终端的信干比;并根据所述第一窄波束的RSRP与所述N个宽波束中所述第一宽波束的RSRP的比值,确定所述窄波束终端的信干比。
  23. 根据权利要求21所述的设备,其特征在于,
    所述确定单元,还用于若所述第一窄波束不为所述P个窄波束信息中的任一个,则确定不在所述第一窄波束上向所述窄波束终端传输下行数据,且不在所述第一宽波束上向所述宽波束终端传输下行数据。
  24. 根据权利要求20-23任一项所述的设备,其特征在于,还包括:
    扫描单元,用于若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
  25. 根据权利要求24所述的设备,其特征在于,
    所述扫描单元,还用于扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
  26. 一种宽波束终端,其特征在于,包括:
    确定单元,用于当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束 的信息,M为大于或等于1的整数;
    发送单元,用于向所述基站发送第一波束反馈信息;其中,所述第一波束反馈信息包括所述第一宽波束的信息和所述M个宽波束的信息。
  27. 根据权利要求26所述的终端,其特征在于,
    所述M个宽波束为所述备选宽波束中信号质量最小的M个宽波束;或者,所述M个宽波束为所述备选宽波束中信号质量小于第一阈值的M个宽波束。
  28. 根据权利要求26或27所述的终端,其特征在于,还包括:
    接收单元,用于接收所述基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束;所述备选窄波束是所述基站在确定窄波束终端待使用的第一窄波束的父波束为所述第一宽波束时发送的;
    所述确定单元,还用于在所述备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;
    所述发送单元,还用于向所述基站发送第三波束反馈消息;所述第三波束反馈消息包括所述P个窄波束的信息。
  29. 一种窄波束终端,其特征在于,包括:
    确定单元,用于当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
    发送单元,用于向所述基站发送第二波束反馈信息;其中,所述第二波束反馈信息包括所述第二宽波束的信息和所述N个宽波束的信息;
    所述确定单元,还用于当接收到基站扫描的用于下行发送的所述第二宽波束覆盖下的备选窄波束时,在所述第二宽波束覆盖下的备选窄波束中确定所述窄波束终端待使用的第一窄波束;
    所述发送单元,还用于向所述基站发送所述窄波束终端待使用的第一窄波束的信息。
  30. 根据权利要求29所述的终端,其特征在于,
    所述N个宽波束为所述备选宽波束中信号质量最小的N个宽波束;或者,所述N个宽波束为所述备选宽波束中信号质量小于第二阈值的N个宽波束。
  31. 一种网络设备,其特征在于,包括:
    接收器,用于从宽波束终端接收第一波束反馈信息;其中,所述第一波束反馈信息包括所述宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
    所述接收器,还用于从窄波束终端接收第二波束反馈信息;其中,所述第二波束反馈信息包括所述窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
    所述接收器,还用于从所述窄波束终端接收所述窄波束终端待使用的第一窄波束的信息,所述第一窄波束为所述第二宽波束覆盖下的窄波束;
    处理器,用于根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据。
  32. 根据权利要求31所述的设备,其特征在于,
    所述M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,所述M个宽波束为所述备选宽波束中信号质量小于第一阈值的M个宽波束;
    所述N个宽波束为所述备选宽波束中信号质量最小的N个宽波束;或者,所述N个宽波束为所述备选宽波束中信号质量小于第二阈值的N个宽波束。
  33. 根据权利要求31或32所述的设备,其特征在于,所述根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据,包括:
    当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定所述宽波束终端和所述窄波束终端各自的信干比;若所述宽波束终端的信干比和所述窄波束终端的信干比均大于第三阈值,则确定在所述第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  34. 根据权利要求33所述的设备,其特征在于,所述第一宽波束的信息包括所述第一宽波束的参考信号接收功率RSRP,所述确定所述宽波束终端和所述窄波束终端各自的信干比,包括:
    确定所述M个宽波束中所述第一窄波束的父波束的RSRP和参数的乘积;其中,所述参数为最大增益差的平方;并根据所述第一宽波束的RSRP与所述乘积的比值,确定所述宽波束终端的信干比;根据所述第一窄波束的RSRP与所述N个宽波束中所述第一宽波束的RSRP的比值,确定所述窄波束终端的信干比。
  35. 根据权利要求31或32所述的设备,其特征在于,
    所述接收器,还用于当第一窄波束的父波束为所述第一宽波束时,则从宽波束终端接收第三波束反馈消息;所述第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;
    所述根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据,包括:根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  36. 根据权利要求35所述的设备,其特征在于,所述根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据,包括:
    若所述第一窄波束为所述P个窄波束中的任一个,则确定所述宽波束终端和所述窄波束终端各自的信干比;若所述宽波束终端的信干比和所述窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  37. 根据权利要求36所述的设备,其特征在于,所述第一宽波束的信息包括所述第一宽波束的RSRP,所述确定所述宽波束终端和所述窄波束终端各自的信干比,包括:根据所述第一宽波束的RSRP与所述P个窄波束中所述第一窄波束的RSRP的比值,确定所述宽波束终端的信干比;并根据所述第一窄波束的RSRP与所述N个宽波束中所述第一宽波束的RSRP的比值,确定所述窄波束终端的信干比。
  38. 根据权利要求36所述的设备,其特征在于,
    所述根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据,还包括:若所述第一窄波束不为所述P个窄波束信息中的任一个,则确定不在所述第一窄波束上向所述窄波束终端传输下行数据,且不在所述第一宽波束上向所述宽波束终端传输下行数据。
  39. 根据权利要求35-38任一项所述的设备,其特征在于,
    所述处理器,还用于若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
  40. 根据权利要求35-39任一项所述的设备,其特征在于,
    所述处理器,还用于扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
  41. 一种宽波束终端,其特征在于,包括:
    处理器,用于当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数;
    发送器,用于向所述基站发送第一波束反馈信息;其中,所述第一波束反馈信息包括所述第一宽波束的信息和所述M个宽波束的信息。
  42. 根据权利要求41所述的终端,其特征在于,
    所述M个宽波束为所述备选宽波束中信号质量最小的M个宽波束;或者,所述M个宽波束为所述备选宽波束中信号质量小于第一阈值的M个宽波束。
  43. 根据权利要求41或42所述的终端,其特征在于,还包括接收器;
    接收器,用于接收所述基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束;所述备选窄波束是所述基站在确定窄波束终端待使用的第一窄波束的父波束为所述第一宽波束时发送的;
    所述处理器,还用于在所述备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;
    所述发送器,还用于向所述基站发送第三波束反馈消息;所述第三波束反馈消息包括所述P个窄波束的信息。
  44. 一种窄波束终端,其特征在于,包括:
    处理器,用于当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
    发送器,用于向所述基站发送第二波束反馈信息;其中,所述第二波束反馈信息包括所述第二宽波束的信息和所述N个宽波束的信息;
    所述处理器,还用于当接收到基站扫描的用于下行发送的所述第二宽波束覆盖下的备选窄波束时,在所述第二宽波束覆盖下的备选窄波束中确定所述窄波束终端待使用的第一窄波束;
    所述发送器,还用于向所述基站发送所述窄波束终端待使用的第一窄波束的信息。
  45. 根据权利要求44所述的终端,其特征在于,
    所述N个宽波束为所述备选宽波束中信号质量最小的N个宽波束;或者,所述N个 宽波束为所述备选宽波束中信号质量小于第二阈值的N个宽波束。
  46. 一种计算机可读存储介质,其特征在于,计算机可读存储介质上存储有计算机程序,在计算机程序被处理器执行时,执行上述权利要求1-10任一项所示的下行数据的传输方法。
  47. 一种计算机可读存储介质,其特征在于,计算机可读存储介质上存储有计算机程序,在计算机程序被处理器执行时,执行上述权利要求11-13任一项所示的下行数据的传输方法;或者执行上述权利要求14-15任一项所示的下行数据的传输方法。
  48. 一种电路***,其特征在于,包括处理电路;
    所述处理电路用于:
    在从宽波束终端接收第一波束反馈信息,从窄波束终端接收第二波束反馈信息,及从所述窄波束终端接收所述窄波束终端待使用的第一窄波束的信息,所述第一窄波束为第二宽波束覆盖下的窄波束之后,所述处理电路,用于根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据;
    其中,所述第一波束反馈信息包括所述宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数,所述第二波束反馈信息包括所述窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数。
  49. 根据权利要求48所述的***,其特征在于,
    所述M个宽波束为用于下行发送的备选宽波束中信号质量最小的M个宽波束;或者,所述M个宽波束为所述备选宽波束中信号质量小于第一阈值的M个宽波束;
    所述N个宽波束为所述备选宽波束中信号质量最小的N个宽波束;或者,所述N个宽波束为所述备选宽波束中信号质量小于第二阈值的N个宽波束。
  50. 根据权利要求48或49所述的***,其特征在于,所述根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据,包括:
    当第一窄波束的父波束为M个宽波束中的任一个,且第一宽波束为N个宽波束中的任一个时,确定所述宽波束终端和所述窄波束终端各自的信干比;若所述宽波束终端的信干比和所述窄波束终端的信干比均大于第三阈值,则确定在所述第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  51. 根据权利要求50所述的***,其特征在于,所述第一宽波束的信息包括所述第一宽波束的参考信号接收功率RSRP,所述确定所述宽波束终端和所述窄波束终端各自的信干比,包括:
    确定所述M个宽波束中所述第一窄波束的父波束的RSRP和参数的乘积;其中,所述参数为最大增益差的平方;并根据所述第一宽波束的RSRP与所述乘积的比值,确定所述宽波束终端的信干比;根据所述第一窄波束的RSRP与所述N个宽波束中所述第一宽波束的RSRP的比值,确定所述窄波束终端的信干比。
  52. 根据权利要求48或49所述的***,其特征在于,第一窄波束的父波束为所述第一宽波束,所述根据所述第一波束反馈信息、所述第二波束反馈信息及所述第一窄波束的 信息确定是否向所述宽波束终端和所述窄波束终端传输下行数据,包括:
    根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据,其中,所述第三波束反馈消息包括信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数。
  53. 根据权利要求52所述的***,其特征在于,所述根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,包括:
    若所述第一窄波束为所述P个窄波束中的任一个,则确定所述宽波束终端和所述窄波束终端各自的信干比;若所述宽波束终端的信干比和所述窄波束终端的信干比均大于第四阈值,则确定在第一窄波束上向所述窄波束终端传输下行数据,且在所述第一宽波束上向所述宽波束终端传输下行数据。
  54. 根据权利要求53所述的***,其特征在于,所述第一宽波束的信息包括所述第一宽波束的RSRP,确定所述宽波束终端和所述窄波束终端各自的信干比,包括:根据所述第一宽波束的RSRP与所述P个窄波束中所述第一窄波束的RSRP的比值,确定所述宽波束终端的信干比;并根据所述第一窄波束的RSRP与所述N个宽波束中所述第一宽波束的RSRP的比值,确定所述窄波束终端的信干比。
  55. 根据权利要求53所述的***,其特征在于,
    所述根据所述第一窄波束和所述第三波束反馈消息确定是否在第一窄波束上向所述窄波束终端传输下行数据,还包括:若所述第一窄波束不为所述P个窄波束信息中的任一个,则确定不在所述第一窄波束上向所述窄波束终端传输下行数据,且不在所述第一宽波束上向所述宽波束终端传输下行数据。
  56. 根据权利要求52-55任一项所述的***,其特征在于,
    所述处理电路,还用于若P大于或等于第五阈值,则停止扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
  57. 根据权利要求52-56任一项所述的***,其特征在于,
    所述处理电路,还用于扫描用于下行发送的第一宽波束覆盖下的备选窄波束。
  58. 一种电路***,其特征在于,包括处理电路;
    所述处理电路,用于当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定宽波束终端待使用的第一宽波束的信息和信号质量满足第一条件的M个宽波束的信息,M为大于或等于1的整数。
  59. 根据权利要求58所述的***,其特征在于,
    所述M个宽波束为所述备选宽波束中信号质量最小的M个宽波束;或者,所述M个宽波束为所述备选宽波束中信号质量小于第一阈值的M个宽波束。
  60. 根据权利要求58或59所述的***,其特征在于,
    所述处理电路,还用于:在接收到所述基站扫描的用于下行发送的第一宽波束覆盖下的备选窄波束之后,在所述备选窄波束中确定信号质量满足第三条件的P个窄波束的信息;P为大于或等于1的整数;所述备选窄波束是所述基站在确定窄波束终端待使用的第一窄波束的父波束为所述第一宽波束时发送的。
  61. 一种电路***,其特征在于,包括处理电路;
    所述处理电路,用于当接收到基站扫描的用于下行发送的备选宽波束时,在所述备选宽波束中确定窄波束终端确定的第二宽波束的信息和信号质量满足第二条件的N个宽波束的信息,N为大于或等于1的整数;
    所述处理电路,还用于:在向所述基站发送第二波束反馈信息之后,当接收到基站扫描的用于下行发送的所述第二宽波束覆盖下的备选窄波束时,在所述第二宽波束覆盖下的备选窄波束中确定所述窄波束终端待使用的第一窄波束;其中,所述第二波束反馈信息包括所述第二宽波束的信息和所述N个宽波束的信息。
  62. 根据权利要求61所述的***,其特征在于,
    所述N个宽波束为所述备选宽波束中信号质量最小的N个宽波束;或者,所述N个宽波束为所述备选宽波束中信号质量小于第二阈值的N个宽波束。
PCT/CN2019/087689 2018-05-23 2019-05-21 下行数据的传输方法、网络设备及终端 WO2019223665A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/057,462 US11395156B2 (en) 2018-05-23 2019-05-21 Downlink data transmission method, network device, and terminal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810504111 2018-05-23
CN201810504111.4 2018-05-23
CN201810893428.1A CN110535579B (zh) 2018-05-23 2018-08-07 下行数据的传输方法、网络设备及终端
CN201810893428.1 2018-08-07

Publications (1)

Publication Number Publication Date
WO2019223665A1 true WO2019223665A1 (zh) 2019-11-28

Family

ID=68615921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087689 WO2019223665A1 (zh) 2018-05-23 2019-05-21 下行数据的传输方法、网络设备及终端

Country Status (1)

Country Link
WO (1) WO2019223665A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055978A (zh) * 2021-05-31 2021-06-29 北京理工大学 通信接入方法、装置、设备和可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366463B1 (en) * 2000-05-05 2008-04-29 The Directv Group, Inc. Military UHF and commercial Geo-mobile system combination for radio signal relay
CN104956604A (zh) * 2013-01-31 2015-09-30 高通股份有限公司 基于虚拟仰角端口的3d mimo csi 反馈
CN106105073A (zh) * 2014-03-20 2016-11-09 株式会社Ntt都科摩 波束选择方法、基站以及用户装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366463B1 (en) * 2000-05-05 2008-04-29 The Directv Group, Inc. Military UHF and commercial Geo-mobile system combination for radio signal relay
CN104956604A (zh) * 2013-01-31 2015-09-30 高通股份有限公司 基于虚拟仰角端口的3d mimo csi 反馈
CN106105073A (zh) * 2014-03-20 2016-11-09 株式会社Ntt都科摩 波束选择方法、基站以及用户装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055978A (zh) * 2021-05-31 2021-06-29 北京理工大学 通信接入方法、装置、设备和可读存储介质

Similar Documents

Publication Publication Date Title
TWI680680B (zh) 波束管理方法及其使用者設備
EP3593507B1 (en) System and method for beam management in high frequency multi-carrier operations with spatial quasi co-locations
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
US9287958B2 (en) Method and apparatus for processing feedback information in wireless communication system supporting beamforming
US11909489B2 (en) System and method for beam management with emissions limitations
WO2018095305A1 (zh) 一种波束训练方法及装置
US11102783B2 (en) System and method for supporting beamformed sounding reference signals
US10560165B2 (en) Communication system, method of controlling communication system, base station apparatus, and wireless terminal apparatus
WO2017045384A1 (en) System and method for fast beamforming setup
WO2021052473A1 (zh) 通信方法和通信装置
US9967019B2 (en) Communication system, communication method, base station device, and terminal device
WO2020001527A1 (zh) 波束的选择方法、装置和存储介质
WO2022001241A1 (zh) 一种波束管理方法及装置
WO2023050472A1 (zh) 用于寻呼的方法和装置
WO2021036773A1 (zh) 一种信号测量方法及装置
US11395156B2 (en) Downlink data transmission method, network device, and terminal
WO2017173916A1 (zh) 一种波束训练阶段自动增益控制的方法及装置
US9954642B2 (en) Spatial contention in dense wireless network
WO2020238922A1 (zh) 通信方法及装置
US20220201620A1 (en) System and Method for Uplink Power Control in Multi-AP Coordination
WO2019223665A1 (zh) 下行数据的传输方法、网络设备及终端
CN107615821A (zh) 一种数据传输方法、设备和***
WO2016141585A1 (zh) 一种天线模式选择方法、装置及***
WO2021204253A1 (zh) 一种波束训练方法及装置
CN109714780A (zh) 通信方法、终端和接入网设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808318

Country of ref document: EP

Kind code of ref document: A1