WO2019220895A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2019220895A1
WO2019220895A1 PCT/JP2019/017404 JP2019017404W WO2019220895A1 WO 2019220895 A1 WO2019220895 A1 WO 2019220895A1 JP 2019017404 W JP2019017404 W JP 2019017404W WO 2019220895 A1 WO2019220895 A1 WO 2019220895A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
dispersant
molecular weight
elastomer
thermoplastic resin
Prior art date
Application number
PCT/JP2019/017404
Other languages
French (fr)
Japanese (ja)
Inventor
中島 啓造
章浩 野末
直弥 福島
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018095648A external-priority patent/JP7213459B2/en
Priority claimed from JP2018134472A external-priority patent/JP2020012050A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980032575.2A priority Critical patent/CN112119127B/en
Publication of WO2019220895A1 publication Critical patent/WO2019220895A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present disclosure relates generally to resin compositions, and more particularly to resin compositions containing cellulose fibers.
  • Patent Document 1 discloses a composite resin molded body. This composite resin molding is composed of a melt-kneaded product containing a main resin, an organic fibrous filler, and a dispersant.
  • the organic fibrous filler is a cellulose containing cellulose.
  • An object of the present disclosure is to provide a resin composition capable of obtaining a molded product having both rigidity and impact resistance.
  • the resin composition according to one embodiment of the present disclosure contains a thermoplastic resin, cellulose fiber, a dispersant, and an elastomer.
  • the resin composition according to another embodiment of the present disclosure contains a thermoplastic resin, cellulose fibers, and a dispersant.
  • the dispersant includes a plurality of components having different weight average molecular weights.
  • the resin composition which concerns on this embodiment contains a thermoplastic resin, a cellulose fiber, a dispersing agent, and an elastomer.
  • a molded product can be obtained by using a molding method such as injection molding.
  • This molded product has both rigidity and impact resistance. That is, rigidity can be imparted to the molded product by uniformly dispersing the cellulose fibers in the thermoplastic resin with the dispersant. Furthermore, impact resistance can be imparted to the molded article by lowering the embrittlement temperature of the thermoplastic resin with the elastomer.
  • the resin composition according to the present embodiment contains a thermoplastic resin, cellulose fibers, a dispersant, and an elastomer.
  • the form of the resin composition at room temperature is, for example, a spherical, cylindrical, or prismatic pellet.
  • a thermoplastic resin, a cellulose fiber, a dispersing agent, and an elastomer are demonstrated in order.
  • thermoplastic resin is classified into a crystalline resin and an amorphous resin, but is not particularly limited.
  • specific examples of the thermoplastic resin include polyolefin (including cyclic polyolefin), ABS resin, polyvinyl chloride, polystyrene, polyester, nylon, polyvinyl ether, polyvinyl alcohol, polyamide, polycarbonate, and polysulfone.
  • polyolefin is particularly preferable because of its low specific gravity.
  • polyolefins such as polypropylene (PP) and polyethylene (PE) have a low specific gravity
  • a resin composition capable of forming a lightweight and high-rigidity molded product can be easily obtained by complexing with cellulose fibers.
  • the content of the thermoplastic resin is in the range of 60% by mass to 90% by mass with respect to the total mass of the resin composition.
  • the content of the thermoplastic resin is 60% by mass or more, the weight of the molded product can be reduced.
  • the thermoplastic resin includes polyolefin which is a low specific gravity material.
  • the content of the thermoplastic resin is 90% by mass or less, a decrease in the rigidity of the molded product can be suppressed.
  • the rigidity is, for example, bending rigidity.
  • Cellulose fibers impart rigidity to the molded product.
  • Cellulose fibers can be obtained by treating one or more cellulose-containing raw materials selected from woods, pulps, papers, plant stems / leaves and plant shells with a pulverizer. Specifically, after the cellulose-containing raw material is subjected to rough pulverization using a cutter such as a shredder, if necessary, after being processed by an impact pulverizer or an extruder, or after being dried. Cellulose fibers can be obtained by stirring using a medium pulverizer.
  • the average fiber length of the cellulose fibers is in the range of 0.001 mm to 0.1 mm.
  • the average fiber length is 0.001 mm or more, the rigidity of the molded product can be improved.
  • the average fiber length is 0.1 mm or less, a decrease in dispersibility of cellulose fibers can be suppressed.
  • the average fiber length of a cellulose fiber means the particle size (50% cumulative particle size: d50) in the integrated value 50% in the particle size distribution calculated
  • the content of the cellulose fiber is in the range of 5% by mass to 30% by mass with respect to the total mass of the resin composition.
  • the rigidity of a molded product can be improved because content of a cellulose fiber is 5 mass% or more.
  • content of the cellulose fiber is 30% by mass or less, it is possible to suppress a decrease in impact resistance of the molded product.
  • the dispersant has a function of uniformly dispersing the hydrophobic thermoplastic resin and the hydrophilic cellulose fiber. If it has such a function, a dispersing agent will not be specifically limited.
  • the dispersant is a maleic anhydride modified polyolefin.
  • maleic anhydride-modified polyolefin examples include “Yumex series” manufactured by Sanyo Chemical Industries, Ltd., “PRIEX series” and “SCONA series” manufactured by BYK.
  • the maleic anhydride-modified polyolefin has a hydrophobic polyolefin segment (main skeleton) and a hydrophilic maleic anhydride segment (functional group).
  • the polyolefin segment has an affinity for a thermoplastic resin (particularly polyolefin), and the maleic anhydride segment has an affinity for a cellulose fiber. Therefore, the dispersibility of cellulose fibers can be improved by adding maleic anhydride-modified polyolefin to the thermoplastic resin.
  • the aggregation and the impact resistance of the molded product are improved by suppressing the aggregation due to the interaction between the cellulose fibers in the thermoplastic resin by the maleic anhydride-modified polyolefin.
  • the weight average molecular weight of the maleic anhydride-modified polyolefin is preferably 45000 or less, more preferably 20000 or less. Thereby, the dispersibility of the cellulose fiber can be further improved.
  • the lower limit of the weight average molecular weight of the maleic anhydride-modified polyolefin is 5000.
  • the weight average molecular weight of the maleic anhydride-modified polyolefin is a relative value in terms of polystyrene obtained by gel permeation chromatography (GPC).
  • the content of the dispersant is in the range of 1% by mass to 10% by mass with respect to the total mass of the resin composition.
  • the content of the dispersant is 1% by mass or more, the compatibility between the thermoplastic resin and the cellulose fiber can be improved, and the rigidity of the molded product can be improved.
  • the content of the dispersant is 10% by mass or less, a decrease in the rigidity of the molded product can be suppressed.
  • the elastomer imparts impact resistance to the molded product.
  • the elastomer is roughly classified into a thermosetting elastomer and a thermoplastic elastomer, and is preferably a thermoplastic elastomer.
  • Thermoplastic elastomer is an elastomer that has the property of softening when heated to show fluidity and returning to rubber when cooled.
  • specific examples of thermoplastic elastomers include styrene thermoplastic elastomer (TPS), olefin thermoplastic elastomer (TPO), vinyl chloride thermoplastic elastomer, urethane thermoplastic elastomer (TPU), and ester thermoplastic elastomer (TPC).
  • TPS styrene thermoplastic elastomer
  • TPO olefin thermoplastic elastomer
  • vinyl chloride thermoplastic elastomer vinyl chloride thermoplastic elastomer
  • TPU urethane thermoplastic elastomer
  • TPC ester thermoplastic elastomer
  • Amide-based thermoplastic elastomer (TPA) and butadiene-based thermoplastic elastomer are examples of thermoplastic elastomer.
  • thermoplastic elastomers styrene-based thermoplastic elastomers are preferable because they have excellent low-temperature properties.
  • the styrenic thermoplastic elastomer is a block copolymer having a styrene component and a butadiene component. Since this styrenic thermoplastic elastomer is excellent in compatibility with the thermoplastic resin, it is effective in improving the impact resistance of the molded product.
  • hydrogenated styrene thermoplastic elastomers are more preferable.
  • a hydrogenated styrenic thermoplastic elastomer is a polymer obtained by hydrogenating a block copolymer composed of styrene and butadiene.
  • Preferable examples of the hydrogenated styrene-based thermoplastic elastomer include “Tuff Tech H Series” and “Tuff Tech P Series” manufactured by Asahi Kasei Corporation. These elastomers exhibit rubber elasticity in a wide temperature range.
  • thermoplastic resin is brittle at low temperatures
  • the impact resistance of the molded product can be reduced by lowering the embrittlement temperature of the thermoplastic resin. Can be suppressed. It is particularly effective for modifying polypropylene.
  • the elastomer content is in the range of 3% by mass to 15% by mass with respect to the total mass of the resin composition.
  • the elastomer content is 3% by mass or more, the impact resistance of the molded product can be improved.
  • the elastomer content is 15% by mass or less, a decrease in the rigidity of the molded product can be suppressed.
  • the resin composition can be produced by a dry method as follows. That is, a thermoplastic resin, cellulose fiber, a dispersant and an elastomer are put into a kneading extruder such as a biaxial kneading extruder. The thermoplastic resin is melted in the kneading extruder, cellulose fibers are dispersed in the melted thermoplastic resin by the dispersant, and the elastomer is also dispersed.
  • the cellulose fibers are subjected to a shearing action in the kneading extruder to promote the defibration or dispersion of the agglomerates, and the cellulose fibers are more uniformly dispersed in the thermoplastic resin.
  • the melt-kneaded product extruded from the kneading extruder is, for example, cooled with water to form pellets.
  • the size of the pellet is not particularly limited.
  • a resin composition pellet
  • a known molding method such as injection molding, extrusion molding or cast molding
  • various molded products can be produced. Since the resin composition contains a thermoplastic resin, cellulose fibers, a dispersant, and an elastomer, the obtained molded product has both rigidity and impact resistance.
  • the molded product is suitable as a part of a handy type home appliance, for example.
  • the resin composition according to this embodiment contains a thermoplastic resin, cellulose fibers, and a dispersant.
  • the dispersant includes a plurality of components having different weight average molecular weights.
  • a molded product can be obtained by using a molding method such as injection molding. This molded article combines good appearance, rigidity and impact resistance. The reason is estimated as follows.
  • the lower the molecular weight component of the dispersant the better the compatibility with the cellulose fiber, so that a good appearance can be imparted to the molded product.
  • the dispersant contains only a low molecular weight component, the rigidity and impact resistance of the molded product may be reduced.
  • the higher molecular weight component of the dispersant since the higher molecular weight component of the dispersant has better compatibility with the thermoplastic resin, the rigidity and impact resistance of the molded product can be maintained. On the other hand, if the dispersant only contains a high molecular weight component, the compatibility with the cellulose fiber is not sufficient, and the appearance of the molded product may be deteriorated.
  • the resin composition according to this embodiment contains a thermoplastic resin, cellulose fibers, and a dispersant.
  • the resin composition further contains an elastomer.
  • the form of the resin composition at room temperature is, for example, a spherical, cylindrical, or prismatic pellet.
  • a thermoplastic resin, a cellulose fiber, a dispersing agent, and an elastomer are demonstrated in order.
  • description may be abbreviate
  • thermoplastic resin of the present embodiment is the same as the thermoplastic resin of the first embodiment.
  • the average fiber length of the cellulose fibers is in the range of 0.01 mm or more and 0.1 mm or less.
  • the average fiber length is 0.01 mm or more, the rigidity of the molded product can be improved.
  • the average fiber length is 0.1 mm or less, a decrease in dispersibility of cellulose fibers can be suppressed.
  • the average fiber length of a cellulose fiber means the particle size (50% cumulative particle size: d50) in the integrated value 50% in the particle size distribution calculated
  • the dispersant includes a plurality of components having different weight average molecular weights.
  • Each of the plurality of components basically has a function of dispersing a hydrophobic thermoplastic resin and hydrophilic cellulose fibers. If it has such a function, a dispersing agent will not be specifically limited.
  • the weight average molecular weight is a relative value in terms of polystyrene obtained by gel permeation chromatography (GPC).
  • each molecule of a plurality of components included in the dispersant has one main skeleton and one or more functional groups bonded to the main skeleton.
  • the main skeleton is a portion having hydrophobicity, and is formed of, for example, polypropylene (PP) or polyethylene (PE).
  • the functional group is a portion having hydrophilicity, and is formed of, for example, a carboxylic anhydride such as maleic anhydride.
  • the weight average molecular weight increases as the main skeleton becomes longer, and the weight average molecular weight decreases as the main skeleton becomes shorter.
  • the lower the molecular weight component contained in the dispersant that is, the shorter the main skeleton
  • the dispersant contains only a low molecular weight component, the rigidity and impact resistance of the molded product may be reduced.
  • the higher the molecular weight component contained in the dispersant that is, the longer the main skeleton
  • the higher the molecular weight component contained in the dispersant that is, the longer the main skeleton
  • the higher the molecular weight component contained in the dispersant that is, the longer the main skeleton
  • the higher the molecular weight component contained in the dispersant that is, the longer the main skeleton
  • the higher the molecular weight component contained in the dispersant that is, the longer the main skeleton
  • a plurality of components having different weight average molecular weights are included in the dispersant.
  • the dispersant includes a component having a weight average molecular weight of 10,000 or less (hereinafter also referred to as “low molecular weight component”) and a component having a weight average molecular weight of 20000 or more (hereinafter also referred to as “high molecular weight component”).
  • low molecular weight component a component having a weight average molecular weight of 10,000 or less
  • high molecular weight component a component having a weight average molecular weight of 20000 or more
  • the appearance of the molded product can be further improved by the low molecular weight component.
  • the high molecular weight component can further improve the rigidity and impact resistance of the molded product.
  • the lower limit of the weight average molecular weight of a low molecular weight component is not specifically limited, For example, it is 3000.
  • the upper limit of the weight average molecular weight of a high molecular weight component is not specifically limited, For example, it is 80000.
  • the dispersant is maleic anhydride modified polyolefin.
  • each of the plurality of components contained in the dispersant is preferably a maleic anhydride-modified polyolefin.
  • the mass ratio of the low molecular weight component to the high molecular weight component is in the range of 0.25 or more and 4 or less.
  • the appearance of the molded product can be further improved.
  • the impact resistance of the molded product can be further improved.
  • the elastomer of this embodiment is the same as the elastomer of the first embodiment.
  • the resin composition can be produced by a dry method as follows. That is, a thermoplastic resin, cellulose fiber, and a dispersant are put into a kneading extruder such as a biaxial kneading extruder. Add elastomer as needed. The thermoplastic resin is melted in the kneading extruder, and the cellulose fibers are dispersed in the melted thermoplastic resin by the dispersant.
  • the cellulose fibers are subjected to a shearing action in the kneading extruder to promote the defibration or dispersion of the agglomerates, and the cellulose fibers are more uniformly dispersed in the thermoplastic resin.
  • the melt-kneaded product extruded from the kneading extruder is, for example, cooled with water to form pellets.
  • the size of the pellet is not particularly limited.
  • a resin composition pellet
  • a known molding method such as injection molding, extrusion molding or cast molding
  • various molded products can be produced. Since the resin composition contains a thermoplastic resin, cellulose fibers, and a dispersant, the obtained molded product has good appearance, rigidity, and impact resistance.
  • the molded product is suitable as a part of a handy type home appliance, for example.
  • the resin composition according to the first aspect contains a thermoplastic resin, cellulose fibers, a dispersant, and an elastomer.
  • a molded product having both rigidity and impact resistance can be obtained.
  • the average fiber length of the cellulose fibers is in the range of 0.001 mm to 0.1 mm.
  • the rigidity of the molded product can be improved. Furthermore, the fall of the dispersibility of a cellulose fiber can be suppressed.
  • the resin composition according to the third aspect contains a thermoplastic resin, cellulose fibers, and a dispersant.
  • the dispersant includes a plurality of components having different weight average molecular weights.
  • a molded product having a good appearance, rigidity and impact resistance can be obtained.
  • the average fiber length of the cellulose fibers is in the range of 0.01 mm or more and 0.1 mm or less.
  • the rigidity of the molded product can be improved. Furthermore, the fall of the dispersibility of a cellulose fiber can be suppressed.
  • the dispersant in the resin composition according to the fifth aspect, in the third or fourth aspect, includes a component having a weight average molecular weight of 10,000 or less and a component having a weight average molecular weight of 20,000 or more.
  • the appearance of the molded product can be further improved by the low molecular weight component.
  • the impact resistance of the molded product can be further improved by the high molecular weight component.
  • thermoplastic resin in any one of the first to fifth aspects, is a polyolefin.
  • polyolefins such as polypropylene (PP) and polyethylene (PE) have a low specific gravity
  • a resin composition capable of forming a lightweight and high-rigidity molded article can be easily obtained by compounding with cellulose fibers. be able to.
  • the dispersant is a maleic anhydride-modified polyolefin.
  • the dispersibility of the cellulose fiber can be improved.
  • the maleic anhydride-modified polyolefin has a weight average molecular weight of 45,000 or less.
  • the dispersibility of the cellulose fiber can be further improved.
  • the resin composition according to the ninth aspect further contains an elastomer in any one of the third to eighth aspects.
  • the impact resistance can be further improved.
  • the elastomer is a block copolymer having a styrene component and a butadiene component.
  • This aspect is effective in improving the impact resistance of the molded product.
  • Example 1-1 The following thermoplastic resin, cellulose fiber, dispersant and elastomer were weighed so as to have the ratio (mass%) shown in Table 1 and dry blended. Next, the mixture was melt-kneaded and dispersed with a twin-screw kneading extruder (manufactured by Technobell, model: KZW15TW) at a kneading temperature of 200 ° C. and a discharge rate of 2 kg / hour, and then cooled with water to produce pellets.
  • a twin-screw kneading extruder manufactured by Technobell, model: KZW15TW
  • Thermoplastic resin BC03B (Nippon Polypro Co., Ltd., polypropylene)
  • Cellulose fiber NBKP Celgar (Mitsubishi Paper Co., Ltd., cotton-like softwood pulp, average fiber length 0.05 mm)
  • Dispersant Umex 1001 (manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 45000)
  • Elastomer Tuftec H1062 (manufactured by Asahi Kasei Corporation).
  • Example 1-2 Except for weighing to the ratio shown in Table 1, pellets made of the resin composition were produced in the same manner as in Example 1-1.
  • Example 1-3 Except having changed into the thermoplastic resin and dispersing agent which are shown below, the pellet which consists of a resin composition was manufactured like Example 1-1.
  • Thermoplastic resin BC03C (Nippon Polypro Co., Ltd., polypropylene) Dispersant: Umex 100TS (manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 9000).
  • Example 1-4 Except for weighing to the ratio shown in Table 1, pellets made of the resin composition were produced in the same manner as in Example 1-3.
  • Example 1-5 Pellets made of the resin composition were produced in the same manner as in Example 1-1 except that the following thermoplastic resins, dispersants, and elastomers were used.
  • Thermoplastic resin BC03C (Nippon Polypro Co., Ltd., polypropylene) Dispersant: PRIEX 25097 (BYK, weight average molecular weight 20000) Elastomer: Tuftec P2000 (Asahi Kasei Corporation).
  • Example 1-6 Except for weighing to the ratio shown in Table 1, pellets made of the resin composition were produced in the same manner as in Example 1-5.
  • Example 1-1 Pellets were produced by a twin-screw kneading extruder in the same manner as in Example 1-1 using only the following thermoplastic resins without using cellulose fibers, a dispersant and an elastomer.
  • Thermoplastic resin BC03C (manufactured by Nippon Polypro Co., Ltd., polypropylene).
  • Example 1-2 The pellets made of the resin composition were changed in the same manner as in Example 1-1 except that the thermoplastic resin shown below was changed and the dispersant and the elastomer were not used and weighed to the ratio shown in Table 1. Manufactured.
  • Thermoplastic resin BC03C (manufactured by Nippon Polypro Co., Ltd., polypropylene).
  • Example 1-3 Pellets made of the resin composition were produced in the same manner as in Example 1-1, except that the thermoplastic resin shown below was changed and the elastomer was not used and weighed so as to have the ratio shown in Table 1.
  • Thermoplastic resin BC03C (manufactured by Nippon Polypro Co., Ltd., polypropylene).
  • Example 1-4 A pellet made of the resin composition was produced in the same manner as in Example 1-1, except that the thermoplastic resin shown below was changed, and the dispersant was not used, and was weighed so as to have the ratio shown in Table 1. .
  • Thermoplastic resin BC03C (manufactured by Nippon Polypro Co., Ltd., polypropylene).
  • the flexural modulus was measured as follows. First, test pieces defined in ISO 178 were prepared using the pellets of the examples and comparative examples. Next, each test piece was subjected to a bending test defined in JIS K 7171. Table 1 shows the measurement results of the flexural modulus.
  • a test piece having a size of 70 mm ⁇ 70 mm ⁇ 2 mmt was prepared using the pellets of each Example and Comparative Example, and held at room temperature of 23 ° C. for 3 hours. Thereafter, a weight of 250 g was dropped from the predetermined height onto the test piece. This operation was performed while changing the height until the test piece was broken. The maximum height at which the test piece was not broken was measured, and the impact resistance was evaluated according to the following criteria. The evaluation results are shown in Table 1.
  • S The maximum height exceeds 160 cm and the impact resistance is extremely high.
  • A The maximum height exceeds 100 cm and is 160 cm or less, and the impact resistance is high.
  • B The maximum height is 60 cm or more and 100 cm or less. Impact resistance is slightly low
  • C The maximum height is less than 60 cm, and impact resistance is low.
  • Example 2-1 The following thermoplastic resin, cellulose fiber, dispersant A (low molecular weight component) and dispersant B (high molecular weight component) were weighed so as to have the ratio (mass%) shown in Table 2 and dry blended. Next, the mixture was melt-kneaded and dispersed with a twin-screw kneading extruder (manufactured by Technobell, model: KZW15TW) at a kneading temperature of 200 ° C. and a discharge rate of 2 kg / hour, and then cooled with water to produce pellets.
  • a twin-screw kneading extruder manufactured by Technobell, model: KZW15TW
  • Thermoplastic resin BC03B (Nippon Polypro Co., Ltd., polypropylene)
  • Cellulose fiber NBKP Celgar (Mitsubishi Paper Co., Ltd., cotton-like softwood pulp, average fiber length 0.05 mm)
  • Dispersant A low molecular weight component: Umex 100TS (manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 9000)
  • Dispersant B high molecular weight component
  • Umex 1001 manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 45000).
  • Example 2-2 Except for weighing to the ratio shown in Table 2, pellets made of the resin composition were produced in the same manner as in Example 2-1.
  • Example 2-3 Except for weighing to the ratio shown in Table 2, pellets made of the resin composition were produced in the same manner as in Example 2-1.
  • Example 2-4 Resin composition was changed in the same manner as in Example 2-1, except that the thermoplastic resin and dispersant B (high molecular weight component) shown below were changed, an elastomer was added, and the proportions shown in Table 2 were measured. The pellet which consists of a thing was manufactured.
  • Thermoplastic resin BC03C (Nippon Polypro Co., Ltd., polypropylene) Dispersant B (high molecular weight component): PRIEX 25097 (BYK, weight average molecular weight 20000) Elastomer: Tuftec H1062 (manufactured by Asahi Kasei Corporation).
  • Example 2-5 Except for weighing to the ratio shown in Table 2, pellets made of the resin composition were produced in the same manner as in Example 2-4.
  • Example 2-6 Pellets made of the resin composition were produced in the same manner as in Example 2-4 except that the dispersant B (high molecular weight component) shown below was changed and weighed so as to have the ratio shown in Table 2.
  • Dispersant B (high molecular weight component): Umex 1001 (manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 45000).
  • Example 2-1 Pellets made of the resin composition were produced in the same manner as in Example 2-1, except that the dispersant B (high molecular weight component) was not used and weighed so as to have the ratio shown in Table 2.
  • Example 2-2 Pellets made of the resin composition were produced in the same manner as in Example 2-1, except that the dispersant A (low molecular weight component) was not used and weighed so as to have the ratio shown in Table 2.
  • Example 2-3 Pellets made of the resin composition were produced in the same manner as in Example 2-4, except that the dispersant B (high molecular weight component) was not used and weighed so as to have the ratio shown in Table 2.
  • Example 2-4 Pellets made of the resin composition were produced in the same manner as in Example 2-4, except that the dispersant A (low molecular weight component) was not used and weighed so as to have the ratio shown in Table 2.
  • test piece having a size of 10 mm ⁇ 10 mm ⁇ 2 mmt was prepared using the pellets of the examples and comparative examples. For each test piece, the number of aggregates having a major axis of 0.1 mm or more was counted, and the quality of the appearance was evaluated according to the following criteria. The evaluation results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This resin composition contains a thermoplastic resin, cellulose fibers, a dispersant, and an elastomer.

Description

樹脂組成物Resin composition
 本開示は、一般に樹脂組成物に関し、より詳細にはセルロース繊維を含有する樹脂組成物に関する。 The present disclosure relates generally to resin compositions, and more particularly to resin compositions containing cellulose fibers.
 特許文献1は、複合樹脂成型体を開示する。この複合樹脂成型体は、主剤樹脂、有機繊維状フィラー及び分散剤を含有する溶融混練物からなる。ここで、有機繊維状フィラーは、セルロースが含まれたセルロース類である。 Patent Document 1 discloses a composite resin molded body. This composite resin molding is composed of a melt-kneaded product containing a main resin, an organic fibrous filler, and a dispersant. Here, the organic fibrous filler is a cellulose containing cellulose.
特開2017-210595号公報JP 2017-210595 A
 特許文献1の複合樹脂成型体では、濃色化が抑制され、外観性に優れているものの、耐衝撃性については更なる改良の余地がある。 In the composite resin molding of Patent Document 1, although darkening is suppressed and the appearance is excellent, there is room for further improvement in impact resistance.
 本開示の目的は、剛性及び耐衝撃性を兼備する成形品を得ることができる樹脂組成物を提供することにある。 An object of the present disclosure is to provide a resin composition capable of obtaining a molded product having both rigidity and impact resistance.
 本開示の一態様に係る樹脂組成物は、熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーを含有する。 The resin composition according to one embodiment of the present disclosure contains a thermoplastic resin, cellulose fiber, a dispersant, and an elastomer.
 本開示の他の一態様に係る樹脂組成物は、熱可塑性樹脂と、セルロース繊維と、分散剤と、を含有する。前記分散剤が、重量平均分子量の異なる複数の成分を含む。 The resin composition according to another embodiment of the present disclosure contains a thermoplastic resin, cellulose fibers, and a dispersant. The dispersant includes a plurality of components having different weight average molecular weights.
 (1)第1実施形態
 (1.1)概要
 本実施形態に係る樹脂組成物は、熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーを含有する。この樹脂組成物を成形材料として、射出成形等の成形方法を使用することにより成形品が得られる。この成形品は、剛性及び耐衝撃性を兼備する。すなわち、分散剤によって熱可塑性樹脂中におけるセルロース繊維を均一に分散させることで、成形品に剛性を付与することができる。さらにエラストマーによって熱可塑性樹脂の脆化温度を低下させることで、成形品に耐衝撃性を付与することができる。
(1) 1st Embodiment (1.1) Outline | summary The resin composition which concerns on this embodiment contains a thermoplastic resin, a cellulose fiber, a dispersing agent, and an elastomer. Using this resin composition as a molding material, a molded product can be obtained by using a molding method such as injection molding. This molded product has both rigidity and impact resistance. That is, rigidity can be imparted to the molded product by uniformly dispersing the cellulose fibers in the thermoplastic resin with the dispersant. Furthermore, impact resistance can be imparted to the molded article by lowering the embrittlement temperature of the thermoplastic resin with the elastomer.
 このように、本実施形態に係る樹脂組成物によれば、剛性及び耐衝撃性を兼備する成形品を得ることができる。 Thus, according to the resin composition according to this embodiment, a molded product having both rigidity and impact resistance can be obtained.
 (1.2)詳細
 <樹脂組成物>
 本実施形態に係る樹脂組成物は、熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーを含有する。樹脂組成物の常温での形態は、例えば、球形、円柱形又は角柱形のペレットである。以下、熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーについて順に説明する。
(1.2) Details <Resin composition>
The resin composition according to the present embodiment contains a thermoplastic resin, cellulose fibers, a dispersant, and an elastomer. The form of the resin composition at room temperature is, for example, a spherical, cylindrical, or prismatic pellet. Hereinafter, a thermoplastic resin, a cellulose fiber, a dispersing agent, and an elastomer are demonstrated in order.
 ≪熱可塑性樹脂≫
 熱可塑性樹脂は、結晶性樹脂と非晶性樹脂とに分類されるが、特に限定されない。熱可塑性樹脂の具体例として、ポリオレフィン(環状ポリオレフィンも含む)、ABS樹脂、ポリ塩化ビニル、ポリスチレン、ポリエステル、ナイロン、ポリビニルエーテル、ポリビニルアルコール、ポリアミド、ポリカーボネート及びポリサルフォンが挙げられる。これらの中でも特にポリオレフィンが低比重である点で好ましい。すなわち、ポリプロピレン(PP)及びポリエチレン(PE)などのポリオレフィンは比重が小さいため、セルロース繊維との複合化で、軽量かつ高剛性の成形品を成形可能な樹脂組成物を容易に得ることができる。
≪Thermoplastic resin≫
The thermoplastic resin is classified into a crystalline resin and an amorphous resin, but is not particularly limited. Specific examples of the thermoplastic resin include polyolefin (including cyclic polyolefin), ABS resin, polyvinyl chloride, polystyrene, polyester, nylon, polyvinyl ether, polyvinyl alcohol, polyamide, polycarbonate, and polysulfone. Among these, polyolefin is particularly preferable because of its low specific gravity. That is, since polyolefins such as polypropylene (PP) and polyethylene (PE) have a low specific gravity, a resin composition capable of forming a lightweight and high-rigidity molded product can be easily obtained by complexing with cellulose fibers.
 好ましくは、熱可塑性樹脂の含有量は、樹脂組成物の全質量に対して60質量%以上90質量%以下の範囲内である。熱可塑性樹脂の含有量が60質量%以上であることで、成形品の軽量化を実現し得る。この場合、熱可塑性樹脂は、低比重素材であるポリオレフィンを含むことがより好ましい。熱可塑性樹脂の含有量が90質量%以下であることで、成形品の剛性の低下を抑制することができる。なお、剛性は、例えば曲げ剛性である。 Preferably, the content of the thermoplastic resin is in the range of 60% by mass to 90% by mass with respect to the total mass of the resin composition. When the content of the thermoplastic resin is 60% by mass or more, the weight of the molded product can be reduced. In this case, it is more preferable that the thermoplastic resin includes polyolefin which is a low specific gravity material. When the content of the thermoplastic resin is 90% by mass or less, a decrease in the rigidity of the molded product can be suppressed. The rigidity is, for example, bending rigidity.
 ≪セルロース繊維≫
 セルロース繊維は、成形品に剛性を付与する。セルロース繊維は、木材類、パルプ類、紙類、植物茎・葉類及び植物殻類から選ばれる1種又は2種以上のセルロース含有原料を粉砕機で処理して得ることができる。具体的には、セルロース含有原料を、必要により、シュレッダー等の裁断機を利用して粗粉砕を行ってから、衝撃式の粉砕機又は押出機による処理を行ったり、乾燥処理を行ったりした後、媒体式の粉砕機を用いて攪拌することで、セルロース繊維を得ることができる。
≪Cellulose fiber≫
Cellulose fibers impart rigidity to the molded product. Cellulose fibers can be obtained by treating one or more cellulose-containing raw materials selected from woods, pulps, papers, plant stems / leaves and plant shells with a pulverizer. Specifically, after the cellulose-containing raw material is subjected to rough pulverization using a cutter such as a shredder, if necessary, after being processed by an impact pulverizer or an extruder, or after being dried. Cellulose fibers can be obtained by stirring using a medium pulverizer.
 好ましくは、セルロース繊維の平均繊維長は、0.001mm以上0.1mm以下の範囲内である。平均繊維長が0.001mm以上であることで、成形品の剛性を向上させることができる。平均繊維長が0.1mm以下であることで、セルロース繊維の分散性の低下を抑制することができる。なお、セルロース繊維の平均繊維長は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径(50%累積粒径:d50)を意味する。 Preferably, the average fiber length of the cellulose fibers is in the range of 0.001 mm to 0.1 mm. When the average fiber length is 0.001 mm or more, the rigidity of the molded product can be improved. When the average fiber length is 0.1 mm or less, a decrease in dispersibility of cellulose fibers can be suppressed. In addition, the average fiber length of a cellulose fiber means the particle size (50% cumulative particle size: d50) in the integrated value 50% in the particle size distribution calculated | required by the laser diffraction / scattering method.
 好ましくは、セルロース繊維の含有量は、樹脂組成物の全質量に対して5質量%以上30質量%以下の範囲内である。セルロース繊維の含有量が5質量%以上であることで、成形品の剛性を向上させることができる。セルロース繊維の含有量が30質量%以下であることで、成形品の耐衝撃性の低下を抑制することができる。 Preferably, the content of the cellulose fiber is in the range of 5% by mass to 30% by mass with respect to the total mass of the resin composition. The rigidity of a molded product can be improved because content of a cellulose fiber is 5 mass% or more. When the content of the cellulose fiber is 30% by mass or less, it is possible to suppress a decrease in impact resistance of the molded product.
 ≪分散剤≫
 分散剤は、疎水性の熱可塑性樹脂と親水性のセルロース繊維とを均一に分散させる機能を有する。このような機能を有するものであれば、分散剤は、特に限定されない。好ましくは、分散剤は、無水マレイン酸変性ポリオレフィンである。
≪Dispersant≫
The dispersant has a function of uniformly dispersing the hydrophobic thermoplastic resin and the hydrophilic cellulose fiber. If it has such a function, a dispersing agent will not be specifically limited. Preferably, the dispersant is a maleic anhydride modified polyolefin.
 無水マレイン酸変性ポリオレフィンの好適例として、三洋化成工業株式会社製「ユーメックスシリーズ」及びBYK社製「PRIEXシリーズ」及び「SCONAシリーズ」が挙げられる。無水マレイン酸変性ポリオレフィンは、疎水性のポリオレフィンセグメント(主骨格)と、親水性の無水マレイン酸セグメント(官能基)と、を有する。ポリオレフィンセグメントは、熱可塑性樹脂(特にポリオレフィン)との親和性があり、無水マレイン酸セグメントは、セルロース繊維との親和性がある。したがって、無水マレイン酸変性ポリオレフィンを熱可塑性樹脂に添加することによって、セルロース繊維の分散性を向上させることができる。このように、熱可塑性樹脂中におけるセルロース繊維同士の相互作用による凝集が、無水マレイン酸変性ポリオレフィンによって抑制されることで、成形品の剛性及び耐衝撃性が向上する。 Preferred examples of the maleic anhydride-modified polyolefin include “Yumex series” manufactured by Sanyo Chemical Industries, Ltd., “PRIEX series” and “SCONA series” manufactured by BYK. The maleic anhydride-modified polyolefin has a hydrophobic polyolefin segment (main skeleton) and a hydrophilic maleic anhydride segment (functional group). The polyolefin segment has an affinity for a thermoplastic resin (particularly polyolefin), and the maleic anhydride segment has an affinity for a cellulose fiber. Therefore, the dispersibility of cellulose fibers can be improved by adding maleic anhydride-modified polyolefin to the thermoplastic resin. Thus, the aggregation and the impact resistance of the molded product are improved by suppressing the aggregation due to the interaction between the cellulose fibers in the thermoplastic resin by the maleic anhydride-modified polyolefin.
 無水マレイン酸変性ポリオレフィンの重量平均分子量が、好ましくは45000以下、より好ましくは20000以下である。このことにより、セルロース繊維の分散性を更に向上させることができる。特に限定されないが、無水マレイン酸変性ポリオレフィンの重量平均分子量の下限値は5000である。なお、無水マレイン酸変性ポリオレフィンの重量平均分子量は、ゲル浸透クロマトグラフ分析(GPC)により得られるポリスチレン換算の相対値である。 The weight average molecular weight of the maleic anhydride-modified polyolefin is preferably 45000 or less, more preferably 20000 or less. Thereby, the dispersibility of the cellulose fiber can be further improved. Although not particularly limited, the lower limit of the weight average molecular weight of the maleic anhydride-modified polyolefin is 5000. The weight average molecular weight of the maleic anhydride-modified polyolefin is a relative value in terms of polystyrene obtained by gel permeation chromatography (GPC).
 好ましくは、分散剤の含有量は、樹脂組成物の全質量に対して1質量%以上10質量%以下の範囲内である。分散剤の含有量が1質量%以上であることで、熱可塑性樹脂とセルロース繊維との相容性を向上させることができ、成形品の剛性を向上させることができる。分散剤の含有量が10質量%以下であることで、成形品の剛性の低下を抑制することができる。 Preferably, the content of the dispersant is in the range of 1% by mass to 10% by mass with respect to the total mass of the resin composition. When the content of the dispersant is 1% by mass or more, the compatibility between the thermoplastic resin and the cellulose fiber can be improved, and the rigidity of the molded product can be improved. When the content of the dispersant is 10% by mass or less, a decrease in the rigidity of the molded product can be suppressed.
 ≪エラストマー≫
 エラストマーは、成形品に耐衝撃性を付与する。エラストマーは、熱硬化性エラストマーと熱可塑性エラストマーとに大別されるが、好ましくは熱可塑性エラストマーである。
≪Elastomer≫
The elastomer imparts impact resistance to the molded product. The elastomer is roughly classified into a thermosetting elastomer and a thermoplastic elastomer, and is preferably a thermoplastic elastomer.
 熱可塑性エラストマーは、加熱すると軟化して流動性を示し、冷却するとゴム状に戻る性質を持つエラストマーである。熱可塑性エラストマーの具体例として、スチレン系熱可塑性エラストマー(TPS)、オレフィン系熱可塑性エラストマー(TPO)、塩化ビニル系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー(TPU)、エステル系熱可塑性エラストマー(TPC)、アミド系熱可塑性エラストマー(TPA)及びブタジエン系熱可塑性エラストマーが挙げられる。 Thermoplastic elastomer is an elastomer that has the property of softening when heated to show fluidity and returning to rubber when cooled. Specific examples of thermoplastic elastomers include styrene thermoplastic elastomer (TPS), olefin thermoplastic elastomer (TPO), vinyl chloride thermoplastic elastomer, urethane thermoplastic elastomer (TPU), and ester thermoplastic elastomer (TPC). Amide-based thermoplastic elastomer (TPA) and butadiene-based thermoplastic elastomer.
 熱可塑性エラストマーの中でも、低温物性に優れている点で、スチレン系熱可塑性エラストマーが好ましい。スチレン系熱可塑性エラストマーは、スチレン成分及びブタジエン成分を有するブロックコポリマーである。このスチレン系熱可塑性エラストマーは、熱可塑性樹脂との相容性に優れているので、成形品の耐衝撃性の改良に効果がある。 Among the thermoplastic elastomers, styrene-based thermoplastic elastomers are preferable because they have excellent low-temperature properties. The styrenic thermoplastic elastomer is a block copolymer having a styrene component and a butadiene component. Since this styrenic thermoplastic elastomer is excellent in compatibility with the thermoplastic resin, it is effective in improving the impact resistance of the molded product.
 さらにスチレン系熱可塑性エラストマーの中でも、水添スチレン系熱可塑性エラストマーがより好ましい。水添スチレン系熱可塑性エラストマーは、スチレン及びブタジエンからなるブロックコポリマーを水素添加したポリマーである。この水添スチレン系熱可塑性エラストマーの好適例として、旭化成株式会社製「タフテックHシリーズ」及び「タフテックPシリーズ」が挙げられる。これらのエラストマーは、幅広い温度領域でゴム弾性を示す。したがって、このエラストマーが樹脂組成物に含有されていると、仮に熱可塑性樹脂が低温で脆いものであったとしても、その熱可塑性樹脂の脆化温度を低下させることで、成形品の耐衝撃性の低下を抑制することができる。特にポリプロピレンの改質に有効である。 Furthermore, among styrene thermoplastic elastomers, hydrogenated styrene thermoplastic elastomers are more preferable. A hydrogenated styrenic thermoplastic elastomer is a polymer obtained by hydrogenating a block copolymer composed of styrene and butadiene. Preferable examples of the hydrogenated styrene-based thermoplastic elastomer include “Tuff Tech H Series” and “Tuff Tech P Series” manufactured by Asahi Kasei Corporation. These elastomers exhibit rubber elasticity in a wide temperature range. Therefore, if this elastomer is contained in the resin composition, even if the thermoplastic resin is brittle at low temperatures, the impact resistance of the molded product can be reduced by lowering the embrittlement temperature of the thermoplastic resin. Can be suppressed. It is particularly effective for modifying polypropylene.
 好ましくは、エラストマーの含有量は、樹脂組成物の全質量に対して3質量%以上15質量%以下の範囲内である。エラストマーの含有量が3質量%以上であることで、成形品の耐衝撃性を向上させることができる。エラストマーの含有量が15質量%以下であることで、成形品の剛性の低下を抑制することができる。 Preferably, the elastomer content is in the range of 3% by mass to 15% by mass with respect to the total mass of the resin composition. When the elastomer content is 3% by mass or more, the impact resistance of the molded product can be improved. When the elastomer content is 15% by mass or less, a decrease in the rigidity of the molded product can be suppressed.
 <樹脂組成物の製造方法>
 樹脂組成物(ペレット)は、次のように乾式法により製造することができる。すなわち、熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーを2軸混練押出機等の混練押出機内に投入する。混練押出機内で熱可塑性樹脂が溶融し、溶融した熱可塑性樹脂内に分散剤によってセルロース繊維が分散し、エラストマーも分散する。さらに混練押出機内でセルロース繊維が剪断作用を受けて凝集塊の解繊又は分散が促進され、セルロース繊維が熱可塑性樹脂中に更に均一に分散される。混練押出機から押し出された溶融混練物は、例えば水冷され、ペレットとなる。ペレットの寸法は特に限定されない。
<Method for producing resin composition>
The resin composition (pellet) can be produced by a dry method as follows. That is, a thermoplastic resin, cellulose fiber, a dispersant and an elastomer are put into a kneading extruder such as a biaxial kneading extruder. The thermoplastic resin is melted in the kneading extruder, cellulose fibers are dispersed in the melted thermoplastic resin by the dispersant, and the elastomer is also dispersed. Furthermore, the cellulose fibers are subjected to a shearing action in the kneading extruder to promote the defibration or dispersion of the agglomerates, and the cellulose fibers are more uniformly dispersed in the thermoplastic resin. The melt-kneaded product extruded from the kneading extruder is, for example, cooled with water to form pellets. The size of the pellet is not particularly limited.
 <成形品の製造方法>
 樹脂組成物(ペレット)を成形材料として、射出成形、押出成形及び注型成形等の公知の成形方法を使用することにより、各種の成形品を製造することができる。樹脂組成物は、熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーを含有しているので、得られた成形品は、剛性及び耐衝撃性を兼備している。成形品は、例えばハンディタイプの家電製品の部品などとして好適である。
<Method for producing molded product>
By using a resin composition (pellet) as a molding material and using a known molding method such as injection molding, extrusion molding or cast molding, various molded products can be produced. Since the resin composition contains a thermoplastic resin, cellulose fibers, a dispersant, and an elastomer, the obtained molded product has both rigidity and impact resistance. The molded product is suitable as a part of a handy type home appliance, for example.
 (2)第2実施形態
 (2.1)概要
 本実施形態に係る樹脂組成物は、熱可塑性樹脂と、セルロース繊維と、分散剤と、を含有する。分散剤は、重量平均分子量の異なる複数の成分を含む。この樹脂組成物を成形材料として、射出成形等の成形方法を使用することにより成形品が得られる。この成形品は、良好な外観、剛性及び耐衝撃性を兼備する。その理由は、以下のとおりであると推定される。
(2) Second Embodiment (2.1) Overview The resin composition according to this embodiment contains a thermoplastic resin, cellulose fibers, and a dispersant. The dispersant includes a plurality of components having different weight average molecular weights. Using this resin composition as a molding material, a molded product can be obtained by using a molding method such as injection molding. This molded article combines good appearance, rigidity and impact resistance. The reason is estimated as follows.
 すなわち、分散剤の低分子量成分ほどセルロース繊維との相容性が良好であるため、成形品に良好な外観を付与することができる。その反面、分散剤が低分子量成分を含むだけでは、成形品の剛性及び耐衝撃性が低下するおそれがある。 That is, the lower the molecular weight component of the dispersant, the better the compatibility with the cellulose fiber, so that a good appearance can be imparted to the molded product. On the other hand, if the dispersant contains only a low molecular weight component, the rigidity and impact resistance of the molded product may be reduced.
 一方、分散剤の高分子量成分ほど熱可塑性樹脂との相容性が良好であるため、成形品の剛性及び耐衝撃性を維持することができる。その反面、分散剤が高分子量成分を含むだけでは、セルロース繊維との相容性が充分ではないために成形品の外観が悪化するおそれがある。 On the other hand, since the higher molecular weight component of the dispersant has better compatibility with the thermoplastic resin, the rigidity and impact resistance of the molded product can be maintained. On the other hand, if the dispersant only contains a high molecular weight component, the compatibility with the cellulose fiber is not sufficient, and the appearance of the molded product may be deteriorated.
 そこで、分散剤に、重量平均分子量の異なる複数の成分を含ませるようにしている。このようにすることで、分散剤中の低分子量成分及び高分子量成分の各々の短所を相殺しつつ、相互の長所を併存させることができる。 Therefore, a plurality of components having different weight average molecular weights are included in the dispersant. By doing in this way, the mutual advantage can be made to coexist, offsetting each disadvantage of the low molecular weight component and the high molecular weight component in the dispersant.
 このように、本実施形態に係る樹脂組成物によれば、良好な外観、剛性及び耐衝撃性を兼備する成形品を得ることができる。 Thus, according to the resin composition according to the present embodiment, a molded product having a good appearance, rigidity and impact resistance can be obtained.
 (2.2)詳細
 <樹脂組成物>
 本実施形態に係る樹脂組成物は、熱可塑性樹脂と、セルロース繊維と、分散剤と、を含有する。好ましくは、樹脂組成物は、エラストマーを更に含有する。樹脂組成物の常温での形態は、例えば、球形、円柱形又は角柱形のペレットである。以下、熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーについて順に説明する。なお、これらの成分について、第1実施形態と共通する事項については、説明を省略する場合がある。
(2.2) Details <Resin composition>
The resin composition according to this embodiment contains a thermoplastic resin, cellulose fibers, and a dispersant. Preferably, the resin composition further contains an elastomer. The form of the resin composition at room temperature is, for example, a spherical, cylindrical, or prismatic pellet. Hereinafter, a thermoplastic resin, a cellulose fiber, a dispersing agent, and an elastomer are demonstrated in order. In addition, about these components, description may be abbreviate | omitted about the matter which is common in 1st Embodiment.
 ≪熱可塑性樹脂≫
 本実施形態の熱可塑性樹脂は、第1実施形態の熱可塑性樹脂と同様である。
≪Thermoplastic resin≫
The thermoplastic resin of the present embodiment is the same as the thermoplastic resin of the first embodiment.
 ≪セルロース繊維≫
 好ましくは、セルロース繊維の平均繊維長は、0.01mm以上0.1mm以下の範囲内である。平均繊維長が0.01mm以上であることで、成形品の剛性を向上させることができる。平均繊維長が0.1mm以下であることで、セルロース繊維の分散性の低下を抑制することができる。なお、セルロース繊維の平均繊維長は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径(50%累積粒径:d50)を意味する。
≪Cellulose fiber≫
Preferably, the average fiber length of the cellulose fibers is in the range of 0.01 mm or more and 0.1 mm or less. When the average fiber length is 0.01 mm or more, the rigidity of the molded product can be improved. When the average fiber length is 0.1 mm or less, a decrease in dispersibility of cellulose fibers can be suppressed. In addition, the average fiber length of a cellulose fiber means the particle size (50% cumulative particle size: d50) in the integrated value 50% in the particle size distribution calculated | required by the laser diffraction / scattering method.
 なお、セルロース繊維について、平均繊維長以外の説明は、第1実施形態と同様である。 In addition, about cellulose fiber, description other than average fiber length is the same as that of 1st Embodiment.
 ≪分散剤≫
 分散剤は、重量平均分子量の異なる複数の成分を含む。複数の成分の各々は、基本的には、疎水性の熱可塑性樹脂と親水性のセルロース繊維とを分散させる機能を有する。このような機能を有するものであれば、分散剤は、特に限定されない。なお、重量平均分子量は、ゲル浸透クロマトグラフ分析(GPC)により得られるポリスチレン換算の相対値である。
≪Dispersant≫
The dispersant includes a plurality of components having different weight average molecular weights. Each of the plurality of components basically has a function of dispersing a hydrophobic thermoplastic resin and hydrophilic cellulose fibers. If it has such a function, a dispersing agent will not be specifically limited. The weight average molecular weight is a relative value in terms of polystyrene obtained by gel permeation chromatography (GPC).
 例えば、分散剤に含まれる複数の成分の各々の分子は、1つの主骨格と、この主骨格に結合する1つ以上の官能基と、を有する。主骨格は、疎水性を有する部分であり、例えば、ポリプロピレン(PP)又はポリエチレン(PE)で形成されている。官能基は、親水性を有する部分であり、例えば、無水マレイン酸等の無水カルボン酸で形成されている。この場合、主骨格が長くなるほど重量平均分子量は大きくなり、主骨格が短くなるほど重量平均分子量は小さくなる。 For example, each molecule of a plurality of components included in the dispersant has one main skeleton and one or more functional groups bonded to the main skeleton. The main skeleton is a portion having hydrophobicity, and is formed of, for example, polypropylene (PP) or polyethylene (PE). The functional group is a portion having hydrophilicity, and is formed of, for example, a carboxylic anhydride such as maleic anhydride. In this case, the weight average molecular weight increases as the main skeleton becomes longer, and the weight average molecular weight decreases as the main skeleton becomes shorter.
 ここで、分散剤に含まれる低分子量成分ほど(つまり主骨格が短いほど)セルロース繊維との相容性が良好であるため、成形品に良好な外観を付与することができる。その反面、分散剤が低分子量成分を含むだけでは、成形品の剛性及び耐衝撃性が低下するおそれがある。 Here, the lower the molecular weight component contained in the dispersant (that is, the shorter the main skeleton), the better the compatibility with the cellulose fiber, so that a good appearance can be imparted to the molded product. On the other hand, if the dispersant contains only a low molecular weight component, the rigidity and impact resistance of the molded product may be reduced.
 一方、分散剤に含まれる高分子量成分ほど(つまり主骨格が長いほど)熱可塑性樹脂との相容性が良好であるため、成形品の剛性及び耐衝撃性を維持することができる。その反面、高分子量成分は、セルロース繊維との相容性が低分子量成分ほど良好ではないため、分散剤が高分子量成分を含むだけでは、セルロース繊維の分散状態が悪く、視認できる程度の凝集物が発生して、成形品の外観が悪化するおそれがある。成形品の外観は、凝集物が少ないほど、また凝集物が小さいほど、良好である。凝集物は、主としてセルロース繊維が凝集して形成されるダマ(粒状のかたまり)のことである。 On the other hand, since the higher the molecular weight component contained in the dispersant (that is, the longer the main skeleton), the better the compatibility with the thermoplastic resin, the rigidity and impact resistance of the molded product can be maintained. On the other hand, the high molecular weight component is not as good as the low molecular weight component in compatibility with the cellulose fiber, so that the dispersion state of the cellulose fiber is poor and the visible aggregate is only if the dispersant contains the high molecular weight component. May occur, and the appearance of the molded product may be deteriorated. The appearance of the molded product is better as the aggregates are smaller and the aggregates are smaller. Aggregates are lumps (granular mass) formed mainly by agglomeration of cellulose fibers.
 そこで、本実施形態では、分散剤に、重量平均分子量の異なる複数の成分を含ませるようにしている。このようにすることで、分散剤中の低分子量成分及び高分子量成分の各々の短所を相殺しつつ、相互の長所を併存させることができる。 Therefore, in this embodiment, a plurality of components having different weight average molecular weights are included in the dispersant. By doing in this way, the mutual advantage can be made to coexist, offsetting each disadvantage of the low molecular weight component and the high molecular weight component in the dispersant.
 このように、本実施形態に係る樹脂組成物によれば、良好な外観、剛性及び耐衝撃性を兼備する成形品を得ることができる。 Thus, according to the resin composition according to the present embodiment, a molded product having a good appearance, rigidity and impact resistance can be obtained.
 好ましくは、分散剤は、重量平均分子量10000以下の成分(以下「低分子量成分」ともいう)と、重量平均分子量20000以上の成分(以下「高分子量成分」ともいう)と、を含む。低分子量成分により、成形品の外観を一層良好にすることができる。高分子量成分により、成形品の剛性及び耐衝撃性を更に向上させることができる。低分子量成分の重量平均分子量の下限値は、特に限定されないが、例えば3000である。高分子量成分の重量平均分子量の上限値は、特に限定されないが、例えば80000である。 Preferably, the dispersant includes a component having a weight average molecular weight of 10,000 or less (hereinafter also referred to as “low molecular weight component”) and a component having a weight average molecular weight of 20000 or more (hereinafter also referred to as “high molecular weight component”). The appearance of the molded product can be further improved by the low molecular weight component. The high molecular weight component can further improve the rigidity and impact resistance of the molded product. Although the lower limit of the weight average molecular weight of a low molecular weight component is not specifically limited, For example, it is 3000. Although the upper limit of the weight average molecular weight of a high molecular weight component is not specifically limited, For example, it is 80000.
 好ましくは、分散剤は、無水マレイン酸変性ポリオレフィンである。言い換えると、分散剤に含まれる複数の成分の各々が、無水マレイン酸変性ポリオレフィンであることが好ましい。 Preferably, the dispersant is maleic anhydride modified polyolefin. In other words, each of the plurality of components contained in the dispersant is preferably a maleic anhydride-modified polyolefin.
 好ましくは、低分子量成分と高分子量成分の質量比(低分子量成分/高分子量成分)は、0.25以上4以下の範囲内である。この範囲内であることにより、成形品の外観を一層良好にすることができる。また成形品の耐衝撃性を更に向上させることができる。 Preferably, the mass ratio of the low molecular weight component to the high molecular weight component (low molecular weight component / high molecular weight component) is in the range of 0.25 or more and 4 or less. By being within this range, the appearance of the molded product can be further improved. Further, the impact resistance of the molded product can be further improved.
 なお、無水マレイン酸変性ポリオレフィンの好適例、これに関連する説明、及び分散剤の含有量に関する説明については、第1実施形態と同様である。 In addition, about the suitable example of maleic anhydride modified polyolefin, the description relevant to this, and the description regarding content of a dispersing agent are the same as that of 1st Embodiment.
 ≪エラストマー≫
 本実施形態のエラストマーは、第1実施形態のエラストマーと同様である。
≪Elastomer≫
The elastomer of this embodiment is the same as the elastomer of the first embodiment.
 <樹脂組成物の製造方法>
 樹脂組成物(ペレット)は、次のように乾式法により製造することができる。すなわち、熱可塑性樹脂、セルロース繊維及び分散剤を2軸混練押出機等の混練押出機内に投入する。必要に応じてエラストマーも投入する。混練押出機内で熱可塑性樹脂が溶融し、溶融した熱可塑性樹脂内に分散剤によってセルロース繊維が分散する。さらに混練押出機内でセルロース繊維が剪断作用を受けて凝集塊の解繊又は分散が促進され、セルロース繊維が熱可塑性樹脂中に更に均一に分散される。混練押出機から押し出された溶融混練物は、例えば水冷され、ペレットとなる。ペレットの寸法は特に限定されない。
<Method for producing resin composition>
The resin composition (pellet) can be produced by a dry method as follows. That is, a thermoplastic resin, cellulose fiber, and a dispersant are put into a kneading extruder such as a biaxial kneading extruder. Add elastomer as needed. The thermoplastic resin is melted in the kneading extruder, and the cellulose fibers are dispersed in the melted thermoplastic resin by the dispersant. Furthermore, the cellulose fibers are subjected to a shearing action in the kneading extruder to promote the defibration or dispersion of the agglomerates, and the cellulose fibers are more uniformly dispersed in the thermoplastic resin. The melt-kneaded product extruded from the kneading extruder is, for example, cooled with water to form pellets. The size of the pellet is not particularly limited.
 <成形品の製造方法>
 樹脂組成物(ペレット)を成形材料として、射出成形、押出成形及び注型成形等の公知の成形方法を使用することにより、各種の成形品を製造することができる。樹脂組成物は、熱可塑性樹脂、セルロース繊維及び分散剤を含有しているので、得られた成形品は、良好な外観、剛性及び耐衝撃性を兼備している。成形品は、例えばハンディタイプの家電製品の部品などとして好適である。
<Method for producing molded product>
By using a resin composition (pellet) as a molding material and using a known molding method such as injection molding, extrusion molding or cast molding, various molded products can be produced. Since the resin composition contains a thermoplastic resin, cellulose fibers, and a dispersant, the obtained molded product has good appearance, rigidity, and impact resistance. The molded product is suitable as a part of a handy type home appliance, for example.
 (3)まとめ
 以上説明したように、第1の態様に係る樹脂組成物は、熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーを含有する。
(3) Summary As described above, the resin composition according to the first aspect contains a thermoplastic resin, cellulose fibers, a dispersant, and an elastomer.
 この態様によれば、剛性及び耐衝撃性を兼備する成形品を得ることができる。 According to this aspect, a molded product having both rigidity and impact resistance can be obtained.
 第2の態様に係る樹脂組成物では、第1の態様において、前記セルロース繊維の平均繊維長が、0.001mm以上0.1mm以下の範囲内である。 In the resin composition according to the second aspect, in the first aspect, the average fiber length of the cellulose fibers is in the range of 0.001 mm to 0.1 mm.
 この態様によれば、成形品の剛性を向上させることができる。さらにセルロース繊維の分散性の低下を抑制することができる。 According to this aspect, the rigidity of the molded product can be improved. Furthermore, the fall of the dispersibility of a cellulose fiber can be suppressed.
 第3の態様に係る樹脂組成物は、熱可塑性樹脂と、セルロース繊維と、分散剤と、を含有する。前記分散剤が、重量平均分子量の異なる複数の成分を含む。 The resin composition according to the third aspect contains a thermoplastic resin, cellulose fibers, and a dispersant. The dispersant includes a plurality of components having different weight average molecular weights.
 この態様によれば、良好な外観、剛性及び耐衝撃性を兼備する成形品を得ることができる。 According to this aspect, a molded product having a good appearance, rigidity and impact resistance can be obtained.
 第4の態様に係る樹脂組成物では、第3の態様において、前記セルロース繊維の平均繊維長が、0.01mm以上0.1mm以下の範囲内である。 In the resin composition according to the fourth aspect, in the third aspect, the average fiber length of the cellulose fibers is in the range of 0.01 mm or more and 0.1 mm or less.
 この態様によれば、成形品の剛性を向上させることができる。さらにセルロース繊維の分散性の低下を抑制することができる。 According to this aspect, the rigidity of the molded product can be improved. Furthermore, the fall of the dispersibility of a cellulose fiber can be suppressed.
 第5の態様に係る樹脂組成物では、第3又は4の態様において、前記分散剤が、重量平均分子量10000以下の成分と、重量平均分子量20000以上の成分と、を含む。 In the resin composition according to the fifth aspect, in the third or fourth aspect, the dispersant includes a component having a weight average molecular weight of 10,000 or less and a component having a weight average molecular weight of 20,000 or more.
 この態様によれば、低分子量成分により、成形品の外観を一層良好にすることができる。高分子量成分により、成形品の耐衝撃性を更に向上させることができる。 According to this aspect, the appearance of the molded product can be further improved by the low molecular weight component. The impact resistance of the molded product can be further improved by the high molecular weight component.
 第6の態様に係る樹脂組成物では、第1~5のいずれかの態様において、前記熱可塑性樹脂が、ポリオレフィンである。 In the resin composition according to the sixth aspect, in any one of the first to fifth aspects, the thermoplastic resin is a polyolefin.
 この態様によれば、ポリプロピレン(PP)及びポリエチレン(PE)などのポリオレフィンは比重が小さいため、セルロース繊維との複合化で、軽量かつ高剛性の成形品を成形可能な樹脂組成物を容易に得ることができる。 According to this aspect, since polyolefins such as polypropylene (PP) and polyethylene (PE) have a low specific gravity, a resin composition capable of forming a lightweight and high-rigidity molded article can be easily obtained by compounding with cellulose fibers. be able to.
 第7の態様に係る樹脂組成物では、第1~6のいずれかの態様において、前記分散剤が、無水マレイン酸変性ポリオレフィンである。 In the resin composition according to the seventh aspect, in any one of the first to sixth aspects, the dispersant is a maleic anhydride-modified polyolefin.
 この態様によれば、セルロース繊維の分散性を向上させることができる。 According to this aspect, the dispersibility of the cellulose fiber can be improved.
 第8の態様に係る樹脂組成物では、第7の態様において、前記無水マレイン酸変性ポリオレフィンの重量平均分子量が、45000以下である。 In the resin composition according to the eighth aspect, in the seventh aspect, the maleic anhydride-modified polyolefin has a weight average molecular weight of 45,000 or less.
 この態様によれば、セルロース繊維の分散性を更に向上させることができる。 According to this aspect, the dispersibility of the cellulose fiber can be further improved.
 第9の態様に係る樹脂組成物は、第3~8のいずれかの態様において、エラストマーを更に含有する。 The resin composition according to the ninth aspect further contains an elastomer in any one of the third to eighth aspects.
 この態様によれば、耐衝撃性を更に向上させることができる。 According to this aspect, the impact resistance can be further improved.
 第10の態様に係る樹脂組成物では、第1、2又は9の態様において、前記エラストマーが、スチレン成分及びブタジエン成分を有するブロックコポリマーである。 In the resin composition according to the tenth aspect, in the first, second or ninth aspect, the elastomer is a block copolymer having a styrene component and a butadiene component.
 この態様によれば、成形品の耐衝撃性の改良に効果がある。 This aspect is effective in improving the impact resistance of the molded product.
 以下、本開示を実施例によって具体的に説明するが、本開示は、以下の実施例に限定されない。 Hereinafter, the present disclosure will be specifically described by way of examples. However, the present disclosure is not limited to the following examples.
 (実施例1-1)
 以下に示す熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーを、表1に示す比率(質量%)となるように秤量し、ドライブレンドした。次に、2軸混練押出機(株式会社テクノベル製、型式:KZW15TW)にて、混練温度を200℃、排出量を2kg/時間として溶融混練分散した後、水冷して、ペレットを製造した。
Example 1-1
The following thermoplastic resin, cellulose fiber, dispersant and elastomer were weighed so as to have the ratio (mass%) shown in Table 1 and dry blended. Next, the mixture was melt-kneaded and dispersed with a twin-screw kneading extruder (manufactured by Technobell, model: KZW15TW) at a kneading temperature of 200 ° C. and a discharge rate of 2 kg / hour, and then cooled with water to produce pellets.
 熱可塑性樹脂:BC03B(日本ポリプロ株式会社製、ポリプロピレン)
 セルロース繊維:NBKP Celgar(三菱製紙株式会社製、綿状針葉樹パルプ、平均繊維長0.05mm)
 分散剤:ユーメックス1001(三洋化成工業株式会社製、重量平均分子量45000)
 エラストマー:タフテックH1062(旭化成株式会社製)。
Thermoplastic resin: BC03B (Nippon Polypro Co., Ltd., polypropylene)
Cellulose fiber: NBKP Celgar (Mitsubishi Paper Co., Ltd., cotton-like softwood pulp, average fiber length 0.05 mm)
Dispersant: Umex 1001 (manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 45000)
Elastomer: Tuftec H1062 (manufactured by Asahi Kasei Corporation).
 (実施例1-2)
 表1に示す比率となるように秤量した以外は、実施例1-1と同様にして、樹脂組成物からなるペレットを製造した。
Example 1-2
Except for weighing to the ratio shown in Table 1, pellets made of the resin composition were produced in the same manner as in Example 1-1.
 (実施例1-3)
 以下に示す熱可塑性樹脂及び分散剤に変更した以外は、実施例1-1と同様にして、樹脂組成物からなるペレットを製造した。
(Example 1-3)
Except having changed into the thermoplastic resin and dispersing agent which are shown below, the pellet which consists of a resin composition was manufactured like Example 1-1.
 熱可塑性樹脂:BC03C(日本ポリプロ株式会社製、ポリプロピレン)
 分散剤:ユーメックス100TS(三洋化成工業株式会社製、重量平均分子量9000)。
Thermoplastic resin: BC03C (Nippon Polypro Co., Ltd., polypropylene)
Dispersant: Umex 100TS (manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 9000).
 (実施例1-4)
 表1に示す比率となるように秤量した以外は、実施例1-3と同様にして、樹脂組成物からなるペレットを製造した。
(Example 1-4)
Except for weighing to the ratio shown in Table 1, pellets made of the resin composition were produced in the same manner as in Example 1-3.
 (実施例1-5)
 以下に示す熱可塑性樹脂、分散剤及びエラストマーに変更した以外は、実施例1-1と同様にして、樹脂組成物からなるペレットを製造した。
(Example 1-5)
Pellets made of the resin composition were produced in the same manner as in Example 1-1 except that the following thermoplastic resins, dispersants, and elastomers were used.
 熱可塑性樹脂:BC03C(日本ポリプロ株式会社製、ポリプロピレン)
 分散剤:PRIEX 25097(BYK社製、重量平均分子量20000)
 エラストマー:タフテックP2000(旭化成株式会社製)。
Thermoplastic resin: BC03C (Nippon Polypro Co., Ltd., polypropylene)
Dispersant: PRIEX 25097 (BYK, weight average molecular weight 20000)
Elastomer: Tuftec P2000 (Asahi Kasei Corporation).
 (実施例1-6)
 表1に示す比率となるように秤量した以外は、実施例1-5と同様にして、樹脂組成物からなるペレットを製造した。
(Example 1-6)
Except for weighing to the ratio shown in Table 1, pellets made of the resin composition were produced in the same manner as in Example 1-5.
 (比較例1-1)
 セルロース繊維、分散剤及びエラストマーを使用せず、以下の熱可塑性樹脂のみを使用して、実施例1-1と同様に2軸混練押出機により、ペレットを製造した。
(Comparative Example 1-1)
Pellets were produced by a twin-screw kneading extruder in the same manner as in Example 1-1 using only the following thermoplastic resins without using cellulose fibers, a dispersant and an elastomer.
 熱可塑性樹脂:BC03C(日本ポリプロ株式会社製、ポリプロピレン)。 Thermoplastic resin: BC03C (manufactured by Nippon Polypro Co., Ltd., polypropylene).
 (比較例1-2)
 以下に示す熱可塑性樹脂に変更し、分散剤及びエラストマーを使用せず、表1に示す比率となるように秤量した以外は、実施例1-1と同様にして、樹脂組成物からなるペレットを製造した。
(Comparative Example 1-2)
The pellets made of the resin composition were changed in the same manner as in Example 1-1 except that the thermoplastic resin shown below was changed and the dispersant and the elastomer were not used and weighed to the ratio shown in Table 1. Manufactured.
 熱可塑性樹脂:BC03C(日本ポリプロ株式会社製、ポリプロピレン)。 Thermoplastic resin: BC03C (manufactured by Nippon Polypro Co., Ltd., polypropylene).
 (比較例1-3)
 以下に示す熱可塑性樹脂に変更し、エラストマーを使用せず、表1に示す比率となるように秤量した以外は、実施例1-1と同様にして、樹脂組成物からなるペレットを製造した。
(Comparative Example 1-3)
Pellets made of the resin composition were produced in the same manner as in Example 1-1, except that the thermoplastic resin shown below was changed and the elastomer was not used and weighed so as to have the ratio shown in Table 1.
 熱可塑性樹脂:BC03C(日本ポリプロ株式会社製、ポリプロピレン)。 Thermoplastic resin: BC03C (manufactured by Nippon Polypro Co., Ltd., polypropylene).
 (比較例1-4)
 以下に示す熱可塑性樹脂に変更し、分散剤を使用せず、表1に示す比率となるように秤量した以外は、実施例1-1と同様にして、樹脂組成物からなるペレットを製造した。
(Comparative Example 1-4)
A pellet made of the resin composition was produced in the same manner as in Example 1-1, except that the thermoplastic resin shown below was changed, and the dispersant was not used, and was weighed so as to have the ratio shown in Table 1. .
 熱可塑性樹脂:BC03C(日本ポリプロ株式会社製、ポリプロピレン)。 Thermoplastic resin: BC03C (manufactured by Nippon Polypro Co., Ltd., polypropylene).
 (曲げ弾性率)
 剛性を評価するために、次のようにして曲げ弾性率を測定した。まず各実施例及び比較例のペレットを用いてISO178に規定の試験片を作製した。次に各試験片について、JIS K 7171に規定の曲げ試験を行った。曲げ弾性率の測定結果を表1に示す。
(Flexural modulus)
In order to evaluate the rigidity, the flexural modulus was measured as follows. First, test pieces defined in ISO 178 were prepared using the pellets of the examples and comparative examples. Next, each test piece was subjected to a bending test defined in JIS K 7171. Table 1 shows the measurement results of the flexural modulus.
 (耐衝撃性)
 各実施例及び比較例のペレットを用いて70mm×70mm×2mmtの大きさの試験片を作製し、室温23℃で3時間保持した。その後、所定の高さから250gの錘を試験片に落下させた。この操作を、試験片が破壊されるまで高さを変えて行った。試験片が破壊されない最大高さを測定し、以下の基準で耐衝撃性を評価した。評価結果を表1に示す。
(Impact resistance)
A test piece having a size of 70 mm × 70 mm × 2 mmt was prepared using the pellets of each Example and Comparative Example, and held at room temperature of 23 ° C. for 3 hours. Thereafter, a weight of 250 g was dropped from the predetermined height onto the test piece. This operation was performed while changing the height until the test piece was broken. The maximum height at which the test piece was not broken was measured, and the impact resistance was evaluated according to the following criteria. The evaluation results are shown in Table 1.
 S:最大高さが160cmを超え、耐衝撃性が極めて高い
 A:最大高さが100cmを超え、160cm以下であり、耐衝撃性が高い
 B:最大高さが60cm以上100cm以下であり、耐衝撃性がやや低い
 C:最大高さが60cm未満であり、耐衝撃性が低い。
S: The maximum height exceeds 160 cm and the impact resistance is extremely high. A: The maximum height exceeds 100 cm and is 160 cm or less, and the impact resistance is high. B: The maximum height is 60 cm or more and 100 cm or less. Impact resistance is slightly low C: The maximum height is less than 60 cm, and impact resistance is low.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例2-1)
 以下に示す熱可塑性樹脂、セルロース繊維、分散剤A(低分子量成分)及び分散剤B(高分子量成分)を、表2に示す比率(質量%)となるように秤量し、ドライブレンドした。次に、2軸混練押出機(株式会社テクノベル製、型式:KZW15TW)にて、混練温度を200℃、排出量を2kg/時間として溶融混練分散した後、水冷して、ペレットを製造した。
Example 2-1
The following thermoplastic resin, cellulose fiber, dispersant A (low molecular weight component) and dispersant B (high molecular weight component) were weighed so as to have the ratio (mass%) shown in Table 2 and dry blended. Next, the mixture was melt-kneaded and dispersed with a twin-screw kneading extruder (manufactured by Technobell, model: KZW15TW) at a kneading temperature of 200 ° C. and a discharge rate of 2 kg / hour, and then cooled with water to produce pellets.
 熱可塑性樹脂:BC03B(日本ポリプロ株式会社製、ポリプロピレン)
 セルロース繊維:NBKP Celgar(三菱製紙株式会社製、綿状針葉樹パルプ、平均繊維長0.05mm)
 分散剤A(低分子量成分):ユーメックス100TS(三洋化成工業株式会社製、重量平均分子量9000)
 分散剤B(高分子量成分):ユーメックス1001(三洋化成工業株式会社製、重量平均分子量45000)。
Thermoplastic resin: BC03B (Nippon Polypro Co., Ltd., polypropylene)
Cellulose fiber: NBKP Celgar (Mitsubishi Paper Co., Ltd., cotton-like softwood pulp, average fiber length 0.05 mm)
Dispersant A (low molecular weight component): Umex 100TS (manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 9000)
Dispersant B (high molecular weight component): Umex 1001 (manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 45000).
 (実施例2-2)
 表2に示す比率となるように秤量した以外は、実施例2-1と同様にして、樹脂組成物からなるペレットを製造した。
(Example 2-2)
Except for weighing to the ratio shown in Table 2, pellets made of the resin composition were produced in the same manner as in Example 2-1.
 (実施例2-3)
 表2に示す比率となるように秤量した以外は、実施例2-1と同様にして、樹脂組成物からなるペレットを製造した。
(Example 2-3)
Except for weighing to the ratio shown in Table 2, pellets made of the resin composition were produced in the same manner as in Example 2-1.
 (実施例2-4)
 以下に示す熱可塑性樹脂及び分散剤B(高分子量成分)に変更し、エラストマーを追加し、表2に示す比率となるように秤量した以外は、実施例2-1と同様にして、樹脂組成物からなるペレットを製造した。
(Example 2-4)
Resin composition was changed in the same manner as in Example 2-1, except that the thermoplastic resin and dispersant B (high molecular weight component) shown below were changed, an elastomer was added, and the proportions shown in Table 2 were measured. The pellet which consists of a thing was manufactured.
 熱可塑性樹脂:BC03C(日本ポリプロ株式会社製、ポリプロピレン)
 分散剤B(高分子量成分):PRIEX 25097(BYK社製、重量平均分子量20000)
 エラストマー:タフテックH1062(旭化成株式会社製)。
Thermoplastic resin: BC03C (Nippon Polypro Co., Ltd., polypropylene)
Dispersant B (high molecular weight component): PRIEX 25097 (BYK, weight average molecular weight 20000)
Elastomer: Tuftec H1062 (manufactured by Asahi Kasei Corporation).
 (実施例2-5)
 表2に示す比率となるように秤量した以外は、実施例2-4と同様にして、樹脂組成物からなるペレットを製造した。
(Example 2-5)
Except for weighing to the ratio shown in Table 2, pellets made of the resin composition were produced in the same manner as in Example 2-4.
 (実施例2-6)
 以下に示す分散剤B(高分子量成分)に変更し、表2に示す比率となるように秤量した以外は、実施例2-4と同様にして、樹脂組成物からなるペレットを製造した。
(Example 2-6)
Pellets made of the resin composition were produced in the same manner as in Example 2-4 except that the dispersant B (high molecular weight component) shown below was changed and weighed so as to have the ratio shown in Table 2.
 分散剤B(高分子量成分):ユーメックス1001(三洋化成工業株式会社製、重量平均分子量45000)。 Dispersant B (high molecular weight component): Umex 1001 (manufactured by Sanyo Chemical Industries, Ltd., weight average molecular weight 45000).
 (比較例2-1)
 分散剤B(高分子量成分)を使用せず、表2に示す比率となるように秤量した以外は、実施例2-1と同様にして、樹脂組成物からなるペレットを製造した。
(Comparative Example 2-1)
Pellets made of the resin composition were produced in the same manner as in Example 2-1, except that the dispersant B (high molecular weight component) was not used and weighed so as to have the ratio shown in Table 2.
 (比較例2-2)
 分散剤A(低分子量成分)を使用せず、表2に示す比率となるように秤量した以外は、実施例2-1と同様にして、樹脂組成物からなるペレットを製造した。
(Comparative Example 2-2)
Pellets made of the resin composition were produced in the same manner as in Example 2-1, except that the dispersant A (low molecular weight component) was not used and weighed so as to have the ratio shown in Table 2.
 (比較例2-3)
 分散剤B(高分子量成分)を使用せず、表2に示す比率となるように秤量した以外は、実施例2-4と同様にして、樹脂組成物からなるペレットを製造した。
(Comparative Example 2-3)
Pellets made of the resin composition were produced in the same manner as in Example 2-4, except that the dispersant B (high molecular weight component) was not used and weighed so as to have the ratio shown in Table 2.
 (比較例2-4)
 分散剤A(低分子量成分)を使用せず、表2に示す比率となるように秤量した以外は、実施例2-4と同様にして、樹脂組成物からなるペレットを製造した。
(Comparative Example 2-4)
Pellets made of the resin composition were produced in the same manner as in Example 2-4, except that the dispersant A (low molecular weight component) was not used and weighed so as to have the ratio shown in Table 2.
 (外観)
 各実施例及び比較例のペレットを用いて10mm×10mm×2mmtの大きさの試験片を作製した。各試験片について、長径0.1mm以上の凝集物の個数を数え、以下の基準で外観の良否を評価した。評価結果を表2に示す。
(appearance)
A test piece having a size of 10 mm × 10 mm × 2 mmt was prepared using the pellets of the examples and comparative examples. For each test piece, the number of aggregates having a major axis of 0.1 mm or more was counted, and the quality of the appearance was evaluated according to the following criteria. The evaluation results are shown in Table 2.
 A:凝集物が3個未満
 B:凝集物が3個以上20個未満
 C:凝集物が20個以上。
A: Less than 3 aggregates B: 3 or more and less than 20 aggregates C: 20 or more aggregates
 (曲げ弾性率)
 曲げ弾性率の試験方法は、上述のとおりである。測定結果を表2に示す。
(Flexural modulus)
The test method for the flexural modulus is as described above. The measurement results are shown in Table 2.
 (耐衝撃性)
 耐衝撃性の試験方法は、上述のとおりである。評価結果を表2に示す。
(Impact resistance)
The impact resistance test method is as described above. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (10)

  1.  熱可塑性樹脂、セルロース繊維、分散剤及びエラストマーを含有する、
     樹脂組成物。
    Containing a thermoplastic resin, cellulose fibers, a dispersant and an elastomer,
    Resin composition.
  2.  前記セルロース繊維の平均繊維長が、0.001mm以上0.1mm以下の範囲内である、
     請求項1に記載の樹脂組成物。
    The average fiber length of the cellulose fibers is in the range of 0.001 mm to 0.1 mm.
    The resin composition according to claim 1.
  3.  熱可塑性樹脂と、セルロース繊維と、分散剤と、を含有し、
     前記分散剤が、重量平均分子量の異なる複数の成分を含む、
     樹脂組成物。
    Containing a thermoplastic resin, cellulose fibers, and a dispersant;
    The dispersant includes a plurality of components having different weight average molecular weights.
    Resin composition.
  4.  前記セルロース繊維の平均繊維長が、0.01mm以上0.1mm以下の範囲内である、
     請求項3に記載の樹脂組成物。
    The average fiber length of the cellulose fibers is in the range of 0.01 mm or more and 0.1 mm or less.
    The resin composition according to claim 3.
  5.  前記分散剤が、重量平均分子量10000以下の成分と、重量平均分子量20000以上の成分と、を含む、
     請求項3又は4に記載の樹脂組成物。
    The dispersant includes a component having a weight average molecular weight of 10,000 or less and a component having a weight average molecular weight of 20,000 or more.
    The resin composition according to claim 3 or 4.
  6.  前記熱可塑性樹脂が、ポリオレフィンである、
     請求項1~5のいずれか1項に記載の樹脂組成物。
    The thermoplastic resin is a polyolefin;
    The resin composition according to any one of claims 1 to 5.
  7.  前記分散剤が、無水マレイン酸変性ポリオレフィンである、
     請求項1~6のいずれか1項に記載の樹脂組成物。
    The dispersant is a maleic anhydride modified polyolefin,
    The resin composition according to any one of claims 1 to 6.
  8.  前記無水マレイン酸変性ポリオレフィンの重量平均分子量が、45000以下である、
     請求項7に記載の樹脂組成物。
    The maleic anhydride-modified polyolefin has a weight average molecular weight of 45000 or less.
    The resin composition according to claim 7.
  9.  エラストマーを更に含有する、
     請求項3~8のいずれか1項に記載の樹脂組成物。
    Further containing an elastomer,
    The resin composition according to any one of claims 3 to 8.
  10.  前記エラストマーが、スチレン成分及びブタジエン成分を有するブロックコポリマーである、
     請求項1、2又は9に記載の樹脂組成物。
    The elastomer is a block copolymer having a styrene component and a butadiene component;
    The resin composition according to claim 1, 2 or 9.
PCT/JP2019/017404 2018-05-17 2019-04-24 Resin composition WO2019220895A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980032575.2A CN112119127B (en) 2018-05-17 2019-04-24 Resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-095648 2018-05-17
JP2018095648A JP7213459B2 (en) 2018-05-17 2018-05-17 resin composition
JP2018134472A JP2020012050A (en) 2018-07-17 2018-07-17 Resin composition
JP2018-134472 2018-07-17

Publications (1)

Publication Number Publication Date
WO2019220895A1 true WO2019220895A1 (en) 2019-11-21

Family

ID=68539814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017404 WO2019220895A1 (en) 2018-05-17 2019-04-24 Resin composition

Country Status (2)

Country Link
CN (1) CN112119127B (en)
WO (1) WO2019220895A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014546A1 (en) * 2022-07-15 2024-01-18 旭化成株式会社 Resin composition and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231237A (en) * 2010-04-28 2011-11-17 Daicel Polymer Ltd Polypropylene composition and method for producing the same
JP2012107212A (en) * 2010-10-19 2012-06-07 Furukawa Electric Co Ltd:The Flame-retardant resin composition and molded article using the same
JP2017137470A (en) * 2016-02-04 2017-08-10 花王株式会社 Resin composition
JP2018048261A (en) * 2016-09-21 2018-03-29 花王株式会社 Resin composition
WO2018123150A1 (en) * 2016-12-28 2018-07-05 旭化成株式会社 Cellulose-containing resin composition and cellulosic ingredient
WO2019026258A1 (en) * 2017-08-03 2019-02-07 花王株式会社 Resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000791A1 (en) * 2001-06-22 2003-01-03 Idemitsu Petrochemical Co., Ltd. Composite resin composition, resin foam, and process for producing the same
CN101754599B (en) * 2008-12-16 2013-03-20 金发科技股份有限公司 Application of injection molding wood plastic composite in producing electric appliance housing
EP2796497A4 (en) * 2011-12-22 2015-07-01 Toyota Boshoku Kk Thermoplastic resin composition, method for producing same, and molded body
CN103304948B (en) * 2012-06-26 2015-05-13 郑州大学 Maleic anhydride grafted polypropylene aqueous dispersion and preparation method and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231237A (en) * 2010-04-28 2011-11-17 Daicel Polymer Ltd Polypropylene composition and method for producing the same
JP2012107212A (en) * 2010-10-19 2012-06-07 Furukawa Electric Co Ltd:The Flame-retardant resin composition and molded article using the same
JP2017137470A (en) * 2016-02-04 2017-08-10 花王株式会社 Resin composition
JP2018048261A (en) * 2016-09-21 2018-03-29 花王株式会社 Resin composition
WO2018123150A1 (en) * 2016-12-28 2018-07-05 旭化成株式会社 Cellulose-containing resin composition and cellulosic ingredient
WO2019026258A1 (en) * 2017-08-03 2019-02-07 花王株式会社 Resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014546A1 (en) * 2022-07-15 2024-01-18 旭化成株式会社 Resin composition and method for producing same

Also Published As

Publication number Publication date
CN112119127B (en) 2022-09-16
CN112119127A (en) 2020-12-22

Similar Documents

Publication Publication Date Title
Bula et al. A novel functional silica/lignin hybrid material as a potential bio‐based polypropylene filler
CN103524878B (en) A kind of modified polypropylene composite material and its production and use
CN109196056A (en) Cellulose composite material comprising wood pulp
JP2020076082A (en) Resin composition
CN105199416A (en) Reinforced and strengthened polyolefin wood-plastic composite and preparation method thereof
Liu et al. Effect of fiber type and coupling treatment on properties of high-density polyethylene/natural fiber composites
CN102516639A (en) Modified polypropylene composite material and preparation method thereof
CN103509239A (en) Scratch-resistant polypropylene material and preparation method thereof
WO2005066245A1 (en) Process for producing resin composition and resin composition produced thereby
CN103436012B (en) Ultrahigh-molecular weight polyethylene modified nylon 66 and preparation method thereof
JP2018104702A (en) Resin composition
CN113563667A (en) Light-weight modified polypropylene composite material for compound filled bumper and preparation method thereof
Mubarak Tensile and impact properties of microcrystalline cellulose nanoclay polypropylene composites
JPWO2008047867A1 (en) Masterbatch and manufacturing method thereof
WO2019220895A1 (en) Resin composition
Lashgari et al. A Study on Some Properties of Polypropylene Based Nanocomposites Made Using Almond Shell Flour and Organoclay.
JP7213459B2 (en) resin composition
JP2020012050A (en) Resin composition
CN112480552A (en) Polypropylene composite material and preparation method thereof
US4732926A (en) Dry blendable polypropylene composition
CN103665570A (en) Ultra-low temperature toughened polypropylene composition
JP2007245517A (en) Resin mass and its manufacturing method
CN111704767A (en) High-rigidity high-toughness polypropylene composite material and preparation method thereof
CN107312304B (en) Two-dimensional reinforced polycarbonate composite material and preparation method thereof
CN113896971B (en) Polyethylene composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803831

Country of ref document: EP

Kind code of ref document: A1