WO2019223072A1 - 一种自供电遥控器 - Google Patents

一种自供电遥控器 Download PDF

Info

Publication number
WO2019223072A1
WO2019223072A1 PCT/CN2018/094851 CN2018094851W WO2019223072A1 WO 2019223072 A1 WO2019223072 A1 WO 2019223072A1 CN 2018094851 W CN2018094851 W CN 2018094851W WO 2019223072 A1 WO2019223072 A1 WO 2019223072A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
self
remote control
powered remote
main control
Prior art date
Application number
PCT/CN2018/094851
Other languages
English (en)
French (fr)
Inventor
张云翼
华建武
Original Assignee
深圳市浩博高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市浩博高科技有限公司 filed Critical 深圳市浩博高科技有限公司
Publication of WO2019223072A1 publication Critical patent/WO2019223072A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed

Definitions

  • the invention relates to the field of remote controllers, in particular to a self-powered remote controller.
  • an object of the present invention is to provide a self-powered remote controller for self-powered power supply, avoiding using a battery to power the remote controller, causing environmental pollution and endangering human health.
  • the technical solution adopted by the present invention is: a self-powered remote control, which includes a button, a main control circuit and an RF circuit, the output end of the key is connected to the input end of the main control circuit, and the output end of the main control circuit is connected to The input end of the RF circuit is connected.
  • the self-powered remote control further includes a pressure generating device, a power collection circuit, a power monitoring circuit, a main control circuit and a display screen.
  • the pressure generating device is disposed below the button to receive the button being pressed.
  • the output end of the pressure generating device is connected to the input end of the power collection circuit, and the output end of the power collection circuit is connected to the input end of the power monitoring circuit and the input end of the main control circuit, respectively.
  • the output end of the circuit is connected to the input end of the main control circuit, and the output end of the main control circuit is connected to the input end of the display screen.
  • the self-powered remote controller further includes a light energy generation circuit, and an output end of the light energy generation circuit is connected to an input end of a main control circuit.
  • the photovoltaic power generation circuit includes a solar cell panel.
  • the light energy generating circuit includes a photodiode or a light emitting diode.
  • the self-powered remote control includes a bottom case, and the pressure generating device includes a piezoelectric sheet, the piezoelectric sheet is fixedly connected to the bottom case and a deformed cavity is formed therebetween, and the keys are disposed on the piezoelectric part. Above the tablet.
  • the power collection circuit includes a rectifier bridge and an energy storage capacitor, an output end of the pressure generating device is connected to an input end of the rectifier bridge, an output end of the rectifier bridge is connected to an input end of the energy storage capacitor, and the The output end of the energy storage capacitor is respectively connected to the input end of the power monitoring circuit and the input end of the main control circuit.
  • the electric quantity monitoring circuit includes a BL8506 voltage detector.
  • the self-powered remote control further includes a voltage stabilization circuit, an output end of the power collection circuit is connected to an input end of the voltage stabilization circuit, and an output end of the voltage stabilization circuit is connected to an input end of the main control circuit.
  • the RF circuit includes a CMT2119A wireless transmitting chip.
  • the display screen includes an ink display screen or an LCD screen.
  • the self-powered remote controller of the present invention is provided with a pressure generating device that receives the pressure when a key is pressed to generate power for the main control circuit, and uses a power collection circuit and a power monitoring circuit to implement power collection and monitoring respectively, and the main control circuit is powered After controlling the RF circuit to send key commands and control the display screen data, it overcomes the problems of using the battery to power the remote control in the prior art, which causes environmental pollution and harms human health. Environmental pollution and endanger human health; also realizes data display and power monitoring of the remote control, which is highly practical.
  • FIG. 1 is a structural block diagram of a specific embodiment of a self-powered remote control according to the present invention.
  • FIG. 2 is a front view of a specific embodiment of a self-powered remote control according to the present invention.
  • FIG. 3 is a left side view of a specific embodiment of a self-powered remote control according to the present invention.
  • FIG. 4 is a circuit diagram of a specific embodiment of a power collection circuit, a photovoltaic power generation circuit, a voltage stabilization circuit, and a power monitoring circuit of a self-powered remote control according to the present invention
  • FIG. 5 is a circuit diagram of a specific embodiment of a main control circuit, keys and a display screen of a self-powered remote control according to the present invention
  • FIG. 6 is a circuit diagram of a specific embodiment of an RF circuit of a self-powered remote control according to the present invention.
  • 1-display 2-button, 3-solar panel, 4-piezo sheet, 5-deformable cavity, 6-support plate, 7-bottom shell.
  • FIG. 1 is a structural block diagram of a specific embodiment of a self-powered remote control of the present invention
  • FIG. 2 is a front view of a specific embodiment of a self-powered remote control of the present invention
  • a self-powered remote control includes a main control circuit, buttons 2, a pressure generating device, a power collection circuit, a power monitoring circuit, an RF circuit and a display screen 1,
  • the pressure generating device is arranged below the button 2 to receive the pressure when the button 2 is pressed.
  • the output of the button 2 is connected to the input of the main control circuit.
  • the output of the pressure generating device is connected to the input of the power collection circuit.
  • the output of the collection circuit is connected to the input of the power monitoring circuit and the input of the main control circuit.
  • the output of the power monitoring circuit is connected to the input of the main control circuit.
  • the output of the main control circuit is connected to the input of the display 1. Connected, the output of the main control circuit is connected to the input of the RF circuit.
  • the invention sets a pressure generating device to receive the pressure when a key is pressed to generate electric power for the main control circuit, and uses a power collection circuit and a power monitoring circuit to implement power collection and monitoring respectively. After the main control circuit is powered on, it controls the RF circuit to be controlled.
  • the device sends key commands and controls the display screen data to overcome the problems of using the battery to power the remote control in the prior art, causing environmental pollution and harming human health; self-sufficient power supply, avoiding using the battery to power the remote control, causing environmental pollution and Harm to human health; also realizes data display and power monitoring of the remote control, which is highly practical.
  • the self-powered remote control includes a bottom case 7, and the pressure generating device includes a piezoelectric sheet 4, the piezoelectric sheet 4 is fixedly connected to the bottom case 7 through a support plate 6, and forms a deformed cavity 5, and the button 2 is provided.
  • a pressure energy is formed above the piezoelectric sheet 4 to form a flat energy generating device.
  • the button 2 receives the force of a finger, and this force is transmitted to On the piezoelectric sheet 4, the piezoelectric sheet 4 is deformed, and an electrical signal is generated when the piezoelectric sheet 4 is deformed.
  • pressure to generate electrical energy to meet the electrical power requirements of the remote control it can realize remote control power without batteries, saving energy and not polluting the environment.
  • the power collection circuit includes a rectifier bridge and an energy storage capacitor.
  • the output end of the pressure generating device is connected to the input end of the rectifier bridge.
  • the output end of the rectifier bridge is connected to the input end of the energy storage capacitor.
  • the output end is respectively connected to the input end of the power monitoring circuit and the input end of the main control circuit to provide power for it.
  • FIG. 4 is a circuit diagram of a specific embodiment of a power collection circuit, a photovoltaic power generation circuit, a voltage stabilization circuit, and a power monitoring circuit of a self-powered remote control according to the present invention;
  • a rectifier bridge is formed by diodes D1-D4, and Capacitors C7 and C8 serve as energy storage capacitors. After bridge rectification, the energy generated by the pressure is stored in the capacitor.
  • the self-powered remote control further includes a voltage stabilization circuit, the output end of the power collection circuit is connected to the input end of the voltage stabilization circuit, and the output end of the voltage stabilization circuit is connected to the input end of the main control circuit. connection.
  • the voltage regulator circuit uses ME6214 linear regulator U3 to achieve voltage stabilization and input a stable voltage to the main control circuit to prevent high voltage from affecting the main control circuit. If the voltage and current input to the main control circuit are safer It can be omitted.
  • the power monitoring circuit uses BL8506 voltage detector U4 for voltage monitoring and management. It compares the voltage value of the collected electrical energy with a preset threshold.
  • FIG. 5 is a circuit diagram of a specific embodiment of a main control circuit, keys and display screen of a self-powered remote control according to the present invention; the main control circuit may use a single-chip microcomputer MCU U2 acts as a processor.
  • the power output by the voltage stabilization circuit is supplied to the MCU through the VIC.
  • the MCU receives signals from keys such as the key K1, controls the RF circuit to send command signals for the keys, and controls the display screen, such as the LCD display screen to display data.
  • FIG. 6 is a circuit diagram of a specific embodiment of an RF circuit of a self-powered remote control according to the present invention.
  • the RF circuit is controlled by the main control circuit and sends keys to the controlled device.
  • the circuit is relatively simple.
  • CMT2119 is used as the wireless transmitting chip.
  • the display screen 1 may be an ink display screen or a reflective LCD screen.
  • the display screen 1 generally uses an electronic ink screen, and it does not need electricity when it does not update the display data.
  • a light energy generating circuit is additionally provided to facilitate the power supply of the LCD screen without pressing the button to maintain its display.
  • the output of the light energy generating circuit is connected to the input of the main control circuit. 4.
  • the solar power generation circuit can be implemented with a small-area solar panel (SC-, SC +), which is used to maintain the display of the LCD screen. It only needs to provide a current of 2-5uA to maintain the display, so the area can be just Just a few square millimeters, the circuit is relatively simple.
  • the solar panel is isolated by a diode D5 and directly added to the input terminal VIC of the main control circuit.
  • the photoelectric effect of photodiodes or light-emitting diodes can also be used to collect ambient light energy and convert it into electrical energy for display on the LCD screen.
  • the internal PN junction overflows electrons under light conditions. Form a small electromotive force to provide power to the LCD screen display.
  • the invention collects the electric energy generated when people press the keys of the remote controller, collects this electric energy, drives the display screen to refresh, and sends the control instruction of the keys to the controlled device through the RF circuit.
  • air conditioners, etc. realize the functions of no battery, display with screen, remote control, etc., and realize battery-free and permanent use.
  • the self-powered remote controller of the present invention may be a wireless transmitting remote controller with a display screen, such as an air conditioner remote controller, a fan remote controller, a massage chair remote controller, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本发明公开了一种自供电遥控器,设置压力发电装置接收按键被按下时的压力以产生电能为主控电路供电,并利用电量收集电路、电量监控电路分别实现电量收集和监控,主控电路通电后控制RF电路发送按键指令并控制显示屏显示数据,克服现有技术中,使用电池为遥控器供电,造成环境污染并危害人类健康的问题;实现自给供电,避免使用电池为遥控器供电,造成环境污染和危害人类健康;还实现了遥控器的数据显示和电量监控,实用性强。

Description

一种自供电遥控器
技术领域
本发明涉及遥控器领域,尤其是一种自供电遥控器。
背景技术
目前,我们在使用遥控器时都会遇到电池没电、漏液等问题。从而不得不更换电池,而废弃的电池得不到很好的处理,电池对环境的污染日趋严重;废电池的其主要成分为锰、汞、锌、铬等重金属,废电池无论埋在大气中还是深埋在地下,其重金属成分都会随渗液溢出,造成地下水和土壤的污染,日积月累,会严重危害人类健康。
发明内容
为了解决上述技术问题,本发明的目的是提供一种自供电遥控器,用于自给供电,避免使用电池为遥控器供电,造成环境污染和危害人类健康。
本发明所采用的技术方案是:一种自供电遥控器,包括按键、主控电路和RF电路,所述按键的输出端与主控电路的输入端连接,所述主控电路的输出端与RF电路的输入端连接,所述自供电遥控器还包括压力发电装置、电量收集电路、电量监控电路、主控电路和显示屏,所述压力发电装置设置于按键的下方以接收按键被按下时的压力,所述压力发电装置的输出端与电量收集电路的输入端连接,所述电量收集电路的输出端分别与电量监控电路的输入端、主控电路的输入端连接,所述电量监控电路的输出端与主控电路的输入端连接,所述主控电路的输出端与显示屏的输入端连接。
进一步地,所述自供电遥控器还包括光能发电电路,所述光能发电电路的输出端与主控电路的输入端连接。
进一步地,所述光能发电电路包括太阳能电池板。
进一步地,所述光能发电电路包括光敏二极管或发光二极管。
进一步地,所述自供电遥控器包括底壳,所述压力发电装置包括压电片,所述压电片与底壳固定连接且它们之间形成一形变空腔,所述按键设置在压电片的上方。
进一步地,所述电量收集电路包括整流桥和储能电容,所述压力发电装置的输出端与整流桥的输入端连接,所述整流桥的输出端与储能电容的输入端连接,所述储能电容的输出端分别与电量监控电路的输入端、主控电路的输入端连接。
进一步地,所述电量监控电路包括BL8506电压检测器。
进一步地,所述自供电遥控器还包括稳压电路,所述电量收集电路的输出端与稳压电路的输入端连接,所述稳压电路的输出端与主控电路的输入端连接。
进一步地,所述RF电路包括CMT2119A无线发射芯片。
进一步地,所述显示屏包括墨水显示屏或LCD屏。
本发明的有益效果是:
本发明一种自供电遥控器,设置压力发电装置接收按键被按下时的压力以产生电能为主控电路供电,并利用电量收集电路、电量监控电路分别实现电量收集和监控,主控电路通电后控制RF电路发送按键指令并控制显示屏显示数据,克服现有技术中,使用电池为遥控器供电,造成环境污染并危害人类健康的问题;实现自给供电,避免使用电池为遥控器供电,造成环境污染和危害人类健康;还实现了遥控器的数据显示和电量监控,实用性强。
附图说明
下面结合附图对本发明的具体实施方式作进一步说明:
图1是本发明一种自供电遥控器的一具体实施例结构框图;
图2是本发明一种自供电遥控器的一具体实施例正视图;
图3是本发明一种自供电遥控器的一具体实施例左视图;
图4是本发明一种自供电遥控器的电量收集电路、光能发电电路、稳压电路和电量监控电路的一具体实施例电路图;
图5是本发明一种自供电遥控器的主控电路、按键和显示屏的一具体实施例电路图;
图6是本发明一种自供电遥控器的RF电路的一具体实施例电路图;
其中,1-显示屏,2-按键,3-太阳能电池板,4-压电片,5-形变空腔,6-支撑板,7-底壳。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
参考图1、图2和图3,图1是本发明一种自供电遥控器的一具体实施例结构框图,图2是本发明一种自供电遥控器的一具体实施例正视图;图3是本发明一种自供电遥控器的一具体实施例左视图;一种自供电遥控器包括主控电路、按键2、压力发电装置、电量收集电路、电量监控电路、RF电路和显示屏1,压力发电装置设置于按键2的下方以接收按键2被按下时的压力,按键2的输出端与主控电路的输入端连接,压力发电装置的输出端与电量收集电路的输入端连接,电量收集电路的输出端分别与电量监控电路的输入端、主控电路的输入端连接,电量监控电路的输出端与主控电路的输入端连接,主控电路的输出端与显示屏1的输入端连接,主控电路的输出端与RF电路的输入端连接。
本发明设置压力发电装置接收按键被按下时的压力以产生电能为主控电路供电,并利用电量收集电路、电量监控电路分别实现电量收集和监控,主控电路通电后控制RF电路向被控设备发送按键指令并控制显示屏显示数据,克服现有技术中,使用电池为遥控器供电,造成环境污染并危害人类健康的问题;实现自给供电,避免使用电池为遥控器供电,造成环境污染和危害人类健康;还实现了遥控器的数据显示和电量监控,实用性强。
其中,参考图3,自供电遥控器包括底壳7,压力发电装置包括由压电片4,压电片4通过支撑板6与底壳7固定连接并形成一形变空腔5,按键2设置在压电片4的上方以接收压力,构成了一个平面型的能量产生装置,当人需要操作遥控器时,就会去按按键2,这时按键2收到手指的力,这个力传导到压电片4上,压电片4发生形变,压电片4在形变的情况下就产生了电信号。利用压力产生电能以满足遥控器的电能需要,不需电池,即可实现遥控电源,节省能源,而且不污染环境。
作为技术方案的进一步改进,电量收集电路包括整流桥和储能电容,压力发电装置的输出端与整流桥的输入端连接,整流桥的输出端与储能电容的输入端连接,储能电容的输出端分别与电量监控电路的输入端、主控电路的输入端连接以为其提供电能。参考图4,图4是本发明一种自供电遥控器的电量收集电路、光能发电电路、稳压电路和电量监控电路的一具体实施例电路图;由二极管D1-D4构成整流桥,并由电容C7和C8作为储能电容,在桥式整流后把压力产生的电能保存到电容器里面。
作为技术方案的进一步改进,本实施例中,自供电遥控器还包括稳压电路,电量收集电路的输出端与稳压电路的输入端连接,稳压电路的输出端与主控电路的输入端连接。参考图4,稳压电路采用ME6214线性稳压器U3实现稳压并将稳定的电压输入给主控电路,防止高电压对主控电路造成影响,如果输入主控电路的电压和电流比较安全的话,它可以省略。另外,电量监控电路采用BL8506电压检测器U4来实现电压监测和管理,它将采集到电能的电压值与预设阈值作比较,当电压达到预设阈值时,电量监控电路通知主控电路开始工作。此外,参考图5,图5是本发明一种自供电遥控器的主控电路、按键和显示屏的一具体实施例电路图;主控电路可以采用单片机MCU U2作为处理器,稳压电路输出的电能通过VIC输入MCU为其供电,MCU接收如按键K1等按键的信号,控制RF电路发送按键的指令信号,并控制显示屏,如LCD显示屏显示数据。
作为技术方案的进一步改进,参考图6,图6是本发明一种自供电遥控器的RF电路的一具体实施例电路图;RF电路是受主控电路控制把按键的指令发给被控设备去执行,其电路比较简单,本实施例中,使用CMT2119作为无线发射芯片。
作为技术方案的进一步改进,参考图2,显示屏1可以为墨水显示屏或者反光型LCD屏。显示屏1一般使用电子墨水屏,它不更新显示数据时,不需要电。当采用LCD屏时,另外设置光能发电电路,方便在未按压按键发电的情况下为LCD屏供电,以维持其显示,光能发电电路的输出端与主控电路的输入端连接,参考图4,光能发电电路可以采用一个小面积的太阳能电池板(SC-、SC+)来实现,用来维持LCD屏的显示,只需提供2-5uA的电流即可维持显示,所以面积可以只需几个平方毫米就可以了,该电路比较简单,参考图5,太阳能电池板通过一个二极管D5隔离后直接加到主控电路的输入端VIC上。在一些情况下,还可以使用光敏二极管或者发光二极管的光电效应来采集环境的光能并转换成电能,供给LCD屏显示用;其中,常规的发光二极管在光照条件下,内部PN结溢出电子,形成一个小的电动势,为LCD屏显示提供电能。在一些不需要永久显示数据,可以去掉光能发电电路部分,直接使用按压时产生的电能,显示数据几秒后慢慢消失的方式来显示遥控器状态。
本发明通过采集人们在按压遥控器的按键时产生的电能,把这个电能采集起来,驱动刷新显示屏,并通过RF电路发送按键的控制指令给到被控设备。比如空调等,实现了无电池、带屏显示、遥控控制等功能,实现了免电池、永久使用。本发明的自供电遥控器可以为空调遥控器、风扇遥控器、按摩椅遥控器等有显示屏的无线发射遥控器。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种自供电遥控器,包括按键、主控电路和RF电路,所述按键的输出端与主控电路的输入端连接,所述主控电路的输出端与RF电路的输入端连接,其特征在于,
    所述自供电遥控器还包括压力发电装置、电量收集电路、电量监控电路、主控电路和显示屏,所述压力发电装置设置于按键的下方以接收按键被按下时的压力,所述压力发电装置的输出端与电量收集电路的输入端连接,所述电量收集电路的输出端分别与电量监控电路的输入端、主控电路的输入端连接,所述电量监控电路的输出端与主控电路的输入端连接,所述主控电路的输出端与显示屏的输入端连接。
  2. 根据权利要求1所述的自供电遥控器,其特征在于,所述自供电遥控器还包括光能发电电路,所述光能发电电路的输出端与主控电路的输入端连接。
  3. 根据权利要求2所述的自供电遥控器,其特征在于,所述光能发电电路包括太阳能电池板。
  4. 根据权利要求2所述的自供电遥控器,其特征在于,所述光能发电电路包括光敏二极管或发光二极管。
  5. 根据权利要求1至4任一项所述的自供电遥控器,其特征在于,所述自供电遥控器包括底壳,所述压力发电装置包括压电片,所述压电片与底壳固定连接且它们之间形成一形变空腔,所述按键设置在压电片的上方。
  6. 根据权利要求1至4任一项所述的自供电遥控器,其特征在于,所述电量收集电路包括整流桥和储能电容,所述压力发电装置的输出端与整流桥的输入端连接,所述整流桥的输出端与储能电容的输入端连接,所述储能电容的输出端分别与电量监控电路的输入端、主控电路的输入端连接。
  7. 根据权利要求1至4任一项所述的自供电遥控器,其特征在于,所述电量监控电路包括BL8506电压检测器。
  8. 根据权利要求1至4任一项所述的自供电遥控器,其特征在于,所述自供电遥控器还包括稳压电路,所述电量收集电路的输出端与稳压电路的输入端连接,所述稳压电路的输出端与主控电路的输入端连接。
  9. 根据权利要求1至4任一项所述的自供电遥控器,其特征在于,所述RF电路包括CMT2119A无线发射芯片。
  10. 根据权利要求1至4任一项所述的自供电遥控器,其特征在于,所述显示屏包括墨水显示屏或LCD屏。
PCT/CN2018/094851 2018-05-21 2018-07-06 一种自供电遥控器 WO2019223072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810487817.4A CN108447245A (zh) 2018-05-21 2018-05-21 一种自供电遥控器
CN201810487817.4 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019223072A1 true WO2019223072A1 (zh) 2019-11-28

Family

ID=63204186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094851 WO2019223072A1 (zh) 2018-05-21 2018-07-06 一种自供电遥控器

Country Status (2)

Country Link
CN (1) CN108447245A (zh)
WO (1) WO2019223072A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112184969B (zh) * 2020-11-27 2021-03-12 山东艾琳智能科技有限公司 一种智能锁用电源的控制***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1409877A (zh) * 1999-12-16 2003-04-09 施耐德电器工业公司 自供电遥控装置及包括该装置的电气设备和设施
CN101447748A (zh) * 2008-09-12 2009-06-03 吉林大学 压电自供电式低功耗遥控器
CN104506085A (zh) * 2015-01-07 2015-04-08 浙江师范大学 一种自供电遥控器
CN105976597A (zh) * 2016-05-12 2016-09-28 北京微能高芯科技有限公司 一种自供电遥控器及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201655004U (zh) * 2010-02-26 2010-11-24 江苏惠通集团有限责任公司 压电发电红外遥控器
CN201804437U (zh) * 2010-09-30 2011-04-20 江苏惠通集团有限责任公司 一种能量收集器供电rf遥控器
CN103743064B (zh) * 2014-01-20 2016-09-14 广东志高空调有限公司 具有能量收集***的空调智能遥控器
CN206863944U (zh) * 2017-05-10 2018-01-09 西南交通大学 一种基于压电效应的自供能遥控器
CN208208081U (zh) * 2018-05-21 2018-12-07 深圳市浩博高科技有限公司 一种自供电遥控器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1409877A (zh) * 1999-12-16 2003-04-09 施耐德电器工业公司 自供电遥控装置及包括该装置的电气设备和设施
CN101447748A (zh) * 2008-09-12 2009-06-03 吉林大学 压电自供电式低功耗遥控器
CN104506085A (zh) * 2015-01-07 2015-04-08 浙江师范大学 一种自供电遥控器
CN105976597A (zh) * 2016-05-12 2016-09-28 北京微能高芯科技有限公司 一种自供电遥控器及方法

Also Published As

Publication number Publication date
CN108447245A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
WO2018006467A1 (zh) 一种旋钮式发电的电子秤
WO2019223072A1 (zh) 一种自供电遥控器
CN103581376A (zh) 一种触摸充电的手机
CN208208081U (zh) 一种自供电遥控器
JP3166413U (ja) 光電駆動の電子装置
CN204062796U (zh) 基于压电发电的室内照明装置和用于其的智能照明控制***
CN212378791U (zh) 用于高压避雷器的监测装置
CN210579330U (zh) 一种太阳能变频风扇灯控制***
CN208078729U (zh) 石墨烯应急供电设备及石墨烯应急供电***
CN203859332U (zh) 一种带usb的应急插线板
CN209001652U (zh) 一种双向温差充电装置
CN206458133U (zh) 一种移动式可拆卸基站机房
CN109193907A (zh) 一种无线传感器网络wsn节点的微能量收集装置
CN218040866U (zh) 一种储能电箱
CN206559118U (zh) 便携式太阳能电源箱
CN217307803U (zh) 一种低功耗的WiFi语音电视遥控器
CN219085354U (zh) 具有光电和热电转化功能的笔记本电脑
CN213426304U (zh) 一种一体化太阳能专用蓄能电视机
CN201229552Y (zh) 光能无线电脑鼠标
CN219874648U (zh) 一种楼宇供配电监控装置
CN219107317U (zh) 一种便携式温差发电装置
JPS61252727A (ja) 電子機器
WO2022065882A1 (ko) 다중 신재생 에너지 발전장치를 적용한 이동식 드라이룸 시스템
CN212480733U (zh) 一种网络会议安全认证调节装置
CN218997763U (zh) 一种无电池遥控装置及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18919864

Country of ref document: EP

Kind code of ref document: A1