WO2019223358A1 - 一种压缩机及其控制方法 - Google Patents

一种压缩机及其控制方法 Download PDF

Info

Publication number
WO2019223358A1
WO2019223358A1 PCT/CN2019/073424 CN2019073424W WO2019223358A1 WO 2019223358 A1 WO2019223358 A1 WO 2019223358A1 CN 2019073424 W CN2019073424 W CN 2019073424W WO 2019223358 A1 WO2019223358 A1 WO 2019223358A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust valve
stopper
valve disc
stop position
compressor
Prior art date
Application number
PCT/CN2019/073424
Other languages
English (en)
French (fr)
Inventor
宋斌
许升
李衡国
吴远刚
高山
Original Assignee
青岛海尔智能技术研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810517692.5A external-priority patent/CN110529359A/zh
Priority claimed from CN201810533130.XA external-priority patent/CN110529360A/zh
Application filed by 青岛海尔智能技术研发有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2019223358A1 publication Critical patent/WO2019223358A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves

Definitions

  • the invention relates to the technical field of compressors, in particular to a compressor and a control method thereof.
  • the linear compressor is a relatively commonly used compressor type in the mechanical field at present, and its body components generally include a casing, an oil supply device and an electromagnet assembly, and specifically include a motor assembly, a cylinder, a piston, and an exhaust valve disc. , Mover, spring support assembly and motor, etc .; linear compressor has the advantages of high compression efficiency and small overall volume.
  • Exhaust valve discs in the existing linear compressor models have different back positions when the compressor is turned on, depending on the load of the compressor. When the load is large, the exhaust valve discs travel farther away. In this way, a larger-diameter exhaust channel can be formed, and when the load is small, the exhaust valve disc retracts a shorter distance, so that a smaller-diameter exhaust channel can be formed; in general, the farthest of the exhaust valve disc
  • the back position is the end cover position of the cylinder, as shown in the existing linear compressor structure shown in FIG. 1, which includes a housing 1, a mover 2, a stator 3, a cylinder 4, an exhaust valve plate 5, and an exhaust spring.
  • the backward movement of the exhaust valve disc is limited to the range a, that is, the fixed space between the exhaust valve port of the cylinder and the end cover of the cylinder.
  • the position of the exhaust valve disc is adjusted by the spring provided between it and the cylinder end cover. Therefore, the speed and time of the exhaust valve disc to return to close the exhaust valve port depend on the spring receiving force.
  • the exhaust pressure affects the distance backed off and the elastic force of the spring itself. In practical applications, for different exhaust pressure conditions, it is easy for compressed gas to return due to the exhaust valve flap closing time being too long.
  • the invention provides a compressor and a control method thereof, which aims to solve the problem of gas backflow caused by the slow closing of the exhaust valve disc in the existing compressor.
  • a compressor includes a body, a cylinder formed in the body, and an exhaust valve plate and a cylinder end cover provided on an exhaust end of the cylinder.
  • the compressor further includes:
  • the stopper mechanism is provided on the cylinder end cover and has a stopper that can telescopically move relative to the exhaust valve disc.
  • the stopper is used to limit the stop position of the exhaust valve disc to move backward when the compressor exhausts;
  • the controller is configured to obtain real-time parameters when the compressor is running, and adjust a stop position of the stopper of the stop mechanism according to the real-time parameters.
  • the real-time parameter is a load parameter, or the real-time parameter is an operating parameter; wherein the operating parameter is one of an operating frequency and an operating power.
  • the stop structure further includes:
  • a driving device provided on an outer end surface of the cylinder end cover
  • a driving shaft a first end of which is drivingly connected with the driving device, and a second end of the driving shaft penetrating the end cover of the cylinder and extending toward the exhaust valve disc;
  • the stopper is provided at the second end of the driving shaft
  • the controller is used to control the operation of the driving device, and the stopper is caused to telescopically move relative to the exhaust valve plate through the driving shaft.
  • the cylinder, the exhaust valve disc, the drive shaft, and the cylinder end cover are coaxially disposed.
  • the compressor further includes an exhaust spring, and the exhaust valve sheet is elastically abutted against the stopper through the exhaust spring.
  • the compressor further includes an exhaust spring, and the exhaust valve sheet elastically abuts against the stopper through the exhaust spring.
  • an elastic gasket is provided on a stop surface of the stopper that is in contact with the exhaust valve disc.
  • a stop surface of the stopper that is in contact with the exhaust valve disc is provided with a noise reduction gasket.
  • the load parameter when the real-time parameter is a load parameter, the load parameter includes an exhaust pressure
  • the compressor further includes a pressure sensor for detecting an exhaust pressure when the compressor is running;
  • the controller is specifically configured to obtain an exhaust pressure detected by the pressure sensor, and adjust a stop position of the stopper of the stop mechanism according to the exhaust pressure.
  • the controller when the real-time parameter is a load parameter, the controller is specifically configured to:
  • the controller when the real-time parameter is a load parameter, the controller is specifically configured to:
  • the stopper is controlled to move to a fourth set stop position away from the exhaust valve plate.
  • the controller when the real-time parameter is an operating parameter, the controller is specifically configured to:
  • controlling the stopper When the operating frequency is greater than a set reference frequency, controlling the stopper to move to a first set stop position close to the exhaust valve disc; and when the operating frequency is less than or equal to the set reference At a frequency, controlling the stopper to move to a second set stop position away from the exhaust valve plate; or,
  • the controller when the real-time parameter is an operating parameter, the controller is specifically configured to:
  • controlling the stopper When the operating frequency is greater than a set reference frequency, controlling the stopper to move to a third set stop position away from the exhaust valve disc; and when the operating frequency is less than or equal to the set reference At a frequency, controlling the stopper to move to a fourth set stop position close to the exhaust valve disc; or,
  • the stopper When the operating power is less than a set reference power, controlling the stopper to move to the third set stop position away from the exhaust valve disc; and when the running power is greater than or equal to the set power When the reference power is 5%, the stopper is controlled to move to the fourth set stop position close to the exhaust valve disc.
  • a method for controlling a compressor including a body, a cylinder formed in the body, and an exhaust valve provided at an exhaust end of the cylinder Blade and cylinder end cover; the compressor further includes a controllable stop mechanism provided on the cylinder end cover and having a stopper capable of telescopically moving relative to the exhaust valve plate, the stopper The stop position for limiting the backward movement of the exhaust valve disc when the compressor is exhausted; the control method includes:
  • a stop position of the stopper of the stop mechanism is adjusted according to the real-time parameter.
  • the real-time parameter is a load parameter, or the real-time parameter is an operating parameter; wherein the operating parameter is one of an operating frequency and an operating power.
  • the adjusting a stop position of the stopper of the stop mechanism according to the real-time parameter includes:
  • controlling the stopper When the operating frequency is greater than a set reference frequency, controlling the stopper to move to a first set stop position close to the exhaust valve disc; and when the operating frequency is less than or equal to the set reference At a frequency, controlling the stopper to move to a second set stop position away from the exhaust valve plate; or,
  • a stop mechanism and a controller are added to the current compressor.
  • the controller can adjust the stop position of the stopper of the stopper mechanism to the exhaust valve disc.
  • the distance between the exhaust valve discs can re-limit the maximum receding distance of the exhaust valve discs; compared with the existing exhaust range, it is within the fixed space range between the exhaust valve port of the cylinder and the cylinder end cover
  • the stopper can reduce the range of the backward movement of the exhaust valve disc according to the actual exhaust working conditions, thereby reducing the time it takes for the exhaust valve disc to return to the position to close the exhaust valve port. Therefore, the exhaust valve disc can quickly reclose the exhaust valve port after the exhaust is completed, reducing the probability of the problem of the compressed gas returning back to the cylinder, and ensuring the compression performance and efficiency of the compressor.
  • FIG. 1 is a schematic diagram of an internal structure of a conventional linear compressor
  • FIG. 2 is a first schematic diagram of the internal structure of the compressor of the present invention according to an exemplary embodiment
  • FIG. 3 is a partially enlarged schematic diagram of part A of FIG. 2; FIG.
  • FIG. 4 is a second schematic diagram of the internal structure of the compressor of the present invention according to an exemplary embodiment
  • FIG. 5 is a partially enlarged schematic diagram of part B of FIG. 4;
  • FIG. 6 is a schematic flowchart of a method for controlling a compressor according to the present invention according to an exemplary embodiment
  • FIG. 7 is a schematic flowchart of a method for controlling a compressor of the present invention according to an exemplary embodiment.
  • FIG. 2 is a first schematic diagram of the internal structure of the compressor of the present invention according to an exemplary embodiment
  • FIG. 3 is a partially enlarged schematic diagram of part A of FIG. 2.
  • the stopper of the stopper mechanism does not abut against the exhaust spring, and the stopper can directly abut against the stopper when the exhaust valve performs a backward movement.
  • the present invention provides a compressor.
  • the compressor includes a machine body, wherein the machine body includes a housing 1, a stator 3 and a mover 2 provided inside the housing 1, and the stator 3 and the mover 2
  • a cylinder 4 is formed on the central axis, and a piston rod that realizes gas compression through telescopic movement is provided in the cylinder 4.
  • One end of the cylinder 4 is an exhaust end, and an exhaust valve disc 5 is provided on the exhaust end.
  • the outer cover of the exhaust end portion is provided with a cylinder end cover 7 for closing the end portion.
  • the compressor also includes a stopper mechanism and a controller, wherein the stopper mechanism is provided on the cylinder end cover 7 and has a stopper 81 capable of telescopic movement relative to the exhaust valve disc 5.
  • the stopper 81 is used to define the compressor. A stop position of the exhaust valve disc 5 for backward movement when exhausting; and a controller for acquiring real-time parameters of the compressor during operation and adjusting the stop position of the stopper 81 of the stop mechanism according to the real-time parameters.
  • the real-time parameter is a load parameter, or the real-time parameter is an operating parameter; the operating parameter is one of an operating frequency and an operating power.
  • the controller when the real-time parameter is a load parameter, the controller is configured to obtain a load parameter when the compressor is running, and adjust the stopper 81 of the stopper mechanism according to the load parameter. Stop position.
  • the controller when the real-time parameter is an operating parameter, the controller is configured to obtain an operating parameter of the compressor during operation, and adjust the stopper 81 of the stopper mechanism according to the operating parameter. Stop position.
  • a stopper mechanism and a controller are added to the current compressor, and the stopper position of the stopper 81 of the stopper mechanism with respect to the exhaust valve disc 5 can be adjusted by the controller. In this way, by changing the stopper The distance between the component 81 and the exhaust valve disc 5 can be used to re-limit the maximum receding distance of the exhaust valve disc 5.
  • the stopper 81 can reduce the range of the backward movement of the exhaust valve disc 5 according to the actual exhaust working conditions, thereby shortening the exhaust valve disc 5 to return to close again The time it takes for the position of the exhaust valve port, so that the exhaust valve disc 5 can quickly reclose the exhaust valve port after the exhaust is completed, reducing the chance of the problem of the compressed gas returning back to the cylinder 4 and ensuring compression Machine's compression performance and compression efficiency.
  • the stop structure further includes a driving device 82 and a driving shaft 83, wherein the driving device 82 is disposed on an outer end surface of the cylinder end cover 7; a first end of the driving shaft 83 is drivingly connected to the driving device 82, and a second end penetrates the cylinder
  • the end cover 7 extends to the exhaust valve disc 5; a stopper 81 is provided on the second end of the driving shaft 83.
  • the controller is used to control the operation of the driving device 82, and the stopper 81 is caused to telescopically move relative to the exhaust valve disc 5 through the drive shaft 83. In this way, the stopper 81 can be moved closer to the exhaust valve disc 5, Alternatively, it moves in a direction away from the exhaust valve disc 5.
  • the stopper 81 moves in the direction close to the exhaust valve disc 5, the distance between the stopper 81 and the exhaust valve disc 5 decreases, and the space for the exhaust valve disc 5 to move backward is also reduced accordingly. , It can avoid the problem that the closing time is too long due to the exhaust valve blade 5 retracting too far, so that the exhaust valve blade 5 closes the exhaust end; and the stopper 81 moves away from the exhaust valve blade When moving in the direction of 5, the distance between the stopper 81 and the exhaust valve disc 5 increases, and the space for the exhaust valve disc 5 to move backwards also increases.
  • the exhaust valve disc 5 is opened for compressed gas to be discharged.
  • the path area is also larger, which can meet the exhaust requirements in the case of large exhaust pressure and large exhaust volume, so that the compressed gas can be discharged from the cylinder 4 as soon as possible.
  • the driving device 82 is a micromotor driven by electricity.
  • the motor includes a rotor provided on the inner side and a stator 3 sleeved on the outer periphery of the rotor.
  • the middle portion of the rotor is a hollow structure with threads on the inner wall.
  • the rod-shaped rotating shaft is penetrated in the hollow structure of the rotor; the outer wall of the rotating shaft is also formed with threads. In this way, the rotating shaft and the rotor are drivingly connected by screwing.
  • the micro-motor is a motor model that can control the rotor to rotate in both directions.
  • the rotor can be rotated in the forward or reverse direction.
  • the rotor rotates in different directions, it is The limited fit of the threads between the rotating shafts can cause the rotating shafts to move in different directions along their own axis; for example, when a positive voltage is applied to the micromotor, the rotor rotates in a positive direction. At this time, the rotor is squeezed by the threads.
  • the pressure pushes the rotating shaft to move toward the side close to the exhaust valve disc 5 along its axial direction, so that the rotating shaft exhibits an “outward” action performance, so that the stopper 81 at the second end of the rotating shaft approaches the exhaust valve disc. 5;
  • the rotor rotates in the reverse direction.
  • the rotor pushes the rotating shaft along its axial direction away from the exhaust valve plate 5 by the pressing force of the thread, so that the rotating shaft appears.
  • the “retracting” action is performed so that the stopper 81 located at the second end of the rotating shaft is away from the exhaust valve disc 5.
  • the cylinder 4 is a cylindrical cylinder 4 type, the exhaust end of which is a circular opening; the exhaust valve disc 5 is a circular sheet with a slightly larger outer contour area and the opening of the exhaust end.
  • the circle center of the exhaust valve disc 5 is located on the axis of the cylindrical cylinder 4, thereby ensuring that the exhaust valve disc 5 can be tightly fitted when closing the exhaust end to avoid problems such as air leakage.
  • the cylinder end cover 7 is a single-sided recessed round cover body, and the recessed side is covered at the exhaust end. The recessed portion can be used as the space for the exhaust valve disc 5 to move backward.
  • the center of the circle of the cover 7 is also located on the axis of the cylindrical cylinder 4.
  • the stopper 81 is a sheet structure, and the sheet structure is disposed on the second end of the drive shaft 83 in a manner perpendicular to the axial direction of the drive shaft 83.
  • the two are in a “T” -shaped fitting manner in FIG. 3.
  • the shape of the sheet structure may be various structures such as a triangle, a circle, and a square.
  • FIG. 3 shows a circular sheet structure.
  • the sheet structure can reduce the overall weight of the stop mechanism.
  • the side of the sheet structure opposite to the exhaust valve sheet 5 is a sheet-shaped stop surface, which can make the stopper 81 and the exhaust valve sheet 5 relatively Large contact area to disperse the squeezing force between the stopper 81 and the exhaust valve disc 5 when the exhaust valve disc 5 moves backward to the stop position, so as to avoid local squeezing due to the small contact area
  • the deformation problem caused by excessive force ensures the service life of the stopper 81 and the exhaust valve disc 5.
  • the cylinder 4, the exhaust valve disc 5, the driving shaft 83, and the cylinder end cover 7 are coaxially arranged.
  • the sheet structure of 81 is parallel to each other.
  • the compressor further includes an exhaust gas cone 6 having a substantially conical shape; a recessed inner peripheral wall of the cylinder end cover 7 is formed with an annular retaining groove, The back side is in contact with one end of the tip of the exhaust spring 6, and the other end of the exhaust spring 6 is in contact with the annular retaining groove.
  • the exhaust spring 6 When the exhaust valve disc 5 is moved backward by the pressure of the compressed gas, the exhaust spring 6 is in a compressed state; after the compressed gas is discharged from the cylinder 4, the exhaust spring 6 can use its own compression elastic force to reset the exhaust valve disc 5 Until the exhaust end is re-closed; therefore, when the exhaust valve disc 5 performs the exhaust action, the distance of its backward movement is determined by the magnitude of the force between the exhaust pressure and the exhaust spring 6.
  • the exhaust valve disc 5 moves backwards until the two forces are equal. If the difference between the two is large, the exhaust valve disc 5 moves farther backward; When it is smaller than the compression elastic force of the spring, the exhaust valve disc 5 performs a forward reset motion.
  • the exhaust valve disc 5 will also receive the reaction force of the stopper 81, so that the exhaust valve disc 5 can stay at the current stop using the stopper 81 Position, so that the exhaust valve disc 5 can no longer continue to retreat, thereby avoiding the problem of a long reset time caused by the exhaust valve disc 5 retreating too far, thereby speeding up the exhaust valve disc 5 to close the exhaust end purpose.
  • the outer contour area of the stopper 81 is slightly smaller than the cross-sectional area of the tip end of the exhaust spring 6. In this way, the stopper 81 is always in the hollow space of the exhaust spring 6 without being in the exhaust space.
  • the air valve disc 5 performs a backward movement and the stopper 81 itself performs a telescopic movement, it comes into contact with the exhaust spring 6 to prevent the stopper 81 from affecting the elastic deformation of the spring.
  • FIG. 4 is a second schematic diagram of the internal structure of the compressor of the present invention according to an exemplary embodiment
  • FIG. 5 is a partially enlarged schematic diagram of part B of FIG. 4.
  • the present invention provides another new structural form of the compressor.
  • the compressor includes an exhaust spring 6, and the exhaust valve plate 5 elastically abuts against the stopper 81 through the exhaust spring 6. .
  • the cylinder end cover 7 is not provided with an annular retaining groove for holding the exhaust spring 6, and the inner peripheral wall of the cylinder end cover 7 is only used for the exhaust spring 6.
  • the outer contour area of the stop surface of the stopper 81 is slightly larger than the cross-sectional area of one end of the non-pointed portion of the exhaust spring 6, so that the end portion of the exhaust spring 6 can completely meet the stop
  • the stop surfaces of the stopper 81 are in contact with each other, so that the two can stably stop fit.
  • the exhaust valve disc 5 when the exhaust valve disc 5 moves backward, the exhaust valve disc 5 does not directly contact the stopper 81, and the stopper 81 can change the stopper 81 and the exhaust by its own telescopic movement.
  • the distance between the air valve disc 5 is because the exhaust spring 6 is between the stopper 81 and the exhaust valve disc 5.
  • the exhaust spring 6 The elastic deformation itself occurs, so that the pre-tension force of the exhaust spring 6 can be changed when the exhaust valve disc 5 has not yet moved backward, and the exhaust valve disc 5 can be changed by adjusting the pre-tension force of the exhaust spring 6 The distance of the actual backward movement during the exhaust.
  • the degree of deformation and pretension of the exhaust spring 6 are equivalent to the exhaust spring shown in the embodiment of FIG. 2 described above. 6 degree of deformation and pre-tensioning force, at this time, the distance between the stopper 81 and the exhaust valve disc 5 is b, and the length of the exhaust spring 6 is also regarded as b (the stopper 81 and the exhaust valve disc The thickness of 5 is ignored for the time being), the initial pretension force is regarded as 0; the exhaust pressure of the cylinder 4 is AKPa, and when the stopper 81 is not moved, the deformation degree of the exhaust spring 6 is 3b / 4 At this time, the elastic force generated by it can be equal to the current exhaust pressure.
  • the actual length of the exhaust spring 6 becomes 3/4 of the initial length, and the actual distance of the exhaust valve disc 5 moving backward is b / 4;
  • the stopper is moved from the position of the original annular retaining groove of the cylinder end cover 7 to b / 2, the length of the spring itself becomes b / 2, and its pretension force is greater than zero, which is also the exhaust pressure of AKPa.
  • the initial pretension force is not zero, the distance by which the elastic force of the exhaust spring 6 reaches the same elastic deformation as the exhaust pressure is significantly smaller than b / 4. Therefore, the actual distance of the exhaust valve disc 5 during the backward movement must be less than b / 4. In this way, the exhaust valve disc 5 can be adjusted in different ways by adjusting the preload force of the exhaust spring 6. The purpose of adjusting the actual backward movement distance under working conditions.
  • the stopper surface of the stopper 81 that is in contact with the exhaust valve disc 5 is provided with an elastic gasket.
  • the elastic gasket is a thin sheet type, and the stopper 81 and the exhaust valve can be The sheet 5 provides a certain cushion when contacted, and reduces the problems of compression deformation and friction damage.
  • the elastic pad can be a rubber pad, a sponge pad, and the like. Considering that the compressor usually discharges high-temperature gas, the material used for the elastic pad should also have high temperature resistance characteristics to meet its compression requirements. The machine's high temperature body needs to be used.
  • the shape of the elastic washer is adapted to the shape of the stopper 81.
  • the elastic washer can also be designed into a circular sheet shape.
  • the contour area is adapted to the stop surface of the stopper 81.
  • the stop surface of the stopper 81 that is in contact with the exhaust valve disc 5 is provided with a noise reduction gasket.
  • the noise reduction gasket is of a thin sheet type, which can reduce the collision noise generated when the stopper 81 comes into contact with the exhaust valve disc 5, thereby reducing the noise amount when the compressor is exhausting.
  • the noise reduction gasket can be made of gypsum board, fiberboard and other materials. At the same time, the material used for the noise reduction gasket should also have high temperature resistance characteristics.
  • the stop surface of the stopper 81 is simultaneously provided with the noise reduction gasket and the elastic gasket shown in the foregoing two embodiments, and the noise reduction gasket and the elastic gasket are sampled the same
  • the shape design is arranged on the stop surface in a stacked manner; here, the noise reduction gasket can be provided on the outside, and the elastic gasket is sandwiched between the noise reduction gasket and the stop surface. Therefore, the stopper 81 When the exhaust valve disc 5 or the exhaust spring 6 is in contact, the noise reduction gasket is a component that actually contacts the two; or, an elastic gasket may be provided on the outside and the noise reduction gasket may be sandwiched between the elasticity Between the washer and the stop surface.
  • the load parameter on which the controller performs control adjustment includes exhaust pressure.
  • the compressor also includes a pressure sensor, which is used to detect the exhaust pressure when the compressor is running; the controller is specifically used to obtain the exhaust pressure detected by the pressure sensor, and adjust the stop of the stop mechanism according to the exhaust pressure Stop position of piece 81.
  • the specific process of the controller adjusting the stop position of the stop 81 of the stop mechanism according to the exhaust pressure is as follows:
  • the stopper 81 When the load parameter is greater than the set load threshold, the stopper 81 is controlled to move to a first set stop position away from the exhaust valve disc 5; in this embodiment, the first set stop position is a preset Or, the first set stop position includes a plurality of preset positions sequentially away from the exhaust valve disc 5 along the cylinder 4 axial direction, and a plurality of different preset positions respectively up to the exhaust valve disc defined by the stopper 81 5 maximum backward position, for different differences between the load parameter and the load threshold corresponding to different preset positions, the larger the difference, the farther the preset position is from the position of the exhaust valve disc 5; otherwise, the preset The position is closer to the position of the exhaust valve disc 5.
  • the control stopper 81 When the load parameter is less than or equal to the set load threshold, the control stopper 81 is moved to the second set stop position close to the exhaust valve disc 5.
  • the second set stop position is a preset position; or, the second set stop position includes a plurality of preset positions sequentially close to the exhaust valve disc 5 in the axial direction of the cylinder 4 and a plurality of different preset positions. Set the maximum backward position of the exhaust valve disc 5 defined by the stoppers 81 respectively.
  • the difference between the load parameter and the load threshold corresponds to different preset positions. The larger the difference, the more the preset position is. The closer the position of the air valve disc 5 is, the more the preset position is farther from the position of the exhaust valve disc 5.
  • the position switching of the stopper 81 can change the position of the stopper 81 by driving the telescopic movement of the drive shaft 83 of the driving device 82.
  • the current load is determined by detecting the load parameter
  • the optimal backward stop position of the exhaust valve disc 5 corresponding to the parameter, and the stopper 81 is controlled to move to the stop position in advance.
  • the exhaust valve disc 5 can be The range of motion of this backward movement is limited to the space between the stop position and the exhaust valve port, so that it can meet the requirements of the flow path area of the exhaust of the compressor and ensure that the exhaust valve disc 5 can be as soon as possible.
  • the resetting to the closed exhaust valve port effectively guarantees the compression performance of the compressor.
  • the specific process of the controller adjusting the stop position of the stop 81 of the stop mechanism according to the exhaust pressure is as follows :
  • the stopper 81 When the load parameter is greater than the set load threshold, control the stopper 81 to move to a third set stop position close to the exhaust valve disc 5; similarly, the third set stop position is a preset position; or
  • the third set stop position includes a plurality of preset positions sequentially close to the exhaust valve disc 5 in the axial direction of the cylinder 4, and the plurality of different preset positions respectively reach the maximum of the exhaust valve disc 5 defined by the stopper 81.
  • Back position if the difference between the load parameter and the load threshold corresponds to different preset positions, the greater the difference, the closer the preset position is to the position of the exhaust valve disc 5; otherwise, the preset position The farther the position of the air valve disc 5 is.
  • Adjusting the stopper 81 to the third set stop position close to the exhaust valve disc 5 can increase the compression preload of the exhaust spring 6, so that the exhaust valve disc 5 can be accelerated to close after the exhaust is completed.
  • the control stopper 81 When the load parameter is less than or equal to the set load threshold, the control stopper 81 is moved to a fourth set stop position away from the exhaust valve disc 5 including a plurality of The preset position, a plurality of different preset positions, respectively, the maximum backward position of the exhaust valve disc 5 defined by the stopper 81, for example, the difference between the load parameter and the load threshold corresponds to different preset positions.
  • the larger the value the farther the preset position is from the position of the exhaust valve disc 5; otherwise, the closer the preset position is from the position of the exhaust valve disc 5.
  • adjusting the stopper 81 to the fourth set stop position away from the exhaust valve disc 5 can reduce the compression preload of the exhaust spring 6 and prevent the exhaust valve disc 5 from receiving a large elastic force. It is not easy to retreat to avoid extra wear.
  • the specific process of the controller adjusting the stop position of the stop 81 of the stop mechanism according to the exhaust pressure is as follows:
  • the control stopper 81 When the operating frequency is greater than the set reference frequency, the control stopper 81 is moved to the first set stop position close to the exhaust valve disc 5; in this embodiment, the first set stop position is a preset Position; or, the first set stop position includes a plurality of preset positions sequentially approaching the exhaust valve disc 5 in the axial direction of the cylinder 4, and a plurality of different preset positions respectively up to the exhaust valve disc defined by the stopper 81
  • the maximum backward position of 5 corresponds to different preset positions for different differences between the operating frequency and the reference frequency. The larger the difference, the closer the preset position is to the position of the exhaust valve disc 5. Otherwise, the preset The position is further away from the position of the exhaust valve disc 5.
  • the control stopper 81 When the operating frequency is less than or equal to the set reference frequency, the control stopper 81 is moved to a second set stop position away from the exhaust valve disc 5.
  • the second set stop position is a preset position; or, the second set stop position includes a plurality of preset positions sequentially away from the exhaust valve disc 5 in the axial direction of the cylinder 4 and a plurality of different preset positions. Set the maximum backward position of the exhaust valve disc 5 defined by the stoppers 81 respectively.
  • the difference between the operating frequency and the reference frequency corresponds to different preset positions. The larger the difference, the more the preset position distances the row. The farther the position of the air valve disc 5 is, the more conversely, the closer the preset position is to the position of the exhaust valve disc 5.
  • the control stopper 81 is moved to the first set stop position close to the exhaust valve disc 5.
  • the first set stop position is One preset position; or, the first set stop position includes a plurality of preset positions sequentially close to the exhaust valve disc 5 in the axial direction of the cylinder 4, and a plurality of different preset positions up to the row defined by the stopper 81, respectively.
  • the maximum backward position of the air valve disc 5 if the difference between the running power and the reference power corresponds to different preset positions, the larger the difference, the closer the preset position is to the position of the exhaust valve disc 5; otherwise, The farther the preset position is from the position of the exhaust valve disc 5.
  • the control stopper 81 When the operating power is greater than or equal to the set reference power, the control stopper 81 is moved to a second set stop position away from the exhaust valve disc 5.
  • the second set stop position is a preset position; or, the second set stop position includes a plurality of preset positions sequentially away from the exhaust valve disc 5 in the axial direction of the cylinder 4 and a plurality of different preset positions. Set the maximum backward position of the exhaust valve disc 5 defined by the stoppers 81 respectively.
  • the difference between the running power and the reference power corresponds to different preset positions. The larger the difference, the more the preset position is The farther the position of the air valve disc 5 is, the more conversely, the closer the preset position is to the position of the exhaust valve disc 5.
  • the operating power is divided into several gears, and the number of gears is ⁇ 2, that is, P 1 , P 2 , ... P n-1 , P n , reference power P 0 ; operating frequency It can be divided into several gears.
  • the number of gears is ⁇ 2, that is, f 1 , f 2 ,... F n-1 , f n , and the reference frequency f 0.
  • the number of gear positions is ⁇ 2, that is, D 1 , D 2 , ... D n-1 , D n ;
  • the position switching of the stopper 81 can change the position of the stopper 81 by driving the telescopic movement of the drive shaft 83 of the driving device 82.
  • the current load is determined by detecting the load parameter
  • the optimal backward stop position of the exhaust valve disc 5 corresponding to the parameter, and the stopper 81 is controlled to move to the stop position in advance.
  • the exhaust valve disc 5 can be The range of motion of this backward movement is limited to the space between the stop position and the exhaust valve port, so that it can meet the requirements of the flow path area of the exhaust of the compressor and ensure that the exhaust valve disc 5 can be as soon as possible.
  • the resetting to the closed exhaust valve port effectively guarantees the compression performance of the compressor.
  • the specific process of the controller adjusting the stop position of the stop 81 of the stop mechanism according to the exhaust pressure is as follows :
  • the stopper 81 is controlled to move to a third set stop position away from the exhaust valve disc 5; in this embodiment, the third set stop position is a preset Or the third set stop position includes a plurality of preset positions sequentially away from the exhaust valve disc 5 in the axial direction of the cylinder 4, and a plurality of different preset positions up to the exhaust valve disc defined by the stopper 81, respectively.
  • the maximum backward position of 5 corresponds to different preset positions for the difference between the operating frequency and the reference frequency. The larger the difference, the farther the preset position is from the position of the exhaust valve disc 5; otherwise, the preset position The position is closer to the position of the exhaust valve disc 5.
  • the control stopper 81 When the operating frequency is less than or equal to the set reference frequency, the control stopper 81 is moved to a fourth set stop position close to the exhaust valve disc 5.
  • the fourth set stop position is a preset position; or, the second set stop position includes a plurality of preset positions sequentially close to the exhaust valve disc 5 in the axial direction of the cylinder 4 and a plurality of different preset positions. Set the maximum backward position of the exhaust valve disc 5 defined by the stoppers 81 respectively.
  • the difference between the operating frequency and the reference frequency corresponds to different preset positions. The larger the difference, the more the preset position distances the row. The closer the position of the air valve disc 5 is, the more the preset position is farther from the position of the exhaust valve disc 5.
  • the stopper 81 is controlled to move to a third set stop position away from the exhaust valve disc 5; in this embodiment, the third set stop position is One preset position; or, the third set stop position includes a plurality of preset positions sequentially away from the exhaust valve disc 5 along the cylinder 4 axial direction, and a plurality of different preset positions respectively up to the row defined by the stopper 81
  • the third set stop position includes a plurality of preset positions sequentially away from the exhaust valve disc 5 along the cylinder 4 axial direction, and a plurality of different preset positions respectively up to the row defined by the stopper 81
  • the control stopper 81 When the operating power is greater than or equal to the set reference power, the control stopper 81 is moved to the fourth set stop position close to the exhaust valve plate 5.
  • the fourth set stop position is a preset position; or, the fourth set stop position includes a plurality of preset positions sequentially close to the exhaust valve disc 5 in the axial direction of the cylinder 4 and a plurality of different preset positions. Set the maximum backward position of the exhaust valve disc 5 defined by the stoppers 81 respectively.
  • the difference between the running power and the reference power corresponds to different preset positions. The larger the difference, the more the preset position is The closer the position of the air valve disc 5 is, the more the preset position is farther from the position of the exhaust valve disc 5.
  • Adjusting the stopper 81 to the third set stop position close to the exhaust valve plate 5 can increase the compression pre-tension of the exhaust spring 6, so that the exhaust valve plate 5 can be accelerated to close after the exhaust is completed; Adjusting the stopper 81 to the fourth set stop position away from the exhaust valve disc 5 can reduce the compression and pre-tensioning force of the exhaust spring 6 and prevent the exhaust valve disc 5 from receiving a large elastic force. It is not easy to retreat to avoid extra wear.
  • the operating power is divided into several gears, and the number of gears is ⁇ 2, that is, P 1 , P 2 , ... P n-1 , P n , reference power P 0 ; operating frequency It can be divided into several gears.
  • the number of gears is ⁇ 2, that is, f 1 , f 2 ,... F n-1 , f n , and the reference frequency f 0.
  • the number of gear positions is ⁇ 2, that is, D 1 , D 2 , ... D n-1 , D n ;
  • Stop position that is, the stop position away from the previous stop position of the exhaust valve disc 5, such as moving from D 1 to D 2 to achieve the optimal closing speed; otherwise, when (P n > P 0 )
  • the stop position that is, the stop position close to the previous stop position of the exhaust valve disc 5 is moved from D 2 to D 1 to optimize the closing speed of the exhaust valve disc 5.
  • the invention also provides a compressor control method, which can be applied to the control operation of the compressor disclosed in the foregoing embodiment; the control method includes:
  • a stop position of the stopper of the stop mechanism is adjusted according to the real-time parameter.
  • the real-time parameter is a load parameter, or the real-time parameter is an operating parameter; the operating parameter is one of an operating frequency and an operating power.
  • FIG. 6 is a schematic flowchart of a method for controlling a compressor of the present invention according to an exemplary embodiment.
  • the present invention further provides a compressor control method, which can be applied to the control operation of the compressor disclosed in the foregoing embodiment; the control method includes:
  • the load parameter includes an exhaust pressure
  • the compressor is provided with a pressure sensor.
  • the pressure sensor can be used to detect the exhaust pressure in the cylinder.
  • this control method is to achieve the best exhaust efficiency. Therefore, the obtained exhaust pressure is the compressor's exhaust operation. Exhaust pressure in the previous cylinder;
  • the first set stop position is a preset position;
  • the first set stop position includes a plurality of preset positions sequentially away from the exhaust valve disc in the axial direction of the cylinder, and the plurality of different preset positions respectively reach the maximum backward position of the exhaust valve disc defined by the stopper,
  • the difference between the load parameter and the load threshold corresponds to different preset positions. The larger the difference, the farther the preset position is from the position of the exhaust valve disc; otherwise, the preset position is away from the exhaust valve disc. The closer the location.
  • the stopper When the load parameter is less than or equal to the set load threshold, the stopper is controlled to move to a second set stop position close to the exhaust valve disc.
  • the second set stop position is a preset position; or, the second set stop position includes a plurality of preset positions sequentially close to the exhaust valve disc along the cylinder axis, and a plurality of different preset positions The maximum backward position of the exhaust valve plate defined by the stopper respectively.
  • the difference between the load parameter and the load threshold corresponds to different preset positions. The larger the difference, the preset position is away from the exhaust valve plate. The closer the position is, the more the preset position is farther from the position of the exhaust valve disc.
  • the position switch of the stopper can change the position of the stopper through the telescopic movement of the drive shaft of the driving device.
  • the load parameter is determined to determine the current load parameter corresponding Optimal backward stop position of the exhaust valve disc. Control the stopper to move to this stop position in advance. In this way, when the compressor performs the exhaust operation, the range of the backward movement of the exhaust valve disc can be moved. It is limited to the space between the stop position and the exhaust valve port, so that it can meet the requirements of the flow path area of the compressor's exhaust gas, and can ensure that the exhaust valve plate can be reset to the closed exhaust valve port as soon as possible. , Effectively guarantee the compression performance of the compressor.
  • the stopper When the load parameter is greater than the set load threshold, control the stopper to move to a third set stop position close to the exhaust valve disc; similarly, the third set stop position is a preset position; or
  • the three set stop positions include a plurality of preset positions that are sequentially close to the exhaust valve disc in the axial direction of the cylinder, and a plurality of different preset positions respectively reach the maximum backward position of the exhaust valve disc defined by the stopper, such as for the load
  • the difference between the parameter and the load threshold corresponds to different preset positions. The larger the difference, the closer the preset position is to the position of the exhaust valve disc; otherwise, the preset position is farther from the position of the exhaust valve disc. .
  • Adjusting the stopper to the third set stop position close to the exhaust valve disc can increase the compression preload of the exhaust spring, so that the exhaust valve disc can be accelerated to close after the exhaust is completed.
  • controlling the stopper to move to a fourth set stop position away from the exhaust valve disc includes a plurality of preset positions sequentially away from the exhaust valve disc along the cylinder axis, A plurality of different preset positions respectively reach the maximum backward position of the exhaust valve plate defined by the stopper.
  • the difference between the load parameter and the load threshold corresponds to different preset positions. The larger the difference, the preset The farther the position is from the position of the exhaust valve disc; otherwise, the preset position is closer to the position of the exhaust valve disc.
  • adjusting the stopper to the fourth set stop position away from the exhaust valve disc can reduce the compression preload of the exhaust spring and prevent the exhaust valve disc from moving backwards easily due to a large elastic force. To avoid causing additional losses.
  • FIG. 7 is a schematic flowchart of a method for controlling a compressor of the present invention according to an exemplary embodiment.
  • the present invention further provides a compressor control method, which can be applied to the control operation of the compressor disclosed in the foregoing embodiment; the control method includes:
  • Operating parameters are one of operating frequency and operating power
  • adjusting the stop position of the stopper of the stop mechanism according to the operating parameters includes:
  • control the stopper When the operating frequency is greater than the set reference frequency, control the stopper to move to the first set stop position close to the exhaust valve disc; and when the operating frequency is less than or equal to the set reference frequency, control the stopper to move To the second set stop position away from the exhaust valve disc; or,
  • the stop When the running power is less than the set reference power, the stop is moved to the first set stop position close to the exhaust valve disc; and when the running power is greater than or equal to the set reference power, the stop is moved To the second set stop position away from the exhaust valve disc.
  • adjusting the stop position of the stopper of the stop mechanism according to the operating parameters includes:
  • control the stopper When the operating frequency is greater than the set reference frequency, control the stopper to move to a third set stop position away from the exhaust valve disc; and when the operating frequency is less than or equal to the set reference frequency, control the stopper to move To a fourth set stop position away from the exhaust valve disc; or,
  • control the stopper When the running power is less than the set reference power, control the stopper to move to a third set stop position away from the exhaust valve disc; and when the running power is greater than or equal to the set reference power, control the stopper to move To the fourth set stop position close to the exhaust valve disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种压缩机及其控制方法,其中压缩机包括:止挡机构,设于气缸端盖,且具有能够相对于排气阀片(5)伸缩移动的止挡件(81),止挡件(81)用以限定压缩机排气时排气阀片(5)进行后退运动的止挡位置;控制器用于获取压缩机运行时的实时参数,并根据实时参数调整止挡机构的止挡件(81)的止挡位置。该压缩机增设了止挡机构和控制器,利用控制器可以调整止挡机构的止挡件(81)对于排气阀片(5)的止挡位置,这样,可以重新对排气阀片(5)的最大后退距离进行限定;可以缩短排气阀片(5)重新回调至闭合排气阀口的位置所用的时间,从而使排气阀片(5)在完成排气之后可以快速的重新闭合排气阀口。

Description

一种压缩机及其控制方法
本申请基于申请号为201810533130.X、申请日为2018年05月25日的中国专利申请及申请号为201810517692.5、申请日为2018年05月25日的中国专利申请提出,并要求所述中国专利申请的优先权,所述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及压缩机技术领域,特别是涉及一种压缩机及其控制方法。
背景技术
线性压缩机是目前机械领域一种比较常用的压缩机机型,其机体的组成部分一般包括外壳、供油装置及电磁铁组件等,具体的又包括电机组件、气缸、活塞、排气阀片、动子、弹簧支撑组件及马达等等;线性压缩机具有压缩效率高、整体体积小等优点。
现有线性压缩机机型中的排气阀片,其随着压缩机负载的不同,其开启排气时后退的位置也是不同的,负载大的情况下,排气阀片后退的距离较远,这样可以形成较大口径的排气通道,而负载小的情况下,排气阀片后退的距离较近,这样可以形成较小口径的排气通道;一般的,排气阀片的最远后退位置就是气缸端盖位置,如图1中示出的现有的一种线性压缩机的结构,其包括外壳1、动子2、定子3、气缸4、排气阀片5、排气弹簧6和气缸端盖7;排气阀片的后退运动是限定在a范围内,即气缸的排气阀口与气缸端盖之间的固定空间范围内。在完成排气操作之后,排气阀片是通过设置在其与气缸端盖之间的弹簧进行位置回调,因此,排气阀片重新回调至闭合排气阀口的速度和时间依赖于弹簧受排气压力影响所后退的距离以及弹簧自身的弹性作用力;而在实际应用时,对于不同的排气压力状况,容易出现由于排气阀片闭合时间过长所造成的已压缩的气体回流的问题,如排气压力大及弹簧预紧力过小的情况下,排气阀片会后退较大的一段距离,而排气阀片重新回调至闭合排气阀口的位置则往往需要较长的时间,已压缩的气体在这段时间内就可能从排气端口重新回流至气缸内,这就影响了压缩机的压缩效率,限制了压缩机的压缩性能。
发明内容
本发明提供了一种压缩机及其控制方法,旨在解决现有压缩机存在因排气阀片闭合慢所造成的气体回流的问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明的一个方面,提供了一种压缩机,压缩机包括机体、形成于机体内的气缸以及设置于气缸的排气端部的排气阀片和气缸端盖,压缩机还包括:
止挡机构,设于气缸端盖,且具有能够相对于排气阀片伸缩移动的止挡件,止挡件用以限定压缩机排气时排气阀片进行后退运动的止挡位置;
控制器,用于获取所述压缩机运行时的实时参数,并根据所述实时参数调整所述止挡机构的所述止挡件的止挡位置。
在一种可选的实施方式中,所述实时参数为负载参数,或者,所述实时参数为运行参数;其中,所述运行参数为运行频率和运行功率的其中一种。
在一种可选的实施方式中,所述止挡结构还包括:
驱动装置,所述驱动装置设置于所述气缸端盖的外端面;
驱动轴,第一端与所述驱动装置驱动连接,第二端贯穿所述气缸端盖并伸向所述排气阀片;
所述止挡件设于所述驱动轴的第二端;
所述控制器用于控制所述驱动装置的运行,通过所述驱动轴带动所述止挡件相对于所述排气阀片伸缩移动。
在一种可选的实施方式中,所述气缸、所述排气阀片、所述驱动轴以及所述气缸端盖同轴设置。
在一种可选的实施方式中,压缩机还包括排气弹簧,排气阀片通过排气弹簧与止挡件弹性抵接。
在一种可选的实施方式中,所述压缩机还包括排气弹簧,所述排气阀片通过所述排气弹簧与所述止挡件弹性抵接。
在一种可选的实施方式中,所述止挡件的与所述排气阀片相接触的止挡面设有弹性垫片。
在一种可选的实施方式中,所述止挡件的与所述排气阀片相接触的止挡面设有降噪垫片。
在一种可选的实施方式中,当所述实时参数为负载参数时,所述负载参数包括排气压力;
所述压缩机还包括压力传感器,所述压力传感器用于检测所述压缩机运行时的排气压力;
所述控制器具体用于获取所述压力传感器检测得到的排气压力,并根据所述排气压力调整所述止挡机构的所述止挡件的止挡位置。
在一种可选的实施方式中,当所述实时参数为负载参数时,所述控制器具体用于:
在所述负载参数大于设定的负载阈值时,控制所述止挡件移动至远离排气阀片的第一设定止挡位置;
当所述负载参数小于或等于所述设定的负载阈值时,控制所述止挡件移动至靠近所述排气阀片的第二设定止挡位置。
在一种可选的实施方式中,所述实时参数为负载参数时,所述控制器具体用于:
在所述负载参数大于设定的负载阈值时,控制所述止挡件移动至靠近排气阀片的第三设定止挡位置;
当所述负载参数小于或等于所述设定的负载阈值时,控制所述止挡件移动至远离所述排气阀片的第四设定止挡位置。
在一种可选的实施方式中,当所述实时参数为运行参数时,所述控制器具体用于:
在所述运行频率大于设定的基准频率时,控制所述止挡件移动至靠近排气阀片的第一 设定止挡位置;以及当所述运行频率小于或等于所述设定的基准频率时,控制所述止挡件移动至远离所述排气阀片的第二设定止挡位置;或者,
在所述运行功率小于设定的基准功率时,控制所述止挡件移动至靠近排气阀片的所述第一设定止挡位置;以及当所述运行功率大于或等于所述设定的基准功率时,控制所述止挡件移动至远离所述排气阀片的所述第二设定止挡位置。
在一种可选的实施方式中,当所述实时参数为运行参数时,所述控制器具体用于:
在所述运行频率大于设定的基准频率时,控制所述止挡件移动至远离排气阀片的第三设定止挡位置;以及当所述运行频率小于或等于所述设定的基准频率时,控制所述止挡件移动至靠近所述排气阀片的第四设定止挡位置;或者,
在所述运行功率小于设定的基准功率时,控制所述止挡件移动至远离排气阀片的所述第三设定止挡位置;以及当所述运行功率大于或等于所述设定的基准功率时,控制所述止挡件移动至靠近所述排气阀片的所述第四设定止挡位置。
根据本发明的第二个方面,还提供了一种压缩机的控制方法,所述压缩机包括机体、形成于所述机体内的气缸以及设置于所述气缸的排气端部的排气阀片和气缸端盖;所述压缩机还包括可控的止挡机构,设于所述气缸端盖,且具有能够相对于所述排气阀片伸缩移动的止挡件,所述止挡件用以限定所述压缩机排气时所述排气阀片进行后退运动的止挡位置;所述控制方法包括:
获取所述压缩机运行时的实时参数;
根据所述实时参数调整所述止挡机构的所述止挡件的止挡位置。
在一种可选的实施方式中,所述实时参数为负载参数,或者,所述实时参数为运行参数;其中,所述运行参数为运行频率和运行功率的其中一种。
在一种可选的实施方式中,当所述实时参数为运行参数时,所述根据所述实时参数调整所述止挡机构的所述止挡件的止挡位置,包括:
在所述运行频率大于设定的基准频率时,控制所述止挡件移动至靠近排气阀片的第一设定止挡位置;以及当所述运行频率小于或等于所述设定的基准频率时,控制所述止挡件移动至远离所述排气阀片的第二设定止挡位置;或者,
在所述运行功率小于设定的基准功率时,控制所述止挡件移动至靠近排气阀片的所述第一设定止挡位置;以及当所述运行功率大于或等于所述设定的基准功率时,控制所述止挡件移动至远离所述排气阀片的所述第二设定止挡位置。
本发明采用上述技术方案所具有的有益效果是:
本发明提供的压缩机在现在压缩机中增设了止挡机构和控制器,利用控制器可以调整止挡机构的止挡件对于排气阀片的止挡位置,这样,通过改变止挡件与排气阀片之间的距离,可以重新对排气阀片的最大后退距离进行限定;相比于现有的排气范围在气缸的排气阀口与气缸端盖之间的固定空间范围内后退运动的限定,止挡件可以根据实际排气工况的需要减小排气阀片的后退运动的范围,进而可以缩短排气阀片重新回调至闭合排气阀口的位置所用的时间,从而使排气阀片在完成排气之后可以快速的重新闭合排气阀口,降低已压缩的气体重新回流至气缸的问题发生几率,保证了压缩机的压缩性能和压缩效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是现有的一种线性压缩机的内部结构示意图;
图2是根据一示例性实施例所示出的本发明压缩机的内部结构示意图一;
图3是图2的A部局部放大示意图;
图4是根据一示例性实施例所示出的本发明压缩机的内部结构示意图二;
图5是图4的B部局部放大示意图;
图6是根据一示例性实施例所示出的本发明压缩机的控制方法的流程示意图;
图7是根据一示例性实施例所示出的本发明压缩机的控制方法的流程示意图。
其中,1、外壳;2、动子;3、定子;4、气缸;5、排气阀片;6、排气弹簧;7、气缸端盖;81、止挡件;82、驱动装置;83、驱动轴。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
图2是根据一示例性实施例所示出的本发明压缩机的内部结构示意图一;图3是图2的A部局部放大示意图。在图2和图3所示出的结构中,止挡机构的止挡件不与排气弹簧抵接,止挡件可在排气阀门进行后退运动时直接与止挡件相抵靠。
如图2和图3所示,本发明提供了一种压缩机,压缩机包括机体,其中,机体包括外壳1、设于外壳1内部的定子3和动子2,定子3和动子2的中轴线上形成有气缸4,气缸4内设置有通过伸缩运运动实现气体压缩的活塞杆,气缸4的一端部为排气端部,排气端部设置有可开闭的排气阀片5,排气端部的外侧罩设有用于封闭该端 部的气缸端盖7。
压缩机还包括止挡机构和控制器,其中,止挡机构设于气缸端盖7,且具有能够相对于排气阀片5伸缩移动的止挡件81,止挡件81用以限定压缩机排气时排气阀片5进行后退运动的止挡位置;以及控制器,用于获取压缩机运行时的实时参数,并根据实时参数调整止挡机构的止挡件81的止挡位置。
其中,所述实时参数为负载参数,或者,所述实时参数为运行参数;所述运行参数为运行频率和运行功率的其中一种。
在一种可选的实施例中,当所述实时参数为负载参数时,所述控制器,用于获取压缩机运行时的负载参数,并根据负载参数调整止挡机构的止挡件81的止挡位置。
在一种可选的实施例中,当所述实时参数为运行参数时,所述控制器,用于获取压缩机运行时的运行参数,并根据运行参数调整止挡机构的止挡件81的止挡位置。
本发明提供的压缩机在现在压缩机中增设了止挡机构和控制器,利用控制器可以调整止挡机构的止挡件81对于排气阀片5的止挡位置,这样,通过改变止挡件81与排气阀片5之间的距离,可以重新对排气阀片5的最大后退距离进行限定;相比于现有的排气范围在气缸4的排气阀口与气缸端盖7之间的固定空间范围内后退运动的限定,止挡件81可以根据实际排气工况的需要减小排气阀片5的后退运动的范围,进而可以缩短排气阀片5重新回调至闭合排气阀口的位置所用的时间,从而使排气阀片5在完成排气之后可以快速的重新闭合排气阀口,降低已压缩的气体重新回流至气缸4的问题发生几率,保证了压缩机的压缩性能和压缩效率。
具体的,止挡结构还包括驱动装置82和驱动轴83,其中,驱动装置82设置于气缸端盖7的外端面;驱动轴83的第一端与驱动装置82驱动连接,第二端贯穿气缸端盖7并伸向排气阀片5;止挡件81设于驱动轴83的第二端。这样,控制器用于控制驱动装置82的运行,通过驱动轴83带动止挡件81相对于排气阀片5伸缩移动,这样,可以使止挡件81向靠近排气阀片5的方向移动,或者,向远离排气阀片5的方向移动。
在止挡件81向靠近排气阀片5的方向移动时,止挡件81与排气阀片5之间的间距缩小,排气阀片5进行后退运动的空间也随之减小,这样,可以避免因排气阀片5后退距离过大所导致的闭合时间过长的问题,从而加快排气阀片5对排气端部的闭合;而在止挡件81向远离排气阀片5的方向移动时,止挡件81与排气阀片5之间的间距增大,排气阀片5进行后退运动的空间也随之增大,排气阀片5开放的供压缩气体排出的路径面积也变大,可以满足在排气压力较大、排气量较多的情况下的排气要求,以使压缩气体可以尽快的从气缸4中排出。
具体的,驱动装置82为一电力驱动的微型电机,该电机包括设于内部侧转子以及套设与转子外周的定子3;转子的中部为空心结构,其内壁上设有螺纹;驱动轴83为一直杆形的转轴,转轴穿设于转子的空心结构中;转轴的外壁也形成有螺纹,这样,转轴和转子通过螺纹配合实驱动连接。
在本实施例中,微型电机为可控制转子进行双向转动的电机机型,通过施加不同的电压,可以使转子以正向转动或者反向转动;转子在以不同的转向自转时,由于其与转轴之间的螺纹的限定配合,可以使转轴沿自身轴向向不同的方向移动;示例性的, 当施加给微型电机正向电压时,转子以正向转动,此时,转子通过螺纹的挤压力推动转轴沿其轴向向靠近排气阀片5的一侧移动,使转轴呈现出“外伸”的动作表现,以使位于该转轴的第二端的止挡件81靠近排气阀片5;当施加给微型电机反向电压时,转子以反向转动,此时,转子通过螺纹的挤压力推动转轴沿其轴向向远离排气阀片5的一侧移动,使转轴呈现出“内缩”的动作表现,以使位于该转轴的第二端的止挡件81远离排气阀片5。
在本实施例中,气缸4为筒形气缸4类型,其排气端部为圆形的开口;排气阀片5为一外轮廓面积稍大与排气端部的开口的圆形片状结构,其排气阀片5的圆心位于该筒形气缸4的轴线上,从而保证排气阀片5在闭合排气端部时可以贴合严密,避免出现漏气等问题。相应的,气缸端盖7为一单侧内凹的圆盖体,内凹一侧罩设于排气端部,其内凹的部分可作为排气阀片5进行后退运动的空间,气缸端盖7的圆心也位于筒形气缸4的轴线上。
止挡件81为一薄片结构,且薄片结构以垂直于驱动轴83的轴向的方式设置在驱动轴83的第二端,两者在图3中呈“T”形配合方式。可选的,该薄片结构的形状可以为三角形、圆形、方形等多种结构,图3中示出的是圆形的薄片结构。薄片结构形式可以减少止挡机构的整体重量,同时,薄片结构的相对于排气阀片5的一侧为片状的止挡面,能够使得止挡件81与排气阀片5可以由较大的接触面积,以分散排气阀片5后退运动至止挡位置时止挡件81与排气阀片5互相之间的挤压作用力,避免出现因接触面积过小、局部挤压作用力过大所造成的变形问题,从而保证止挡件81与排气阀片5的使用寿命。
这里,气缸4、排气阀片5、驱动轴83以及气缸端盖7同轴设置,这样,排气阀片5的圆形片状结构和垂直设于驱动轴83的第二端的止挡件81的薄片结构时相互平行的,在排气阀片5后退移动至止挡位置时,排气阀片5和止挡件81能够以面与面相贴合的方式接触,进一步保证了两者有足够的接触面积,防止局部变形的问题的出现。
在图2和图3所示出的压缩机结构中,压缩机还包括近似锥形的排气弹簧6;气缸端盖7的凹陷的内周壁形成有一环形卡持槽,排气阀片5的背部侧面与排气弹簧6的尖部一端相抵接,排气弹簧6的另一端则抵接在该环形卡持槽内。在排气阀片5受压缩气体的压力进行后退运动时,排气弹簧6呈压缩状态;在压缩气体从气缸4排出之后,排气弹簧6可以利用自身的压缩弹力将排气阀片5复位至重新闭合排气端部;因此,在排气阀片5执行排气动作时,其后退运动的距离是由排气压力和排气弹簧6之间的作用力的大小来决定的,在排气压力大于弹簧的压缩弹力时,排气阀片5后退运动,直至两者作用力相等,如果两者差值较大,则排气阀片5后退运动的距离较远;而在排气压力小于弹簧的压缩弹力时,排气阀片5进行向前的复位运动。
这样,现有压缩机在单次排气压力较大的情况下,由于排气阀片5后退运动的距离较远,所以其弹簧需要耗用较长时间才能将排气阀片5重新复位;但是在本发明的压缩机中,在排气阀片5的后退运动空间中增设了止挡件81,这样,在单次排气压力较大时,虽然排气阀片5仍有后退运动的趋势,但是除了受到排气弹簧6的弹性作用力,排气阀片5也会受到止挡件81的反作用力,这样,利用止挡件81可以使排气 阀片5停留在当前的止挡位置,使排气阀片5无法再继续后退,从而可以避免因排气阀片5后退距离过大所导致的复位时间长的问题,从而起到加快排气阀片5闭合排气端部的目的。
在本实施例中,止挡件81的外轮廓面积略小于排气弹簧6的尖部一端的截面面积,这样,止挡件81始终处于排气弹簧6的中空空间内,而不会在排气阀片5进行后退运动以及止挡件81自身进行伸缩移动时,与排气弹簧6发生接触,以避免止挡件81对弹簧的弹性形变构成干扰影响。
图4是根据一示例性实施例所示出的本发明压缩机的内部结构示意图二;图5是图4的B部局部放大示意图。
如图4和图5所示,本发明提供了又一种新的压缩机的结构形式,压缩机包括排气弹簧6,排气阀片5通过排气弹簧6与止挡件81弹性抵接。
相比于前文实施例中所示出的压缩机的结构,气缸端盖7不设有卡持排气弹簧6的环形卡持槽,气缸端盖7的内周壁仅用于对排气弹簧6的周向进行限位;同时,止挡件81的止挡面的外轮廓面积略大于排气弹簧6的非尖部的一端的截面面积,使得排气弹簧6的该端部能够完全与止挡件81的止挡面相接触,使两者可以稳定止挡配合。
在本实施例中,在排气阀片5后退运动时,排气阀片5并不与止挡件81直接接触,止挡件81通过其自身的伸缩移动,可以改变止挡件81与排气阀片5之间的间距,由于排气弹簧6处于止挡件81和排气阀片5之间,当止挡件81与排气阀片5之间的间距变化时,排气弹簧6自身发生弹性形变,从而可以在排气阀片5尚未进行后退动作时,改变排气弹簧6自身的预紧力,从而通过调整排气弹簧6的预紧力的方式,改变排气阀片5在进行排气时的实际后退运动的距离。
例如,假设在止挡件81收缩至气缸端盖7的原环形卡持槽的位置的情况下,排气弹簧6的形变程度及预紧力等同于前文图2的实施例示出的排气弹簧6的形变程度及预紧力,此时,止挡件81与排气阀片5之间的间距为b,排气弹簧6的自身长度也视为b(止挡件81和排气阀片5的厚度暂时忽略不计),初始预紧力视为0;某次气缸4的排气压力为AKPa,在止挡件81不动的情况下,在排气弹簧6的形变程度为3b/4时,其产生的弹力才能够与当前的排气压力相等,此时排气弹簧6的实际长度变为初始长度的3/4,排气阀片5后退运动的实际距离为b/4;而当止挡片从气缸端盖7的原环形卡持槽的位置移动至b/2时,弹簧的自身长度变为b/2,其预紧力大于零,则同样为AKPa的排气压力的条件下,由于初始的预紧力不为零,排气弹簧6的自身弹力达到与排气压力等同时的弹性形变的距离明显要小于b/4,因此,排气阀片5进行后退运动时的实际距离要小于b/4,这样,就可以通过调整排气弹簧6的预紧力的方式,达到排气阀片5在不同排气工况条件下调整实际后退运动的距离的目的。
在一种可选的实施例中,止挡件81的与排气阀片5相接触的止挡面设有弹性垫片,弹性垫片为薄片样式,能够在止挡件81与排气阀片5接触时提供一定的缓冲,减小挤压变形以及摩擦损坏的问题的出现。可选的,弹性垫片可以为橡胶垫、海绵垫等等,考虑到压缩机排出的一般为高温气体,所以该弹性垫片所选用的材料还应当具备耐高温的特性,以满足其在压缩机的高温机体内的使用需要。
较佳的,弹性垫片的形状与止挡件81的形状相适配,如前述实施例中提及的圆形薄片结构的止挡件81,弹性垫片也可以设计成圆形的薄片形状,其轮廓面积与止挡件81的止挡面相适配。
在一种可选的实施例中,止挡件81的与排气阀片5相接触的止挡面设有降噪垫片。类似的,降噪垫片也为薄片样式,其能够降低止挡件81与排气阀片5接触时产生的碰撞噪音,从而降低压缩机进行排气时的噪音量。可选的,降噪垫片可以采用石膏板、纤维板等材料制成,同时,降噪垫片所选用的材料也应当具备耐高温的特性。
在又一可选的实施例中,止挡件81的止挡面同时设置有前述两个实施例中所示出的降噪垫片和弹性垫片,降噪垫片和弹性垫片采样相同的形状设计,以层叠的方式设置在止挡面上;这里,降噪垫片可设于外侧,弹性垫片夹设在降噪垫片和止挡面之间,因此,在止挡件81对前述的排气阀片5或者排气弹簧6接触时,降噪垫片为实际与两者接触的部件;或者,也可以将弹性垫片设于外侧,将降噪垫片夹设在弹性垫片和止挡面之间。
在一种可选的实施例中,当所述实时参数为负载参数时,控制器进行控制调整所依据的负载参数包括排气压力。
这里,压缩机还包括压力传感器,压力传感器用于检测压缩机运行时的排气压力;控制器具体用于获取压力传感器检测得到的排气压力,并根据排气压力调整止挡机构的止挡件81的止挡位置。
在一种可选的实施例中,针对图2和图3中所示出的压缩机机型,控制器根据排气压力调整止挡机构的止挡件81的止挡位置的具体过程如下:
在负载参数大于设定的负载阈值时,控制止挡件81移动至远离排气阀片5的第一设定止挡位置;在本实施例中,第一设定止挡位置为一个预设位置;或者,第一设定止挡位置包括多个沿气缸4轴向依次远离排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对负载参数与负载阈值的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越远;反之,则预设位置距离排气阀片5的位置越近。
当负载参数小于或等于设定的负载阈值时,控制止挡件81移动至靠近排气阀片5的第二设定止挡位置。类似的,第二设定止挡位置为一个预设位置;或者,第二设定止挡位置包括多个沿气缸4轴向依次靠近排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对负载参数与负载阈值的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越近;反之,则预设位置距离排气阀片5的位置越远。
这样,通过改变止挡件81的止挡位置能够起到改变排气阀片5的后退距离的止挡效果,达到不同负载下的排气阀片5的效率最优值。
具体的,止挡件81的位置切换可以通过驱动装置82驱动其驱动轴83的伸缩移动改变止挡件81的位置,在压缩机进行每次排气动作之前,通过检测负载参数,确定当前负载参数所对应的最佳的排气阀片5的后退止挡位置,控制止挡件81提前移动至该止挡位置,这样,在压缩机进行排气动作时,可以将排气阀片5的本次后退运动的活动范围限定在止挡位置和排气阀口之间的空间范围内,从而既能满足压缩机的 排气的流路面积的要求,又能够保证排气阀片5能够尽快的复位至闭合排气阀口,有效保证了压缩机的压缩性能。
在又一种可选的实施例中,针对图4和图5中所示出的压缩机机型,控制器根据排气压力调整止挡机构的止挡件81的止挡位置的具体过程如下:
在负载参数大于设定的负载阈值时,控制止挡件81移动至靠近排气阀片5的第三设定止挡位置;类似的,第三设定止挡位置为一个预设位置;或者,第三设定止挡位置包括多个沿气缸4轴向依次靠近排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对负载参数与负载阈值的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越近;反之,则预设位置距离排气阀片5的位置越远。
将止挡件81调整至靠近排气阀片5的第三设定止挡位置,能够使排气弹簧6的压缩预紧力增加,从而可以在排气完成之后加速排气阀片5闭合。
当负载参数小于或等于设定的负载阈值时,控制止挡件81移动至远离排气阀片5的第四设定止挡位置包括多个沿气缸4轴向依次远离排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对负载参数与负载阈值的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越远;反之,则预设位置距离排气阀片5的位置越近。
这样,将止挡件81调整至靠远离排气阀片5的第四设定止挡位置,能够使排气弹簧6的压缩预紧力降低,防止排气阀片5因受较大的弹力而不易后退运动,避免造成额外的损耗。
在一种可选的实施例中,针对图2和图3中所示出的压缩机机型,控制器根据排气压力调整止挡机构的止挡件81的止挡位置的具体过程如下:
在运行频率大于设定的基准频率时,控制止挡件81移动至靠近排气阀片5的第一设定止挡位置;在本实施例中,第一设定止挡位置为一个预设位置;或者,第一设定止挡位置包括多个沿气缸4轴向依次靠近排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对运行频率与基准频率的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越近;反之,则预设位置距离排气阀片5的位置越远。
当运行频率小于或等于设定的基准频率时,控制止挡件81移动至远离排气阀片5的第二设定止挡位置。类似的,第二设定止挡位置为一个预设位置;或者,第二设定止挡位置包括多个沿气缸4轴向依次远离排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对运行频率与基准频率的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越远;反之,则预设位置距离排气阀片5的位置越近。
同理,在运行功率小于设定的基准功率时,控制止挡件81移动至靠近排气阀片5的第一设定止挡位置;在本实施例中,第一设定止挡位置为一个预设位置;或者,第一设定止挡位置包括多个沿气缸4轴向依次靠近排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对运行功率与基准功率的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片 5的位置越近;反之,则预设位置距离排气阀片5的位置越远。
当运行功率大于或等于设定的基准功率时,控制止挡件81移动至远离排气阀片5的第二设定止挡位置。类似的,第二设定止挡位置为一个预设位置;或者,第二设定止挡位置包括多个沿气缸4轴向依次远离排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对运行功率与基准功率的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越远;反之,则预设位置距离排气阀片5的位置越近。
在另一个可选的实施例中,运行功率划分为若干个档位,档位的数量≥2,即P 1,P 2,……P n-1,P n,基准功率P 0;运行频率可以分为若干个档位,档位的数量≥2,即f 1,f 2,……f n-1,f n,基准频率f 0;对应的设定止挡位置也为多个,止挡位置的数量≥2,即D 1,D 2,……D n-1,D n
当(P n<P 0)或者(f n>f 0)时,说明此时实际排气量或者排气压力较小,止挡件81从当前止挡位置D n向靠近排气阀片5的位置移动D n-1止挡位置,即该止挡位置的靠近排气阀片5前一个止挡位置,以使排气阀片5的闭合速度达到最优化,如从D 2移动至D 1;反之,当(P n>P 0)||(f n<f 0)时,说明此时实际排气量或者排气压力较大,止挡件81向远离排气阀片5的位置移动D n-1止挡位置,即该止挡位置的远离排气阀片5前一个止挡位置,如从D 1移动至D 2,从而达到最优效率的闭合速度。
这样,通过改变止挡件81的止挡位置能够起到改变排气阀片5的后退距离的止挡效果,达到不同运行参数下的排气阀片5的效率最优值。
具体的,止挡件81的位置切换可以通过驱动装置82驱动其驱动轴83的伸缩移动改变止挡件81的位置,在压缩机进行每次排气动作之前,通过检测负载参数,确定当前负载参数所对应的最佳的排气阀片5的后退止挡位置,控制止挡件81提前移动至该止挡位置,这样,在压缩机进行排气动作时,可以将排气阀片5的本次后退运动的活动范围限定在止挡位置和排气阀口之间的空间范围内,从而既能满足压缩机的排气的流路面积的要求,又能够保证排气阀片5能够尽快的复位至闭合排气阀口,有效保证了压缩机的压缩性能。
在又一种可选的实施例中,针对图4和图5中所示出的压缩机机型,控制器根据排气压力调整止挡机构的止挡件81的止挡位置的具体过程如下:
在运行频率大于设定的基准频率时,控制止挡件81移动至远离排气阀片5的第三设定止挡位置;在本实施例中,第三设定止挡位置为一个预设位置;或者,第三设定止挡位置包括多个沿气缸4轴向依次远离排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对运行频率与基准频率的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越远;反之,则预设位置距离排气阀片5的位置越近。
当运行频率小于或等于设定的基准频率时,控制止挡件81移动至靠近排气阀片5的第四设定止挡位置。类似的,第四设定止挡位置为一个预设位置;或者,第二设定止挡位置包括多个沿气缸4轴向依次靠近排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对运行频率与基准频率的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位 置越近;反之,则预设位置距离排气阀片5的位置越远。
同理,在运行功率小于设定的基准功率时,控制止挡件81移动至远离排气阀片5的第三设定止挡位置;在本实施例中,第三设定止挡位置为一个预设位置;或者,第三设定止挡位置包括多个沿气缸4轴向依次远离排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对运行功率与基准功率的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越远;反之,则预设位置距离排气阀片5的位置越近。
当运行功率大于或等于设定的基准功率时,控制止挡件81移动至靠近排气阀片5的第四设定止挡位置。类似的,第四设定止挡位置为一个预设位置;或者,第四设定止挡位置包括多个沿气缸4轴向依次靠近排气阀片5的预设位置,多个不同的预设位置分别为止挡件81所限定的排气阀片5的最大后退位置,如针对运行功率与基准功率的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片5的位置越近;反之,则预设位置距离排气阀片5的位置越远。
将止挡件81调整至靠近排气阀片5的第三设定止挡位置,能够使排气弹簧6的压缩预紧力增加,从而可以在排气完成之后加速排气阀片5闭合;而将止挡件81调整至靠远离排气阀片5的第四设定止挡位置,能够使排气弹簧6的压缩预紧力降低,防止排气阀片5因受较大的弹力而不易后退运动,避免造成额外的损耗。
在另一个可选的实施例中,运行功率划分为若干个档位,档位的数量≥2,即P 1,P 2,……P n-1,P n,基准功率P 0;运行频率可以分为若干个档位,档位的数量≥2,即f 1,f 2,……f n-1,f n,基准频率f 0;对应的设定止挡位置也为多个,止挡位置的数量≥2,即D 1,D 2,……D n-1,D n
当(P n<P 0)或者(f n>f 0)时,说明此时实际排气量或者排气压力较大,止挡件81向远离排气阀片5的位置移动D n-1止挡位置,即该止挡位置的远离排气阀片5前一个止挡位置,如从D 1移动至D 2,从而达到最优效率的闭合速度;反之,当(P n>P 0)||(f n<f 0)时,说明此时实际排气量或者排气压力较小,止挡件81从当前止挡位置D n向靠近排气阀片5的位置移动D n-1止挡位置,即该止挡位置的靠近排气阀片5前一个止挡位置,,如从D 2移动至D 1,以使排气阀片5的闭合速度达到最优化。
本发明还提供了一种压缩机的控制方法,该控制方法可应用于前述实施例中所公开的压缩机的控制操作;控制方法包括:
获取所述压缩机运行时的实时参数;
根据所述实时参数调整所述止挡机构的所述止挡件的止挡位置。
其中,所述实时参数为负载参数,或者,所述实时参数为运行参数;所述运行参数为运行频率和运行功率的其中一种。
图6是根据一示例性实施例所示出的本发明压缩机的控制方法的流程示意图。
如图6所示,本发明还提供了一种压缩机的控制方法,该控制方法可应用于前述实施例中所公开的压缩机的控制操作;控制方法包括:
S601、获取压缩机运行时的负载参数;
在本实施例中,负载参数包括排气压力;
压缩机设置有压力传感器,压力传感器可用于检测气缸内的排气压力;这里,本控制方法是为了达到最佳的排气效率,因此,所获取的排气压力为压缩机在进行排气动作之前的气缸内的排气压力;
S602、根据负载参数调整止挡机构的止挡件的止挡位置。
在本发明的一个实施例中,针对图2和图3中所示出的压缩机机型,根据排气压力调整止挡机构的止挡件的止挡位置的具体过程如下:
在负载参数大于设定的负载阈值时,控制止挡件移动至远离排气阀片的第一设定止挡位置;在本实施例中,第一设定止挡位置为一个预设位置;或者,第一设定止挡位置包括多个沿气缸轴向依次远离排气阀片的预设位置,多个不同的预设位置分别为止挡件所限定的排气阀片的最大后退位置,如针对负载参数与负载阈值的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片的位置越远;反之,则预设位置距离排气阀片的位置越近。
当负载参数小于或等于设定的负载阈值时,控制止挡件移动至靠近排气阀片的第二设定止挡位置。类似的,第二设定止挡位置为一个预设位置;或者,第二设定止挡位置包括多个沿气缸轴向依次靠近排气阀片的预设位置,多个不同的预设位置分别为止挡件所限定的排气阀片的最大后退位置,如针对负载参数与负载阈值的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片的位置越近;反之,则预设位置距离排气阀片的位置越远。
这样,通过改变止挡件的止挡位置能够起到改变排气阀片的后退距离的止挡效果,达到不同负载下的排气阀片的效率最优值。
具体的,止挡件的位置切换可以通过驱动装置驱动其驱动轴的伸缩移动改变止挡件的位置,在压缩机进行每次排气动作之前,通过检测负载参数,确定当前负载参数所对应的最佳的排气阀片的后退止挡位置,控制止挡件提前移动至该止挡位置,这样,在压缩机进行排气动作时,可以将排气阀片的本次后退运动的活动范围限定在止挡位置和排气阀口之间的空间范围内,从而既能满足压缩机的排气的流路面积的要求,又能够保证排气阀片能够尽快的复位至闭合排气阀口,有效保证了压缩机的压缩性能。
在本发明的又一实施例中,针对图4和图5中所示出的压缩机机型,控制器根据排气压力调整止挡机构的止挡件的止挡位置的具体过程如下:
在负载参数大于设定的负载阈值时,控制止挡件移动至靠近排气阀片的第三设定止挡位置;类似的,第三设定止挡位置为一个预设位置;或者,第三设定止挡位置包括多个沿气缸轴向依次靠近排气阀片的预设位置,多个不同的预设位置分别为止挡件所限定的排气阀片的最大后退位置,如针对负载参数与负载阈值的不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片的位置越近;反之,则预设位置距离排气阀片的位置越远。
将止挡件调整至靠近排气阀片的第三设定止挡位置,能够使排气弹簧的压缩预紧力增加,从而可以在排气完成之后加速排气阀片闭合。
当负载参数小于或等于设定的负载阈值时,控制止挡件移动至远离排气阀片的第四设定止挡位置包括多个沿气缸轴向依次远离排气阀片的预设位置,多个不同的预设位置分别为止挡件所限定的排气阀片的最大后退位置,如针对负载参数与负载阈值的 不同的差值分别对应不同的预设位置,差值越大,预设位置距离排气阀片的位置越远;反之,则预设位置距离排气阀片的位置越近。
这样,将止挡件调整至靠远离排气阀片的第四设定止挡位置,能够使排气弹簧的压缩预紧力降低,防止排气阀片因受较大的弹力而不易后退运动,避免造成额外的损耗。
图7是根据一示例性实施例所示出的本发明压缩机的控制方法的流程示意图。
如图7所示,本发明还提供了一种压缩机的控制方法,该控制方法可应用于前述实施例中所公开的压缩机的控制操作;控制方法包括:
S701、获取压缩机运行时的运行参数;
运行参数为运行频率和运行功率的其中一种;
S702、根据运行参数调整止挡机构的止挡件的止挡位置。
在本发明的一个实施例中,针对图2和图3中所示出的压缩机机型,根据运行参数调整止挡机构的止挡件的止挡位置,包括:
在运行频率大于设定的基准频率时,控制止挡件移动至靠近排气阀片的第一设定止挡位置;以及当运行频率小于或等于设定的基准频率时,控制止挡件移动至远离排气阀片的第二设定止挡位置;或者,
在运行功率小于设定的基准功率时,控制止挡件移动至靠近排气阀片的第一设定止挡位置;以及当运行功率大于或等于设定的基准功率时,控制止挡件移动至远离排气阀片的第二设定止挡位置。
在本发明的又一实施例中,针对图4和图5中所示出的压缩机机型,根据运行参数调整止挡机构的止挡件的止挡位置,包括:
在运行频率大于设定的基准频率时,控制止挡件移动至远离排气阀片的第三设定止挡位置;以及当运行频率小于或等于设定的基准频率时,控制止挡件移动至远离排气阀片的第四设定止挡位置;或者,
在运行功率小于设定的基准功率时,控制止挡件移动至远离排气阀片的第三设定止挡位置;以及当运行功率大于或等于设定的基准功率时,控制止挡件移动至靠近排气阀片的第四设定止挡位置。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种压缩机,所述压缩机包括机体、形成于所述机体内的气缸以及设置于所述气缸的排气端部的排气阀片和气缸端盖,其特征在于,所述压缩机还包括:
    止挡机构,设于所述气缸端盖,且具有能够相对于所述排气阀片伸缩移动的止挡件,所述止挡件用以限定所述压缩机排气时所述排气阀片进行后退运动的止挡位置;
    控制器,用于获取所述压缩机运行时的实时参数,并根据所述实时参数调整所述止挡机构的所述止挡件的止挡位置。
  2. 根据权利要求1所述的压缩机,其特征在于,所述实时参数为负载参数,或者,所述实时参数为运行参数;其中,所述运行参数为运行频率和运行功率的其中一种。
  3. 根据权利要求2所述的压缩机,其特征在于,所述止挡结构还包括:
    驱动装置,所述驱动装置设置于所述气缸端盖的外端面;
    驱动轴,第一端与所述驱动装置驱动连接,第二端贯穿所述气缸端盖并伸向所述排气阀片;
    所述止挡件设于所述驱动轴的第二端;
    所述控制器用于控制所述驱动装置的运行,通过所述驱动轴带动所述止挡件相对于所述排气阀片伸缩移动。
  4. 根据权利要求3所述的压缩机,其特征在于,所述气缸、所述排气阀片、所述驱动轴以及所述气缸端盖同轴设置。
  5. 根据权利要求2所述的压缩机,其特征在于,所述压缩机还包括排气弹簧,所述排气阀片通过所述排气弹簧与所述止挡件弹性抵接。
  6. 根据权利要求2所述的压缩机,其特征在于,所述止挡件的与所述排气阀片相接触的止挡面设有弹性垫片。
  7. 根据权利要求2或6所述的压缩机,其特征在于,所述止挡件的与所述排气阀片相接触的止挡面设有降噪垫片。
  8. 根据权利要求2所述的压缩机,其特征在于,当所述实时参数为负载参数时,所述负载参数包括排气压力;
    所述压缩机还包括压力传感器,所述压力传感器用于检测所述压缩机运行时的排气压力;
    所述控制器具体用于获取所述压力传感器检测得到的排气压力,并根据所述排气压力调整所述止挡机构的所述止挡件的止挡位置。
  9. 根据权利要求2所述的压缩机,其特征在于,当所述实时参数为负载参数时,所述控制器具体用于:
    在所述负载参数大于设定的负载阈值时,控制所述止挡件移动至远离排气阀片的第一设定止挡位置;
    当所述负载参数小于或等于所述设定的负载阈值时,控制所述止挡件移动至靠近所述排气阀片的第二设定止挡位置。
  10. 根据权利要求5所述的压缩机,其特征在于,当所述实时参数为负载参数时,所述控制器具体用于:
    在所述负载参数大于设定的负载阈值时,控制所述止挡件移动至靠近排气阀片的 第三设定止挡位置;
    当所述负载参数小于或等于所述设定的负载阈值时,控制所述止挡件移动至远离所述排气阀片的第四设定止挡位置。
  11. 根据权利要求2所述的压缩机,其特征在于,当所述实时参数为运行参数时,所述控制器具体用于:
    在所述运行频率大于设定的基准频率时,控制所述止挡件移动至靠近排气阀片的第一设定止挡位置;以及当所述运行频率小于或等于所述设定的基准频率时,控制所述止挡件移动至远离所述排气阀片的第二设定止挡位置;或者,
    在所述运行功率小于设定的基准功率时,控制所述止挡件移动至靠近排气阀片的所述第一设定止挡位置;以及当所述运行功率大于或等于所述设定的基准功率时,控制所述止挡件移动至远离所述排气阀片的所述第二设定止挡位置。
  12. 根据权利要求5所述的压缩机,其特征在于,当所述实时参数为运行参数时,所述控制器具体用于:
    在所述运行频率大于设定的基准频率时,控制所述止挡件移动至远离排气阀片的第三设定止挡位置;以及当所述运行频率小于或等于所述设定的基准频率时,控制所述止挡件移动至靠近所述排气阀片的第四设定止挡位置;或者,
    在所述运行功率小于设定的基准功率时,控制所述止挡件移动至远离排气阀片的所述第三设定止挡位置;以及当所述运行功率大于或等于所述设定的基准功率时,控制所述止挡件移动至靠近所述排气阀片的所述第四设定止挡位置。
  13. 一种压缩机的控制方法,其特征在于,所述压缩机包括机体、形成于所述机体内的气缸以及设置于所述气缸的排气端部的排气阀片和气缸端盖;所述压缩机还包括可控的止挡机构,设于所述气缸端盖,且具有能够相对于所述排气阀片伸缩移动的止挡件,所述止挡件用以限定所述压缩机排气时所述排气阀片进行后退运动的止挡位置;所述控制方法包括:
    获取所述压缩机运行时的实时参数;
    根据所述实时参数调整所述止挡机构的所述止挡件的止挡位置。
  14. 根据权利要求13所述的控制方法,其特征在于,所述实时参数为负载参数,或者,所述实时参数为运行参数;其中,所述运行参数为运行频率和运行功率的其中一种。
  15. 根据权利要求14所述的控制方法,其特征在于,当所述实时参数为运行参数时,所述根据所述实时参数调整所述止挡机构的所述止挡件的止挡位置,包括:
    在所述运行频率大于设定的基准频率时,控制所述止挡件移动至靠近排气阀片的第一设定止挡位置;以及当所述运行频率小于或等于所述设定的基准频率时,控制所述止挡件移动至远离所述排气阀片的第二设定止挡位置;或者,
    在所述运行功率小于设定的基准功率时,控制所述止挡件移动至靠近排气阀片的所述第一设定止挡位置;以及当所述运行功率大于或等于所述设定的基准功率时,控制所述止挡件移动至远离所述排气阀片的所述第二设定止挡位置。
PCT/CN2019/073424 2018-05-25 2019-01-28 一种压缩机及其控制方法 WO2019223358A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810517692.5A CN110529359A (zh) 2018-05-25 2018-05-25 一种压缩机及其控制方法
CN201810517692.5 2018-05-25
CN201810533130.X 2018-05-25
CN201810533130.XA CN110529360A (zh) 2018-05-25 2018-05-25 一种压缩机及其控制方法

Publications (1)

Publication Number Publication Date
WO2019223358A1 true WO2019223358A1 (zh) 2019-11-28

Family

ID=68616525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073424 WO2019223358A1 (zh) 2018-05-25 2019-01-28 一种压缩机及其控制方法

Country Status (1)

Country Link
WO (1) WO2019223358A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2228991Y (zh) * 1995-06-19 1996-06-12 运载器有限公司 具有锥形腿部的簧片阀和双半径阀止挡件
US5562431A (en) * 1995-05-10 1996-10-08 Ingersoll-Rand Company Isolated backstop for flexible compressor valve
CN1789694A (zh) * 2004-12-17 2006-06-21 株式会社电装 电磁阀、流量控制阀、高压燃料泵和燃料喷射泵
CN204729244U (zh) * 2015-06-24 2015-10-28 宁波富斯乐机械制造有限公司 带无渗油透气阀的高压柱塞泵
CN105074213A (zh) * 2013-06-24 2015-11-18 株式会社日立产机*** 流体机械装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562431A (en) * 1995-05-10 1996-10-08 Ingersoll-Rand Company Isolated backstop for flexible compressor valve
CN2228991Y (zh) * 1995-06-19 1996-06-12 运载器有限公司 具有锥形腿部的簧片阀和双半径阀止挡件
CN1789694A (zh) * 2004-12-17 2006-06-21 株式会社电装 电磁阀、流量控制阀、高压燃料泵和燃料喷射泵
CN105074213A (zh) * 2013-06-24 2015-11-18 株式会社日立产机*** 流体机械装置
CN204729244U (zh) * 2015-06-24 2015-10-28 宁波富斯乐机械制造有限公司 带无渗油透气阀的高压柱塞泵

Similar Documents

Publication Publication Date Title
CN110397565A (zh) 一种变量柱塞泵
WO2019223358A1 (zh) 一种压缩机及其控制方法
CN108533482B (zh) 变量变压柱塞泵
US11946306B2 (en) Automatic door operator
CN115949761B (zh) 一种真空气动蝶阀
CN110529359A (zh) 一种压缩机及其控制方法
JPWO2016158130A1 (ja) 打込機
CN212360806U (zh) 一种新型气动角座阀
CN208138354U (zh) 一种新型气动制动器
CN110529360A (zh) 一种压缩机及其控制方法
JP2017101651A (ja) エンジンの可変バルブリフト装置
CN219994529U (zh) 一种双缸推动的执行器结构
TWI691659B (zh) 旋轉阻尼器
CN220285559U (zh) 一种新型液压闭门器
CN204985146U (zh) 一种启动特性为快开型的液压缸
CN220442577U (zh) 一种组合式阻尼器
CN109958786A (zh) 一种安全性能高的阀门执行器
RU2619513C2 (ru) Регулирование времени открытия клапана с кулачковым приводом, поршневой компрессор и способ
CN219263035U (zh) 应用于旋转轴的自锁机构、马达及线性致动器
CN217842697U (zh) 一种电动阀
KR102079878B1 (ko) 베인형 유압식 로터리 엑추에이터
CN221201007U (zh) 分合闸阻尼制动盘及gis真空开关
CN210033775U (zh) 一种活塞压缩缸
CA2774107C (en) Rotor type pump
US20220388135A1 (en) Piston seal for powered fastener driver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807291

Country of ref document: EP

Kind code of ref document: A1