WO2019223330A1 - 驱动芯片、显示面板的驱动方法、驱动设备、显示装置 - Google Patents

驱动芯片、显示面板的驱动方法、驱动设备、显示装置 Download PDF

Info

Publication number
WO2019223330A1
WO2019223330A1 PCT/CN2019/070178 CN2019070178W WO2019223330A1 WO 2019223330 A1 WO2019223330 A1 WO 2019223330A1 CN 2019070178 W CN2019070178 W CN 2019070178W WO 2019223330 A1 WO2019223330 A1 WO 2019223330A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
value
grayscale
gamma
Prior art date
Application number
PCT/CN2019/070178
Other languages
English (en)
French (fr)
Inventor
刘蕊
孙伟
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/489,956 priority Critical patent/US11361700B2/en
Publication of WO2019223330A1 publication Critical patent/WO2019223330A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0232Special driving of display border areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a driving chip, a driving method of a display panel, a driving device, and a display device.
  • the boundary of the display area often includes arcs or irregular structures (for example, notches), and the pixels of existing display products are generally rectangular, which makes the arrangement of pixels unable to meet the boundaries of arcs or irregular structures. Perfect matching, so that the picture displayed by the display device will have a more obvious jagged feeling at the boundary of the corresponding arc or shaped structure.
  • an embodiment of the present disclosure provides a driving chip applied to a display panel, the display panel including a plurality of sub-pixels located in a display area, the display area having a non-linearly extending boundary, wherein, The plurality of sub-pixels include a first sub-pixel having a distance from the non-linearly extending boundary substantially smaller than a preset threshold and a second sub-pixel other than the first sub-pixel; the driving chip includes:
  • An adjustment circuit is configured to adjust a first grayscale value of at least part of the first sub-pixel in the original picture data to a second grayscale value when the preset display mode is entered, and the second grayscale value is substantially smaller than the corresponding grayscale value.
  • a driving circuit for driving the first sub-pixel to perform display according to a second gray level value.
  • the adjusting circuit adjusts the grayscale values of all the first sub-pixels to a second grayscale value when the display mode is preset, and the second grayscale value is substantially smaller than the corresponding first grayscale value.
  • the first grayscale value of the subpixel is substantially smaller.
  • the grayscale value of a part of the first sub-pixel is adjusted to a second gray-scale value
  • the part of the first sub-pixel refers to a non-linear
  • the average of the absolute distances between the sub-pixels in the area adjacent to the extended boundary and the non-linearly extended boundary is substantially smaller than the preset threshold, wherein the second grayscale value is substantially smaller than the corresponding first The first grayscale value of the subpixel.
  • the driving chip further includes: a storage unit for acquiring and storing the position information of the first sub-pixel; and when the adjustment circuit enters a preset display mode, it searches for and acquires the stored information. And determine the first sub-pixel according to the position information, and adjust the first gray-scale voltage corresponding to the original picture to the second gray-scale voltage.
  • the driving chip further includes: a gamma compensation circuit configured to compensate only the grayscale voltage of the first sub-pixel based on a gamma value; the adjustment circuit stores a gamma correction of the first sub-pixel The value is specifically used to find and obtain the stored gamma correction value corresponding to the first sub-pixel when entering the preset display mode, and correct the gamma value of the gamma compensation circuit according to the gamma correction value, so that the gamma The compensation circuit compensates the first grayscale voltage corresponding to the original picture of the first sub-pixel to the second grayscale voltage based on the corrected gamma value.
  • a gamma compensation circuit configured to compensate only the grayscale voltage of the first sub-pixel based on a gamma value
  • the adjustment circuit stores a gamma correction of the first sub-pixel The value is specifically used to find and obtain the stored gamma correction value corresponding to the first sub-pixel when entering the preset display mode, and correct the gamma
  • the driving chip further includes a Gamma circuit configured to provide a grayscale voltage for the second subpixel, which is the grayscale voltage corresponding to the second subpixel in the original picture data;
  • a gamma compensation circuit is configured to provide a grayscale voltage for the first sub-pixel, and compensate only the grayscale voltage of the first sub-pixel based on a gamma value;
  • the adjustment circuit stores a gamma correction value of the first sub-pixel, and is specifically used for When entering the preset display mode, find and obtain the stored gamma correction value corresponding to the first sub-pixel, and correct the gamma value of the gamma compensation circuit according to the gamma correction value, so that the gamma compensation circuit is based on the correction.
  • the latter gamma value compensates the first grayscale voltage corresponding to the original picture of the first sub-pixel to the second grayscale voltage.
  • the non-linearly extending boundary includes an arc-shaped boundary or a boundary of a special-shaped structure.
  • the special-shaped structure refers to a notch on a side of the display panel.
  • an embodiment of the present disclosure provides a method for driving a display panel.
  • the display panel includes a plurality of sub-pixels located in a display area, and the display area has a non-linearly extending border.
  • the plurality of sub-pixels include a first sub-pixel having a distance from the non-linearly extending boundary substantially smaller than a preset threshold and a second sub-pixel other than the first sub-pixel;
  • the driving method includes:
  • the first grayscale value of at least part of the first subpixel in the original picture data is adjusted to a second grayscale value, and the second grayscale value is substantially smaller than that of the corresponding first subpixel.
  • the first grayscale values of all the first sub-pixels in the original picture data are adjusted to the second grayscale values.
  • a part of the first sub-pixel when entering a preset display mode, is adjusted to a second gray-scale value, and the part of the first sub-pixel refers to a boundary extending in a non-linear manner.
  • An average value of absolute distances between each sub-pixel in the adjacent area and the non-linearly extending boundary is substantially smaller than the preset threshold, wherein the second grayscale value is substantially smaller than that of the corresponding first sub-pixel.
  • the first grayscale value when entering a preset display mode, a part of the first sub-pixel is adjusted to a second gray-scale value, and the part of the first sub-pixel refers to a boundary extending in a non-linear manner.
  • the driving method further includes: acquiring and storing the position information of the first sub-pixel; when entering the preset display mode, placing the first gray of the first sub-pixel in the original picture data
  • the step of adjusting the level value to the second gray level value includes: when entering the preset display mode, searching for and obtaining the stored position information, and determining the first sub-pixel based on the position information, and The first grayscale voltage corresponding to the original picture is adjusted to the second grayscale voltage.
  • the driving method further includes: storing a gamma correction value of the first sub-pixel; and adjusting the first gray-scale voltage corresponding to the original picture of the first sub-pixel to the first sub-pixel when entering a preset display mode.
  • the step of the two gray-scale voltages includes: when entering the preset display mode, finding and obtaining the stored gamma correction value corresponding to the first sub-pixel, and according to the gamma correction value, the gamma value of the gamma compensation circuit of the first sub-pixel Performing correction so that the gamma compensation circuit compensates the first grayscale voltage corresponding to the original picture of the first sub-pixel to the second grayscale voltage based on the corrected gamma value.
  • the driving method further includes: providing a grayscale voltage for the second subpixel, the grayscale voltage being a grayscale voltage corresponding to the second subpixel in the original picture data; and being the first subpixel Provides grayscale voltage and compensates only the grayscale voltage of the first subpixel based on the gamma correction value; when entering the preset display mode, adjusts the first grayscale voltage of the first subpixel corresponding to the original picture to the second grayscale
  • the step of step voltage includes: when entering the preset display mode, finding and obtaining the stored gamma correction value corresponding to the first sub-pixel, and correcting the gamma value of the gamma compensation circuit according to the gamma correction value, so that The gamma compensation circuit compensates the first grayscale voltage corresponding to the original picture of the first sub-pixel to the second grayscale voltage based on the corrected gamma value.
  • the non-linearly extending boundary includes an arc-shaped boundary or a boundary of a special-shaped structure.
  • the special-shaped structure refers to a notch on a side of the display panel.
  • an embodiment of the present disclosure further provides a display device including the driving chip as described in the first aspect.
  • an embodiment of the present disclosure further provides a driving device, including: a processor, a memory, and a computer program stored on the memory and executable on the processor, wherein the computer When the program is executed by a processor, the steps of the driving method according to any one of the second aspects are realized.
  • an embodiment of the present disclosure further provides a computer-readable storage medium having stored thereon a computer program, wherein when the computer program is executed by a processor, the computer program is implemented as in any one of the second aspect. Steps of the driving method described in item.
  • FIG. 1 is a first schematic diagram of a display device in the related art
  • FIG. 2 is a second schematic diagram of a display device in the related art
  • FIG. 3 is a schematic diagram showing that a display screen of a display device in the related art generates jaggedness at edges;
  • FIG. 4 is a schematic diagram of a manner for solving the jaggedness of a display screen of a display device in the related art
  • FIG. 5 is a schematic diagram of another manner for solving the jaggedness of a display screen of a display device in the related art
  • FIG. 6 is a schematic diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 7 is another schematic diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a driving method according to an embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a driving chip according to an embodiment of the present disclosure.
  • FIG. 1 and FIG. 2 Please refer to FIG. 1 and FIG. 2.
  • the arrangement of pixels cannot perfectly match the border of the arc 11 or the irregular structure 12.
  • the pixels at the boundary of the arc 11 or the irregular structure 12 are not arranged uniformly.
  • the picture displayed by the display device may have a relatively obvious jagged feeling at the border of the arc or the irregular structure.
  • the conventional methods for solving the above-mentioned jaggedness mainly include the following two:
  • the first method uses a black matrix 2 to block pixels at the boundary of an arc or an irregular structure, so that the display of the pixels at the boundary of the arc or an irregular structure is a smooth shape matching the boundary, so that Weaken the jaggedness of the display device during display.
  • each pixel includes at least three sub-pixels of R / G / B, and when the black matrix 2 is used to block the pixel, the sub-pixels included in the pixel are blocked by different areas, resulting in a circular arc or a special-shaped structure.
  • the problem of colored borders appears at the border of. In more detail, for example, in the fourth row in FIG.
  • the R subpixel 3 near the boundary of the arc or the abnormal structure is most occluded
  • the blue (B) subpixel 5 is the least occluded
  • the green (G) subpixel 4 is the most occluded.
  • the occlusion area is between the occlusion area of the red (R) sub-pixel 3 and the occlusion area of the B sub-pixel 5. This makes when the display device displays a white (W) picture, because the R / G / B sub-pixels at the border are fully open, the display brightness of the G sub-pixel 4 and the B sub-pixel 5 is much higher than that of the R sub-pixel 3 Brightness, which causes the display to be cyan (C) at the corners of the white screen. Macroscopically, it is the color edge effect.
  • the second method slightly occludes a pixel near the boundary of an arc or a shaped structure, so that the pixel is still a complete pixel, but the transmittance is reduced (for example: the first in FIG. 5
  • the transmittance of the pixels near the boundary is, for example, GL236, GL189, and GL158 in this order).
  • the display device is made to display a white screen, the brightness of pixels near the boundary of the arc or the irregular structure will gradually decrease, thereby weakening the apparent jaggedness that appears at the boundary of the corresponding arc or the irregular structure.
  • the black matrix is mainly used to block pixels located at the boundary of the arc or special structure to solve the obvious jaggedness of the display device at the boundary of the arc or special structure.
  • This problem has a series of problems such as color border display, waste of production cost and time cost.
  • the inventors of the present disclosure have discovered through research that the transmittance of pixels located at the boundary of a circular arc or an irregular structure can be reduced by controlling the driving chip in the display device, thereby achieving the distribution of the black matrix without changing, You can adjust the transmittance of the pixels at will, and achieve the effect of reducing the jaggedness that appears at the boundaries of arcs or irregular structures.
  • An embodiment of the present disclosure provides a driving chip applied to a display panel.
  • the display panel includes a plurality of sub-pixels located in a display area, and the display area has a non-linearly extending border 6.
  • the distance of the non-linearly extending boundary 6 is substantially smaller than the first sub-pixel 7 and the second sub-pixel 8 except the first sub-pixel 7;
  • the driving chip 100 includes an adjusting circuit 200 and a driving circuit 300, wherein
  • the adjustment circuit 200 is configured to adjust a first grayscale value of at least part of the first sub-pixel 7 in the original picture data to a second grayscale value when entering the preset display mode, and the second grayscale value is substantially smaller than the corresponding grayscale value.
  • the first grayscale value of the first subpixel 7; the driving circuit 300 is configured to drive the first subpixel 7 to perform display according to the second grayscale value.
  • the non-linearly extending boundary 6 of the display area may specifically include an arc-shaped boundary that does not match a sub-pixel shape (for example, a rectangular shape) or a boundary of another irregular structure.
  • the "mismatch" referred to here means that the non-linearly extending boundary does not coincide with the outer contour of a plurality of sub-pixels that the boundary passes through.
  • the preset threshold may be defined according to actual conditions.
  • the above-mentioned first sub-pixel 7 may refer to an absolute distance from the non-linearly extending boundary 6 (the absolute distance may be the shortest distance between the first sub-pixel 7 and the non-linearly extending boundary 6) which is substantially smaller than a preset threshold Sub-pixels; an area adjacent to the non-linearly extending boundary 6 may also be determined according to a preset threshold, and all sub-pixels in the area are the first sub-pixels 7; another non-linear may also be determined according to a preset threshold In the area adjacent to the extended boundary 6, the average of the absolute distances between the sub-pixels in the area and the non-linearly extending boundary 6 is substantially smaller than a preset threshold, and each sub-pixel in the area is the first sub-pixel. Pixels 7.
  • those skilled in the art may also make the above-mentioned definitions of the preset thresholds in other manners according to actual situations, and the embodiments of the present disclosure are
  • the above-mentioned original screen data is data corresponding to the original display screen input by the central processing unit (CPU) of the display panel when the display panel performs display.
  • the display area displays the actual display effect
  • the non-display area that is, the area outside the non-linearly extending boundary
  • the specific driving process is as follows:
  • the adjustment circuit in the driving chip adjusts the first grayscale value of at least part of the first subpixel in the original picture data to a second grayscale value, which is substantially smaller than the corresponding first grayscale value.
  • a first gray level value of a sub-pixel the driving circuit in the driving chip drives the first sub-pixel to display according to the second gray level value, so that the display brightness of the first sub-pixel is lower than its corresponding display brightness in the original picture data .
  • the driving chip also drives the second sub-pixel to display according to the corresponding gray value of the second sub-pixel in the original picture data, so that the display panel is in a display state.
  • the adjustment circuit can adjust the first grayscale value of at least part of the first sub-pixels in the display panel in the original picture data to the first.
  • Two grayscale values, and the second grayscale value is substantially smaller than the first grayscale value corresponding to the first subpixel; the driving circuit can drive the first subpixel to display according to the second grayscale value, so that the actuality of the first subpixel The display brightness is lower than the corresponding display brightness of the first sub-pixel in the original picture data.
  • the first sub-pixel near the boundary extending non-linearly can be controlled to have a lower display brightness, thereby weakening the brightness change of the user to the edge of the display screen.
  • the perception of the image is improved, and the jaggedness of the border area in the display screen is improved, which improves the display quality of the screen.
  • the display panel it is not necessary to control the display brightness of the first sub-pixel by blocking the black matrix, but to control the display brightness of the first sub-pixel accordingly by driving the chip.
  • the driver chip provided in the example drives the display panel for display
  • the transmittance of the first sub-pixel can be adjusted freely without changing the distribution of the black matrix in the display panel, and it is confirmed that the display panel corresponds to the first sub-pixel when the transmittance is different. Display effect. It can be seen that when the display panel is driven by the driving chip provided by the embodiment of the present disclosure, not only the jaggedness at the non-linearly extending boundaries is weakened, but also a series of problems such as color edge display, waste of production costs and time costs are avoided. .
  • the adjustment circuit can be set to adjust the grayscale values of all the first subpixels to the second grayscale value when the display mode is preset, and the second grayscale value is substantially smaller than the first grayscale corresponding to the first subpixel. value.
  • setting the adjustment circuit adjusts the grayscale values of all the first subpixels to the second grayscale value, and makes the second grayscale value substantially smaller than the first grayscale value corresponding to the first subpixel, so that the display panel can be made.
  • All the first sub-pixels near the border between China and Africa have a lower display brightness, thereby further improving the jaggedness of the display panel at the border that is not straight when the display panel is displaying, and the picture is better improved. Display quality to improve user experience on the screen.
  • the driving chip provided in the foregoing embodiment further includes a storage unit 400, which is configured to acquire and store position information of the first sub-pixel.
  • a storage unit 400 which is configured to acquire and store position information of the first sub-pixel.
  • the adjustment circuit 200 enters the preset display mode, it searches for and obtains the stored position information, determines the first sub-pixel according to the position information, and adjusts the first gray-scale voltage corresponding to the original picture of the first sub-pixel to the second Gray-scale voltage.
  • the sub-pixels included in the display panel are arranged in an array, and among the sub-pixels arranged in the array, which sub-pixels can be effectively displayed (that is, the sub-pixels located in the display area) are set when the display panel is designed.
  • the driver chip can record which sub-pixels are participating in the display and the position information of each sub-pixel in the storage unit at one time through the code, so that the display panel can implement the display function according to the information stored in the storage unit when displaying, and There is no need to calculate the position of the sub-pixels involved in the display again, which saves a lot of calculation.
  • the storage unit included in the driver chip can acquire and store the position information of the first sub-pixel (the sub-pixel that needs to be adjusted for the gray-scale voltage), and the second sub-pixel (which does not need to be adjusted for the gray-scale voltage, according to Sub-pixels) displayed on the original screen data. It is worth noting that the above storage unit may be selected as a clock memory, but the embodiments of the present disclosure are not limited thereto.
  • the adjustment circuit When the adjustment circuit enters the preset display mode, it first searches and obtains the stored position information in the storage unit, and determines which is the first sub-pixel from all the sub-pixels included in the display panel according to the position information, and then The determined first gray-scale voltage corresponding to the original picture of the first sub-pixel is adjusted to the second gray-scale voltage, so that the actual display brightness of the first sub-pixel is reduced compared to the corresponding display brightness in the original picture data, thereby improving the boundary The jaggedness of the area in the display.
  • the driving chip 100 provided in the above embodiment further includes a gamma compensation circuit 500, which is used to compensate only the grayscale voltage of the first sub-pixel based on the gamma value; the adjustment circuit 200 stores the first sub-pixel
  • the gamma correction value is specifically used to find and obtain the stored gamma correction value corresponding to the first sub-pixel when entering the preset display mode, and correct the gamma value of the gamma compensation circuit according to the gamma correction value to make the gamma compensation
  • the circuit 500 compensates the first gray-scale voltage corresponding to the original picture of the first sub-pixel to the second gray-scale voltage based on the corrected gamma value.
  • the driving chip 100 provided in the foregoing embodiment further includes a Gamma circuit 600 and a Gamma compensation circuit 500.
  • the Gamma circuit 600 is configured to provide a grayscale voltage for the second subpixel, and the grayscale voltage is the original value of the second subpixel. Corresponding grayscale voltage in the screen data. It is worth noting that each second sub-pixel only needs to correspond to one Gamma circuit 600, and the corresponding Gamma circuit 600 provides a gray-scale voltage for it, so that the driver chip does not need to add a Gamma compensation circuit corresponding to the second sub-pixel. Better save the space of the driver chip.
  • the above-mentioned Gamma compensation circuit 500 is not the same circuit as the Gamma circuit 600.
  • the Gamma compensation circuit 500 is used to control the first sub-pixel and can compensate the gray-scale voltage of the first sub-pixel based on the gamma value.
  • the adjustment circuit 200 stores the gamma correction value of the first sub-pixel, and the adjustment circuit 200 is specifically configured to find and obtain the stored gamma correction value corresponding to the first sub-pixel when entering the preset display mode, and The gamma value of the gamma compensation circuit is corrected according to the gamma correction value, so that the gamma compensation circuit 500 can compensate the first grayscale voltage corresponding to the original picture of the first sub-pixel to the second grayscale voltage based on the corrected gamma value.
  • the pixels are effectively displayed.
  • the gamma compensation circuit controls the grayscale voltage of each sub-pixel included in the first row and column 17 pixels based on the corrected gamma value, so that the grayscale voltage of the first row and column 17 pixels is substantially smaller than 4.5V, thereby improving the jaggedness of the display screen at the non-linearly extending boundaries.
  • the gamma correction value of the first sub-pixel stored in the adjustment circuit 200 can be obtained through experiments in advance, for example. Specifically, the first sub-pixels included in the display panel can be first adjusted to have an arbitrary transmittance, and it can be confirmed that when all the first sub-pixels included in the display panel are matched with different transmittances, the display effect of the display panel is confirmed. The first sub-pixel in the display panel is matched with different transmittances, and after corresponding display effects, one of the combinations is selected to determine the gamma correction value of the first sub-pixel. In the subsequent production of the display panel, this gamma can be based on this The calibration values are mass produced.
  • a storage unit for example, a clock memory
  • the driving chip stores the position information corresponding to the first sub-pixel and the second sub-pixel in the display panel in advance (step S801); when the driving chip drives the display panel to perform display ,
  • the adjustment circuit in the driving chip searches in the storage unit to obtain position information corresponding to each sub-pixel in the display panel, and determines the first sub-pixel and the second sub-pixel according to the position information (step S802);
  • a sub-pixel, the gamma compensation circuit compensates the gray-scale voltage of the first sub-pixel based on the gamma value, compensates the first gray-scale voltage of the first sub-pixel corresponding to the original picture to the second gray-scale voltage, and drives the driving circuit in the chip Drive the first sub-pixel to display according to the second gray-scale value (step S803);
  • the Gamma circuit provides a gray-scale voltage for the second sub-pixel, which is the second sub-pixel in the original picture data The corresponding gray-
  • An embodiment of the present disclosure further provides a method for driving a display panel.
  • the display panel includes the driving chip provided in the foregoing embodiment.
  • the display panel includes a plurality of sub-pixels located in a display area.
  • the display area has a non-linearly extending boundary.
  • the plurality of sub-pixels include a first sub-pixel and a second sub-pixel other than the first sub-pixel whose distance from a non-linearly extending boundary is substantially smaller than a preset threshold; the driving method includes:
  • the first grayscale value of at least part of the first subpixel in the original picture data is adjusted to the second grayscale value, and the second grayscale value is substantially smaller than the first corresponding to the first subpixel.
  • the first sub-pixel is driven for display according to the second grayscale value.
  • the specific driving process is as follows:
  • the adjustment circuit in the driving chip adjusts the first grayscale value of at least part of the first subpixel in the original picture data to a second grayscale value, which is substantially smaller than the corresponding first grayscale value.
  • a first gray level value of a sub-pixel the driving circuit in the driving chip drives the first sub-pixel to display according to the second gray level value, so that the display brightness of the first sub-pixel is lower than its corresponding display brightness in the original picture data
  • the driving chip also drives the second sub-pixel to display according to the corresponding gray value of the second sub-pixel in the original picture data, so that the display panel is in a display state.
  • the adjustment circuit can adjust the first gray level value of at least part of the first sub-pixels in the original screen data to the second gray level value, and the second gray level The value is substantially smaller than the first grayscale value corresponding to the first subpixel; the driving circuit can drive the first subpixel to display according to the second grayscale value, so that the actual display brightness of the first subpixel is lower than that of the first subpixel. The corresponding display brightness in the original screen data.
  • the first sub-pixel near the boundary extending non-linearly has a lower display brightness, thereby weakening the brightness variation of the user on the edge of the display screen.
  • the perception of the image is improved, and the jaggedness of the border area in the display screen is improved, which improves the display quality of the screen.
  • the driving method provided in the embodiment of the present disclosure is used.
  • the display panel is driven for display, it is possible to freely adjust the transmittance of the first sub-pixel without changing the distribution of the black matrix in the display panel, and confirm the display effect corresponding to the display panel when the first sub-pixel is at a different transmittance.
  • the first grayscale values of all the first sub-pixels in the original picture data are adjusted to the second grayscale values.
  • the adjustment circuit when entering the preset display mode, adjusts the grayscale values of all the first subpixels to the second grayscale value, and makes the second grayscale value substantially smaller than the first grayscale corresponding to the first subpixel.
  • the order value can make all the first sub-pixels near the non-linearly extending boundary in the display panel have a lower display brightness, thereby further improving the jaggedness that appears at the non-linearly extending boundary when the display panel is displaying. , Which better improves the display quality of the screen and improves the user's experience on the screen.
  • the driving method provided in the foregoing embodiment further includes:
  • the step of adjusting the first grayscale value of the first subpixel in the original picture data to the second grayscale value includes:
  • the sub-pixels included in the display panel are arranged in an array, and among the sub-pixels arranged in the array, which sub-pixels can be effectively displayed (that is, the sub-pixels located in the display area) are set when the display panel is designed.
  • the driver chip can record which sub-pixels are participating in the display and the position information of each sub-pixel in the storage unit at one time through the code, so that the display panel can implement the display function according to the information stored in the storage unit when displaying, and There is no need to calculate the position of the sub-pixels involved in the display again, which saves a lot of calculation.
  • the storage unit included in the driver chip can acquire and store the position information of the first sub-pixel (the sub-pixel that needs to be adjusted for the gray-scale voltage), and the second sub-pixel (which does not need to be adjusted for the gray-scale voltage, according to Sub-pixels) displayed on the original screen data.
  • the adjustment circuit When the adjustment circuit enters the preset display mode, it first searches and obtains the stored position information in the storage unit, and determines which is the first sub-pixel from all the sub-pixels included in the display panel according to the position information, and then The determined first gray-scale voltage corresponding to the original picture of the first sub-pixel is adjusted to the second gray-scale voltage, so that the actual display brightness of the first sub-pixel is reduced compared to the corresponding display brightness in the original picture data, thereby improving the boundary The jaggedness of the area in the display.
  • the driving method provided in the foregoing embodiment further includes:
  • the step of adjusting the first grayscale voltage corresponding to the original picture of the first sub-pixel to the second grayscale voltage includes:
  • the gamma compensation circuit When entering the preset display mode, find and obtain the stored gamma correction value corresponding to the first sub-pixel, and correct the gamma value of the gamma compensation circuit of the first sub-pixel according to the gamma correction value, so that the gamma compensation circuit is based on the correction.
  • the latter gamma value compensates the first grayscale voltage corresponding to the original picture of the first sub-pixel to the second grayscale voltage.
  • the driving chip provided in the foregoing embodiment further includes a Gamma circuit and a Gamma compensation circuit, wherein the Gamma circuit is configured to provide a grayscale voltage for the second subpixel, and the grayscale voltage corresponds to the second subpixel in the original picture data. Grayscale voltage.
  • the above-mentioned Gamma compensation circuit is not the same circuit as the Gamma circuit.
  • the Gamma compensation circuit is used to control the first sub-pixel and can compensate the gray-scale voltage of the first sub-pixel based on the gamma value. More specifically, the adjustment circuit stores a gamma correction value of the first sub-pixel, which can be obtained through experiments in advance. The adjustment circuit is specifically used to find and obtain the stored first sub-pixel when entering the preset display mode.
  • the gamma correction value corresponding to the pixel, and the gamma value of the gamma compensation circuit is corrected according to the gamma correction value, so that the gamma compensation circuit can compensate the first grayscale voltage of the first sub-pixel corresponding to the original picture to the third based on the corrected gamma value.
  • An embodiment of the present disclosure further provides a display device including the driving chip provided in the foregoing embodiment.
  • the driving chip can control the first sub-pixel near the non-linearly extending boundary to have a lower display brightness, which weakens the user's perception of the brightness change at the edge of the display screen. Therefore, when the display device provided in the embodiment of the present disclosure includes the above-mentioned driving chip, it can improve the jaggedness of the border area in the display screen, thereby better improving the display quality of the screen and improving the user's experience on the screen. .
  • the display brightness of the first sub-pixel can be controlled by the driving chip
  • the first sub-pixel can be adjusted freely without changing the distribution of the black matrix in the display device.
  • the transmittance of the pixel, and the display effect corresponding to the display device when the first sub-pixel is at a different transmittance are confirmed, thereby achieving the effect of weakening the appearance of jaggedness at the non-linearly extending boundaries.
  • An embodiment of the present disclosure further provides a driving chip, including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • a driving chip including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the driving method provided in the foregoing embodiment is implemented.
  • the processor is connected to the memory, and the processor calls a program in the memory to execute the driving method in the foregoing method embodiments.
  • the processor is configured to adjust a first grayscale value of at least part of the first subpixel in the original picture data to a second grayscale value when the preset display mode is entered, and the second grayscale value is substantially Is smaller than the first grayscale value corresponding to the first subpixel; the processor is further configured to drive the first subpixel to display according to the second grayscale value.
  • the processor is further configured to adjust a first grayscale value of all the first sub-pixels in the original picture data to a second grayscale value when entering a preset display mode.
  • the processor is configured to acquire and store the position information of the first sub-pixel; when the processor enters a preset display mode, the first gray-scale value of the first sub-pixel in the original picture data is adjusted to a second gray-scale
  • the processor is specifically configured to find and obtain the stored position information when entering the preset display mode, and determine the first sub-pixel according to the position information, and correspond the first sub-pixel to the first of the original picture
  • the grayscale voltage is adjusted to a second grayscale voltage.
  • the processor is further configured to store a gamma correction value of the first subpixel; when the processor enters a preset display mode, the first grayscale value of the first subpixel in the original picture data is adjusted to a second grayscale value ,
  • the processor is specifically configured to find and obtain the stored gamma correction value corresponding to the first sub-pixel when entering the preset display mode, and correct the gamma value of the gamma compensation circuit of the first sub-pixel according to the gamma correction value , And then compensate the first grayscale voltage corresponding to the original picture of the first sub-pixel to the second grayscale voltage based on the corrected gamma value.
  • the first sub-pixel near the boundary extending non-linearly can be controlled to have a lower display brightness, thereby weakening the user's perception of the brightness change at the edge of the display screen. , To improve the jaggedness of the border area in the display screen, and better improve the display quality of the screen.
  • the transmittance of the first sub-pixel can be adjusted freely without changing the distribution of the black matrix in the display panel, and it can be confirmed that the first sub-pixel is in a different transmittance. The display effect corresponding to the display panel when the rate is exceeded.
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU or one or more integrated circuits configured to implement the above driving method.
  • the memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), or an erasable programmable read-only memory (EPROM). Electrically erasable programmable read-only memory (Electrically EPROM, EEPROM for short) or flash memory.
  • the volatile memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM for short
  • Synchronous Dynamic Random Access Memory for short
  • Synchlink DRAM SLDRAM for short
  • Direct Memory Bus Random Access Memory Direct RAMbus RAM, DRRAM for short
  • the memories described in this disclosure are intended to include, without being limited to, these and any other suitable types of memory.
  • An embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the driving method provided by the foregoing embodiment are implemented.
  • the computer-readable storage medium provided in this embodiment stores a program that can correspondingly implement the driving method provided in the foregoing embodiment.
  • a program that can correspondingly implement the driving method provided in the foregoing embodiment.
  • specific types of the readable storage medium refer to the description of the memory in the foregoing driving chip embodiment.
  • the program stored in the computer-readable storage medium and the specific steps for the processor to execute the program reference may also be made to the description of the device part of the driving chip described above.
  • the embodiments described herein may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processor can be implemented in one or more application-specific integrated circuits (ASICs), digital signal processors (DSP), digital signal processing equipment (DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this application Electronic unit or combination thereof.
  • ASICs application-specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing equipment
  • PLD programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • microprocessor other for performing the functions described in this application Electronic unit or combination thereof.
  • the techniques described herein can be implemented through modules (e.g., procedures, functions, etc.) that perform the functions described herein.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.
  • the embodiments of the embodiments of the present disclosure may be provided as a method, an apparatus, or a computer program product. Therefore, the embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the embodiments of the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present disclosure are described with reference to flowcharts and / or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present disclosure. It should be understood that each process and / or block in the flowcharts and / or block diagrams, and combinations of processes and / or blocks in the flowcharts and / or block diagrams can be implemented by computer program instructions.
  • These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing terminal device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing terminal device Means are generated for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal device to work in a specific manner, such that the instructions stored in the computer-readable memory produce a manufactured article including the instruction means, the The instruction means implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing terminal device, so that a series of operation steps can be performed on the computer or other programmable terminal device to produce a computer-implemented process, so that the computer or other programmable terminal device can
  • the instructions executed on the steps provide steps for implementing the functions specified in one or more of the flowcharts and / or one or more of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种驱动芯片(100),应用于显示面板,显示面板包括位于显示区域的多个亚像素,显示区域具有非直线延伸的边界(6),多个亚像素包括与非直线延伸的边界(6)的距离实质上小于预设阈值的第一亚像素(7)和除第一亚像素(7)之外的第二亚像素(8)。驱动芯片(100)包括:调整电路(200),用于在进入预设显示模式时,将至少部分第一亚像素(7)在原始画面数据中的第一灰阶值调整为第二灰阶值,第二灰阶值实质上小于对应第一亚像素(7)的第一灰阶值;驱动电路(300),用于按照第二灰阶值驱动第一亚像素(7)进行显示。

Description

驱动芯片、显示面板的驱动方法、驱动设备、显示装置
相关申请的交叉引用
本申请主张在2018年5月25日在中国提交的中国专利申请号No.201810516127.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种驱动芯片、显示面板的驱动方法、驱动设备、以及显示装置。
背景技术
随着显示技术的不断发展,全屏显示器件和智能穿戴显示器件开始逐渐流行。在这类显示器件中,显示区域的边界往往包括圆弧或异形结构(例如,缺口),而现有显示产品的像素一般呈矩形,这就使得像素的排列无法与圆弧或异形结构的边界完美匹配,从而导致显示器件显示的画面会在对应圆弧或异形结构的边界出现较为明显的锯齿感。
发明内容
在第一个方面中,本公开实施例提供了一种驱动芯片,应用于显示面板,所述显示面板包括位于显示区域的多个亚像素,所述显示区域具有非直线延伸的边界,其中,所述多个亚像素包括与所述非直线延伸的边界的距离实质上小于预设阈值的第一亚像素和除所述第一亚像素之外的第二亚像素;所述驱动芯片包括:
调整电路,用于在进入预设显示模式时,将至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值;以及
驱动电路,用于按照第二灰阶值驱动所述第一亚像素进行显示。
根据本公开的一些实施例,所述调整电路在预设显示模式时,将全部第一亚像素的灰阶值调整为第二灰阶值,所述第二灰阶值实质上小于对应第一 亚像素的第一灰阶值。
根据本公开的一些实施例,所述调整电路在预设显示模式时,将一部分第一亚像素的灰阶值调整为第二灰阶值,所述一部分第一亚像素是指在与非直线延伸的边界相邻的区域内的各个亚像素与所述非直线延伸的边界的各个绝对距离的平均值实质上小于所述预设阈值,其中所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值。
根据本公开的一些实施例,所述驱动芯片还包括:存储单元,用于获取并存储所述第一亚像素的位置信息;所述调整电路在进入预设显示模式时,查找并获取所存储的位置信息,并根据所述位置信息,确定第一亚像素,并将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压。
根据本公开的一些实施例,所述驱动芯片还包括:Gamma补偿电路,用于基于gamma值仅对第一亚像素的灰阶电压进行补偿;所述调整电路存储有第一亚像素的gamma校正值,具体用于在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对所述Gamma补偿电路的gamma值进行校正,使得所述Gamma补偿电路基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
根据本公开的一些实施例,所述驱动芯片还包括:Gamma电路,用于为第二亚像素提供灰阶电压,该灰阶电压为第二亚像素在原始画面数据中对应的灰阶电压;Gamma补偿电路,用于为第一亚像素提供灰阶电压,并基于gamma值仅对第一亚像素的灰阶电压进行补偿;所述调整电路存储有第一亚像素的gamma校正值,具体用于在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对所述Gamma补偿电路的gamma值进行校正,使得所述Gamma补偿电路基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
根据本公开的一些实施例,所述非直线延伸的边界包括圆弧状的边界或异形结构的边界。
根据本公开的一些实施例,所述异形结构是指所述显示面板的侧边上的缺口。
在第二个方面中,本公开实施例提供了一种显示面板的驱动方法,所述显示面板包括位于显示区域的多个亚像素,所述显示区域具有非直线延伸的边界,其中,所述多个亚像素包括与所述非直线延伸的边界的距离实质上小于预设阈值的第一亚像素和除所述第一亚像素之外的第二亚像素;
所述驱动方法包括:
在进入预设显示模式时,将至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值;
按照第二灰阶值驱动所述第一亚像素进行显示。
根据本公开的一些实施例,在进入预设显示模式时,将全部第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值。
根据本公开的一些实施例,在进入预设显示模式时,将一部分第一亚像素的灰阶值调整为第二灰阶值,所述一部分第一亚像素是指在与非直线延伸的边界相邻的区域内的各个亚像素与所述非直线延伸的边界的各个绝对距离的平均值实质上小于所述预设阈值,其中所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值。
根据本公开的一些实施例,所述驱动方法还包括:获取并存储所述第一亚像素的位置信息;在进入预设显示模式时,将第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值的步骤,包括:在进入预设显示模式时,查找并获取所存储的位置信息,并根据所述位置信息,确定第一亚像素,并将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压。
根据本公开的一些实施例,所述驱动方法还包括:存储第一亚像素的gamma校正值;在进入预设显示模式时,将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压的步骤,包括:在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对第一亚像素的Gamma补偿电路的gamma值进行校正,使得所述Gamma补偿电路基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
根据本公开的一些实施例,所述驱动方法还包括:为第二亚像素提供灰 阶电压,该灰阶电压为第二亚像素在原始画面数据中对应的灰阶电压;为第一亚像素提供灰阶电压,并基于gamma校正值仅对第一亚像素的灰阶电压进行补偿;在进入预设显示模式时,将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压的步骤,包括:在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对所述Gamma补偿电路的gamma值进行校正,使得所述Gamma补偿电路基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
根据本公开的一些实施例,所述非直线延伸的边界包括圆弧状的边界或异形结构的边界。
根据本公开的一些实施例,所述异形结构是指所述显示面板的侧边上的缺口。
在第三个方面中,本公开实施例还提供了一种显示装置,包括如第一个方面中所述的驱动芯片。
在第四个方面中,本公开实施例还提供了一种驱动设备,包括:处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被处理器执行时实现如在第二个方面中任一项所述的驱动方法的步骤。
在第五个方面中,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如在第二个方面中任一项所述的驱动方法的步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中显示器件的第一示意图;
图2为相关技术中显示器件的第二示意图;
图3为相关技术中显示器件显示画面在边缘处产生锯齿感的示意图;
图4为相关技术中解决显示器件显示画面的锯齿感的一种方式示意图;
图5为相关技术中解决显示器件显示画面的锯齿感的另一种方式示意图;
图6为本公开实施例提供的显示面板的一种示意图;
图7为本公开实施例提供的显示面板的另一种示意图;
图8为本公开实施例提供的驱动方法的流程图;以及
图9为本公开实施例提供的驱动芯片的结构框图。
附图标记:
1-显示器件,                11-圆弧,
12-异形结构,               2-黑矩阵,
3-R亚像素,                 4-G亚像素,
5-B亚像素,                 6-非直线延伸的边界,
7-第一亚像素,              8-第二亚像素。
具体实施方式
为了进一步说明本公开实施例提供的驱动芯片、显示面板的驱动方法、显示装置,下面结合说明书附图进行详细描述。
请参阅图1和图2,对于显示区域的边界包括圆弧11或异形结构12(例如,缺口)的显示器件1,由于像素的排列无法与圆弧11或异形结构12的边界完美匹配,因此导致位于圆弧11或异形结构12的边界处的像素排布不整齐,如图3所示,显示器件显示的画面会在对应圆弧或异形结构的边界出现较为明显的锯齿感。
目前,解决上述锯齿感的常规方法主要包括以下两种:
第一种方法,如图4所示,在圆弧或异形结构的边界用黑矩阵2遮挡像素,使像素在圆弧或异形结构的边界处的显示是与该边界相匹配的平滑形状,从而弱化显示器件在显示时产生的锯齿感。但是由于每个像素至少包括R/G/B三种亚像素,而在采用黑矩阵2对像素进行遮挡时,该像素所包括的各亚像素被遮挡的面积不同,导致在圆弧或异形结构的边界处出现显示彩边的问题。更详细地说,例如图4中的第四行,靠近圆弧或异形结构的边界处 的R亚像素3遮挡最多,蓝色(B)亚像素5遮挡最少,绿色(G)亚像素4的遮挡面积在红色(R)亚像素3的遮挡面积和B亚像素5的遮挡面积之间。这就使得当显示器件显示白色(W)画面时,因为边界处的R/G/B亚像素全开,造成G亚像素4和B亚像素5的显示亮度远高于R亚像素3的显示亮度,造成在白画面边角处的显示偏青色(C),宏观上看即为彩边效果。
第二种方法,如图5所示,对接近圆弧或异形结构的边界处的像素进行轻微遮挡,使得该像素依然是完整的像素,只是透过率降低(例如:图5中的第一行像素和第二行像素,靠近边界处的像素的透过率依次例如为GL236、GL189、GL158)。当使得显示器件在进行白色画面的显示时,接近圆弧或异形结构的边界处的像素的亮度会逐步下降,从而弱化在对应圆弧或异形结构的边界出现较为明显的锯齿感。但是在实际产品中,通过黑矩阵(BM)对像素进行轻微遮挡来控制像素的透过率时,黑矩阵的形状和遮挡方式不同,人眼识别的感觉也不同,因此为了实现更好的人眼识别感觉,需要对用于遮挡的黑矩阵的形状和遮挡方式进行大量验证,这导致生产成本和时间成本的不必要浪费。
从上述两种方法可以看出,相关技术中,主要是通过设置黑矩阵来遮挡位于圆弧或异形结构的边界处的像素,来解决显示器件在圆弧或异形结构的边界出现较为明显的锯齿感问题,而这种解决方式还存在彩边显示、浪费生产成本和时间成本等一系列问题。基于上述问题的存在,本公开的发明人经研究发现,可通过显示器件中的驱动芯片控制降低位于圆弧或异形结构的边界处的像素的透过率,从而实现不用改变黑矩阵的分布,就能够随意调节像素的透过率,实现弱化在圆弧或异形结构的边界处出现锯齿感的效果。
本公开实施例提供了一种驱动芯片,应用于显示面板,如图6所示,显示面板包括位于显示区域的多个亚像素,显示区域具有非直线延伸的边界6,多个亚像素包括与非直线延伸的边界6的距离实质上小于预设阈值的第一亚像素7和除第一亚像素7之外的第二亚像素8;该驱动芯片100包括调整电路200和驱动电路300,其中,调整电路200用于在进入预设显示模式时,将至少部分第一亚像素7在原始画面数据中的第一灰阶值调整为第二灰阶值,第二灰阶值实质上小于对应第一亚像素7的第一灰阶值;驱动电路300用于 按照第二灰阶值驱动第一亚像素7进行显示。
具体地,上述显示区域的非直线延伸的边界6具体可以包括:与亚像素形状(例如,矩形形状)不匹配的圆弧状的边界或者其它异形结构的边界。这里所称的“不匹配”是指非直线延伸的边界与该边界所经过的多个亚像素的外轮廓不重合。
上述预设阈值可以根据实际情况进行定义。上述第一亚像素7可以是指与非直线延伸的边界6的绝对距离(绝对距离可以是第一亚像素7与非直线延伸的边界6之间的最短距离)实质上小于一预设阈值的亚像素;也可以根据预设阈值确定一与非直线延伸的边界6相邻的区域,该区域内的所有亚像素即为第一亚像素7;也可以根据预设阈值确定另一与非直线延伸的边界6相邻的区域,该区域内的各个亚像素与非直线延伸的边界6的各个绝对距离的平均值实质上小于一预设阈值,该区域内的各个亚像素即为第一亚像素7。当然,本领域技术人员还可以根据实际情况做出其他方式的上述预设阈值的定义,本公开实施例并不以上述三种具体示例为限。
上述原始画面数据即为显示面板在进行显示时由该显示面板的中央处理器(CPU)输入的原始显示画面所对应的数据。显示面板在基于该原始画面数据进行显示时,显示区域显示实际的显示效果,而非显示区域(即非直线延伸的边界之外的区域)显示黑色画面,由此导致在非直线延伸的边界处会产生锯齿感。
采用上述驱动芯片驱动显示面板进行显示时,具体驱动过程如下:
在预设显示模式时,驱动芯片中的调整电路将至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,该第二灰阶值实质上小于对应第一亚像素的第一灰阶值;驱动芯片中的驱动电路按照第二灰阶值驱动第一亚像素进行显示,使得第一亚像素的显示亮度低于其在原始画面数据中对应的显示亮度。同时,驱动芯片还根据第二亚像素在原始画面数据中对应的灰度值驱动第二亚像素进行显示,使得显示面板处于显示状态。
根据上述驱动芯片的具体结构和驱动过程可知,本公开实施例提供的驱动芯片中,调整电路能够将显示面板中的至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,且第二灰阶值实质上小于对应第一亚 像素的第一灰阶值;驱动电路能够按照第二灰阶值驱动第一亚像素进行显示,使得第一亚像素的实际显示亮度低于该第一亚像素在原始画面数据中对应的显示亮度。因此,在利用本公开实施例提供的驱动芯片驱动显示面板进行显示时,能够控制接近非直线延伸的边界处的第一亚像素具有较低的显示亮度,从而弱化用户对显示画面边缘的亮度变化的感知,改善边界区域在显示画面中所出现的锯齿感,更好的提高了画面的显示品质。
由此可见,在本公开的技术方案中不需要通过黑矩阵遮挡第一亚像素来控制其显示亮度,而是通过驱动芯片来相应地控制第一亚像素的显示亮度,因此在利用本公开实施例提供的驱动芯片驱动显示面板进行显示时,不用改变显示面板中黑矩阵的分布,就能够随意调节第一亚像素的透过率,并确认第一亚像素处于不同透过率时显示面板对应的显示效果。可见,在利用本公开实施例提供的驱动芯片驱动显示面板进行显示时,不仅弱化了在非直线延伸的边界处出现锯齿感,还避免了彩边显示、浪费生产成本和时间成本等一系列问题。
进一步地,可设置调整电路在预设显示模式时,将全部第一亚像素的灰阶值调整为第二灰阶值,第二灰阶值实质上小于对应第一亚像素的第一灰阶值。
具体地,设置调整电路将全部第一亚像素的灰阶值调整为第二灰阶值,并使第二灰阶值实质上小于对应第一亚像素的第一灰阶值,能够使得显示面板中非直线延伸的边界附近的全部第一亚像素均具有较低的显示亮度,从而进一步改善了显示面板在进行显示时,在非直线延伸的边界处出现的锯齿感,更好的提高了画面的显示品质,改善用户对画面的体验。
进一步地,上述实施例提供的驱动芯片还包括存储单元400,该存储单元400用于获取并存储第一亚像素的位置信息。调整电路200在进入预设显示模式时,查找并获取所存储的位置信息,并根据位置信息,确定第一亚像素,并将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压。
具体地,显示面板中包括的亚像素呈阵列排布,且呈阵列排布的亚像素中,哪些亚像素能够进行有效的显示(即位于显示区域内的亚像素)是在显示面板设计时就已经确定的。驱动芯片能够通过代码一次性将具体有哪些亚 像素参与显示,以及各亚像素的位置信息记录在存储单元中,使得显示面板在进行显示时,可根据存储单元中存储的信息实现显示功能,而不需要再次对参与显示的亚像素的位置进行计算,很好的节省了运算量。更详细地说,驱动芯片中包括的存储单元能够获取并存储第一亚像素(需要进行灰阶电压调整的亚像素)的位置信息,和第二亚像素(不需要进行灰阶电压调整,按照原始画面数据进行显示的亚像素)的位置信息。值得注意,上述存储单元可选为时钟存储器,但是本公开各个实施例并不以此为限。
调整电路在进入预设显示模式时,先在存储单元中查找并获取所存储的位置信息,并根据该位置信息,从显示面板包括的全部亚像素中确定出哪些是第一亚像素,然后再将确定出的第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压,使得第一亚像素的实际显示亮度相对于原始画面数据中对应的显示亮度降低,从而改善该边界区域在显示画面中所出现的锯齿感。
进一步地,上述实施例提供的驱动芯片100还包括Gamma补偿电路500,该Gamma补偿电路500用于基于gamma值仅对第一亚像素的灰阶电压进行补偿;调整电路200存储有第一亚像素的gamma校正值,具体用于在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对Gamma补偿电路的gamma值进行校正,使得Gamma补偿电路500基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
具体地,上述实施例提供的驱动芯片100还包括Gamma电路600和Gamma补偿电路500,其中,Gamma电路600用于为第二亚像素提供灰阶电压,该灰阶电压为第二亚像素在原始画面数据中对应的灰阶电压。值得注意,每一个第二亚像素仅对应一个Gamma电路600即可,并由对应的Gamma电路600为其提供灰阶电压,这样驱动芯片中不需要增加与第二亚像素对应的Gamma补偿电路,更好的节省了驱动芯片的空间。
上述Gamma补偿电路500与Gamma电路600不是同一电路,该Gamma补偿电路500用于控制第一亚像素,能够基于gamma值对第一亚像素的灰阶电压进行补偿。更详细地说,调整电路200存储有第一亚像素的gamma校正值,调整电路200具体用于在进入预设显示模式时,查找并获取所存储的第 一亚像素对应的gamma校正值,并根据gamma校正值对Gamma补偿电路的gamma值进行校正,使得Gamma补偿电路500能够基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
更详细地说,以图7中第一行像素为例,在第一行像素中,从第17列像素开始,像素进行有效显示。当显示第一行第17列像素时,若第一行第17列像素在原始画面数据(原始画面可选为白色的纯色画面)中对应的灰阶电压是4.5V,则在进入预设显示模式时,Gamma补偿电路基于校正后的gamma值,通过代码控制第一行第17列像素所包括的各亚像素的灰阶电压,使得该第一行第17列像素的灰阶电压实质上小于4.5V,从而改善显示画面在非直线延伸的边界处出现的锯齿感。
值得注意,上述调整电路200中存储的第一亚像素的gamma校正值例如可以事先通过实验得到。具体地,可先调节显示面板中包括的各第一亚像素处于任意透过率,并确认显示面板中包括的全部第一亚像素在搭配不同透过率时,显示面板的显示效果,在确认显示面板中第一亚像素在不同透过率的搭配下,对应的显示效果后,选取其中一种搭配来确定第一亚像素的gamma校正值,在后续显示面板的生产中,可基于此gamma校正值进行量产。
为了更清楚的说明上述实施例提供的驱动芯片的工作过程,下面给出一具体实施例。
如图8所示,驱动芯片中的存储单元(例如,时钟存储器)事先存储显示面板中第一亚像素和第二亚像素对应的位置信息(步骤S801);驱动芯片在驱动显示面板进行显示时,驱动芯片中的调整电路在存储单元中进行查找,以获得显示面板中各亚像素对应的位置信息,并根据位置信息,确定出第一亚像素和第二亚像素(步骤S802);对于第一亚像素,Gamma补偿电路基于gamma值对第一亚像素的灰阶电压进行补偿,将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压,驱动芯片中的驱动电路按照第二灰阶值驱动第一亚像素进行显示(步骤S803);对于第二亚像素,Gamma电路为第二亚像素提供灰阶电压,该灰阶电压为第二亚像素在原始画面数据中对应的灰阶电压,驱动芯片中的驱动电路按照该灰阶电压驱动第二亚像素进行显示(步骤S804)。
本公开实施例还提供了一种显示面板的驱动方法,该显示面板中包括上述实施例提供的驱动芯片,该显示面板包括位于显示区域的多个亚像素,显示区域具有非直线延伸的边界,多个亚像素包括与非直线延伸的边界的距离实质上小于预设阈值的第一亚像素和除第一亚像素之外的第二亚像素;该驱动方法包括:
在进入预设显示模式时,将至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,第二灰阶值实质上小于对应第一亚像素的第一灰阶值;
按照第二灰阶值驱动第一亚像素进行显示。
具体地,采用上述驱动方法驱动显示面板进行显示时,具体驱动过程如下:
在预设显示模式时,驱动芯片中的调整电路将至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,该第二灰阶值实质上小于对应第一亚像素的第一灰阶值;驱动芯片中的驱动电路按照第二灰阶值驱动第一亚像素进行显示,使得第一亚像素的显示亮度低于其在原始画面数据中对应的显示亮度;同时,驱动芯片还根据第二亚像素在原始画面数据中对应的灰度值驱动第二亚像素进行显示,使得显示面板处于显示状态。
在采用上述驱动方法驱动显示面板进行显示时,调整电路能够将显示面板中的至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,且第二灰阶值实质上小于对应第一亚像素的第一灰阶值;驱动电路能够按照第二灰阶值驱动第一亚像素进行显示,使得第一亚像素的实际显示亮度低于该第一亚像素在原始画面数据中对应的显示亮度。因此,在利用本公开实施例提供的驱动方法驱动显示面板进行显示时,能够控制接近非直线延伸的边界处的第一亚像素具有较低的显示亮度,从而弱化用户对显示画面边缘的亮度变化的感知,改善边界区域在显示画面中所出现的锯齿感,更好的提高了画面的显示品质。
而且,本公开的技术方案中不需要通过黑矩阵遮挡第一亚像素来控制其显示亮度,而是通过驱动芯片来控制第一亚像素的显示亮度,因此在利用本公开实施例提供的驱动方法驱动显示面板进行显示时,不用改变显示面板中 黑矩阵的分布,就能够随意调节第一亚像素的透过率,并确认第一亚像素处于不同透过率时显示面板对应的显示效果。可见,在利用本公开实施例提供的驱动方法驱动显示面板进行显示时,不仅弱化了在非直线延伸的边界处出现锯齿感,还避免了彩边显示、浪费生产成本和时间成本等一系列问题。
进一步地,在进入预设显示模式时,将全部第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值。
具体地,在进入预设显示模式时,调整电路将全部第一亚像素的灰阶值调整为第二灰阶值,并使第二灰阶值实质上小于对应第一亚像素的第一灰阶值,能够使得显示面板中非直线延伸的边界附近的全部第一亚像素均具有较低的显示亮度,从而进一步改善了显示面板在进行显示时,在非直线延伸的边界处出现的锯齿感,更好的提高了画面的显示品质,改善用户对画面的体验。
进一步地,上述实施例提供的驱动方法还包括:
获取并存储第一亚像素的位置信息;
在进入预设显示模式时,将第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值的步骤,包括:
在进入预设显示模式时,查找并获取所存储的位置信息,并根据位置信息,确定第一亚像素,并将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压。
具体地,显示面板中包括的亚像素呈阵列排布,且呈阵列排布的亚像素中,哪些亚像素能够进行有效的显示(即位于显示区域内的亚像素)是在显示面板设计时就已经确定的。驱动芯片能够通过代码一次性将具体有哪些亚像素参与显示,以及各亚像素的位置信息记录在存储单元中,使得显示面板在进行显示时,可根据存储单元中存储的信息实现显示功能,而不需要再次对参与显示的亚像素的位置进行计算,很好的节省了运算量。更详细地说,驱动芯片中包括的存储单元能够获取并存储第一亚像素(需要进行灰阶电压调整的亚像素)的位置信息,和第二亚像素(不需要进行灰阶电压调整,按照原始画面数据进行显示的亚像素)的位置信息。
调整电路在进入预设显示模式时,先在存储单元中查找并获取所存储的 位置信息,并根据该位置信息,从显示面板包括的全部亚像素中确定出哪些是第一亚像素,然后再将确定出的第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压,使得第一亚像素的实际显示亮度相对于原始画面数据中对应的显示亮度降低,从而改善该边界区域在显示画面中所出现的锯齿感。
进一步地,上述实施例提供的驱动方法还包括:
存储第一亚像素的gamma校正值;
在进入预设显示模式时,将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压的步骤,包括:
在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对第一亚像素的Gamma补偿电路的gamma值进行校正,使得Gamma补偿电路基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
具体地,上述实施例提供的驱动芯片还包括Gamma电路和Gamma补偿电路,其中,Gamma电路用于为第二亚像素提供灰阶电压,该灰阶电压为第二亚像素在原始画面数据中对应的灰阶电压。上述Gamma补偿电路与Gamma电路不是同一电路,该Gamma补偿电路用于控制第一亚像素,能够基于gamma值对第一亚像素的灰阶电压进行补偿。更详细地说,调整电路存储有第一亚像素的gamma校正值,该gamma校正值可以事先通过实验得到,调整电路具体用于在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对Gamma补偿电路的gamma值进行校正,使得Gamma补偿电路能够基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
本公开实施例还提供了一种显示装置,包括上述实施例提供的驱动芯片。
由于利用上述实施例提供的驱动芯片驱动显示装置进行显示时,驱动芯片能够控制接近非直线延伸的边界处的第一亚像素具有较低的显示亮度,弱化用户对显示画面边缘的亮度变化的感知,因此,本公开实施例提供的显示装置在包括上述驱动芯片时,能够改善该边界区域在显示画面中所出现的锯齿感,从而更好的提高了画面的显示品质,改善用户对画面的体验。
而且,由于通过上述驱动芯片能够控制第一亚像素的显示亮度,因此本 公开实施例提供的显示装置在包括上述驱动芯片时,不用改变显示装置中黑矩阵的分布,就能够随意调节第一亚像素的透过率,并确认第一亚像素处于不同透过率时显示装置对应的显示效果,从而实现弱化在非直线延伸的边界处出现锯齿感的效果。
本公开实施例还提供了一种驱动芯片,包括:处理器、存储器以及存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述实施例提供的驱动方法。具体地,处理器与存储器连接,处理器调用存储器中的程序,执行以上方法实施例中的驱动方法。
更详细的说,处理器用于在进入预设显示模式时,将至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值;处理器还用于按照第二灰阶值驱动所述第一亚像素进行显示。
进一步地,处理器还用于在进入预设显示模式时,将全部第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值。
进一步地,处理器用于获取并存储所述第一亚像素的位置信息;处理器在进入预设显示模式,将第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值时,处理器具体用于在进入预设显示模式时,查找并获取所存储的位置信息,并根据所述位置信息,确定第一亚像素,并将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压。
进一步地,处理器还用于存储第一亚像素的gamma校正值;处理器在进入预设显示模式,将第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值时,处理器具体用于在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对第一亚像素的Gamma补偿电路的gamma值进行校正,再基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
在利用本公开实施例提供的驱动芯片驱动显示面板进行显示时,能够控制接近非直线延伸的边界处的第一亚像素具有较低的显示亮度,从而弱化用户对显示画面边缘的亮度变化的感知,改善该边界区域在显示画面中所出现的锯齿感,更好的提高了画面的显示品质。而且在利用本公开实施例提供的 驱动芯片驱动显示面板进行显示时,不用改变显示面板中黑矩阵的分布,就能够随意调节第一亚像素的透过率,并确认第一亚像素处于不同透过率时显示面板对应的显示效果。可见,在利用本公开实施例提供的驱动芯片驱动显示面板进行显示时,不仅弱化了在非直线延伸的边界处出现锯齿感,还避免了彩边显示、浪费生产成本和时间成本等一系列问题。
值得注意,这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,或者是被配置成实施以上驱动方法的一个或多个集成电路。
存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DRRAM)。本公开描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例提供的驱动方法的步骤。
本实施例提供的计算机可读存储介质存储有能够对应实现上述实施例提供的驱动方法的程序,该可读存储介质的具体种类可参见上述驱动芯片实施例中,关于存储器的描述。此外,计算机可读存储介质中存储的程序,以及处理器执行该程序的具体步骤,也均可参见上述驱动芯片的装置部分的描述。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间 件、微码或其组合来实现。对于硬件实现,处理器可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本公开实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、终端设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流 程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开实施例范围的所有变更和修改。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
值得注意的是,专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护 范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种驱动芯片,应用于显示面板,所述显示面板包括位于显示区域的多个亚像素,所述显示区域具有非直线延伸的边界,其中,所述多个亚像素包括与所述非直线延伸的边界的距离实质上小于预设阈值的第一亚像素和除所述第一亚像素之外的第二亚像素;所述驱动芯片包括:
    调整电路,用于在进入预设显示模式时,将至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值;以及
    驱动电路,用于按照第二灰阶值驱动所述第一亚像素进行显示。
  2. 根据权利要求1所述的驱动芯片,其中,
    所述调整电路在预设显示模式时,将全部第一亚像素的灰阶值调整为第二灰阶值,所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值。
  3. 根据权利要求1所述的驱动芯片,其中,
    所述调整电路在预设显示模式时,将一部分第一亚像素的灰阶值调整为第二灰阶值,所述一部分第一亚像素是指在与非直线延伸的边界相邻的区域内的各个亚像素与所述非直线延伸的边界的各个绝对距离的平均值实质上小于所述预设阈值,其中所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值。
  4. 根据权利要求1至3中任一项所述的驱动芯片,其中,
    所述驱动芯片还包括:
    存储单元,用于获取并存储所述第一亚像素的位置信息;
    所述调整电路在进入预设显示模式时,查找并获取所存储的位置信息,并根据所述位置信息,确定第一亚像素,并将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压。
  5. 根据权利要求4所述的驱动芯片,其中,
    所述驱动芯片还包括:
    Gamma补偿电路,用于基于gamma值仅对第一亚像素的灰阶电压进行补偿;
    所述调整电路存储有第一亚像素的gamma校正值,具体用于在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对所述Gamma补偿电路的gamma值进行校正,使得所述Gamma补偿电路基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
  6. 根据权利要求4所述的驱动芯片,其中,
    所述驱动芯片还包括:
    Gamma电路,用于为第二亚像素提供灰阶电压,该灰阶电压为第二亚像素在原始画面数据中对应的灰阶电压;
    Gamma补偿电路,用于为第一亚像素提供灰阶电压,并基于gamma值仅对第一亚像素的灰阶电压进行补偿;
    所述调整电路存储有第一亚像素的gamma校正值,具体用于在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对所述Gamma补偿电路的gamma值进行校正,使得所述Gamma补偿电路基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
  7. 根据权利要求1至6中任一项所述的驱动芯片,其中,所述非直线延伸的边界包括圆弧状的边界或异形结构的边界。
  8. 根据权利要求7所述的驱动芯片,其中,所述异形结构是指所述显示面板的侧边上的缺口。
  9. 一种显示面板的驱动方法,所述显示面板包括位于显示区域的多个亚像素,所述显示区域具有非直线延伸的边界,其中,所述多个亚像素包括与所述非直线延伸的边界的距离实质上小于预设阈值的第一亚像素和除所述第一亚像素之外的第二亚像素;
    所述驱动方法包括:
    在进入预设显示模式时,将至少部分第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值,所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值;
    按照第二灰阶值驱动所述第一亚像素进行显示。
  10. 根据权利要求9所述的驱动方法,其中,
    在进入预设显示模式时,将全部第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值。
  11. 根据权利要求9所述的驱动芯片,其中,
    在进入预设显示模式时,将一部分第一亚像素的灰阶值调整为第二灰阶值,所述一部分第一亚像素是指在与非直线延伸的边界相邻的区域内的各个亚像素与所述非直线延伸的边界的各个绝对距离的平均值实质上小于所述预设阈值,其中所述第二灰阶值实质上小于对应第一亚像素的第一灰阶值。
  12. 根据权利要求9至11中任一项所述的驱动方法,其中,所述驱动方法还包括:
    获取并存储所述第一亚像素的位置信息;
    在进入预设显示模式时,将第一亚像素在原始画面数据中的第一灰阶值调整为第二灰阶值的步骤,包括:
    在进入预设显示模式时,查找并获取所存储的位置信息,并根据所述位置信息,确定第一亚像素,并将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压。
  13. 根据权利要求12所述的驱动方法,其中,所述驱动方法还包括:
    存储第一亚像素的gamma校正值;
    在进入预设显示模式时,将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压的步骤,包括:
    在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对第一亚像素的Gamma补偿电路的gamma值进行校正,使得所述Gamma补偿电路基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
  14. 根据权利要求12所述的驱动方法,其中,所述驱动方法还包括:
    为第二亚像素提供灰阶电压,该灰阶电压为第二亚像素在原始画面数据中对应的灰阶电压;
    为第一亚像素提供灰阶电压,并基于gamma校正值仅对第一亚像素的灰阶电压进行补偿;
    在进入预设显示模式时,将第一亚像素对应原始画面的第一灰阶电压调整为第二灰阶电压的步骤,包括:
    在进入预设显示模式时,查找并获取所存储的第一亚像素对应的gamma校正值,并根据gamma校正值对所述Gamma补偿电路的gamma值进行校正,使得所述Gamma补偿电路基于校正后的gamma值将第一亚像素对应原始画面的第一灰阶电压补偿为第二灰阶电压。
  15. 根据权利要求9至14中任一项所述的驱动方法,其中,所述非直线延伸的边界包括圆弧状的边界或异形结构的边界。
  16. 根据权利要求15所述的驱动方法,其中,所述异形结构是指所述显示面板的侧边上的缺口。
  17. 一种显示装置,包括如权利要求1至8中任一项所述的驱动芯片。
  18. 一种驱动设备,包括:处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求9至16中任一项所述的驱动方法的步骤。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求9至16中任一项所述的驱动方法的步骤。
PCT/CN2019/070178 2018-05-25 2019-01-03 驱动芯片、显示面板的驱动方法、驱动设备、显示装置 WO2019223330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/489,956 US11361700B2 (en) 2018-05-25 2019-01-03 Driving chip, method of driving display panel, driving device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810516127.7A CN108417174A (zh) 2018-05-25 2018-05-25 一种驱动芯片、显示面板的驱动方法、显示装置
CN201810516127.7 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019223330A1 true WO2019223330A1 (zh) 2019-11-28

Family

ID=63140611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070178 WO2019223330A1 (zh) 2018-05-25 2019-01-03 驱动芯片、显示面板的驱动方法、驱动设备、显示装置

Country Status (3)

Country Link
US (1) US11361700B2 (zh)
CN (1) CN108417174A (zh)
WO (1) WO2019223330A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417174A (zh) * 2018-05-25 2018-08-17 京东方科技集团股份有限公司 一种驱动芯片、显示面板的驱动方法、显示装置
CN110211537B (zh) * 2018-08-22 2021-01-22 京东方科技集团股份有限公司 显示基板的驱动方法、驱动电路及显示装置
CN110211534B (zh) * 2019-05-20 2021-02-23 武汉华星光电半导体显示技术有限公司 图像显示方法、装置、控制器及存储介质
CN111292701B (zh) * 2020-03-31 2022-03-08 Tcl华星光电技术有限公司 显示面板补偿方法及装置
CN112114929B (zh) * 2020-09-29 2023-11-17 青岛海信移动通信技术有限公司 显示设备及其图像显示方法
CN113204137B (zh) 2021-07-05 2021-09-14 北京京东方技术开发有限公司 直下式背光液晶显示装置
CN114974090A (zh) * 2022-05-31 2022-08-30 深圳市裕铭数智装备科技有限公司 一种用于异形led屏像素变化布线图处理方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001869A1 (en) * 2006-06-29 2008-01-03 In-Jae Chung Flat panel display and method of controlling picture quality thereof
WO2017110721A1 (ja) * 2015-12-22 2017-06-29 シャープ株式会社 表示装置
CN107526201A (zh) * 2017-09-19 2017-12-29 厦门天马微电子有限公司 一种显示面板、显示装置和显示面板的驱动方法
CN107610143A (zh) * 2017-09-29 2018-01-19 上海天马有机发光显示技术有限公司 图像处理方法、图像处理装置、图像处理***及显示装置
CN107784938A (zh) * 2017-10-31 2018-03-09 昆山国显光电有限公司 异形显示屏和集成异形显示屏的显示装置
CN108417174A (zh) * 2018-05-25 2018-08-17 京东方科技集团股份有限公司 一种驱动芯片、显示面板的驱动方法、显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4394512B2 (ja) * 2004-04-30 2010-01-06 富士通株式会社 視角特性を改善した液晶表示装置
US20090096816A1 (en) * 2007-10-16 2009-04-16 Seiko Epson Corporation Data driver, integrated circuit device, and electronic instrument
JP4492694B2 (ja) * 2007-12-20 2010-06-30 セイコーエプソン株式会社 集積回路装置、電気光学装置及び電子機器
CN109473079B (zh) * 2019-01-16 2021-01-26 京东方科技集团股份有限公司 像素电路、驱动方法与显示模组及其驱动方法
WO2020211020A1 (en) * 2019-04-17 2020-10-22 Shenzhen Yunyinggu Technology Co., Ltd. Method and system for determining grayscale mapping correlation in display panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001869A1 (en) * 2006-06-29 2008-01-03 In-Jae Chung Flat panel display and method of controlling picture quality thereof
WO2017110721A1 (ja) * 2015-12-22 2017-06-29 シャープ株式会社 表示装置
CN107526201A (zh) * 2017-09-19 2017-12-29 厦门天马微电子有限公司 一种显示面板、显示装置和显示面板的驱动方法
CN107610143A (zh) * 2017-09-29 2018-01-19 上海天马有机发光显示技术有限公司 图像处理方法、图像处理装置、图像处理***及显示装置
CN107784938A (zh) * 2017-10-31 2018-03-09 昆山国显光电有限公司 异形显示屏和集成异形显示屏的显示装置
CN108417174A (zh) * 2018-05-25 2018-08-17 京东方科技集团股份有限公司 一种驱动芯片、显示面板的驱动方法、显示装置

Also Published As

Publication number Publication date
US11361700B2 (en) 2022-06-14
CN108417174A (zh) 2018-08-17
US20210335192A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2019223330A1 (zh) 驱动芯片、显示面板的驱动方法、驱动设备、显示装置
US10748467B2 (en) Display panel, display method thereof and display device
US10923014B2 (en) Liquid crystal display device
US11170739B2 (en) Display optimization method and apparatus, display driving method and apparatus, display apparatus, and storage medium
US10416511B2 (en) Liquid crystal display device
US9799275B2 (en) Display device
WO2018040162A1 (zh) 液晶面板的驱动方法及装置
US9990722B2 (en) Electronic device providing a bioeffect image
TWI539433B (zh) 曲面顯示裝置及其伽馬校正方法
US9734750B2 (en) Method of setting grey levels of pixels on LCD panel
TW200832347A (en) Transmissive display device
WO2021008307A1 (zh) 基于像素控光的电视、像素控光方法及可读存储介质
US9824648B2 (en) Transparent display apparatus and method for driving transparent display panel thereof
WO2014021132A1 (ja) 液晶表示装置における視野角特性改善方法および液晶表示装置
US11170738B2 (en) Display device
US20090102767A1 (en) Liquid Crystal Display Apparatus
US10783841B2 (en) Liquid crystal display device and method for displaying image of the same
US10789901B2 (en) Liquid crystal display device
JP5210348B2 (ja) 画像表示装置、画像領域検出方法及びコンピュータプログラム
US10417966B2 (en) Brightness regulation method of a display panel and brightness regulation device
US11538429B2 (en) Method, device, system, and display device for adjusting luminance viewing angle of liquid crystal display panel
TW201820307A (zh) 顯示器的控制方法
CN113296321A (zh) 显示装置
JP5486700B2 (ja) 画像表示装置、画像領域検出方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19807417

Country of ref document: EP

Kind code of ref document: A1