WO2019221448A1 - 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물 - Google Patents

매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물 Download PDF

Info

Publication number
WO2019221448A1
WO2019221448A1 PCT/KR2019/005562 KR2019005562W WO2019221448A1 WO 2019221448 A1 WO2019221448 A1 WO 2019221448A1 KR 2019005562 W KR2019005562 W KR 2019005562W WO 2019221448 A1 WO2019221448 A1 WO 2019221448A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
copolymer
meth
monomer
alkyl
Prior art date
Application number
PCT/KR2019/005562
Other languages
English (en)
French (fr)
Inventor
옥혜정
장석구
박상후
심형섭
최정수
유근훈
이원석
이루다
김호훈
이종주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19802659.3A priority Critical patent/EP3663354B1/en
Priority to US16/646,127 priority patent/US11434358B2/en
Priority to CN201980004389.8A priority patent/CN111065682B/zh
Priority claimed from KR1020190055975A external-priority patent/KR102210031B1/ko
Publication of WO2019221448A1 publication Critical patent/WO2019221448A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to Korean patent applications Nos. 10-2018-0054988, 10-2018-0054989 and 10-2018-0054990, filed May 14, 2018, and Korea, filed May 14, 2019. Claims the benefit of priority based on patent application No. 10-2019-0055975 and includes all contents disclosed in the literature of that Korean patent application as part of this specification.
  • the present invention relates to a matrix copolymer, a graft copolymer and a thermoplastic resin composition, and to a matrix copolymer, a graft copolymer and a thermoplastic resin composition comprising a cellulose nanocrystal derivative.
  • the transparent thermoplastic resin composition is prepared by extruding the transparent graft copolymer and the transparent matrix copolymer. As the refractive index of the transparent graft copolymer and the transparent matrix copolymer coincides, the transparency of the thermoplastic resin molded article is improved.
  • the transparent matrix copolymer and the transparent graft copolymer include methyl methacrylate units having a low refractive index as the highest content among the components. These methyl methacrylate units improve the transparency of the transparent matrix copolymer, but lower the chemical resistance.
  • the methyl methacrylate unit may be pyrolyzed at a high temperature of 300 ° C. or higher, thereby reducing the color or thermal stability of the final product.
  • An object of the present invention is to provide a matrix copolymer, a graft copolymer and a thermoplastic resin composition excellent in transparency, chemical resistance and mechanical properties.
  • the present invention is a cellulose nanocrystal derivative; Alkyl (meth) acrylate monomer units; Aromatic vinyl monomer units; And it provides a matrix copolymer comprising a vinyl cyan monomer unit.
  • the present invention also provides a method for producing a matrix copolymer in which a cellulose nanocrystal, an alkyl (meth) acrylate monomer, an aromatic vinyl monomer, and a vinyl cyan monomer are added to a reactor and polymerized.
  • the present invention is a cellulose nanocrystal derivative; Conjugated diene-based polymers; Alkyl (meth) acrylate monomer units; Aromatic vinyl monomer units; And it provides a graft copolymer comprising a vinyl cyan monomer unit.
  • the present invention also provides a method for preparing a graft copolymer in which cellulose nanocrystals, conjugated diene polymers, alkyl (meth) acrylate monomers, aromatic vinyl monomers and vinyl cyan monomers are added to a reactor and graft polymerized. do.
  • the present invention also provides a matrix copolymer comprising an alkyl (meth) acrylate monomer unit, an aromatic vinyl monomer unit, and a vinyl cyan monomer unit; And a graft copolymer comprising a conjugated diene polymer, an alkyl (meth) acrylate monomer unit, an aromatic vinyl monomer unit, and a vinyl cyan monomer unit, wherein the matrix copolymer and the graph At least one or more of the copolymer copolymer provides a thermoplastic resin composition further comprises a cellulose nanocrystal derivative.
  • the matrix copolymer, the graft copolymer, and the thermoplastic resin composition of the present invention can further improve chemical resistance, impact strength, and tensile strength while maintaining transparency at an equivalent level by including cellulose nanocrystal derivatives.
  • the cellulose nanocrystal derivative contained in the matrix copolymer and the graft copolymer of the present invention may partially replace the alkyl (meth) acrylate-based monomer units, and therefore, The chemical degradation can be minimized.
  • the low refractive index of the cellulose nanocrystal derivatives included in the matrix copolymer and the graft copolymer of the present invention may include an aromatic vinyl monomer unit in excess than before, workability may be further improved.
  • Cellulose nanocrystal (C ellulose N ano C rystal, CNC) in the present invention can be obtained by chemical treatment of cellulose.
  • the cellulose may be composed of a crystalline region and an amorphous region.
  • hydronium ions H 3 O +
  • the acid may be at least one selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and nitric acid, of which sulfuric acid is preferred.
  • the cellulose nanocrystals may have a refractive index of 1.4 to 1.5 or 1.42 to 1.48, of which 1.42 to 1.48 is preferable. If the above range is satisfied, the transparency of the copolymer can be maintained at an equivalent level as before.
  • the cellulose nanocrystals may be secondary particles including a plurality of primary particles.
  • the primary particles may refer to a single crystal of cellulose nanocrystals
  • the secondary particles may refer to a collection of primary particles that are single crystals of a plurality of cellulose nanocrystals.
  • the cellulose nanocrystals may have an average diameter of primary particles of 5 to 20 nm or 9 to 14 nm, and preferably 9 to 14 nm. If the above range is satisfied, the chemical resistance and mechanical properties of the matrix copolymer or the graft copolymer can be further improved.
  • the cellulose nanocrystals have an average length of primary particles of 50 to 200 nm or 100 to 150 nm, of which 100 to 150 nm is preferred. If the above range is satisfied, the chemical resistance and mechanical properties of the matrix copolymer or the graft copolymer can be further improved.
  • the average diameter and average length of primary particles of the cellulose nanocrystal can be measured using a transmission electron microscope (T ransmission E lectron M icroscope, TEM).
  • the cellulose nanocrystals may have an average diameter of secondary particles of 100 to 200 nm or 125 to 175 nm, of which 125 to 175 nm is preferable. If the above range is satisfied, the chemical resistance, impact resistance and tensile strength of the matrix copolymer or the graft copolymer can be further improved.
  • the average particle diameter of the secondary particles of the cellulose nanocrystals may mean an average hydrodynamic diameter.
  • 2 average particle diameter of the primary ipcha of the cellulose nanocrystal can be measured by dynamic light scattering (D ynamic L ight S cattering, DLS) method, specifically Zetasizer model Nano-Zs (trade name, manufacturer: Malvern) to be measured by using a Can be.
  • the cellulose nanocrystals may have a crystallization index of 70% to 90% or 75% to 85%, preferably 75% to 85%. If the above range is satisfied, the cellulose nanocrystals can be more uniformly dispersed when introduced into the polymerization solution.
  • the crystallinity index (Crystallinity Index) of the cellulose nanocrystals can be measured by the Segal method.
  • the cellulose nanocrystals may be added during the manufacturing process in the form of a mixed solution with an aqueous solvent in order to uniformly dispersed in the polymerization solution, when the matrix copolymer or graft copolymer is prepared.
  • the weight ratio of the cellulose nanocrystals and the aqueous solvent may be 5:95 to 15:85 or 5:95 to 10:90, of which 5:95 to 10:90 is preferable. If the above range is satisfied, the cellulose nanocrystals can be more uniformly dispersed in the polymerization solution.
  • the aqueous solvent may be water, with reverse osmosis water being preferred.
  • the zeta potential of the cellulose nanocrystals in the solution may be -45 kV to -25 kV or -40 kV to -30 kV, of which -40 kV to -30 kV is preferable. If the above conditions are satisfied, the dispersion stability of the cellulose nanocrystal solution may be more excellent. In addition, when the cellulose nanocrystal solution is added to the polymerization solution, it can be more uniformly dispersed.
  • the zeta potential of the cellulose nanocrystals may be measured by a DLS method using a Zetasizer model Nano-Zs (trade name, manufacturer: Malvern).
  • the cellulose nanocrystals may be directly manufactured or commercially available, and commercially available materials may be BGB Ultra TM Cellulose Nanocrystals Suspension of Blue Goose Biorefineries Inc ..
  • the refractive index means the absolute refractive index of the material, and the refractive index may be recognized as the ratio of the speed of electromagnetic radiation in free space to the speed of radiation in the material, wherein the radiation has visible wavelengths of 450 nm to 680 nm. It may be a line, specifically visible light of 589.3 nm wavelength.
  • the refractive index can be measured using a known method, that is, using an Abbe Refractometer.
  • the weight average molecular weight of the matrix copolymer may be measured as a relative value with respect to a standard polystyrene (PS) sample using tetrahydrofuran (THF) and gel permeation chromatography (GPC, water breeze).
  • PS polystyrene
  • THF tetrahydrofuran
  • GPC gel permeation chromatography
  • the graft ratio of the graft copolymer is a certain amount of the graft copolymer in acetone and vibrated for 24 hours to dissolve the free graft copolymer, centrifuged for 1 hour by centrifugation to separate the supernatant (sol). After that, the precipitate (gel) is vacuum dried at 140 ° C. for 2 hours to obtain an insoluble content, and then it can be calculated using the following formula.
  • the weight average molecular weight (g / mol) of the shell of the graft copolymer is obtained by drying the sol separated by the method described in the graft rate measurement method in a 50 ° C. hot air oven, and then dissolving the sol portion in a THF solution. 0.1% by weight), which can be sieved through a 0.1 ⁇ m filter and finally obtain a weight average molecular weight using a GPC device (manufacturer: waters).
  • the conjugated diene-based polymer may be a conjugated diene-based rubbery polymer, and may be prepared by polymerizing, preferably emulsion-polymerizing, the conjugated diene-based monomer.
  • the conjugated diene monomer may be at least one selected from the group consisting of 1,3-butadiene, isoprene, chloroprene and piperylene, and 1,3-butadiene is preferable.
  • the alkyl (meth) acrylate monomer unit may be a unit derived from an alkyl (meth) acrylate monomer.
  • the alkyl (meth) acrylate monomers are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate and lauryl It may be one or more selected from the group consisting of (meth) acrylates, of which methyl methacrylate is preferred.
  • the aromatic vinyl monomer unit may be a unit derived from an aromatic vinyl monomer.
  • the aromatic vinyl monomer may be at least one selected from the group consisting of styrene, ⁇ -methyl styrene, ⁇ -ethyl styrene, and p-methyl styrene, of which styrene is preferable.
  • the vinyl cyan monomer unit may be a unit derived from a vinyl cyan monomer.
  • the vinyl cyan-based monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, phenylacrylonitrile, and ⁇ -chloroacrylonitrile, of which acrylonitrile is preferable.
  • Matrix copolymer according to an embodiment of the present invention 1) cellulose nanocrystal derivative; 2) alkyl (meth) acrylate monomer units; 3) aromatic vinyl monomer units; And 4) vinyl cyan monomer units.
  • the matrix copolymer according to an embodiment of the present invention may have a refractive index of 1.51 to 1.52 or 1.512 to 1.518, of which 1.512 to 1.518 is preferable.
  • the graft copolymer including the conjugated diene polymer, the alkyl (meth) acrylate monomer unit, the aromatic vinyl monomer unit, and the vinyl cyan monomer unit is matched with the refractive index to form a transparent thermoplastic resin molded article. It can manufacture.
  • the matrix copolymer according to an embodiment of the present invention may have a weight average molecular weight of 80,000 to 150,000 g / mol or 90,000 to 120,000 g / mol, of which 90,000 to 120,000 g / mol is preferable. If the above range is satisfied, mechanical properties, particularly impact strength, can be improved.
  • the cellulose nanocrystal derivative may be changed by reacting the cellulose nanocrystal with one or more selected from the group consisting of alkyl (meth) acrylate monomers, aromatic vinyl monomers and vinyl cyan monomers introduced in the preparation of the matrix copolymer. .
  • the cellulose nanocrystal derivative can further improve the chemical resistance, impact resistance and tensile strength of the copolymer without affecting the transparency of the matrix copolymer.
  • the cellulose nanocrystal derivative may partially replace the alkyl (meth) acrylate-based monomer unit, it is possible to minimize the decrease in chemical resistance of the copolymer due to the alkyl (meth) acrylate monomer unit.
  • the processability is equivalent to that of the conventional. I can keep it.
  • the matrix copolymer may include the cellulose nanocrystal derivative and an alkyl (meth) acrylate monomer unit in a weight ratio of 1:99 to 20:80, 2:98 to 15:85, or 2:98 to 12:88. Among them, it is preferable to include in a weight ratio of 2:98 to 12:88.
  • the cellulose nanocrystal derivative may partially replace the alkyl (meth) acrylate monomer unit within a range that does not affect the transparency of the copolymer. As a result, a decrease in chemical resistance caused by the alkyl (meth) acrylate monomer unit may be minimized.
  • the matrix copolymer may include the cellulose nanocrystal derivative and the aromatic vinyl monomer unit in a weight ratio of 5:95 to 35:65, 7:93 to 30:70 or 7:93 to 25:75, of which It is preferably included in the weight ratio of 7:93 to 25:75.
  • the processability of the matrix copolymer can be further improved while preventing the decrease in transparency of the copolymer due to the cellulose nanocrystal derivative having a low refractive index.
  • the cellulose nanocrystal derivative may be included in an amount of 0.1 to 15% by weight, 1 to 12% by weight, or 2 to 9% by weight, based on the total weight of the matrix copolymer, 2 to 9% by weight of the matrix copolymer. desirable. When the above-mentioned range is satisfied, chemical resistance and mechanical properties can be further improved without affecting the transparency of the matrix copolymer.
  • the alkyl (meth) acrylate-based monomer units can impart excellent transparency to the matrix copolymer.
  • the alkyl (meth) acrylate monomer unit may be included in 50 to 75% by weight, 52 to 72% by weight, or 55 to 70% by weight, based on the total weight of the matrix copolymer, 55 to 70% by weight of It is preferably included in%. If the above range is satisfied, the transparency of the copolymer can be further improved.
  • the aromatic vinyl monomer unit can impart excellent processability, rigidity and impact resistance to the matrix copolymer.
  • the aromatic vinyl monomer unit may be included in an amount of 15 to 35% by weight, 17 to 32% by weight, or 20 to 30% by weight, based on the total weight of the matrix copolymer. It is preferable. If the above-mentioned range is satisfied, the rigidity, impact resistance and workability of the copolymer can be further improved.
  • the vinyl cyan monomer unit may impart excellent chemical resistance to the matrix copolymer.
  • the vinyl cyan monomer unit may be included in an amount of 1 to 15% by weight, 3 to 12% by weight, or 5 to 10% by weight, based on 5 to 10% by weight, based on the total weight of the matrix copolymer. It is preferable. If the above range is satisfied, the chemical resistance of the matrix copolymer can be further improved.
  • the matrix copolymer according to an embodiment of the present invention is prepared by adding a cellulose nanocrystal, an alkyl (meth) acrylate monomer, an aromatic vinyl monomer, and a vinyl cyan monomer to a reactor and polymerizing the same.
  • the cellulose nanocrystals may be added during the manufacturing process of the graft copolymer in the form of a solution mixed with a solvent in order to be uniformly dispersed in the polymerization solution.
  • the weight ratio of the cellulose nanocrystal and the alkyl (meth) acrylate monomer may be 1:99 to 20:80, 2:98 to 15:85, or 2:98 to 12:88. Of these, it is preferable that they are 2: 98-12: 88.
  • the cellulose nanocrystals may partially replace the alkyl (meth) acrylate monomers within a range that does not affect the transparency of the matrix copolymer. Accordingly, the content of the alkyl (meth) acrylate-based monomer units in the matrix copolymer can be reduced, thereby minimizing chemical resistance degradation.
  • the weight ratio of the cellulose nanocrystal and the aromatic vinyl monomer may be 5:95 to 35:65, 7:93 to 30:70, or 7:93 to 25:75, of which 7 It is preferable that they are: 93-25: 75.
  • the processability of the matrix copolymer can be further improved while preventing the decrease in transparency of the matrix copolymer due to the cellulose nanocrystals having a low refractive index.
  • the cellulose nanocrystals are 0.1 to 15% by weight, 1 to 12% by weight, or 2 to 9, based on the total weight of the cellulose nanocrystals, alkyl (meth) acrylate monomers, aromatic vinyl monomers and vinyl cyan monomers. It may be added in the weight%, of which it is preferred to add 2 to 9% by weight. When the above-mentioned range is satisfied, chemical resistance and mechanical properties can be further improved without affecting the transparency of the matrix copolymer.
  • the alkyl (meth) acrylate monomer is 50 to 75% by weight, 52 to 72% by weight relative to the total weight of the cellulose nanocrystal, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer Or 55 to 70% by weight, of which 55 to 70% by weight is preferred. If the above range is satisfied, the transparency of the copolymer can be further improved.
  • the aromatic vinyl monomer is 15 to 35% by weight, 17 to 32% by weight or 20 to 30, based on the total weight of the cellulose nanocrystal, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. It may be by weight, preferably 20 to 30% by weight. When the above range is satisfied, the stiffness, impact resistance and workability of the matrix copolymer can be further improved.
  • the vinyl cyan monomer is 1 to 15% by weight, 3 to 12% by weight, or 5 to 5, based on the total weight of the cellulose nanocrystal, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. It may be 10% by weight, of which 5 to 10% by weight is preferred. If the above range is satisfied, the chemical resistance of the matrix copolymer can be further improved.
  • the method for producing a matrix copolymer according to another embodiment of the present invention comprises the steps of polymerizing by adding an alkyl (meth) acrylate monomer, an aromatic vinyl monomer and a vinyl cyan monomer to the reactor (step 1); And it may include the step of adding the cellulose nanocrystals to the reactor and reacting (step 2).
  • Step 1 may be a step of adding an alkyl (meth) acrylate monomer, an aromatic vinyl monomer and a vinyl cyan monomer to the reactor and polymerization.
  • the polymerization may be a bulk polymerization or a suspension polymerization, of which a bulk polymerization capable of producing a high purity copolymer is preferable.
  • the alkyl (meth) acrylate monomer, the aromatic vinyl monomer and the vinyl cyan monomer are preferably polymerized while continuously input at a constant rate.
  • the monomers are polymerized while being continuously added, it is easy to remove heat during polymerization and suppress the runaway reaction due to excessive heat generation. In addition, the weight average molecular weight and polymerization conversion of the copolymer can be properly maintained.
  • the continuous dosing and polymerization may be carried out for 1 to 6 hours or 1.5 to 5 hours, preferably 1.5 to 5 hours. If the above conditions are satisfied, a copolymer having a uniform particle size can be produced and a stable polymerization conversion can be obtained.
  • the continuous dosing and polymerization may be performed at 100 ° C to 180 ° C or 110 ° C to 170 ° C, preferably at 110 ° C to 170 ° C.
  • the continuous polymerization and the polymerization is preferably carried out at a constant temperature in order to have a suitable polymerization rate.
  • step 1 it is preferable to further add one or more selected from the group consisting of an initiator, a molecular weight regulator and a solvent.
  • the initiator, the molecular weight regulator and the solvent is preferably continuously added at a constant rate with the monomers described above.
  • the initiator and the like are continuously added, a copolymer having a uniform particle size can be prepared while maintaining an appropriate polymerization rate.
  • the initiator is 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy)- It may be at least one selected from the group consisting of 3,3,5-trimethylcyclohexane or 2,2-bis (t-butylperoxy) butane, among which 1,1-bis (t-butylperoxy) cyclo Hexane is preferred.
  • the initiator may be added in an amount of 0.5 to 3 parts by weight or 0.7 to 1.5 parts by weight based on 100 parts by weight of the total of the cellulose nanocrystal, the alkyl (meth) acrylate monomer, the aromatic vinyl monomer, and the vinyl cyan monomer. It is preferable to add 0.7-1.5 weight part among these. If the above range is satisfied, the balance between the polymerization conversion ratio and the weight average molecular weight of the copolymer can be balanced.
  • the molecular weight modifiers include ⁇ -methyl styrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan, carbon tetrachloride, methylene chloride, methylene bromide, tetraethylthiuram disulfide, dipentamethylene thiuram disulfide and di It may be one or more selected from the group consisting of isopropyl chianthogen disulfide, of which t-dodecyl mercaptan is preferred.
  • the molecular weight modifier may be added in an amount of 0.05 to 0.3 parts by weight or 0.1 to 0.2 parts by weight based on 100 parts by weight of the cellulose nanocrystal, the alkyl (meth) acrylate monomer, the aromatic vinyl monomer, and the vinyl cyan monomer. Of these, 0.1 to 0.2 parts by weight is preferably added. If the above range is satisfied, the polymerization conversion ratio of the copolymer can be further increased.
  • the solvent may be an inert organic solvent when the copolymer is prepared by bulk polymerization.
  • the solvent may be at least one selected from the group consisting of methyl ethyl ketone, petroleum ether, ethyl benzene, toluene, carbon tetrachloride and chloroform, of which toluene is preferable.
  • the solvent may be added in an amount of 1 to 50 parts by weight or 10 to 40 parts by weight based on 100 parts by weight of the cellulose nanocrystal, an alkyl (meth) acrylate monomer, an aromatic vinyl monomer, and a vinyl cyan monomer. Of these, it is preferable to be added in 10 to 40 parts by weight. When the above range is satisfied, the viscosity of the polymerization solution is appropriately adjusted so that polymerization can be easily performed.
  • the cellulose nanocrystals may be added to the reactor and reacted. Specifically, the cellulose nanocrystals may be added at a polymerization conversion rate of 40 to 50% and reacted with the polymer and the unreacted monomer obtained in step 1.
  • the cellulose nanocrystals When the cellulose nanocrystals are introduced into the reactor in step 2, the cellulose nanocrystals may be uniformly dispersed in the polymer and unreacted monomers obtained in step 1, and as a result, the cellulose nanocrystal derivatives may be uniformly distributed in the matrix copolymer. Copolymers with excellent transparency, chemical resistance and mechanical properties can all be prepared.
  • the cellulose nanocrystals when the cellulose nanocrystals are added together in the step 1, the cellulose nanocrystals may be difficult to uniformly dispersed in the matrix copolymer by cellulose nanocrystals are polymerized due to their properties.
  • the cellulose nanocrystals when the cellulose nanocrystals are introduced in step 2, it is possible to minimize the polymerization of the cellulose nanocrystals, and the cellulose nanocrystals are the alkyl (meth) acrylate monomers, aromatic vinyl monomers, and vinyl cyan. The influence on the copolymerization of the monomers can be minimized.
  • the cellulose nanocrystals may be reacted with the polymer and the unreacted monomer obtained in step 1 for 1 to 5 hours or 1 to 4 hours, preferably 1 to 4 hours. If the above conditions are satisfied, the cellulose nanocrystals may be uniformly dispersed and present stably.
  • Step 2 may be performed at a higher temperature than step 1, and specifically, may be performed at a temperature of 1 ° C. to 5 ° C., but is not limited thereto.
  • the copolymer may be separated by volatilizing the unreacted monomer and the solvent in the polymerization product produced in the step 2 in a devolatilization tank.
  • Graft copolymer according to another embodiment of the present invention is 1) cellulose nanocrystal derivative; 2) conjugated diene polymer 3) alkyl (meth) acrylate monomer units; 4) aromatic vinyl monomer units; And 5) vinyl cyan-based monomer units.
  • the graft copolymer according to another embodiment of the present invention may have a weight average molecular weight of 80,000 to 130,000 g / mol or 90,000 to 120,000 g / mol, of which 90,000 to 120,000 g / mol is preferred. Do. If the above range is satisfied, a better balance between the processability and the mechanical properties of the graft copolymer can be achieved.
  • the graft copolymer according to another embodiment of the present invention may have a refractive index of 1.51 to 1.52 or 1.512 to 1.518, of which 1.512 to 1.518 is preferable. If the above-mentioned range is satisfied, the graft copolymer excellent in transparency can be manufactured.
  • the cellulose nanocrystal derivative is reacted with at least one selected from the group consisting of conjugated diene polymers, alkyl (meth) acrylate monomers, aromatic vinyl monomers and vinyl cyan monomers in which cellulose nanocrystals are introduced during the preparation of graft copolymers. It may be changed.
  • the cellulose nanocrystal derivative can significantly improve the chemical resistance and mechanical properties of the graft copolymer. Since the cellulose nanocrystal derivative may partially replace the alkyl (meth) acrylate-based monomer unit, it is possible to minimize a decrease in chemical resistance of the graft copolymer due to the alkyl (meth) acrylate monomer unit.
  • the graft copolymer may maintain transparency due to the relatively low refractive index cellulose nanocrystal derivative, and the graft copolymer may include an aromatic vinyl monomer unit in a higher content than the conventional one, and thus processability is equivalent to that of the conventional one. Can be maintained.
  • the graft copolymer may include the cellulose nanocrystal derivative and an alkyl (meth) acrylate monomer unit in a weight ratio of 1:99 to 30:70, 2:98 to 25:75, or 3:97 to 20:80. Among them, it is preferable to include in a weight ratio of 3:97 to 20:80.
  • the cellulose nanocrystal derivative may partially replace the alkyl (meth) acrylate monomer unit within a range that does not affect the transparency of the graft copolymer. As a result, a decrease in chemical resistance caused by the alkyl (meth) acrylate monomer unit may be minimized.
  • the graft copolymer of the cellulose nanocrystal derivative and the aromatic vinyl monomer unit 1:99 to 40:60, 3:97 to 35:65, 5:95 to 30:70 or 8:92 to 25:75 It may be included in a weight ratio, of which it is preferable to include in a weight ratio of 8:92 to 25:75.
  • the workability of the graft copolymer can be further improved while preventing the decrease in transparency of the graft copolymer due to the cellulose nanocrystal derivative having a low refractive index.
  • the cellulose nanocrystal derivative may be included in an amount of 0.1 to 10% by weight, 0.5 to 8% by weight, or 1 to 5% by weight, based on 1 to 5% by weight, based on the total weight of the graft copolymer. It is preferable. When the above-mentioned range is satisfied, chemical resistance and mechanical properties can be further improved without affecting the transparency of the graft copolymer.
  • the conjugated diene polymer is a conjugated diene polymer and a conjugated diene polymer and a cellulose nanocrystal that are modified by graft copolymerization of an alkyl (meth) acrylate monomer, an aromatic vinyl monomer, and a vinyl cyan monomer to a conjugated diene polymer.
  • the reaction may include a modified conjugated diene-based polymer.
  • the conjugated diene-based polymer may have an average particle diameter of 0.05 to 0.5 ⁇ m or 0.1 to 0.4 ⁇ m, of which 0.1 to 0.4 ⁇ m is preferred. If the above-mentioned range is satisfied, a graft copolymer excellent in both mechanical properties and surface gloss properties can be produced.
  • the conjugated diene polymer may be included in an amount of 40 to 60 wt%, 42 to 57 wt%, or 45 to 55 wt% of the conjugated diene polymer based on the total weight of the graft copolymer, of which 45 to 55 wt%. It is preferably included in the weight percent. If the above range is satisfied, the stiffness, mechanical properties, processability and surface gloss properties of the graft copolymer may be further improved.
  • the alkyl (meth) acrylate-based monomer unit can impart excellent transparency to the graft copolymer.
  • the alkyl (meth) acrylate monomer unit may be included in the amount of 15 to 40% by weight, 17 to 37% by weight, or 20 to 35% by weight, based on the total weight of the graft copolymer, of which 20 to 35 It is preferably included in the weight percent. If the above range is satisfied, the transparency of the graft copolymer can be further improved.
  • the aromatic vinyl monomer unit can impart the processability, rigidity and mechanical properties of the graft copolymer.
  • the aromatic vinyl monomer unit may be included in 5 to 20% by weight, 7 to 17% by weight, or 10 to 15% by weight, based on the total weight of the graft copolymer, of which 10 to 15% by weight It is preferred to be included. If the above range is satisfied, the workability, rigidity and mechanical properties of the graft copolymer can be further improved.
  • the vinyl cyan monomer unit may impart excellent chemical resistance to the graft copolymer.
  • the vinyl cyan monomer unit may be included in an amount of 1 to 15% by weight, 3 to 12% by weight, or 5 to 10% by weight, based on the total weight of the graft copolymer, including 5 to 10% by weight. It is preferable to be. If the above range is satisfied, the chemical resistance of the graft copolymer can be further improved.
  • the graft copolymer according to another embodiment of the present invention is prepared by adding a cellulose nanocrystal, a conjugated diene polymer, an alkyl (meth) acrylate monomer, an aromatic vinyl monomer, and a vinyl cyan monomer to a reactor and polymerizing the same. .
  • the weight ratio of the cellulose nanocrystal and the alkyl (meth) acrylate monomer may be 1:99 to 30:70, 2:98 to 25:75, or 3:97 to 20:80. Among them, 3:97 to 20:80 are preferable.
  • the cellulose nanocrystals may partially replace the alkyl (meth) acrylate monomers within a range that does not affect the transparency of the graft copolymer. Thus, it is possible to minimize the decrease in chemical resistance caused by the alkyl (meth) acrylate-based monomers.
  • the weight ratio of the cellulose nanocrystal and the aromatic vinyl monomer is 1:99 to 40:60, 3:97 to 35:65, 5:95 to 30:70 or 8:92 to 25 : 75, of which 8:92 to 25:75 are preferred.
  • the workability of the graft copolymer can be further improved while preventing the decrease in transparency of the graft copolymer due to the cellulose nanocrystal having a low refractive index.
  • the cellulose nanocrystals are 0.1 to 10% by weight, 0.5 to 8% by weight based on the total weight of the cellulose nanocrystals, conjugated diene polymer, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. , Or 1 to 5% by weight, preferably 1 to 5% by weight. When the above-mentioned range is satisfied, chemical resistance and mechanical properties can be further improved without affecting the transparency of the graft copolymer.
  • the conjugated diene polymer is 40 to 60% by weight of the conjugated diene polymer based on the total weight of the cellulose nanocrystal, conjugated diene polymer, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. , 42 to 57 wt%, or 45 to 55 wt%, of which 45 to 55 wt% is preferred. If the above range is satisfied, the stiffness, mechanical properties, processability and surface gloss properties of the graft copolymer may be further improved.
  • the alkyl (meth) acrylate monomer is 15 to 40% by weight, based on the total weight of the cellulose nanocrystal, conjugated diene polymer, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer, 17 to 37% by weight, or 20 to 35% by weight, of which 20 to 35% by weight is preferred. If the above range is satisfied, the transparency of the graft copolymer can be further improved.
  • the aromatic vinyl monomer is 5 to 20 wt%, 7 to 17 wt% based on the total weight of the cellulose nanocrystal, conjugated diene polymer, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. %, Or 10 to 15% by weight, of which 10 to 15% by weight is preferred. If the above range is satisfied, the workability, rigidity and mechanical properties of the graft copolymer can be further improved.
  • the vinyl cyan monomer is 1 to 15% by weight, 3 to 12 weight based on the total weight of the cellulose nanocrystal, conjugated diene polymer, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. %, Or 5 to 10 weight percent, of which 5 to 10 weight percent is preferred. If the above range is satisfied, the chemical resistance of the graft copolymer can be further improved.
  • the graft copolymer production method is a step of polymerizing the conjugated diene polymer, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer in the reactor (Step 1); And it is preferable that the cellulose nanocrystals are prepared by a manufacturing method comprising the step (step 2) of the reaction.
  • Step 1 may be a step of emulsion polymerization by adding the conjugated diene polymer, alkyl (meth) acrylate monomers, aromatic vinyl monomers and vinyl cyan monomers.
  • step 1 the conjugated diene-based polymer is collectively added to the reactor, and then the alkyl (meth) acrylate-based monomer, aromatic vinyl-based monomer and vinyl cyan-based monomer are preferably polymerized while continuously feeding at a constant rate.
  • the polymerization is carried out by the above-described method, heat removal during polymerization is easy, and congestion reaction due to excessive heat generation can be suppressed.
  • the continuous dosing and polymerization may be carried out for 3 to 7 hours or 4 to 6 hours, preferably 4 to 6 hours. If the above conditions are satisfied, graft copolymerization can be easily performed as long as it is easy to defrost during polymerization and can suppress the runaway reaction caused by excessive exotherm.
  • the continuous addition and polymerization may be carried out at 60 °C to 80 °C or 62 °C to 78 °C, it is preferably carried out at 62 °C to 78 °C.
  • the continuous dosing and polymerization is preferably carried out at a constant temperature.
  • the conjugated diene-based polymer may be in a latex form dispersed in water in a colloidal state.
  • step 1 it is preferable to further add one or more selected from the group consisting of an initiator, an emulsifier, a molecular weight regulator, an oxidation-reduction catalyst and ion-exchanged water.
  • the polymerization rate can be controlled, and the copolymer having a uniform particle size can be polymerized while suppressing the runaway reaction due to excessive heat generation.
  • the initiator may be at least one selected from the group consisting of a peroxide initiator and a sulfite initiator.
  • the peroxide initiator may be at least one selected from the group consisting of t-butyl peroxide, cumene hydroperoxide and diisopropylbenzene peroxide, of which cumene hydroperoxide is preferable.
  • the sulfite-based initiator may be at least one selected from the group consisting of potassium persulfate, sodium persulfate and ammonium persulfate, and potassium persulfate is preferred.
  • the initiator is 0.01 to 0.1 parts by weight or 0.03 to 0.08 parts by weight based on 100 parts by weight of the conjugated diene polymer, cellulose nanocrystal, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. It may be added, of which 0.03 to 0.08 parts by weight is preferably added. If the above-mentioned range is satisfied, while the emulsion polymerization is easily performed, the residual amount in the graft copolymer can be minimized.
  • the emulsifier may be at least one selected from the group consisting of C 12 to C 18 succinate metal salts, sulfonic acid metal salts, alkali metal rosin acids, alkali metal alkali salts and fatty acid dimer alkali metal salts, of which sulfonic acid metal salts are preferred. .
  • the C 12 to C 18 succinate salt of the alkenyl succinic acid may be di-potassium salt of a C 12 to C 18.
  • the sulfonic acid metal salt is one selected from the group consisting of sodium dodecyl sulfate, sodium lauric sulfate, sodium octadecyl sulfate, sodium oleic sulfate, potassium dodecyl sulfate, sodium dodecyl benzene sulfonate and potassium octadecyl sulfonate. Or more, of which sodium dodecyl benzene sulfonate is preferred.
  • the rosin acid alkali metal salt may be one or more selected from the group consisting of potassium rosin acid salt and sodium rosin acid salt, and potassium rosin acid salt is preferable.
  • the fatty acid alkali metal salt may be a C 8 to C 20 fatty acid alkali metal salt, alkali metal salt of capric acid, alkali metal salt of lauric acid, alkali metal salt of palmitic acid, alkali metal salt of stearic acid, alkali metal salt and oleic acid and linol More than 1 type chosen from the group which consists of alkali metal salt of a rain acid is more preferable.
  • the fatty acid dimer alkali metal salt may be a C 8 to C 20 fatty acid dimer alkali metal salt, preferably a C 8 to C 20 fatty acid dimer potassium salt, and more preferably an oleic acid dimer potassium salt.
  • the emulsifier is 0.1 to 3 parts by weight or 0.5 to 2 parts by weight based on 100 parts by weight of the conjugated diene polymer, cellulose nanocrystal, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. It may be added, of which 0.5 to 2 parts by weight is preferably added. If the above range is satisfied, the polymerization rate may be excellent while maintaining the reaction rate appropriately. In addition, discoloration and gas generation due to the emulsifier can be minimized.
  • the molecular weight modifier is as described above, t-dodecyl mercaptan is preferred.
  • the molecular weight modifier is 0.1 to 0.6 parts by weight or 0.2 to 0.5 parts by weight based on 100 parts by weight of the conjugated diene polymer, cellulose nanocrystal, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. It may be added in a portion, of which 0.2 to 0.5 parts by weight is preferably added. If the above-mentioned range is satisfied, the graft copolymer having the target weight average molecular weight can be produced while the polymerization conversion rate of the shell can be further increased while appropriately adjusting the weight average molecular weight of the shell.
  • the redox catalyst may be at least one selected from the group consisting of sodium formaldehyde sulfoxylate, ethylenediamine tetraacetic acid disodium salt, ferrous sulfate, dextrose, sodium pyrophosphate, anhydrous sodium pyrophosphate and sodium sulfate. Among them, at least one selected from the group consisting of sodium formaldehyde sulfoxylate, ethylenediamine tetraacetic acid disodium salt and ferrous sulfate is preferable.
  • the redox catalyst is 0.01 to 0.1 parts by weight or 0.02 to 100 parts by weight of the total of the conjugated diene polymer, cellulose nanocrystal, alkyl (meth) acrylate monomer, aromatic vinyl monomer and vinyl cyan monomer. To 0.09 parts by weight, of which 0.02 to 0.09 parts by weight is preferred. If the above range is satisfied, polymerization can be easily initiated at a relatively low temperature.
  • Step 2 is a step of ripening the polymer obtained in step 1 and further polymerizing the unreacted monomer, cellulose nanocrystals are added in step 2 may react with the polymer and the unreacted monomer obtained in step 1. .
  • the time point of the cellulose nanocrystals may be a time when the polymerization conversion rate is 40 to 50%.
  • the cellulose nanocrystals When the cellulose nanocrystals are introduced in step 2, the cellulose nanocrystals may be uniformly dispersed in the polymer and unreacted monomers obtained in step 1, and as a result, the cellulose nanocrystal derivatives are uniformly distributed in the graft copolymer, thereby providing transparency, Graft copolymers excellent in both chemical resistance and mechanical properties can be prepared.
  • the cellulose nanocrystals can be polymerized cellulose nanocrystals due to their properties.
  • the cellulose nanocrystals can be minimized from polymerizing, and the cellulose nanocrystals are conjugated diene-based polymers, alkyl (meth) acrylate monomers, and aromatic vinyl-based monomers.
  • the influence on the graft copolymerization of the monomer and the vinyl cyan monomer can also be minimized.
  • the cellulose nanocrystals may be added in batches or continuously.
  • aging and further polymerization may be performed for 0.5 to 2 hours or 1 to 1.5 hours, and aging and further polymerization is preferably performed for 1 to 1.5 hours. If the above conditions are satisfied, the polymerization conversion rate can be higher.
  • Step 2 may be carried out at a higher temperature than the step 1, it may be carried out at 75 °C to 85 °C to 78 °C to 83 °C, which is preferably performed at 78 °C to 83 °C. If the above conditions are satisfied, a copolymer having a uniform particle size can be produced by easily controlling the polymerization temperature and having an appropriate polymerization rate.
  • the coagulation, aging, washing and drying may be further performed to obtain a graft copolymer in powder form.
  • Thermoplastic resin composition according to another embodiment of the present invention is a matrix copolymer comprising an alkyl (meth) acrylate monomer unit, an aromatic vinyl monomer unit, and a vinyl cyan monomer unit; And a graft copolymer comprising a conjugated diene polymer, an alkyl (meth) acrylate monomer unit, an aromatic vinyl monomer unit, and a vinyl cyan monomer unit, wherein at least one of the matrix copolymer and the graft copolymer At least one further comprises a cellulose nanocrystal derivative.
  • the weight ratio of the matrix copolymer and the graft copolymer may include a weight ratio of 50:50 to 20:80 or 50:50 to 25:75, and preferably includes a weight ratio of 50:50 to 25:75. . If the above range is satisfied, a thermoplastic resin molded article excellent in transparency, chemical resistance, impact resistance and tensile strength can be produced.
  • the matrix copolymer and the graft copolymer may have a refractive index difference of 0 to 0.008 or 0 to 0.003, of which 0 to 0.003. If the above-mentioned range is satisfied, the thermoplastic resin molded article excellent in transparency can be manufactured.
  • the matrix copolymer and the graft copolymer may have a refractive index of 1.51 to 1.52 or 1.512 to 1.518, respectively, of which 1.512 to 1.518 are preferable.
  • the refractive indexes of the matrix copolymer and the graft copolymer are similar to each other, whereby a transparent thermoplastic resin molded article may be manufactured.
  • BGB Ultra TM Cellulose Nanocrystals Suspension from Blue Goose Biorefineries Inc. was used. Information on BGB Ultra TM Cellulose Nanocrystals Suspension is as follows.
  • Refractive index The cellulose nanocrystal aqueous solution was irradiated with 589.3 nm visible light, and the value measured using the Abbe refractometer was 1.47.
  • Particle diameter of primary particles 9 to 14 nm (Measuring method: TEM)
  • Diameter of secondary particles 150 nm (Measuring method: DLS)
  • MMA Methacrylate
  • SM styrene
  • AN acrylonitrile
  • the cellulose nanocrystalline To (CNC C ellulose N ano C rystal) 2 by weight of cellulose nanocrystalline bulk solution including a commitment, and polymerized for 2 hours, and terminates the polymerization.
  • the obtained polymerization product was heated in a preheating bath and volatilized unreacted monomer and solvent in a volatilization bath.
  • the matrix copolymer in pellet form was prepared by a polymer transfer pump extrusion machine maintained at 210 ° C.
  • Butadiene rubbery polymer latex (BD, average particle diameter: 300 nm, refractive index: 1.516, gel content: 70%) in a reactor containing 50 parts by weight (based on solids) 1.0 part by weight of sodium dodecyl benzene sulfonate as emulsifier, cumene as initiator 0.04 parts by weight of hydroperoxide, 0.3 parts by weight of t-dodecyl mercaptan as molecular weight modifier, 0.048 parts by weight of sodium formaldehyde sulfoxylate as oxidation-reduction catalyst, 0.012 parts by weight of ethylenediamine tetraacetic acid disodium salt and sulfate 1 Methyl methacrylate (MMA), styrene (SM) and acrylonitrile (AN) at a constant rate at 75 ° C. for 5 hours at 0.001 parts by weight of iron, 100 parts by weight of ion-exchanged water, and the contents described in
  • cellulose nanocrystal CNC: C ellulose N ano C rystal
  • CNC C ellulose N ano C rystal
  • thermoplastic resin composition ⁇ Production of the thermoplastic resin composition>
  • thermoplastic resin composition was prepared by uniformly mixing the matrix polymer and the graft copolymer described in Table 3 below.
  • thermoplastic resin composition was prepared by uniformly mixing an aqueous solution of cellulose nanocrystals including 60 parts by weight of the matrix copolymer of Comparative Example 1, 37 parts by weight of the graft copolymer powder of Comparative Example 2, and 3 parts by weight of cellulose nanocrystals.
  • Refractive index 589.3 nm visible ray was irradiated to the matrix copolymer, and it measured using the Abbe refractometer.
  • TSC Solid content of monomers and additives theoretically introduced in the preparation of the matrix copolymer
  • Weight average molecular weight (g / mol): It was measured by using tetrahydrofuran (THF), relative to the standard polystyrene (PS) sample using gel permeation chromatography (GPC, waters breeze).
  • Example 2 Example 3
  • Example 4 Comparative Example 1 Matrix copolymer A B C D E Composition (part by weight) MMA 66.5 64.0 61.5 59.0 69.0 SM 24.5 25.0 25.5 24.0 24.0 AN 7.0 7.0 7.0 7.0 CNC 2.0 4.0 6.0 8.0 - 1 refractive index 1.516 1.516 1.516 1.516 2 polymerization conversion rate 60 59 61 60 61 3 Weight average molecular weight 109,000 109,500 110,000 115,000 110,000
  • the matrix copolymers of Examples 1 to 4 have the same refractive index, polymerization conversion ratio, and weight average molecular weight as compared to the matrix copolymer of Comparative Example 1. From these results, it was confirmed that even if the cellulose nanocrystals were added during the manufacturing process of the matrix copolymer, the physical properties of the matrix copolymer were not affected.
  • the graft copolymer powder was irradiated with 589.3 nm visible light and measured using an Abbe refractometer.
  • Graft rate (%): A certain amount of graft copolymer is added to acetone and vibrated for 24 hours with a vibrator (trade name: SI-600R, manufacturer: Lab. Companion) to dissolve the free graft copolymer, and then centrifuge 14,000. After centrifugation at rpm for 1 hour to separate the supernatant (sol), the precipitate (gel) was dried in a vacuum dryer (trade name: DRV320DB, manufacturer: ADVANTEC) at 140 ° C. for 2 hours to obtain an insoluble content. It can be calculated using an equation.
  • the graft copolymers of Examples 5 to 8 it was confirmed that the graft copolymer of Comparative Example 2 and the refractive index, the graft ratio and the weight average molecular weight of the shell is the same level or higher. From these results, it was confirmed that the cellulose nanocrystals did not affect the physical properties of the graft copolymer even when the cellulose nanocrystal was added during the manufacturing process of the graft copolymer.
  • thermoplastic resin compositions of Examples and Comparative Examples 2 parts by weight of ethylene bis (stearicamide) and 0.2 parts by weight of phosphate-based antioxidants were uniformly mixed, and then charged into a twin screw extruder set at 230 ° C. to extrude pellets.
  • the flow index of the pellets was measured by the following method, and the results are shown in the following [Table 3] to [Table 6].
  • the pellets prepared in Experimental Example 3 were injected at 230 ° C., and aged at 25 ° C. and 50 ⁇ 5% relative humidity for 12 hours to prepare specimens.
  • the specimens were evaluated for physical properties by the method described below, and the results are shown in the following [Table 3] to [Table 6].
  • Transparency (haze,%): The transparency of the sheet having a thickness of 3 mm was measured according to ASTM D-1003.
  • L 1 ′, a 1 ′ and b 1 ′ are L, a and b values measured in a CIE LAB color coordinate system after storing the specimen in an oven at 80 ° C. for 7 days
  • L 10 , a 10 and b 10 is the L, a, and b values measured in a CIE LAB color coordinate system before storage in the oven.
  • ⁇ Injection retention change ( ⁇ E 2 ): The L, a, b values of the specimens were measured, and after staying at 250 ° C. for 15 minutes in the injection machine, the L, a, b values were measured. And the degree of discoloration was evaluated by the following formula.
  • L 2 ′, a 2 ′ and b 2 ′ are L, a and b values measured with a CIE LAB color coordinate system after the specimen is held at 250 ° C. for 15 minutes in an injection molding machine
  • L 20 , a 20 and b 20 is the L, a and b values of the specimen measured in CIE LAB color coordinate system prior to retention.
  • thermoplastic resin composition comprising a matrix copolymer comprising a cellulose nanocrystal derivative and a graft copolymer not containing a cellulose nanocrystal derivative
  • Flow index and transparency are comparable to those of Comparative Example 3 prepared with a graft copolymer without a cellulose nanocrystal derivative and a thermoplastic resin composition including a matrix copolymer, but changes in oven aging, change in injection flow rate, impact strength, and tensile strength are similar. It was confirmed that the strength and chemical resistance were excellent.
  • cellulose nanocrystal derivatives were included.
  • the specimens of Examples 13 to 15 made of a thermoplastic resin composition comprising a matrix copolymer not containing and a graft copolymer comprising a cellulose nanocrystal derivative are used as the graft copolymer and matrix containing no cellulose nanocrystal derivative.
  • Comparative Example 3 made of a thermoplastic resin composition including a copolymer
  • the flow index and transparency were equivalent, but it was confirmed that the change over time, change in injection flow, impact strength, tensile strength, and chemical resistance were excellent.
  • the content of the cellulose nanocrystals added during the manufacture of the graft copolymer was increased, changes in oven aging, changes in injection flow, impact strength, tensile strength, and chemical resistance were improved.
  • the specimens of Examples 16 to 22 prepared from the graft copolymer including the cellulose nanocrystal derivative and the thermoplastic resin composition including the matrix copolymer include the graft copolymer and the matrix copolymer without the cellulose nanocrystal derivative.
  • Comparative Example 3 made of a thermoplastic resin composition comprising a flow index and transparency is the same level, it was confirmed that the change over time, the change in injection residence, impact strength, tensile strength and chemical resistance.
  • the content of the cellulose nanocrystals added during the preparation of the graft copolymer or the matrix copolymer increased, changes in oven aging, change in injection flow rate, impact strength, tensile strength, and chemical resistance were improved.
  • thermoplastic resin composition of Comparative Example 4 containing the aqueous solution of cellulose nanocrystals as a separate component it was difficult to continuously perform extrusion because the phenomenon of the cellulose nanocrystals accumulated in the screw of the extruder during the pellet manufacturing process. Therefore, the pellets of Comparative Example 4 could not be extruded to the extent that the change in oven time and injection retention could be measured, and as a result, the change in oven time and injection retention could not be measured.
  • the cellulose nanocrystals are present in the form of an aqueous solution, the pellets are carbonized due to water, and the transparency is markedly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 셀룰로오스 나노크리스탈 유도체, 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체; 셀룰로오스 나노크리스탈 유도체, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 그라프트 공중합체; 및 이들 중 적어도 하나 이상을 포함하는 열가소성 수지 조성물에 관한 것으로서, 본 발명을 따르면, 투명성을 유지하면서, 가공성, 충격강도, 인장강도 및 내화학성이 개선된 열가소성 수지 조성물을 제공할 수 있다.

Description

매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물
[관련출원과의 상호인용]
본 발명은 2018년 05월 14일에 출원된 한국 특허 출원 제10-2018-0054988호, 제10-2018-0054989호 및 제10-2018-0054990호와, 2019년 05월 14일에 출원된 한국 특허 출원 제10-2019-0055975호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물에 관한 것으로서, 셀룰로오스 나노크리스탈 유도체를 포함하는 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물에 관한 것이다.
투명 열가소성 수지 조성물은 투명 그라프트 공중합체와 투명 매트릭스 공중합체를 압출하여 제조한다. 투명 그라프트 공중합체와 투명 매트릭스 공중합체의 굴절률이 일치할수록 열가소성 수지 성형품의 투명성은 향상된다.
한편, 투명 매트릭스 공중합체와 투명 그라프트 공중합체는 굴절률이 낮은 메틸 메타크릴레이트 단위를 구성 요소 중 가장 높은 함량으로 포함한다. 이러한 메틸 메타크릴레이트 단위는 투명 매트릭스 공중합체의 투명성을 개선시키지만, 내화학성을 저하시킨다. 또한, 메틸 메타크릴레이트 단위는 300 ℃ 이상의 고온에서 열분해되므로 최종 제품의 색상 또는 열 안정성을 저하시킬 수 있다.
이에 따라, 투명성 및 내화학성이 모두 우수한 투명 매트릭스 공중합체 및 투명 그라프트 공중합체를 제조하기 위한 연구가 계속되고 있다.
본 발명의 목적은 투명성, 내화학성 및 기계적 특성이 우수한 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물을 제공하는 것이다.
본 발명은 셀룰로오스 나노크리스탈 유도체; 알킬 (메트)아크릴레이트계 단량체 단위; 방향족 비닐계 단량체 단위; 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체를 제공한다.
또한, 본 발명은 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 반응기에 투입하고 중합하는 매트릭스 공중합체의 제조방법을 제공한다.
또한, 본 발명은 셀룰로오스 나노크리스탈 유도체; 공액 디엔계 중합체; 알킬 (메트)아크릴레이트계 단량체 단위; 방향족 비닐계 단량체 단위; 및 비닐 시안계 단량체 단위를 포함하는 그라프트 공중합체를 제공한다.
또한, 본 발명은 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 반응기에 투입하고 그라프트 중합하는 그라프트 공중합체의 제조방법을 제공한다.
또한, 본 발명은 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체; 및 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 그라프트 공중합체를 포함하는 열가소성 수지 조성물이며, 상기 매트릭스 공중합체 및 상기 그라프트 공중합체 중 적어도 하나 이상이 셀룰로오스 나노크리스탈 유도체를 더 포함하는 열가소성 수지 조성물을 제공한다.
본 발명의 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물은 셀룰로오스 나노크리스탈 유도체를 포함함으로써, 투명성을 기존과 동등 수준으로 유지하면서, 내화학성, 충격강도 및 인장강도를 보다 개선시킬 수 있다.
또한, 본 발명의 매트릭스 공중합체 및 그라프트 공중합체에 포함된 셀룰로오스 나노크리스탈 유도체는 알킬 (메트)아크릴레이트계 단량체 단위를 일부 대체할 수 있으므로, 알킬 (메트)아크릴레이트계 단량체 단위로부터 초래되는 내화학성 저하를 최소화할 수 있다.
또한, 본 발명의 매트릭스 공중합체 및 그라프트 공중합체에 포함된 셀룰로오스 나노크리스탈 유도체의 낮은 굴절률로 인해 방향족 비닐계 단량체 단위를 기존보다 과량으로 포함할 수 있으므로, 가공성이 보다 개선될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 셀룰로오스 나노크리스탈(Cellulose Nano Crystal, CNC)은 셀룰로오스를 화학적 처리함으로써 얻을 수 있다. 셀룰로오스는 결정 영역과 비결정 영역으로 구성될 수 있으며, 셀룰로오스에 산을 가하면 분자가 상대적으로 비규칙적으로 배열된 비결정 영역에 하이드로늄 이온(H3O+)이 침투하고, 침투한 하이드로늄 이온이 글리코시드 결합의 가수분해를 촉진하여 비결정 영역이 결정 영역으로 전환된 셀룰로오스 나노크리스탈을 제조할 수 있다. 여기서, 산은 염산, 황산, 인산, 브롬화수소산 및 질산으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 황산이 바람직하다.
본 발명에서 셀룰로오스 나노크리스탈은 굴절률이 1.4 내지 1.5 또는 1.42 내지 1.48일 수 있고, 이 중 1.42 내지 1.48인 것이 바람직하다. 상술한 범위를 만족하면, 기존과 동등 수준으로 공중합체의 투명성을 유지할 수 있다.
본 발명에서 셀룰로오스 나노크리스탈은 복수개의 1차 입자를 포함하는 2차 입자일 수 있다. 여기서, 1차 입자는 셀룰로오스 나노크리스탈의 단일 결정을 의미할 수 있고, 2차 입자는 복수개의 셀룰로오스 나노크리스탈의 단일 결정인 1차 입자들의 집합체를 의미할 수 있다.
상기 셀룰로오스 나노크리스탈은 1차 입자의 평균직경이 5 내지 20 ㎚ 또는 9 내지 14 ㎚일 수 있고, 이 중 9 내지 14 ㎚인 것이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체 또는 그라프트 공중합체의 내화학성 및 기계적 특성을 보다 개선시킬 수 있다. 상기 셀룰로오스 나노크리스탈은 1차 입자의 평균길이가 50 내지 200 ㎚ 또는 100 내지 150 ㎚이고, 이 중 100 내지 150 ㎚인 것이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체 또는 그라프트 공중합체의 내화학성 및 기계적 특성을 보다 개선시킬 수 있다.
여기서, 상기 셀룰로오스 나노크리스탈의 1차 입자의 평균직경 및 평균길이는 투과전자현미경(Transmission Electron Microscope, TEM)을 이용하여 측정할 수 있다.
상기 셀룰로오스 나노크리스탈은 2차 입자의 평균직경이 100 내지 200 ㎚ 또는 125 내지 175 ㎚일 수 있고, 이 중 125 내지 175 ㎚인 것이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체 또는 그라프트 공중합체의 내화학성, 내충격성 및 인장강도를 보다 개선시킬 수 있다.
여기서, 상기 셀룰로오스 나노크리스탈의 2차 입자의 평균입경은 평균 유체역학적 직경(average hydrodynamic diameter)을 의미할 수 있다. 상기 셀룰로오스 나노크리스탈의 2차 입차의 평균입경은 동적 광산란(Dynamic Light Scattering, DLS)법으로 측정할 수 있고, 구체적으로 Zetasizer model Nano-Zs(상품명, 제조사: Malvern)를 이용하여 측정할 수 있다.
상기 셀룰로오스 나노크리스탈은 결정화 지수가 70 % 내지 90 % 또는 75 % 내지 85 %일 수 있고, 이 중 75 % 내지 85 %인 것이 바람직하다. 상술한 범위를 만족하면, 셀룰로오스 나노크리스탈이 중합 용액 내에 투입되었을 때, 보다 균일하게 분산될 수 있다.
여기서, 상기 셀룰로오스 나노크리스탈의 결정화 지수(Crystallinity Index)는 시걸법(Segal Method)으로 측정할 수 있다.
상기 셀룰로오스 나노크리스탈은 매트릭스 공중합체 또는 그라프트 공중합체의 제조 시, 중합 용액에 균일하게 분산되기 위하여 수성 용매와 혼합된 용액 상태로 형태로 제조 공정 중에 투입될 수 있다.
상기 셀룰로오스 나노크리스탈과 수성 용매의 중량비는 5:95 내지 15:85 또는 5:95 내지 10:90일 수 있고, 이 중 5:95 내지 10:90가 바람직하다. 상술한 범위를 만족하면, 셀룰로오스 나노크리스탈이 중합 용액 내에 보다 균일하게 분산될 수 있다.
상기 수성 용매는 물일 수 있고, 물 중에서 역삼투수가 바람직하다.
상기 용액 내의 셀룰로오스 나노크리스탈의 제타 전위(Zeta Potential)는 -45 ㎷ 내지 - 25 ㎷ 또는 -40 ㎷ 내지 -30 ㎷일 수 있고, 이 중 -40 ㎷ 내지 -30 ㎷인 것이 바람직하다. 상술한 조건을 만족하면, 상기 셀룰로오스 나노크리스탈 용액의 분산 안정성이 보다 우수해질 수 있다. 또한, 상기 셀룰로오스 나노크리스탈 용액이 중합 용액 내에 투입되었을 때, 보다 균일하게 분산될 수 있다.
여기서, 상기 셀룰로오스 나노크리스탈의 제타 전위(Zeta Potential)는 Zetasizer model Nano-Zs(상품명, 제조사: Malvern)를 이용하여 DLS법으로 측정할 수 있다.
본 발명에서 셀룰로오스 나노크리스탈은 직접 제조하거나 시판되는 물질을 사용할 수 있으며, 시판되는 물질로는 Blue Goose Biorefineries Inc.,의 BGB UltraTM Cellulose Nanocrystals Suspension을 이용할 수 있다.
본 발명에서 굴절률은 물질의 절대 굴절률을 의미하는 것으로, 굴절률은 자유 공간에서의 전자기 복사선 속도 대 물질 내에서의 복사선의 속도 비로서 인식될 수 있다, 이때 복사선은 파장이 450 nm 내지 680 nm의 가시광선일 수 있고, 구체적으로는 파장이 589.3 nm의 가시광선일 수 있다. 굴절률은 공지된 방법, 즉 아베 굴절계(Abbe Refractometer)를 이용하여 측정할 수 있다.
본 발명에서 매트릭스 공중합체의 중량평균분자량은 테트라하이드로퓨란(THF) 및 겔 투과 크로마토그래피(GPC, waters breeze)를 이용하여 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다.
본 발명에서 그라프트 공중합체의 그라프트율은 그라프트 공중합체 일정량을 아세톤에 투입하고 24 시간 동안 진동시켜 유리된 그라프트 공중합체를 용해시키고, 원심 분리기로 1 시간 동안 원심 분리하여 상등액(졸)을 분리한 후, 침전물(겔)을 140 ℃, 2 시간 동안 진공 건조시켜 불용분을 수득한 후, 하기 식을 이용하여 산출할 수 있다.
그라프트율(%)=[(Y-(X×R))/ (X×R)] × 100
X: 불용분 수득 시 투입된 그라프트 공중합체의 중량
Y: 불용분 중량
R: 불용분 수득 시 투입된 그라프트 공중합체 내 부타디엔 고무질 중합체의 분율
본 발명에서 그라프트 공중합체의 쉘의 중량평균분자량(g/mol)은 그라프트율 측정방법에 기재된 방법으로 분리된 졸을 50 ℃ 열풍 오븐에서 건조한 후, 해당 졸 부분을 THF 용액에 녹여 용액(농도: 0.1 중량%)을 제조하고, 이를 0.1 ㎛ 필터를 통해 걸려낸 뒤 최종적으로 GPC 기기(제조사: waters사)를 이용하여 중량평균분자량을 얻을 수 있다.
본 발명에서 공액 디엔계 중합체는 공액 디엔계 고무질 중합체일 수 있고, 공액 디엔계 단량체를 중합, 바람직하게는 유화 중합하여 제조될 수 있다. 상기 공액 디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피퍼릴렌으로 이루어진 군에서 선택된 1종 이상일 수 있고, 이 중 1,3-부타디엔이 바람직하다.
본 발명에서 알킬 (메트)아크릴레이트계 단량체 단위는 알킬 (메트)아크릴레이트계 단량체로부터 유래된 단위일 수 있다. 상기 알킬 (메트)아크릴레이트계 단량체는 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 2-에틸헥실 (메트)아크릴레이트, 데실 (메트)아크릴레이트 및 라우릴 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 메틸 메타크릴레이트가 바람직하다.
본 발명에서 방향족 비닐계 단량체 단위는 방향족 비닐계 단량체로부터 유래된 단위일 수 있다. 상기 방향족 비닐계 단량체는 스티렌, α-메틸 스티렌, α-에틸 스티렌 및 p-메틸 스티렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
본 발명에서 비닐 시안계 단량체 단위는 비닐 시안계 단량체로부터 유래된 단위일 수 있다. 상기 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 아크릴로니트릴이 바람직하다.
1. 매트릭스 공중합체
본 발명의 일실시예에 따른 매트릭스 공중합체는 1) 셀룰로오스 나노크리스탈 유도체; 2) 알킬 (메트)아크릴레이트계 단량체 단위; 3) 방향족 비닐계 단량체 단위; 및 4) 비닐 시안계 단량체 단위를 포함한다.
한편, 본 발명의 일실시예에 따른 매트릭스 공중합체는 굴절률이 1.51 내지 1.52 또는 1.512 내지 1.518일 수 있고, 이 중 1.512 내지 1.518이 바람직하다. 상술한 범위를 만족하면, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위를 포함하는 그라프트 공중합체와 굴절률이 일치하여 투명 열가소성 수지 성형품을 제조할 수 있다.
한편, 본 발명의 일실시예에 따른 매트릭스 공중합체는 중량평균분자량이 80,000 내지 150,000 g/mol 또는 90,000 내지 120,000 g/mol일 수 있고, 이 중 90,000 내지 120,000 g/mol이 바람직하다. 상술한 범위를 만족하면, 기계적 특성, 특히 충격강도가 개선될 수 있다.
이하, 본 발명의 일실시예에 따른 매트릭스 공중합체의 구성 요소에 대하여, 상세하게 설명한다.
1) 셀룰로오스 나노크리스탈 유도체
셀룰로오스 나노크리스탈 유도체는 셀룰로오스 나노크리스탈이 매트릭스 공중합체의 제조 시 투입된 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 1종 이상과 반응하여 변화된 것일 수 있다.
상기 셀룰로오스 나노크리스탈 유도체는 매트릭스 공중합체의 투명성에는 영향을 미치지 않으면서, 공중합체의 내화학성, 내충격성 및 인장강도를 보다 개선시킬 수 있다.
상기 셀룰로오스 나노크리스탈 유도체는 알킬 (메트)아크릴레이트계 단량체 단위를 일부 대체할 수 있으므로, 알킬 (메트)아크릴레이트 단량체 단위로 인한 공중합체의 내화학성 저하를 최소화할 수 있다.
그리고, 상대적으로 굴절률이 낮은 셀룰로오스 나노크리스탈 유도체로 인해 매트릭스 공중합체가 투명성을 유지할 수 있고, 매트릭스 공중합체가 방향족 비닐계 단량체 단위를 기존보다 높은 함량으로 포함할 수 있으므로, 기존과 동등 수준으로 가공성을 유지할 수 있다.
상기 매트릭스 공중합체는 상기 셀룰로오스 나노크리스탈 유도체와 알킬 (메트)아크릴레이트계 단량체 단위를 1:99 내지 20:80, 2:98 내지 15:85 또는 2:98 내지 12:88의 중량비로 포함할 수 있고, 이 중 2:98 내지 12:88의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 공중합체의 투명성에 영향을 미치지 않는 범위 내에서 상기 셀룰로오스 나노크리스탈 유도체가 상기 알킬 (메트)아크릴레이트계 단량체 단위를 일부 대체할 수 있다. 이에, 상기 알킬 (메트)아크릴레이트계 단량체 단위로 초래되는 내화학성 저하를 최소화할 수 있다.
상기 매트릭스 공중합체는 상기 셀룰로오스 나노크리스탈 유도체와 방향족 비닐계 단량체 단위를 5:95 내지 35:65, 7:93 내지 30:70 또는 7:93 내지 25:75의 중량비로 포함할 수 있고, 이 중 7:93 내지 25:75의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 굴절률이 낮은 셀룰로오스 나노크리스탈 유도체로 인한 공중합체의 투명성의 저하를 방지하면서, 매트릭스 공중합체의 가공성을 보다 개선시킬 수 있다.
상기 셀룰로오스 나노크리스탈 유도체는 상기 매트릭스 공중합체의 총 중량에 대하여, 0.1 내지 15 중량%, 1 내지 12 중량%, 또는 2 내지 9 중량%로 포함될 수 있고, 이 중 2 내지 9 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체의 투명성에 영향을 미치지 않으면서, 내화학성 및 기계적 특성을 보다 개선시킬 수 있다.
2) 알킬 (메트)아크릴레이트계 단량체 단위
알킬 (메트)아크릴레이트계 단량체 단위는 매트릭스 공중합체에 우수한 투명성을 부여해줄 수 있다.
상기 알킬 (메트)아크릴레이트계 단량체 단위는 상기 매트릭스 공중합체의 총 중량에 대하여, 50 내지 75 중량%, 52 내지 72 중량%, 또는 55 내지 70 중량%로 포함될 수 있고, 이 중 55 내지 70 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 공중합체의 투명성을 보다 개선시킬 수 있다.
3) 방향족 비닐계 단량체 단위
방향족 비닐계 단량체 단위는 매트릭스 공중합체에 우수한 가공성, 강성 및 내충격성을 부여해 줄 수 있다.
상기 방향족 비닐계 단량체 단위는 상기 매트릭스 공중합체의 총 중량에 대하여, 15 내지 35 중량%, 17 내지 32 중량%, 또는 20 내지 30 중량%로 포함될 수 있으며, 이 중 20 내지 30 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 공중합체의 강성, 내충격성 및 가공성을 보다 개선시킬 수 있다.
4) 비닐 시안계 단량체 단위
비닐 시안계 단량체 단위는 매트릭스 공중합체에 우수한 내화학성을 부여해 줄 수 있다.
상기 비닐 시안계 단량체 단위는 상기 매트릭스 공중합체의 총 중량에 대하여, 1 내지 15 중량%, 3 내지 12 중량%, 또는 5 내지 10 중량%로 포함될 수 있고, 이 중 5 내지 10 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체의 내화학성이 보다 개선될 수 있다.
2. 매트릭스 공중합체의 제조방법
본 발명의 일실시예에 따른 매트릭스 공중합체는 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 반응기에 투입하고 중합하여 제조된다.
상기 셀룰로오스 나노크리스탈은 중합 용액에 균일하게 분산되기 위하여 용매와 혼합된 용액 상태로 형태로 그라프트 공중합체의 제조 공정 중에 투입될 수 있다.
상기 매트릭스 공중합체의 제조방법에서 상기 셀룰로오스 나노크리스탈과 알킬 (메트)아크릴레이트계 단량체의 중량비는 1:99 내지 20:80, 2:98 내지 15:85 또는 2:98 내지 12:88일 수 있고, 이 중 2:98 내지 12:88인 것이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체의 투명성에 영향을 미치지 않는 범위 내에서 상기 셀룰로오스 나노크리스탈이 상기 알킬 (메트)아크릴레이트계 단량체를 일부 대체할 수 있다. 이에 따라, 매트릭스 공중합체 내의 알킬 (메트)아크릴레이트계 단량체 단위의 함량을 감소시킬 수 있어 내화학성 저하를 최소화할 수 있다.
상기 매트릭스 공중합체의 제조방법에서 상기 셀룰로오스 나노크리스탈과 방향족 비닐계 단량체의 중량비는 5:95 내지 35:65, 7:93 내지 30:70 또는 7:93 내지 25:75일 수 있고, 이 중 7:93 내지 25:75인 것이 바람직하다. 상술한 범위를 만족하면, 굴절률이 낮은 셀룰로오스 나노크리스탈로 인한 매트릭스 공중합체의 투명성의 저하를 방지하면서, 매트릭스 공중합체의 가공성을 보다 개선시킬 수 있다.
상기 셀룰로오스 나노크리스탈은 상기 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여, 0.1 내지 15 중량%, 1 내지 12 중량%, 또는 2 내지 9 중량%로 투입될 수 있고, 이 중 2 내지 9 중량%로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체의 투명성에 영향을 미치지 않으면서, 내화학성 및 기계적 특성을 보다 개선시킬 수 있다.
상기 알킬 (메트)아크릴레이트계 단량체는 상기 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여, 50 내지 75 중량%, 52 내지 72 중량%, 또는 55 내지 70 중량%일 수 있고, 이 중 55 내지 70 중량%인 것이 바람직하다. 상술한 범위를 만족하면, 공중합체의 투명성을 보다 개선시킬 수 있다.
상기 방향족 비닐계 단량체는 상기 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여, 15 내지 35 중량%, 17 내지 32 중량% 또는 20 내지 30 중량%일 수 있고, 이 중 20 내지 30 중량%인 것이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체의 강성, 내충격성 및 가공성을 보다 개선시킬 수 있다.
상기 비닐 시안계 단량체는 상기 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여, 1 내지 15 중량%, 3 내지 12 중량%, 또는 5 내지 10 중량%일 수 있고, 이 중 5 내지 10 중량%인 것이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체의 내화학성이 보다 개선될 수 있다.
이 외, 상기 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 설명은 상기 셀룰로오스 나노크리스탈 유도체, 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위의 설명에 기재한 바와 같다.
한편, 본 발명의 다른 일실시예에 따른 매트릭스 공중합체의 제조방법은 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 반응기에 투입하여 중합하는 단계(단계 1); 및 상기 셀룰로오스 나노크리스탈을 상기 반응기에 투입하고 반응하는 단계(단계 2)를 포함할 수 있다.
이하, 상기 단계 1 및 2에 대하여 상세하게 설명한다.
1) 단계 1
단계 1은 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 반응기에 투입하고 중합하는 단계일 수 있다.
상기 중합은 괴상 중합 또는 현탁 중합일 수 있으며, 이 중 고순도의 공중합체를 제조할 수 있는 괴상 중합이 바람직하다.
상기 단계 1에서는 상기 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 일정한 속도로 연속 투입하면서 중합하는 것이 바람직하다.
상기 단량체들이 연속 투입하면서 중합되면, 중합 시 제열이 용이하고, 과다 발열에 의한 폭주 반응을 억제할 수 있다. 또한, 공중합체의 중량평균분자량 및 중합전환율이 적절하게 유지될 수 있다.
상기 연속 투입 및 중합은 1 내지 6 시간 또는 1.5 내지 5 시간 동안 수행될 수 있고, 이 중 1.5 내지 5 시간 동안 수행되는 것이 바람직하다. 상술한 조건을 만족하면, 균일한 입자 크기를 가지는 공중합체를 제조할 수 있고 안정적인 중합전환율을 얻을 수 있다.
상기 연속 투입 및 중합은 100 ℃ 내지 180 ℃ 또는 110 ℃ 내지 170 ℃에서 수행될 수 있으며, 이중 110 ℃ 내지 170 ℃에서 수행되는 것이 바람직하다. 또한 상기 연속 중합 및 중합은 적절한 중합 속도를 가지기 위해서 일정한 온도에서 수행되는 것이 바람직하다.
상기 단계 1에서는 개시제, 분자량 조절제 및 용매로 이루어진 군에서 선택되는 1종 이상을 더 투입하는 것이 바람직하다.
이때, 상기 개시제, 분자량 조절제 및 용매 등은 상술한 단량체들과 함께 일정한 속도로 연속 투입되는 것이 바람직하다. 상기 개시제 등이 연속 투입되면, 적절한 중합 속도를 유지하면서, 균일한 입자 크기를 갖는 공중합체를 제조할 수 있다.
상기 개시제는 1,1-비스(t-부틸퍼옥시)사이클로헥산, 1,1-비스(t-부틸퍼옥시)-2-메틸사이클로헥산, 1,1-비스(t-부틸퍼옥시)-3,3,5-트리메틸사이클로헥산 또는 2,2-비스(t-부틸퍼옥시)부탄으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 1,1-비스(t-부틸퍼옥시)시클로헥산이 바람직하다.
상기 개시제는 상기 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합 100 중량부에 대하여, 0.5 내지 3 중량부 또는 0.7 내지 1.5 중량부로 투입할 수 있고, 이 중 0.7 내지 1.5 중량부로 투입하는 것이 바람직하다. 상술한 범위를 만족하면, 공중합체의 중합전환율과 중량평균분자량 사이의 균형을 맞출 수 있다.
상기 분자량 조절제는 α-메틸 스티렌 다이머, t-도데실 머캅탄, n-도데실 머캅탄, 옥틸 머캅탄, 사염화탄소, 염화메틸렌, 브롬화메틸렌, 테트라에틸티우람 디설파이드, 디펜타메틸렌 티우람 디설파이드 및 디이소프로필 키산토겐 디설파이드로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 t-도데실 머캅탄이 바람직하다. 상기 분자량 조절제는 상기 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합 100 중량부에 대하여, 0.05 내지 0.3 중량부 또는 0.1 내지 0.2 중량부로 투입될 수 있으며, 이 중 0.1 내지 0.2 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 공중합체의 중합전환율을 보다 높일 수 있다.
상기 용매는 상기 공중합체가 괴상 중합으로 제조되는 경우 불활성 유기용매일 수 있다. 상기 용매는 메틸에틸케톤, 석유 에테르, 에틸벤젠, 톨루엔, 사염화탄 및 클로로포름으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 톨루엔이 바람직하다.
상기 용매는 상기 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합 100 중량부에 대하여, 1 내지 50 중량부 또는 10 내지 40 중량부로 투입될 수 있으며, 이 중 10 내지 40 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 중합 용액의 점도가 적절하게 조절되어 중합이 용이하게 수행될 수 있다.
2) 단계 2
이어서 상기 셀룰로오스 나노크리스탈을 상기 반응기에 투입하고 반응할 수 있다. 구체적으로는 상기 셀룰로오스 나노크리스탈은 중합전환율이 40 내지 50 %인 시점에서 투입하고 상기 단계 1에서 수득된 중합물 및 미반응 단량체와 반응할 수 있다.
상기 단계 2에서 상기 셀룰로오스 나노크리스탈을 상기 반응기에 투입하면, 상기 단계 1에서 수득된 중합물 및 미반응 단량체 내에 균일하게 분산될 수 있고, 결과적으로, 셀룰로오스 나노크리스탈 유도체가 매트릭스 공중합체 내에 균일하게 분포됨으로써, 투명성, 내화학성 및 기계적 특성이 모두 우수한 공중합체가 제조될 수 있다.
한편, 셀룰로오스 나노크리스탈을 상기 단계 1에 함께 투입할 경우, 상기 셀룰로오스 나노크리스탈은 자체 특성으로 인해 셀룰로오스 나노크리스탈끼리 중합되어 매트릭스 공중합체 내에 균일하게 분산되기 어려울 수 있다. 하지만, 상기 셀룰로오스 나노크리스탈이 상기 단계 2에서 투입되면, 상기 셀룰로오스 나노크리스탈끼리 중합이 일어나는 것을 최소화할 수 있으며, 상기 셀룰로오스 나노크리스탈이 상기 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 공중합에 미치는 영향을 최소화할 수 있다.
상기 셀룰로오스 나노크리스탈이 투입된 후 상기 단계 1에서 수득된 중합물 및 미반응 단량체와 1 내지 5 시간 또는 1 내지 4 시간 동안 반응할 수 있고, 이 중 1 내지 4 시간 동안 반응하는 것이 바람직하다. 상술한 조건을 만족하면, 셀룰로오스 나노크리스탈이 균일하게 분산되고 안정적으로 존재할 수 있다.
상기 단계 2는 상기 단계 1 보다 높은 온도에서 수행될 수 있으며, 구체적으로는 1 ℃ 내지 5℃ 높은 온도에서 수행될 수 있으나, 이에 한정되는 것은 아니다.
상기 단계 2가 완료된 후, 탈휘발조에서 상기 단계 2에서 생성된 중합 생성물 내 미반응 단량체 및 용매를 휘발시켜 공중합체를 분리할 수 있다.
3. 그라프트 공중합체
본 발명의 다른 일실시예에 따른 그라프트 공중합체는 1) 셀룰로오스 나노크리스탈 유도체; 2) 공액 디엔계 중합체 3) 알킬 (메트)아크릴레이트계 단량체 단위; 4) 방향족 비닐계 단량체 단위; 및 5) 비닐 시안계 단량체 단위를 포함한다.
한편, 본 발명의 다른 일실시예에 따른 그라프트 공중합체는 쉘의 중량평균분자량이 80,000 내지 130,000 g/mol 또는 90,000 내지 120,000 g/mol일 수 있고, 이 중 90,000 내지 120,000 g/mol인 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 가공성과 기계적 특성 사이의 균형을 보다 잘 이룰 수 있다.
한편, 본 발명의 다른 일실시예에 따른 그라프트 공중합체는 굴절률이 1.51 내지 1.52 또는 1.512 내지 1.518일 수 있고, 이 중 1.512 내지 1.518인 것이 바람직하다. 상술한 범위를 만족하면, 투명성이 우수한 그라프트 공중합체를 제조할 수 있다.
이 하, 본 발명의 다른 일실시예에 따른 그라프트 공중합체의 구성 요소에 대하여 상세하게 설명한다.
1) 셀룰로오스 나노크리스탈 유도체
셀룰로오스 나노크리스탈 유도체는 셀룰로오스 나노크리스탈이 그라프트 공중합체의 제조 시 투입된 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체로 이루어진 군에서 선택되는 하나 이상과 반응하여 변화된 것일 수 있다.
상기 셀룰로오스 나노크리스탈 유도체는 그라프트 공중합체의 내화학성 및 기계적 특성을 현저하게 개선시킬 수 있다. 상기 셀룰로오스 나노크리스탈 유도체는 알킬 (메트)아크릴레이트계 단량체 단위를 일부 대체할 수 있으므로, 알킬 (메트)아크릴레이트 단량체 단위로 인한 그라프트 공중합체의 내화학성 저하를 최소화할 수 있다. 그리고 상대적으로 굴절률이 낮은 셀룰로오스 나노크리스탈 유도체로 인해 그라프트 공중합체가 투명성을 유지할 수 있고, 그라프트 공중합체가 방향족 비닐계 단량체 단위를 기존보다 높은 함량으로 포함할 수 있으므로, 기존과 동등 수준으로 가공성을 유지할 수 있다.
상기 그라프트 공중합체는 상기 셀룰로오스 나노크리스탈 유도체와 알킬 (메트)아크릴레이트계 단량체 단위를 1:99 내지 30:70, 2:98 내지 25:75 또는 3:97 내지 20:80의 중량비로 포함할 수 있고, 이 중 3:97 내지 20:80의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 투명성에 영향을 미치지 않는 범위 내에서 상기 셀룰로오스 나노크리스탈 유도체가 상기 알킬 (메트)아크릴레이트계 단량체 단위를 일부 대체할 수 있다. 이에, 상기 알킬 (메트)아크릴레이트계 단량체 단위로 초래되는 내화학성 저하를 최소화할 수 있다.
상기 그라프트 공중합체는 상기 셀룰로오스 나노크리스탈 유도체와 방향족 비닐계 단량체 단위를 1:99 내지 40:60, 3:97 내지 35:65, 5:95 내지 30:70 또는 8:92 내지 25:75의 중량비로 포함할 수 있고, 이 중 8:92 내지 25:75의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 굴절률이 낮은 셀룰로오스 나노크리스탈 유도체로 인한 그라프트 공중합체의 투명성의 저하를 방지하면서, 그라프트 공중합체의 가공성을 보다 개선시킬 수 있다.
상기 셀룰로오스 나노크리스탈 유도체는 상기 그라프트 공중합체의 총 중량에 대하여, 0.1 내지 10 중량%, 0.5 내지 8 중량%, 또는 1 내지 5 중량%로 포함될 수 있고, 이 중 1 내지 5 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 투명성에 영향을 미치지 않으면서, 내화학성 및 기계적 특성을 보다 개선시킬 수 있다.
2) 공액 디엔계 중합체
공액 디엔계 중합체는 공액 디엔계 중합체에 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체가 그라프트 공중합됨으로써 변성된 공액 디엔계 중합체와, 공액 디엔계 중합체와 셀룰로오스 나노크리스탈이 반응함으로써 변성된 공액 디엔계 중합체를 포함할 수 있다.
상기 공액 디엔계 중합체는 평균입경이 0.05 내지 0.5 ㎛ 또는 0.1 내지 0.4 ㎛일 수 있고, 이 중 0.1 내지 0.4 ㎛가 바람직하다. 상술한 범위를 만족하면, 기계적 특성 및 표면 광택 특성이 모두 우수한 그라프트 공중합체를 제조할 수 있다.
상기 공액 디엔계 중합체는 상기 그라프트 공중합체의 총 중량에 대하여, 상기 공액 디엔계 중합체 40 내지 60 중량%, 42 내지 57 중량%, 또는 45 내지 55 중량%로 포함될 수 있고, 이 중 45 내지 55 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 강성, 기계적 특성, 가공성 및 표면 광택 특성이 보다 개선될 수 있다.
3) 알킬 (메트)아크릴레이트계 단량체 단위
알킬 (메트)아크릴레이트계 단량체 단위는 그라프트 공중합체에 우수한 투명성을 부여해줄 수 있다.
상기 알킬 (메트)아크릴레이트계 단량체 단위는 상기 그라프트 공중합체의 총 중량에 대하여, 15 내지 40 중량%, 17 내지 37 중량%, 또는 20 내지 35 중량%로 포함될 수 있고, 이 중 20 내지 35 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 투명성을 보다 개선시킬 수 있다.
4) 방향족 비닐계 단량체 단위
방향족 비닐계 단량체 단위는 그라프트 공중합체의 가공성, 강성 및 기계적 특성을 부여해 줄 수 있다.
상기 방향족 비닐계 단량체 단위는 상기 그라프트 공중합체의 총 중량에 대하여, 5 내지 20 중량%, 7 내지 17 중량%, 또는 10 내지 15 중량%로 포함될 수 있고, 이 중, 10 내지 15 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 가공성, 강성 및 기계적 특성을 보다 개선시킬 수 있다.
5) 비닐 시안계 단량체 단위
비닐 시안계 단량체 단위는 그라프트 공중합체에 우수한 내화학성을 부여해줄 수 있다.
상기 비닐 시안계 단량체 단위는 상기 그라프트 공중합체의 총 중량에 대하여, 1 내지 15 중량%, 3 내지 12 중량%, 또는 5 내지 10 중량%로 포함될 수 있고, 이 중 5 내지 10 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 내화학성을 보다 개선시킬 수 있다.
4. 그라프트 공중합체의 제조방법
본 발명의 다른 일실시예에 따른 그라프트 공중합체는 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 반응기에 투입하고 중합하여 제조된다.
상기 그라프트 공중합체의 제조방법에서 상기 셀룰로오스 나노크리스탈과 알킬 (메트)아크릴레이트계 단량체의 중량비는 1:99 내지 30:70, 2:98 내지 25:75 또는 3:97 내지 20:80일 수 있고, 이 중 3:97 내지 20:80가 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 투명성에 영향을 미치지 않는 범위 내에서 상기 셀룰로오스 나노크리스탈이 상기 알킬 (메트)아크릴레이트계 단량체를 일부 대체할 수 있다. 이에, 상기 알킬 (메트)아크릴레이트계 단량체로 초래되는 내화학성 저하를 최소화할 수 있다.
상기 그라프트 공중합체의 제조방법에서 상기 셀룰로오스 나노크리스탈과 방향족 비닐계 단량체의 중량비는 1:99 내지 40:60, 3:97 내지 35:65, 5:95 내지 30:70 또는 8:92 내지 25:75일 수 있고, 이 중 8:92 내지 25:75가 바람직하다. 상술한 범위를 만족하면, 굴절률이 낮은 셀룰로오스 나노크리스탈로 인한 그라프트 공중합체의 투명성의 저하를 방지하면서, 그라프트 공중합체의 가공성을 보다 개선시킬 수 있다.
상기 셀룰로오스 나노크리스탈은 상기 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여, 0.1 내지 10 중량%, 0.5 내지 8 중량%, 또는 1 내지 5 중량%일 수 있고, 이 중 1 내지 5 중량%인 것이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 투명성에 영향을 미치지 않으면서, 내화학성 및 기계적 특성을 보다 개선시킬 수 있다.
상기 공액 디엔계 중합체는 상기 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여, 상기 공액 디엔계 중합체 40 내지 60 중량%, 42 내지 57 중량%, 또는 45 내지 55 중량%일 수 있고, 이 중 45 내지 55 중량%가 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 강성, 기계적 특성, 가공성 및 표면 광택 특성이 보다 개선될 수 있다.
상기 알킬 (메트)아크릴레이트계 단량체는 상기 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여, 15 내지 40 중량%, 17 내지 37 중량%, 또는 20 내지 35 중량%일 수 있고, 이 중 20 내지 35 중량%가 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 투명성을 보다 개선시킬 수 있다.
상기 방향족 비닐계 단량체는 상기 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여, 5 내지 20 중량%, 7 내지 17 중량%, 또는 10 내지 15 중량%일 수 있고, 이 중, 10 내지 15 중량%가 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 가공성, 강성 및 기계적 특성을 보다 개선시킬 수 있다.
상기 비닐 시안계 단량체는 상기 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여, 1 내지 15 중량%, 3 내지 12 중량%, 또는 5 내지 10 중량%일 수 있고, 이 중 5 내지 10 중량%가 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 내화학성을 보다 개선시킬 수 있다.
이 외, 상기 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 설명은 상기 셀룰로오스 나노크리스탈 유도체, 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위 및 비닐 시안계 단량체 단위에 대한 설명에 기재한 바와 같다.
한편, 본 발명의 다른 일실시예에 따른 그라프트 공중합체의 제조방법은 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 반응기에 투입하여 중합하는 단계(단계 1); 및 상기 셀룰로오스 나노크리스탈을 투입하고 반응하는 단계(단계 2)를 포함하는 제조방법으로 제조되는 것이 바람직하다.
상기 단계 1은 상기 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 투입하여 유화 중합하는 단계일 수 있다.
상기 단계 1에서는 상기 공액 디엔계 중합체를 반응기에 일괄 투입한 후, 상기 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 일정한 속도로 연속 투입하면서 중합하는 것이 바람직하다. 상술한 방법으로 중합되면, 중합 시 제열이 용이하고, 과다 발열에 의한 폭주 반응을 억제할 수 있다.
상기 연속 투입 및 중합은 3 내지 7 시간 또는 4 내지 6 시간 동안 수행될 수 있고, 이 중 4 내지 6 시간 동안 수행되는 것이 바람직하다. 상술한 조건을 만족하면, 중합 시 제열이 용이하고, 과다 발열에 의한 폭주 반응을 억제할 수 있으면, 그라프트 공중합이 용이하게 수행될 수 있다.
상기 연속 투입 및 중합은 60 ℃ 내지 80 ℃ 또는 62 ℃ 내지 78 ℃에서 수행될 수 있으며, 이중 62 ℃ 내지 78 ℃에서 수행되는 것이 바람직하다. 또한 상기 연속 투입 및 중합은 일정한 온도에서 수행되는 것이 바람직하다.
여기서, 상기 공액 디엔계 중합체는 콜로이드 상태로 물에 분산된 라텍스 형태일 수 있다.
한편, 상기 단계 1에서는 개시제, 유화제, 분자량 조절제, 산화-환원계 촉매 및 이온교환수로 이루어진 군에서 선택되는 1종 이상을 더 투입하는 것이 바람직하다.
그리고, 상술한 단량체들과 함께 일정한 속도로 연속 투입되는 것이 바람직하다. 상기 개시제 등이 연속 투입되면, 중합 속도를 제어할 수 있고, 과다 발열에 의한 폭주 반응을 억제할 수 있으면서 균일한 입자 크기를 가지는 공중합체를 중합할 수 있다.
상기 개시제는 퍼옥사이드계 개시제 및 설파이트계 개시제로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 퍼옥사이드계 개시제는 t-부틸 퍼옥사이드, 큐멘하이드로퍼옥사이드 및 디이소프로필벤젠 퍼옥사이드로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 큐멘하이드로퍼옥사이드가 바람직하다. 상기 설파이트계 개시제는 과황산칼륨, 과황산나트륨 및 과황산암모늄으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 과황산칼륨이 바람직하다.
상기 개시제는 상기 공액 디엔계 중합체, 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합 100 중량부에 대하여, 0.01 내지 0.1 중량부 또는 0.03 내지 0.08 중량부로 투입될 수 있고, 이 중 0.03 내지 0.08 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 유화 중합이 용이하게 수행되면서, 그라프트 공중합체 내 잔류량은 최소화될 수 있다.
상기 유화제는 C12 내지 C18의 숙시네이트 금속염, 설폰산 금속염, 로진산 알칼리 금속염, 지방산 알칼리 금속염 및 지방산 다이머 알칼리 금속염으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 설폰산 금속염이 바람직하다.
상기 C12 내지 C18의 숙시네이트 금속염은 C12 내지 C18의 알케닐 숙신산 디포타슘염일 수 있다.
상기 설폰산 금속염은 나트륨 도데실 설페이트, 나트륨 라우릭 설페이트, 나트륨 옥타데실 설페이트, 나트륨 올레익 설페이트, 칼륨 도데실 설페이트, 나트륨 도데실 벤젠 설포네이트 및 칼륨 옥타데실 설포네이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 나트륨 도데실 벤젠 설포네이트가 바람직하다.
상기 로진산 알칼리 금속염은 로진산 칼륨염 및 로진산 나트륨염으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 로진산 칼륨염이 바람직하다.
상기 지방산 알칼리 금속염은 C8 내지 C20의 지방산 알칼리 금속염일 수 있고, 카프릭산의 알칼리 금속염, 라우릭산의 알칼리 금속염, 팔미틱산의 알칼리 금속염, 스테아릭산의 알칼리 금속염, 올레익산의 알칼리 금속염 및 리놀레인산의 알칼리 금속염으로 이루어진 군에서 선택되는 1종 이상이 보다 바람직하다.
상기 지방산 다이머 알칼리 금속염은 C8 내지 C20의 지방산 다이머 알칼리 금속염일 수 있고, C8 내지 C20의 지방산 다이머 칼륨염인 것이 바람직하고, 올레인산 다이머 칼륨염인 것이 보다 바람직하다.
상기 유화제는 상기 공액 디엔계 중합체, 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합 100 중량부에 대하여, 0.1 내지 3 중량부 또는 0.5 내지 2 중량부로 투입될 수 있고, 이 중 0.5 내지 2 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 반응속도가 적절하게 유지되면서 중합안정성이 우수할 수 있다. 또한, 유화제로 인한 변색 및 가스발생을 최소화할 수 있다.
상기 분자량 조절제는 상술한 바와 같으며, 이 중 t-도데실 머캅탄이 바람직하다.
상기 분자량 조절제는 상기 공액 디엔계 중합체, 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합 100 중량부에 대하여, 0.1 내지 0.6 중량부 또는 0.2 내지 0.5 중량부로 투입될 수 있으며, 이 중 0.2 내지 0.5 중량부로 투입되는 것이 바람직하다. 상술한 범위를 만족하면, 쉘의 중량평균분자량을 적절하게 조절하면서, 쉘의 중합전환율을 보다 높일 수 있고 목표로 하는 중량평균분자량을 갖는 그라프트 공중합체를 제조할 수 있다.
상기 산화-환원계 촉매는 나트륨 포름알데히드 설폭실레이트, 에틸렌디아민 테트라아세트산 디소듐염, 황산제1철, 덱스트로즈, 피로인산나트륨, 무수 피로인산나트륨 및 황산나트륨 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 나트륨 포름알데히드 설폭실레이트, 에틸렌디아민 테트라아세트산 디소듐염 및 황산제1철으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.
상기 산화-환원계 촉매는 상기 공액 디엔계 중합체, 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 합 100 중량부에 대하여, 0.01 내지 0.1 중량부 또는 0.02 내지 0.09 중량부로 투입할 수 있고, 이 중 0.02 내지 0.09 중량부로 투입하는 것이 바람직하다. 상술한 범위를 만족하면, 비교적 낮은 온도에서 중합을 용이하게 개시할 수 있다.
상기 단계 2는 상기 단계 1에서 수득된 중합물을 숙성하고 미반응 단량체를 추가 중합하는 단계로서, 상기 단계 2에서 셀룰로오스 나노크리스탈이 투입되어 상기 단계 1에서 수득된 중합물 및 미반응 단량체와 반응할 수 있다.
상기 셀룰로오스 나노크리스탈의 투입 시점은 중합전환율이 40 내지 50 %인 시점일 수 있다.
상기 단계 2에서 셀룰로오스 나노크리스탈이 투입되면, 상기 단계 1에서 수득된 중합물 및 미반응 단량체 내에 균일하게 분산될 수 있고, 결과적으로, 셀룰로오스 나노크리스탈 유도체가 그라프트 공중합체 내에 균일하게 분포됨으로써, 투명성, 내화학성 및 기계적 특성이 모두 우수한 그라프트 공중합체가 제조될 수 있다.
한편, 상기 셀룰로오스 나노크리스탈은 자체 특성으로 인해 셀룰로오스 나노크리스탈 끼리 중합될 수 있다. 하지만, 상기 셀룰로오스 나노크리스탈이 상기 단계 2에서 투입되면, 상기 셀룰로오스 나노크리스탈 끼리 중합되는 것을 최소화할 수 있으며, 상기 셀룰로오스 나노크리스탈이 상기 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 그라프트 공중합에 미치는 영향도 최소화할 수 있다.
상기 단계 2에서 상기 셀룰로오스 나노크리스탈은 일괄 또는 연속 투입할 수 있다.
상기 셀룰로오스 나노크리스탈이 투입된 후, 0.5 내지 2 시간 또는 1 내지 1.5 시간 동안 숙성 및 추가 중합이 수행될 수 있고, 이 중 1 내지 1.5 시간 동안 숙성 및 추가 중합이 수행되는 것이 바람직하다. 상술한 조건을 만족하면, 중합전환율이 보다 높아질 수 있다.
상기 단계 2는 상기 단계 1 보다 높은 온도에서 수행될 수 있으며, 75 ℃ 내지 85 ℃ 내지 78 ℃ 내지 83 ℃에서 수행될 수 있고, 이 중 78 ℃ 내지 83 ℃에서 수행되는 것이 바람직하다. 상술한 조건을 만족하면, 중합 온도를 조절하기 용이하고 적절한 중합 속도를 가짐으로써 균일한 입자 크기를 가지는 공중합체를 제조할 수 있다.
상기 단계 2가 종료되면, 응집, 숙성, 세척 및 건조 공정을 더 수행하여, 분말 형태인 그라프트 공중합체를 수득할 수 있다.
5. 열가소성 수지 조성물
본 발명의 또 다른 일실시예에 따른 열가소성 수지 조성물은 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체; 및 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 그라프트 공중합체를 포함하고, 상기 매트릭스 공중합체 및 그라프트 공중합체 중 적어도 하나 이상이 셀룰로오스 나노크리스탈 유도체를 더 포함한다.
상기 매트릭스 공중합체와 그라프트 공중합체의 중량비는 50:50 내지 20:80 또는 50:50 내지 25:75의 중량비로 포함할 수 있고, 50:50 내지 25:75의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 투명성, 내화학성, 내충격성 및 인장강도가 모두 우수한 열가소성 수지 성형품을 제조할 수 있다.
상기 매트릭스 공중합체와 그라프트 공중합체는 굴절률 차이가 0 내지 0.008 또는 0 내지 0.003일 수 있고, 이 중 0 내지 0.003인 것이 바람직하다. 상술한 범위를 만족하면, 투명성이 우수한 열가소성 수지 성형품을 제조할 수 있다.
상기 매트릭스 공중합체와 그라프트 공중합체는 굴절률이 각각 1.51 내지 1.52 또는 1.512 내지 1.518일 수 있고, 이 중 1.512 내지 1.518이 바람직하다. 상술한 범위를 만족하면, 매트릭스 공중합체와 그라프트 공중합체의 굴절률이 서로 유사하여 투명 열가소성 수지 성형품을 제조할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<셀룰로오스 나노크리스탈 수용액의 준비>
Blue Goose Biorefineries Inc.,의 BGB UltraTM Cellulose Nanocrystals Suspension를 이용하였다. BGB UltraTM Cellulose Nanocrystals Suspension의 정보는 하기와 같다.
굴절률: 셀룰로오스 나노크리스탈 수용액에 589.3 ㎚의 가시광선을 조사하고 아베 굴절계를 이용하여 측정한 값이 1.47이었다.
농도: 8% w/w
용매: 역삼투수
1차 입자의 길이: 100 ~ 150 ㎚ (측정 방법: TEM)
1차 입자의 입경: 9 ~ 14 ㎚ (측정 방법: TEM)
2차 입자의 직경: 150 ㎚ (측정 방법: DLS)
<매트릭스 공중합체의 제조>
실시예 1 내지 4, 비교예 1
반응기에 톨루엔 30 중량부, 개시제로 1,1-비스(t-부틸퍼옥시)시클로헥산 1 중량부, 분자량 조절제로 t-도데실 머캅탄 0.15 중량부, 하기 [표 1]에 기재된 함량으로 메틸 메타크릴레이트(MMA), 스티렌(SM) 및 아크릴로니트릴(AN)을 3 시간 동안 일정한 속도로 연속 투입하면서, 중합하였다. 이때, 중합 온도는 148 ℃로 유지하였다. 이어서, 셀룰로오스 나노크리스탈(CNC: Cellulose NanoCrystal) 2 중량부를 포함하는 셀룰로오스 나노크리스탈 수용액을 일괄 투입하고, 2 시간 동안 중합하고, 중합을 종료하였다. 수득된 중합 생성물을 예비 가열조에서 가열하고, 휘발조에서 미반응 단량체 및 용매를 휘발시켰다. 그 후 210 ℃로 유지된 폴리머 이송 펌프 압출 가공기로 펠렛 형태의 매트릭스 공중합체를 제조하였다.
<그라프트 공중합체의 제조>
실시예 5 내지 8, 비교예 2
부타디엔 고무질 중합체 라텍스(BD, 평균입경: 300 ㎚, 굴절률: 1.516, 겔함량: 70%) 50 중량부(고형분 기준)를 포함하는 반응기에 유화제로 나트륨 도데실 벤젠 설포네이트 1.0 중량부, 개시제로 큐멘하이드로퍼옥사이드 0.04 중량부, 분자량 조절제로 t-도데실 머캅탄 0.3 중량부, 산화-환원계 촉매로 나트륨 포름알데히드 술폭실레이트 0.048 중량부, 에틸렌디아민 테트라아세트산 디나트륨염 0.012 중량부 및 황산제1철 0.001 중량부, 이온교환수 100 중량부, 및 [표 2]에 기재된 함량으로 메틸 메타크릴레이트(MMA), 스티렌(SM) 및 아크릴로니트릴(AN)을 75 ℃에서 5 시간 동안 일정한 속도로 연속 투입하면서 중합하였다.
이어서, 상기 반응기를 80 ℃로 승온한 후, 셀룰로오스 나노크리스탈(CNC: Cellulose NanoCrystal) 1 중량부를 포함하는 셀룰로오스 나노크리스탈 수용액을 반응기에 일괄 투입한 후, 1 시간 동안 숙성하였다. 반응을 종료시켜 그라프트 공중합체 라텍스를 수득하였다. 이때, 그라프트 공중합체 라텍스의 중합전환율은 98 %이었다.
수득된 그라프트 공중합체 라텍스에 염화칼슘 수용액을 투입하여 응고시키고, 숙성, 세척 및 건조하여 그라프트 공중합체 분말을 수득하였다.
<열가소성 수지 조성물의 제조>
실시예 9 내지 22, 비교예 3
하기 표 3에 기재된 매트릭스 중합체 및 그라프트 공중합체를 균일하게 혼합하여 열가소성 수지 조성물을 제조하였다.
비교예 4
비교예 1의 매트릭스 공중합체 60 중량부, 비교예 2의 그라프트 공중합체 분말 37 중량부, 및 셀룰로오스 나노크리스탈 3 중량부를 포함하는 셀룰로오스 나노크리스탈 수용액을 균일하게 혼합하여 열가소성 수지 조성물을 제조하였다.
실험예 1
실시예 및 비교예의 매트릭스 공중합체의 물성을 하기에 기재된 방법으로 평가하고, 그 결과를 하기 [표 1]에 기재하였다.
① 굴절률: 매트릭스 공중합체에 589.3 ㎚의 가시광선을 조사하고 아베 굴절계를 이용하여 측정하였다.
② 중합전환율(%): [(측정값 TSC)/(이론 값 TSC)] × 100
측정값 TSC: 매트릭스 공중합체의 고형분 함량
이론값 TSC: 매트릭스 공중합체의 제조 시 이론상으로 투입된 단량체 및 첨가제의 고형분 함량
③ 중량평균분자량(g/mol): 테트라하이드로퓨란(THF)을 이용하고, 겔 투과 크로마토그래피(GPC, waters breeze)를 이용하여 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 비교예 1
매트릭스 공중합체 A B C D E
조성(중량부) MMA 66.5 64.0 61.5 59.0 69.0
SM 24.5 25.0 25.5 24.0 24.0
AN 7.0 7.0 7.0 7.0 7.0
CNC 2.0 4.0 6.0 8.0 -
① 굴절률 1.516 1.516 1.516 1.516 1.516
② 중합전환율 60 59 61 60 61
③ 중량평균분자량 109,000 109,500 110,000 115,000 110,000
표 1을 참조하면, 실시예 1 내지 4의 매트릭스 공중합체는 비교예 1의 매트릭스 공중합체 대비 굴절률, 중합전환율 및 중량평균분자량이 동등 수준인 것을 확인할 수 있었다. 이러한 결과로부터 셀룰로오스 나노크리스탈을 매트릭스 공중합체의 제조 공정 중에 투입하여도, 매트릭스 공중합체의 물성에는 영향을 미치지 않는 것을 확인할 수 있었다.
실험예 2
실시예 및 비교예의 그라프트 공중합체 분말의 물성을 하기에 기재된 방법으로 평가하고, 그 결과를 하기 [표 2]에 기재하였다.
④ 굴절률: 그라프트 공중합체 분말에 589.3 ㎚의 가시광선을 조사하고 아베 굴절계를 이용하여 측정하였다.
⑤ 그라프트율(%): 그라프트 공중합체 일정량을 아세톤에 투입하고 진동기(상품명: SI-600R, 제조사: Lab. companion)로 24 시간 동안 진동시켜 유리된 그라프트 공중합체를 용해시키고, 원심 분리기로 14,000 rpm으로 1 시간 동안 원심 분리하여 상등액(졸)을 분리한 후, 침전물(겔)을 진공 건조기(상품명: DRV320DB, 제조사: ADVANTEC)로 140 ℃, 2 시간 동안 건조시켜 불용분을 수득한 후, 하기 식을 이용하여 산출할 수 있다.
그라프트율(%)=[(Y-(X×R))/ (X×R)] × 100
X: 불용분 수득 시 투입된 그라프트 공중합체의 중량
Y: 불용분 중량
R: 불용분 수득 시 투입된 그라프트 공중합체 내 부타디엔 고무질 중합체의 분율
⑥ 쉘의 중량평균분자량(g/mol): 그라프트율 측정방법에 기재된 방법으로 분리된 졸을 50 ℃ 열풍 오븐에 건조하였다. 그 후, 해당 졸 부분을 THF 용액에 녹여 용액(농도: 0.1 중량%)을 제조하고, 이를 0.1 ㎛ 필터를 통해 걸려낸 뒤 최종적으로 GPC 기기(제조사: waters사)를 이용하여 중량평균분자량을 얻었다.
구분 실시예 5 실시예 6 실시예 7 실시예 8 비교예 2
그라프트 공중합체 A B C D E
조성(중량부) BD 50.0 50.0 50.0 50.0 50.0
MMA 31.0 30.0 28.0 24.0 32.0
SM 11.0 11.2 12.0 12.5 11.0
AN 7.0 7.0 7.0 7.0 7
CNC 1.0 1.8 3.0 6.5 -
④ 굴절률 1.516 1.516 1.516 1.517 1.516
⑤ 그라프트율 43.76 44.51 44.50 45.00 43.50
⑥ 쉘의 중량평균분자량 110,000 118,960 119,000 119,870 108,900
표 2를 참조하면, 실시예 5 내지 8의 그라프트 공중합체는 비교예 2의 그라프트 공중합체와 굴절률, 그라프트율 및 쉘의 중량평균분자량이 동등 수준이거나 높은 것을 확인할 수 있었다. 이러한 결과로부터 셀룰로오스 나노크리스탈은 그라프트 공중합체의 제조 공정 중에 투입하여도, 그라프트 공중합체의 물성에 영향을 미치지 않는 것을 확인할 수 있었다.
실험예 3
실시예 및 비교예의 열가소성 수지 조성물, 활제로 에틸렌 비스 (스테아르아미드) 2 중량부 및 포스페이트계 산화방지제 0.2 중량부를 균일하게 혼합한 후, 230℃로 설정된 이축 압출기에 투입하고 압출하여 펠렛을 제조하였다. 펠렛의 유동지수를 하기와 같은 방법으로 측정하고, 그 결과를 하기 [표 3] 내지 [표 6]에 나타내었다.
⑦ 유동지수(g/10 min): ASTM D-1238에 의거하여 220 ℃, 10 ㎏ 하에서 측정하였다.
실험예 4
실험예 3에서 제조된 펠렛을 230 ℃에서 사출하고, 25 ℃, 50±5 % 상대 습도 조건 하에서 12 시간 동안 숙성하여 시편을 제조하였다. 상기 시편을 하기에 기재된 방법으로 물성을 평가하고, 그 결과를 하기 [표 3] 내지 [표 6]에 기재하였다.
⑧ 투명성(haze, %): ASTM D-1003에 의거하여 3 ㎜ 두께의 시트의 투명성을 측정하였다.
⑨ 오븐경시 변화(△E1): 시편의 L, a, b 값을 측정하고, 시편을 80 ℃의 오븐에서 7 일 동안 보관한 후, L, a, b 값을 측정하였다. 그리고 하기 식에 의하여 변색 정도를 평가하였다.
Figure PCTKR2019005562-appb-I000001
상기 식에서, L1’, a1’ 및 b1’은 시편을 80 ℃의 오븐에서 7 일 동안 보관한 후 CIE LAB 색 좌표계로 측정한 L, a 및 b 값이고, L10, a10 및 b10는 오븐에 보관 전에 시편을 CIE LAB 색 좌표계로 측정한 L, a 및 b 값이다.
⑩ 사출체류 변화(△E2): 시편의 L, a, b 값을 측정하고, 사출기에서 250 ℃, 15 분 동안 체류시킨 후, L, a, b 값을 측정하였다. 그리고 하기 식에 의하여 변색 정도를 평가하였다.
Figure PCTKR2019005562-appb-I000002
상기 식에서, L2’, a2’ 및 b2’은 시편을 사출기에서 250 ℃, 15 분 동안 체류시킨 후 CIE LAB 색 좌표계로 측정한 L, a 및 b 값이고, L20, a20 및 b20는 체류 전에 시편을 CIE LAB 색 좌표계로 측정한 L, a 및 b 값이다.
⑪ 노치드 아이조드 충격강도(㎏·㎝/㎝, 1/4 In): ASTM D256에 의거하여 측정하였다.
⑫ 인장강도(㎏f/㎠): ASTM D638에 의거하여 측정하였다.
⑬ 내화학성: 인장시편을 1.0% 지그에 고정시킨 후, 이소프로필 알코올 용액(농도: 70%)을 인장시편 위에 도포하고 10분 후 변화를 육안으로 관찰하였다.
◎: 변화 없음, ○: 미세 크랙 발생, △: 크랙 발생, ×: 파단 발생
구분 실시예
9 10 11 12
매트릭스 공중합체(중량부) 종류 A B C D
함량 60 60 60 60
그라프트 공중합체 분말(중량부) 종류 E E E E
함량 40 40 40 40
⑦ 유동지수 18.0 17.9 18.2 18.5
⑧ 투명성 2.2 2.3 2.4 2.3
⑨오븐경시 변화 3.0 3.1 3.0 3.1
⑩ 사출체류 변화 3.2 3.1 3.0 3.8
⑪ 충격강도 21.3 23.4 23.1 25.1
⑫ 인장강도 521 535 538 546
⑬ 내화학성
구분 실시예
13 14 15
매트릭스 공중합체(중량부) 종류 E E E
함량 60 60 60
그라프트 공중합체 분말(중량부) 종류 B C D
함량 40 40 40
⑦ 유동지수 18.0 18.1 18.5
⑧ 투명성 2.0 2.1 2.1
⑨ 오븐경시 변화 3.2 3.3 3.2
⑩ 사출체류 변화 3.4 3.4 3.3
⑪ 충격강도 18.0 20.1 23.5
⑫ 인장강도 510 522 555
⑬ 내화학성
구분 실시예
16 17 18 19
매트릭스 공중합체(중량부) 종류 A B C D
함량 60 60 60 60
그라프트 공중합체 분말(중량부) 종류 A A A A
함량 40 40 40 40
⑦ 유동지수 17.9 18.0 18.5 18.6
⑧ 투명성 2.1 2.1 2.2 2.3
⑨ 오븐경시 변화 3.0 3.0 3.1 3.1
⑩ 사출체류 변화 3.0 3.2 3.0 3.0
⑪ 충격강도 20.5 22.9 23.7 26.8
⑫ 인장강도 528 540 558 575
⑬ 내화학성
구분 실시예 비교예
20 21 22 3 4
매트릭스 공중합체(중량부) 종류 B B B E E
함량 50 60 60 60 60
그라프트 공중합체 분말(중량부) 종류 B B C E E
함량 50 40 40 40 37
CNC(중량부) - - - - 3
⑦ 유동지수 18.5 17.9 18.2 - 18.5
⑧ 투명성 2.0 2.2 2.2 2 12.0
⑨ 오븐경시 변화 3.1 3.1 3.1 3.6 -
⑩ 사출체류 변화 3.0 3.1 3.0 3.8 -
⑪ 충격강도 21.1 23.1 23.3 17.0 19.5
⑫ 인장강도 516 544 551 498 520
⑬ 내화학성 ×
표 3 내지 표 6을 참조하면, 셀룰로오스 나노크리스탈 유도체를 포함하는 매트릭스 공중합체와, 셀룰로오스 나노크리스탈 유도체를 포함하지 않는 그라프트 공중합체를 포함하는 열가소성 수지 조성물로 제조된 실시예 9 내지 12의 시편은 셀룰로오스 나노크리스탈 유도체를 포함하지 않는 그라프트 공중합체와 매트릭스 공중합체를 포함하는 열가소성 수지 조성물로 제조된 비교예 3 대비 유동지수 및 투명성은 동등 수준이나, 오븐경시 변화, 사출체류 변화, 충격강도, 인장강도 및 내화학성이 우수한 것을 확인할 수 있었다. 또한, 매트릭스 공중합체의 제조 시 투입된 셀룰로오스 나노크리스탈의 함량이 증가할수록 오븐경시 변화, 사출체류 변화, 충격강도, 인장강도 및 내화학성이 보다 개선되는 것을 확인할 수 있었다.또한, 셀룰로오스 나노크리스탈 유도체를 포함하지 않는 매트릭스 공중합체와, 셀룰로오스 나노크리스탈 유도체를 포함하는 그라프트 공중합체를 포함하는 열가소성 수지 조성물로 제조된 실시예 13 내지 15의 시편은, 셀룰로오스 나노크리스탈 유도체를 포함하지 않는 그라프트 공중합체와 매트릭스 공중합체를 포함하는 열가소성 수지 조성물로 제조된 비교예 3 대비 유동지수 및 투명성은 동등 수준이나, 오븐경시 변화, 사출체류 변화, 충격강도, 인장강도 및 내화학성이 우수한 것을 확인할 수 있었다. 또한, 그라프트 공중합체의 제조 시 투입된 셀룰로오스 나노크리스탈의 함량이 증가할수록 오븐경시 변화, 사출체류 변화, 충격강도, 인장강도 및 내화학성이 보다 개선되는 것을 확인할 수 있었다.
또한, 셀룰로오스 나노크리스탈 유도체를 포함하는 그라프트 공중합체와 매트릭스 공중합체를 포함하는 열가소성 수지 조성물로 제조된 실시예 16 내지 22의 시편은 셀룰로오스 나노크리스탈 유도체를 포함하지 않는 그라프트 공중합체와 매트릭스 공중합체를 포함하는 열가소성 수지 조성물로 제조된 비교예 3 대비 유동지수 및 투명성은 동등 수준이나, 오븐경시 변화, 사출체류 변화, 충격강도, 인장강도 및 내화학성이 우수한 것을 확인할 수 있었다. 또한, 그라프트 공중합체 또는 매트릭스 공중합체의 제조 시 투입된 셀룰로오스 나노크리스탈의 함량이 증가할수록 오븐경시 변화, 사출체류 변화, 충격강도, 인장강도 및 내화학성이 보다 개선되는 것을 확인할 수 있었다.
한편, 셀룰로오스 나노크리스탈 수용액을 별도의 구성요소로 포함하는 비교예 4의 열가소성 수지 조성물은 펠렛 제조 공정 중 압출기의 스크류에서 셀룰로오스 나노크리스탈이 적체되는 현상이 발생하여 압출을 지속적으로 수행하기 어려웠다. 따라서, 비교예 4의 펠렛은 오븐 경시 변화 및 사출 체류 변화를 측정할 수 있을 정도로 압출되지 못하였고, 결과적으로 오븐 경시 변화 및 사출 체류 변화를 측정하지 못하였다. 또한, 셀룰로오스 나노크리스탈이 수용액 형태로 존재하므로, 물로 인해 펠렛이 탄화되어 투명성이 현저하게 저하되었다.

Claims (18)

  1. 셀룰로오스 나노크리스탈 유도체;
    알킬 (메트)아크릴레이트계 단량체 단위;
    방향족 비닐계 단량체 단위; 및
    비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체.
  2. 청구항 1에 있어서,
    상기 매트릭스 공중합체는 굴절률이 1.51 내지 1.52인 것인 매트릭스 공중합체.
  3. 청구항 1에 있어서,
    상기 셀룰로오스 나노크리스탈은 굴절률이 1.4 내지 1.5인 것인 매트릭스 공중합체.
  4. 청구항 1에 있어서,
    상기 셀룰로오스 나노크리스탈은 복수개의 1차 입자를 포함하는 2차 입자이고,
    상기 1차 입자의 평균직경이 5 내지 20 ㎚이고, 평균길이가 50 내지 200 ㎚이고,
    상기 2차 입자의 평균직경이 평균직경이 100 내지 200 ㎚것인 매트릭스 공중합체.
  5. 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 반응기에 투입하고 중합하는 매트릭스 공중합체의 제조방법.
  6. 청구항 5에 있어서,
    상기 셀룰로오스 나노크리스탈과 알킬 (메트)아크릴레이트계 단량체의 중량비는 1:99 내지 20:80인 것인 매트릭스 공중합체의 제조방법.
  7. 청구항 5에 있어서,
    상기 셀룰로오스 나노크리스탈과 방향족 비닐계 단량체의 중량비는 5:95 내지 35:65인 것인 매트릭스 공중합체의 제조방법.
  8. 청구항 5에 있어서,
    상기 셀룰로오스 나노크리스탈, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여,
    상기 셀룰로오스 나노크리스탈 0.1 내지 15 중량%;
    상기 알킬 (메트)아크릴레이트계 단량체 50 내지 75 중량%;
    상기 방향족 비닐계 단량체 15 내지 35 중량%; 및
    상기 비닐 시안계 단량체 1 내지 15 중량%인 것인 매트릭스 공중합체의 제조방법.
  9. 셀룰로오스 나노크리스탈 유도체;
    공액 디엔계 중합체;
    알킬 (메트)아크릴레이트계 단량체 단위;
    방향족 비닐계 단량체 단위; 및
    비닐 시안계 단량체 단위를 포함하는 그라프트 공중합체.
  10. 청구항 9에 있어서,
    상기 그라프트 공중합체는 굴절률이 1.51 내지 1.52인 것인 그라프트 공중합체.
  11. 청구항 9에 있어서,
    상기 셀룰로오스 나노크리스탈은 굴절률이 1.4 내지 1.5인 것인 그라프트 공중합체.
  12. 청구항 9에 있어서,
    상기 셀룰로오스 나노크리스탈은 복수개의 1차 입자를 포함하는 2차 입자이고,
    상기 1차 입자의 평균직경이 5 내지 20 ㎚이고, 평균길이가 50 내지 200 ㎚이고,
    상기 2차 입자의 평균직경이 평균직경이 100 내지 200 ㎚것인 그라프트 공중합체.
  13. 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체를 반응기에 투입하고 그라프트 중합하는 그라프트 공중합체의 제조방법.
  14. 청구항 13에 있어서,
    상기 셀룰로오스 나노크리스탈과 알킬 (메트)아크릴레이트계 단량체의 중량비는 1:99 내지 30:70인 것인 그라프트 공중합체의 제조방법.
  15. 청구항 13에 있어서,
    상기 셀룰로오스 나노크리스탈과 방향족 비닐계 단량체의 중량비는 1:99 내지 40:60인 것인 그라프트 공중합체의 제조방법.
  16. 청구항 13에 있어서,
    상기 셀룰로오스 나노크리스탈, 공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체, 방향족 비닐계 단량체 및 비닐 시안계 단량체의 총 중량에 대하여,
    상기 셀룰로오스 나노크리스탈 0.1 내지 10 중량%;
    상기 공액 디엔계 중합체 40 내지 60 중량%;
    상기 알킬 (메트)아크릴레이트계 단량체 15 내지 40 중량%;
    상기 방향족 비닐계 단량체 5 내지 20 중량%; 및
    상기 비닐 시안계 단량체 1 내지 15 중량%인 것인 그라프트 공중합체의 제조방법.
  17. 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 매트릭스 공중합체; 및
    공액 디엔계 중합체, 알킬 (메트)아크릴레이트계 단량체 단위, 방향족 비닐계 단량체 단위, 및 비닐 시안계 단량체 단위를 포함하는 그라프트 공중합체를 포함하는 열가소성 수지 조성물이며,
    상기 매트릭스 공중합체 및 상기 그라프트 공중합체 중 적어도 하나 이상이 셀룰로오스 나노크리스탈 유도체를 더 포함하는 열가소성 수지 조성물.
  18. 청구항 17에 있어서,
    상기 매트릭스 공중합체와 그라프트 공중합체는 굴절률의 차이가 0 내지 0.008인 것인 열가소성 수지 조성물.
PCT/KR2019/005562 2018-05-14 2019-05-14 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물 WO2019221448A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19802659.3A EP3663354B1 (en) 2018-05-14 2019-05-14 Matrix copolymer, graft copolymer, and thermoplastic resin composition
US16/646,127 US11434358B2 (en) 2018-05-14 2019-05-14 Matrix copolymer, graft copolymer, and thermoplastic resin composition
CN201980004389.8A CN111065682B (zh) 2018-05-14 2019-05-14 基体共聚物、接枝共聚物和热塑性树脂组合物

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20180054990 2018-05-14
KR10-2018-0054988 2018-05-14
KR10-2018-0054989 2018-05-14
KR20180054988 2018-05-14
KR10-2018-0054990 2018-05-14
KR20180054989 2018-05-14
KR1020190055975A KR102210031B1 (ko) 2018-05-14 2019-05-14 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물
KR10-2019-0055975 2019-05-14

Publications (1)

Publication Number Publication Date
WO2019221448A1 true WO2019221448A1 (ko) 2019-11-21

Family

ID=68540427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005562 WO2019221448A1 (ko) 2018-05-14 2019-05-14 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물

Country Status (1)

Country Link
WO (1) WO2019221448A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654837A (zh) * 2022-03-25 2022-06-24 西南大学(重庆)产业技术研究院 生物基棒状颗粒双结构单色复合材料及制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050020200A (ko) * 2003-08-21 2005-03-04 주식회사 엘지화학 그라프트 공중합체 조성물, 이의 분말 제조방법, 및 이를이용한 열가소성 수지 조성물
KR20050038453A (ko) * 2003-10-22 2005-04-27 주식회사 엘지화학 고무중합체 및 그의 제조방법
KR20070027991A (ko) * 2005-08-30 2007-03-12 주식회사 엘지화학 열가소성 수지 조성물 및 그 제조방법
KR20130141475A (ko) * 2010-09-07 2013-12-26 이섬 리서치 디벨러프먼트 컴파니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. 셀룰로스 기반 복합 물질
KR20160081497A (ko) * 2014-12-31 2016-07-08 삼성에스디아이 주식회사 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050020200A (ko) * 2003-08-21 2005-03-04 주식회사 엘지화학 그라프트 공중합체 조성물, 이의 분말 제조방법, 및 이를이용한 열가소성 수지 조성물
KR20050038453A (ko) * 2003-10-22 2005-04-27 주식회사 엘지화학 고무중합체 및 그의 제조방법
KR20070027991A (ko) * 2005-08-30 2007-03-12 주식회사 엘지화학 열가소성 수지 조성물 및 그 제조방법
KR20130141475A (ko) * 2010-09-07 2013-12-26 이섬 리서치 디벨러프먼트 컴파니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. 셀룰로스 기반 복합 물질
KR20160081497A (ko) * 2014-12-31 2016-07-08 삼성에스디아이 주식회사 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3663354A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654837A (zh) * 2022-03-25 2022-06-24 西南大学(重庆)产业技术研究院 生物基棒状颗粒双结构单色复合材料及制备方法和应用

Similar Documents

Publication Publication Date Title
WO2020032505A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 이를 포함하는 열가소성 수지 성형품
WO2022019581A1 (ko) 열가소성 수지 및 이의 제조방법
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2019151776A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2019059664A1 (ko) 그라프트 공중합체의 제조방법, 그라프트 공중합체 및 열가소성 수지 성형품
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2019221448A1 (ko) 매트릭스 공중합체, 그라프트 공중합체 및 열가소성 수지 조성물
WO2020050544A1 (ko) 그라프트 공중합체의 제조방법 및 그라프트 공중합체
WO2020080735A1 (ko) 그라프트 공중합체 분말의 제조방법
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2020091336A1 (ko) 열가소성 수지 조성물
WO2019156394A1 (ko) 그라프트 공중합체의 제조방법 및 열가소성 수지 성형품
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2021066345A1 (ko) 아크릴계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2024085398A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023243908A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2016122144A1 (ko) 변성 이소부틸렌-이소프렌 고무, 이의 제조방법 및 경화물
WO2023243909A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023243910A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2022035072A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2015163608A1 (ko) 내열성 스티렌계 공중합체 및 이를 포함하는 스티렌계 수지 조성물
WO2022075578A1 (ko) 비닐시안 화합물-공액디엔 고무-방향족 비닐 화합물 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019802659

Country of ref document: EP

Effective date: 20200305

NENP Non-entry into the national phase

Ref country code: DE