WO2019221028A1 - Collision detection apparatus - Google Patents

Collision detection apparatus Download PDF

Info

Publication number
WO2019221028A1
WO2019221028A1 PCT/JP2019/018775 JP2019018775W WO2019221028A1 WO 2019221028 A1 WO2019221028 A1 WO 2019221028A1 JP 2019018775 W JP2019018775 W JP 2019018775W WO 2019221028 A1 WO2019221028 A1 WO 2019221028A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
detection unit
collision
region
stress detection
Prior art date
Application number
PCT/JP2019/018775
Other languages
French (fr)
Japanese (ja)
Inventor
直一 ▲高▼須賀
往広 斉藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019002514.7T priority Critical patent/DE112019002514T5/en
Publication of WO2019221028A1 publication Critical patent/WO2019221028A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01L1/2231Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being disc- or ring-shaped, adapted for measuring a force along a single direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0052Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/167Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using piezoelectric means

Definitions

  • the present disclosure relates to a collision detection device configured to detect a collision between an object existing outside the vehicle and the vehicle.
  • a device including a piezoelectric sensor that functions as a collision detection sensor for detecting a pedestrian collision and a control unit that detects a collision based on the detection result of the piezoelectric sensor is known (for example, Patent Documents). 1).
  • the piezoelectric sensor is attached to the inner surface of the front bumper.
  • a control means determines whether it is a collision with a pedestrian or other collision based on the detection data of a piezoelectric sensor, etc.
  • the collision detection device is configured to detect a collision between an object existing outside the vehicle and a bumper cover attached to the vehicle body of the vehicle.
  • the collision detection device includes: Compressive stress increases at the time of the collision in the fastening portion between the support portion provided on the vehicle body side and used for supporting the bumper cover and the supported portion provided on the bumper cover side than the support portion.
  • a first stress detection unit configured to generate an output corresponding to the stress applied during the collision, By being provided in the second region other than the first region in the fastening portion, an output corresponding to the stress applied at the time of the collision is generated separately from the first stress detection unit.
  • the collision detection apparatus includes: In the case of the collision, it is provided at a fastening portion between a support portion provided on the vehicle body side and used for supporting the bumper cover and a supported portion provided on the bumper cover side rather than the support portion.
  • a stress detection unit configured to generate an output according to the applied stress;
  • a collision detection unit provided to detect the collision based on the output of the stress detection unit; With The stress detection unit is provided in an unbalanced manner between the first region where the compressive stress increases and the second region other than that in the on-board state provided in the fastening unit when the collision occurs in the fastening unit. It is configured.
  • FIG. 3 is a plan view showing a schematic configuration of the vehicle shown in FIGS. 1 and 2. It is a side view which expands and shows the structure of the fastening part which concerns on 1st embodiment. It is a top view which expands and shows the sensor module shown by FIG. FIG. 6 is a sectional view taken along line VI-VI in FIG. 5. It is a schematic circuit block diagram of the collision detection part which concerns on 1st embodiment. It is a side view which shows the behavior of the fastening part shown by FIG. 8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7.
  • FIG. 8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7.
  • 8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7.
  • It is a side view which shows the behavior of the fastening part shown by FIG. 8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7.
  • 8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7.
  • 8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7.
  • It is a schematic circuit block diagram of the collision detection part which concerns on 2nd embodiment.
  • It is a top view which expands and shows the sensor module which concerns on 3rd embodiment.
  • It is a top view which expands and shows the sensor module which concerns on 4th embodiment.
  • FIG. 1 It is a schematic circuit block diagram of the collision detection part which concerns on 4th embodiment. It is a top view which expands and shows an example of the sensor module which concerns on 5th embodiment. It is a top view which expands and shows another example of the sensor module which concerns on 5th embodiment. It is a disassembled perspective view of the front part in the vehicle with which the sensor module which concerns on 6th embodiment is applied. It is a side view which expands and shows the structure of the fastening part which concerns on 6th embodiment. It is a top view which expands and shows the sensor module which concerns on 6th embodiment. It is XXI-XXI sectional drawing in FIG. It is a top view which expands and shows the sensor module which concerns on 7th embodiment. FIG.
  • FIG. 23 is a sectional view taken along line XXIII-XXIII in FIG. It is a perspective view which expands and shows the sensor module which concerns on 8th embodiment. It is a side view which shows one modification of a structure of a fastening part. It is a side view which shows another modification of the structure of a fastening part. It is a side view which shows another modification of the structure of a fastening part. It is a side view which shows the behavior of the fastening part shown by FIG. It is a side view which shows the behavior of the fastening part shown by FIG. It is a side view which shows another modification of the structure of a fastening part. It is a side view which shows another modification of the structure of a fastening part. It is a side view which shows another modification of the structure of a fastening part.
  • FIGS. 1 and 2 For convenience of explanation, the concepts of “up”, “down”, “front”, “rear”, “left”, and “right” in the vehicle 1 are defined as indicated by arrows in the drawing. .
  • the front-rear direction may be referred to as the “vehicle full length direction”.
  • the left-right direction may be referred to as the “vehicle width direction”.
  • the vertical direction can be referred to as a “vehicle height direction”.
  • the vehicle 1 is a so-called four-wheel vehicle and includes a vehicle body 2.
  • the vehicle body 2 is formed in a substantially rectangular box shape in plan view.
  • a front bumper cover 3 is attached to the front end of the vehicle body 2.
  • a front hood 4 constituting an outer panel of the vehicle body 2 is provided at the front of the vehicle body 2 and behind the front bumper cover 3.
  • the front hood 4 is provided so as to be openable and closable so as to cover the front compartment, which is the front portion of the vehicle body 2, from above.
  • the front bumper cover 3 is provided with a supported portion 5.
  • the supported part 5 is a plate-like part used for mounting the front bumper cover 3 to the vehicle body 2.
  • the supported portion 5 extends from the upper end portion of the front bumper cover 3 toward the vehicle body 2 along a horizontal plane perpendicular to the vehicle height direction.
  • the supported portion 5 is formed integrally with the front bumper cover 3 using the same material as the front bumper cover 3. Further, the supported portion 5 is provided with a through hole H1 for inserting the bolt B.
  • the vehicle body 2 is provided with a vehicle body frame 6 including bumper reinforcement and side members.
  • a support portion 7 is provided on the body frame 6.
  • the support portion 7 is a vehicle body part provided on the vehicle body 2 side that is used to support the front bumper cover 3.
  • the body frame 6 is provided with a plurality of support portions 7. Further, the support portion 7 is attached to the side member that constitutes the vehicle body frame 6.
  • the support part 7 has a plate-like vehicle body side fastening part 8.
  • the vehicle body side fastening portion 8 is provided at the upper end portion of the support portion 7.
  • the vehicle body side fastening portion 8 extends along a horizontal plane orthogonal to the vehicle height direction.
  • the vehicle body side fastening portion 8 is provided with a through hole H2 through which the bolt B is inserted.
  • the fastening portion 9 is formed by fastening the support portion 7 and the supported portion 5 provided on the front bumper cover 3 side with respect to the support portion 7 by using bolts B. Is formed.
  • the vehicle 1 is provided with a plurality of fastening portions 9. Details of the configuration of the fastening portion 9 will be described later.
  • a protection system 10 is mounted on the vehicle 1.
  • the protection system 10 is configured to protect a person who collides with the vehicle 1.
  • “Human who collided with vehicle 1” includes, for example, a pedestrian who collided directly with vehicle 1 and an occupant such as a motorcycle which collided with vehicle 1.
  • Motorcycles and the like include bicycles, motorcycles, wheelchairs, and the like.
  • the two-wheeled vehicle is, for example, a bicycle.
  • an object that directly collides with the vehicle 1 may be a two-wheeled vehicle instead of an occupant.
  • an occupant such as a motorcycle collided with the vehicle 1 “indirectly”.
  • the protection system 10 is configured to protect a protection target from an impact caused by a collision with the vehicle body 2 when the vehicle 1 and a specific object collide.
  • the “specific object” includes a pedestrian, a motorcycle with a passenger, a wheelchair with a passenger, and the like.
  • the “protection target” includes a pedestrian in addition to a passenger in a motorcycle with a passenger.
  • the “protection target” may also be referred to as “traffic weak person”.
  • the protection system 10 includes a pedestrian airbag device 11, a hood pop-up device 12, and a collision detection device 20.
  • the pedestrian airbag device 11 and the hood pop-up device 12 are provided to protect a protection target from an impact caused by a collision with the vehicle body 2 when a specific object collides with the vehicle 1.
  • the pedestrian airbag device 11 and the hood pop-up device 12 are configured to protect a protection target from an impact caused by a secondary collision.
  • Secondary collision means that an object to be protected, such as a motorcycle or a pedestrian, collides with the vehicle body 2 after the “primary collision”.
  • Primary collision means that a specific object first collides with the vehicle body 2.
  • the pedestrian airbag device 11 is configured to protect the object to be protected by deploying on the vehicle body 2 after the primary collision and before the secondary collision.
  • the hood pop-up device 12 is configured to raise the front hood 4 after the occurrence of the primary collision and before the occurrence of the secondary collision. Specifically, the hood pop-up device 12 is configured to push up the rear end of the front hood 4 during operation.
  • the pedestrian airbag device 11 and the hood pop-up device 12 are already known at the time of filing of the present application. Therefore, the further description about the detail of the structure of the pedestrian airbag apparatus 11 and the food pop-up apparatus 12 is abbreviate
  • the collision detection device 20 is configured to detect a collision between an object existing outside the vehicle 1 and the front bumper cover 3. Specifically, in the present embodiment, the collision detection device 20 detects whether or not a specific object has collided with the front bumper cover 3, and when detecting the collision of the specific object, the pedestrian airbag device 11 and The food pop-up device 12 is activated. Specifically, the collision detection device 20 includes a collision detection unit 21 and a sensor module 22.
  • the collision detection unit 21 is an ECU that controls the overall operation of the protection system 10, and is configured as an in-vehicle microcomputer including a CPU, a ROM, a RAM, a nonvolatile RAM, and the like (not shown). ECU is an abbreviation for Electronic Control Unit.
  • the collision detection unit 21 is electrically connected to the sensor module 22 so that the output of the sensor module 22 can be received.
  • the collision detection unit 21 is provided to detect a collision between the front bumper cover 3 and the specific object based on the output of the sensor module 22.
  • the sensor module 22 is provided in the fastening portion 9.
  • the fastening portion 9 is formed by fastening the supported portion 5, the vehicle body side fastening portion 8, and the sensor module 22 with the bolt B in a state where they are stacked along the vehicle height direction. ing.
  • a plurality of sensor modules 22 are provided. That is, one sensor module 22 is attached to all or a part of the plurality of fastening portions 9.
  • the sensor module 22 is formed in a plate shape having a thickness direction along the vehicle height direction in a vehicle-mounted state provided in the fastening portion 9. Specifically, in the present embodiment, the sensor module 22 is formed in a washer shape into which the bolt B can be inserted. That is, the sensor module 22 is provided with a through hole H3 through which the bolt B can be inserted so as to penetrate in the thickness direction.
  • the fastening portion 9 the supported portion 5, the sensor module 22, and the vehicle body side fastening portion 8 are stacked in this order along the vehicle height direction. That is, the sensor module 22 is sandwiched between the supported portion 5 and the vehicle body side fastening portion 8. Further, the fastening portion 9 is inserted into the nuts N by inserting bolts B as fasteners through the through holes H1, H2, and H3 that penetrate the laminated body of the supported portion 5, the vehicle body side fastening portion 8, and the sensor module 22. It is formed by fastening using.
  • the sensor module 22 is configured to generate an output corresponding to the state of the stress generated in the fastening portion 9 when the object and the front bumper cover 3 collide. 4 to 6, in the present embodiment, the sensor module 22 includes a stress detection unit 23, a wiring 24, a detection unit support member 25, and a protection member 26.
  • the stress detector 23 is configured to generate an output corresponding to the stress applied when the object and the front bumper cover 3 collide with each other in the vehicle-mounted state provided in the fastening unit 9.
  • the stress detection unit 23 is a known piezoelectric element, and is formed by laminating a piezoelectric film and a conductor thin film along the thickness direction of the sensor module 22.
  • the stress detection unit 23 is provided so as to output a voltage corresponding to a stress state in a direction along the thickness direction of the sensor module 22.
  • the sensor module 22 is provided with a first stress detection unit 231 and a second stress detection unit 232 as the stress detection unit 23.
  • the first stress detector 231 is provided in the first region R ⁇ b> 1 in the fastening portion 9.
  • the first region R ⁇ b> 1 is a region where the compressive stress increases due to the occurrence of compressive stress caused by the collision when the object and the front bumper cover 3 collide.
  • the 2nd stress detection part 232 is provided in 2nd area
  • the second stress detection unit 232 is provided to generate an output separately from the first stress detection unit 231.
  • the first region R1 and the second region R2 are formed to face each other with the through holes H1 to H3 interposed therebetween. That is, the first stress detection unit 231 and the second stress detection unit 232 are disposed to face each other with the through hole H3 interposed therebetween.
  • the first region R1 is provided in front of the second region R2.
  • the first stress detector 231 and the second stress detector 232 are formed in a semicircular arc shape or an arc shape having a central angle of less than 180 degrees in plan view.
  • the first stress detector 231 is provided only in the first region R1 so as not to straddle the first region R1 and the second region R2.
  • the second stress detection unit 232 is provided only in the second region R2 so as not to straddle the first region R1 and the second region R2.
  • the first stress detection unit 231 and the second stress detection unit 232 are provided symmetrically with respect to a virtual boundary surface L between the first region R1 and the second region R2.
  • a boundary surface L is indicated by a one-dot chain line extending in the vertical direction in FIG. 4, and is indicated by a one-dot chain line extending in the left-right direction in FIG.
  • the boundary surface L includes the through holes H1 to H3 and the central axis C of the bolt B, and can be defined as a plane whose normal direction is the extending direction of the supported portion 5 and / or the vehicle body side fastening portion 8. That is, the first region R1 is provided in front of the boundary surface L.
  • the second region R2 is provided behind the boundary surface L.
  • the first stress detection unit 231 and the second stress detection unit 232 are configured separately. Moreover, the 1st stress detection part 231 and the 2nd stress detection part 232 have the same shape by planar view. That is, the first stress detection unit 231 and the second stress detection unit 232 are formed in the same area within the plane in which the first region R1 and the second region R2 are arranged.
  • the first stress detection unit 231 and the second stress detection unit 232 are arranged on one virtual circumference VC in a plane in which the first region R1 and the second region R2 are arranged. Further, the first stress detection unit 231 and the second stress detection unit 232 have the same width, that is, the radial dimension.
  • the width, that is, the radial dimension is a dimension along a virtual straight line obtained by extending the radius of the virtual circumference VC. Further, the first stress detection unit 231 and the second stress detection unit 232 are arranged so that the virtual circumference VC passes through the center in the width direction.
  • the first stress detector 231 and the second stress detector 232 are each electrically connected to the wiring 24.
  • the wiring 24 is provided so that the output of the first stress detector 231 and the output of the second stress detector 232 can be output individually.
  • the detection unit support member 25 is a member that supports the stress detection unit 23 and is formed of a synthetic resin material. That is, the detection unit support member 25 is configured to support the first stress detection unit 231 and the second stress detection unit 232.
  • the detection unit support member 25 has a disk shape with a through hole H3 formed in the center.
  • the detection unit support member 25 is formed thicker than the first stress detection unit 231 and the second stress detection unit 232. Further, the first stress detection unit 231 and the second stress detection unit 232 are arranged at the center of the detection unit support member 25 in the thickness direction. That is, the detection unit support member 25 is provided so as to cover the entire first stress detection unit 231 and the second stress detection unit 232.
  • Protection members 26 are provided on both surfaces in the thickness direction of the detection unit support member 25. That is, the protection member 26 is joined to the detection unit support member 25 in the thickness direction.
  • the protection member 26 has a disk shape with a through hole H3 formed at the center.
  • the protection member 26 is made of a synthetic resin material.
  • the collision detection unit 21 is configured to detect a collision between the front bumper cover 3 and an object based on outputs of the first stress detection unit 231 and the second stress detection unit 232. Specifically, in the present embodiment, the collision detection unit 21 is based on the output voltage V0 of the connection circuit DC in which the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities. A collision is detected.
  • the first region R1 which is the front region of the fastening portion 9
  • a load is applied so that the supported portion 5 is pressed toward the vehicle body side fastening portion 8 as indicated by an arrow F12 in the figure.
  • the compressive stress resulting from the collision acts on the part in the first region R1 in the sensor module 22. That is, the compressive stress along the thickness direction applied to the first stress detection unit 231 disposed in the first region R1 increases more than the prestress due to the collision.
  • the second region R2 which is the rear side region in the fastening portion 9
  • a load is applied so that the supported portion 5 is separated from the vehicle body side fastening portion 8 as indicated by an arrow F13 in the figure.
  • region R2 in the sensor module 22 the increase in the compressive stress resulting from a collision does not arise. That is, the compressive stress along the thickness direction applied to the second stress detection unit 232 disposed in the second region R2 does not increase from the prestress but rather decreases from the prestress due to the collision.
  • FIG. 9A shows the time lapse of the output voltage V1 of the first stress detector 231 before and after the occurrence of the collision.
  • FIG. 9B shows the time lapse of the output voltage V2 of the second stress detector 232 before and after the occurrence of the collision.
  • FIG. 9C shows the elapse of time of the output voltage V0 of the connection circuit DC before and after the occurrence of the collision.
  • T1 indicates a collision occurrence period.
  • the output voltage V1 of the first stress detector 231 and the output voltage V2 of the second stress detector 232 are substantially constant corresponding to the prestress. Value.
  • a convex peak on the positive side corresponding to an increase in compressive stress occurs in the output voltage V1 of the first stress detection unit 231.
  • the output voltage V2 of the second stress detection unit 232 has a convex peak on the negative side corresponding to a decrease in compressive stress.
  • the shape of the stress detection unit 23 in plan view is a closed ring shape in which the first stress detection unit 231 and the second stress detection unit 232 are combined, a positive convex peak in the output voltage V1 is output. It is attenuated by a negative peak on the voltage V2. That is, the piezoelectric effect acting on the first region R1 and the piezoelectric effect acting on the second region R2 are offset. Therefore, in this case, in the output voltage of the stress detection unit 23, it is difficult to obtain a significant peak when a collision occurs.
  • the stress detection unit 23 includes a first stress detection unit 231 provided in the first region R1 and a second stress detection unit 232 provided in the second region R2.
  • the electric circuit configuration is divided. That is, the first stress detection unit 231 and the second stress detection unit 232 separately generate outputs corresponding to the applied stress. Then, the collision detection unit 21 acquires the output voltage V1 of the first stress detection unit 231 and the output voltage V2 of the second stress detection unit 232 independently, and appropriately performs signal processing on these to thereby detect the collision. Detect.
  • the connection circuit DC provided in the collision detection unit 21 the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities. Then, the output voltage V0 of the connection circuit DC is obtained by adding a peak that is convex on the positive side in the output voltage V1 and a peak that is inverted on the negative side in the output voltage V2. That is, the output voltage V1 is emphasized by the inverted output of the output voltage V2. For this reason, the output voltage V0 has a larger peak than the output voltage V1. Therefore, according to the present embodiment, a significant peak is obtained in the output voltage V0 when a collision occurs, and the sensitivity of collision determination is improved.
  • the second region R2 which is the rear side region of the fastening portion 9
  • a load is applied so that the supported portion 5 is pressed toward the vehicle body side fastening portion 8 as indicated by an arrow F23 in the figure.
  • the compressive stress resulting from the running vibration acts on the portion in the second region R2 in the sensor module 22 as well. That is, the compressive stress along the thickness direction applied to the second stress detection unit 232 disposed in the second region R2 also increases from the prestress due to running vibration.
  • FIG. 11A shows the time lapse of the output voltage V1 of the first stress detector 231 before and after the occurrence of running vibration.
  • FIG. 11B shows the elapse of time of the output voltage V2 of the second stress detector 232 before and after the occurrence of running vibration.
  • FIG. 11C shows the passage of time of the output voltage V0 of the connection circuit DC before and after the occurrence of running vibration.
  • T2 indicates a traveling vibration generation period.
  • a peak that is convex on the positive side is generated in the output voltage V1 of the first stress detector 231 due to the occurrence of running vibration.
  • a convex peak is also generated on the positive side in the output voltage V2 of the second stress detector 232 due to the occurrence of running vibration.
  • connection circuit DC provided in the collision detection unit 21
  • the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities. Then, the output voltage V0 of the connection circuit DC is obtained by adding the positive peak on the positive side in the output voltage V1 and the reverse of the positive peak on the positive side in the output voltage V2. For this reason, at the output voltage V0, the peak due to the occurrence of running vibration is substantially reduced.
  • a significant peak occurs in the output voltage V0 when a collision occurs, but a significant peak hardly occurs in the output voltage V0 when a running vibration occurs. For this reason, a collision between an object such as a pedestrian and the vehicle 1 and a running vibration of the vehicle 1 can be distinguished well. Therefore, it is possible to more reliably detect a collision between an object such as a pedestrian and the vehicle 1.
  • the sensor module 22, that is, the stress detection unit 23 is provided in the fastening portion 9 that is a coupling portion between the front bumper cover 3 and the vehicle body frame 6.
  • the fastening portion 9 is the place where the distortion is most concentrated when the front bumper cover 3 and the object collide.
  • the apparatus configuration in the present embodiment is the same as that in the first embodiment except for the circuit configuration of the collision detection unit 21.
  • the collision detection unit 21 includes an inverter 271, an adder 272, and a determination unit 273.
  • the inverter 271 is provided so as to invert the output of the second stress detector 232.
  • the adder 272 is provided so as to add the output of the first stress detection unit 231 and the output of the inverter 271.
  • the determination unit 273 is provided to determine whether or not a collision has occurred based on the output of the adder 272.
  • Such a configuration also operates in the same manner as in the first embodiment. That is, in the output voltage of the adder 272, a noticeable peak occurs when a collision occurs, but a noticeable peak hardly occurs when traveling vibration occurs. For this reason, a collision between an object such as a pedestrian and the vehicle 1 and a running vibration of the vehicle 1 can be distinguished well. Therefore, it is possible to more reliably detect a collision between an object such as a pedestrian and the vehicle 1.
  • the first stress detector 231 and the second stress detector 232 have different shapes in plan view. That is, the first stress detection unit 231 and the second stress detection unit 232 are formed in different areas within the plane in which the first region R1 and the second region R2 are arranged.
  • the first stress detection unit 231 and the second stress detection unit 232 are arranged on the virtual circumference VC and have the same width, that is, radial dimensions. .
  • the first stress detection unit 231 is formed in an arc shape having a central angle of less than 120 degrees, for example, about 90 degrees in plan view.
  • the second stress detector 232 is formed in a semicircular arc shape or a circular arc shape having a central angle of less than 180 degrees in plan view. That is, the second stress detection unit 232 arranged in the second region R2 on the vehicle body 2 side has a larger area than the first stress detection unit 231 arranged in the first region R1 on the front bumper cover 3 side. Is formed.
  • the absolute value of the decrease amount is the increase amount of the compressive stress in the first region R1. Is smaller than the absolute value of.
  • the second stress detection unit 232 disposed in the second region R2 has a larger area than the first stress detection unit 231 disposed in the first region R1. ing. For this reason, the difference in peak output between the output voltage V1 of the first stress detector 231 and the output voltage V2 of the second stress detector 232 is suppressed as much as possible. Therefore, according to such a configuration, it is possible to further enhance the effect of enhancing the output at the time of collision.
  • the sensor module 22 further includes a third stress detection unit 233 in addition to the first stress detection unit 231 and the second stress detection unit 232.
  • the third stress detector 233 has the same structure as the first stress detector 231 and the second stress detector 232. That is, the third stress detection unit 233 is provided in the fastening unit 9, and outputs an output corresponding to the stress applied at the time of collision separately from the first stress detection unit 231 and the second stress detection unit 232. Is configured to occur.
  • the first stress detection unit 231, the second stress detection unit 232, and the third stress detection unit 233 are arranged on the virtual circumference VC.
  • the first stress detector 231, the second stress detector 232, and the third stress detector 233 have the same width, that is, the radial dimension.
  • the first stress detector 231 and the second stress detector 232 have the same shape in plan view.
  • the third stress detection unit 233 is formed to have a larger area than the first stress detection unit 231 and the second stress detection unit 232.
  • the first stress detection unit 231 and the second stress detection unit 232 are formed in a small arc shape with a central angle of about 90 degrees.
  • the third stress detector 233 is formed in a large arc shape with a central angle of about 180 degrees.
  • the first stress detector 231 is provided only in the first region R1 so as not to straddle the first region R1 and the second region R2.
  • the second stress detection unit 232 is provided only in the second region R2 so as not to straddle the first region R1 and the second region R2.
  • the first stress detection unit 231 and the second stress detection unit 232 are provided symmetrically with respect to the boundary surface L.
  • the third stress detector 233 is provided so as to straddle the first region R1 and the second region R2. Specifically, the third stress detection unit 233 is supported by the detection unit support member 25 so that half of the third stress detection unit 233 enters the first region R1 while the other half enters the second region R2. ing.
  • the first stress detector 231, the second stress detector 232, and the third stress detector 233 are each electrically connected to the wiring 24.
  • the wiring 24 is provided so that the output of the first stress detector 231, the output of the second stress detector 232, and the output of the third stress detector 233 can be individually output.
  • the collision detection unit 21 is electrically connected to the first stress detection unit 231, the second stress detection unit 232, and the third stress detection unit 233.
  • a connection circuit DC is formed in which the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities.
  • the collision detection unit 21 is provided with a determination unit 273.
  • the determination unit 273 is electrically connected to the connection circuit DC so as to acquire the output voltage of the connection circuit DC.
  • the determination unit 273 is electrically connected to the third stress detection unit 233 so as to acquire the output voltage of the third stress detection unit 233.
  • the determination unit 273 detects a collision between the front bumper cover 3 and an object and traveling vibration based on the output of the connection circuit DC and the output of the third stress detection unit 233. Yes.
  • the sensor module 22 may include three or more stress detection units 23. As the number of the stress detectors 23 increases, the estimation accuracy of the collision direction improves.
  • the sensor module 22 may include two third stress detection units 233.
  • the sensor module 22 may include three third stress detection units 233.
  • the third stress detector 233 can be provided in the first region R1 and / or the second region R2.
  • (Sixth embodiment) 18 to 21 show a schematic configuration of the sixth embodiment.
  • the stress detection unit 23 is configured to be provided in an unbalanced manner between the first region R1 and the second region R2 in a vehicle-mounted state provided in the fastening unit 9.
  • the sensor module 22 includes one stress detection unit 23. That is, the sensor module 22 is configured by one stress detection unit 23 and the detection unit support member 25 that supports the stress detection unit 23.
  • the stress detection unit 23 is provided only in the first region R1.
  • plan view shape of the stress detection unit 23 is a closed ring shape surrounding the entire circumference of the through hole H3, as described above, the piezoelectric effect acting on the first region R1 and the second region R2 act. This cancels out the piezoelectric effect. Therefore, in this case, in the output voltage of the stress detection unit 23, it is difficult to obtain a significant peak when a collision occurs.
  • the stress detection unit 23 is provided in an unbalanced manner in the first region R1 and the second region R2. Specifically, the stress detection unit 23 is provided only in the first region R1 where the compressive stress increases in the event of a collision. For this reason, a significant peak is obtained in the output voltage when a collision occurs, and the sensitivity of collision determination is improved.
  • the sensor module 22, that is, the stress detection unit 23 is provided in the fastening unit 9, which is a place where distortion is most concentrated when the front bumper cover 3 collides with an object. Therefore, it is possible to satisfactorily detect a collision at an arbitrary position in the vehicle width direction by using the minimum number of sensor modules 22, that is, the stress detection units 23.
  • (Seventh embodiment) 22 and 23 show a schematic configuration of the seventh embodiment.
  • the sensor module 22 includes one stress detection unit 23.
  • the stress detection unit 23 is provided only in the second region R2 where the compressive stress is reduced in the event of a collision. Also with this configuration, the same effects as in the sixth embodiment can be achieved.
  • the fastening portion 9 preferably has a structure as a positioning portion in the circumferential direction around the through hole H3 of the sensor module 22.
  • the sensor module 22 may be provided with an engaging protrusion 291.
  • the engagement protrusion 291 protrudes from the protection member 26 in the thickness direction.
  • the engagement protrusion 291 is formed to engage with an engagement hole 292 provided in the supported portion 5 or the vehicle body side fastening portion 8.
  • FIG. 24 shows an example in which the engagement hole 292 is provided in the vehicle body side fastening portion 8.
  • the present disclosure is not limited to the specific apparatus configuration shown in the above embodiment.
  • the front bumper cover 3 and the supported portion 5 may be configured as separate members. That is, a connecting member for connecting the front bumper cover 3 and the supported portion 5 may be provided between the front bumper cover 3 and the supported portion 5.
  • This disclosure is not limited to collision detection with a specific object such as a pedestrian.
  • the present disclosure can be applied to collision detection with a fixed obstacle and another vehicle. That is, the protection system 10 can be configured to protect the occupant of the vehicle 1.
  • the pedestrian airbag device 11 may include a plurality of airbags.
  • each of the plurality of airbags is deployed corresponding to different protection areas in plan view.
  • Each of the plurality of protection areas is set at a different position in plan view.
  • the sensor module 22 is provided in each of the plurality of fastening portions 9 provided at different positions in plan view. According to this configuration, the primary collision position in the vehicle width direction can be estimated or detected based on which of the plurality of sensor modules 22 has detected a collision. Therefore, according to this configuration, when a specific object primarily collides with the front surface of the vehicle 1, it is possible to control the deployment manner of the plurality of airbags according to the primary collision position in the vehicle width direction.
  • the protection system 10 is not limited to a configuration including both the pedestrian airbag device 11 and the hood pop-up device 12. That is, only one of the pedestrian airbag device 11 and the hood pop-up device 12 may be provided.
  • the collision detection unit 21 may have a configuration including an ASIC.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • the first stress detector 231 and / or the second stress detector 232 may be provided at a position biased to one side in the thickness direction of the detector support member 25. That is, the first stress detection unit 231 and / or the second stress detection unit 232 can be supported by the detection unit support member 25 in a state where it is flush with the surface of the detection unit support member 25. Further, the distance between the center axis C and the first stress detection unit 231 and the distance between the center axis C and the second stress detection unit 232 may be different. Furthermore, the first stress detection unit 231 and the second stress detection unit 232 may not be provided on the same virtual circumference VC.
  • the first stress detector 231 and the second stress detector 232 may be configured to generate outputs individually while being integrally formed.
  • the piezoelectric film in the first stress detection unit 231 and the piezoelectric film in the second stress detection unit 232 may be integrated.
  • the sensor module 22 is provided with a ring-shaped piezoelectric body that constitutes the piezoelectric film in the first stress detector 231 and the piezoelectric film in the second stress detector 232.
  • the conductive thin film constituting the ground side electrode can also be integrated by the first stress detection unit 231 and the second stress detection unit 232. The same applies to the case where the first stress detector 231, the second stress detector 232, and the third stress detector 233 are provided.
  • the whole or a part of the protective member 26 may be omitted. That is, in FIG. 6, the upper and / or lower protective member 26 can be omitted.
  • the specific structure of the sensor module 22 is not particularly limited.
  • connection circuit DC in which the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities may be omitted. That is, the collision detection unit 21 can be configured to individually acquire the output of the first stress detection unit 231 and the output of the second stress detection unit 232 and calculate both by software processing. The same applies to FIG.
  • the two third stress detection units 233 may be used as the first stress detection unit 231 and the second stress detection unit 232, respectively. The same applies to what is shown as two third stress detectors 233 provided not to straddle the first region R1 and the second region R2 in FIG.
  • the stress detection unit 23 may be provided mainly in the first region R1. For this reason, for example, the stress detection unit 23 may be provided so as to straddle the first region R1 and the second region R2. However, in this case, S1> S2 needs to be satisfied.
  • S1 is an area in plan view of a portion of the stress detection unit 23 included in the first region R1.
  • S2 is an area in plan view of a portion included in the second region R2 in the stress detection unit 23.
  • the stress detection unit 23 may be formed in a substantially C shape in plan view that opens in the second region R2.
  • the stress detection unit 23 may be divided into a plurality of parts in the circumferential direction.
  • the sensor module 22 may be sandwiched between the head of the bolt B and the supported portion 5.
  • the sensor module 22 may be sandwiched between the vehicle body side fastening portion 8 and the nut N.
  • the stacking direction of the supported portion 5, the vehicle body side fastening portion 8, and the sensor module 22 is not limited to the direction along the vehicle height direction. That is, in the in-vehicle state, the direction in which the compressive stress is generated at the time of collision in the sensor module 22 is not limited to the direction along the vehicle height direction. Specifically, for example, the direction in which the compressive stress is generated at the time of collision in the sensor module 22 in the in-vehicle state may be the front-rear direction.
  • the supported portion 5 has a front flange portion 501.
  • the front flange portion 501 extends in the vertical direction (for example, downward) from the rear end portion of the supported portion 5.
  • the vehicle body side fastening portion 8 has a rear flange portion 801.
  • the rear flange portion 801 extends from the front end portion of the vehicle body side fastening portion 8 in the vertical direction (for example, downward).
  • the sensor module 22 is sandwiched between the front flange portion 501 and the rear flange portion 801.
  • a virtual boundary surface L between the first region R1 and the second region R2 is provided along an in-plane direction substantially orthogonal to the vehicle height direction.
  • the first region R1 is provided below the boundary surface L.
  • the second region R2 is provided above the boundary surface L.
  • the compressive stress resulting from the collision acts on the part in the first region R1 of the sensor module 22. That is, the compressive stress along the front-rear direction that is applied to the first stress detector 231 disposed in the first region R1 increases more than the prestress due to the collision.
  • the second region R2 which is the upper region of the fastening portion 9
  • a load is applied so that the front flange portion 501 is separated from the rear flange portion 801, as indicated by an arrow F15 in the figure.
  • region R2 in the sensor module 22 the increase in the compressive stress resulting from a collision does not arise. That is, the compressive stress along the thickness direction applied to the second stress detection unit 232 disposed in the second region R2 does not increase from the prestress but rather decreases from the prestress due to the collision.
  • the front bumper cover 3 moves up and down as indicated by an arrow F20 in the figure.
  • the supported portion 5 also moves up and down as indicated by an arrow F24 in the figure.
  • the vehicle body side fastening portion 8 also moves up and down as indicated by an arrow F25 in the figure. In this case, the change of the compressive stress in the sensor module 22 hardly occurs.
  • the sensor module 22 may be sandwiched between the head of the bolt B and the front flange portion 501. Alternatively, as shown in FIG. 31, the sensor module 22 may be sandwiched between the rear flange portion 801 and the nut N.
  • modified examples are not limited to the above examples.
  • multiple embodiments can be combined with each other.
  • a plurality of modifications can be combined with each other.
  • all or part of any embodiment and all or part of any modification may be combined with each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

A collision detection apparatus (20) detects a collision between a physical object outside of the vehicle and a bumper cover (3) mounted on a body. The collision detection apparatus is provided with a first stress detection unit (231), a second stress detection unit (232), and a collision detection unit (21). The first stress detection unit is provided to a first region (R1) where compressive stress increases during a collision in a fastening part (9) of a support part (7) provided to the body side and used to support the bumper cover and a supported part (5) provided nearer the bumper cover side than the support part, whereby the first stress detection unit generates output corresponding to stress applied during a collision. The second stress detection unit is provided to a second region (R2) in the fastening part, and thereby generates output corresponding to stress applied during a collision. The collision detection unit detects collisions on the basis of the outputs of the first stress detection unit and the second stress detection unit.

Description

衝突検知装置Collision detection device 関連出願への相互参照Cross-reference to related applications
 本出願は、2018年5月17日に出願された日本特許出願番号2018-95522号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2018-95522 filed on May 17, 2018, the description of which is incorporated herein by reference.
 本開示は、車両の外部に存在する物体と当該車両との衝突を検知するように構成された、衝突検知装置に関する。 The present disclosure relates to a collision detection device configured to detect a collision between an object existing outside the vehicle and the vehicle.
 この種の装置として、歩行者衝突検出用の衝突検出センサとして機能する圧電センサと、圧電センサの検出結果に基づいて衝突を検出する制御手段とを備えたものが知られている(例えば特許文献1等)。圧電センサは、フロントバンパの内面に取り付けられている。制御手段は、圧電センサの検出データ等に基づいて、歩行者との衝突であるかそれ以外の衝突であるかを判定する。 As this type of device, a device including a piezoelectric sensor that functions as a collision detection sensor for detecting a pedestrian collision and a control unit that detects a collision based on the detection result of the piezoelectric sensor is known (for example, Patent Documents). 1). The piezoelectric sensor is attached to the inner surface of the front bumper. A control means determines whether it is a collision with a pedestrian or other collision based on the detection data of a piezoelectric sensor, etc.
特開2005-147983号公報Japanese Patent Laid-Open No. 2005-147983
 この種の衝突検知装置において、歩行者等の物体と車両との衝突を、より確実に検知することが求められている。本開示は、上記に例示した事情等に鑑みてなされたものである。 In this type of collision detection device, it is required to more reliably detect a collision between an object such as a pedestrian and a vehicle. The present disclosure has been made in view of the circumstances exemplified above.
 衝突検知装置は、車両の外部に存在する物体と、前記車両の車体に装着されたバンパカバーとの衝突を検知するように構成されている。
 本開示の1つの観点によれば、この衝突検知装置は、
 前記車体側に設けられていて前記バンパカバーの支持に用いられる支持部と前記支持部よりも前記バンパカバー側に設けられた被支持部との締結部における、前記衝突の際に圧縮応力が増大する第一領域に設けられることで、前記衝突の際に印加された応力に応じた出力を発生するように構成された、第一応力検知部と、
 前記締結部における、前記第一領域以外の第二領域に設けられることで、前記衝突の際に印加された前記応力に応じた出力を、前記第一応力検知部とは別個に発生するように構成された、第二応力検知部と、
 前記第一応力検知部および前記第二応力検知部の出力に基づいて前記衝突を検知するように設けられた、衝突検知部と、
 を備えている。
 本開示の他の1つの観点によれば、この衝突検知装置は、
 前記車体側に設けられていて前記バンパカバーの支持に用いられる支持部と前記支持部よりも前記バンパカバー側に設けられた被支持部との締結部に設けられることで、前記衝突の際に印加された応力に応じた出力を発生するように構成された、応力検知部と、
 前記応力検知部の前記出力に基づいて前記衝突を検知するように設けられた、衝突検知部と、
 を備え、
 前記応力検知部は、前記締結部に設けられた車載状態にて、前記締結部における前記衝突の際に圧縮応力が増大する第一領域とそれ以外の第二領域とで不均衡に設けられるように構成されている。
The collision detection device is configured to detect a collision between an object existing outside the vehicle and a bumper cover attached to the vehicle body of the vehicle.
According to one aspect of the present disclosure, the collision detection device includes:
Compressive stress increases at the time of the collision in the fastening portion between the support portion provided on the vehicle body side and used for supporting the bumper cover and the supported portion provided on the bumper cover side than the support portion. A first stress detection unit configured to generate an output corresponding to the stress applied during the collision,
By being provided in the second region other than the first region in the fastening portion, an output corresponding to the stress applied at the time of the collision is generated separately from the first stress detection unit. A second stress detection unit configured;
A collision detection unit provided to detect the collision based on outputs of the first stress detection unit and the second stress detection unit;
It has.
According to another aspect of the present disclosure, the collision detection apparatus includes:
In the case of the collision, it is provided at a fastening portion between a support portion provided on the vehicle body side and used for supporting the bumper cover and a supported portion provided on the bumper cover side rather than the support portion. A stress detection unit configured to generate an output according to the applied stress;
A collision detection unit provided to detect the collision based on the output of the stress detection unit;
With
The stress detection unit is provided in an unbalanced manner between the first region where the compressive stress increases and the second region other than that in the on-board state provided in the fastening unit when the collision occurs in the fastening unit. It is configured.
 なお、出願書類中の各欄において、各要素に括弧付きの参照符号が付されている場合、かかる参照符号は、単に、同要素と後述する実施形態に記載の具体的構成との対応関係の一例を示すものである。よって、本開示は、かかる参照符号の記載によって、何ら限定されるものではない。 In each column of the application document, when each element is given a reference numeral in parentheses, the reference numeral simply indicates a correspondence relationship between the element and a specific configuration described in an embodiment described later. An example is shown. Therefore, the present disclosure is not limited by the description of the reference symbols.
車両における前部の斜視図である。It is a perspective view of the front part in vehicles. 図1に示された車両における前部の分解斜視図である。It is a disassembled perspective view of the front part in the vehicle shown by FIG. 図1および図2に示された車両の概略構成を示す平面図である。FIG. 3 is a plan view showing a schematic configuration of the vehicle shown in FIGS. 1 and 2. 第一実施形態に係る締結部の構成を拡大して示す側面図である。It is a side view which expands and shows the structure of the fastening part which concerns on 1st embodiment. 図4に示されたセンサモジュールを拡大して示す平面図である。It is a top view which expands and shows the sensor module shown by FIG. 図5におけるVI-VI断面図である。FIG. 6 is a sectional view taken along line VI-VI in FIG. 5. 第一実施形態に係る衝突検知部の概略的な回路構成図である。It is a schematic circuit block diagram of the collision detection part which concerns on 1st embodiment. 図4に示された締結部の挙動を示す側面図である。It is a side view which shows the behavior of the fastening part shown by FIG. 図7に示された回路構成の動作説明のためのグラフである。8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7. 図7に示された回路構成の動作説明のためのグラフである。8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7. 図7に示された回路構成の動作説明のためのグラフである。8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7. 図4に示された締結部の挙動を示す側面図である。It is a side view which shows the behavior of the fastening part shown by FIG. 図7に示された回路構成の動作説明のためのグラフである。8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7. 図7に示された回路構成の動作説明のためのグラフである。8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7. 図7に示された回路構成の動作説明のためのグラフである。8 is a graph for explaining the operation of the circuit configuration shown in FIG. 7. 第二実施形態に係る衝突検知部の概略的な回路構成図である。It is a schematic circuit block diagram of the collision detection part which concerns on 2nd embodiment. 第三実施形態に係るセンサモジュールを拡大して示す平面図である。It is a top view which expands and shows the sensor module which concerns on 3rd embodiment. 第四実施形態に係るセンサモジュールを拡大して示す平面図である。It is a top view which expands and shows the sensor module which concerns on 4th embodiment. 第四実施形態に係る衝突検知部の概略的な回路構成図である。It is a schematic circuit block diagram of the collision detection part which concerns on 4th embodiment. 第五実施形態に係るセンサモジュールの一例を拡大して示す平面図である。It is a top view which expands and shows an example of the sensor module which concerns on 5th embodiment. 第五実施形態に係るセンサモジュールの他の一例を拡大して示す平面図である。It is a top view which expands and shows another example of the sensor module which concerns on 5th embodiment. 第六実施形態に係るセンサモジュールが適用される車両における前部の分解斜視図である。It is a disassembled perspective view of the front part in the vehicle with which the sensor module which concerns on 6th embodiment is applied. 第六実施形態に係る締結部の構成を拡大して示す側面図である。It is a side view which expands and shows the structure of the fastening part which concerns on 6th embodiment. 第六実施形態に係るセンサモジュールを拡大して示す平面図である。It is a top view which expands and shows the sensor module which concerns on 6th embodiment. 図20におけるXXI-XXI断面図である。It is XXI-XXI sectional drawing in FIG. 第七実施形態に係るセンサモジュールを拡大して示す平面図である。It is a top view which expands and shows the sensor module which concerns on 7th embodiment. 図22におけるXXIII-XXIII断面図である。FIG. 23 is a sectional view taken along line XXIII-XXIII in FIG. 第八実施形態に係るセンサモジュールを拡大して示す斜視図である。It is a perspective view which expands and shows the sensor module which concerns on 8th embodiment. 締結部の構成の一変形例を示す側面図である。It is a side view which shows one modification of a structure of a fastening part. 締結部の構成の他の一変形例を示す側面図である。It is a side view which shows another modification of the structure of a fastening part. 締結部の構成のさらに他の一変形例を示す側面図である。It is a side view which shows another modification of the structure of a fastening part. 図27に示された締結部の挙動を示す側面図である。It is a side view which shows the behavior of the fastening part shown by FIG. 図27に示された締結部の挙動を示す側面図である。It is a side view which shows the behavior of the fastening part shown by FIG. 締結部の構成のさらに他の一変形例を示す側面図である。It is a side view which shows another modification of the structure of a fastening part. 締結部の構成のさらに他の一変形例を示す側面図である。It is a side view which shows another modification of the structure of a fastening part.
 (実施形態)
 以下、本開示の実施形態を、図面に基づいて説明する。なお、一つの実施形態に対して適用可能な各種の変形例については、当該実施形態に関する一連の説明の途中に挿入されると当該実施形態の理解が妨げられるおそれがあるため、当該実施形態の説明の後にまとめて記載する。
(Embodiment)
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that various modifications that can be applied to one embodiment may interfere with understanding of the embodiment if inserted in the middle of a series of descriptions related to the embodiment. It is described collectively after the explanation.
 (車両の全体構成)
 まず、図1および図2を用いて、車両1の概略構成について説明する。なお、説明の便宜上、車両1における、「上」、「下」、「前」、「後」、「左」、および「右」の概念を、図中にて矢印で示した通りに定義する。前後方向は「車両全長方向」と称され得る。同様に、左右方向は「車幅方向」と称され得る。また、上下方向は「車高方向」と称され得る。
(Overall configuration of vehicle)
First, a schematic configuration of the vehicle 1 will be described with reference to FIGS. 1 and 2. For convenience of explanation, the concepts of “up”, “down”, “front”, “rear”, “left”, and “right” in the vehicle 1 are defined as indicated by arrows in the drawing. . The front-rear direction may be referred to as the “vehicle full length direction”. Similarly, the left-right direction may be referred to as the “vehicle width direction”. Further, the vertical direction can be referred to as a “vehicle height direction”.
 図1を参照すると、車両1は、いわゆる四輪自動車であって、車体2を備えている。車体2は、平面視にて略矩形状の箱状に形成されている。車体2の前端部には、フロントバンパカバー3が装着されている。車体2の前部であって、フロントバンパカバー3の後方には、車体2の外板パネルを構成するフロントフード4が設けられている。フロントフード4は、車体2の前部であるフロントコンパートメントを上方から覆うように、開閉可能に設けられている。 Referring to FIG. 1, the vehicle 1 is a so-called four-wheel vehicle and includes a vehicle body 2. The vehicle body 2 is formed in a substantially rectangular box shape in plan view. A front bumper cover 3 is attached to the front end of the vehicle body 2. A front hood 4 constituting an outer panel of the vehicle body 2 is provided at the front of the vehicle body 2 and behind the front bumper cover 3. The front hood 4 is provided so as to be openable and closable so as to cover the front compartment, which is the front portion of the vehicle body 2, from above.
 図2を参照すると、フロントバンパカバー3には、被支持部5が設けられている。被支持部5は、フロントバンパカバー3を車体2に装着するために用いられる板状の部分である。本実施形態においては、被支持部5は、フロントバンパカバー3の上端部から、車高方向と直交する水平面に沿って、車体2側に向かって延設されている。また、被支持部5は、フロントバンパカバー3と同一の材料によって、フロントバンパカバー3と一体に形成されている。さらに、被支持部5には、ボルトBを挿通するための貫通孔H1が設けられている。 Referring to FIG. 2, the front bumper cover 3 is provided with a supported portion 5. The supported part 5 is a plate-like part used for mounting the front bumper cover 3 to the vehicle body 2. In the present embodiment, the supported portion 5 extends from the upper end portion of the front bumper cover 3 toward the vehicle body 2 along a horizontal plane perpendicular to the vehicle height direction. The supported portion 5 is formed integrally with the front bumper cover 3 using the same material as the front bumper cover 3. Further, the supported portion 5 is provided with a through hole H1 for inserting the bolt B.
 車体2には、バンパリインフォースメントおよびサイドメンバを含む、車体フレーム6が設けられている。車体フレーム6には、支持部7が設けられている。支持部7は、フロントバンパカバー3の支持に用いられる、車体2側に設けられた車体部品である。本実施形態においては、車体フレーム6には、複数の支持部7が設けられている。また、支持部7は、車体フレーム6を構成する上記のサイドメンバに装着されている。 The vehicle body 2 is provided with a vehicle body frame 6 including bumper reinforcement and side members. A support portion 7 is provided on the body frame 6. The support portion 7 is a vehicle body part provided on the vehicle body 2 side that is used to support the front bumper cover 3. In the present embodiment, the body frame 6 is provided with a plurality of support portions 7. Further, the support portion 7 is attached to the side member that constitutes the vehicle body frame 6.
 支持部7は、板状の車体側締結部8を有している。車体側締結部8は、支持部7の上端部に設けられている。本実施形態においては、車体側締結部8は、車高方向と直交する水平面に沿って延設されている。車体側締結部8には、ボルトBを挿通するための貫通孔H2が設けられている。 The support part 7 has a plate-like vehicle body side fastening part 8. The vehicle body side fastening portion 8 is provided at the upper end portion of the support portion 7. In the present embodiment, the vehicle body side fastening portion 8 extends along a horizontal plane orthogonal to the vehicle height direction. The vehicle body side fastening portion 8 is provided with a through hole H2 through which the bolt B is inserted.
 図2および図3を参照すると、締結部9は、支持部7と、この支持部7よりもフロントバンパカバー3側に設けられた被支持部5とを、ボルトBを用いて締結することによって形成されている。本実施形態においては、車両1には、複数の締結部9が設けられている。締結部9の構成の詳細については後述する。 Referring to FIGS. 2 and 3, the fastening portion 9 is formed by fastening the support portion 7 and the supported portion 5 provided on the front bumper cover 3 side with respect to the support portion 7 by using bolts B. Is formed. In the present embodiment, the vehicle 1 is provided with a plurality of fastening portions 9. Details of the configuration of the fastening portion 9 will be described later.
 図3を参照すると、車両1には、保護システム10が搭載されている。本実施形態においては、保護システム10は、車両1と衝突した人間を保護するように構成されている。「車両1と衝突した人間」には、例えば、車両1と直接的に衝突した歩行者の他に、車両1と衝突した二輪車等の乗員が含まれる。二輪車等には、自転車、自動二輪車、車椅子、等が含まれる。典型的には、二輪車等は、例えば、自転車である。 Referring to FIG. 3, a protection system 10 is mounted on the vehicle 1. In the present embodiment, the protection system 10 is configured to protect a person who collides with the vehicle 1. “Human who collided with vehicle 1” includes, for example, a pedestrian who collided directly with vehicle 1 and an occupant such as a motorcycle which collided with vehicle 1. Motorcycles and the like include bicycles, motorcycles, wheelchairs, and the like. Typically, the two-wheeled vehicle is, for example, a bicycle.
 例えば、車両1と乗員付き二輪車との衝突においては、車両1と直接的に衝突した物体は、乗員ではなく二輪車である場合がある。但し、この場合であっても、二輪車等の乗員は、車両1と「間接的」に衝突したということが可能である。 For example, in a collision between the vehicle 1 and a two-wheeled vehicle with an occupant, an object that directly collides with the vehicle 1 may be a two-wheeled vehicle instead of an occupant. However, even in this case, it is possible that an occupant such as a motorcycle collided with the vehicle 1 “indirectly”.
 すなわち、保護システム10は、車両1と特定物体とが衝突した場合に、保護対象を車体2との衝突による衝撃から保護するように構成されている。「特定物体」には、歩行者、乗員付き二輪車、乗員付き車椅子、等が含まれる。「保護対象」には、乗員付き二輪車等における乗員の他に、歩行者が含まれる。「保護対象」は、「交通弱者」とも称され得る。具体的には、保護システム10は、歩行者エアバッグ装置11と、フードポップアップ装置12と、衝突検知装置20とを備えている。 That is, the protection system 10 is configured to protect a protection target from an impact caused by a collision with the vehicle body 2 when the vehicle 1 and a specific object collide. The “specific object” includes a pedestrian, a motorcycle with a passenger, a wheelchair with a passenger, and the like. The “protection target” includes a pedestrian in addition to a passenger in a motorcycle with a passenger. The “protection target” may also be referred to as “traffic weak person”. Specifically, the protection system 10 includes a pedestrian airbag device 11, a hood pop-up device 12, and a collision detection device 20.
 歩行者エアバッグ装置11およびフードポップアップ装置12は、特定物体が車両1と衝突した場合に、保護対象を、車体2との衝突による衝撃から保護するように設けられている。具体的には、歩行者エアバッグ装置11およびフードポップアップ装置12は、二次衝突による衝撃から、保護対象を保護するように構成されている。「二次衝突」とは、「一次衝突」の後に、二輪車等の乗員または歩行者である保護対象が、車体2に衝突することをいう。「一次衝突」とは、特定物体が、最初に車体2と衝突することをいう。 The pedestrian airbag device 11 and the hood pop-up device 12 are provided to protect a protection target from an impact caused by a collision with the vehicle body 2 when a specific object collides with the vehicle 1. Specifically, the pedestrian airbag device 11 and the hood pop-up device 12 are configured to protect a protection target from an impact caused by a secondary collision. “Secondary collision” means that an object to be protected, such as a motorcycle or a pedestrian, collides with the vehicle body 2 after the “primary collision”. “Primary collision” means that a specific object first collides with the vehicle body 2.
 歩行者エアバッグ装置11は、一次衝突発生後且つ二次衝突発生前に、車体2上にて展開することで、保護対象を保護するように構成されている。フードポップアップ装置12は、一次衝突発生後且つ二次衝突発生前に、フロントフード4を上昇させるように構成されている。具体的には、フードポップアップ装置12は、作動時にフロントフード4の後端部を上方に押し上げるように構成されている。歩行者エアバッグ装置11およびフードポップアップ装置12については、本願の出願時点にて、すでに周知である。したがって、歩行者エアバッグ装置11およびフードポップアップ装置12の構成の詳細についての、これ以上の説明は、本明細書においては省略する。 The pedestrian airbag device 11 is configured to protect the object to be protected by deploying on the vehicle body 2 after the primary collision and before the secondary collision. The hood pop-up device 12 is configured to raise the front hood 4 after the occurrence of the primary collision and before the occurrence of the secondary collision. Specifically, the hood pop-up device 12 is configured to push up the rear end of the front hood 4 during operation. The pedestrian airbag device 11 and the hood pop-up device 12 are already known at the time of filing of the present application. Therefore, the further description about the detail of the structure of the pedestrian airbag apparatus 11 and the food pop-up apparatus 12 is abbreviate | omitted in this specification.
 (衝突検知装置)
 衝突検知装置20は、車両1の外部に存在する物体とフロントバンパカバー3との衝突を検知するように構成されている。具体的には、本実施形態においては、衝突検知装置20は、特定物体がフロントバンパカバー3と衝突した否かを検知するとともに、特定物体の衝突を検知した場合に歩行者エアバッグ装置11および/またはフードポップアップ装置12を起動するようになっている。具体的には、衝突検知装置20は、衝突検知部21とセンサモジュール22とを備えている。
(Collision detection device)
The collision detection device 20 is configured to detect a collision between an object existing outside the vehicle 1 and the front bumper cover 3. Specifically, in the present embodiment, the collision detection device 20 detects whether or not a specific object has collided with the front bumper cover 3, and when detecting the collision of the specific object, the pedestrian airbag device 11 and The food pop-up device 12 is activated. Specifically, the collision detection device 20 includes a collision detection unit 21 and a sensor module 22.
 衝突検知部21は、保護システム10の全体の動作を制御するECUであって、不図示のCPU、ROM、RAM、および不揮発性RAM等を備えた車載マイクロコンピュータとして構成されている。ECUはElectronic Control Unitの略である。 The collision detection unit 21 is an ECU that controls the overall operation of the protection system 10, and is configured as an in-vehicle microcomputer including a CPU, a ROM, a RAM, a nonvolatile RAM, and the like (not shown). ECU is an abbreviation for Electronic Control Unit.
 衝突検知部21は、センサモジュール22の出力を受信可能に、センサモジュール22と電気接続されている。衝突検知部21は、センサモジュール22の出力に基づいて、フロントバンパカバー3と特定物体との衝突を検知するように設けられている。 The collision detection unit 21 is electrically connected to the sensor module 22 so that the output of the sensor module 22 can be received. The collision detection unit 21 is provided to detect a collision between the front bumper cover 3 and the specific object based on the output of the sensor module 22.
 (第一実施形態)
 図2~図4を参照すると、センサモジュール22は、締結部9に設けられている。具体的には、被支持部5と車体側締結部8とセンサモジュール22とを車高方向に沿って積層した状態で、ボルトBを用いてこれらを締結することによって、締結部9が形成されている。本実施形態においては、複数のセンサモジュール22が設けられている。すなわち、複数の締結部9のうちの全部または一部のそれぞれに対して、1個のセンサモジュール22が装着されている。
(First embodiment)
2 to 4, the sensor module 22 is provided in the fastening portion 9. Specifically, the fastening portion 9 is formed by fastening the supported portion 5, the vehicle body side fastening portion 8, and the sensor module 22 with the bolt B in a state where they are stacked along the vehicle height direction. ing. In the present embodiment, a plurality of sensor modules 22 are provided. That is, one sensor module 22 is attached to all or a part of the plurality of fastening portions 9.
 センサモジュール22は、締結部9に設けられた車載状態にて車高方向に沿った厚さ方向を有する板状に形成されている。具体的には、本実施形態においては、センサモジュール22は、ボルトBを挿通可能なワッシャ状に形成されている。すなわち、センサモジュール22には、ボルトBを挿通可能な貫通孔H3が、厚さ方向に貫通するように設けられている。 The sensor module 22 is formed in a plate shape having a thickness direction along the vehicle height direction in a vehicle-mounted state provided in the fastening portion 9. Specifically, in the present embodiment, the sensor module 22 is formed in a washer shape into which the bolt B can be inserted. That is, the sensor module 22 is provided with a through hole H3 through which the bolt B can be inserted so as to penetrate in the thickness direction.
 図4を参照すると、本実施形態においては、締結部9にて、被支持部5と、センサモジュール22と、車体側締結部8とが、車高方向に沿ってこの順に積層されている。すなわち、センサモジュール22は、被支持部5と車体側締結部8との間で挟持されている。また、締結部9は、被支持部5と車体側締結部8とセンサモジュール22との積層体を貫通する貫通孔H1,H2,およびH3に、締結具としてのボルトBを挿通してナットNを用いて締結することで形成されている。 Referring to FIG. 4, in the present embodiment, in the fastening portion 9, the supported portion 5, the sensor module 22, and the vehicle body side fastening portion 8 are stacked in this order along the vehicle height direction. That is, the sensor module 22 is sandwiched between the supported portion 5 and the vehicle body side fastening portion 8. Further, the fastening portion 9 is inserted into the nuts N by inserting bolts B as fasteners through the through holes H1, H2, and H3 that penetrate the laminated body of the supported portion 5, the vehicle body side fastening portion 8, and the sensor module 22. It is formed by fastening using.
 センサモジュール22は、物体とフロントバンパカバー3との衝突の際に締結部9に発生する応力の状態に応じた出力を発生するように構成されている。図4~図6を参照すると、本実施形態においては、センサモジュール22は、応力検知部23と、配線24と、検知部支持部材25と、保護部材26とを有している。 The sensor module 22 is configured to generate an output corresponding to the state of the stress generated in the fastening portion 9 when the object and the front bumper cover 3 collide. 4 to 6, in the present embodiment, the sensor module 22 includes a stress detection unit 23, a wiring 24, a detection unit support member 25, and a protection member 26.
 応力検知部23は、締結部9に設けられた車載状態にて、物体とフロントバンパカバー3との衝突の際に印加された応力に応じた出力を発生するように構成されている。具体的には、応力検知部23は、周知の圧電素子であって、圧電体膜と導体薄膜とをセンサモジュール22の厚さ方向に沿って積層することによって形成されている。応力検知部23は、センサモジュール22の厚さ方向に沿った方向の応力状態に対応する電圧を出力するように設けられている。 The stress detector 23 is configured to generate an output corresponding to the stress applied when the object and the front bumper cover 3 collide with each other in the vehicle-mounted state provided in the fastening unit 9. Specifically, the stress detection unit 23 is a known piezoelectric element, and is formed by laminating a piezoelectric film and a conductor thin film along the thickness direction of the sensor module 22. The stress detection unit 23 is provided so as to output a voltage corresponding to a stress state in a direction along the thickness direction of the sensor module 22.
 本実施形態においては、センサモジュール22には、応力検知部23としての、第一応力検知部231および第二応力検知部232が設けられている。図4に示されているように、第一応力検知部231は、締結部9における第一領域R1に設けられるようになっている。第一領域R1は、物体とフロントバンパカバー3との衝突の際に、衝突に起因する圧縮応力が発生することで、圧縮応力が増大する領域である。これに対し、第二応力検知部232は、締結部9における、第一領域R1以外の領域である、第二領域R2に設けられるようになっている。第二応力検知部232は、第一応力検知部231とは別個に出力を発生するように設けられている。 In the present embodiment, the sensor module 22 is provided with a first stress detection unit 231 and a second stress detection unit 232 as the stress detection unit 23. As shown in FIG. 4, the first stress detector 231 is provided in the first region R <b> 1 in the fastening portion 9. The first region R <b> 1 is a region where the compressive stress increases due to the occurrence of compressive stress caused by the collision when the object and the front bumper cover 3 collide. On the other hand, the 2nd stress detection part 232 is provided in 2nd area | region R2 which is area | regions other than 1st area | region R1 in the fastening part 9. FIG. The second stress detection unit 232 is provided to generate an output separately from the first stress detection unit 231.
 図4に示されているように、第一領域R1と第二領域R2とは、貫通孔H1~H3を挟んで対向するように形成されている。すなわち、第一応力検知部231と第二応力検知部232とは、貫通孔H3を挟んで対向配置されている。第一領域R1は、第二領域R2よりも前方となるように設けられている。 As shown in FIG. 4, the first region R1 and the second region R2 are formed to face each other with the through holes H1 to H3 interposed therebetween. That is, the first stress detection unit 231 and the second stress detection unit 232 are disposed to face each other with the through hole H3 interposed therebetween. The first region R1 is provided in front of the second region R2.
 図5に示されているように、第一応力検知部231および第二応力検知部232は、平面視にて、半円弧状、あるいは、中心角が180度未満の円弧状に形成されている。本実施形態においては、第一応力検知部231は、第一領域R1と第二領域R2とに跨らないように、第一領域R1のみに設けられている。同様に、第二応力検知部232は、第一領域R1と第二領域R2とに跨らないように、第二領域R2のみに設けられている。 As shown in FIG. 5, the first stress detector 231 and the second stress detector 232 are formed in a semicircular arc shape or an arc shape having a central angle of less than 180 degrees in plan view. . In the present embodiment, the first stress detector 231 is provided only in the first region R1 so as not to straddle the first region R1 and the second region R2. Similarly, the second stress detection unit 232 is provided only in the second region R2 so as not to straddle the first region R1 and the second region R2.
 また、第一応力検知部231および第二応力検知部232は、第一領域R1と第二領域R2との仮想的な境界面Lについて対称に設けられている。かかる境界面Lは、図4においては上下方向に延びる一点鎖線で示されており、図5においては左右方向に延びる一点鎖線で示されている。境界面Lは、貫通孔H1~H3およびボルトBの中心軸線Cを含み、被支持部5および/または車体側締結部8の延設方向を法線方向とする平面として定義され得る。すなわち、第一領域R1は、境界面Lよりも前方に設けられている。一方、第二領域R2は、境界面Lよりも後方に設けられている。 The first stress detection unit 231 and the second stress detection unit 232 are provided symmetrically with respect to a virtual boundary surface L between the first region R1 and the second region R2. Such a boundary surface L is indicated by a one-dot chain line extending in the vertical direction in FIG. 4, and is indicated by a one-dot chain line extending in the left-right direction in FIG. The boundary surface L includes the through holes H1 to H3 and the central axis C of the bolt B, and can be defined as a plane whose normal direction is the extending direction of the supported portion 5 and / or the vehicle body side fastening portion 8. That is, the first region R1 is provided in front of the boundary surface L. On the other hand, the second region R2 is provided behind the boundary surface L.
 図5に示されているように、本実施形態においては、第一応力検知部231と第二応力検知部232とは、別体に構成されている。また、第一応力検知部231と第二応力検知部232とは、平面視にて同一形状を有している。すなわち、第一応力検知部231と第二応力検知部232とは、第一領域R1と第二領域R2とが配列する面内にて同一面積に形成されている。 As shown in FIG. 5, in the present embodiment, the first stress detection unit 231 and the second stress detection unit 232 are configured separately. Moreover, the 1st stress detection part 231 and the 2nd stress detection part 232 have the same shape by planar view. That is, the first stress detection unit 231 and the second stress detection unit 232 are formed in the same area within the plane in which the first region R1 and the second region R2 are arranged.
 具体的には、第一応力検知部231および第二応力検知部232は、第一領域R1と第二領域R2とが配列する面内における一つの仮想円周VC上に配列されている。また、第一応力検知部231および第二応力検知部232は、同一の幅すなわち径方向寸法を有している。幅すなわち径方向寸法は、仮想円周VCの半径を延長した仮想直線に沿った寸法である。さらに、第一応力検知部231および第二応力検知部232は、仮想円周VCが幅方向における中心を通るように配置されている。 Specifically, the first stress detection unit 231 and the second stress detection unit 232 are arranged on one virtual circumference VC in a plane in which the first region R1 and the second region R2 are arranged. Further, the first stress detection unit 231 and the second stress detection unit 232 have the same width, that is, the radial dimension. The width, that is, the radial dimension is a dimension along a virtual straight line obtained by extending the radius of the virtual circumference VC. Further, the first stress detection unit 231 and the second stress detection unit 232 are arranged so that the virtual circumference VC passes through the center in the width direction.
 第一応力検知部231および第二応力検知部232は、それぞれ、配線24と電気接続されている。配線24は、第一応力検知部231の出力と、第二応力検知部232の出力とを、個別に出力可能に設けられている。 The first stress detector 231 and the second stress detector 232 are each electrically connected to the wiring 24. The wiring 24 is provided so that the output of the first stress detector 231 and the output of the second stress detector 232 can be output individually.
 図6に示されているように、検知部支持部材25は、応力検知部23を支持する部材であって、合成樹脂材料によって形成されている。すなわち、検知部支持部材25は、第一応力検知部231および第二応力検知部232を支持するように構成されている。 As shown in FIG. 6, the detection unit support member 25 is a member that supports the stress detection unit 23 and is formed of a synthetic resin material. That is, the detection unit support member 25 is configured to support the first stress detection unit 231 and the second stress detection unit 232.
 本実施形態においては、検知部支持部材25は、中央に貫通孔H3が形成された円板状の形状を有している。検知部支持部材25は、第一応力検知部231および第二応力検知部232よりも厚く形成されている。また、第一応力検知部231および第二応力検知部232は、検知部支持部材25の厚さ方向における中央部に配置されている。すなわち、検知部支持部材25は、第一応力検知部231および第二応力検知部232の全体を覆うように設けられている。 In the present embodiment, the detection unit support member 25 has a disk shape with a through hole H3 formed in the center. The detection unit support member 25 is formed thicker than the first stress detection unit 231 and the second stress detection unit 232. Further, the first stress detection unit 231 and the second stress detection unit 232 are arranged at the center of the detection unit support member 25 in the thickness direction. That is, the detection unit support member 25 is provided so as to cover the entire first stress detection unit 231 and the second stress detection unit 232.
 検知部支持部材25の厚さ方向における両面には、保護部材26が設けられている。すなわち、保護部材26は、厚さ方向に検知部支持部材25と接合されている。保護部材26は、中央に貫通孔H3が形成された円板状の形状を有している。保護部材26は、合成樹脂材料によって形成されている。 Protection members 26 are provided on both surfaces in the thickness direction of the detection unit support member 25. That is, the protection member 26 is joined to the detection unit support member 25 in the thickness direction. The protection member 26 has a disk shape with a through hole H3 formed at the center. The protection member 26 is made of a synthetic resin material.
 図7を参照すると、衝突検知部21は、第一応力検知部231および第二応力検知部232の出力に基づいて、フロントバンパカバー3と物体との衝突を検知するように構成されている。具体的には、本実施形態においては、衝突検知部21は、第一応力検知部231と第二応力検知部232とが逆極性で並列接続された接続回路DCの出力電圧V0に基づいて、衝突を検知するようになっている。 Referring to FIG. 7, the collision detection unit 21 is configured to detect a collision between the front bumper cover 3 and an object based on outputs of the first stress detection unit 231 and the second stress detection unit 232. Specifically, in the present embodiment, the collision detection unit 21 is based on the output voltage V0 of the connection circuit DC in which the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities. A collision is detected.
 (動作概要)
 以下、本実施形態の構成による動作の概要について、同構成および方法により奏される効果とともに説明する。
(Overview of operation)
Hereinafter, the outline of the operation according to the configuration of the present embodiment will be described together with the effects produced by the configuration and the method.
 図8に示されているように、フロントバンパカバー3と物体とが衝突すると、フロントバンパカバー3の前面には、図中矢印F10で示されるような後方向きの荷重が作用する。これにより、フロントバンパカバー3が変形する。かかる変形に伴い、フロントバンパカバー3と一体的に連結された被支持部5の前端部が、図中矢印F11で示されるように、前方および下方に向けて付勢される。 As shown in FIG. 8, when the front bumper cover 3 and the object collide, a rearward load as indicated by an arrow F <b> 10 in the figure acts on the front surface of the front bumper cover 3. As a result, the front bumper cover 3 is deformed. Along with such deformation, the front end portion of the supported portion 5 integrally connected to the front bumper cover 3 is urged forward and downward as indicated by an arrow F11 in the figure.
 すると、締結部9における前方側の領域である第一領域R1においては、図中矢印F12で示されるように、被支持部5が車体側締結部8に向かって押し付けられるような荷重が作用する。これにより、センサモジュール22における、第一領域R1内の部分には、ボルトBおよびナットNを用いた締結力に起因する圧縮性の予応力に加えて、衝突に起因する圧縮応力が作用する。すなわち、第一領域R1に配置された第一応力検知部231に印加される、厚さ方向に沿った圧縮応力は、衝突により予応力よりも増大する。 Then, in the first region R1, which is the front region of the fastening portion 9, a load is applied so that the supported portion 5 is pressed toward the vehicle body side fastening portion 8 as indicated by an arrow F12 in the figure. . Thereby, in addition to the compressive prestress resulting from the fastening force using the bolt B and the nut N, the compressive stress resulting from the collision acts on the part in the first region R1 in the sensor module 22. That is, the compressive stress along the thickness direction applied to the first stress detection unit 231 disposed in the first region R1 increases more than the prestress due to the collision.
 一方、締結部9における後方側の領域である第二領域R2においては、図中矢印F13で示されるように、被支持部5が車体側締結部8から離隔するような荷重が作用する。これにより、センサモジュール22における、第二領域R2内の部分においては、衝突に起因する圧縮応力の増大は生じない。すなわち、第二領域R2に配置された第二応力検知部232に印加される、厚さ方向に沿った圧縮応力は、衝突により、予応力よりも増大せず、むしろ予応力よりも低下する。 On the other hand, in the second region R2 which is the rear side region in the fastening portion 9, a load is applied so that the supported portion 5 is separated from the vehicle body side fastening portion 8 as indicated by an arrow F13 in the figure. Thereby, in the part in 2nd area | region R2 in the sensor module 22, the increase in the compressive stress resulting from a collision does not arise. That is, the compressive stress along the thickness direction applied to the second stress detection unit 232 disposed in the second region R2 does not increase from the prestress but rather decreases from the prestress due to the collision.
 図9Aは、衝突発生前後における、第一応力検知部231の出力電圧V1の時間経過を示す。図9Bは、衝突発生前後における、第二応力検知部232の出力電圧V2の時間経過を示す。図9Cは、衝突発生前後における、接続回路DCの出力電圧V0の時間経過を示す。図9A~図9Cにおいて、T1は、衝突発生期間を示す。 FIG. 9A shows the time lapse of the output voltage V1 of the first stress detector 231 before and after the occurrence of the collision. FIG. 9B shows the time lapse of the output voltage V2 of the second stress detector 232 before and after the occurrence of the collision. FIG. 9C shows the elapse of time of the output voltage V0 of the connection circuit DC before and after the occurrence of the collision. 9A to 9C, T1 indicates a collision occurrence period.
 図9Aに示されているように、衝突発生の前後においては、第一応力検知部231の出力電圧V1、および、第二応力検知部232の出力電圧V2は、予応力に対応した、ほぼ一定値となる。一方、衝突発生により、第一応力検知部231の出力電圧V1には、圧縮応力の増大に対応する、正側に凸のピークが発生する。これに対し、図9Bに示されているように、衝突発生により、第二応力検知部232の出力電圧V2には、圧縮応力の低下に対応する、負側に凸のピークが発生する。 As shown in FIG. 9A, before and after the occurrence of the collision, the output voltage V1 of the first stress detector 231 and the output voltage V2 of the second stress detector 232 are substantially constant corresponding to the prestress. Value. On the other hand, due to the occurrence of the collision, a convex peak on the positive side corresponding to an increase in compressive stress occurs in the output voltage V1 of the first stress detection unit 231. On the other hand, as shown in FIG. 9B, due to the occurrence of a collision, the output voltage V2 of the second stress detection unit 232 has a convex peak on the negative side corresponding to a decrease in compressive stress.
 仮に、応力検知部23の平面視形状が、第一応力検知部231と第二応力検知部232とを結合した閉リング状であった場合、出力電圧V1における正側の凸のピークが、出力電圧V2における負側に凸のピークにより減殺される。すなわち、第一領域R1に作用する圧電効果と、第二領域R2に作用する圧電効果とが相殺される。よって、この場合、応力検知部23の出力電圧においては、衝突発生時に顕著なピークは得られ難い。 If the shape of the stress detection unit 23 in plan view is a closed ring shape in which the first stress detection unit 231 and the second stress detection unit 232 are combined, a positive convex peak in the output voltage V1 is output. It is attenuated by a negative peak on the voltage V2. That is, the piezoelectric effect acting on the first region R1 and the piezoelectric effect acting on the second region R2 are offset. Therefore, in this case, in the output voltage of the stress detection unit 23, it is difficult to obtain a significant peak when a collision occurs.
 これに対し、本実施形態の構成においては、応力検知部23は、第一領域R1に設けられた第一応力検知部231と、第二領域R2に設けられた第二応力検知部232とに、電気回路構成上、分割されている。すなわち、第一応力検知部231と第二応力検知部232とは、印加された応力に応じた出力を別個に発生する。そして、衝突検知部21は、第一応力検知部231の出力電圧V1と、第二応力検知部232の出力電圧V2とをそれぞれ独立に取得しつつ、これらを適宜信号処理することによって、衝突を検知する。 On the other hand, in the configuration of the present embodiment, the stress detection unit 23 includes a first stress detection unit 231 provided in the first region R1 and a second stress detection unit 232 provided in the second region R2. The electric circuit configuration is divided. That is, the first stress detection unit 231 and the second stress detection unit 232 separately generate outputs corresponding to the applied stress. Then, the collision detection unit 21 acquires the output voltage V1 of the first stress detection unit 231 and the output voltage V2 of the second stress detection unit 232 independently, and appropriately performs signal processing on these to thereby detect the collision. Detect.
 具体的には、衝突検知部21に設けられた接続回路DCにおいては、第一応力検知部231と第二応力検知部232とが、逆極性で並列接続されている。すると、接続回路DCの出力電圧V0は、出力電圧V1における正側に凸のピークに、出力電圧V2における負側に凸のピークを反転したものが加算されたものとなる。すなわち、出力電圧V2の反転出力により、出力電圧V1が強調される。このため、出力電圧V0は、出力電圧V1よりも大きなピークを有することになる。したがって、本実施形態によれば、衝突発生時に出力電圧V0に顕著なピークが得られ、衝突判定の感度が向上する。 Specifically, in the connection circuit DC provided in the collision detection unit 21, the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities. Then, the output voltage V0 of the connection circuit DC is obtained by adding a peak that is convex on the positive side in the output voltage V1 and a peak that is inverted on the negative side in the output voltage V2. That is, the output voltage V1 is emphasized by the inverted output of the output voltage V2. For this reason, the output voltage V0 has a larger peak than the output voltage V1. Therefore, according to the present embodiment, a significant peak is obtained in the output voltage V0 when a collision occurs, and the sensitivity of collision determination is improved.
 ところで、フロントバンパカバー3と物体との衝突ではない状況で、図10に示されているように、車両1の走行時に車体2に大きな振動が発生する場合がある。例えば、車両1が大きな段差を乗り越えたような場合である。かかる走行振動により、フロントバンパカバー3は、図中矢印F20にて示されているように上下動する。 By the way, in a situation where the front bumper cover 3 and the object do not collide, as shown in FIG. For example, this is a case where the vehicle 1 has overcome a large step. Due to the traveling vibration, the front bumper cover 3 moves up and down as indicated by an arrow F20 in the figure.
 すると、締結部9における前方側の領域である第一領域R1においては、図中矢印F22で示されるように、被支持部5が車体側締結部8に向かって押し付けられるような荷重が作用する。これにより、センサモジュール22における、第一領域R1内の部分には、締結力に起因する圧縮性の予応力に加えて、走行振動に起因する圧縮応力が作用する。すなわち、第一領域R1に配置された第一応力検知部231に印加される、厚さ方向に沿った圧縮応力は、走行振動により予応力よりも増大する。 Then, in the first region R1 that is the front region of the fastening portion 9, a load is applied so that the supported portion 5 is pressed toward the vehicle body side fastening portion 8 as indicated by an arrow F22 in the figure. . Thereby, in addition to the compressive prestress resulting from a fastening force, the compressive stress resulting from driving | running | working vibration acts on the part in 1st area | region R1 in the sensor module 22. FIG. That is, the compressive stress along the thickness direction applied to the first stress detection unit 231 disposed in the first region R1 increases more than the prestress due to running vibration.
 また、締結部9における後方側の領域である第二領域R2においても、図中矢印F23で示されるように、被支持部5が車体側締結部8に向かって押し付けられるような荷重が作用する。これにより、センサモジュール22における、第二領域R2内の部分にも、圧縮性の予応力に加えて、走行振動に起因する圧縮応力が作用する。すなわち、第二領域R2に配置された第二応力検知部232に印加される、厚さ方向に沿った圧縮応力も、走行振動により予応力よりも増大する。 Also in the second region R2 which is the rear side region of the fastening portion 9, a load is applied so that the supported portion 5 is pressed toward the vehicle body side fastening portion 8 as indicated by an arrow F23 in the figure. . Thereby, in addition to the compressive prestress, the compressive stress resulting from the running vibration acts on the portion in the second region R2 in the sensor module 22 as well. That is, the compressive stress along the thickness direction applied to the second stress detection unit 232 disposed in the second region R2 also increases from the prestress due to running vibration.
 図11Aは、走行振動の発生前後における、第一応力検知部231の出力電圧V1の時間経過を示す。図11Bは、走行振動の発生前後における、第二応力検知部232の出力電圧V2の時間経過を示す。図11Cは、走行振動の発生前後における、接続回路DCの出力電圧V0の時間経過を示す。図11A~図11Cにおいて、T2は、走行振動発生期間を示す。 FIG. 11A shows the time lapse of the output voltage V1 of the first stress detector 231 before and after the occurrence of running vibration. FIG. 11B shows the elapse of time of the output voltage V2 of the second stress detector 232 before and after the occurrence of running vibration. FIG. 11C shows the passage of time of the output voltage V0 of the connection circuit DC before and after the occurrence of running vibration. In FIG. 11A to FIG. 11C, T2 indicates a traveling vibration generation period.
 図11Aに示されているように、走行振動の発生により、第一応力検知部231の出力電圧V1には、正側に凸のピークが発生する。同様に、図11Bに示されているように、走行振動の発生により、第二応力検知部232の出力電圧V2にも、正側に凸のピークが発生する。 As shown in FIG. 11A, a peak that is convex on the positive side is generated in the output voltage V1 of the first stress detector 231 due to the occurrence of running vibration. Similarly, as shown in FIG. 11B, a convex peak is also generated on the positive side in the output voltage V2 of the second stress detector 232 due to the occurrence of running vibration.
 本実施形態の構成においては、衝突検知部21に設けられた接続回路DCにおいては、第一応力検知部231と第二応力検知部232とが、逆極性で並列接続されている。すると、接続回路DCの出力電圧V0は、出力電圧V1における正側に凸のピークに、出力電圧V2における正側に凸のピークを反転したものが加算されたものとなる。このため、出力電圧V0においては、走行振動の発生に起因するピークがほぼ減殺される。 In the configuration of the present embodiment, in the connection circuit DC provided in the collision detection unit 21, the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities. Then, the output voltage V0 of the connection circuit DC is obtained by adding the positive peak on the positive side in the output voltage V1 and the reverse of the positive peak on the positive side in the output voltage V2. For this reason, at the output voltage V0, the peak due to the occurrence of running vibration is substantially reduced.
 上記の通り、本実施形態によれば、衝突発生時に出力電圧V0には顕著なピークが発生する反面、走行振動の発生時には出力電圧V0には顕著なピークが発生し難い。このため、歩行者等の物体と車両1との衝突と、車両1の走行振動とを、良好に区別することができる。したがって、歩行者等の物体と車両1との衝突を、より確実に検知することが可能となる。 As described above, according to the present embodiment, a significant peak occurs in the output voltage V0 when a collision occurs, but a significant peak hardly occurs in the output voltage V0 when a running vibration occurs. For this reason, a collision between an object such as a pedestrian and the vehicle 1 and a running vibration of the vehicle 1 can be distinguished well. Therefore, it is possible to more reliably detect a collision between an object such as a pedestrian and the vehicle 1.
 本実施形態においては、センサモジュール22すなわち応力検知部23は、フロントバンパカバー3と車体フレーム6との結合部である締結部9に設けられている。計算機シミュレーションおよび実験によれば、締結部9は、フロントバンパカバー3と物体とが衝突した際に、もっとも歪が集中する箇所である。このような箇所に応力検知部23を設けることで、衝突検知の感度が向上する。すなわち、必要最小限の個数のセンサモジュール22すなわち応力検知部23を用いて、車幅方向における任意の位置における衝突を良好に検知することが可能となる。 In the present embodiment, the sensor module 22, that is, the stress detection unit 23 is provided in the fastening portion 9 that is a coupling portion between the front bumper cover 3 and the vehicle body frame 6. According to the computer simulation and experiment, the fastening portion 9 is the place where the distortion is most concentrated when the front bumper cover 3 and the object collide. By providing the stress detection unit 23 at such a location, the sensitivity of collision detection is improved. That is, it is possible to satisfactorily detect a collision at an arbitrary position in the vehicle width direction by using the minimum necessary number of sensor modules 22, that is, the stress detection units 23.
 (第二実施形態)
 以下の第二実施形態の説明においては、上記の第一実施形態と異なる部分についてのみ説明する。また、第一実施形態と第二実施形態とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の本実施形態の説明において、先行する他の実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、当該他の実施形態における説明が適宜援用され得る。後述する第三実施形態以降についても同様である。
(Second embodiment)
In the following description of the second embodiment, only different parts from the first embodiment will be described. In the first embodiment and the second embodiment, the same or equivalent parts are denoted by the same reference numerals. Therefore, in the following description of the present embodiment, for the components having the same reference numerals as those of the preceding other embodiments, the descriptions in the other embodiments are incorporated as appropriate unless there is a technical contradiction or special additional description. obtain. The same applies to the third embodiment and later described later.
 本実施形態における装置構成は、衝突検知部21の回路構成を除き、上記の第一実施形態と同様である。図12を参照すると、本実施形態においては、衝突検知部21は、反転器271と、加算器272と、判定部273とを有している。 The apparatus configuration in the present embodiment is the same as that in the first embodiment except for the circuit configuration of the collision detection unit 21. Referring to FIG. 12, in the present embodiment, the collision detection unit 21 includes an inverter 271, an adder 272, and a determination unit 273.
 反転器271は、第二応力検知部232の出力を反転するように設けられている。加算器272は、第一応力検知部231の出力と、反転器271の出力とを加算するように設けられている。判定部273は、加算器272の出力に基づいて、衝突発生の有無を判定するように設けられている。 The inverter 271 is provided so as to invert the output of the second stress detector 232. The adder 272 is provided so as to add the output of the first stress detection unit 231 and the output of the inverter 271. The determination unit 273 is provided to determine whether or not a collision has occurred based on the output of the adder 272.
 かかる構成も、上記の第一実施形態と同様に動作する。すなわち、加算器272の出力電圧においては、衝突発生時に顕著なピークが発生する反面、走行振動の発生時には顕著なピークが発生し難い。このため、歩行者等の物体と車両1との衝突と、車両1の走行振動とを、良好に区別することができる。したがって、歩行者等の物体と車両1との衝突を、より確実に検知することが可能となる。 Such a configuration also operates in the same manner as in the first embodiment. That is, in the output voltage of the adder 272, a noticeable peak occurs when a collision occurs, but a noticeable peak hardly occurs when traveling vibration occurs. For this reason, a collision between an object such as a pedestrian and the vehicle 1 and a running vibration of the vehicle 1 can be distinguished well. Therefore, it is possible to more reliably detect a collision between an object such as a pedestrian and the vehicle 1.
 (第三実施形態)
 図13に示されているように、第三実施形態においては、第一応力検知部231と第二応力検知部232とは、平面視にて異なる形状を有している。すなわち、第一応力検知部231と第二応力検知部232とは、第一領域R1と第二領域R2とが配列する面内にて、異なる面積に形成されている。
(Third embodiment)
As shown in FIG. 13, in the third embodiment, the first stress detector 231 and the second stress detector 232 have different shapes in plan view. That is, the first stress detection unit 231 and the second stress detection unit 232 are formed in different areas within the plane in which the first region R1 and the second region R2 are arranged.
 具体的には、本実施形態においては、第一応力検知部231および第二応力検知部232は、仮想円周VC上に配置されているとともに、同一の幅すなわち径方向寸法を有している。第一応力検知部231は、平面視にて中心角が120度未満、例えば90度程度の、円弧状に形成されている。一方、第二応力検知部232は、平面視にて、半円弧状、あるいは、中心角が180度未満の円弧状に形成されている。すなわち、車体2側の第二領域R2に配置される第二応力検知部232は、フロントバンパカバー3側の第一領域R1に配置される第一応力検知部231よりも、面積が大きくなるように形成されている。 Specifically, in the present embodiment, the first stress detection unit 231 and the second stress detection unit 232 are arranged on the virtual circumference VC and have the same width, that is, radial dimensions. . The first stress detection unit 231 is formed in an arc shape having a central angle of less than 120 degrees, for example, about 90 degrees in plan view. On the other hand, the second stress detector 232 is formed in a semicircular arc shape or a circular arc shape having a central angle of less than 180 degrees in plan view. That is, the second stress detection unit 232 arranged in the second region R2 on the vehicle body 2 side has a larger area than the first stress detection unit 231 arranged in the first region R1 on the front bumper cover 3 side. Is formed.
 フロントバンパカバー3と物体とが衝突した際、車体フレーム6側に比べて、フロントバンパカバー3側の方が、変形量が大きい。このため、第一領域R1には、衝突に起因して、比較的大きな圧縮応力の増大が生じる。一方、第二領域R2においては、被支持部5が車体側締結部8から離隔する際に圧縮応力の低下が生じても、その低下量の絶対値は第一領域R1における圧縮応力の増大量の絶対値よりも小さい。 When the front bumper cover 3 collides with an object, the amount of deformation is larger on the front bumper cover 3 side than on the body frame 6 side. For this reason, a relatively large increase in compressive stress occurs in the first region R1 due to the collision. On the other hand, in the second region R2, even if the compressive stress is reduced when the supported portion 5 is separated from the vehicle body side fastening portion 8, the absolute value of the decrease amount is the increase amount of the compressive stress in the first region R1. Is smaller than the absolute value of.
 この点、本実施形態の構成においては、第二領域R2に配置された第二応力検知部232の方が、第一領域R1に配置された第一応力検知部231よりも大きな面積を有している。このため、第一応力検知部231の出力電圧V1と第二応力検知部232の出力電圧V2との間の、ピーク出力の差が、可及的に抑制される。したがって、かかる構成によれば、衝突時の出力強調の効果を、よりいっそう高めることが可能となる。 In this regard, in the configuration of the present embodiment, the second stress detection unit 232 disposed in the second region R2 has a larger area than the first stress detection unit 231 disposed in the first region R1. ing. For this reason, the difference in peak output between the output voltage V1 of the first stress detector 231 and the output voltage V2 of the second stress detector 232 is suppressed as much as possible. Therefore, according to such a configuration, it is possible to further enhance the effect of enhancing the output at the time of collision.
 (第四実施形態)
 図14に示されているように、第四実施形態においては、センサモジュール22は、第一応力検知部231および第二応力検知部232に加えて、第三応力検知部233をさらに備えている。第三応力検知部233は、第一応力検知部231および第二応力検知部232と同様の構造を有している。すなわち、第三応力検知部233は、締結部9に設けられることで、衝突の際に印加された応力に応じた出力を、第一応力検知部231および第二応力検知部232とは別個に発生するように構成されている。
(Fourth embodiment)
As shown in FIG. 14, in the fourth embodiment, the sensor module 22 further includes a third stress detection unit 233 in addition to the first stress detection unit 231 and the second stress detection unit 232. . The third stress detector 233 has the same structure as the first stress detector 231 and the second stress detector 232. That is, the third stress detection unit 233 is provided in the fastening unit 9, and outputs an output corresponding to the stress applied at the time of collision separately from the first stress detection unit 231 and the second stress detection unit 232. Is configured to occur.
 本実施形態においては、第一応力検知部231、第二応力検知部232、および第三応力検知部233は、仮想円周VC上に配置されている。第一応力検知部231と、第二応力検知部232と、第三応力検知部233とは、同一の幅すなわち径方向寸法を有している。 In the present embodiment, the first stress detection unit 231, the second stress detection unit 232, and the third stress detection unit 233 are arranged on the virtual circumference VC. The first stress detector 231, the second stress detector 232, and the third stress detector 233 have the same width, that is, the radial dimension.
 第一応力検知部231と第二応力検知部232とは、平面視にて同一形状を有している。一方、第三応力検知部233は、第一応力検知部231および第二応力検知部232よりも、面積が大きくなるように形成されている。 The first stress detector 231 and the second stress detector 232 have the same shape in plan view. On the other hand, the third stress detection unit 233 is formed to have a larger area than the first stress detection unit 231 and the second stress detection unit 232.
 具体的には、第一応力検知部231および第二応力検知部232は、中心角が90度程度の、小さめの円弧状に形成されている。一方、第三応力検知部233は、中心角が180度程度の、大きめの円弧状に形成されている。 Specifically, the first stress detection unit 231 and the second stress detection unit 232 are formed in a small arc shape with a central angle of about 90 degrees. On the other hand, the third stress detector 233 is formed in a large arc shape with a central angle of about 180 degrees.
 第一応力検知部231は、第一領域R1と第二領域R2とに跨らないように、第一領域R1のみに設けられている。同様に、第二応力検知部232は、第一領域R1と第二領域R2とに跨らないように、第二領域R2のみに設けられている。第一応力検知部231と第二応力検知部232とは、境界面Lについて対称に設けられている。 The first stress detector 231 is provided only in the first region R1 so as not to straddle the first region R1 and the second region R2. Similarly, the second stress detection unit 232 is provided only in the second region R2 so as not to straddle the first region R1 and the second region R2. The first stress detection unit 231 and the second stress detection unit 232 are provided symmetrically with respect to the boundary surface L.
 これに対し、第三応力検知部233は、第一領域R1と第二領域R2とに跨るように設けられている。具体的には、第三応力検知部233は、車載状態にて半分が第一領域R1内に入る一方で残りの半分が第二領域R2内に入るように、検知部支持部材25によって支持されている。 On the other hand, the third stress detector 233 is provided so as to straddle the first region R1 and the second region R2. Specifically, the third stress detection unit 233 is supported by the detection unit support member 25 so that half of the third stress detection unit 233 enters the first region R1 while the other half enters the second region R2. ing.
 第一応力検知部231、第二応力検知部232、および第三応力検知部233は、それぞれ、配線24と電気接続されている。配線24は、第一応力検知部231の出力と、第二応力検知部232の出力と、第三応力検知部233の出力とを、個別に出力可能に設けられている。 The first stress detector 231, the second stress detector 232, and the third stress detector 233 are each electrically connected to the wiring 24. The wiring 24 is provided so that the output of the first stress detector 231, the output of the second stress detector 232, and the output of the third stress detector 233 can be individually output.
 図15を参照すると、衝突検知部21は、第一応力検知部231、第二応力検知部232、および第三応力検知部233と電気接続されている。本実施形態においては、第一応力検知部231と第二応力検知部232とが逆極性で並列接続された接続回路DCが形成されている。 Referring to FIG. 15, the collision detection unit 21 is electrically connected to the first stress detection unit 231, the second stress detection unit 232, and the third stress detection unit 233. In the present embodiment, a connection circuit DC is formed in which the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities.
 衝突検知部21には、判定部273が設けられている。判定部273は、接続回路DCの出力電圧を取得するように、接続回路DCと電気接続されている。また、判定部273は、第三応力検知部233の出力電圧を取得するように、第三応力検知部233と電気接続されている。本実施形態においては、判定部273は、接続回路DCの出力と、第三応力検知部233の出力とに基づいて、フロントバンパカバー3と物体との衝突および走行振動を検知するようになっている。 The collision detection unit 21 is provided with a determination unit 273. The determination unit 273 is electrically connected to the connection circuit DC so as to acquire the output voltage of the connection circuit DC. The determination unit 273 is electrically connected to the third stress detection unit 233 so as to acquire the output voltage of the third stress detection unit 233. In the present embodiment, the determination unit 273 detects a collision between the front bumper cover 3 and an object and traveling vibration based on the output of the connection circuit DC and the output of the third stress detection unit 233. Yes.
 かかる構成によれば、上記第一実施形態と同様に、接続回路DCの出力に基づいて、フロントバンパカバー3と物体との衝突を検知することが可能である。また、第三応力検知部233の出力に基づいて、走行振動を検知することが可能である。さらに、接続回路DCの出力と、第三応力検知部233の出力とを対比することで、衝突時に締結部9に印加される外力の方向を検知することが可能となる。したがって、かかる構成によれば、衝突位置および衝突方向を良好に推定することが可能となる。 According to such a configuration, it is possible to detect a collision between the front bumper cover 3 and an object based on the output of the connection circuit DC, as in the first embodiment. Further, it is possible to detect running vibration based on the output of the third stress detection unit 233. Furthermore, by comparing the output of the connection circuit DC and the output of the third stress detection unit 233, it is possible to detect the direction of the external force applied to the fastening unit 9 at the time of collision. Therefore, according to this configuration, the collision position and the collision direction can be estimated well.
 (第五実施形態)
 上記の通り、センサモジュール22は、3個以上の応力検知部23を備えていてもよい。応力検知部23の個数が増えるほど、衝突方向の推定精度が向上する。
(Fifth embodiment)
As described above, the sensor module 22 may include three or more stress detection units 23. As the number of the stress detectors 23 increases, the estimation accuracy of the collision direction improves.
 このため、第三応力検知部233は、複数個設けられ得る。具体的には、例えば、図16に示されているように、センサモジュール22は、2個の第三応力検知部233を備え得る。あるいは、例えば、図17に示されているように、センサモジュール22は、3個の第三応力検知部233を備え得る。これらの場合、第三応力検知部233は、第一領域R1および/または第二領域R2に設けられ得る。 For this reason, a plurality of third stress detectors 233 can be provided. Specifically, for example, as illustrated in FIG. 16, the sensor module 22 may include two third stress detection units 233. Alternatively, for example, as illustrated in FIG. 17, the sensor module 22 may include three third stress detection units 233. In these cases, the third stress detector 233 can be provided in the first region R1 and / or the second region R2.
 (第六実施形態)
 図18~図21は、第六実施形態の概略構成を示す。本実施形態においては、応力検知部23は、締結部9に設けられた車載状態にて、第一領域R1と第二領域R2とで不均衡に設けられるように構成されている。
(Sixth embodiment)
18 to 21 show a schematic configuration of the sixth embodiment. In the present embodiment, the stress detection unit 23 is configured to be provided in an unbalanced manner between the first region R1 and the second region R2 in a vehicle-mounted state provided in the fastening unit 9.
 具体的には、本実施形態においては、センサモジュール22は、1個の応力検知部23を備えている。すなわち、1個の応力検知部23と、これを支持する検知部支持部材25とによって、センサモジュール22が構成されている。応力検知部23は、第一領域R1のみに設けられている。 Specifically, in this embodiment, the sensor module 22 includes one stress detection unit 23. That is, the sensor module 22 is configured by one stress detection unit 23 and the detection unit support member 25 that supports the stress detection unit 23. The stress detection unit 23 is provided only in the first region R1.
 仮に、応力検知部23の平面視形状が、貫通孔H3の全周を囲む閉リング状であった場合、上記の通り、第一領域R1に作用する圧電効果と、第二領域R2に作用する圧電効果とが相殺される。よって、この場合、応力検知部23の出力電圧においては、衝突発生時に顕著なピークが得られ難い。 If the plan view shape of the stress detection unit 23 is a closed ring shape surrounding the entire circumference of the through hole H3, as described above, the piezoelectric effect acting on the first region R1 and the second region R2 act. This cancels out the piezoelectric effect. Therefore, in this case, in the output voltage of the stress detection unit 23, it is difficult to obtain a significant peak when a collision occurs.
 これに対し、本実施形態においては、応力検知部23は、第一領域R1と第二領域R2とで不均衡に設けられている。具体的には、応力検知部23は、衝突の際に圧縮応力が増大する第一領域R1のみに設けられている。このため、衝突発生時に出力電圧に顕著なピークが得られ、衝突判定の感度が向上する。 In contrast, in the present embodiment, the stress detection unit 23 is provided in an unbalanced manner in the first region R1 and the second region R2. Specifically, the stress detection unit 23 is provided only in the first region R1 where the compressive stress increases in the event of a collision. For this reason, a significant peak is obtained in the output voltage when a collision occurs, and the sensitivity of collision determination is improved.
 また、本実施形態においては、センサモジュール22すなわち応力検知部23は、フロントバンパカバー3と物体とが衝突した際にもっとも歪が集中する箇所である、締結部9に設けられている。したがって、必要最小限の個数のセンサモジュール22すなわち応力検知部23を用いて、車幅方向における任意の位置における衝突を良好に検知することが可能となる。 Further, in the present embodiment, the sensor module 22, that is, the stress detection unit 23, is provided in the fastening unit 9, which is a place where distortion is most concentrated when the front bumper cover 3 collides with an object. Therefore, it is possible to satisfactorily detect a collision at an arbitrary position in the vehicle width direction by using the minimum number of sensor modules 22, that is, the stress detection units 23.
 (第七実施形態)
 図22および図23は、第七実施形態の概略構成を示す。本実施形態においては、センサモジュール22は、1個の応力検知部23を備えている。かかる応力検知部23は、衝突の際に圧縮応力が低下する第二領域R2のみに設けられている。かかる構成によっても、上記第六実施形態と同様の効果が奏され得る。
(Seventh embodiment)
22 and 23 show a schematic configuration of the seventh embodiment. In the present embodiment, the sensor module 22 includes one stress detection unit 23. The stress detection unit 23 is provided only in the second region R2 where the compressive stress is reduced in the event of a collision. Also with this configuration, the same effects as in the sixth embodiment can be achieved.
 (第八実施形態)
 上記の説明から明らかなように、応力検知部23の配置は、衝突等の発生を良好に検知するために重要である。このため、ボルトBおよびナットNを用いた締結時に、センサモジュール22が、所望の姿勢からボルトBを中心として回転してしまうと、衝突等の発生を良好に検知することが困難となる。そこで、締結部9は、センサモジュール22の貫通孔H3周りの周方向における位置決め部としての構造を有していることが好適である。
(Eighth embodiment)
As is apparent from the above description, the arrangement of the stress detection unit 23 is important for detecting the occurrence of a collision or the like satisfactorily. For this reason, when the sensor module 22 rotates around the bolt B from a desired posture at the time of fastening using the bolt B and the nut N, it becomes difficult to detect occurrence of a collision or the like. Therefore, the fastening portion 9 preferably has a structure as a positioning portion in the circumferential direction around the through hole H3 of the sensor module 22.
 具体的には、図24に示されているように、センサモジュール22には、係合突起291が設けられ得る。係合突起291は、保護部材26から厚さ方向に突設されている。係合突起291は、被支持部5または車体側締結部8に設けられた係合孔292と係合するように形成されている。なお、図24は、係合孔292が車体側締結部8に設けられている例を示している。 Specifically, as shown in FIG. 24, the sensor module 22 may be provided with an engaging protrusion 291. The engagement protrusion 291 protrudes from the protection member 26 in the thickness direction. The engagement protrusion 291 is formed to engage with an engagement hole 292 provided in the supported portion 5 or the vehicle body side fastening portion 8. FIG. 24 shows an example in which the engagement hole 292 is provided in the vehicle body side fastening portion 8.
 かかる構成によれば、被支持部5とセンサモジュール22と車体側締結部8とを車高方向に沿って積層して締結部9を形成する際に、係合突起291と係合孔292とが係合するようにセンサモジュール22の姿勢が調整される。これにより、貫通孔H3周りの周方向における、センサモジュール22の位置決めが、良好に行われる。 According to such a configuration, when the supported portion 5, the sensor module 22, and the vehicle body side fastening portion 8 are stacked along the vehicle height direction to form the fastening portion 9, the engagement protrusion 291, the engagement hole 292, The attitude of the sensor module 22 is adjusted so that the Thereby, the positioning of the sensor module 22 in the circumferential direction around the through hole H3 is favorably performed.
 (変形例)
 本開示は、上記実施形態に限定されるものではない。故に、上記実施形態に対しては、適宜変更が可能である。以下、代表的な変形例について説明する。以下の変形例の説明においては、主として、上記実施形態と異なる部分について説明する。また、上記実施形態と変形例とにおいて、相互に同一または均等である部分には、同一符号が付されている。したがって、以下の変形例の説明において、上記実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、上記実施形態における説明が適宜援用され得る。
(Modification)
The present disclosure is not limited to the above embodiment. Therefore, it can change suitably with respect to the said embodiment. Hereinafter, typical modifications will be described. In the following description of the modified examples, mainly the portions different from the above embodiment will be described. Moreover, in the said embodiment and a modification, the same code | symbol is attached | subjected to the part which is mutually the same or equivalent. Therefore, in the following description of the modified example, regarding the components having the same reference numerals as those in the above embodiment, the description in the above embodiment can be appropriately incorporated unless there is a technical contradiction or special additional explanation.
 本開示は、上記実施形態にて示された具体的な装置構成に限定されない。具体的には、例えば、フロントバンパカバー3と被支持部5とは、別部材として構成されていてもよい。すなわち、フロントバンパカバー3と被支持部5とを連結するための連結部材が、フロントバンパカバー3と被支持部5との間に設けられていてもよい。 The present disclosure is not limited to the specific apparatus configuration shown in the above embodiment. Specifically, for example, the front bumper cover 3 and the supported portion 5 may be configured as separate members. That is, a connecting member for connecting the front bumper cover 3 and the supported portion 5 may be provided between the front bumper cover 3 and the supported portion 5.
 本開示は、歩行者等の特定物体との衝突検知に限定されない。例えば、本開示は、固定障害物および他車両との衝突検知にも応用され得る。すなわち、保護システム10は、車両1の乗員を保護するように構成され得る。 This disclosure is not limited to collision detection with a specific object such as a pedestrian. For example, the present disclosure can be applied to collision detection with a fixed obstacle and another vehicle. That is, the protection system 10 can be configured to protect the occupant of the vehicle 1.
 歩行者エアバッグ装置11は、複数個のエアバッグを備えていてもよい。この場合、複数個のエアバッグの各々は、平面視にて互いに異なる保護領域に対応して展開する。複数の保護領域の各々は、平面視にて互いに異なる位置に設定される。かかる態様においては、特定物体が車両1の前面に一次衝突した場合、車幅方向における一次衝突位置に応じて、複数個のエアバッグの展開態様を制御する必要がある。 The pedestrian airbag device 11 may include a plurality of airbags. In this case, each of the plurality of airbags is deployed corresponding to different protection areas in plan view. Each of the plurality of protection areas is set at a different position in plan view. In such an aspect, when a specific object first collides with the front surface of the vehicle 1, it is necessary to control the deployment manner of the plurality of airbags according to the primary collision position in the vehicle width direction.
 そこで、センサモジュール22は、平面視にて異なる位置に設けられた複数の締結部9のそれぞれに設けられる。かかる構成によれば、複数のセンサモジュール22のうちのいずれが衝突を検知したかに基づいて、車幅方向における一次衝突位置が推定あるいは検知され得る。したがって、かかる構成によれば、特定物体が車両1の前面に一次衝突した場合、車幅方向における一次衝突位置に応じて、複数個のエアバッグの展開態様を制御することが可能となる。 Therefore, the sensor module 22 is provided in each of the plurality of fastening portions 9 provided at different positions in plan view. According to this configuration, the primary collision position in the vehicle width direction can be estimated or detected based on which of the plurality of sensor modules 22 has detected a collision. Therefore, according to this configuration, when a specific object primarily collides with the front surface of the vehicle 1, it is possible to control the deployment manner of the plurality of airbags according to the primary collision position in the vehicle width direction.
 保護システム10は、歩行者エアバッグ装置11と、フードポップアップ装置12との双方を備えた構成に限定されない。すなわち、歩行者エアバッグ装置11と、フードポップアップ装置12とのうちの、いずれか一方のみが設けられていてもよい。 The protection system 10 is not limited to a configuration including both the pedestrian airbag device 11 and the hood pop-up device 12. That is, only one of the pedestrian airbag device 11 and the hood pop-up device 12 may be provided.
 衝突検知部21は、ASICを含んだ構成を有していてもよい。ASICはApplication Specific Integrated Circuitの略である。 The collision detection unit 21 may have a configuration including an ASIC. ASIC is an abbreviation for Application Specific Integrated Circuit.
 図6を参照すると、第一応力検知部231および/または第二応力検知部232は、検知部支持部材25の厚さ方向における一方側に偏った位置に設けられ得る。すなわち、第一応力検知部231および/または第二応力検知部232は、検知部支持部材25の表面と面一となる状態で、検知部支持部材25によって支持され得る。また、中心軸線Cと第一応力検知部231との距離と、中心軸線Cと第二応力検知部232との距離とは、異なっていてもよい。さらに、第一応力検知部231と第二応力検知部232とは、同一の仮想円周VC上に設けられていなくてもよい。 Referring to FIG. 6, the first stress detector 231 and / or the second stress detector 232 may be provided at a position biased to one side in the thickness direction of the detector support member 25. That is, the first stress detection unit 231 and / or the second stress detection unit 232 can be supported by the detection unit support member 25 in a state where it is flush with the surface of the detection unit support member 25. Further, the distance between the center axis C and the first stress detection unit 231 and the distance between the center axis C and the second stress detection unit 232 may be different. Furthermore, the first stress detection unit 231 and the second stress detection unit 232 may not be provided on the same virtual circumference VC.
 第一応力検知部231と第二応力検知部232とは、一体的に形成されつつ個別に出力を発生するように構成されていてもよい。具体的には、第一応力検知部231における圧電体膜と、第二応力検知部232における圧電体膜とは、一体化されてもよい。この場合、センサモジュール22には、第一応力検知部231における圧電体膜および第二応力検知部232における圧電体膜を構成する、リング状の圧電体が設けられる。さらに、この場合、接地側電極を構成する導体薄膜も、第一応力検知部231と第二応力検知部232とで一体化され得る。第一応力検知部231と第二応力検知部232と第三応力検知部233とが設けられる場合についても同様である。 The first stress detector 231 and the second stress detector 232 may be configured to generate outputs individually while being integrally formed. Specifically, the piezoelectric film in the first stress detection unit 231 and the piezoelectric film in the second stress detection unit 232 may be integrated. In this case, the sensor module 22 is provided with a ring-shaped piezoelectric body that constitutes the piezoelectric film in the first stress detector 231 and the piezoelectric film in the second stress detector 232. Further, in this case, the conductive thin film constituting the ground side electrode can also be integrated by the first stress detection unit 231 and the second stress detection unit 232. The same applies to the case where the first stress detector 231, the second stress detector 232, and the third stress detector 233 are provided.
 保護部材26の全部または一部は、省略され得る。すなわち、図6において、上側および/または下側の保護部材26は、省略され得る。その他、センサモジュール22の具体的構造については、特段の限定はない。 The whole or a part of the protective member 26 may be omitted. That is, in FIG. 6, the upper and / or lower protective member 26 can be omitted. In addition, the specific structure of the sensor module 22 is not particularly limited.
 図7において、第一応力検知部231と第二応力検知部232とが逆極性で並列接続された接続回路DCは、省略され得る。すなわち、衝突検知部21は、第一応力検知部231の出力と第二応力検知部232の出力とを個別に取得して、ソフトウエア処理により両者を演算するように構成され得る。図15においても同様である。 7, the connection circuit DC in which the first stress detection unit 231 and the second stress detection unit 232 are connected in parallel with opposite polarities may be omitted. That is, the collision detection unit 21 can be configured to individually acquire the output of the first stress detection unit 231 and the output of the second stress detection unit 232 and calculate both by software processing. The same applies to FIG.
 図16において、2個の第三応力検知部233として示されているものは、それぞれ、第一応力検知部231および第二応力検知部232として用いられてもよい。図17において、第一領域R1と第二領域R2とに跨らないように設けられた2個の第三応力検知部233として示されているものについても同様である。 16, what is shown as the two third stress detection units 233 may be used as the first stress detection unit 231 and the second stress detection unit 232, respectively. The same applies to what is shown as two third stress detectors 233 provided not to straddle the first region R1 and the second region R2 in FIG.
 第六実施形態において、応力検知部23は、主として第一領域R1に設けられていればよい。このため、例えば、応力検知部23が第一領域R1と第二領域R2とに跨るように設けられていてもよい。但し、この場合、S1>S2である必要がある。S1は、応力検知部23のうち、第一領域R1内に含まれる部分の、平面視における面積である。S2は、応力検知部23のうち、第二領域R2内に含まれる部分の、平面視における面積である。具体的には、例えば、応力検知部23は、第二領域R2内にて開口する、平面視にて略C字状に形成され得る。 In the sixth embodiment, the stress detection unit 23 may be provided mainly in the first region R1. For this reason, for example, the stress detection unit 23 may be provided so as to straddle the first region R1 and the second region R2. However, in this case, S1> S2 needs to be satisfied. S1 is an area in plan view of a portion of the stress detection unit 23 included in the first region R1. S2 is an area in plan view of a portion included in the second region R2 in the stress detection unit 23. Specifically, for example, the stress detection unit 23 may be formed in a substantially C shape in plan view that opens in the second region R2.
 第六実施形態において、応力検知部23は、周方向について複数個に分割されていてもよい。 In the sixth embodiment, the stress detection unit 23 may be divided into a plurality of parts in the circumferential direction.
 図25に示されているように、センサモジュール22は、ボルトBの頭部と被支持部5との間に挟持されるものであってもよい。あるいは、図26に示されているように、センサモジュール22は、車体側締結部8とナットNとの間に挟持されるものであってもよい。 As shown in FIG. 25, the sensor module 22 may be sandwiched between the head of the bolt B and the supported portion 5. Alternatively, as shown in FIG. 26, the sensor module 22 may be sandwiched between the vehicle body side fastening portion 8 and the nut N.
 被支持部5と車体側締結部8とセンサモジュール22との積層方向は、車高方向に沿った方向に限定されない。すなわち、車載状態にて、センサモジュール22における衝突時の圧縮応力の発生方向は、車高方向に沿った方向に限定されない。具体的には、例えば、車載状態にて、センサモジュール22における衝突時の圧縮応力の発生方向は、前後方向であってもよい。 The stacking direction of the supported portion 5, the vehicle body side fastening portion 8, and the sensor module 22 is not limited to the direction along the vehicle height direction. That is, in the in-vehicle state, the direction in which the compressive stress is generated at the time of collision in the sensor module 22 is not limited to the direction along the vehicle height direction. Specifically, for example, the direction in which the compressive stress is generated at the time of collision in the sensor module 22 in the in-vehicle state may be the front-rear direction.
 より詳細には、例えば、図27に示されている変形例において、被支持部5は、前側フランジ部501を有している。前側フランジ部501は、被支持部5の後端部から上下方向(例えば下方)に延設されている。 More specifically, for example, in the modified example shown in FIG. 27, the supported portion 5 has a front flange portion 501. The front flange portion 501 extends in the vertical direction (for example, downward) from the rear end portion of the supported portion 5.
 また、同変形例において、車体側締結部8は、後側フランジ部801を有している。後側フランジ部801は、車体側締結部8の前端部から上下方向(例えば下方)に延設されている。センサモジュール22は、前側フランジ部501と後側フランジ部801との間に挟持されている。 Further, in the modification, the vehicle body side fastening portion 8 has a rear flange portion 801. The rear flange portion 801 extends from the front end portion of the vehicle body side fastening portion 8 in the vertical direction (for example, downward). The sensor module 22 is sandwiched between the front flange portion 501 and the rear flange portion 801.
 かかる構成においては、図27に示されているように、第一領域R1と第二領域R2との仮想的な境界面Lは、車高方向と略直交する面内方向に沿って設けられる。また、第一領域R1は、境界面Lよりも下方に設けられる。一方、第二領域R2は、境界面Lよりも上方に設けられる。 In such a configuration, as shown in FIG. 27, a virtual boundary surface L between the first region R1 and the second region R2 is provided along an in-plane direction substantially orthogonal to the vehicle height direction. The first region R1 is provided below the boundary surface L. On the other hand, the second region R2 is provided above the boundary surface L.
 図28に示されているように、フロントバンパカバー3と物体とが衝突すると、図中矢印F10で示されるような後方向きの荷重が作用する。これにより、フロントバンパカバー3が変形する。かかる変形に伴い、フロントバンパカバー3の前面には、フロントバンパカバー3と一体的に連結された被支持部5の前端部が、図中矢印F11で示されるように、前方および下方に向けて付勢される。 As shown in FIG. 28, when the front bumper cover 3 and the object collide, a backward load as shown by an arrow F10 in the figure acts. As a result, the front bumper cover 3 is deformed. As a result of such deformation, the front end of the supported portion 5 integrally connected to the front bumper cover 3 is formed on the front surface of the front bumper cover 3 so as to face forward and downward as indicated by an arrow F11 in the figure. Be energized.
 すると、締結部9における下方側の領域である第一領域R1においては、図中矢印F14で示されるように、前側フランジ部501が後側フランジ部801に向かって押し付けられるような荷重が作用する。これにより、センサモジュール22における、第一領域R1内の部分には、締結力に起因する圧縮性の予応力に加えて、衝突に起因する圧縮応力が作用する。すなわち、第一領域R1に配置された第一応力検知部231に印加される、前後方向に沿った圧縮応力は、衝突により予応力よりも増大する。 Then, in the first region R1, which is the lower region of the fastening portion 9, a load is applied such that the front flange portion 501 is pressed toward the rear flange portion 801 as indicated by an arrow F14 in the figure. . Thereby, in addition to the compressive prestress resulting from the fastening force, the compressive stress resulting from the collision acts on the part in the first region R1 of the sensor module 22. That is, the compressive stress along the front-rear direction that is applied to the first stress detector 231 disposed in the first region R1 increases more than the prestress due to the collision.
 一方、締結部9における上方側の領域である第二領域R2においては、図中矢印F15で示されるように、前側フランジ部501が後側フランジ部801から離隔するような荷重が作用する。これにより、センサモジュール22における、第二領域R2内の部分においては、衝突に起因する圧縮応力の増大は生じない。すなわち、第二領域R2に配置された第二応力検知部232に印加される、厚さ方向に沿った圧縮応力は、衝突により、予応力よりも増大せず、むしろ予応力よりも低下する。 On the other hand, in the second region R2, which is the upper region of the fastening portion 9, a load is applied so that the front flange portion 501 is separated from the rear flange portion 801, as indicated by an arrow F15 in the figure. Thereby, in the part in 2nd area | region R2 in the sensor module 22, the increase in the compressive stress resulting from a collision does not arise. That is, the compressive stress along the thickness direction applied to the second stress detection unit 232 disposed in the second region R2 does not increase from the prestress but rather decreases from the prestress due to the collision.
 図29に示されているように、走行振動が発生すると、フロントバンパカバー3は、図中矢印F20にて示されているように上下動する。すると、被支持部5もまた、図中矢印F24で示されるように上下動する。また、車体側締結部8も、図中矢印F25で示されるように上下動する。この場合、センサモジュール22における圧縮応力の変化は、ほとんど生じない。 29, when traveling vibration occurs, the front bumper cover 3 moves up and down as indicated by an arrow F20 in the figure. Then, the supported portion 5 also moves up and down as indicated by an arrow F24 in the figure. The vehicle body side fastening portion 8 also moves up and down as indicated by an arrow F25 in the figure. In this case, the change of the compressive stress in the sensor module 22 hardly occurs.
 上記の通り、本実施形態においては、衝突の場合、第一領域R1にて圧縮応力が増大する一方、第二領域R2にて圧縮応力が低下する。これに対し、走行振動の場合、第一領域R1および第二領域R2における圧縮応力にはほとんど変化が生じない。したがって、かかる構成によれば、歩行者等の物体と車両1との衝突と、車両1の走行振動とを、良好に区別することができる。したがって、歩行者等の物体と車両1との衝突を、より確実に検知することが可能となる。 As described above, in the present embodiment, in the case of a collision, the compressive stress increases in the first region R1, while the compressive stress decreases in the second region R2. On the other hand, in the case of running vibration, there is almost no change in the compressive stress in the first region R1 and the second region R2. Therefore, according to this configuration, a collision between an object such as a pedestrian and the vehicle 1 and a running vibration of the vehicle 1 can be distinguished well. Therefore, it is possible to more reliably detect a collision between an object such as a pedestrian and the vehicle 1.
 なお、図30に示されているように、センサモジュール22は、ボルトBの頭部と前側フランジ部501との間に挟持されるものであってもよい。あるいは、図31に示されているように、センサモジュール22は、後側フランジ部801とナットNとの間に挟持されるものであってもよい。 30, the sensor module 22 may be sandwiched between the head of the bolt B and the front flange portion 501. Alternatively, as shown in FIG. 31, the sensor module 22 may be sandwiched between the rear flange portion 801 and the nut N.
 上記実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に本開示が限定されることはない。 It goes without saying that the elements constituting the above-described embodiment are not necessarily essential except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle. In addition, when numerical values such as the number, numerical value, quantity, range, etc. of a component are mentioned, the specifics are specified unless explicitly stated as being essential and when clearly limited to a specific number in principle. The present disclosure is not limited to this number.
 同様に、構成要素等の形状、方向、位置関係等が言及されている場合、特に必須であると明示した場合および原理的に特定の形状、方向、位置関係等に限定される場合等を除き、その形状、方向、位置関係等に本開示が限定されることはない。各部を構成する材料についても、特に必須であると明示した場合および原理的に明らかに特定の材料に限定される場合等を除き、特段の限定はない。 Similarly, when the shape, direction, positional relationship, etc. of a component is mentioned, except when clearly stated as being essential, and in principle limited to a specific shape, direction, positional relationship, etc. The present disclosure is not limited to the shape, direction, positional relationship, and the like. The material constituting each part is not particularly limited unless it is specified as being particularly essential, or is clearly limited to a specific material in principle.
 変形例も、上記の例示に限定されない。例えば、複数の実施形態が、互いに組み合わされ得る。また、複数の変形例が、互いに組み合わされ得る。さらに、任意の実施形態の全部または一部と、任意の変形例の全部または一部とが、互いに組み合わされ得る。 The modified examples are not limited to the above examples. For example, multiple embodiments can be combined with each other. In addition, a plurality of modifications can be combined with each other. Furthermore, all or part of any embodiment and all or part of any modification may be combined with each other.

Claims (15)

  1.  車両(1)の外部に存在する物体と、前記車両の車体(2)に装着されたバンパカバー(3)との衝突を検知するように構成された、衝突検知装置(20)であって、
     前記車体側に設けられていて前記バンパカバーの支持に用いられる支持部(7)と前記支持部よりも前記バンパカバー側に設けられた被支持部(5)との締結部(9)における、前記衝突の際に圧縮応力が増大する第一領域(R1)に設けられることで、前記衝突の際に印加された応力に応じた出力を発生するように構成された、第一応力検知部(231)と、
     前記締結部における、前記第一領域以外の第二領域(R2)に設けられることで、前記衝突の際に印加された前記応力に応じた出力を、前記第一応力検知部とは別個に発生するように構成された、第二応力検知部(232)と、
     前記第一応力検知部および前記第二応力検知部の出力に基づいて前記衝突を検知するように設けられた、衝突検知部(21)と、
     を備えた衝突検知装置。
    A collision detection device (20) configured to detect a collision between an object existing outside the vehicle (1) and a bumper cover (3) attached to the vehicle body (2) of the vehicle,
    In a fastening portion (9) between a support portion (7) provided on the vehicle body side and used for supporting the bumper cover and a supported portion (5) provided closer to the bumper cover than the support portion, A first stress detector (1) configured to generate an output corresponding to the stress applied during the collision by being provided in the first region (R1) where the compressive stress increases during the collision. 231)
    By being provided in the second region (R2) other than the first region in the fastening portion, an output corresponding to the stress applied at the time of the collision is generated separately from the first stress detection portion. A second stress detector (232) configured to:
    A collision detection unit (21) provided to detect the collision based on outputs of the first stress detection unit and the second stress detection unit;
    A collision detection device.
  2.  前記衝突検知部は、前記第一応力検知部と前記第二応力検知部とが逆極性で並列接続された接続回路(DC)の出力電圧に基づいて、前記衝突を検知するように設けられた、
     請求項1に記載の衝突検知装置。
    The collision detection unit is provided to detect the collision based on an output voltage of a connection circuit (DC) in which the first stress detection unit and the second stress detection unit are connected in parallel with opposite polarities. ,
    The collision detection device according to claim 1.
  3.  前記第一応力検知部と前記第二応力検知部とは、前記第一領域と前記第二領域とが配列する面内にて異なる面積に形成された、
     請求項1または2に記載の衝突検知装置。
    The first stress detection unit and the second stress detection unit are formed in different areas within a plane in which the first region and the second region are arranged,
    The collision detection apparatus according to claim 1 or 2.
  4.  前記第一領域または前記第二領域に設けられることで、前記衝突の際に印加された前記応力に応じた出力を、前記第一応力検知部および前記第二応力検知部とは別個に発生するように構成された、第三応力検知部(233)をさらに備えた、
     請求項1~3のいずれか1つに記載の衝突検知装置。
    By being provided in the first region or the second region, an output corresponding to the stress applied at the time of the collision is generated separately from the first stress detection unit and the second stress detection unit. Further comprising a third stress detector (233),
    The collision detection device according to any one of claims 1 to 3.
  5.  前記第一応力検知部と前記第二応力検知部と前記第三応力検知部とは、前記第一領域と前記第二領域とが配列する面内における一つの仮想円周上に配列された、
     請求項4に記載の衝突検知装置。
    The first stress detection unit, the second stress detection unit, and the third stress detection unit are arranged on one virtual circumference in a plane in which the first region and the second region are arranged,
    The collision detection device according to claim 4.
  6.  車両(1)の外部に存在する物体と、前記車両の車体(2)に装着されたバンパカバー(3)との衝突を検知するように構成された、衝突検知装置(20)であって、
     前記車体側に設けられていて前記バンパカバーの支持に用いられる支持部(7)と前記支持部よりも前記バンパカバー側に設けられた被支持部(5)との締結部(9)に設けられることで、前記衝突の際に印加された応力に応じた出力を発生するように構成された、応力検知部(23)と、
     前記応力検知部の前記出力に基づいて前記衝突を検知するように設けられた、衝突検知部(21)と、
     を備え、
     前記応力検知部は、前記締結部に設けられた車載状態にて、前記締結部における前記衝突の際に圧縮応力が増大する第一領域(R1)とそれ以外の第二領域(R2)とで不均衡に設けられるように構成された、
     衝突検知装置。
    A collision detection device (20) configured to detect a collision between an object existing outside the vehicle (1) and a bumper cover (3) attached to the vehicle body (2) of the vehicle,
    Provided in a fastening portion (9) between a support portion (7) provided on the vehicle body side and used for supporting the bumper cover and a supported portion (5) provided closer to the bumper cover than the support portion. A stress detector (23) configured to generate an output according to the stress applied during the collision,
    A collision detection unit (21) provided to detect the collision based on the output of the stress detection unit;
    With
    The stress detection unit includes a first region (R1) in which a compressive stress increases during the collision in the fastening unit and a second region (R2) other than the first region (R2) in an in-vehicle state provided in the fastening unit. Configured to be imbalanced,
    Collision detection device.
  7.  前記応力検知部は、前記第一領域のみに設けられた、
     請求項6に記載の衝突検知装置。
    The stress detection unit is provided only in the first region,
    The collision detection device according to claim 6.
  8.  前記応力検知部を支持する、検知部支持部材(25)をさらに備え、
     前記応力検知部および前記検知部支持部材によって、センサモジュール(22)が構成された、
     請求項6または7に記載の衝突検知装置。
    A detector supporting member (25) for supporting the stress detector;
    A sensor module (22) is configured by the stress detection unit and the detection unit support member.
    The collision detection device according to claim 6 or 7.
  9.  前記第一応力検知部および前記第二応力検知部を支持する、検知部支持部材(25)をさらに備え、
     前記第一応力検知部、前記第二応力検知部、および前記検知部支持部材によって、センサモジュール(22)が構成された、
     請求項1~3のいずれか1つに記載の衝突検知装置。
    Further comprising a detection unit support member (25) for supporting the first stress detection unit and the second stress detection unit,
    A sensor module (22) is configured by the first stress detector, the second stress detector, and the detector support member.
    The collision detection device according to any one of claims 1 to 3.
  10.  前記第一応力検知部、前記第二応力検知部、および前記第三応力検知部を支持する、検知部支持部材(25)をさらに備え、
     前記第一応力検知部、前記第二応力検知部、前記第三応力検知部、および前記検知部支持部材によって、センサモジュール(22)が構成された、
     請求項4または5に記載の衝突検知装置。
    A detector supporting member (25) for supporting the first stress detector, the second stress detector, and the third stress detector;
    A sensor module (22) is configured by the first stress detection unit, the second stress detection unit, the third stress detection unit, and the detection unit support member.
    The collision detection device according to claim 4 or 5.
  11.  前記バンパカバーは、フロントバンパカバーであって、
     前記支持部は、板状の車体側締結部(8)を有し、
     前記被支持部は、板状に形成され、
     前記締結部は、前記車体側締結部と前記被支持部と前記センサモジュールとを積層した状態で締結することによって形成された、
     請求項8~10のいずれか1つに記載の衝突検知装置。
    The bumper cover is a front bumper cover,
    The support part has a plate-like vehicle body side fastening part (8),
    The supported portion is formed in a plate shape,
    The fastening portion is formed by fastening the vehicle body side fastening portion, the supported portion, and the sensor module in a stacked state.
    The collision detection device according to any one of claims 8 to 10.
  12.  前記締結部にて、前記車体側締結部と前記被支持部と前記センサモジュールとが、車高方向に沿って積層されるように構成され、
     前記第一領域は、前記第二領域よりも前方となるように設けられる、
     請求項11に記載の衝突検知装置。
    In the fastening portion, the vehicle body side fastening portion, the supported portion, and the sensor module are configured to be stacked along a vehicle height direction,
    The first region is provided to be forward of the second region.
    The collision detection device according to claim 11.
  13.  前記締結部は、前記車体側締結部と前記被支持部と前記センサモジュールとを積層するとともに、前記車体側締結部と前記被支持部と前記センサモジュールとを貫通する貫通孔(H1、H2、H3)に締結具(B)を挿通して締結することで形成され、
     前記第一領域と前記第二領域とは、前記貫通孔を挟んで対向配置された、
     請求項11または12に記載の衝突検知装置。
    The fastening portion is formed by laminating the vehicle body side fastening portion, the supported portion, and the sensor module, and through holes (H1, H2,...) That penetrate the vehicle body side fastening portion, the supported portion, and the sensor module. H3) is formed by inserting and fastening the fastener (B),
    The first region and the second region are disposed to face each other with the through hole interposed therebetween.
    The collision detection device according to claim 11 or 12.
  14.  前記センサモジュールは、前記貫通孔周りの周方向における位置決めのための位置決め部(291)を有する、
     請求項13に記載の衝突検知装置。
    The sensor module has a positioning portion (291) for positioning in the circumferential direction around the through hole.
    The collision detection device according to claim 13.
  15.  前記被支持部は、前記バンパカバーと一体に形成された、
     請求項1~14のいずれか1つに記載の衝突検知装置。
    The supported portion is formed integrally with the bumper cover,
    The collision detection device according to any one of claims 1 to 14.
PCT/JP2019/018775 2018-05-17 2019-05-10 Collision detection apparatus WO2019221028A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019002514.7T DE112019002514T5 (en) 2018-05-17 2019-05-10 COLLISION DETECTION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095522A JP6856053B2 (en) 2018-05-17 2018-05-17 Collision detector
JP2018-095522 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019221028A1 true WO2019221028A1 (en) 2019-11-21

Family

ID=68539996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018775 WO2019221028A1 (en) 2018-05-17 2019-05-10 Collision detection apparatus

Country Status (3)

Country Link
JP (1) JP6856053B2 (en)
DE (1) DE112019002514T5 (en)
WO (1) WO2019221028A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085364A (en) * 2002-08-27 2004-03-18 Kubota Corp Impact force measuring device of working vehicle
JP2006118982A (en) * 2004-10-21 2006-05-11 Denso Corp Forward collision load detection device for vehicle
JP2006137299A (en) * 2004-11-12 2006-06-01 Hino Motors Ltd Inclusion preventing device
US20100313663A1 (en) * 2009-06-15 2010-12-16 Daniel Woon Leong Stress-wave sensor module, stress-wave sensor, and method for detecting a vehicle collision event utilizing the stress-wave sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4458001B2 (en) * 2005-08-25 2010-04-28 株式会社デンソー Vehicle collision object discrimination device
JP6317379B2 (en) * 2016-02-22 2018-04-25 本田技研工業株式会社 Airbag sensor mounting structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085364A (en) * 2002-08-27 2004-03-18 Kubota Corp Impact force measuring device of working vehicle
JP2006118982A (en) * 2004-10-21 2006-05-11 Denso Corp Forward collision load detection device for vehicle
JP2006137299A (en) * 2004-11-12 2006-06-01 Hino Motors Ltd Inclusion preventing device
US20100313663A1 (en) * 2009-06-15 2010-12-16 Daniel Woon Leong Stress-wave sensor module, stress-wave sensor, and method for detecting a vehicle collision event utilizing the stress-wave sensor

Also Published As

Publication number Publication date
DE112019002514T5 (en) 2021-02-25
JP2019199202A (en) 2019-11-21
JP6856053B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP2879611B2 (en) Airbag device
JP6369415B2 (en) Vehicle collision sensor and vehicle collision detection device using the same
US7854453B2 (en) System for detecting objects colliding with automotive vehicle
JP2007137336A (en) Collision detector and protection device
JP2011043454A (en) Apparatus and method for determining impact on vehicle, and apparatus for informing impact on vehicle
JP2008107232A (en) Means for sensing crash
WO2019193962A1 (en) Collision detection apparatus
US7321817B2 (en) Automobile frontal collision location detection for coordinated activation of safety systems
US9701267B1 (en) Vehicle body transformable front section structure
JP2015009774A (en) Collision detection device for vehicle
WO2019221028A1 (en) Collision detection apparatus
JP2006062542A (en) Sensor-arranging structure
JP4507463B2 (en) Seat belt tension detection device
JPH1086787A (en) Starting device of occupant protection device
JP6515881B2 (en) Vehicle collision detector
JP2007118831A (en) Colliding object discriminating device for vehicle and actuation system for pedestrian protecting device
JP7140047B2 (en) collision sensor
JP5862065B2 (en) Front body structure of the vehicle
JP6597759B2 (en) Collision detection device
JP6729414B2 (en) Vehicle collision detection device
JP2005283290A (en) Inclination detector
JP5949197B2 (en) Sensor mounting structure
JPH0538998A (en) Air bag sensor disposing structure
JP2020015375A (en) Vehicle collision detection structure
JP2008137606A (en) Collision detection structure for occupant crash protection device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802505

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19802505

Country of ref document: EP

Kind code of ref document: A1