WO2019223041A1 - 光学玻璃 - Google Patents

光学玻璃 Download PDF

Info

Publication number
WO2019223041A1
WO2019223041A1 PCT/CN2018/091247 CN2018091247W WO2019223041A1 WO 2019223041 A1 WO2019223041 A1 WO 2019223041A1 CN 2018091247 W CN2018091247 W CN 2018091247W WO 2019223041 A1 WO2019223041 A1 WO 2019223041A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical glass
optical
sio
content
Prior art date
Application number
PCT/CN2018/091247
Other languages
English (en)
French (fr)
Inventor
匡波
Original Assignee
成都光明光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电有限责任公司 filed Critical 成都光明光电有限责任公司
Publication of WO2019223041A1 publication Critical patent/WO2019223041A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Definitions

  • the invention relates to an optical glass, in particular to a high-refractive index optical glass above 1.95, and a glass preform and an optical element made of the optical glass.
  • high refractive index and high Abbe number glass can be matched with high refractive index and low Abbe number glass to achieve the purpose of compensating and correcting chromatic aberration. Therefore, the development of high refractive index glass The demand is gradually increasing, and at the same time, optical lenses used in vehicles and security are exposed to the outdoors for a long time, so the water resistance, acid resistance and hardness of optical glass are also higher.
  • Patent Document No. 200310114721.7 discloses an optical glass, which mainly contains B 2 O 3 , SiO 2 and La 2 O 3 Composition, in which the content of B 2 O 3 is greater than that of SiO 2 , the glass has a refractive index of 1.8 to 2.1 and an Abbe number of 20 to 40, and has good optical properties, but its Tg temperature is high; the application number is 200680051694.5 in China Patent documents disclose an optical glass with a glass transition temperature of 400 ° C or lower and a low Tg temperature, but the refractive index of the optical glass is only 1.50 to 1.65, the Abbe number is 50 to 65, and the optical performance is poor.
  • Cipheral Patent Document No. 201010120158.4 discloses a high-refractive index optical glass, which contains 40-85% mole of TeO 2 component, which has high production cost It is not conducive to mass production.
  • the prior art discloses various optical glasses with good optical performance or low Tg temperature, it does not disclose optical glasses with good optical performance, lower Tg temperature, and cheaper at the same time.
  • the technical problem to be solved by the present invention is to provide an optical glass which has a high refractive index, a low Tg temperature, and can be produced on a large scale.
  • the present invention also provides a glass preform and an optical element formed of the above-mentioned optical glass.
  • optical glass whose composition is expressed by weight percentage, containing: SiO 2 : 6-16%; B 2 O 3 : 5-15%; La 2 O 3 : 25-35 %; TiO 2 : 15-30%; Nb 2 O 5 : 5-15%; ZrO 2 : 1-15%; BaO: 8-20%, where SiO 2 > B 2 O 3 ; La 2 O 3 / ( SiO 2 + B 2 O 3 ) is 1.0-2.5.
  • Gd 2 O 3 0-10%; Y 2 O 3 : 0-10%; Yb 2 O 3 : 0-10%; WO 3 : 0-5%; ZnO: 0-8% ; MgO: 0-5%; CaO: 0-5%; SrO: 0-5%; Ta 2 O 5 : 0-5%; Al 2 O 3 : 0-5%; Sb 2 O 3 : 0-1 %.
  • Optical glass whose composition is expressed by weight percentage as: SiO 2 : 6-16%; B 2 O 3 : 5-15%; La 2 O 3 : 25-35%; TiO 2 : 15-30%; Nb 2 O 5 : 5-15%; ZrO 2 : 1-15%; BaO: 8-20%; Gd 2 O 3 : 0-10%; Y 2 O 3 : 0-10%; Yb 2 O 3 : 0-10 %; WO 3 : 0-5%; ZnO: 0-8%; MgO: 0-5%; CaO: 0-5%; SrO: 0-5%; Ta 2 O 5 : 0-5%; Al 2 O 3 : 0-5%; Sb 2 O 3 : 0-1%, where SiO 2 > B 2 O 3 ; La 2 O 3 / (SiO 2 + B 2 O 3 ) is 1.0-2.5.
  • SiO 2 6-12%; and / or B 2 O 3 : 5-10%; and / or La 2 O 3 : 27-32%; and / or TiO 2 : 17-27%; And / or Nb 2 O 5 : 8-13%; and / or ZrO 2 : 3-12%; and / or BaO: 10-18%; and / or Gd 2 O 3 : 0-5%; and / or Y 2 O 3 : 0-5%; and / or Yb 2 O 3 : 0-5%; and / or WO 3 : 0-2%; and / or ZnO: 0-5%; and / or MgO: 0 -2%; and / or CaO: 0-2%; and / or SrO: 0-2%; and / or Ta 2 O 5 : 0-2%; and / or Al 2 O 3 : 0-3%; And / or Sb 2 O 3 : 0-0.5%.
  • each component satisfies one or more of the following four situations:
  • La 2 O 3 / (SiO 2 + B 2 O 3 ) is 1.2-2.3;
  • TiO 2 / (Nb 2 O 5 + ZrO 2 + WO 3 ) is 0.8-2.0:
  • TiO 2 / BaO is 1.0-2.5.
  • each component satisfies one or more of the following four situations:
  • La 2 O 3 / (SiO 2 + B 2 O 3 ) is 1.3-2.0;
  • TiO 2 / (Nb 2 O 5 + ZrO 2 + WO 3 ) is 0.9-1.5:
  • TiO 2 / BaO is 1.3-2.3.
  • composition is expressed by weight percentage, and further contains: P 2 O 5 : 0-5%; Bi 2 O 3 : 0-5%; Ga 2 O 3 : 0-5%; Lu 2 O 3 : 0- 5%; GeO 2 : 0-5%; CeO 2 : 0-0.5%; SnO 2 : 0-0.5%; F: 0-5%.
  • the refractive index nd of the optical glass is 1.95 or more, and the Abbe number vd is 22-30.
  • the density ⁇ of the optical glass is 5.00 g / cm 3 or less; the hardness H K is 620 ⁇ 10 7 Pa or more; and the transition temperature Tg is 690 ° C. or less.
  • the water resistance stability D W of the optical glass powder method is Class 1; the acid resistance stability D A of the powder method is Class 1.
  • the glass preform is made of the above-mentioned optical glass.
  • the optical element is made of the above-mentioned optical glass.
  • the optical glass of the present invention has a refractive index above 1.95, a transition temperature below 690 ° C, a lower transition temperature and density, excellent water and acid resistance, and Hardness, the present invention is a low-cost and high-refractive-index optical glass with excellent chemical stability, which can meet the needs of modern new-type optoelectronic products.
  • the optical glass of the present invention is based on the consideration of reducing the production cost, does not contain the expensive TeO 2 component, and obtains a high refractive index optical glass with a refractive index of 1.95 or more and an Abbe number of 22-30.
  • the composition of the optical glass of the present invention is described in detail. Unless otherwise specified, the content and total content of each glass component are expressed by weight percentages. In addition, in the following description, when the reference value is less than or equal to the predetermined value, the predetermined value is also included.
  • B 2 O 3 is a component for forming a glass network, and has the effects of improving the meltability and devitrification resistance of glass and reducing the glass transition temperature and density.
  • the present invention introduces B 2 or more than 5% or more O 3 ;
  • the upper limit content of the B 2 O 3 of the present invention is 15%, preferably The upper limit is 10%.
  • SiO 2 is also a glass forming body. Unlike the loose chain layered network composed of B 2 O 3 , SiO 2 forms a three-dimensional network of silicon-oxygen tetrahedron in glass, which is very dense and strong. Such a network is added to the glass to strengthen the loose boron-oxygen triangle [BO 3 ] network to make it dense, thereby increasing the high-temperature viscosity of the glass; at the same time, the addition of a three-dimensional network of silicon-oxygen tetrahedron, glass The ability of the network to isolate La 2 O 3 , Nb 2 O 5 and other crystallization cations and anions is enhanced, the crystallization threshold is increased, and the anti-crystallization performance of the glass is improved.
  • the lower limit of the SiO 2 content in the glass of the present invention is 6%;
  • the upper limit of the content is 16%, and the upper limit is preferably 12%.
  • a large number of studies by the inventors have found that when the content of SiO 2 is lower than the content of B 2 O 3 , the chemical stability and hardness of the glass will tend to decrease. Therefore, the content of SiO 2 in the glass of the present invention is greater than the content of B 2 O 3 .
  • La 2 O 3 is an essential component to obtain the required optical characteristics of the present invention.
  • the content of La 2 O 3 is less than 25%, it is difficult to achieve the required optical characteristics; but when the content exceeds 35%, both the devitrification resistance and the melting performance of the glass are deteriorated. Therefore, the content of La 2 O 3 in the present invention is 25-35%, and a preferred range is 27-32%.
  • Gd 2 O 3 , Y 2 O 3 , Yb 2 O 3 and La 2 O 3 has the effects of reducing the upper crystallization temperature and the liquidus temperature and improving the devitrification resistance.
  • the contents of Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 are 0-10%, respectively, and the preferred ranges are 0-5%.
  • the inventor's research found that the present invention combines the total weight of La 2 O 3 with SiO 2 and B 2 O 3 (SiO 2 + B 2 O 3 ) from the aspects of maintaining a high refractive index and improving devitrification resistance and glass stability.
  • the range of the ratio La 2 O 3 / (SiO 2 + B 2 O 3 ) is limited to 1.0-2.5, preferably 1.2-2.3, and more preferably 1.3-2.0.
  • TiO 2 is a kind of high-refraction and high-dispersion oxide. Adding it to glass can increase the refractive index and dispersion of glass. At the same time, an appropriate amount of TiO 2 is added to the glass, which can enter the glass network and become a part of the glass network, which increases the stability of the glass, especially the resistance to crystallization. If too much TiO 2 added to the glass, the first glass refractive index and dispersion will be higher than expected design, followed by the transmittance of the glass deteriorate quickly, while the stability of the glass can not be achieved the intended design; if TiO 2 is too The glass's refractive index and dispersion will be lower than the design expectation, while the glass's anti-crystallization performance will decrease. Therefore, the content of TiO 2 in the glass of the present invention is 15-30%, preferably 17-27%.
  • the introduction of an appropriate amount of Nb 2 O 5 can also effectively improve the anti-crystallization performance of the glass in the precision molding process; if its content exceeds 15%, the glass dispersion is increased, and the optical characteristics of the glass of the present invention cannot be achieved . Therefore, the content range of Nb 2 O 5 is 5-15%, and the preferred range is 8-13%.
  • WO 3 in glass The main role of WO 3 in glass is to maintain the optical constant and improve the crystallization of the glass, but when its content is too high, it will reduce the glass transmittance, increase the degree of coloration, and deteriorate the crystallization performance. Therefore, the preferred content of WO 3 is 0-5%, and the more preferred content is 0-2%.
  • ZrO 2 is a high refractive low dispersion oxide. Adding it to glass can increase the refractive index of the glass and adjust the dispersion. At the same time, when more than 1% of ZrO 2 is added to the glass, the anti-crystallization performance and glass-forming stability of the glass can be improved. In the present invention, if the content is higher than 15%, the glass will become difficult to melt, the melting temperature will increase, and it will easily cause inclusions in the glass and its transmittance to decrease. Therefore, its content is set to 1-15%, preferably 3-12%.
  • ZnO has the effect of reducing the glass melting temperature or the transition temperature.
  • the content range of ZnO is 0-8%, and preferably 0-5%.
  • BaO is a component that increases the refractive index of glass and improves the transmittance of glass.
  • its content is limited to 8-20%, preferably 10-18%.
  • the TiO 2 / BaO is in the range of 1.0-2.5, the glass has excellent acid resistance and water resistance stability, and its range is preferably 1.3-2.3.
  • CaO helps to increase the refractive index of glass, and its replacement of BaO can increase the glass forming range. However, if CaO is added too much, the anti-crystallization performance of the glass will decrease. Therefore, the CaO content is limited to 0-5%, and preferably 0-2%.
  • the SrO content is limited to 0-5%, and preferably 0-2%.
  • MgO helps to improve the chemical stability of glass, if its content is too large, the refractive index of the glass will not meet the design requirements, the glass's anti-crystallization performance and chemical stability will decrease, and the cost of glass will increase rapidly. Therefore, the MgO content is limited to 0-5%, and preferably 0-2%.
  • alkaline earth metal oxides and ZnO have an important influence on the hardness of the glass of the present invention, and will affect the glass forming stability and anti-crystallization stability of the glass to a certain extent.
  • SrO) / BaO is 0.1-0.8, the glass has excellent hardness, glass-forming stability, and anti-crystallization resistance.
  • (ZnO + MgO + CaO + SrO) / BaO is preferably 0.15-0.5.
  • Ta 2 O 5 can increase the refractive index, devitrification resistance, and viscosity of molten glass, but it is expensive and not conducive to reducing production costs. Therefore, its content is limited to 5% or less, preferably 2% or less.
  • the introduction of a small amount of Al 2 O 3 can improve the stability and chemical stability of glass formation, but when its content exceeds 5%, it shows that the glass has poor melting properties and reduced devitrification resistance. Therefore, the content of Al 2 O 3 in the present invention is 0. -5%, preferably 0-3%.
  • the P 2 O 5 component is an optional component for improving the devitrification resistance of the glass.
  • the content of P 2 O 5 is 5% or less, the chemical durability of the glass, especially the reduction in water resistance, can be suppressed. Therefore, P 2 O 5 is limited to 5% or less, more preferably 3% or less, and still more preferably not introduced.
  • Bi 2 O 3 is an optional component that increases the refractive index of glass and lowers the glass transition temperature.
  • the content of Bi 2 O 3 exceeds 5%, the devitrification resistance of the glass decreases. Therefore, the content of Bi 2 O 3 is limited to 5% or less, preferably 1% or less. It is preferably not introduced.
  • GeO 2 is a component that has the effect of increasing the refractive index of glass and increasing the devitrification resistance. It is an optional component of the optical glass of the present invention. However, its price is high. It is limited to 5% or less, preferably 2% or less, and is further selected not to be introduced.
  • Lu 2 O 3 is introduced in the present invention, it can cooperate with other rare earth components to further improve the stability of the glass, but it is expensive, and it is not conducive to reducing the production cost when it is introduced into the glass, so its content is preferred. It is 5% or less, more preferably 3% or less, and still more preferably no introduction.
  • the content thereof is preferably 5% or less, and more preferably 3%.
  • the clarification effect of the glass can be improved, but when the content of Sb 2 O 3 exceeds 1%, the glass has a tendency to reduce the clarification performance, and at the same time, it is promoted by its strong oxidation effect.
  • the addition amount of Sb 2 O 3 is preferably 0-1%, and more preferably 0-0.5%.
  • SnO 2 can also be added as a fining agent, but when its content exceeds 1%, the glass will be colored, or when the glass is heated, softened and re-molded, such as molding, Sn will become the starting point of nucleation and devitrification. Propensity.
  • the content of SnO 2 in the present invention is preferably 0-1%, more preferably 0-0.5%, and still more preferably not added.
  • the effect of CeO 2 and the proportion of the added amount are the same as those of SnO 2 , and its content is preferably 0-1%, more preferably 0-0.5%, and still more preferably not added.
  • F is an effective component for low dispersion and lower glass transition temperature, but when it is contained in excess, it shows that the refractive index of glass is significantly reduced, or the volatility of glass melt is increased, and the texture of glass melt is generated, or The volatility tends to increase the refractive index variation.
  • F can be introduced as a raw material using YF 3 , LaF 3 , GdF 3 , ZrF 4 , ZnF 2 , and alkaline earth metal fluoride.
  • the content of F is preferably 0 to 5%, more preferably 0 to 3%, and still more preferably no introduction.
  • the glass characteristics of the present invention are not impaired, other components not mentioned above can be added as needed.
  • transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo
  • the glass will be colored and absorb at a specific wavelength in the visible light region.
  • the property of improving the visible light transmittance effect of the present invention is weakened, and therefore, it is particularly preferable that the optical glass having a transmittance at a wavelength in the visible light region is practically not included.
  • the cations of Pb, Th, Cd, Tl, Os, Be, and Se have tended to be used as harmful chemicals in recent years. They not only protect the environment from the glass manufacturing process to the processing process and disposal after productization. The measures are required. Therefore, in the case where the impact on the environment is valued, it is preferable that they are not actually contained, except for unavoidable mixing. As a result, the optical glass becomes practically free of substances that pollute the environment. Therefore, the optical glass of the present invention can be manufactured, processed, and discarded without taking special environmental measures.
  • optical glass of the present invention The characteristics of the optical glass of the present invention will be described below.
  • the refractive index (nd) and Abbe number ( ⁇ d ) of the optical glass of the present invention are tested according to the method specified in GB / T7962.1-2010.
  • the range of the refractive index (nd) of the optical glass of the present invention is 1.95 or more, the preferred range is 1.95-2.1, the more preferred range is 1.98-2.05, and the more preferred range is 1.99-2.02;
  • the Abbe number ( ⁇ d) of the glass of the present invention ) Is in the range of 22-30, preferably in the range of 23-28, and more preferably in the range of 24-27.
  • the transition temperature (Tg) of optical glass is measured according to the method specified in GB / T7962.16-2010.
  • the glass transition temperature (Tg) of the present invention is below 690 ° C, preferably below 685 ° C.
  • the density of optical glass is measured according to the method specified in GB / T7962.20-2010.
  • the density ( ⁇ ) of the glass of the present invention is 5.00 g / cm 3 or less, preferably 4.90 g / cm 3 or less, and more preferably 4.80 g / cm 3 or less.
  • the glass powder method water resistance stability (D W ) is measured using GB / T17129 test standard.
  • the optical glass (D W ) of the present invention is of type 2 or more, and is preferably type 1.
  • Acid stability of the glass powder method (D A) employed GB / T17129 standard measurement test.
  • optical glass of the present invention (D A) of Class 2 and Class 2 or more, preferably 1 class.
  • the hardness (H K ) of optical glass is measured according to the method specified in GB / T7962.18-2010.
  • the hardness (H K ) of the optical glass of the present invention is 620 ⁇ 10 7 Pa or more, and preferably 625 ⁇ 10 7 Pa or more.
  • Both the glass preform and the optical element of the present invention are formed of the optical glass of the present invention.
  • the glass preform of the present invention has high refractive index characteristics; the optical element of the present invention has high refractive index characteristics, and can provide various lenses, prisms and other optical elements with high optical value at low cost.
  • the lens examples include various lenses such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens whose lens surfaces are spherical or aspherical.
  • a prism has a high refractive index
  • a compact and wide-angle optical system can be realized by combining it in an imaging optical system and bending an optical path to a desired direction.
  • the melting and forming method for producing optical glass may adopt a technique known to those skilled in the art.
  • the glass raw materials carbonate, nitrate, sulfate, hydroxide, oxide, boric acid, etc.
  • a melting device such as a platinum crucible
  • the temperature is lowered below 1200 °C, poured or missed into the forming mold, and finally subjected to post-treatment such as annealing and processing, or directly pressed by precision molding technology.
  • K1 La 2 O 3 / (SiO 2 + B 2 O 3 )
  • K2 represents TiO 2 / (Nb 2 O 5 + ZrO 2 + WO 3 )
  • K3 represents (ZnO + MgO + CaO + SrO) / BaO
  • K4 represents TiO 2 / BaO.
  • the optical glass obtained in Example 1-10 in Table 1 was cut into a predetermined size, and then a release agent was evenly coated on the surface, and then it was heated, softened, and press-molded to produce a concave meniscus lens, Preforms for various lenses and prisms, such as convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses.
  • the preforms obtained in the foregoing examples of glass preforms are annealed, and fine adjustment is performed while reducing the internal deformation of the glass, so that the optical properties such as the refractive index reach the desired value.
  • each preform is ground and ground to produce various lenses and prisms such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens.
  • An anti-reflection film may be coated on the surface of the obtained optical element.
  • the invention is a low-cost, high-refractive-index optical glass with excellent chemical stability, a refractive index of 1.95 or more, an Abbe number of 22-30, and an optical element formed by the glass, which can meet the needs of modern new-type optoelectronic products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种具有高折射率、较低Tg温度且可以大规模生产的光学玻璃,其组成按重量百分比表示,含有:SiO 2:6-16%;B 2O 3:5-15%;La 2O 3:25-35%;TiO 2:15-30%;Nb 2O 5:5-15%;ZrO 2:1-15%;BaO:8-20%,其中SiO 2>B 2O 3;La 2O 3/(SiO 2+B 2O 3)为1.0-2.5。

Description

光学玻璃 技术领域
本发明涉及一种光学玻璃,尤其涉及一种1.95以上的高折射率光学玻璃,以及由该光学玻璃制成的玻璃预制件和光学元件。
背景技术
近年来,使用光学***的设备数字化和高精密化迅速发展,在数码相机、摄像机等摄影设备,投影仪、投影电视等图像播放(投影)设备等光学设备领域中,对减少光学***中使用的透镜、棱镜等光学元件的个数,使光学***整体轻质化和小型化的要求越来越高。在光学***的设计中,采用高折射率的玻璃或利用非球面透镜来实现小型化、超薄化和广角化,在车载、安防等领域得到广泛引用。同时,在进行特殊光学***设计中,还可以将高折射率、高阿贝数玻璃与高折射率、低阿贝数玻璃相匹配,实现弥补和校正色差的目的,因此高折射率玻璃的研发需求正逐渐加大,同时应用于车载、安防的光学透镜长期暴露在室外,因此对光学玻璃的耐水性、耐酸性和硬度要求也较高。
现有技术公开了多种光学性能良好或Tg温度较低的光学玻璃,如申请号为200310114721.7的中国专利文献公开了一种光学玻璃,主要含有B 2O 3、SiO 2和La 2O 3等成分,其中B 2O 3的含量大于SiO 2的含量,该玻璃具有1.8~2.1的折射率和20~40的阿贝数,光学性能良好,但其Tg温度较高;申请号为200680051694.5的中国专利文献公开了一种光学玻璃,其玻璃化转变温度为400℃以下,Tg温度较低,但是该光学玻璃的折射率仅为1.50~1.65,阿贝数为50~65,光学性能较差,不能满足光学***小型化、轻量化和高精度化的要求;申请号为201010120158.4的中国专利文献公开了一种高折射率光学玻璃,其含有40-85%摩尔的TeO 2成分,生产成本较高,不利于大规模生产。虽然现有技术公开了多种光学性能良好或Tg温度低的光学玻璃,但并未公开同时具有良好光学性能、较低Tg温度和较廉价的光学玻璃。
发明内容
本发明所要解决的技术问题是提供一种具有高折射率、较低Tg温度且可以大规模生产的光学玻璃。
本发明还要提供由上述光学玻璃形成的玻璃预制件和光学元件。
本发明解决技术问题所采用的技术方案是:光学玻璃,其组成按重量百分比表示,含有:SiO 2:6-16%;B 2O 3:5-15%;La 2O 3:25-35%;TiO 2:15-30%;Nb 2O 5:5-15%;ZrO 2:1-15%;BaO:8-20%,其中SiO 2>B 2O 3;La 2O 3/(SiO 2+B 2O 3)为1.0-2.5。
进一步的,还含有:Gd 2O 3:0-10%;Y 2O 3:0-10%;Yb 2O 3:0-10%;WO 3:0-5%;ZnO:0-8%;MgO:0-5%;CaO:0-5%;SrO:0-5%;Ta 2O 5:0-5%;Al 2O 3:0-5%;Sb 2O 3:0-1%。
光学玻璃,其组成按重量百分比表示为:SiO 2:6-16%;B 2O 3:5-15%;La 2O 3:25-35%;TiO 2:15-30%;Nb 2O 5:5-15%;ZrO 2:1-15%;BaO:8-20%;Gd 2O 3:0-10%;Y 2O 3:0-10%;Yb 2O 3:0-10%;WO 3:0-5%;ZnO:0-8%;MgO:0-5%;CaO:0-5%;SrO:0-5%;Ta 2O 5:0-5%;Al 2O 3:0-5%;Sb 2O 3:0-1%,其中SiO 2>B 2O 3;La 2O 3/(SiO 2+B 2O 3)为1.0-2.5。
进一步的,其中:SiO 2:6-12%;和/或B 2O 3:5-10%;和/或La 2O 3:27-32%;和/或TiO 2:17-27%;和/或Nb 2O 5:8-13%;和/或ZrO 2:3-12%;和/或BaO:10-18%;和/或Gd 2O 3:0-5%;和/或Y 2O 3:0-5%;和/或Yb 2O 3:0-5%;和/或WO 3:0-2%;和/或ZnO:0-5%;和/或MgO:0-2%;和/或CaO:0-2%;和/或SrO:0-2%;和/或Ta 2O 5:0-2%;和/或Al 2O 3:0-3%;和/或Sb 2O 3:0-0.5%。
进一步的,各组分含量满足以下4种情形中的一种或一种以上:
1)La 2O 3/(SiO 2+B 2O 3)为1.2-2.3;
2)TiO 2/(Nb 2O 5+ZrO 2+WO 3)为0.8-2.0:
3)(ZnO+MgO+CaO+SrO)/BaO为0.1-0.8:
4)TiO 2/BaO为1.0-2.5。
进一步的,各组分含量满足以下4种情形中的一种或一种以上:
1)La 2O 3/(SiO 2+B 2O 3)为1.3-2.0;
2)TiO 2/(Nb 2O 5+ZrO 2+WO 3)为0.9-1.5:
3)(ZnO+MgO+CaO+SrO)/BaO为0.15-0.5:
4)TiO 2/BaO为1.3-2.3。
进一步的,其组成按重量百分比表示,还含有:P 2O 5:0-5%;Bi 2O 3:0-5%;Ga 2O 3:0-5%;Lu 2O 3:0-5%;GeO 2:0-5%;CeO 2:0-0.5%;SnO 2:0-0.5%;F:0-5%。
进一步的,所述光学玻璃的折射率nd为1.95以上,阿贝数vd为22-30。
进一步的,所述光学玻璃的密度ρ为5.00g/cm 3以下;硬度H K为620×10 7Pa以上;转变温度Tg为690℃以下。
进一步的,所述光学玻璃粉末法耐水稳定性D W为1类;粉末法耐酸稳定性D A为1类。
玻璃预制件,采用上述的光学玻璃制成。
光学元件,采用上述的光学玻璃制成。
本发明的有益效果是:通过合理的组分设计,使本发明光学玻璃具有1.95以上的折射率,转变温度在690℃以下,具有较低的转变温度和密度,优异的耐水、耐酸稳定性和硬度,本发明为低成本且化学稳定性优异的高折射率光学玻璃,能够满足现代新型光电产品的需要。
具体实施方式
Ⅰ、光学玻璃
本发明光学玻璃基于对降低生产成本考虑,不含有价格昂贵的TeO 2成分,得到折射率为1.95以上、阿贝数为22-30的高折射率光学玻璃。下面对本发明的光学玻璃的组成进行详细说明,各玻璃组分的含量、总含量如没有特别说明,则都采用重量百分比进行表示。另外,在以下的说明中,提到规定值以下或规定值以上时,也包括该规定值。
B 2O 3是玻璃网络形成组分,具有提高玻璃可熔性和耐失透性,降低玻璃态转变温度和密度的作用,为了达到上述效果,本发明引入5%以上或更多的B 2O 3;但当其引入量超过15%时,则玻璃稳定性下降,并且折射率下降,无法得到本发明的高折射率,因此,本发明的B 2O 3的上限含量为15%,优选上限为10%。
SiO 2也是玻璃形成体,与B 2O 3所构成的疏松的链状层状网络不同,SiO 2在玻璃中形成的是硅氧四面体三维网络,非常致密坚固。这样的网络加入 到玻璃中,对疏松的硼氧三角体[BO 3]网络进行加固,使其变得致密,从而提升玻璃的高温粘度;与此同时,硅氧四面体三维网络的加入,玻璃网络隔离La 2O 3、Nb 2O 5等析晶阳离子和阴离子的能力增强,增加了析晶阈值,使得玻璃的抗析晶性能提升,本发明玻璃中SiO 2含量的下限为6%;但若SiO 2的含量高于16%时,会使玻璃的转变温度升高,并使玻璃的熔融性降低,因此其含量上限为16%,优选上限为12%。经发明人大量研究发现,当SiO 2含量低于B 2O 3含量时,玻璃的化学稳定性和硬度会有下降的趋势,因此本发明玻璃中SiO 2含量大于B 2O 3含量。
La 2O 3是获得本发明所需光学特性的必须组分。当La 2O 3的含量小于25%时,难以实现所需要的光学特性;但当其含量超过35%时,玻璃耐失透性与熔融性能均恶化。因此,本发明的La 2O 3的含量为25-35%,优选范围为27-32%。
Gd 2O 3、Y 2O 3和Yb 2O 3与La 2O 3共存具有降低析晶上限温度和液相温度、改善耐失透性的作用。但如果其分别的含量超过10%,则析晶上限温度上升,耐失透性恶化。因此,Gd 2O 3、Y 2O 3和Yb 2O 3的含量分别为0-10%,分别优选范围为0-5%。
发明人研究发现,从维持高折射率以及改善耐失透性和玻璃稳定性等方面出发,本发明将La 2O 3与SiO 2、B 2O 3总重量(SiO 2+B 2O 3)的比值La 2O 3/(SiO 2+B 2O 3)的范围限定为1.0-2.5,优选为1.2-2.3,更优选为1.3-2.0。
TiO 2是一种高折射高色散氧化物,加入玻璃中可以提升玻璃的折射率和色散。同时,合适量的TiO 2添加到玻璃中,可以进入玻璃网络成为玻璃网络的一部分,增加玻璃稳定性,尤其是抗析晶性能。若过多的TiO 2加入玻璃中,首先玻璃的折射率和色散会高于设计预期,其次玻璃的透过率会急剧恶化,同时玻璃的稳定性也达不到设计预期;但若TiO 2过少,玻璃的折射率和色散会低于设计预期,同时玻璃的抗析晶性能下降。因此本发明玻璃中TiO 2的含量为15-30%,优选为17-27%。
本发明玻璃中,当Nb 2O 5含量超过5%时,对降低液相温度有极好的效果,也具有在不使透过率变差的情况下提高玻璃折射率、抗析晶性和化学耐久性的作用,适量的Nb 2O 5引入,还可以在精密模压过程中有效改善玻璃的抗 析晶性能;如果其含量超过15%,则玻璃色散提高,无法达到本发明玻璃的光学特性。因此,Nb 2O 5的含量范围为5-15%,优选范围为8-13%。
WO 3在玻璃中的主要作用是维持光学常数,改善玻璃析晶,但其含量过高时,会使玻璃透过率降低,着色度增大,且析晶性能变坏。因此,WO 3的优选含量为0-5%,更优选含量为0-2%。
ZrO 2是一种高折射低色散氧化物,加入玻璃中可以提升玻璃的折射率并调节色散。同时,1%以上的ZrO 2加入玻璃中,可以提升玻璃的抗析晶性能和成玻稳定性。在本发明中若其含量高于15%,玻璃会变得难以融化,熔炼温度会上升,容易导致玻璃内部出现夹杂物及其透过率下降。因此,其含量设置为1-15%,优选为3-12%。
为获得高折射率,光学玻璃会加入大量的TiO 2、Nb 2O 5和WO 3等组分,但这对光学玻璃的可见光透过率和析晶性能有严重影响,且会导致玻璃的Tg温度和密度的上升,因此经发明人大量研究发现,当TiO 2/(Nb 2O 5+ZrO 2+WO 3)处于0.8-2.0范围内时,以上各性能趋于平衡,尤其是处于0.9-1.5之间时,以上各性能达到优异。
ZnO具有使玻璃熔融温度或转变温度降低的作用。但在本发明中,如果其含量超过8%,则折射率降低,玻璃的化学耐久性也会降低,因而,ZnO的含量范围为0-8%,优选为0-5%。
BaO是提高玻璃折射率、改善玻璃透过率的成分。当其含量过多,则会使玻璃的抗析晶性能和化学稳定性变差。因此,其含量限定为8-20%,优选为10-18%。本发明光学玻璃中,当TiO 2/BaO为1.0-2.5范围内时,玻璃的耐酸和耐水稳定性较为优异,优选其范围为1.3-2.3。
CaO有助于提升玻璃的折射率,其替代部分BaO可以增加成玻范围。但若CaO添加过多时,会导致玻璃抗析晶性能下降。因此,CaO含量限定0-5%,优选为0-2%。
SrO添加到玻璃中可以调节玻璃的折射率和阿贝数,但若添加量过大,玻璃的化稳性能以及抗析晶性能会下降,同时玻璃的成本也会快速上升。因此,SrO含量限定为0-5%,优选为0-2%。
MgO虽然有助于提升玻璃的化学稳定性,但若其含量过多,玻璃的折 射率达不到设计要求,玻璃的抗析晶性能和化学稳定性下降,同时玻璃的成本快速上升。因此,MgO含量限定为0-5%,优选为0-2%。
经本发明人研究发现,碱土金属氧化物和ZnO对本发明玻璃的硬度有重要影响,且会在一定程度上影响玻璃的成玻稳定性和抗析晶稳定性,当(ZnO+MgO+CaO+SrO)/BaO为0.1-0.8时,玻璃的硬度、成玻稳定性和抗析晶稳定性较为优异,(ZnO+MgO+CaO+SrO)/BaO优选为0.15-0.5。
Ta 2O 5可以提高玻璃的折射率、耐失透性和熔融态玻璃的粘度,但其价格昂贵,不利于生产成本的降低,因此其含量限定为5%以下,优选为2%以下。
少量引入Al 2O 3能改善形成玻璃的稳定性和化学稳定性,但其含量超过5%时,显示玻璃熔融性变差、耐失透性降低,因此本发明Al 2O 3的含量为0-5%,优选为0-3%。
P 2O 5成分是提高玻璃的耐失透性的任选成分,特别是使P 2O 5的含量为5%以下,可抑制玻璃的化学耐久性尤其是耐水性的降低。因此,P 2O 5限定为5%以下,更优选3%以下,进一步优选不引入。
Bi 2O 3是提高玻璃折射率、降低玻璃化温度的任选成分,当其含量超过5%时,玻璃耐失透性降低,因此其含量限定为5%以下,优选为1%以下,进一步优选不引入。
GeO 2是具有提高玻璃折射率且增加耐失透性效果的成分,是本发明光学玻璃的任选成分,然而其价格高昂,过多引入达不到本发明降低生产成本的目的,因此其含量限定为5%以下,优选为2%以下,更进一步选择不引入。
本发明中若引入5%以下Lu 2O 3,可以与其他稀土类组分相协同,从而进一步提高玻璃的稳定性,但其价格昂贵,引入玻璃中则不利于降低生产成本,故其含量优选为5%以下,进一步优选为3%以下,更进一步优选为不引入。
作为本发明任选成分,通过控制Ga 2O 3在5%以下时,可提高玻璃的耐失透性,并且能够增加玻璃的磨耗度,因此其含量优选为5%以下,进一步优选为3%以下,进一步优选不引入。
通过少量添加Sb 2O 3、SnO 2、CeO 2组分可以提高玻璃的澄清效果,但当Sb 2O 3含量超过1%时,玻璃有澄清性能降低的倾向,同时由于其强氧化作用促进了成型模具的恶化,因此本发明优选Sb 2O 3的添加量为0-1%,更优选为0-0.5%。SnO 2也可以作为澄清剂来添加,但当其含量超过1%时,玻璃会着色,或者当加热、软化玻璃并进行模压成形等再次成形时,Sn会成为晶核生成的起点,产生失透的倾向。因此本发明的SnO 2的含量优选为0-1%,更优选为0-0.5%,进一步优选不添加。CeO 2的作用及添加量比例与SnO 2一致,其含量优选为0-1%,更优选为0-0.5%,进一步优选不添加。
F是低色散化、降低玻璃化转变温度的有效组分,但当其过量含有时,显示玻璃折射率显著降低,或玻璃融液的挥发性增大,玻璃融液成型时会产生纹理,或挥发导致折射率变动增大的倾向。F作为原料可以使用YF 3、LaF 3、GdF 3、ZrF 4、ZnF 2、碱土金属氟化物引入。本发明优选F的含量为0-5%,更优选为0-3%,进一步优选为不引入。
[关于不应含有的成分]
在不损害本发明的玻璃特性的范围内,根据需要能够添加上述未曾提及的其他成分。但是V、Cr、Mn、Fe、Co、Ni、Cu、Ag以及Mo等过渡金属成分,即使单独或复合地少量含有的情况下,玻璃也会被着色,在可见光区域的特定的波长产生吸收,从而减弱本发明的提高可见光透过率效果的性质,因此,特别是对于可见光区域波长的透过率有要求的光学玻璃,优选实际上不包含。
Pb、Th、Cd、Tl、Os、Be以及Se的阳离子,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实际上不含有它们。由此,光学玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策上的措施,本发明的光学玻璃也能够进行制造、加工以及废弃。
下面,对本发明的光学玻璃的特性进行说明。
[光学玻璃的光学常数]
本发明光学玻璃折射率(nd)与阿贝数(ν d)按照GB/T7962.1-2010 规定的方法进行测试。
本发明光学玻璃折射率(nd)的范围为1.95以上,优选的范围为1.95-2.1,更优选的范围为1.98-2.05,更进一步优选为1.99-2.02;本发明玻璃的阿贝数(ν d)的范围为22-30,优选范围为23-28,进一步优选为24-27。
[光学玻璃的转变温度(Tg)]
光学玻璃的转变温度(Tg)按GB/T7962.16-2010规定的方法进行测量。
本发明玻璃的转变温度(Tg)在690℃以下,优选685℃以下。
[光学玻璃的密度]
光学玻璃的密度按GB/T7962.20-2010规定的方法进行测量。
本发明玻璃的密度(ρ)在5.00g/cm 3以下,优选为4.90g/cm 3以下,更优选为4.80g/cm 3以下。
[光学玻璃的耐水稳定性(D W)]
玻璃粉末法耐水稳定性(D W)采用GB/T17129测试标准测量。
本发明光学玻璃(D W)为2类及2类以上,优选为1类。
[光学玻璃的耐水稳定性(D A)]
玻璃粉末法耐酸稳定性(D A)采用GB/T17129测试标准测量。
本发明光学玻璃(D A)为2类及2类以上,优选为1类。
[光学玻璃的硬度(H K)]
光学玻璃的硬度(H K)按GB/T7962.18-2010规定的方法测量。
本发明光学玻璃的硬度(H K)为620×10 7Pa以上,优选为625×10 7Pa以上。
Ⅱ、玻璃预制件与光学元件
下面,描述本发明的玻璃预制件与光学元件。
本发明的玻璃预制件与光学元件均由上述本发明的光学玻璃形成。本发明的玻璃预制件具有高折射率特性;本发明的光学元件具有高折射率特性,能够以低成本提供光学价值高的各种透镜、棱镜等光学元件。
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。
另外,对于棱镜来说,由于折射率高,因此通过组合在摄像光学体系中,通过弯曲光路,朝向所需的方向,即可实现紧凑、广角的光学体系。
实施例
采用如下实施例对本发明进行解释,但本发明不应局限于这些实施例。
生产光学玻璃的熔融和成型方法可以采用本领域技术人员公知的技术。将玻璃原料(碳酸盐、硝酸盐、硫酸盐、氢氧化物、氧化物、硼酸等)按照玻璃氧化物的配比称重配合并混合均匀后,投入熔炼装置中(如铂金坩埚),然后在1150~1400℃采取适当的搅拌、澄清、均化后,降温至1200℃以下,浇注或漏注在成型模具中,最后经退火、加工等后期处理,或者通过精密压型技术直接压制成型。
[光学玻璃实施例]
另外,通过以下所示的方法测定本发明的各玻璃的特性,并将测定结果表示在表1~表2中,其中,用K1表示La 2O 3/(SiO 2+B 2O 3),K2表示TiO 2/(Nb 2O 5+ZrO 2+WO 3),K3表示(ZnO+MgO+CaO+SrO)/BaO,K4表示TiO 2/BaO。
表1
Figure PCTCN2018091247-appb-000001
Figure PCTCN2018091247-appb-000002
表2
Figure PCTCN2018091247-appb-000003
Figure PCTCN2018091247-appb-000004
[玻璃预制件实施例]
将表1中实施例1-10所得到的光学玻璃切割成预定大小,再在表面上均匀地涂布脱模剂,然后将其加热、软化,进行加压成型,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜的预制件。
[光学元件实施例]
将上述玻璃预制件实施例所得到的这些预制件退火,在降低玻璃内部的变形的同时进行微调,使得折射率等光学特性达到所需值。
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得光学元件的表面上还可涂布防反射膜。
本发明为低成本且化学稳定性优异的高折射率光学玻璃,折射率为1.95以上,阿贝数为22-30,以及所述玻璃形成的光学元件,能够满足现代新型光电产品的需要。

Claims (12)

  1. 光学玻璃,其特征在于,其组成按重量百分比表示,含有:SiO 2:6-16%;B 2O 3:5-15%;La 2O 3:25-35%;TiO 2:15-30%;Nb 2O 5:5-15%;ZrO 2:1-15%;BaO:8-20%,其中SiO 2>B 2O 3;La 2O 3/(SiO 2+B 2O 3)为1.0-2.5。
  2. 如权利要求1所述的光学玻璃,其特征在于,还含有:Gd 2O 3:0-10%;Y 2O 3:0-10%;Yb 2O 3:0-10%;WO 3:0-5%;ZnO:0-8%;MgO:0-5%;CaO:0-5%;SrO:0-5%;Ta 2O 5:0-5%;Al 2O 3:0-5%;Sb 2O 3:0-1%。
  3. 光学玻璃,其特征在于,其组成按重量百分比表示为:SiO 2:6-16%;B 2O 3:5-15%;La 2O 3:25-35%;TiO 2:15-30%;Nb 2O 5:5-15%;ZrO 2:1-15%;BaO:8-20%;Gd 2O 3:0-10%;Y 2O 3:0-10%;Yb 2O 3:0-10%;WO 3:0-5%;ZnO:0-8%;MgO:0-5%;CaO:0-5%;SrO:0-5%;Ta 2O 5:0-5%;Al 2O 3:0-5%;Sb 2O 3:0-1%,其中SiO 2>B 2O 3;La 2O 3/(SiO 2+B 2O 3)为1.0-2.5。
  4. 如权利要求1-3任一权利要求所述的光学玻璃,其特征在于,其中:SiO 2:6-12%;和/或B 2O 3:5-10%;和/或La 2O 3:27-32%;和/或TiO 2:17-27%;和/或Nb 2O 5:8-13%;和/或ZrO 2:3-12%;和/或BaO:10-18%;和/或Gd 2O 3:0-5%;和/或Y 2O 3:0-5%;和/或Yb 2O 3:0-5%;和/或WO 3:0-2%;和/或ZnO:0-5%;和/或MgO:0-2%;和/或CaO:0-2%;和/或SrO:0-2%;和/或Ta 2O 5:0-2%;和/或Al 2O 3:0-3%;和/或Sb 2O 3:0-0.5%。
  5. 如权利要求1-3任一权利要求所述的光学玻璃,其特征在于,各组分含量满足以下4种情形中的一种或一种以上:
    1)La 2O 3/(SiO 2+B 2O 3)为1.2-2.3;
    2)TiO 2/(Nb 2O 5+ZrO 2+WO 3)为0.8-2.0:
    3)(ZnO+MgO+CaO+SrO)/BaO为0.1-0.8:
    4)TiO 2/BaO为1.0-2.5。
  6. 如权利要求1-3任一权利要求所述的光学玻璃,其特征在于,各组分含量满足以下4种情形中的一种或一种以上:
    1)La 2O 3/(SiO 2+B 2O 3)为1.3-2.0;
    2)TiO 2/(Nb 2O 5+ZrO 2+WO 3)为0.9-1.5:
    3)(ZnO+MgO+CaO+SrO)/BaO为0.15-0.5:
    4)TiO 2/BaO为1.3-2.3。
  7. 如权利要求1或2所述的光学玻璃,其特征在于,其组成按重量百分比表示,还含有:P 2O 5:0-5%;Bi 2O 3:0-5%;Ga 2O 3:0-5%;Lu 2O 3:0-5%;GeO 2:0-5%;CeO 2:0-0.5%;SnO 2:0-0.5%;F:0-5%。
  8. 如权利要求1-7任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的折射率nd为1.95以上,阿贝数vd为22-30。
  9. 如权利要求1-7任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的密度ρ为5.00g/cm 3以下;硬度H K为620×10 7Pa以上;转变温度Tg为690℃以下。
  10. 如权利要求1-7任一所述的光学玻璃,其特征在于,所述光学玻璃粉末法耐水稳定性D W为1类;粉末法耐酸稳定性D A为1类。
  11. 玻璃预制件,采用权利要求1-10任一权利要求所述的光学玻璃制成。
  12. 光学元件,采用权利要求1-10任一权利要求所述的光学玻璃制成。
PCT/CN2018/091247 2018-05-22 2018-06-14 光学玻璃 WO2019223041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810492260.3A CN110510869B (zh) 2018-05-22 2018-05-22 光学玻璃
CN201810492260.3 2018-05-22

Publications (1)

Publication Number Publication Date
WO2019223041A1 true WO2019223041A1 (zh) 2019-11-28

Family

ID=68616508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091247 WO2019223041A1 (zh) 2018-05-22 2018-06-14 光学玻璃

Country Status (2)

Country Link
CN (1) CN110510869B (zh)
WO (1) WO2019223041A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
CN115466052A (zh) * 2022-08-26 2022-12-13 成都光明光电股份有限公司 光学玻璃和光学元件
CN115304270A (zh) * 2022-08-26 2022-11-08 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器
CN115246707B (zh) * 2022-08-26 2023-09-22 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器
CN115231818B (zh) * 2022-08-26 2023-08-08 成都光明光电股份有限公司 光学玻璃、玻璃预制件和光学元件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333072A (zh) * 2007-06-29 2008-12-31 上海新沪玻璃有限公司 高折射率镧系光学玻璃NLaSF010及其制造方法
CN102503120A (zh) * 2011-10-08 2012-06-20 成都光明光电股份有限公司 光学玻璃及其制造方法、光学元件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106746597A (zh) * 2016-12-15 2017-05-31 成都光明光电股份有限公司 光学玻璃

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333072A (zh) * 2007-06-29 2008-12-31 上海新沪玻璃有限公司 高折射率镧系光学玻璃NLaSF010及其制造方法
CN102503120A (zh) * 2011-10-08 2012-06-20 成都光明光电股份有限公司 光学玻璃及其制造方法、光学元件

Also Published As

Publication number Publication date
CN110510869A (zh) 2019-11-29
CN110510869B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
US10343947B2 (en) Optical glass, glass preform and optical element
US10259738B2 (en) Optical glass
US10252934B2 (en) Optical glass, glass preform and optical element
WO2019223041A1 (zh) 光学玻璃
TWI779744B (zh) 光學玻璃、玻璃預製件及光學元件
TWI639570B (zh) Optical glass and optical components
CN107663011B (zh) 光学玻璃
CN107879620B (zh) 光学玻璃、玻璃预制件和光学元件
CN109970338B (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
CN109775981B (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
US10442722B2 (en) Optical glass
CN109970337B (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
CN109912195B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
TWI651288B (zh) 光學玻璃及光學元件
TWI726386B (zh) 光學玻璃、由其製備而成的玻璃預製件或光學元件及光學儀器
CN110342813B (zh) 光学玻璃、光学元件和光学仪器
CN110316961B (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
CN110255887B (zh) 光学玻璃、光学元件和光学仪器
CN111116039B (zh) 重冕光学玻璃
CN109775982B (zh) 光学玻璃
JP7213952B2 (ja) 光学ガラス、光学ガラスで製造されるガラスプリフォーム又は光学素子及び光学機器
CN115304274A (zh) 高折射高色散光学玻璃
CN110316958B (zh) 光学玻璃和光学元件
CN110240400B (zh) 光学玻璃及光学元件
CN110240399B (zh) 光学玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919431

Country of ref document: EP

Kind code of ref document: A1