WO2019220660A1 - Rotary electric machine and method for manufacturing same - Google Patents

Rotary electric machine and method for manufacturing same Download PDF

Info

Publication number
WO2019220660A1
WO2019220660A1 PCT/JP2018/038835 JP2018038835W WO2019220660A1 WO 2019220660 A1 WO2019220660 A1 WO 2019220660A1 JP 2018038835 W JP2018038835 W JP 2018038835W WO 2019220660 A1 WO2019220660 A1 WO 2019220660A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedge
divided
conductive metal
metal plate
wedges
Prior art date
Application number
PCT/JP2018/038835
Other languages
French (fr)
Japanese (ja)
Inventor
紀彦 葉名
米谷 晴之
秋吉 雅夫
洋平 大本
亮輔 安部
善秀 菊一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019511671A priority Critical patent/JP6522272B1/en
Publication of WO2019220660A1 publication Critical patent/WO2019220660A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices

Definitions

  • the present invention relates to a rotating electrical machine having a cylindrical rotor and a method for manufacturing the same, and, for example, relates to a rotor structure of a rotating electrical machine applied to a turbine generator.
  • the field winding is installed in a groove-like slot provided in the rotor core.
  • the slot includes a damper bar through which an eddy current induced by the magnetic flux from the armature winding flows, an insulator that insulates the damper bar from the field winding, and the slot contents
  • a wedge for preventing scattering is installed (for example, see Patent Document 1).
  • an insulator, a damper bar, and a wedge are installed on the outer peripheral side of the rotor core with respect to the field winding.
  • the wedge for preventing scattering has a function of conducting between the damper bars at the axial center of the rotor core and conducting between the damper bar and the holding ring at the axial end of the rotor core. Therefore, the wedge is made of a metal having high conductivity, for example, a BeCu alloy. Note that high conductivity means that it is easy to conduct electricity.
  • the wedge Since the wedge is made of a highly conductive metal, it was necessary to thicken the wedge in the radial direction in order to withstand the centrifugal force acting on the field windings, insulators, and damper bars. This increases the distance between the field winding and the armature winding, and a part of the magnetic flux generated by the field winding does not interlink with the armature winding, resulting in loss in the rotor core. Was getting bigger.
  • the wedge when the wedge is made of a high-strength non-magnetic material, such as stainless steel, the wedge can withstand the centrifugal force acting on the field winding, the insulator, and the damper bar without increasing the thickness in the radial direction. .
  • This shortens the distance between the field winding and the armature winding increases the amount of magnetic flux generated by the field winding to be linked to the armature winding, and causes a loss in the rotor core. Can be reduced.
  • the field current can be reduced and the efficiency is improved.
  • high-strength nonmagnetic materials such as stainless steel have low conductivity. Therefore, the eddy current from the damper bar hardly flows through the wedge at the axial center portion and both axial end portions of the rotor core, and there is a problem that heat generation at the wedge increases and eddy current loss increases.
  • the present invention has been made to solve such a problem, and an object of the present invention is to obtain a rotating electrical machine capable of improving efficiency by suppressing heat generation in a wedge due to eddy current and a manufacturing method thereof. .
  • a rotating electric machine includes an armature provided with armature windings, and a rotor arranged on the inner diameter side of the armature.
  • the rotor includes a rotor core having a plurality of slots extending in the radial direction and open in the radial direction and extending in the axial direction, field windings housed in the slots, and the slots.
  • a plurality of split wedges that are housed in an axial arrangement on the opening side of the rotor, and that hold the field winding fixedly in the slot, and retaining rings attached to both axial ends of the rotor core. Have.
  • the plurality of divided wedges include a composite wedge, and the composite wedge includes a main body portion that holds the field winding, and an electric current body that is held by the main body portion and through which an eddy current flows.
  • the current-carrying body is made of a highly conductive metal from the main body, heat generation in the composite wedge due to eddy current is suppressed. Since the main body is made of a nonmagnetic material having a strength higher than that of the current-carrying member, the thickness can be reduced to prevent the slot contents from scattering. Therefore, the position of the field winding in the slot approaches the armature winding, and the field current can be reduced, so that the efficiency can be improved.
  • FIG. 1 is a longitudinal sectional view showing a rotary electric machine according to Embodiment 1 of the present invention
  • FIG. 2 is a perspective view showing a rotor in the rotary electric machine according to Embodiment 1 of the present invention
  • a longitudinal cross-sectional view is a cross-sectional view showing a cross section including the axis of the rotation shaft.
  • the rotating electrical machine 100 includes a frame 1, a rotating shaft 7 rotatably supported by the frame 1, and a rotating shaft 7 fixed to the rotating shaft 7 so as to be rotatable inside the frame 1, an electromagnet,
  • the rotor 6 having the rotor core 8 and the armature core 4 which is held by the frame 1 and surrounds the rotor core 8 and is provided coaxially, and the armature core 4 is held by the rotor core.
  • an armature 3 having an armature winding 5 that generates an output current by interlinking the magnetic flux of 8.
  • the rotating shaft 7 is connected to a prime mover (not shown). Thereby, the rotational force of the prime mover is applied to the rotor core 8 via the rotary shaft 7.
  • a gas cooler 2 for cooling air or hydrogen refrigerant for suppressing heat generation in a field winding (not shown) mounted on the rotor core 8, the armature winding 5, etc. is provided inside the frame 1. Is provided.
  • the slots 10 are respectively opened from one end to the other end in the axial direction of the rotor core 8 with the groove direction as an axial direction, and open to the outer peripheral surface of the rotor core 8.
  • a plurality are provided in the circumferential direction.
  • the field winding is installed in the slot 10.
  • a wedge is installed in the slot 10 to prevent the slot contents such as field windings from popping out due to centrifugal force.
  • a structure (not shown) for coupling field windings installed in the slot 10 is installed at both axial ends of the rotor core 8.
  • Metal retaining rings 9 for suppressing deformation due to centrifugal force of the structure for coupling the field windings are provided at both axial ends of the rotor core 8.
  • the rotating electrical machine 100 configured in this way, the rotational force of the prime mover is applied to the rotor 6 through the rotating shaft 7. Thereby, a rotating magnetic field is applied to the armature winding 5, and an electromotive force is generated in the armature winding 5.
  • the rotating electrical machine 100 operates as a generator.
  • FIG. 3 is a cross-sectional view of the main part showing the periphery of the rotor slot in the rotating electrical machine of the comparative example
  • FIG. The transverse cross-sectional view is a cross-sectional view showing a cross section orthogonal to the axis of the rotation axis.
  • the field winding 11, the insulator 12, and the damper bar 13 are installed in each slot 10 in this order from the inner diameter side.
  • the U channel 14 is installed on the inner diameter side of the field winding 11 of each slot 10 with the opening directed radially outward, and an axial ventilation path 15 is configured.
  • a wedge is installed on the outer diameter side of the damper bar 13 of each slot 10 to prevent the field winding 11, the insulator 12 and the damper bar 13 from jumping out.
  • the wedges are a first divided wedge 16 installed at the center of the slot 10 in the axial direction, a second divided wedge 17 installed at both ends of the slot 10 in the axial direction, and a first divided wedge of the slot 10.
  • the first divided wedge 16, the second divided wedge 17, and the plurality of third divided wedges 18 are housed in a line in the axial direction on the opening side of each slot 10.
  • the radial ventilation path 20 penetrates the first divided wedge 16, the second divided wedge 17, the third divided wedge 18, the damper bar 13, the insulator 12, and the field winding 11 in the radial direction at a plurality of positions in the axial direction.
  • the axial direction air passage 15 and the outside communicate with each other.
  • the first split wedge 16 is in contact with the damper bar 13 that is separated and installed in the axial direction at the central portion in the axial direction, and the damper bars 13 are electrically short-circuited.
  • the second split wedge 17 is in contact with the damper bar 13 and the holding ring 9 and electrically shorts the damper bar 13 and the holding ring 9.
  • the eddy current flowing in the holding ring 9 flows from the holding ring 9 to the damper bar 13 through the second split wedge 17 installed in the other slot 10.
  • an eddy current path is formed in the rotor via the retaining ring 9, and heat generation due to the eddy current of the rotor including the first divided wedge 16 and the second divided wedge 17 is suppressed.
  • the first divided wedge 16 and the second divided wedge 17 are made of a highly conductive metal, for example, a BeCu alloy.
  • the conductivity required for the first divided wedge 16 and the second divided wedge 17 is 20% IACS according to the conductivity reference IACS (International Annealed Copper Standard).
  • the third divided wedge 18 since the third divided wedge 18 does not need conductivity, it is made of a high-strength nonmagnetic material such as stainless steel.
  • the material strength required for the third divided wedge 18 is defined by 0.2% proof stress and is 196 MPa or more. As a result, the third divided wedge 18 is suppressed from generating heat due to the magnetic flux from the armature winding 5.
  • FIG. 5 is a longitudinal sectional view of a main part showing the periphery of the slot of the rotor in the rotary electric machine according to Embodiment 1 of the present invention
  • FIG. FIG. 7 is a longitudinal sectional view showing the divided wedge
  • FIG. 7 is an end view of the first divided wedge of the rotor in the rotary electric machine according to Embodiment 1 of the present invention as viewed from the axial direction
  • FIG. 8 is an embodiment of the present invention.
  • FIG. 9 is a longitudinal sectional view showing a second divided wedge of the rotor in the rotating electrical machine according to FIG. 1, and FIG. FIG.
  • FIG. 10 is an end view of the second split wedge of the rotor in the rotary electric machine according to Embodiment 1 of the present invention as viewed from one end in the axial direction
  • FIG. 11 is Embodiment 1 of the present invention.
  • FIG. 12 is an exploded perspective view showing a first split wedge of the rotor in the rotary electric machine according to Embodiment 1 of the present invention
  • FIG. 13 is a rotor in the rotary electric machine according to Embodiment 1 of the present invention. It is a disassembled perspective view which shows the 2nd division
  • the rotor 6 includes a first divided wedge 30 that is installed in the center in the axial direction of the slot 10 instead of the first divided wedge 16, and the second divided wedge.
  • 35 is configured in the same manner as the rotor of the comparative example, except that 35 is installed at both axial ends of the slot 10 instead of the second divided wedge 17.
  • the wedge is divided into a first divided wedge 30, a second divided wedge 35, and a third divided wedge 18.
  • the first divided wedge 30 is a composite wedge including a first divided upper wedge 31, a first divided lower wedge 32, and a conductive metal plate 33.
  • the first divided lower wedge 32 is formed in a substantially rectangular parallelepiped shape in which a concave portion 32a having the groove direction as an axial direction is formed at the center of the upper surface.
  • the conductive metal plate 33 is formed in a rectangular flat plate shape, is disposed in the recess 32a, and folds the protruding portions from the first divided lower wedge 32 to both sides in the axial direction so that both end surfaces in the axial direction of the first divided lower wedge 32 are formed. Extending along the lower surface of the first divided lower wedge 32.
  • the mounting regions of the conductive metal plates 33 on both end surfaces in the axial direction of the first divided lower wedge 32 are formed in the recesses, and both end surfaces in the axial direction of the first divided lower wedge 32 and the conductive metal plates are formed. 33 is flush.
  • the mounting area of the conductive metal plate 33 on the lower surface of the first divided lower wedge 32 is formed in the recess, and the lower surface of the first divided lower wedge 32 and the conductive metal plate 33 are flush with each other.
  • segmentation upper wedge 31 has the convex part 31a which can be fitted with the recessed part 32a in the lower surface center part.
  • the convex portion 31 a is fitted into the concave portion 32 a, and the conductive metal plate 33 is sandwiched and held between the first divided upper wedge 31 and the first divided lower wedge 32.
  • the first divided upper wedge 31 and the first divided lower wedge 32 are integrated.
  • the first divided upper wedge 31 and the first divided lower wedge 32 have the same axial end surfaces.
  • the integrated first divided upper wedge 31 and the first divided lower wedge 32 serve as a main body portion
  • the conductive metal plate 33 serves as a current-carrying body.
  • the radial ventilation path 20 is formed in the first divided upper wedge 31, the first divided lower wedge 32, and the conductive metal plate 33.
  • the first divided upper wedge 31 and the first divided lower wedge 32 are made of a high-strength nonmagnetic material such as stainless steel.
  • the conductive metal plate 33 is made of a material having conductivity equal to or higher than that of the first divided wedge 16 and the second divided wedge 17 in the comparative example, for example, copper or a copper alloy.
  • the first divided upper wedge 31 and the first divided lower wedge 32 are made of a nonmagnetic material having a higher strength than the conductive metal plate 33.
  • the conductive metal plate 33 is made of a metal having higher conductivity than the first divided upper wedge 31 and the first divided lower wedge 32.
  • the second divided wedge 35 includes a second divided upper wedge 36, a second divided lower wedge 37, a first conductive metal plate 38 a, and a second conductive property. And a metal wedge 38b.
  • the second divided lower wedge 37 is formed in a substantially rectangular parallelepiped having an axial length longer than that of the second divided upper wedge 36, and a concave portion 37a having the groove direction in the axial direction is formed at the center of the upper surface.
  • the first conductive metal plate 38a is formed in a rectangular flat plate shape, and is disposed in the recess 37a.
  • the first conductive metal plate 38a is bent in the axial direction of the second divided lower wedge 37 by folding back the protruding portions from the second divided lower wedge 37 to both sides in the axial direction. It extends along both end surfaces and is arranged along the lower surface of the second divided lower wedge 37. At this time, the mounting regions of the first conductive metal plates 38a on both end faces in the axial direction of the second divided lower wedge 37 are formed in the recesses, and both the end faces in the axial direction of the second divided lower wedge 37 and the first end faces The conductive metal plate 38a is flush.
  • the mounting area of the first conductive metal plate 38a on the lower surface of the second divided lower wedge 37 is formed in the recess, and the lower surface of the second divided lower wedge 37 and the first conductive metal plate 38a are flush with each other. It has become.
  • the second divided upper wedge 36 has a convex portion 36a that can be fitted to the concave portion 37a at the center of the lower surface.
  • the second conductive metal plate 38b is formed in a rectangular flat plate shape and is disposed on the convex portion 36a.
  • the second conductive upper metal plate 38b is folded back from the second divided upper wedge 36 toward the one end side in the axial direction, so that the axis of the second divided upper wedge 36 is obtained. It arrange
  • the mounting region of the second conductive metal plate 38b on the one end surface in the axial direction of the second divided upper wedge 36 is formed in the concave portion, and the one end surface in the axial direction of the second divided upper wedge 36 and the second The conductive metal plate 38b is flush.
  • the second divided wedge 35 has the convex portion 36a fitted into the concave portion 37a, and the first conductive metal plate 38a and the second conductive metal plate 38b are divided into the second divided upper wedge 36 and the second divided lower wedge 37.
  • the second divided upper wedge 36 and the second divided lower wedge 37 are integrated with each other while being held between the two.
  • the second divided lower wedge 37 protrudes from the second divided upper wedge 36 to one axial end side, and the other axial end surfaces of the second divided upper wedge 36 and the second divided lower wedge 37 are flush with each other.
  • the integrated second divided upper wedge 36 and second divided lower wedge 37 serve as a main body portion, and the first conductive metal plate 38a and the second conductive metal plate 38b serve as a current-carrying body.
  • the radial ventilation path 20 is formed in the second divided upper wedge 36, the second divided lower wedge 37, the first conductive metal plate 38a, and the second conductive metal plate 38b.
  • the second divided upper wedge 36 and the second divided lower wedge 37 are made of a high-strength nonmagnetic material such as stainless steel.
  • the first conductive metal plate 38 a and the second conductive metal plate 38 b are made of the same material as the conductive metal plate 33.
  • the second divided upper wedge 36 and the second divided lower wedge 37 are made of a nonmagnetic material having higher strength than the first conductive metal plate 38a and the second conductive metal plate 38b.
  • the first conductive metal plate 38 a and the second conductive metal plate 38 b are made of a metal having higher conductivity than the second divided upper wedge 36 and the second divided lower wedge 37.
  • the two metal plates of the first conductive metal plate 38a and the second conductive metal plate 38b are used, one metal plate is used, and the second divided wedge 35 extends to one end side in the axial direction.
  • the protruding portion may be divided and folded up and down.
  • the second split wedge 35 installed at one end in the axial direction of the slot 10 has been described.
  • the second split wedge 35 has a second split lower wedge 37. It is installed so as to protrude from the second divided upper wedge 36 to the other axial end side.
  • the portion where the first divided wedge 30 is divided into the first divided upper wedge 31 and the first divided lower wedge 32 is a portion that becomes a compression load when the rotor 6 receives centrifugal force during rotation.
  • the first divided upper wedge 31 and the first divided lower wedge 32 are integrated using any one of shrink fitting, cold fitting, adhesion, welding, brazing, and stir welding.
  • the second divided wedge 35 is the same as the first divided wedge 30.
  • first divided wedge 30 and the second divided wedge 35 may be integrated by using any one of adhesion, brazing welding, brazing, and stir welding together with either shrink fitting or cold fitting.
  • adhesion, brazing welding, brazing, and stir welding may be maintained.
  • the damper bar 13 in which the protruding portion of the conductive metal plate 33 from the main body portion of the first split wedge 30 is separated in the axial direction at the central portion in the axial direction.
  • the damper bars 13 are electrically short-circuited.
  • the protruding portions of the first conductive metal plate 38a and the second conductive metal plate 38b from the main body of the second divided wedge 35 are in contact with the damper bar 13 and the holding ring 9, and the damper bar 13 and the holding ring 9 Are electrically short-circuited.
  • the first conductive metal plate 38a Since the upper surface of the projecting portion of the second divided lower wedge 37 from the second divided upper wedge 36 to the one end side in the axial direction is flush with the first conductive metal plate 38a, the first conductive metal plate 38a The inner peripheral surface of the holding ring 9 comes into surface contact, and electrical connection between the two is ensured reliably. Since one end surface in the axial direction of the second divided upper wedge 36 and the second conductive metal plate 38b are flush with each other, the second conductive metal plate 38b and the other axial end surface of the holding ring 9 are in surface contact. The electrical connection between the two is ensured. Further, the contact area between the first conductive metal plate 38a and the holding ring 9 of the second conductive metal plate 38b increases, and the contact resistance is reduced.
  • the first divided wedge 16 and the second divided wedge 17 are made of a high CuCu alloy or the like. It was made of a conductive material. However, it is difficult to achieve both high conductivity and high strength, and the thickness of the first divided wedge 16 and the second divided wedge 17 is increased to ensure the function of preventing the slot contents from scattering. As a result, the distance between the field winding 11 and the armature winding 5 increases, and the amount of magnetic flux generated from the field winding 11 intersecting the armature winding 5 decreases.
  • the first divided wedge 30 is a composite wedge including a first divided upper wedge 31, a first divided lower wedge 32, and a conductive metal plate 33.
  • the conductive metal plate 33 is made of a metal having higher conductivity than the first divided upper wedge 31 and the first divided lower wedge 32. Since the conductive metal plate 33 has a conductive function, the first divided upper wedge 31 and the first divided lower wedge 32 that hold the conductive metal plate 33 do not require high conductivity. The same applies to the second divided wedge 35. Therefore, the characteristics required for the first divided upper wedge 31, the first divided lower wedge 32, the second divided upper wedge 36, and the second divided lower wedge 37 can be specialized in strength.
  • the first divided upper wedge 31, the first divided lower wedge 32, the second divided upper wedge 36 and the second divided lower wedge 37 are replaced with the conductive metal plate 33, the first conductive metal plate 38a and the second conductive. It can be made of a material stronger than the metal plate 38b. Therefore, the first divided upper wedge 31, the first divided lower wedge 32, the second divided upper wedge 36 and the second divided lower wedge 37 are used as materials for the first divided wedge 16 and the second divided wedge 17.
  • a nonmagnetic material having a higher strength than the BeCu alloy, such as stainless steel, can be used. As a result, the thickness of the first divided wedge 30 and the second divided wedge 35 can be reduced.
  • the conductive metal plate 33, the first conductive metal plate 38a, and the second conductive metal plate 38b are divided into a first divided upper wedge 31, a first divided lower wedge 32, a second divided upper wedge 36, and a second divided lower plate. Since it is made of a conductive material higher than the wedge 37, such as copper or copper alloy, heat generation in the first divided wedge 30 and the second divided wedge 35 is suppressed, and eddy current loss can be reduced.
  • the first divided wedge 30 is housed in the central portion of the slot 10 in the axial direction, and the second divided wedges 35 are housed in both axial end portions of the slot 10. Therefore, an eddy current that is induced by the magnetic flux from the armature winding 5 and flows through the damper bar 13 installed on the other side in the axial direction is indicated by an arrow 19 in FIG. It flows through the conductive metal plate 33 to the damper bar 13 installed on one side in the axial direction. Further, the eddy current flowing through the damper bar 13 flows to the holding ring 9 through the first conductive metal plate 38a and the second conductive metal plate 38b of the second split wedge 35. The eddy current flowing in the holding ring 9 passes through the first conductive metal plate 38a and the second conductive metal plate 38b of the second split wedge 35 installed in the other slot 10 from the holding ring 9, and the damper bar. 13 flows.
  • the conduction between the damper bars 13 in the axially central portion is maintained by the conductive metal plate 33 of the first divided wedge 30.
  • the second split wedge 35 is housed at both axial ends, the conduction between the damper bar 13 and the retaining ring 9 at both axial ends is the first conductive metal plate 38a of the second split wedge 35 and the second conductive. Maintained by the conductive metal plate 38b.
  • the first divided upper wedge 31 and the first divided lower wedge 32 are made of a nonmagnetic material having higher strength than the conductive metal plate 33.
  • the second divided upper wedge 36 and the second divided lower wedge 37 are made of a nonmagnetic material having higher strength than the first conductive metal plate 38a and the second conductive metal plate 38b. Therefore, even if the thickness of the first divided upper wedge 31, the first divided lower wedge 32, the second divided upper wedge 36, and the second divided lower wedge 37 is reduced, the scattering of the slot contents can be prevented. As a result, the position of the field winding 11 in the slot 10 approaches the armature winding 5 and the field current can be reduced, thereby improving the efficiency.
  • the first divided wedge 30 is a state in which the conductive metal plate 33 is sandwiched and held between the first divided upper wedge 31 and the first divided lower wedge 32, and the first divided upper wedge 31 and the first divided lower wedge 30.
  • the wedge 32 is integrated. Therefore, when the rotor 6 rotates, the centrifugal force acts to press the conductive metal plate 33 against the first divided upper wedge 31 via the first divided lower wedge 32. As a result, the occurrence of a situation where the conductive metal plate 33 is detached from the first divided wedge 30 is suppressed. The same applies to the second divided wedge 35.
  • the axial ventilation path 15 is provided only at the bottom of the slot 10, but the radial position of the axial ventilation path 21 is changed as shown in FIGS.
  • a plurality of field windings 11 may be formed.
  • the radial ventilation path 20 is formed in the first split wedge 30, the damper bar 13, the insulator 12, and the field winding 11 at the axial center of the rotor core 8.
  • the plurality of axial ventilation passages 21 are communicated with the outside.
  • the radial ventilation path 20 is not necessarily formed in the second divided wedge 35 and the third divided wedge 18.
  • the rotor according to the first embodiment can be applied to both the radial direction ventilation type and the axial direction ventilation type rotating electrical machines.
  • the rotor according to the other embodiments can be applied to both the radial-direction ventilation type and the axial-direction ventilation type rotating electrical machines.
  • the conductive metal plate 33 is formed on the contact surface of the conductive metal plate 33, the first conductive metal plate 38 a, and the second conductive metal plate 38 b with the damper bar 13 or the holding ring 9.
  • the contact resistance may be reduced by plating with a conductive metal that is higher than the first conductive metal plate 38a and the second conductive metal plate 38b, such as gold or silver.
  • the conductive metal plate may be subjected to highly conductive metal plating such as gold and silver on the electrical contact surface with other members such as a damper bar.
  • each of the first divided wedge 30 and the second divided wedge 35 is either one of shrink fitting, cold fitting, adhesion, welding, brazing, stirring joining, or bonding. , Welding, brazing, and stir welding are used in combination.
  • the first split wedge and the second split wedge are each similarly shrink-fitted, cold-fitted, bonded, welded, brazed, stir welded, or bonded, respectively, Any one of welding, brazing and stir welding is used in combination.
  • the first divided wedge 30 and the second divided wedge 35 are divided into upper and lower portions that are compressed loads when receiving centrifugal force during rotation of the rotor. Also in this embodiment, it is desirable that the first divided wedge and the second divided wedge are divided into portions where the compression load is applied when the centrifugal force is applied during rotation of the rotor.
  • FIG. FIG. 16 is a longitudinal sectional view of a main part showing the periphery of the slot of the rotor in the rotary electric machine according to Embodiment 2 of the present invention
  • FIG. 17 is a first view of the rotor in the rotary electric machine according to Embodiment 2 of the present invention
  • FIG. 18 is a longitudinal sectional view showing the divided wedge
  • FIG. 18 is an end view of the first divided wedge of the rotor in the rotary electric machine according to Embodiment 2 of the present invention viewed from the axial direction
  • FIG. 19 is an embodiment of the present invention.
  • FIG. 20 is a longitudinal sectional view showing a second divided wedge of the rotor in the rotating electric machine according to FIG. 2, and FIG.
  • FIG. 20 is a view of the second divided wedge of the rotor in the rotating electric machine according to Embodiment 2 of the present invention when viewed from the other axial end side.
  • FIG. 21 is an end view of the second split wedge of the rotor in the rotary electric machine according to Embodiment 2 of the present invention as viewed from one end side in the axial direction.
  • the first divided wedge 40 is installed in the axial center of the slot 10 instead of the first divided wedge 30, and the second divided wedge 45 is the second divided wedge 35.
  • the configuration is the same as that of the first embodiment except that it is installed at both ends in the axial direction of the slot 10 instead.
  • the wedge is divided into a first divided wedge 40, a second divided wedge 45, and a third divided wedge 18.
  • the first divided wedge 40 is a composite wedge including a first divided upper wedge 41, a first divided lower wedge 42, and a conductive metal plate 43.
  • the first divided lower wedge 42 is formed in a substantially rectangular parallelepiped shape in which a protruding portion 42a extending in the axial direction is formed at the center of the upper surface.
  • the conductive metal plate 43 is formed in a rectangular flat plate shape, arranged on the convex portion 42a, folded back from the first divided lower wedge 42 to both axial sides, and both ends of the first divided lower wedge 42 in the axial direction. It extends along the surface and is arranged along the lower surface of the first divided lower wedge 42.
  • the mounting regions of the conductive metal plates 43 on both end surfaces in the axial direction of the first divided lower wedge 42 are formed in the recesses, and both end surfaces in the axial direction of the first divided lower wedge 42 and the conductive metal plates are formed. 43 is flush.
  • the mounting area of the conductive metal plate 43 on the lower surface of the first divided lower wedge 42 is formed in the recess, and the lower surface of the first divided lower wedge 42 and the conductive metal plate 43 are flush with each other. .
  • segmentation upper wedge 41 has the recessed part 41a which can be fitted with the convex part 42a in the lower surface center part.
  • the first divided wedge 40 is configured by fitting the concave portion 41a to the convex portion 42a and integrating the first divided upper wedge 41 and the first divided lower wedge 42 together. At this time, the first divided upper wedge 41 and the first divided lower wedge 42 have both axial end surfaces flush with each other.
  • the integrated first divided upper wedge 41 and the first divided lower wedge 42 serve as a main body portion
  • the conductive metal plate 43 serves as an energizing body.
  • the method of integrating the first divided upper wedge 41 and the first divided lower wedge 42 is the same as in the first embodiment.
  • the radial ventilation path 20 is formed in the first divided upper wedge 41, the first divided lower wedge 42 and the conductive metal plate 43.
  • the first divided upper wedge 41 and the first divided lower wedge 42 are made of a high-strength nonmagnetic material such as stainless steel.
  • the conductive metal plate 43 is made of a material having conductivity equivalent to that of the conductive metal plate 33, for example, copper or a copper alloy.
  • the second divided wedge 45 is a composite wedge including a second divided upper wedge 46, a second divided lower wedge 47, and a conductive metal plate 48.
  • the second divided lower wedge 47 is made longer than the second divided upper wedge 46 in the axial direction, and a convex portion 47a extending in the axial direction is formed at the center of the upper surface.
  • the conductive metal plate 48 is formed in a rectangular flat plate shape, arranged on the convex portion 47a, folded back from the second divided lower wedge 47 to the other side in the axial direction, and in the axial direction of the second divided lower wedge 47. It extends along the other end surface and is arranged along the lower surface of the second divided lower wedge 47.
  • the mounting region of the conductive metal plate 48 on the other end surface in the axial direction of the second divided lower wedge 47 is formed in the recess, and the other end surface in the axial direction of the second divided lower wedge 47 and the conductive metal plate 48 is the same.
  • the mounting area of the conductive metal plate 48 on the lower surface of the second divided lower wedge 47 is formed in the recess, and the lower surface of the second divided lower wedge 47 and the conductive metal plate 48 are flush with each other. .
  • the conductive metal plate 48 is disposed on the convex portion 47 a, folds the protruding portion from the second divided lower wedge 47 to the one side in the axial direction, and extends along one axial end surface of the second divided lower wedge 47. Extend. Further, the conductive metal plate 48 is arranged along the upper surface, the one end surface in the axial direction, and the lower surface of the projecting portion of the second divided lower wedge 47 toward the one end side in the axial direction.
  • one end surface of the second divided lower wedge 47 in the axial direction, and further, the upper surface of the protruding portion on the one side in the axial direction of the second divided lower wedge 47, the one end surface in the axial direction, and the conductive metal plate 48 on the lower surface The region is formed in the recess, and the conductive metal plate 48 is disposed flush with the second divided lower wedge 47.
  • the second divided upper wedge 46 has a concave portion 46a that can be fitted to the convex portion 47a at the center of the lower surface.
  • the second divided wedge 45 is configured by fitting the concave portion 46 a to the convex portion 47 a and integrating the second divided upper wedge 46 and the second divided lower wedge 47.
  • the second divided lower wedge 47 protrudes from the second divided upper wedge 46 to one axial end side, and the other axial end surfaces of the second divided upper wedge 46 and the second divided lower wedge 47 are flush with each other.
  • the integrated second divided upper wedge 46 and the second divided lower wedge 47 serve as a main body portion
  • the conductive metal plate 48 serves as an energizing body.
  • the method of integrating the second divided upper wedge 46 and the second divided lower wedge 47 is the same as in the first embodiment.
  • the radial ventilation path 20 is formed in the second divided upper wedge 46, the second divided lower wedge 47, and the conductive metal plate 48.
  • the second divided upper wedge 46 and the second divided lower wedge 47 are made of a high-strength nonmagnetic material such as stainless steel.
  • the conductive metal plate 48 is made of the same material as the conductive metal plate 43.
  • the second split wedge 45 installed at one end in the axial direction of the slot 10 is described. However, at the other end in the axial direction of the slot 10, the second split wedge 45 is replaced by the second split lower wedge 47. It is installed so as to protrude from the second divided upper wedge 46 to the other end side in the axial direction.
  • the conductive metal plate 43 has a conductive function in the first divided wedge 40, the first divided upper wedge 41 and the first divided lower wedge 42 that hold the conductive metal plate 43. Therefore, high conductivity is not necessary.
  • the second divided wedge 45 the characteristics required for the first divided upper wedge 41, the first divided lower wedge 42, the second divided upper wedge 46, and the second divided lower wedge 47 can be specialized in strength.
  • the first divided upper wedge 41, the first divided lower wedge 42, the second divided upper wedge 46 and the second divided lower wedge 47 are made stronger than the conductive metal plate 43 and the conductive metal plate 48.
  • a material such as stainless steel can be used.
  • the same effect as in the first embodiment can be obtained.
  • the conductive metal plates 43 and 48 are installed on the convex portion 42a of the first divided lower wedge 42 and the convex portion 47a of the second divided lower wedge 47, the conductive metal plates The distance between the plates 43 and 48 and the armature winding 5 is shortened. Thereby, the eddy current induced in the conductive metal plates 43 and 48 by the magnetic flux from the armature winding 5 increases, and the heat generation of the rotor core 8 due to the eddy current is suppressed.
  • FIG. FIG. 22 is a longitudinal sectional view of a main part showing the periphery of a rotor slot in a rotary electric machine according to Embodiment 3 of the present invention.
  • the third divided wedge 30 ⁇ / b> A is installed in the slot 10 instead of each of the third divided wedges 18, except that the damper bar 13 is omitted.
  • the configuration is the same as in the first embodiment.
  • the wedge is divided into a first divided wedge 30, a second divided wedge 35, and a third divided wedge 30A.
  • the third divided wedge 30A is a composite wedge configured in the same manner as the first divided wedge 30 except that the axial length is short.
  • all the wedges installed in each of the slots 10 of the rotor core 8 are constituted by the composite wedges of the first divided wedge 30, the second divided wedge 35, and the third divided wedge 30A. Therefore, the same effect as in the first embodiment can be obtained.
  • the second split wedges 35 are installed at both axial ends of the slot 10 of the rotor core 8, and the first split wedge 30 and the third split wedge 30 ⁇ / b> A are 1 between the second split wedges 35. Arranged in rows and installed in slots 10. Thereby, the conductive metal plate 33 of the first divided wedge 30 and the third divided wedge 30A and the first conductive metal plate 38a and the second conductive metal plate 38b of the second divided wedge 35 are in electrical contact with each other. In the state, they are arranged in a line in the axial direction.
  • the conductive metal plate 33, the first conductive metal plate 38a, and the second conductive metal plate 38b arranged in a line in the axial direction in a state of being in electrical contact with each other function as the damper bar 13.
  • the damper bar 13 can be omitted.
  • the distance between the field winding 11 and the armature winding 5 is further shortened, and more magnetic flux generated from the field winding 11 is linked to the armature winding 5.
  • the field current passed through the field winding 11 to obtain the set output current can be reduced, so that the field copper loss is reduced and the efficiency is further improved.
  • the first divided wedge 30, the second divided wedge 35, and the third divided wedge 30A are respectively integrated by using bonding and any one of welding, brazing, and stir welding. May be.
  • the upper and lower wedges prior to the joining process by any of welding, brazing and stir welding, the upper and lower wedges are positioned and fixed with high precision by bonding the upper and lower wedges by bonding. it can. Thereby, the precision of the shape after joining by any of welding, brazing, and stirring joining is improved. As a result, the unevenness in the axial direction on the axial end surfaces of the first divided wedge 30, the second divided wedge 35, and the third divided wedge 30A is reduced.
  • the contact area between the first divided wedge 30 and the third divided wedge 30A, between the third divided wedge 30A, and between the third divided wedge 30A and the second divided wedge 35 is increased, and the conductive metal plate Heat generation at the contact portion between 33 and the contact portion between the conductive metal plate 33 and the first conductive metal plate 38a is reduced.
  • FIG. FIG. 23 is a longitudinal sectional view of a main part showing the periphery of a rotor slot in a rotary electric machine according to Embodiment 4 of the present invention.
  • the third divided wedge 40A is installed in the slot 10 in place of the third divided wedge 18, and the damper bar 13 is omitted, except that the damper bar 13 is omitted.
  • the configuration is the same as in the second embodiment.
  • the wedge is divided into a first divided wedge 40, a second divided wedge 45, and a third divided wedge 40A.
  • the third split wedge 40A is a composite wedge configured in the same manner as the first split wedge 40 except that the axial length is short.
  • all the wedges installed in each of the slots 10 of the rotor core 8 are constituted by the composite wedges of the first divided wedge 40, the second divided wedge 45, and the third divided wedge 40A. Therefore, the same effect as in the second embodiment can be obtained.
  • the second divided wedge 45 is installed at both axial ends of the slot 10 of the rotor core 8, and the first divided wedge 40 and the third divided wedge 40 ⁇ / b> A are 1 between the second divided wedges 45. Arranged in rows and installed in slots 10. Thereby, the conductive metal plates 43 of the first divided wedge 40 and the third divided wedge 40A and the conductive metal plates 48 of the second divided wedge 45 are arranged in a line in the axial direction in a state where they are in electrical contact with each other. ing. Thus, the conductive metal plate 43 and the conductive metal plate 48 arranged in a line in the axial direction in a state of being in electrical contact with each other function as the damper bar 13, and the damper bar 13 can be omitted. .
  • the distance between the field winding 11 and the armature winding 5 is further shortened, and more magnetic flux generated from the field winding 11 is linked to the armature winding 5.
  • the field current passed through the field winding 11 to obtain the set output current can be reduced, so that the field copper loss is reduced and the efficiency is further improved.
  • the first divided wedge 40, the second divided wedge 45, and any one of adhesion, welding, brazing, and stirring joining are used together.
  • the third divided wedge 40A may be integrated.
  • the first divided wedge and the second divided are used in combination with adhesion and any one of welding, brazing, and stir welding. Each wedge may be integrated.
  • FIG. FIG. 24 is a longitudinal sectional view of a main part showing the periphery of a rotor slot in a rotary electric machine according to Embodiment 5 of the present invention.
  • the first lump wedge 50 is installed in the center of the slot 10 in place of the first split wedge 30 and the second lump wedge 51 is replaced by the second split wedge 35.
  • the configuration is the same as that of the third embodiment except that it is installed at both ends in the axial direction of the slot 10 instead.
  • the wedge is divided into a first lump wedge 50, a second lump wedge 51, and a third divided wedge 30A.
  • the first lump wedge 50 and the second lump wedge 51 are made of the same highly conductive material as that of the conductive metal plate 33, for example, copper or a copper alloy in one lump.
  • the conductive metal plates 33 of the first lump wedge 50, the second lump wedge 51, and the third divided wedge 30A are arranged in a line in the axial direction in a state of being in electrical contact with each other. Yes.
  • the first lump wedges 50, the second lump wedges 51, and the conductive metal plate 33 arranged in a line in the axial direction in electrical contact with each other function as the damper bar 13, and the damper bar 13 can be omitted. Therefore, in the fifth embodiment, the same effect as in the third embodiment can be obtained.
  • first lump wedge 50 and the second lump wedge 51 are made into a lump with a highly conductive metal, the contact resistance between the first lump wedge 50 and the rotor core 8 is reduced, The contact resistance between the second massive wedge 51 and the retaining ring 9 is reduced. Thereby, more eddy currents flowing on the surface of the rotor core 8 can be supplied to the conductive metal plate 33 functioning as a damper bar. As a result, heat generation of the rotor core 8 due to eddy current can be suppressed.
  • the contact resistance may be reduced by plating with gold, silver or the like.
  • the first lump wedge 50 is installed at the center in the axial direction of the slot 10 instead of the first split wedge 30, and the second lump wedge 51 is the first lump wedge 51.
  • the first lump wedge 50 is replaced with the first divided wedge 40 in the axial center of the slot 10 instead of the two divided wedges 35.
  • the second lump wedge 51 may be installed at both ends in the axial direction of the slot 10 instead of the second divided wedge 45.
  • FIG. 25 is a longitudinal sectional view of a main part showing the periphery of a rotor slot in a rotary electric machine according to Embodiment 6 of the present invention
  • FIG. 26 shows a first rotor of the rotary electric machine according to Embodiment 6 of the present invention.
  • 27 is a longitudinal sectional view showing the divided wedge
  • FIG. 27 is an end view of the first divided wedge of the rotor in the rotary electric machine according to Embodiment 6 of the present invention viewed from the axial direction
  • FIG. 28 is an embodiment of the present invention.
  • FIG. 29 is a longitudinal sectional view showing a second divided wedge of the rotor in the rotary electric machine according to FIG. 6, and FIG.
  • FIG. 29 is a view of the second divided wedge of the rotor in the rotary electric machine according to Embodiment 6 of the present invention from the other end side in the axial direction.
  • FIG. 30 is an end view of the second split wedge of the rotor in the rotary electric machine according to Embodiment 6 of the present invention as viewed from one end in the axial direction.
  • the first divided wedge 60 is installed at the central portion in the axial direction of the slot 10 instead of the first divided wedge 30, and the second divided wedge 65 is the second divided wedge.
  • 35 is installed at both ends in the axial direction of the slot 10, and a plurality of third divided wedges 60 ⁇ / b> A are arranged between the first divided wedge 60 and the second divided wedge 65 of the slot 10 instead of the third divided wedge 30 ⁇ / b> A. is set up.
  • the wedge is divided into a first divided wedge 60, a second divided wedge 65, and a third divided wedge 60A. Other configurations are the same as those in the third embodiment.
  • the first split wedge 60 is a composite wedge including a first split upper wedge 61, a first split lower wedge 62, and a conductive metal plate 63, as shown in FIGS.
  • the first divided lower wedge 62 is formed as a prism having a parallelogram-shaped vertical cross section inclined toward one side in the axial direction, and a concave portion 62a having the axial direction in the groove direction is formed at the center of the upper surface.
  • the conductive metal plate 63 is formed in a rectangular flat plate shape, is disposed in the recess 62a, and folds the protruding portions from the first divided lower wedge 62 to both sides in the axial direction so that both end surfaces of the first divided lower wedge 62 in the axial direction are folded back.
  • segmentation upper wedge 61 has the convex part 61a which can be fitted with the recessed part 62a in the lower surface center part.
  • the exposed surfaces on both axial sides of the conductive metal plate 63 are inclined surfaces 64.
  • the first divided wedge 60 is configured by fitting the convex portion 61a into the concave portion 62a and integrating the first divided upper wedge 61 and the first divided lower wedge 62 together.
  • the integrated first divided upper wedge 61 and the first divided lower wedge 62 serve as a main body portion
  • the conductive metal plate 63 serves as a current-carrying body.
  • the radial ventilation path 20 is formed in the first divided upper wedge 61, the first divided lower wedge 62 and the conductive metal plate 63.
  • the first divided upper wedge 61 and the first divided lower wedge 62 are made of a high-strength nonmagnetic material such as stainless steel.
  • the conductive metal plate 63 is made of the same material as the conductive metal plate 33, for example, copper or a copper alloy.
  • the third split wedge 60A is a composite wedge configured in the same manner as the first split wedge 60 except that the axial length is short. Also in the third divided wedge 60 ⁇ / b> A, the exposed surfaces on both sides in the axial direction of the conductive metal plate 63 are inclined surfaces 64.
  • the second divided wedge 65 includes a second divided upper wedge 66, a second divided lower wedge 67, a first conductive metal plate 68a, and a second conductive metal plate 68b. And a composite wedge.
  • the second divided lower wedge 67 is formed as a prism having a longer length in the axial direction than the second divided upper wedge 66, the other axial end face of the rectangular parallelepiped is inclined toward one side in the axial direction, and a concave portion 67a having the groove direction as the axial direction. Is formed at the center of the upper surface.
  • the inclination angle of the other axial end surface of the second divided lower wedge 67 is the same as the inclination angle of the other axial end surface of the first divided lower wedge 62.
  • the first conductive metal plate 68a is formed in a rectangular flat plate shape, and is disposed in the recess 67a.
  • the first conductive metal plate 68a is bent in the axial direction of the second divided lower wedge 67 by folding back the protruding portions from the second divided lower wedge 67 to both sides in the axial direction. It extends along both end faces and is arranged along the lower surface of the second divided lower wedge 67.
  • the mounting regions of the first conductive metal plates 68a on both end surfaces in the axial direction of the second divided lower wedge 67 are formed in the recesses, and both end surfaces in the axial direction of the second divided lower wedge 67 and the first The conductive metal plate 68a is flush.
  • the mounting region of the first conductive metal plate 68a on the lower surface of the second divided lower wedge 67 is formed in the recess, and the lower surface of the second divided lower wedge 67 and the first conductive metal plate 68a are flush with each other. It has become.
  • segmentation upper wedge 66 has the convex part 66a which can be fitted with the recessed part 67a in the lower surface center part.
  • the second conductive metal plate 68b is formed in a rectangular flat plate shape, and is disposed on the convex portion 66a.
  • the second conductive metal plate 68b is folded back from the second divided upper wedge 66 toward the one end side in the axial direction, so that the axis of the second divided upper wedge 66 is obtained. It arrange
  • the mounting region of the second conductive metal plate 68b on the one end surface in the axial direction of the second divided upper wedge 66 is formed in the concave portion, and one end surface in the axial direction of the second divided upper wedge 66 and the second end wedge
  • the conductive metal plate 68b is flush.
  • segmentation wedge 65 fits the convex part 66a to the recessed part 67a, and is comprised by integrating the 2nd division
  • the second divided lower wedge 67 protrudes from the second divided upper wedge 66 to one axial end side.
  • the integrated second divided upper wedge 66 and second divided lower wedge 67 serve as the main body
  • the first conductive metal plate 68a and the second conductive metal plate 68b serve as the current conductor.
  • An exposed surface on the other axial side of the second divided upper wedge 66 of the first conductive metal plate 68a is an inclined surface 69.
  • the radial ventilation path 20 is formed in the second divided upper wedge 66, the second divided lower wedge 67, the first conductive metal plate 68a, and the second conductive metal plate 68b.
  • the second divided upper wedge 66 and the second divided lower wedge 67 are made of a high-strength nonmagnetic material such as stainless steel.
  • the first conductive metal plate 68 a and the second conductive metal plate 68 b are made of the same material as the conductive metal plate 63.
  • two metal plates of the first conductive metal plate 68a and the second conductive metal plate 68b are used, one metal plate is used, and the second divided wedge 65 extends to one end side in the axial direction.
  • the protruding portion may be divided and folded up and down.
  • the second split wedge 65 installed at one end in the axial direction of the slot 10 is described.
  • the second split wedge 65 is replaced by the second split lower wedge 67. It is installed so as to protrude from the second divided upper wedge 66 to the other end side in the axial direction.
  • the first divided wedge 60, the second divided wedge 65, and the third divided wedge 60A are divided into upper and lower parts at locations where a compression load is applied when the rotor 6 receives centrifugal force during rotation.
  • the first divided wedge 60, the second divided wedge 65, and the third divided wedge 60A are integrated by, for example, the same method as in the first embodiment.
  • the second divided wedges 65 are installed at both axial ends of the slot 10, and the first divided wedge 60 and the third divided wedge 60 ⁇ / b> A are arranged in a row between the second divided wedges 65. They are arranged in slots 10.
  • the exposed surfaces on both sides in the axial direction of the conductive metal plate 63 are inclined surfaces 64.
  • the exposed surface of the first conductive metal plate 68 a on the third divided wedge 60 ⁇ / b> A side is an inclined surface 69. The inclination angles of these inclined surfaces 64 and 69 are the same.
  • the conductive metal plate 63 of the adjacent first divided wedge 60 and the conductive metal plate 63 of the third divided wedge 60A are in electrical contact.
  • the conductive metal plates 63 of the adjacent third divided wedges 60A are in electrical contact with each other.
  • the conductive metal plate 63 of the adjacent third divided wedge 60A and the first conductive metal plate 68a of the second divided wedge 65 are in electrical contact.
  • the conductive metal plate 63, the first conductive metal plate 68a and the second conductive metal plate 68b arranged in a line in the axial direction in a state of being in electrical contact with each other function as the damper bar 13.
  • the damper bar 13 can be omitted.
  • the distance between the field winding 11 and the armature winding 5 is shortened, and more magnetic flux generated from the field winding 11 is linked to the armature winding 5.
  • the field current passed through the field winding 11 to obtain the set output current can be reduced, so that the field copper loss is reduced and the efficiency is improved.
  • the first split wedge 60, the second split wedge 65, and the third split The main body of the wedge 60A can be made of a high-strength nonmagnetic material, and the thickness can be reduced. Thereby, the distance between the field winding 11 and the armature winding 5 is shortened, and more magnetic flux generated from the field winding 11 is linked to the armature winding 5. As a result, the field current passed through the field winding 11 to obtain the set output current can be reduced, so that the field copper loss is reduced and the efficiency is improved.
  • the inclined surfaces 64 of the conductive metal plates 63 of the adjacent first divided wedge 60 and third divided wedge 60A overlap each other in the surface contact state.
  • the inclined surfaces 64 of the conductive metal plates 63 of the adjacent third divided wedges 60A overlap each other in the radial direction and are in a surface contact state.
  • the inclined surfaces 64 and 69 of the adjacent conductive metal plate 63 of the third divided wedge 60A and the first conductive metal plate 68a of the second divided wedge 65 overlap with each other in the radial direction to form surface contact. Therefore, the contact surface pressure of these electrical connection portions increases due to the centrifugal force during rotation of the rotor. Thereby, the contact resistance of the electrical connection portion of the conductive metal plate 63, the first conductive metal plate 68a, and the second conductive metal plate 68b is reduced, and heat generation at the contact portion is suppressed.
  • the first divided wedge 60, the second divided wedge 65, and the third divided wedge 60A according to the sixth embodiment are the same as the first divided wedge 30, the second divided wedge 35, and the third divided wedge in the third embodiment.
  • the exposed surface of the 30A conductive metal plate has the same configuration as the inclined surface. Therefore, even if the exposed surfaces of the conductive metal plates of the first divided wedge 40, the second divided wedge 45, and the third divided wedge 40A in the fourth embodiment are configured as inclined surfaces, the same effect can be obtained.
  • FIG. 31 is a longitudinal sectional view of a main part showing the periphery of a slot of a rotor in a rotary electric machine according to Embodiment 7 of the present invention
  • FIG. 32 is a first view of the rotor in the rotary electric machine according to Embodiment 7 of the present invention
  • FIG. 33 is a longitudinal sectional view showing the second wedge of the rotor in the rotary electric machine according to Embodiment 7 of the present invention.
  • the first lump wedge 70 is installed at the center in the axial direction of the slot 10 in place of the first split wedge 60, and the second lump wedge 72 is the second split wedge 65.
  • the configuration is the same as that of the sixth embodiment except that it is installed at both ends in the axial direction of the slot 10 instead.
  • the wedge is divided into a first lump wedge 70, a second lump wedge 72, and a third divided wedge 60A.
  • the first lump wedge 70 is made in one lump with a highly conductive material similar to that of the conductive metal plate 63, for example, copper or copper alloy. As shown in FIG. 32, the inclined surface 71 is formed on the lower side of both axial end surfaces of the first lump wedge 70.
  • the second lump wedge 72 is made of a highly conductive material similar to that of the conductive metal plate 63, such as copper or a copper alloy, in one lump. As shown in FIG. 33, the inclined surface 73 is formed on the lower side of the other end surface in the axial direction of the second massive wedge 72.
  • the conductive metal plates 63 of the first massive wedge 70, the second massive wedge 72, and the third divided wedge 60A are arranged in a line in the axial direction in a state of being in electrical contact with each other. Yes.
  • the first lump wedge 70, the second lump wedge 72, and the conductive metal plate 63 arranged in a line in the axial direction in electrical contact with each other function as the damper bar 13, and the damper bar 13 can be omitted. Therefore, in the seventh embodiment, the same effect as in the sixth embodiment can be obtained.
  • first lump wedge 70 and the second lump wedge 72 are made into a lump with a highly conductive metal, the contact resistance between the first lump wedge 70 and the rotor core 8 is reduced, The contact resistance between the second massive wedge 72 and the retaining ring 9 is reduced. Thereby, more eddy currents flowing on the surface of the rotor core 8 can be supplied to the conductive metal plate 63 functioning as a damper bar. As a result, heat generation of the rotor core 8 due to eddy current can be suppressed.
  • the inclined surfaces 71 and 64 of the conductive metal plate 63 of the adjacent first lump-like wedge 70 and the third divided wedge 60A overlap each other in the radial direction to form a surface contact state.
  • the inclined surfaces 64 of the conductive metal plates 63 of the adjacent third divided wedges 60A overlap each other in the radial direction and are in a surface contact state.
  • the inclined surfaces 64 and 73 of the conductive metal plate 63 and the second lump wedge 72 of the adjacent third divided wedge 60A overlap in the radial direction and are in surface contact. Therefore, the contact surface pressure of these electrical connection portions increases due to the centrifugal force during rotation of the rotor.
  • a third divided wedge having an exposed surface of the conductive metal plate 43 of the third divided wedge 40A in the fourth embodiment as an inclined surface may be used. Good.
  • the contact resistance may be reduced by plating with gold, silver or the like.
  • FIG. 34 is a longitudinal sectional view of a main part showing the periphery of the rotor slot in the rotary electric machine according to Embodiment 8 of the present invention
  • FIG. 35 is a first view of the rotor in the rotary electric machine according to Embodiment 8 of the present invention
  • FIG. 36 is a longitudinal sectional view showing the massive wedge
  • FIG. 36 is an end view of the first massive wedge of the rotor in the rotary electric machine according to Embodiment 8 of the present invention viewed from the axial direction
  • FIG. 37 is an embodiment of the present invention.
  • FIG. 38 is a longitudinal sectional view showing a second lump wedge of the rotor in the rotary electric machine according to FIG. 8, and FIG.
  • FIG. 38 is an end view of the second lump wedge of the rotor in the rotary electric machine according to Embodiment 8 of the present invention as seen from the axial direction.
  • FIG. 39 is a longitudinal sectional view showing a fourth divided wedge of the rotor in the rotary electric machine according to Embodiment 8 of the present invention
  • FIG. 40 shows the fourth of the rotor in the rotary electric machine according to Embodiment 8 of the present invention.
  • End view of the quadrant wedge as seen from the axial direction 41 is a longitudinal sectional view showing a connecting conductor between the wedges of a rotor in a rotary electric machine according to Embodiment 8 of the present invention.
  • FIG. 42 is a view between the wedges of the rotor in the rotary electric machine according to Embodiment 8 of the present invention. It is the end elevation which looked at the connecting conductor from the axial direction.
  • the first lump wedge 74 is installed at the center in the axial direction of the slot 10, and the second lump wedge 76 is installed at both axial ends of the slot 10.
  • a plurality of fourth divided wedges 77 are arranged in a line in the axial direction between the first massive wedge 74 and the second massive wedge 76. Furthermore, the first lump wedge 74 and the fourth split wedge 77 are connected to each other by the fourth split wedge 77, and the fourth split wedge 77 and the second lump wedge 76 are connected using the inter-wedge connection conductor 75. ing. Other configurations are the same as those in the seventh embodiment.
  • the wedge is divided into a first massive wedge 74, a second massive wedge 76, and a fourth divided wedge 77.
  • the first lump wedges 74 are made in one lump with a highly conductive material similar to the conductive metal plate 63, for example, copper or copper alloy. As shown in FIG. 35 and FIG. 36, the recess 79 is formed on the lower side of both end faces in the axial direction of the first lump wedge 74 with the hole direction as the axial direction.
  • the recess 79 has a hole shape in which a cross section orthogonal to the axial direction is rectangular, and the upper surface of the recess 79 is an inclined surface 79 a that gradually approaches the lower surface side in the depth direction of the recess 79.
  • the first lump wedge 74 is configured in the same manner as the first lump wedge 70 except that the recess 79 is formed.
  • the second lump wedges 76 are made in one lump with a highly conductive material similar to the conductive metal plate 63, for example, copper or copper alloy. As shown in FIGS. 37 and 38, the recess 80 is formed on the lower side of the end face of the second lump wedge 76 facing the fourth split wedge 77.
  • the recess 80 has a hole shape in which a cross section orthogonal to the axial direction is a rectangle, and the upper surface of the recess 80 is an inclined surface 80 a that gradually approaches the lower surface side in the depth direction of the recess 80.
  • the second lump wedge 76 is configured in the same manner as the second lump wedge 72 except that the recess 80 is formed.
  • the fourth divided wedge 77 is a composite wedge including a fourth divided upper wedge 81, a fourth divided lower wedge 82, and a conductive metal plate 78.
  • the recess 83 is formed on the lower side of both end faces in the axial direction of the fourth divided lower wedge 82.
  • the recess 83 has a hole shape having a rectangular cross section orthogonal to the axial direction, and the upper surface of the recess 83 is an inclined surface that gradually approaches the lower surface side in the depth direction of the recess 83.
  • the conductive metal plate 78 is formed in a rectangular flat plate shape, and is sandwiched between the fourth divided upper wedge 81 and the fourth divided lower wedge 82 in a state of projecting to both sides in the axial direction.
  • the protruding portion of the conductive metal plate 78 extends downward along both axial end surfaces of the fourth divided lower wedge 82, and is drawn into the recess 83.
  • the conductive metal plate 78 drawn into the recess 83 is disposed along the inclined surface of the recess 83.
  • the lower surface of the portion of the conductive metal plate 78 disposed along the inclined surface of the recess 83 is an inclined surface 78a.
  • the fourth divided upper wedge 81 and the fourth divided lower wedge 82 are made of a high-strength nonmagnetic material such as stainless steel.
  • the conductive metal plate 78 is made of the same material as the conductive metal plate 63, for example, copper or a copper alloy.
  • the first lump wedge 74, the second lump wedge 76, and the fourth split wedge 77 have the same cross-sectional shape orthogonal to the axial direction.
  • the recess 79, the recess 80, and the recess 83 in a state where the end portions of the conductive metal plate 78 are arranged have the same hole shape.
  • the first lump wedge 74 and the fourth divided wedge 77 are arranged such that the recess 79 and the recess 83 face each other.
  • the second lump wedge 76 and the fourth divided wedge 77 are arranged such that the recess 80 and the recess 83 are opposed to each other.
  • the fourth divided wedge 77 is configured by integrating a fourth divided upper wedge 81 and a fourth divided lower wedge 82.
  • the integrated fourth divided upper wedge 81 and the fourth divided lower wedge 82 serve as a main body portion
  • the conductive metal plate 78 serves as a current-carrying body.
  • the wedge connecting conductor 75 is made of the same material as the conductive metal plate 78, for example, copper or a copper alloy. As shown in FIGS. 41 and 42, the inter-wedge connecting conductor 75 can be fitted into a recess 83 in which both ends in the axial direction are the recess 79, the recess 80, and the end of the conductive metal plate 78. It is formed in a simple shape. The upper surfaces of both end portions in the axial direction of the connection conductor 75 between the wedges overlap the inclined surfaces 79a, 80a, 78a of the recess 83 in a state where the recess 79, the recess 80, and the end portion of the conductive metal plate 78 are disposed. It becomes the inclined surface 75a which carries out surface contact in the state.
  • the first lump wedges 74, the second lump wedges 76, and the fourth split wedges 77 thus configured are arranged in a row in the axial direction in the slot 10 with the inter-wedge connection conductors 75 interposed therebetween.
  • both ends of the inter-wedge connection conductor 75 are fitted in the recesses 79, 80 and 83.
  • the inclined surfaces 75a which are the upper surfaces of both end portions in the axial direction of the inter-wedge connection conductor 75, are in surface contact with the recesses 79, 80 and the 83 inclined surfaces 79a, 80a, 78a in the radial direction.
  • the first lump wedges 74, the second lump wedges 76, and the fourth divided wedges 77 arranged in a row in the slot 10 are electrically connected.
  • the conductive metal plates 78 of the first massive wedge 74, the second massive wedge 76, and the fourth divided wedge 77 are in the axial direction in a state of being in electrical contact with each other by the inter-wedge connecting conductor 75. It is arranged in one row. As described above, the first lump wedge 74, the second lump wedge 76, and the conductive metal plate 78 arranged in a line in the axial direction in electrical contact with each other function as the damper bar 13, and the damper bar 13 can be omitted. Therefore, in the eighth embodiment, the same effect as in the seventh embodiment can be obtained.
  • first massive wedge 74 and the second massive wedge 76 are made of a highly conductive metal into a massive body, the contact resistance between the first massive wedge 74 and the rotor core 8 is reduced, The contact resistance between the second massive wedge 76 and the retaining ring 9 is reduced. Thereby, more eddy currents flowing on the surface of the rotor core 8 can be supplied to the conductive metal plate 78 functioning as a damper bar. As a result, heat generation of the rotor core 8 due to eddy current can be suppressed.
  • the upper surface of the inner wall surface of the recess 79 formed in the first lump wedge 74 is an inclined surface 79 a that gradually displaces toward the inner diameter side in the depth direction of the recess 79.
  • the upper surface of the inner wall surface of the recess 80 formed in the second lump wedge 76 forms an inclined surface 80a that gradually displaces toward the inner diameter side in the depth direction of the recess 80.
  • the lower surface of the conductive metal plate 78 disposed on the upper surface of the inner wall surface of the recess 83 formed in the fourth split wedge 77 forms an inclined surface 78 a that gradually displaces toward the inner diameter side in the depth direction of the recess 83.
  • Both end portions in the axial direction of the connecting conductor 75 between the wedges are fitted into the recesses 79, 80, and 83, and the inclined surface 75a overlaps the inclined surfaces 79a, 80a, and 78a in the radial direction to form a surface contact state. Therefore, the contact surface pressure of these electrical connection portions increases due to the centrifugal force during rotation of the rotor 6. Accordingly, the electrical connection portion between the first lump wedge 74 and the inter-wedge connection conductor 75, the electrical connection portion between the conductive metal plate 78 of the fourth split wedge 77 and the inter-wedge connection conductor 75, and the second lump wedge. The contact resistance of the electrical connection portion between 76 and the inter-wedge connection conductor 75 is reduced, and heat generation at the contact portion is suppressed.
  • a third divided wedge provided with an inclined recess on the exposed surface of the conductive metal plate 43 of the third divided wedge 40A in the fourth embodiment is used. Also good.
  • the contact surface of the first massive wedge 74 with the inter-wedge connection conductor 75, the contact surface of the second massive wedge 76 with the inter-wedge connection conductor 75, and the contact surface with the holding ring 9 of the second massive wedge 76 are provided.
  • the contact resistance may be reduced by plating with a conductive metal that is higher than the first massive wedge 74 and the second massive wedge 76, such as gold or silver.
  • the contact surface of the conductive metal plate 85 of the fourth divided wedge 77 with the inter-wedge connection conductor 75 is plated with a conductive metal higher than the conductive metal plate 85, for example, gold, silver, etc. May be reduced.
  • FIG. 43 is a longitudinal sectional view of the main part showing the periphery of the slot of the rotor in the rotary electric machine according to Embodiment 9 of the present invention
  • FIG. 44 shows the fifth aspect of the rotor in the rotary electric machine according to Embodiment 9 of the present invention.
  • FIG. 45 is a longitudinal sectional view showing the divided wedge
  • FIG. 45 is an end view of the fifth divided wedge of the rotor in the rotary electric machine according to Embodiment 9 of the present invention as seen from the axial direction.
  • the fourth divided wedge 77 is installed at the center in the axial direction of the slot 10, and the fifth divided wedge 84 is installed at both axial ends of the slot 10. Further, a plurality of fourth divided wedges 77 are installed between a fourth divided wedge 77 installed at the center and fifth divided wedges 84 installed at both ends.
  • the fourth divided wedges 77 are electrically connected by the inter-wedge connecting conductor 75, and the fourth divided wedge 77 and the fifth divided wedge 84 are electrically connected by the inter-wedge connecting conductor 75.
  • Other configurations are the same as those in the eighth embodiment.
  • the wedge is divided into a fourth divided wedge 77 and a fifth divided wedge 84.
  • the fifth divided wedge 84 is a composite wedge including a fifth divided upper wedge 88, a fifth divided lower wedge 87, and a conductive metal plate 85.
  • a recess 86 is formed on the lower side of the end face of the fifth divided lower wedge 87 facing the fourth divided wedge 77.
  • the indentation 86 has a hole shape in which a cross section perpendicular to the axial direction is rectangular, and the upper surface of the indentation 86 is an inclined surface that gradually approaches the lower surface side in the depth direction of the indentation 86.
  • the conductive metal plate 85 is formed in a rectangular flat plate shape, and is sandwiched between the fifth divided upper wedge 88 and the fifth divided lower wedge 87 in a state of protruding in the axial direction.
  • One projecting portion of the conductive metal plate 85 extends downward along the end surface of the fifth divided lower wedge 87 and is drawn into the recess 86.
  • the conductive metal plate 85 drawn into the recess 86 is disposed along the inclined surface of the recess 86.
  • the lower surface of the portion of the conductive metal plate 85 disposed along the inclined surface of the recess 86 is an inclined surface 85a.
  • the fifth divided upper wedge 88 and the fifth divided lower wedge 87 are made of a high-strength nonmagnetic material such as stainless steel.
  • the conductive metal plate 85 is made of the same material as the conductive metal plate 63, for example, copper or a copper alloy.
  • the electrical connection portion of the fifth divided wedge 84 with the holding ring 9 is configured in the same manner as the second divided wedge 45.
  • the fourth split wedge 77 and the fifth split wedge 84 have the same cross-sectional shape orthogonal to the axial direction.
  • the recess 83 in a state where the end portion of the conductive metal plate 78 is disposed and the recess 86 in a state where the end portion of the conductive metal plate 85 is disposed have the same hole shape.
  • the fourth divided wedges 77 are arranged so that the recesses 83 face each other.
  • the fourth divided wedge 77 and the fifth divided wedge 84 are arranged such that the recess 83 and the recess 86 face each other.
  • the fifth divided wedge 84 is configured by integrating a fifth divided upper wedge 88 and a fifth divided lower wedge 87.
  • the integrated fifth divided upper wedge 88 and the fifth divided lower wedge 87 serve as a main body portion
  • the conductive metal plate 85 serves as a current-carrying body.
  • the conductive metal plates 78 of the fourth divided wedge 77 and the conductive metal plates 78 of the fourth divided wedge 77 and the conductive metal plate 85 of the fifth divided wedge 84 are connected between the wedges.
  • the conductors 75 are arranged in a line in the axial direction so as to be in electrical contact with each other.
  • the conductive metal plate 78 of the fourth divided wedge 77 and the conductive metal plate 85 of the fifth divided wedge 84 arranged in a line in the axial direction in a state of being in electrical contact with each other are used as the damper bar 13. It functions and the damper bar 13 can be omitted. Therefore, in the ninth embodiment, the same effect as in the eighth embodiment can be obtained.
  • the lower surface of the conductive metal plate 78 disposed on the upper surface of the inner wall surface of the recess 83 formed in the fourth divided wedge 77 forms an inclined surface 78 a that gradually displaces toward the inner diameter side in the depth direction of the recess 83.
  • the lower surface of the conductive metal plate 85 disposed on the upper surface of the inner wall surface of the recess 86 formed in the fifth divided wedge 84 forms an inclined surface 85 a that gradually displaces toward the inner diameter side in the depth direction of the recess 86.
  • Both end portions in the axial direction of the connecting conductor 75 between the wedges are fitted into the recesses 83 and 86, and the inclined surface 75a overlaps the inclined surfaces 78a and 85a in the radial direction to be in a surface contact state. Therefore, the contact surface pressure of these electrical connection portions increases due to the centrifugal force during rotation of the rotor 6. Thereby, the electrical connection between the conductive metal plate 78 of the fourth split wedge 77 and the inter-wedge connection conductor 75 and the electrical connection between the conductive metal plate 85 of the fifth split wedge 84 and the inter-wedge connection conductor 75. The contact resistance of the contact portion is reduced, and heat generation at the contact portion is suppressed.
  • a third divided wedge provided with an inclined recess on the exposed surface of the conductive metal plate 43 of the third divided wedge 40A in the fourth embodiment is used. Also good.
  • the contact surface of the divided wedge 84 with the holding ring 9 of the conductive metal plate 85 is plated with a conductive metal higher than the conductive metal plates 78 and 85, such as gold and silver, to reduce the contact resistance. Also good.
  • the generator has been described.
  • the present invention is not limited to the generator, and can be applied to rotating electric machines such as an electric motor and a generator motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

This rotary electric machine is provided with an armature and a rotor, wherein the rotor has: a rotor core which has a plurality of slots open radially outward and extending in the axial direction thereof; field windings accommodated in the respective slots; a plurality of split wedges which are accommodated in the opening sides of the respective slots so as to be arranged in the axial direction, and which fixedly hold the field windings inside the slots; and holding rings attached to both axial end sections of the rotor core . The plurality of split wedges each include a composite wedge, and the composite wedge is provided with a main body part that holds the field winding and a conductive body which is held by the main body part and through which an overcurrent flows, wherein the main body part is manufactured by using a non-magnetic material having a higher strength than the conductive body, and the conductive body is manufactured by using a metal having a higher conductivity than the main body part.

Description

回転電機およびその製造方法Rotating electric machine and manufacturing method thereof
 この発明は、円筒形の回転子を有する回転電機およびその製造方法に関し、例えば、タービン発電機に適用される回転電機の回転子構造に関するものである。 The present invention relates to a rotating electrical machine having a cylindrical rotor and a method for manufacturing the same, and, for example, relates to a rotor structure of a rotating electrical machine applied to a turbine generator.
 回転子の界磁巻線に界磁電流を流して電磁石とする従来の発電機においては、界磁巻線は、回転子コアに設けられた溝状のスロット内に設置されている。スロットには、界磁巻線以外にも、電機子巻線からの磁束により誘起された渦電流が流れるダンパーバー、ダンパーバーと界磁巻線との間を絶縁する絶縁物、およびスロット内容物の飛散防止用のくさびが設置されている(例えば、特許文献1参照)。 In a conventional generator in which a field current is passed through a rotor field winding to make an electromagnet, the field winding is installed in a groove-like slot provided in the rotor core. In addition to the field winding, the slot includes a damper bar through which an eddy current induced by the magnetic flux from the armature winding flows, an insulator that insulates the damper bar from the field winding, and the slot contents A wedge for preventing scattering is installed (for example, see Patent Document 1).
 従来の発電機では、絶縁物、ダンパーバーおよびくさびが、界磁巻線よりも回転子コアの外周側に設置されている。飛散防止用のくさびは、回転子コアの軸方向中央部におけるダンパーバー間を導電させ、かつ回転子コアの軸方向端部におけるダンパーバーと保持環とを導電させる機能を有する。そのため、くさびは、導電性が高い金属、例えば、BeCu合金により作製されている。なお、導電性が高いとは、電気を通しやすいことを意味する。 In a conventional generator, an insulator, a damper bar, and a wedge are installed on the outer peripheral side of the rotor core with respect to the field winding. The wedge for preventing scattering has a function of conducting between the damper bars at the axial center of the rotor core and conducting between the damper bar and the holding ring at the axial end of the rotor core. Therefore, the wedge is made of a metal having high conductivity, for example, a BeCu alloy. Note that high conductivity means that it is easy to conduct electricity.
特開2001-86685号公報JP 2001-86685 A
 くさびが導電性の高い金属で作製されているので、界磁巻線、絶縁物、ダンパーバーに作用する遠心力に耐えるために、くさびを半径方向に厚くする必要があった。これにより、界磁巻線と電機子巻線との間の距離が長くなり、界磁巻線で発生させた磁束の一部が電機子巻線に鎖交しなくなり、回転子コアでの損失が大きくなっていた。 Since the wedge is made of a highly conductive metal, it was necessary to thicken the wedge in the radial direction in order to withstand the centrifugal force acting on the field windings, insulators, and damper bars. This increases the distance between the field winding and the armature winding, and a part of the magnetic flux generated by the field winding does not interlink with the armature winding, resulting in loss in the rotor core. Was getting bigger.
 ここで、くさびを高強度非磁性材、例えばステンレス鋼で作製した場合、くさびは、半径方向に厚くすることなく、界磁巻線、絶縁物、ダンパーバーに作用する遠心力に耐えることができる。これにより、界磁巻線と電機子巻線との間の距離が短くなり、界磁巻線で発生させた磁束の電機子巻線を鎖交する量が多くなり、回転子コアでの損失を低減することができる。その結果、界磁電流を削減でき、効率が向上される。しかしながら、ステンレス鋼などの高強度非磁性材料は、導電性が低い。そのため、回転子コアの軸方向中央部および軸方向両端部において、ダンパーバーからの渦電流がくさびを流れにくくなり、くさびでの発熱が増大し、渦電流損が大きくなるという課題があった。 Here, when the wedge is made of a high-strength non-magnetic material, such as stainless steel, the wedge can withstand the centrifugal force acting on the field winding, the insulator, and the damper bar without increasing the thickness in the radial direction. . This shortens the distance between the field winding and the armature winding, increases the amount of magnetic flux generated by the field winding to be linked to the armature winding, and causes a loss in the rotor core. Can be reduced. As a result, the field current can be reduced and the efficiency is improved. However, high-strength nonmagnetic materials such as stainless steel have low conductivity. Therefore, the eddy current from the damper bar hardly flows through the wedge at the axial center portion and both axial end portions of the rotor core, and there is a problem that heat generation at the wedge increases and eddy current loss increases.
 この発明は、このような課題を解決するためになされたものであり、渦電流によるくさびでの発熱を抑えて、効率を向上させることができる回転電機およびその製造方法を得ることを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to obtain a rotating electrical machine capable of improving efficiency by suppressing heat generation in a wedge due to eddy current and a manufacturing method thereof. .
 この発明による回転電機は、電機子巻線を備える電機子と、上記電機子の内径側に配置された回転子と、を備える。上記回転子は、半径方向外方に開口し、かつ軸方向に延びるスロットが周方向に複数形成された回転子コアと、上記スロットのそれぞれに収納された界磁巻線と、上記スロットのそれぞれの開口側に軸方向に配列して収納され、上記界磁巻線を上記スロット内に固定保持する複数の分割くさびと、上記回転子コアの軸方向両端部に装着された保持環と、を有する。上記複数の分割くさびは、複合くさびを含み、上記複合くさびは、上記界磁巻線を保持する本体部と、上記本体部に保持され、渦電流が流れる通電体と、を備え、上記本体部は、上記通電体より高強度の非磁性材で作製され、上記通電体は、上記本体部より高導電性の金属で作製されている。 A rotating electric machine according to the present invention includes an armature provided with armature windings, and a rotor arranged on the inner diameter side of the armature. The rotor includes a rotor core having a plurality of slots extending in the radial direction and open in the radial direction and extending in the axial direction, field windings housed in the slots, and the slots. A plurality of split wedges that are housed in an axial arrangement on the opening side of the rotor, and that hold the field winding fixedly in the slot, and retaining rings attached to both axial ends of the rotor core. Have. The plurality of divided wedges include a composite wedge, and the composite wedge includes a main body portion that holds the field winding, and an electric current body that is held by the main body portion and through which an eddy current flows. Is made of a nonmagnetic material having a strength higher than that of the current-carrying body, and the current-carrying body is made of a metal having higher conductivity than the main body.
 この発明によれば、通電体が本体部より高導電性の金属で作製されているので、渦電流による複合くさびでの発熱が抑制される。本体部が通電体より高強度の非磁性材で作製されているので、厚みを薄くして、スロット内容物の飛散を防止できる。そこで、スロット内での界磁巻線の位置が電機子巻線に近づき、界磁電流の削減を可能として、効率を向上させることができる。 According to the present invention, since the current-carrying body is made of a highly conductive metal from the main body, heat generation in the composite wedge due to eddy current is suppressed. Since the main body is made of a nonmagnetic material having a strength higher than that of the current-carrying member, the thickness can be reduced to prevent the slot contents from scattering. Therefore, the position of the field winding in the slot approaches the armature winding, and the field current can be reduced, so that the efficiency can be improved.
この発明の実施の形態1に係る回転電機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における回転子を示す斜視図である。It is a perspective view which shows the rotor in the rotary electric machine which concerns on Embodiment 1 of this invention. 比較例の回転電機における回転子のスロット周りを示す要部横断面図である。It is a principal part cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine of a comparative example. 比較例の回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine of a comparative example. この発明の実施の形態1に係る回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における回転子の第1分割くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における回転子の第1分割くさびを軸方向から見た端面図である。It is the end elevation which looked at the 1st division wedge of the rotor in the rotary electric machine concerning Embodiment 1 of this invention from the axial direction. この発明の実施の形態1に係る回転電機における回転子の第2分割くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における回転子の第2分割くさびを軸方向他端側から見た端面図である。It is the end elevation which looked at the 2nd division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 1 of this invention from the axial direction other end side. この発明の実施の形態1に係る回転電機における回転子の第2分割くさびを軸方向一端側から見た端面図である。It is the end elevation which looked at the 2nd division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 1 of this invention from the axial direction one end side. この発明の実施の形態1に係る回転電機における回転子のスロット周りを示す要部分解斜視図である。It is a principal part disassembled perspective view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における回転子の第1分割クサビを示す分解斜視図である。It is a disassembled perspective view which shows the 1st division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における回転子の第2分割クサビを示す分解斜視図である。It is a disassembled perspective view which shows the 2nd division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における実施態様の回転子のスロット周りを示す要部横断面図である。It is a principal part cross-sectional view which shows the slot periphery of the rotor of the embodiment in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における実施態様の回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor of the embodiment in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る回転電機における回転子の第1分割くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る回転電機における回転子の第1分割くさびを軸方向から見た端面図である。It is the end elevation which looked at the 1st division wedge of the rotor in the rotary electric machine concerning Embodiment 2 of this invention from the axial direction. この発明の実施の形態2に係る回転電機における回転子の第2分割くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る回転電機における回転子の第2分割くさびを軸方向他端側から見た端面図である。It is the end view which looked at the 2nd division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 2 of this invention from the axial direction other end side. この発明の実施の形態2に係る回転電機における回転子の第2分割くさびを軸方向一端側から見た端面図である。It is the end view which looked at the 2nd division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 2 of this invention from the axial direction one end side. この発明の実施の形態3に係る回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係る回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 6 of this invention. この発明の実施の形態6に係る回転電機における回転子の第1分割くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 6 of this invention. この発明の実施の形態6に係る回転電機における回転子の第1分割くさびを軸方向から見た端面図である。It is the end elevation which looked at the 1st division wedge of the rotor in the rotary electric machine concerning Embodiment 6 of this invention from the axial direction. この発明の実施の形態6に係る回転電機における回転子の第2分割くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 6 of this invention. この発明の実施の形態6に係る回転電機における回転子の第2分割くさびを軸方向他端側から見た端面図である。It is the end elevation which looked at the 2nd division wedge of the rotor in the rotary electric machine concerning Embodiment 6 of this invention from the axial direction other end side. この発明の実施の形態6に係る回転電機における回転子の第2分割くさびを軸方向一端側から見た端面図である。It is the end elevation which looked at the 2nd division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 6 of this invention from the axial direction one end side. この発明の実施の形態7に係る回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 7 of this invention. この発明の実施の形態7に係る回転電機における回転子の第1塊状くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st block wedge of the rotor in the rotary electric machine which concerns on Embodiment 7 of this invention. この発明の実施の形態7に係る回転電機における回転子の第2塊状くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd block-shaped wedge of the rotor in the rotary electric machine which concerns on Embodiment 7 of this invention. この発明の実施の形態8に係る回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 8 of this invention. この発明の実施の形態8に係る回転電機における回転子の第1塊状くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st block wedge of the rotor in the rotary electric machine which concerns on Embodiment 8 of this invention. この発明の実施の形態8に係る回転電機における回転子の第1塊状くさびを軸方向から見た端面図である。It is the end elevation which looked at the 1st block-shaped wedge of the rotor in the rotary electric machine which concerns on Embodiment 8 of this invention from the axial direction. この発明の実施の形態8に係る回転電機における回転子の第2塊状くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd block-shaped wedge of the rotor in the rotary electric machine which concerns on Embodiment 8 of this invention. この発明の実施の形態8に係る回転電機における回転子の第2塊状くさびを軸方向から見た端面図である。It is the end elevation which looked at the 2nd lump-like wedge of the rotor in the rotary electric machine concerning Embodiment 8 of this invention from the axial direction. この発明の実施の形態8に係る回転電機における回転子の第4分割くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 4th division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 8 of this invention. この発明の実施の形態8に係る回転電機における回転子の第4分割くさびを軸方向から見た端面図である。It is the end elevation which looked at the 4th division wedge of the rotor in the rotary electric machine concerning Embodiment 8 of this invention from the axial direction. この発明の実施の形態8に係る回転電機における回転子のくさび間接続導体を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection conductor between the wedges of the rotor in the rotary electric machine which concerns on Embodiment 8 of this invention. この発明の実施の形態8に係る回転電機における回転子のくさび間接続導体を軸方向から見た端面図である。It is the end elevation which looked at the connection conductor between the wedges of the rotor in the rotary electric machine which concerns on Embodiment 8 of this invention from the axial direction. この発明の実施の形態9に係る回転電機における回転子のスロット周りを示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the slot periphery of the rotor in the rotary electric machine which concerns on Embodiment 9 of this invention. この発明の実施の形態9に係る回転電機における回転子の第5分割くさびを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 5th division | segmentation wedge of the rotor in the rotary electric machine which concerns on Embodiment 9 of this invention. この発明の実施の形態9に係る回転電機における回転子の第5分割くさびを軸方向から見た端面図である。It is the end elevation which looked at the 5th division wedge of the rotor in the rotary electric machine concerning Embodiment 9 of this invention from the axial direction.
 以下、この発明の各実施の形態の回転電機について、図に基づいて説明するが、各図において、同一または相当部材、部位には同一符号を付して説明する。 Hereinafter, the rotating electric machine according to each embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding members and parts are denoted by the same reference numerals.
 実施の形態1.
 図1は、この発明の実施の形態1に係る回転電機を示す縦断面図、図2は、この発明の実施の形態1に係る回転電機における回転子を示す斜視図である。なお、縦断面図とは、回転軸の軸心を含む断面を示す断面図である。
Embodiment 1 FIG.
1 is a longitudinal sectional view showing a rotary electric machine according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view showing a rotor in the rotary electric machine according to Embodiment 1 of the present invention. In addition, a longitudinal cross-sectional view is a cross-sectional view showing a cross section including the axis of the rotation shaft.
 図1および図2において、回転電機100は、フレーム1と、フレーム1に回転可能に支持された回転軸7、および回転軸7に固着されてフレーム1の内部に回転可能に設けられ、電磁石となる回転子コア8を有する回転子6と、フレーム1に保持されて、回転子コア8を取り囲み、かつ同軸に設けられた電機子コア4、および電機子コア4に保持されて、回転子コア8による磁束が鎖交して出力電流を発生する電機子巻線5を有する電機子3と、を備える。回転軸7は、原動機(図示せず)に接続されている。これにより、回転子コア8は、回転軸7を介して原動機の回転力が付与される。さらに、回転子コア8に装着された界磁巻線(図示せず)、電機子巻線5などでの発熱を抑えるための空気、または水素の冷媒を冷却するガスクーラー2が、フレーム1内に設けられている。 1 and 2, the rotating electrical machine 100 includes a frame 1, a rotating shaft 7 rotatably supported by the frame 1, and a rotating shaft 7 fixed to the rotating shaft 7 so as to be rotatable inside the frame 1, an electromagnet, The rotor 6 having the rotor core 8 and the armature core 4 which is held by the frame 1 and surrounds the rotor core 8 and is provided coaxially, and the armature core 4 is held by the rotor core. And an armature 3 having an armature winding 5 that generates an output current by interlinking the magnetic flux of 8. The rotating shaft 7 is connected to a prime mover (not shown). Thereby, the rotational force of the prime mover is applied to the rotor core 8 via the rotary shaft 7. Furthermore, a gas cooler 2 for cooling air or hydrogen refrigerant for suppressing heat generation in a field winding (not shown) mounted on the rotor core 8, the armature winding 5, etc. is provided inside the frame 1. Is provided.
 回転子コア8には、スロット10が、それぞれ、溝方向を軸方向として回転子コア8の軸方向の一端から他端に至るように、かつ回転子コア8の外周面に開口するように、周方向に複数設けられている。界磁巻線が、図示されていないが、スロット10内に設置されている。くさびが、スロット10内に設置され、遠心力による界磁巻線などのスロット内容物の飛び出しを阻止している。スロット10に設置されている界磁巻線を結合する構造(図示せず)が回転子コア8の軸方向両端部に設置されている。この界磁巻線を結合する構造の遠心力による変形を抑制するための金属製の保持環9が回転子コア8の軸方向両端部に設置されている。 In the rotor core 8, the slots 10 are respectively opened from one end to the other end in the axial direction of the rotor core 8 with the groove direction as an axial direction, and open to the outer peripheral surface of the rotor core 8. A plurality are provided in the circumferential direction. Although not shown, the field winding is installed in the slot 10. A wedge is installed in the slot 10 to prevent the slot contents such as field windings from popping out due to centrifugal force. A structure (not shown) for coupling field windings installed in the slot 10 is installed at both axial ends of the rotor core 8. Metal retaining rings 9 for suppressing deformation due to centrifugal force of the structure for coupling the field windings are provided at both axial ends of the rotor core 8.
 このように構成された回転電機100は、回転軸7を介して原動機の回転力が回転子6に付与される。これにより、回転磁界が電機子巻線5に与えられ、起電力が電機子巻線5に発生する。このように、回転電機100は発電機として動作する。 In the rotating electrical machine 100 configured in this way, the rotational force of the prime mover is applied to the rotor 6 through the rotating shaft 7. Thereby, a rotating magnetic field is applied to the armature winding 5, and an electromotive force is generated in the armature winding 5. Thus, the rotating electrical machine 100 operates as a generator.
 ここで、比較例の回転子構造を図3および図4を参照して説明する。図3は、比較例の回転電機における回転子のスロット周りを示す要部横断面図、図4は、比較例の回転電機における回転子のスロット周りを示す要部縦断面図である。なお、横断面図とは、回転軸の軸心に直交する断面を示す断面図である。 Here, the rotor structure of the comparative example will be described with reference to FIG. 3 and FIG. FIG. 3 is a cross-sectional view of the main part showing the periphery of the rotor slot in the rotating electrical machine of the comparative example, and FIG. The transverse cross-sectional view is a cross-sectional view showing a cross section orthogonal to the axis of the rotation axis.
 比較例の回転子においては、界磁巻線11、絶縁物12、ダンパーバー13が、内径側からこの順番で、各スロット10に設置されている。Uチャネル14が、開口を径方向外方に向けて、各スロット10の界磁巻線11の内径側に設置され、軸方向通風路15が構成されている。くさびが、各スロット10のダンパーバー13の外径側に設置され、界磁巻線11、絶縁物12、ダンパーバー13の飛び出しを阻止している。ここで、くさびは、スロット10の軸方向の中央部に設置される第1分割くさび16、スロット10の軸方向の両端部に設置される第2分割くさび17と、スロット10の第1分割くさび16と第2分割くさび17との間に設置される複数の第3分割くさび18と、からなる。つまり、第1分割くさび16、第2分割くさび17、および複数の第3分割くさび18は、各スロット10の開口側に、軸方向に1列に配列して収納されている。半径方向通風路20が、軸方向の複数位置で、第1分割くさび16、第2分割くさび17、第3分割くさび18、ダンパーバー13、絶縁物12、界磁巻線11を径方向に貫通するように形成され、軸方向通風路15と外部とを連通している。 In the rotor of the comparative example, the field winding 11, the insulator 12, and the damper bar 13 are installed in each slot 10 in this order from the inner diameter side. The U channel 14 is installed on the inner diameter side of the field winding 11 of each slot 10 with the opening directed radially outward, and an axial ventilation path 15 is configured. A wedge is installed on the outer diameter side of the damper bar 13 of each slot 10 to prevent the field winding 11, the insulator 12 and the damper bar 13 from jumping out. Here, the wedges are a first divided wedge 16 installed at the center of the slot 10 in the axial direction, a second divided wedge 17 installed at both ends of the slot 10 in the axial direction, and a first divided wedge of the slot 10. 16 and a plurality of third divided wedges 18 installed between the second divided wedges 17. In other words, the first divided wedge 16, the second divided wedge 17, and the plurality of third divided wedges 18 are housed in a line in the axial direction on the opening side of each slot 10. The radial ventilation path 20 penetrates the first divided wedge 16, the second divided wedge 17, the third divided wedge 18, the damper bar 13, the insulator 12, and the field winding 11 in the radial direction at a plurality of positions in the axial direction. The axial direction air passage 15 and the outside communicate with each other.
 第1分割くさび16は、軸方向の中央部で軸方向に分離して設置されているダンパーバー13に接し、ダンパーバー13間を電気的に短絡している。第2分割くさび17は、ダンパーバー13と保持環9とに接し、ダンパーバー13と保持環9とを電気的に短絡している。これにより、電機子巻線5からの磁束により誘起されて、軸方向他側に設置されているダンパーバー13を流れる渦電流が、図4中矢印19で示されるように、第1分割くさび16を通って、軸方向一側に設置されているダンパーバー13に流れる。さらに、ダンパーバー13を流れる渦電流が、第2分割くさび17を通って保持環9に流れる。保持環9に流れた渦電流は、保持環9から他のスロット10内に設置されている第2分割くさび17を通ってダンパーバー13に流れる。これにより、回転子内に保持環9を介した渦電流の経路が形成され、第1分割くさび16および第2分割くさび17を含めた回転子の渦電流による発熱が抑制される。このように、第1分割くさび16と第2分割くさび17には、高い導電性が求められることから、導電性の高い金属、例えばBeCu合金で作製されている。第1分割くさび16と第2分割くさび17に必要な導電率は、導電率の基準IACS(International Annealed Copper Stanraed)によれば20%IACSである。一方、第3分割くさび18には導電性が必要ないので、高強度の非磁性材、例えばステンレス鋼で作製される。第3分割くさび18に必要な材料強度は、0.2%耐力により規定され、196MPa以上である。これにより、第3分割くさび18は、電機子巻線5からの磁束により発熱することが抑制されている。 The first split wedge 16 is in contact with the damper bar 13 that is separated and installed in the axial direction at the central portion in the axial direction, and the damper bars 13 are electrically short-circuited. The second split wedge 17 is in contact with the damper bar 13 and the holding ring 9 and electrically shorts the damper bar 13 and the holding ring 9. As a result, the eddy current that is induced by the magnetic flux from the armature winding 5 and flows through the damper bar 13 installed on the other side in the axial direction, as shown by the arrow 19 in FIG. Flows through the damper bar 13 installed on one side in the axial direction. Further, the eddy current flowing through the damper bar 13 flows through the second split wedge 17 to the holding ring 9. The eddy current flowing in the holding ring 9 flows from the holding ring 9 to the damper bar 13 through the second split wedge 17 installed in the other slot 10. As a result, an eddy current path is formed in the rotor via the retaining ring 9, and heat generation due to the eddy current of the rotor including the first divided wedge 16 and the second divided wedge 17 is suppressed. As described above, since the first divided wedge 16 and the second divided wedge 17 are required to have high conductivity, the first divided wedge 16 and the second divided wedge 17 are made of a highly conductive metal, for example, a BeCu alloy. The conductivity required for the first divided wedge 16 and the second divided wedge 17 is 20% IACS according to the conductivity reference IACS (International Annealed Copper Standard). On the other hand, since the third divided wedge 18 does not need conductivity, it is made of a high-strength nonmagnetic material such as stainless steel. The material strength required for the third divided wedge 18 is defined by 0.2% proof stress and is 196 MPa or more. As a result, the third divided wedge 18 is suppressed from generating heat due to the magnetic flux from the armature winding 5.
 つぎに、実施の形態1による回転子構造を図5から図10を参照して説明する。図5は、この発明の実施の形態1に係る回転電機における回転子のスロット周りを示す要部縦断面図、図6は、この発明の実施の形態1に係る回転電機における回転子の第1分割くさびを示す縦断面図、図7は、この発明の実施の形態1に係る回転電機における回転子の第1分割くさびを軸方向から見た端面図、図8は、この発明の実施の形態1に係る回転電機における回転子の第2分割くさびを示す縦断面図、図9は、この発明の実施の形態1に係る回転電機における回転子の第2分割くさびを軸方向他端側から見た端面図、図10は、この発明の実施の形態1に係る回転電機における回転子の第2分割くさびを軸方向一端側から見た端面図、図11は、この発明の実施の形態1に係る回転電機における回転子のスロット周りを示す要部分解斜視図、図12は、この発明の実施の形態1に係る回転電機における回転子の第1分割クサビを示す分解斜視図、図13は、この発明の実施の形態1に係る回転電機における回転子の第2分割クサビを示す分解斜視図である。 Next, the rotor structure according to the first embodiment will be described with reference to FIGS. FIG. 5 is a longitudinal sectional view of a main part showing the periphery of the slot of the rotor in the rotary electric machine according to Embodiment 1 of the present invention, and FIG. FIG. 7 is a longitudinal sectional view showing the divided wedge, FIG. 7 is an end view of the first divided wedge of the rotor in the rotary electric machine according to Embodiment 1 of the present invention as viewed from the axial direction, and FIG. 8 is an embodiment of the present invention. FIG. 9 is a longitudinal sectional view showing a second divided wedge of the rotor in the rotating electrical machine according to FIG. 1, and FIG. FIG. 10 is an end view of the second split wedge of the rotor in the rotary electric machine according to Embodiment 1 of the present invention as viewed from one end in the axial direction, and FIG. 11 is Embodiment 1 of the present invention. The principal part which shows the slot periphery of the rotor in the rotary electric machine which concerns FIG. 12 is an exploded perspective view showing a first split wedge of the rotor in the rotary electric machine according to Embodiment 1 of the present invention, and FIG. 13 is a rotor in the rotary electric machine according to Embodiment 1 of the present invention. It is a disassembled perspective view which shows the 2nd division | segmentation wedge.
 実施の形態1による回転子6は、図5および図12に示されるように、第1分割くさび30が第1分割くさび16に替えてスロット10の軸方向中央部に設置され、第2分割くさび35が第2分割くさび17に替えてスロット10の軸方向両端部に設置されている点を除いて、比較例の回転子と同様に構成されている。実施の形態1では、くさびは、第1分割くさび30、第2分割くさび35、および第3分割くさび18に分割構成されている。 As shown in FIGS. 5 and 12, the rotor 6 according to the first embodiment includes a first divided wedge 30 that is installed in the center in the axial direction of the slot 10 instead of the first divided wedge 16, and the second divided wedge. 35 is configured in the same manner as the rotor of the comparative example, except that 35 is installed at both axial ends of the slot 10 instead of the second divided wedge 17. In the first embodiment, the wedge is divided into a first divided wedge 30, a second divided wedge 35, and a third divided wedge 18.
 第1分割くさび30は、図6、図7および図13に示されるように、第1分割上くさび31と、第1分割下くさび32と、導電性金属板33と、を備える複合くさびである。第1分割下くさび32は、溝方向を軸方向とする凹部32aが上面中央部に形成された略直方体に作製されている。導電性金属板33は、矩形平板状に作製され、凹部32aに配置され、第1分割下くさび32から軸方向両側への突出部を折り返して、第1分割下くさび32の軸方向の両端面に沿って延びて第1分割下くさび32の下面に沿うように配置される。このとき、第1分割下くさび32の軸方向の両端面の導電性金属板33の載置領域が凹部に形成されており、第1分割下くさび32の軸方向の両端面と導電性金属板33は面一となっている。同様に、第1分割下くさび32の下面の導電性金属板33の載置領域が凹部に形成されており、第1分割下くさび32の下面と導電性金属板33は面一となっている。第1分割上くさび31は、下面中央部に凹部32aと嵌合可能な凸部31aを有している。 As shown in FIGS. 6, 7, and 13, the first divided wedge 30 is a composite wedge including a first divided upper wedge 31, a first divided lower wedge 32, and a conductive metal plate 33. . The first divided lower wedge 32 is formed in a substantially rectangular parallelepiped shape in which a concave portion 32a having the groove direction as an axial direction is formed at the center of the upper surface. The conductive metal plate 33 is formed in a rectangular flat plate shape, is disposed in the recess 32a, and folds the protruding portions from the first divided lower wedge 32 to both sides in the axial direction so that both end surfaces in the axial direction of the first divided lower wedge 32 are formed. Extending along the lower surface of the first divided lower wedge 32. At this time, the mounting regions of the conductive metal plates 33 on both end surfaces in the axial direction of the first divided lower wedge 32 are formed in the recesses, and both end surfaces in the axial direction of the first divided lower wedge 32 and the conductive metal plates are formed. 33 is flush. Similarly, the mounting area of the conductive metal plate 33 on the lower surface of the first divided lower wedge 32 is formed in the recess, and the lower surface of the first divided lower wedge 32 and the conductive metal plate 33 are flush with each other. . The 1st division | segmentation upper wedge 31 has the convex part 31a which can be fitted with the recessed part 32a in the lower surface center part.
 第1分割くさび30は、凸部31aを凹部32aに嵌着して、導電性金属板33が第1分割上くさび31と第1分割下くさび32との間に挟まれて保持された状態で、第1分割上くさび31と第1分割下くさび32とを一体化して構成される。このとき、第1分割上くさび31と第1分割下くさび32は、軸方向の両端面が面一となっている。ここで、一体化された第1分割上くさび31と第1分割下くさび32とが本体部となり、導電性金属板33が通電体となる。 In the first divided wedge 30, the convex portion 31 a is fitted into the concave portion 32 a, and the conductive metal plate 33 is sandwiched and held between the first divided upper wedge 31 and the first divided lower wedge 32. The first divided upper wedge 31 and the first divided lower wedge 32 are integrated. At this time, the first divided upper wedge 31 and the first divided lower wedge 32 have the same axial end surfaces. Here, the integrated first divided upper wedge 31 and the first divided lower wedge 32 serve as a main body portion, and the conductive metal plate 33 serves as a current-carrying body.
 第1分割くさび30においても、第1分割上くさび31、第1分割下くさび32および導電性金属板33に、半径方向通風路20が形成されている。第1分割上くさび31および第1分割下くさび32は、高強度の非磁性材、例えばステンレス鋼で作製されている。導電性金属板33は、比較例における第1分割くさび16および第2分割くさび17と同等以上の導電性を有する材料、例えば銅又は銅合金で作製される。このように、第1分割上くさび31および第1分割下くさび32は、導電性金属板33より高強度の非磁性材で作製される。一方、導電性金属板33は、第1分割上くさび31および第1分割下くさび32より高伝導性の金属で作製される。 Also in the first divided wedge 30, the radial ventilation path 20 is formed in the first divided upper wedge 31, the first divided lower wedge 32, and the conductive metal plate 33. The first divided upper wedge 31 and the first divided lower wedge 32 are made of a high-strength nonmagnetic material such as stainless steel. The conductive metal plate 33 is made of a material having conductivity equal to or higher than that of the first divided wedge 16 and the second divided wedge 17 in the comparative example, for example, copper or a copper alloy. Thus, the first divided upper wedge 31 and the first divided lower wedge 32 are made of a nonmagnetic material having a higher strength than the conductive metal plate 33. On the other hand, the conductive metal plate 33 is made of a metal having higher conductivity than the first divided upper wedge 31 and the first divided lower wedge 32.
 第2分割くさび35は、図8から図10および図14に示されるように、第2分割上くさび36と、第2分割下くさび37と、第1導電性金属板38aと、第2導電性金属板38bと、を備える複合くさびである。第2分割下くさび37は、第2分割上くさび36より軸方向長さが長い略直方体に作製され、溝方向を軸方向とする凹部37aが上面中央部に形成されている。第1導電性金属板38aは、矩形平板状に作製され、凹部37aに配置され、第2分割下くさび37から軸方向両側への突出部を折り返して、第2分割下くさび37の軸方向の両端面に沿って延びて第2分割下くさび37の下面に沿うように配置される。このとき、第2分割下くさび37の軸方向の両端面の第1導電性金属板38aの載置領域が凹部に形成されており、第2分割下くさび37の軸方向の両端面と第1導電性金属板38aは面一となっている。同様に、第2分割下くさび37の下面の第1導電性金属板38aの載置領域が凹部に形成されており、第2分割下くさび37の下面と第1導電性金属板38aは面一となっている。 As shown in FIGS. 8 to 10 and 14, the second divided wedge 35 includes a second divided upper wedge 36, a second divided lower wedge 37, a first conductive metal plate 38 a, and a second conductive property. And a metal wedge 38b. The second divided lower wedge 37 is formed in a substantially rectangular parallelepiped having an axial length longer than that of the second divided upper wedge 36, and a concave portion 37a having the groove direction in the axial direction is formed at the center of the upper surface. The first conductive metal plate 38a is formed in a rectangular flat plate shape, and is disposed in the recess 37a. The first conductive metal plate 38a is bent in the axial direction of the second divided lower wedge 37 by folding back the protruding portions from the second divided lower wedge 37 to both sides in the axial direction. It extends along both end surfaces and is arranged along the lower surface of the second divided lower wedge 37. At this time, the mounting regions of the first conductive metal plates 38a on both end faces in the axial direction of the second divided lower wedge 37 are formed in the recesses, and both the end faces in the axial direction of the second divided lower wedge 37 and the first end faces The conductive metal plate 38a is flush. Similarly, the mounting area of the first conductive metal plate 38a on the lower surface of the second divided lower wedge 37 is formed in the recess, and the lower surface of the second divided lower wedge 37 and the first conductive metal plate 38a are flush with each other. It has become.
 第2分割上くさび36は、下面中央部に凹部37aと嵌合可能な凸部36aを有している。第2導電性金属板38bは、矩形平板状に作製され、凸部36aに配置され、第2分割上くさび36から軸方向一端側への突出部を折り返して、第2分割上くさび36の軸方向の一端面に沿うように配置される。このとき、第2分割上くさび36の軸方向の一端面の第2導電性金属板38bの載置領域が凹部に形成されており、第2分割上くさび36の軸方向の一端面と第2導電性金属板38bは面一となっている。そして、第2分割くさび35は、凸部36aを凹部37aに嵌着して、第1導電性金属板38aおよび第2導電性金属板38bが第2分割上くさび36と第2分割下くさび37との間に挟まれて保持された状態で、第2分割上くさび36と第2分割下くさび37とを一体化して構成される。このとき、第2分割下くさび37は、第2分割上くさび36から軸方向一端側に突出し、第2分割上くさび36と第2分割下くさび37の軸方向の他端面は、面一となっている。ここで、一体化された第2分割上くさび36と第2分割下くさび37とが本体部となり、第1導電性金属板38aおよび第2導電性金属板38bが通電体となる。 The second divided upper wedge 36 has a convex portion 36a that can be fitted to the concave portion 37a at the center of the lower surface. The second conductive metal plate 38b is formed in a rectangular flat plate shape and is disposed on the convex portion 36a. The second conductive upper metal plate 38b is folded back from the second divided upper wedge 36 toward the one end side in the axial direction, so that the axis of the second divided upper wedge 36 is obtained. It arrange | positions along the one end surface of a direction. At this time, the mounting region of the second conductive metal plate 38b on the one end surface in the axial direction of the second divided upper wedge 36 is formed in the concave portion, and the one end surface in the axial direction of the second divided upper wedge 36 and the second The conductive metal plate 38b is flush. The second divided wedge 35 has the convex portion 36a fitted into the concave portion 37a, and the first conductive metal plate 38a and the second conductive metal plate 38b are divided into the second divided upper wedge 36 and the second divided lower wedge 37. The second divided upper wedge 36 and the second divided lower wedge 37 are integrated with each other while being held between the two. At this time, the second divided lower wedge 37 protrudes from the second divided upper wedge 36 to one axial end side, and the other axial end surfaces of the second divided upper wedge 36 and the second divided lower wedge 37 are flush with each other. ing. Here, the integrated second divided upper wedge 36 and second divided lower wedge 37 serve as a main body portion, and the first conductive metal plate 38a and the second conductive metal plate 38b serve as a current-carrying body.
 第2分割くさび35においても、第2分割上くさび36、第2分割下くさび37、第1導電性金属板38aおよび第2導電性金属板38bに、半径方向通風路20が形成されている。第2分割上くさび36および第2分割下くさび37は、高強度の非磁性材、例えばステンレス鋼で作製されている。第1導電性金属板38aおよび第2導電性金属板38bは、導電性金属板33と同じ材料で作製される。このように、第2分割上くさび36および第2分割下くさび37は、第1導電性金属板38aおよび第2導電性金属板38bより高強度の非磁性材で作製される。一方、第1導電性金属板38aおよび第2導電性金属板38bは、第2分割上くさび36および第2分割下くさび37より高伝導性の金属で作製される。 Also in the second divided wedge 35, the radial ventilation path 20 is formed in the second divided upper wedge 36, the second divided lower wedge 37, the first conductive metal plate 38a, and the second conductive metal plate 38b. The second divided upper wedge 36 and the second divided lower wedge 37 are made of a high-strength nonmagnetic material such as stainless steel. The first conductive metal plate 38 a and the second conductive metal plate 38 b are made of the same material as the conductive metal plate 33. As described above, the second divided upper wedge 36 and the second divided lower wedge 37 are made of a nonmagnetic material having higher strength than the first conductive metal plate 38a and the second conductive metal plate 38b. On the other hand, the first conductive metal plate 38 a and the second conductive metal plate 38 b are made of a metal having higher conductivity than the second divided upper wedge 36 and the second divided lower wedge 37.
 なお、第1導電性金属板38aと第2導電性金属板38bとの2枚の金属板を用いているが、1枚の金属板を用い、第2分割くさび35から軸方向一端側への突出部を分割して上下に折り返してもよい。ここでは、スロット10の軸方向一端部に設置される第2分割くさび35について説明しているが、スロット10の軸方向他端部では、第2分割くさび35は、第2分割下くさび37が第2分割上くさび36から軸方向他端側に突出するように設置されている。 In addition, although the two metal plates of the first conductive metal plate 38a and the second conductive metal plate 38b are used, one metal plate is used, and the second divided wedge 35 extends to one end side in the axial direction. The protruding portion may be divided and folded up and down. Here, the second split wedge 35 installed at one end in the axial direction of the slot 10 has been described. However, at the other end in the axial direction of the slot 10, the second split wedge 35 has a second split lower wedge 37. It is installed so as to protrude from the second divided upper wedge 36 to the other axial end side.
 第1分割くさび30を第1分割上くさび31と第1分割下くさび32とに分割する箇所は、回転子6が回転時に遠心力を受ける際に圧縮の荷重となる箇所とすることが好ましい。第1分割上くさび31と第1分割下くさび32とは、焼嵌め、冷やし嵌め、接着、溶接、ロウ付け、撹拌接合のいずれかの方法を用いて一体化される。なお、第2分割くさび35においても、第1分割くさび30と同様である。これにより、スロット10に第1分割くさび30および第2分割くさび35を分離することなく挿入でき、組み立て作業性が高められる。 It is preferable that the portion where the first divided wedge 30 is divided into the first divided upper wedge 31 and the first divided lower wedge 32 is a portion that becomes a compression load when the rotor 6 receives centrifugal force during rotation. The first divided upper wedge 31 and the first divided lower wedge 32 are integrated using any one of shrink fitting, cold fitting, adhesion, welding, brazing, and stir welding. The second divided wedge 35 is the same as the first divided wedge 30. Thereby, the 1st division | segmentation wedge 30 and the 2nd division | segmentation wedge 35 can be inserted in the slot 10, without isolate | separating, and assembly workability | operativity is improved.
 また、第1分割くさび30および第2分割くさび35は、接着、 溶接、ロウ付けおよび撹拌接合のいずれかと、焼嵌めおよび冷やし嵌めのいずれかと、を併用して一体化してもよい。これにより、焼嵌めまたは冷やし嵌めによる結合部が外れるような温度分布が第1分割くさび30および第2分割くさび35に発生しても、接着、 溶接、ロウ付けおよび撹拌接合のいずれかによる接合部が維持される。その結果、第1分割くさび30および第2分割くさび35の接合部が外れることに起因する、導電性金属とくさびとの摩耗による金属粉の発生を抑制できる。 Further, the first divided wedge 30 and the second divided wedge 35 may be integrated by using any one of adhesion, brazing welding, brazing, and stir welding together with either shrink fitting or cold fitting. As a result, even if a temperature distribution is generated in the first divided wedge 30 and the second divided wedge 35 so that the joint portion due to shrink fitting or cold fitting is disengaged, the bonded portion by any one of adhesion, brazing welding, brazing and stir welding Is maintained. As a result, it is possible to suppress the generation of metal powder due to wear of the conductive metal and the wedge due to the disengagement of the joint portion between the first divided wedge 30 and the second divided wedge 35.
 このように構成された回転子6においては、第1分割くさび30の本体部からの導電性金属板33の突出部が、軸方向中央部で軸方向に分離して設置されているダンパーバー13に接し、ダンパーバー13間を電気的に短絡している。第2分割くさび35の本体部からの第1導電性金属板38aと第2導電性金属板38bとの突出部が、ダンパーバー13と保持環9とに接し、ダンパーバー13と保持環9とを電気的に短絡している。このとき、第1分割くさび30の第1分割下くさび32の下面と導電性金属板33とが面一となっているので、導電性金属板33とダンパーバー13とが面接触し、両者の電気的接続が確実に確保される。第2分割くさび35の第2分割下くさび37の下面と第1導電性金属板38aとが面一となっているので、第1導電性金属板38aとダンパーバー13とが面接触し、両者の電気的接続が確実に確保される。第2分割下くさび37の第2分割上くさび36から軸方向一端側への突出部の上面と第1導電性金属板38aとが面一となっているので、第1導電性金属板38aと保持環9の内周面とが面接触し、両者の電気的接続が確実に確保される。第2分割上くさび36の軸方向一端面と第2導電性金属板38bとが面一となっているので、第2導電性金属板38bと保持環9の軸方向他端面とが面接触し、両者の電気的接続が確実に確保される。さらに、第1導電性金属板38aと第2導電性金属板38bの保持環9との接触面積が増大し、接触抵抗が低減される。 In the rotor 6 configured as described above, the damper bar 13 in which the protruding portion of the conductive metal plate 33 from the main body portion of the first split wedge 30 is separated in the axial direction at the central portion in the axial direction. The damper bars 13 are electrically short-circuited. The protruding portions of the first conductive metal plate 38a and the second conductive metal plate 38b from the main body of the second divided wedge 35 are in contact with the damper bar 13 and the holding ring 9, and the damper bar 13 and the holding ring 9 Are electrically short-circuited. At this time, since the lower surface of the first divided lower wedge 32 of the first divided wedge 30 and the conductive metal plate 33 are flush with each other, the conductive metal plate 33 and the damper bar 13 are in surface contact with each other. An electrical connection is reliably ensured. Since the lower surface of the second divided lower wedge 37 of the second divided wedge 35 and the first conductive metal plate 38a are flush with each other, the first conductive metal plate 38a and the damper bar 13 are in surface contact with each other. The electrical connection is ensured. Since the upper surface of the projecting portion of the second divided lower wedge 37 from the second divided upper wedge 36 to the one end side in the axial direction is flush with the first conductive metal plate 38a, the first conductive metal plate 38a The inner peripheral surface of the holding ring 9 comes into surface contact, and electrical connection between the two is ensured reliably. Since one end surface in the axial direction of the second divided upper wedge 36 and the second conductive metal plate 38b are flush with each other, the second conductive metal plate 38b and the other axial end surface of the holding ring 9 are in surface contact. The electrical connection between the two is ensured. Further, the contact area between the first conductive metal plate 38a and the holding ring 9 of the second conductive metal plate 38b increases, and the contact resistance is reduced.
 比較例の回転子においては、ダンパーバー13に流れる渦電流を第1分割くさび16および第2分割くさび17に流しているので、第1分割くさび16および第2分割くさび17をBeCu合金などの高い導電性の材料で作製されていた。しかし、高い導電性と高強度の両立は困難であり、第1分割くさび16および第2分割くさび17の厚さを厚くして、スロット内容物の飛散防止機能を確保していた。これにより、界磁巻線11と電機子巻線5との間の距離が長くなり、界磁巻線11から生じる磁束の電機子巻線5に交差する量が少なくなってしまう。 In the rotor of the comparative example, since the eddy current flowing through the damper bar 13 flows through the first divided wedge 16 and the second divided wedge 17, the first divided wedge 16 and the second divided wedge 17 are made of a high CuCu alloy or the like. It was made of a conductive material. However, it is difficult to achieve both high conductivity and high strength, and the thickness of the first divided wedge 16 and the second divided wedge 17 is increased to ensure the function of preventing the slot contents from scattering. As a result, the distance between the field winding 11 and the armature winding 5 increases, and the amount of magnetic flux generated from the field winding 11 intersecting the armature winding 5 decreases.
 実施の形態1では、第1分割くさび30は、第1分割上くさび31と、第1分割下くさび32と、導電性金属板33と、を備えた複合くさびである。導電性金属板33は、第1分割上くさび31および第1分割下くさび32より高導電性の金属で作製されている。導電性金属板33が導電性の機能を担っているので、導電性金属板33を保持する第1分割上くさび31と第1分割下くさび32とには、高い導電性が不要となる。第2分割くさび35においても、同様である。そこで、第1分割上くさび31、第1分割下くさび32、第2分割上くさび36および第2分割下くさび37に求められる特性を強度に特化できる。これにより、第1分割上くさび31、第1分割下くさび32、第2分割上くさび36および第2分割下くさび37を、導電性金属板33、第1導電性金属板38aおよび第2導電性金属板38bよりも高強度の材料で作製することができる。そこで、第1分割上くさび31、第1分割下くさび32、第2分割上くさび36および第2分割下くさび37の材料として、第1分割くさび16および第2分割くさび17の材料として用いられているBeCu合金よりも高強度な非磁性材、例えばステンレス鋼を用いることができる。その結果、第1分割くさび30および第2分割くさび35の厚さを薄くすることができる。これにより、スロット内容物の飛散を防止できるとともに、スロット10内の界磁巻線11を回転子コア8の外周部に設置できる。そこで、界磁巻線11と電機子巻線5との間の距離が短くなり、界磁巻線11から生じる磁束がより多く電機子巻線5に鎖交するので、設定された出力電流を得るために界磁巻線11に通電される界磁電流を削減できる。その結果、界磁銅損が削減され、効率が向上される。また、導電性金属板33、第1導電性金属板38aおよび第2導電性金属板38bが、第1分割上くさび31、第1分割下くさび32、第2分割上くさび36および第2分割下くさび37より高い導電性の材料、例えば銅、銅合金などで作製されているので、第1分割くさび30および第2分割くさび35での発熱が抑制され、渦電流損の低減が図られる。 In the first embodiment, the first divided wedge 30 is a composite wedge including a first divided upper wedge 31, a first divided lower wedge 32, and a conductive metal plate 33. The conductive metal plate 33 is made of a metal having higher conductivity than the first divided upper wedge 31 and the first divided lower wedge 32. Since the conductive metal plate 33 has a conductive function, the first divided upper wedge 31 and the first divided lower wedge 32 that hold the conductive metal plate 33 do not require high conductivity. The same applies to the second divided wedge 35. Therefore, the characteristics required for the first divided upper wedge 31, the first divided lower wedge 32, the second divided upper wedge 36, and the second divided lower wedge 37 can be specialized in strength. Thus, the first divided upper wedge 31, the first divided lower wedge 32, the second divided upper wedge 36 and the second divided lower wedge 37 are replaced with the conductive metal plate 33, the first conductive metal plate 38a and the second conductive. It can be made of a material stronger than the metal plate 38b. Therefore, the first divided upper wedge 31, the first divided lower wedge 32, the second divided upper wedge 36 and the second divided lower wedge 37 are used as materials for the first divided wedge 16 and the second divided wedge 17. A nonmagnetic material having a higher strength than the BeCu alloy, such as stainless steel, can be used. As a result, the thickness of the first divided wedge 30 and the second divided wedge 35 can be reduced. Thereby, scattering of the contents of the slot can be prevented, and the field winding 11 in the slot 10 can be installed on the outer peripheral portion of the rotor core 8. Therefore, the distance between the field winding 11 and the armature winding 5 is shortened, and more magnetic flux generated from the field winding 11 is linked to the armature winding 5. Therefore, the field current supplied to the field winding 11 can be reduced. As a result, field copper loss is reduced and efficiency is improved. The conductive metal plate 33, the first conductive metal plate 38a, and the second conductive metal plate 38b are divided into a first divided upper wedge 31, a first divided lower wedge 32, a second divided upper wedge 36, and a second divided lower plate. Since it is made of a conductive material higher than the wedge 37, such as copper or copper alloy, heat generation in the first divided wedge 30 and the second divided wedge 35 is suppressed, and eddy current loss can be reduced.
 第1分割くさび30がスロット10の軸方向中央部に収納され、第2分割くさび35がスロット10の軸方向両端部に収納されている。そこで、電機子巻線5からの磁束により誘起されて、軸方向他側に設置されているダンパーバー13を流れる渦電流が、図5中矢印19で示されるように、第1分割くさび30の導電性金属板33を通って、軸方向一側に設置されているダンパーバー13に流れる。さらに、ダンパーバー13を流れる渦電流が、第2分割くさび35の第1導電性金属板38aと第2導電性金属板38bを通って保持環9に流れる。保持環9に流れた渦電流は、保持環9から他のスロット10内に設置されている第2分割くさび35の第1導電性金属板38aと第2導電性金属板38bを通ってダンパーバー13に流れる。 The first divided wedge 30 is housed in the central portion of the slot 10 in the axial direction, and the second divided wedges 35 are housed in both axial end portions of the slot 10. Therefore, an eddy current that is induced by the magnetic flux from the armature winding 5 and flows through the damper bar 13 installed on the other side in the axial direction is indicated by an arrow 19 in FIG. It flows through the conductive metal plate 33 to the damper bar 13 installed on one side in the axial direction. Further, the eddy current flowing through the damper bar 13 flows to the holding ring 9 through the first conductive metal plate 38a and the second conductive metal plate 38b of the second split wedge 35. The eddy current flowing in the holding ring 9 passes through the first conductive metal plate 38a and the second conductive metal plate 38b of the second split wedge 35 installed in the other slot 10 from the holding ring 9, and the damper bar. 13 flows.
 第1分割クサビ30が軸方向中央部に収納されているので、軸方向中央部でのダンパーバー13間の導通が第1分割クサビ30の導電性金属板33により維持される。第2分割くさび35が軸方向両端部に収納されているので、軸方向両端部でのダンパーバー13と保持環9との導通が第2分割クサビ35の第1導電性金属板38a第2導電性金属板38bにより維持される。そのうえで、第1分割上くさび31および第1分割下くさび32が導電性金属板33より高強度の非磁性体で作製されている。同様に、第2分割上くさび36および第2分割下くさび37が第1導電性金属板38aおよび第2導電性金属板38bより高強度の非磁性体で作製されている。そこで、第1分割上くさび31、第1分割下くさび32、第2分割上くさび36および第2分割下くさび37の厚みを薄くしても、スロット内容物の飛散を防止できる。それにより、スロット10内での界磁巻線11の位置が電機子巻線5に近づき、界磁電流の削減を可能にして、効率を向上させることができる。 Since the first divided wedge 30 is housed in the axially central portion, the conduction between the damper bars 13 in the axially central portion is maintained by the conductive metal plate 33 of the first divided wedge 30. Since the second split wedge 35 is housed at both axial ends, the conduction between the damper bar 13 and the retaining ring 9 at both axial ends is the first conductive metal plate 38a of the second split wedge 35 and the second conductive. Maintained by the conductive metal plate 38b. In addition, the first divided upper wedge 31 and the first divided lower wedge 32 are made of a nonmagnetic material having higher strength than the conductive metal plate 33. Similarly, the second divided upper wedge 36 and the second divided lower wedge 37 are made of a nonmagnetic material having higher strength than the first conductive metal plate 38a and the second conductive metal plate 38b. Therefore, even if the thickness of the first divided upper wedge 31, the first divided lower wedge 32, the second divided upper wedge 36, and the second divided lower wedge 37 is reduced, the scattering of the slot contents can be prevented. As a result, the position of the field winding 11 in the slot 10 approaches the armature winding 5 and the field current can be reduced, thereby improving the efficiency.
 第1分割くさび30は、導電性金属板33が第1分割上くさび31と第1分割下くさび32との間に挟まれて保持された状態で、第1分割上くさび31と第1分割下くさび32とを一体化して構成されている。そこで、回転子6の回転時に、遠心力が第1分割下くさび32を介して導電性金属板33を第1分割上くさび31に押し付けるように作用する。これにより、導電性金属板33が第1分割くさび30から外れるような事態の発生が抑制される。第2分割くさび35においても、同様である。 The first divided wedge 30 is a state in which the conductive metal plate 33 is sandwiched and held between the first divided upper wedge 31 and the first divided lower wedge 32, and the first divided upper wedge 31 and the first divided lower wedge 30. The wedge 32 is integrated. Therefore, when the rotor 6 rotates, the centrifugal force acts to press the conductive metal plate 33 against the first divided upper wedge 31 via the first divided lower wedge 32. As a result, the occurrence of a situation where the conductive metal plate 33 is detached from the first divided wedge 30 is suppressed. The same applies to the second divided wedge 35.
 なお、上記実施の形態1では、軸方向通風路15がスロット10の底部にのみ設けられているが、図14および図15に示されるように、軸方向通風路21の半径方向位置を変えて界磁巻線11に複数形成してもよい。この場合、図15に示されるように、回転子コア8の軸方向中央部で、半径方向通風路20を、第1分割くさび30、ダンパーバー13、絶縁物12および界磁巻線11に形成し、複数の軸方向通風路21と外部とを連通するようにする。このとき、半径方向通風路20は、第2分割くさび35および第3分割くさび18に必ずしも形成する必要はない。このように、実施の形態1による回転子は、半径方向通風形式、軸方向通風形式のどちらの回転電機にも適用できる。なお、他の実施の形態による回転子も、半径方向通風形式、軸方向通風形式のどちらの回転電機にも適用できる。 In the first embodiment, the axial ventilation path 15 is provided only at the bottom of the slot 10, but the radial position of the axial ventilation path 21 is changed as shown in FIGS. A plurality of field windings 11 may be formed. In this case, as shown in FIG. 15, the radial ventilation path 20 is formed in the first split wedge 30, the damper bar 13, the insulator 12, and the field winding 11 at the axial center of the rotor core 8. Then, the plurality of axial ventilation passages 21 are communicated with the outside. At this time, the radial ventilation path 20 is not necessarily formed in the second divided wedge 35 and the third divided wedge 18. Thus, the rotor according to the first embodiment can be applied to both the radial direction ventilation type and the axial direction ventilation type rotating electrical machines. Note that the rotor according to the other embodiments can be applied to both the radial-direction ventilation type and the axial-direction ventilation type rotating electrical machines.
 また、上記実施の形態1において、導電性金属板33、第1導電性金属板38a、および第2導電性金属板38bのダンパーバー13又は保持環9との接触面に、導電性金属板33、第1導電性金属板38aおよび第2導電性金属板38bよりも高い導電性の金属、例えば金、銀などのメッキを施し、接触抵抗を低減してもよい。なお、他の実施の形態においても、導電性金属板の、ダンパーバーなどの他の部材との電気的接触面に、金、銀などの高い導電性の金属メッキを施してもよい。 In the first embodiment, the conductive metal plate 33 is formed on the contact surface of the conductive metal plate 33, the first conductive metal plate 38 a, and the second conductive metal plate 38 b with the damper bar 13 or the holding ring 9. The contact resistance may be reduced by plating with a conductive metal that is higher than the first conductive metal plate 38a and the second conductive metal plate 38b, such as gold or silver. In other embodiments, the conductive metal plate may be subjected to highly conductive metal plating such as gold and silver on the electrical contact surface with other members such as a damper bar.
 また、上記実施の形態1では、第1分割くさび30および第2分割くさび35が、それぞれ、焼嵌め、冷やし嵌め、接着、溶接、ロウ付け、撹拌接合のいずれか1つの方法で、または接着と、溶接、ロウ付けおよび撹拌接合のいずれかと、を併用して、それぞれ一体化している。他の実施の形態においても、第1分割くさびおよび第2分割くさびは、同様に、それぞれ、焼嵌め、冷やし嵌め、接着、溶接、ロウ付け、撹拌接合のいずれか1つの方法、または接着と、溶接、ロウ付けおよび撹拌接合のいずれかと、を併用して、それぞれ一体化される。 In the first embodiment, each of the first divided wedge 30 and the second divided wedge 35 is either one of shrink fitting, cold fitting, adhesion, welding, brazing, stirring joining, or bonding. , Welding, brazing, and stir welding are used in combination. In other embodiments, the first split wedge and the second split wedge are each similarly shrink-fitted, cold-fitted, bonded, welded, brazed, stir welded, or bonded, respectively, Any one of welding, brazing and stir welding is used in combination.
 また、上記実施の形態1では、第1分割くさび30および第2分割くさび35を上下に分割する箇所は、回転子の回転時に遠心力を受ける際に圧縮の荷重となる箇所としているが、他の実施の形態においても、第1分割くさびおよび第2分割くさびを上下に分割する箇所は、回転子の回転時に遠心力を受ける際に圧縮の荷重となる箇所とすることが望ましい。 In the first embodiment, the first divided wedge 30 and the second divided wedge 35 are divided into upper and lower portions that are compressed loads when receiving centrifugal force during rotation of the rotor. Also in this embodiment, it is desirable that the first divided wedge and the second divided wedge are divided into portions where the compression load is applied when the centrifugal force is applied during rotation of the rotor.
 実施の形態2.
 図16は、この発明の実施の形態2に係る回転電機における回転子のスロット周りを示す要部縦断面図、図17は、この発明の実施の形態2に係る回転電機における回転子の第1分割くさびを示す縦断面図、図18は、この発明の実施の形態2に係る回転電機における回転子の第1分割くさびを軸方向から見た端面図、図19は、この発明の実施の形態2に係る回転電機における回転子の第2分割くさびを示す縦断面図、図20は、この発明の実施の形態2に係る回転電機における回転子の第2分割くさびを軸方向他端側から見た端面図、図21は、この発明の実施の形態2に係る回転電機における回転子の第2分割くさびを軸方向一端側から見た端面図である。
Embodiment 2. FIG.
FIG. 16 is a longitudinal sectional view of a main part showing the periphery of the slot of the rotor in the rotary electric machine according to Embodiment 2 of the present invention, and FIG. 17 is a first view of the rotor in the rotary electric machine according to Embodiment 2 of the present invention. FIG. 18 is a longitudinal sectional view showing the divided wedge, FIG. 18 is an end view of the first divided wedge of the rotor in the rotary electric machine according to Embodiment 2 of the present invention viewed from the axial direction, and FIG. 19 is an embodiment of the present invention. FIG. 20 is a longitudinal sectional view showing a second divided wedge of the rotor in the rotating electric machine according to FIG. 2, and FIG. 20 is a view of the second divided wedge of the rotor in the rotating electric machine according to Embodiment 2 of the present invention when viewed from the other axial end side. FIG. 21 is an end view of the second split wedge of the rotor in the rotary electric machine according to Embodiment 2 of the present invention as viewed from one end side in the axial direction.
 実施の形態2では、図16に示されるように、第1分割くさび40が第1分割くさび30に替えてスロット10の軸方向中央部に設置され、第2分割くさび45が第2分割くさび35に替えてスロット10の軸方向両端部に設置されている点を除いて、実施の形態1と同様に構成されている。実施の形態2では、くさびは、第1分割くさび40、第2分割くさび45、および第3分割くさび18に分割構成されている。 In the second embodiment, as shown in FIG. 16, the first divided wedge 40 is installed in the axial center of the slot 10 instead of the first divided wedge 30, and the second divided wedge 45 is the second divided wedge 35. The configuration is the same as that of the first embodiment except that it is installed at both ends in the axial direction of the slot 10 instead. In the second embodiment, the wedge is divided into a first divided wedge 40, a second divided wedge 45, and a third divided wedge 18.
 第1分割くさび40は、図17および図18に示されるように、第1分割上くさび41と、第1分割下くさび42と、導電性金属板43と、を備える複合くさびである。第1分割下くさび42は、軸方向の延びる凸部42aが上面中央部に形成された略直方体に作製されている。導電性金属板43は、矩形平板状に作製され、凸部42aに配置され、第1分割下くさび42から軸方向両側への突出部を折り返して、第1分割下くさび42の軸方向の両端面に沿って延びて第1分割下くさび42の下面に沿うように配置される。このとき、第1分割下くさび42の軸方向の両端面の導電性金属板43の載置領域が凹部に形成されており、第1分割下くさび42の軸方向の両端面と導電性金属板43は面一となっている。同様に、第1分割下くさび42の下面の導電性金属板43の載置領域が凹部に形成されており、第1分割下くさび42の下面と導電性金属板43は面一となっている。第1分割上くさび41は、下面中央部に凸部42aと嵌合可能な凹部41aを有している。 17 and 18, the first divided wedge 40 is a composite wedge including a first divided upper wedge 41, a first divided lower wedge 42, and a conductive metal plate 43. The first divided lower wedge 42 is formed in a substantially rectangular parallelepiped shape in which a protruding portion 42a extending in the axial direction is formed at the center of the upper surface. The conductive metal plate 43 is formed in a rectangular flat plate shape, arranged on the convex portion 42a, folded back from the first divided lower wedge 42 to both axial sides, and both ends of the first divided lower wedge 42 in the axial direction. It extends along the surface and is arranged along the lower surface of the first divided lower wedge 42. At this time, the mounting regions of the conductive metal plates 43 on both end surfaces in the axial direction of the first divided lower wedge 42 are formed in the recesses, and both end surfaces in the axial direction of the first divided lower wedge 42 and the conductive metal plates are formed. 43 is flush. Similarly, the mounting area of the conductive metal plate 43 on the lower surface of the first divided lower wedge 42 is formed in the recess, and the lower surface of the first divided lower wedge 42 and the conductive metal plate 43 are flush with each other. . The 1st division | segmentation upper wedge 41 has the recessed part 41a which can be fitted with the convex part 42a in the lower surface center part.
 第1分割くさび40は、凹部41aを凸部42aに嵌着して、第1分割上くさび41と第1分割下くさび42とを一体化して構成される。このとき、第1分割上くさび41と第1分割下くさび42は、軸方向の両端面が面一となっている。ここで、一体化された第1分割上くさび41と第1分割下くさび42とが本体部となり、導電性金属板43が通電体となる。なお、第1分割上くさび41と第1分割下くさび42とを一体化する方法は,上記実施の形態1と同様である。 The first divided wedge 40 is configured by fitting the concave portion 41a to the convex portion 42a and integrating the first divided upper wedge 41 and the first divided lower wedge 42 together. At this time, the first divided upper wedge 41 and the first divided lower wedge 42 have both axial end surfaces flush with each other. Here, the integrated first divided upper wedge 41 and the first divided lower wedge 42 serve as a main body portion, and the conductive metal plate 43 serves as an energizing body. The method of integrating the first divided upper wedge 41 and the first divided lower wedge 42 is the same as in the first embodiment.
 第1分割くさび40においても、第1分割上くさび41、第1分割下くさび42および導電性金属板43に、半径方向通風路20が形成されている。第1分割上くさび41および第1分割下くさび42は、高強度の非磁性材、例えばステンレス鋼で作製されている。導電性金属板43は、導電性金属板33と同等の導電性を有する材料、例えば銅又は銅合金で作製される。 Also in the first divided wedge 40, the radial ventilation path 20 is formed in the first divided upper wedge 41, the first divided lower wedge 42 and the conductive metal plate 43. The first divided upper wedge 41 and the first divided lower wedge 42 are made of a high-strength nonmagnetic material such as stainless steel. The conductive metal plate 43 is made of a material having conductivity equivalent to that of the conductive metal plate 33, for example, copper or a copper alloy.
 第2分割くさび45は、図19から図21に示されるように、第2分割上くさび46と、第2分割下くさび47と、導電性金属板48と、を備える複合くさびである。第2分割下くさび47は、第2分割上くさび46より軸方向長さが長く作製され、軸方向に延びる凸部47aが上面中央部に形成されている。導電性金属板48は、矩形平板状に作製され、凸部47aに配置され、第2分割下くさび47から軸方向他側への突出部を折り返して、第2分割下くさび47の軸方向の他端面に沿って延びて第2分割下くさび47の下面に沿うように配置される。このとき、第2分割下くさび47の軸方向の他端面の導電性金属板48の載置領域が凹部に形成されており、第2分割下くさび47の軸方向の他端面と導電性金属板48は面一となっている。同様に、第2分割下くさび47の下面の導電性金属板48の載置領域が凹部に形成されており、第2分割下くさび47の下面と導電性金属板48は面一となっている。 As shown in FIGS. 19 to 21, the second divided wedge 45 is a composite wedge including a second divided upper wedge 46, a second divided lower wedge 47, and a conductive metal plate 48. The second divided lower wedge 47 is made longer than the second divided upper wedge 46 in the axial direction, and a convex portion 47a extending in the axial direction is formed at the center of the upper surface. The conductive metal plate 48 is formed in a rectangular flat plate shape, arranged on the convex portion 47a, folded back from the second divided lower wedge 47 to the other side in the axial direction, and in the axial direction of the second divided lower wedge 47. It extends along the other end surface and is arranged along the lower surface of the second divided lower wedge 47. At this time, the mounting region of the conductive metal plate 48 on the other end surface in the axial direction of the second divided lower wedge 47 is formed in the recess, and the other end surface in the axial direction of the second divided lower wedge 47 and the conductive metal plate 48 is the same. Similarly, the mounting area of the conductive metal plate 48 on the lower surface of the second divided lower wedge 47 is formed in the recess, and the lower surface of the second divided lower wedge 47 and the conductive metal plate 48 are flush with each other. .
 また、導電性金属板48は、凸部47aに配置されて、第2分割下くさび47から軸方向一側への突出部を折り返して、第2分割下くさび47の軸方向の一端面に沿って延びる。さらに、導電性金属板48は、第2分割下くさび47の軸方向一端側への突出部の上面、軸方向の一端面および下面に沿うように配置される。このとき、第2分割下くさび47の軸方向の一端面、さらに第2分割下くさび47の軸方向一側への突出部の上面、軸方向一端面および下面の導電性金属板48の載置領域が凹部に形成されており、導電性金属板48が第2分割下くさび47に面一に配置されている。 In addition, the conductive metal plate 48 is disposed on the convex portion 47 a, folds the protruding portion from the second divided lower wedge 47 to the one side in the axial direction, and extends along one axial end surface of the second divided lower wedge 47. Extend. Further, the conductive metal plate 48 is arranged along the upper surface, the one end surface in the axial direction, and the lower surface of the projecting portion of the second divided lower wedge 47 toward the one end side in the axial direction. At this time, one end surface of the second divided lower wedge 47 in the axial direction, and further, the upper surface of the protruding portion on the one side in the axial direction of the second divided lower wedge 47, the one end surface in the axial direction, and the conductive metal plate 48 on the lower surface The region is formed in the recess, and the conductive metal plate 48 is disposed flush with the second divided lower wedge 47.
 第2分割上くさび46は、下面中央部に凸部47aと嵌合可能な凹部46aを有している。そして、第2分割くさび45は、凹部46aを凸部47aに嵌着して、第2分割上くさび46と第2分割下くさび47とを一体化して構成される。このとき、第2分割下くさび47は、第2分割上くさび46から軸方向一端側に突出し、第2分割上くさび46と第2分割下くさび47の軸方向の他端面は、面一となっている。ここで、一体化された第2分割上くさび46と第2分割下くさび47とが本体部となり、導電性金属板48が通電体となる。なお、第2分割上くさび46と第2分割下くさび47とを一体化する方法は、上記実施の形態1と同様である。 The second divided upper wedge 46 has a concave portion 46a that can be fitted to the convex portion 47a at the center of the lower surface. The second divided wedge 45 is configured by fitting the concave portion 46 a to the convex portion 47 a and integrating the second divided upper wedge 46 and the second divided lower wedge 47. At this time, the second divided lower wedge 47 protrudes from the second divided upper wedge 46 to one axial end side, and the other axial end surfaces of the second divided upper wedge 46 and the second divided lower wedge 47 are flush with each other. ing. Here, the integrated second divided upper wedge 46 and the second divided lower wedge 47 serve as a main body portion, and the conductive metal plate 48 serves as an energizing body. The method of integrating the second divided upper wedge 46 and the second divided lower wedge 47 is the same as in the first embodiment.
 第2分割くさび45においても、第2分割上くさび46、第2分割下くさび47、および導電性金属板48に、半径方向通風路20が形成されている。第2分割上くさび46および第2分割下くさび47は、高強度の非磁性材、例えばステンレス鋼で作製されている。導電性金属板48は、導電性金属板43と同じ材料で作製される。ここでは、スロット10の軸方向一端部に設置される第2分割くさび45について説明しているが、スロット10の軸方向他端部では、第2分割くさび45は、第2分割下くさび47が第2分割上くさび46から軸方向他端側に突出するように設置されている。 Also in the second divided wedge 45, the radial ventilation path 20 is formed in the second divided upper wedge 46, the second divided lower wedge 47, and the conductive metal plate 48. The second divided upper wedge 46 and the second divided lower wedge 47 are made of a high-strength nonmagnetic material such as stainless steel. The conductive metal plate 48 is made of the same material as the conductive metal plate 43. Here, the second split wedge 45 installed at one end in the axial direction of the slot 10 is described. However, at the other end in the axial direction of the slot 10, the second split wedge 45 is replaced by the second split lower wedge 47. It is installed so as to protrude from the second divided upper wedge 46 to the other end side in the axial direction.
 実施の形態2では、第1分割くさび40は、導電性金属板43が導電性の機能を担っているので、導電性金属板43を保持する第1分割上くさび41と第1分割下くさび42とには、高い導電性が不要となる。第2分割くさび45においても,同様である。そこで、第1分割上くさび41、第1分割下くさび42、第2分割上くさび46および第2分割下くさび47に求められる特性を強度に特化できる。これにより、第1分割上くさび41、第1分割下くさび42、第2分割上くさび46および第2分割下くさび47を、導電性金属板43および導電性金属板48よりも高強度の非磁性材、例えばステンレス鋼を用いることができる。 In the second embodiment, since the conductive metal plate 43 has a conductive function in the first divided wedge 40, the first divided upper wedge 41 and the first divided lower wedge 42 that hold the conductive metal plate 43. Therefore, high conductivity is not necessary. The same applies to the second divided wedge 45. Therefore, the characteristics required for the first divided upper wedge 41, the first divided lower wedge 42, the second divided upper wedge 46, and the second divided lower wedge 47 can be specialized in strength. As a result, the first divided upper wedge 41, the first divided lower wedge 42, the second divided upper wedge 46 and the second divided lower wedge 47 are made stronger than the conductive metal plate 43 and the conductive metal plate 48. A material such as stainless steel can be used.
 したがって、実施の形態2においても、上記実施の形態1と同様の効果が得られる。
 また、実施の形態2によれば、導電性金属板43,48が、第1分割下くさび42の凸部42aおよび第2分割下くさび47の凸部47aに設置されているので、導電性金属板43,48と電機子巻線5との間の距離が短くなる。これにより、電機子巻線5からの磁束により導電性金属板43,48に誘起される渦電流が多くなり、渦電流による回転子コア8の発熱が抑制される。
Therefore, also in the second embodiment, the same effect as in the first embodiment can be obtained.
Further, according to the second embodiment, since the conductive metal plates 43 and 48 are installed on the convex portion 42a of the first divided lower wedge 42 and the convex portion 47a of the second divided lower wedge 47, the conductive metal plates The distance between the plates 43 and 48 and the armature winding 5 is shortened. Thereby, the eddy current induced in the conductive metal plates 43 and 48 by the magnetic flux from the armature winding 5 increases, and the heat generation of the rotor core 8 due to the eddy current is suppressed.
 実施の形態3.
 図22は、この発明の実施の形態3に係る回転電機における回転子のスロット周りを示す要部縦断面図である。
Embodiment 3 FIG.
FIG. 22 is a longitudinal sectional view of a main part showing the periphery of a rotor slot in a rotary electric machine according to Embodiment 3 of the present invention.
 実施の形態3では、図22に示されるように、第3分割くさび30Aを第3分割くさび18のそれぞれに替えてスロット10に設置し、ダンパーバー13を省略している点を除いて、上記実施の形態1と同様に構成されている。実施の形態3では、くさびは、第1分割くさび30、第2分割くさび35、および第3分割くさび30Aに分割構成されている。 In the third embodiment, as shown in FIG. 22, the third divided wedge 30 </ b> A is installed in the slot 10 instead of each of the third divided wedges 18, except that the damper bar 13 is omitted. The configuration is the same as in the first embodiment. In Embodiment 3, the wedge is divided into a first divided wedge 30, a second divided wedge 35, and a third divided wedge 30A.
 第3分割くさび30Aは、軸方向長さが短い点を除いて、第1分割くさび30と同様に構成された複合くさびである。
 この実施の形態3では、回転子コア8のスロット10のそれぞれに設置されるすべてのくさびが、第1分割くさび30、第2分割くさび35および第3分割くさび30Aの複合くさびにより構成されているので、上記実施の形態1と同様の効果が得られる。
The third divided wedge 30A is a composite wedge configured in the same manner as the first divided wedge 30 except that the axial length is short.
In the third embodiment, all the wedges installed in each of the slots 10 of the rotor core 8 are constituted by the composite wedges of the first divided wedge 30, the second divided wedge 35, and the third divided wedge 30A. Therefore, the same effect as in the first embodiment can be obtained.
 実施の形態3によれば、第2分割くさび35が回転子コア8のスロット10の軸方向両端部に設置され、第1分割くさび30および第3分割くさび30Aが第2分割くさび35間に1列に配列してスロット10に設置されている。これにより、第1分割くさび30および第3分割くさび30Aの導電性金属板33と第2分割くさび35の第1導電性金属板38aおよび第2導電性金属板38bとが互いに電気的に接触する状態で軸方向に1列に配列されている。このように、互いに電気的に接触する状態で軸方向に1列に配列された導電性金属板33、第1導電性金属板38aおよび第2導電性金属板38bが、ダンパーバー13として機能し、ダンパーバー13を省略することができる。これにより、界磁巻線11と電機子巻線5との間の距離がさらに短くなり、界磁巻線11から生じる磁束がより多く電機子巻線5に鎖交する。その結果、設定された出力電流を得るために界磁巻線11に通電される界磁電流を削減できるので、界磁銅損が削減され、効率が一層向上される。 According to the third embodiment, the second split wedges 35 are installed at both axial ends of the slot 10 of the rotor core 8, and the first split wedge 30 and the third split wedge 30 </ b> A are 1 between the second split wedges 35. Arranged in rows and installed in slots 10. Thereby, the conductive metal plate 33 of the first divided wedge 30 and the third divided wedge 30A and the first conductive metal plate 38a and the second conductive metal plate 38b of the second divided wedge 35 are in electrical contact with each other. In the state, they are arranged in a line in the axial direction. Thus, the conductive metal plate 33, the first conductive metal plate 38a, and the second conductive metal plate 38b arranged in a line in the axial direction in a state of being in electrical contact with each other function as the damper bar 13. The damper bar 13 can be omitted. Thereby, the distance between the field winding 11 and the armature winding 5 is further shortened, and more magnetic flux generated from the field winding 11 is linked to the armature winding 5. As a result, the field current passed through the field winding 11 to obtain the set output current can be reduced, so that the field copper loss is reduced and the efficiency is further improved.
 なお、実施の形態3においては、接着と、溶接、ロウ付けおよび撹拌接合のいずれかと、を併用して、第1分割くさび30、第2分割くさび35、および第3分割くさび30Aをそれぞれ一体化してもよい。この場合、溶接、ロウ付けおよび撹拌接合のいずれかによる接合工程に先立って、接着により分割上くさびと分割下くさびとを接合することにより、分割上くさびと分割下くさびとを高精度に位置決め固定できる。これにより、溶接、ロウ付けおよび撹拌接合のいずれかによる接合後の形状の精度が高められる。その結果、第1分割くさび30、第2分割くさび35および第3分割くさび30Aの軸方向の端面における軸方向の凹凸が低減される。そこで、第1分割くさび30と第3分割くさび30Aとの間、第3分割くさび30A間、および第3分割くさび30Aと第2分割くさび35との間の接触面積が拡大され、導電性金属板33同士の接触部、および導電性金属板33と第1導電性金属板38aとの接触部での発熱が低減される。 In the third embodiment, the first divided wedge 30, the second divided wedge 35, and the third divided wedge 30A are respectively integrated by using bonding and any one of welding, brazing, and stir welding. May be. In this case, prior to the joining process by any of welding, brazing and stir welding, the upper and lower wedges are positioned and fixed with high precision by bonding the upper and lower wedges by bonding. it can. Thereby, the precision of the shape after joining by any of welding, brazing, and stirring joining is improved. As a result, the unevenness in the axial direction on the axial end surfaces of the first divided wedge 30, the second divided wedge 35, and the third divided wedge 30A is reduced. Therefore, the contact area between the first divided wedge 30 and the third divided wedge 30A, between the third divided wedge 30A, and between the third divided wedge 30A and the second divided wedge 35 is increased, and the conductive metal plate Heat generation at the contact portion between 33 and the contact portion between the conductive metal plate 33 and the first conductive metal plate 38a is reduced.
 実施の形態4.
 図23は、この発明の実施の形態4に係る回転電機における回転子のスロット周りを示す要部縦断面図である。
Embodiment 4 FIG.
FIG. 23 is a longitudinal sectional view of a main part showing the periphery of a rotor slot in a rotary electric machine according to Embodiment 4 of the present invention.
 実施の形態4では、図23に示されるように、第3分割くさび40Aを第3分割くさび18のそれぞれに替えてスロット10に設置し、ダンパーバー13を省略している点を除いて、上記実施の形態2と同様に構成されている。実施の形態4では、くさびは、第1分割くさび40、第2分割くさび45、および第3分割くさび40Aに分割構成されている。 In the fourth embodiment, as shown in FIG. 23, the third divided wedge 40A is installed in the slot 10 in place of the third divided wedge 18, and the damper bar 13 is omitted, except that the damper bar 13 is omitted. The configuration is the same as in the second embodiment. In the fourth embodiment, the wedge is divided into a first divided wedge 40, a second divided wedge 45, and a third divided wedge 40A.
 第3分割くさび40Aは、軸方向長さが短い点を除いて、第1分割くさび40と同様に構成された複合くさびである。
 この実施の形態4では、回転子コア8のスロット10のそれぞれに設置されるすべてのくさびが、第1分割くさび40、第2分割くさび45、および第3分割くさび40Aの複合くさびにより構成されているので、上記実施の形態2と同様の効果が得られる。
The third split wedge 40A is a composite wedge configured in the same manner as the first split wedge 40 except that the axial length is short.
In the fourth embodiment, all the wedges installed in each of the slots 10 of the rotor core 8 are constituted by the composite wedges of the first divided wedge 40, the second divided wedge 45, and the third divided wedge 40A. Therefore, the same effect as in the second embodiment can be obtained.
 実施の形態4によれば、第2分割くさび45が回転子コア8のスロット10の軸方向両端部に設置され、第1分割くさび40および第3分割くさび40Aが第2分割くさび45間に1列に配列してスロット10に設置されている。これにより、第1分割くさび40および第3分割くさび40Aの導電性金属板43と第2分割くさび45の導電性金属板48とが互いに電気的に接触する状態で軸方向に1列に配列されている。このように、互いに電気的に接触する状態で軸方向に1列に配列された導電性金属板43および導電性金属板48が、ダンパーバー13として機能し、ダンパーバー13を省略することができる。これにより、界磁巻線11と電機子巻線5との間の距離がさらに短くなり、界磁巻線11から生じる磁束がより多く電機子巻線5に鎖交する。その結果、設定された出力電流を得るために界磁巻線11に通電される界磁電流を削減できるので、界磁銅損が削減され、効率が一層向上される。 According to the fourth embodiment, the second divided wedge 45 is installed at both axial ends of the slot 10 of the rotor core 8, and the first divided wedge 40 and the third divided wedge 40 </ b> A are 1 between the second divided wedges 45. Arranged in rows and installed in slots 10. Thereby, the conductive metal plates 43 of the first divided wedge 40 and the third divided wedge 40A and the conductive metal plates 48 of the second divided wedge 45 are arranged in a line in the axial direction in a state where they are in electrical contact with each other. ing. Thus, the conductive metal plate 43 and the conductive metal plate 48 arranged in a line in the axial direction in a state of being in electrical contact with each other function as the damper bar 13, and the damper bar 13 can be omitted. . Thereby, the distance between the field winding 11 and the armature winding 5 is further shortened, and more magnetic flux generated from the field winding 11 is linked to the armature winding 5. As a result, the field current passed through the field winding 11 to obtain the set output current can be reduced, so that the field copper loss is reduced and the efficiency is further improved.
 なお、実施の形態4においては、上記実施の形態3と同様に、接着と、溶接、ロウ付けおよび撹拌接合のいずれかと、を併用して、第1分割くさび40、第2分割くさび45、および第3分割くさび40Aをそれぞれ一体化してもよい。
 また、また、他の実施の形態においても、上記実施の形態3,4と同様に、接着と、溶接、ロウ付けおよび撹拌接合のいずれかと、を併用して、第1分割くさびおよび第2分割くさびをそれぞれ一体化してもよい。
In the fourth embodiment, as in the third embodiment, the first divided wedge 40, the second divided wedge 45, and any one of adhesion, welding, brazing, and stirring joining are used together. The third divided wedge 40A may be integrated.
Also, in the other embodiments, as in the third and fourth embodiments, the first divided wedge and the second divided are used in combination with adhesion and any one of welding, brazing, and stir welding. Each wedge may be integrated.
 実施の形態5.
 図24は、この発明の実施の形態5に係る回転電機における回転子のスロット周りを示す要部縦断面図である。
Embodiment 5. FIG.
FIG. 24 is a longitudinal sectional view of a main part showing the periphery of a rotor slot in a rotary electric machine according to Embodiment 5 of the present invention.
 実施の形態5では、図24に示されるように、第1塊状くさび50を第1分割くさび30に替えてスロット10の軸方向中央部に設置し、第2塊状くさび51を第2分割くさび35に替えてスロット10の軸方向両端部に設置している点を除いて、上記実施の形態3と同様に構成されている。実施の形態5では、くさびは、第1塊状くさび50、第2塊状くさび51、および第3分割くさび30Aに分割構成されている。 In the fifth embodiment, as shown in FIG. 24, the first lump wedge 50 is installed in the center of the slot 10 in place of the first split wedge 30 and the second lump wedge 51 is replaced by the second split wedge 35. The configuration is the same as that of the third embodiment except that it is installed at both ends in the axial direction of the slot 10 instead. In the fifth embodiment, the wedge is divided into a first lump wedge 50, a second lump wedge 51, and a third divided wedge 30A.
 第1塊状くさび50および第2塊状くさび51は、導電性金属板33と同様の高い導電性の材料、例えば銅又は銅合金で一塊に作製されている。 The first lump wedge 50 and the second lump wedge 51 are made of the same highly conductive material as that of the conductive metal plate 33, for example, copper or a copper alloy in one lump.
 この実施の形態5では、第1塊状くさび50、第2塊状くさび51、および第3分割くさび30Aの導電性金属板33が、互いに電気的に接触する状態で軸方向に1列に配列されている。このように、互いに電気的に接触する状態で軸方向に1列に配列された第1塊状くさび50、第2塊状くさび51、および導電性金属板33が、ダンパーバー13として機能し、ダンパーバー13を省略することができる。したがって、実施の形態5においても、上記実施の形態3と同様の効果が得られる。 In the fifth embodiment, the conductive metal plates 33 of the first lump wedge 50, the second lump wedge 51, and the third divided wedge 30A are arranged in a line in the axial direction in a state of being in electrical contact with each other. Yes. Thus, the first lump wedges 50, the second lump wedges 51, and the conductive metal plate 33 arranged in a line in the axial direction in electrical contact with each other function as the damper bar 13, and the damper bar 13 can be omitted. Therefore, in the fifth embodiment, the same effect as in the third embodiment can be obtained.
 また、第1塊状くさび50および第2塊状くさび51が、高い導電性の金属で塊状体に作製されているので、第1塊状くさび50と回転子コア8との間の接触抵抗が低減され、第2塊状くさび51と保持環9との間の接触抵抗が低減される。これにより、回転子コア8の表面に流れる渦電流をより多く、ダンパーバーとして機能する導電性金属板33に流すことができる。その結果、渦電流による回転子コア8の発熱を抑制することができる。 Further, since the first lump wedge 50 and the second lump wedge 51 are made into a lump with a highly conductive metal, the contact resistance between the first lump wedge 50 and the rotor core 8 is reduced, The contact resistance between the second massive wedge 51 and the retaining ring 9 is reduced. Thereby, more eddy currents flowing on the surface of the rotor core 8 can be supplied to the conductive metal plate 33 functioning as a damper bar. As a result, heat generation of the rotor core 8 due to eddy current can be suppressed.
 ここで、第1塊状くさび50および第2塊状クサビ51の導電性金属板33および保持環9との接触面に、第1塊状くさび50および第2塊状クサビ51よりも高い導電性の金属、例えば金、銀などのメッキを施し、接触抵抗を低減してもよい。 Here, a conductive metal higher than the first lump wedge 50 and the second lump wedge 51 on the contact surface of the first lump wedge 50 and the second lump wedge 51 with the conductive metal plate 33 and the holding ring 9, for example, The contact resistance may be reduced by plating with gold, silver or the like.
 なお、上記実施の形態5では、実施の形態3の回転子において、第1塊状くさび50が第1分割くさび30に替えてスロット10の軸方向中央部に設置され、第2塊状くさび51が第2分割くさび35に替えてスロット10の軸方向両端部に設置されているが、実施の形態4の回転子において、第1塊状くさび50が第1分割くさび40に替えてスロット10の軸方向中央部に設置され、第2塊状くさび51が第2分割くさび45に替えてスロット10の軸方向両端部に設置されてもよい。 In the fifth embodiment, in the rotor of the third embodiment, the first lump wedge 50 is installed at the center in the axial direction of the slot 10 instead of the first split wedge 30, and the second lump wedge 51 is the first lump wedge 51. In the rotor of the fourth embodiment, the first lump wedge 50 is replaced with the first divided wedge 40 in the axial center of the slot 10 instead of the two divided wedges 35. The second lump wedge 51 may be installed at both ends in the axial direction of the slot 10 instead of the second divided wedge 45.
 実施の形態6.
 図25は、この発明の実施の形態6に係る回転電機における回転子のスロット周りを示す要部縦断面図、図26は、この発明の実施の形態6に係る回転電機における回転子の第1分割くさびを示す縦断面図、図27は、この発明の実施の形態6に係る回転電機における回転子の第1分割くさびを軸方向から見た端面図、図28は、この発明の実施の形態6に係る回転電機における回転子の第2分割くさびを示す縦断面図、図29は、この発明の実施の形態6に係る回転電機における回転子の第2分割くさびを軸方向他端側から見た端面図、図30は、この発明の実施の形態6に係る回転電機における回転子の第2分割くさびを軸方向一端側から見た端面図である。
Embodiment 6 FIG.
FIG. 25 is a longitudinal sectional view of a main part showing the periphery of a rotor slot in a rotary electric machine according to Embodiment 6 of the present invention, and FIG. 26 shows a first rotor of the rotary electric machine according to Embodiment 6 of the present invention. 27 is a longitudinal sectional view showing the divided wedge, FIG. 27 is an end view of the first divided wedge of the rotor in the rotary electric machine according to Embodiment 6 of the present invention viewed from the axial direction, and FIG. 28 is an embodiment of the present invention. FIG. 29 is a longitudinal sectional view showing a second divided wedge of the rotor in the rotary electric machine according to FIG. 6, and FIG. 29 is a view of the second divided wedge of the rotor in the rotary electric machine according to Embodiment 6 of the present invention from the other end side in the axial direction. FIG. 30 is an end view of the second split wedge of the rotor in the rotary electric machine according to Embodiment 6 of the present invention as viewed from one end in the axial direction.
 実施の形態6では、図25に示されるように、第1分割くさび60が第1分割くさび30に替えてスロット10の軸方向の中央部に設置され、第2分割くさび65が第2分割くさび35に替えてスロット10の軸方向の両端部に設置され、複数の第3分割くさび60Aが第3分割くさび30Aに替えてスロット10の第1分割くさび60と第2分割くさび65との間に設置されている。実施の形態6では、くさびは、第1分割くさび60、第2分割くさび65、および第3分割くさび60Aに分割構成されている。
 なお、他の構成は、上記実施の形態3と同様に構成されている。
In the sixth embodiment, as shown in FIG. 25, the first divided wedge 60 is installed at the central portion in the axial direction of the slot 10 instead of the first divided wedge 30, and the second divided wedge 65 is the second divided wedge. 35 is installed at both ends in the axial direction of the slot 10, and a plurality of third divided wedges 60 </ b> A are arranged between the first divided wedge 60 and the second divided wedge 65 of the slot 10 instead of the third divided wedge 30 </ b> A. is set up. In the sixth embodiment, the wedge is divided into a first divided wedge 60, a second divided wedge 65, and a third divided wedge 60A.
Other configurations are the same as those in the third embodiment.
 第1分割くさび60は、図26および図27に示されるように、第1分割上くさび61と、第1分割下くさび62と、導電性金属板63と、を備える複合くさびである。第1分割下くさび62は、軸方向一側に傾いた平行四辺形の縦断面形状の角柱に作製され、溝方向を軸方向とする凹部62aが上面中央部に形成されている。導電性金属板63は、矩形平板状に作製され、凹部62aに配置され、第1分割下くさび62から軸方向両側への突出部を折り返して、第1分割下くさび62の軸方向の両端面に沿って延びて第1分割下くさび62の下面に沿うように配置される。このとき、第1分割下くさび62の軸方向の両端面の導電性金属板63の載置領域が凹部に形成されており、第1分割下くさび62の軸方向の両端面と導電性金属板63は面一となっている。同様に、第1分割下くさび62の下面の導電性金属板63の載置領域が凹部に形成されており、第1分割下くさび62の下面と導電性金属板63は面一となっている。第1分割上くさび61は、下面中央部に凹部62aと嵌合可能な凸部61aを有している。ここで、導電性金属板63の軸方向両側の露出面が傾斜面64となっている。 The first split wedge 60 is a composite wedge including a first split upper wedge 61, a first split lower wedge 62, and a conductive metal plate 63, as shown in FIGS. The first divided lower wedge 62 is formed as a prism having a parallelogram-shaped vertical cross section inclined toward one side in the axial direction, and a concave portion 62a having the axial direction in the groove direction is formed at the center of the upper surface. The conductive metal plate 63 is formed in a rectangular flat plate shape, is disposed in the recess 62a, and folds the protruding portions from the first divided lower wedge 62 to both sides in the axial direction so that both end surfaces of the first divided lower wedge 62 in the axial direction are folded back. Extending along the lower surface of the first divided lower wedge 62. At this time, the mounting regions of the conductive metal plates 63 on both end surfaces in the axial direction of the first divided lower wedge 62 are formed in the recesses, and both end surfaces in the axial direction of the first divided lower wedge 62 and the conductive metal plates are formed. 63 is flush. Similarly, the mounting area of the conductive metal plate 63 on the lower surface of the first divided lower wedge 62 is formed in the recess, and the lower surface of the first divided lower wedge 62 and the conductive metal plate 63 are flush with each other. . The 1st division | segmentation upper wedge 61 has the convex part 61a which can be fitted with the recessed part 62a in the lower surface center part. Here, the exposed surfaces on both axial sides of the conductive metal plate 63 are inclined surfaces 64.
 第1分割くさび60は、凸部61aを凹部62aに嵌着して、第1分割上くさび61と第1分割下くさび62とを一体化して構成される。ここで、一体化された第1分割上くさび61と第1分割下くさび62とが本体部となり、導電性金属板63が通電体となる。 The first divided wedge 60 is configured by fitting the convex portion 61a into the concave portion 62a and integrating the first divided upper wedge 61 and the first divided lower wedge 62 together. Here, the integrated first divided upper wedge 61 and the first divided lower wedge 62 serve as a main body portion, and the conductive metal plate 63 serves as a current-carrying body.
 第1分割くさび60においても、第1分割上くさび61、第1分割下くさび62および導電性金属板63に、半径方向通風路20が形成されている。第1分割上くさび61および第1分割下くさび62は、高強度の非磁性材、例えばステンレス鋼で作製されている。導電性金属板63は、導電性金属板33と同じ材料、例えば銅又は銅合金で作製される。
 第3分割くさび60Aは、軸方向長さが短い点を除いて、第1分割くさび60と同様に構成された複合くさびである。この第3分割くさび60Aにおいても、導電性金属板63の軸方向両側の露出面が傾斜面64となっている。
Also in the first divided wedge 60, the radial ventilation path 20 is formed in the first divided upper wedge 61, the first divided lower wedge 62 and the conductive metal plate 63. The first divided upper wedge 61 and the first divided lower wedge 62 are made of a high-strength nonmagnetic material such as stainless steel. The conductive metal plate 63 is made of the same material as the conductive metal plate 33, for example, copper or a copper alloy.
The third split wedge 60A is a composite wedge configured in the same manner as the first split wedge 60 except that the axial length is short. Also in the third divided wedge 60 </ b> A, the exposed surfaces on both sides in the axial direction of the conductive metal plate 63 are inclined surfaces 64.
 第2分割くさび65は、図28から図30に示されるように、第2分割上くさび66と、第2分割下くさび67と、第1導電性金属板68aと、第2導電性金属板68bと、を備える複合くさびである。第2分割下くさび67は、第2分割上くさび66より軸方向長さが長い、直方体の軸方向他端面が軸方向一側に傾いた角柱に作製され、溝方向を軸方向とする凹部67aが上面中央部に形成されている。第2分割下くさび67の軸方向他端面の傾斜角度は、第1分割下くさび62の軸方向他端面の傾斜角度と同じである。第1導電性金属板68aは、矩形平板状に作製され、凹部67aに配置され、第2分割下くさび67から軸方向両側への突出部を折り返して、第2分割下くさび67の軸方向の両端面に沿って延びて第2分割下くさび67の下面に沿うように配置される。このとき、第2分割下くさび67の軸方向の両端面の第1導電性金属板68aの載置領域が凹部に形成されており、第2分割下くさび67の軸方向の両端面と第1導電性金属板68aは面一となっている。同様に、第2分割下くさび67の下面の第1導電性金属板68aの載置領域が凹部に形成されており、第2分割下くさび67の下面と第1導電性金属板68aは面一となっている。 As shown in FIGS. 28 to 30, the second divided wedge 65 includes a second divided upper wedge 66, a second divided lower wedge 67, a first conductive metal plate 68a, and a second conductive metal plate 68b. And a composite wedge. The second divided lower wedge 67 is formed as a prism having a longer length in the axial direction than the second divided upper wedge 66, the other axial end face of the rectangular parallelepiped is inclined toward one side in the axial direction, and a concave portion 67a having the groove direction as the axial direction. Is formed at the center of the upper surface. The inclination angle of the other axial end surface of the second divided lower wedge 67 is the same as the inclination angle of the other axial end surface of the first divided lower wedge 62. The first conductive metal plate 68a is formed in a rectangular flat plate shape, and is disposed in the recess 67a. The first conductive metal plate 68a is bent in the axial direction of the second divided lower wedge 67 by folding back the protruding portions from the second divided lower wedge 67 to both sides in the axial direction. It extends along both end faces and is arranged along the lower surface of the second divided lower wedge 67. At this time, the mounting regions of the first conductive metal plates 68a on both end surfaces in the axial direction of the second divided lower wedge 67 are formed in the recesses, and both end surfaces in the axial direction of the second divided lower wedge 67 and the first The conductive metal plate 68a is flush. Similarly, the mounting region of the first conductive metal plate 68a on the lower surface of the second divided lower wedge 67 is formed in the recess, and the lower surface of the second divided lower wedge 67 and the first conductive metal plate 68a are flush with each other. It has become.
 第2分割上くさび66は、下面中央部に凹部67aと嵌合可能な凸部66aを有している。第2導電性金属板68bは、矩形平板状に作製され、凸部66aに配置され、第2分割上くさび66から軸方向一端側への突出部を折り返して、第2分割上くさび66の軸方向の一端面に沿うように配置される。このとき、第2分割上くさび66の軸方向の一端面の第2導電性金属板68bの載置領域が凹部に形成されており、第2分割上くさび66の軸方向の一端面と第2導電性金属板68bは面一となっている。そして、第2分割くさび65は、凸部66aを凹部67aに嵌着して、第2分割上くさび66と第2分割下くさび67とを一体化して構成される。このとき、第2分割下くさび67は、第2分割上くさび66から軸方向一端側に突出している。ここで、一体化された第2分割上くさび66と第2分割下くさび67とが本体部となり、第1導電性金属板68aおよび第2導電性金属板68bが通電体となる。第1導電性金属板68aの第2分割上くさび66の軸方向他側の露出面は、傾斜面69となっている。 2nd division | segmentation upper wedge 66 has the convex part 66a which can be fitted with the recessed part 67a in the lower surface center part. The second conductive metal plate 68b is formed in a rectangular flat plate shape, and is disposed on the convex portion 66a. The second conductive metal plate 68b is folded back from the second divided upper wedge 66 toward the one end side in the axial direction, so that the axis of the second divided upper wedge 66 is obtained. It arrange | positions along the one end surface of a direction. At this time, the mounting region of the second conductive metal plate 68b on the one end surface in the axial direction of the second divided upper wedge 66 is formed in the concave portion, and one end surface in the axial direction of the second divided upper wedge 66 and the second end wedge The conductive metal plate 68b is flush. And the 2nd division | segmentation wedge 65 fits the convex part 66a to the recessed part 67a, and is comprised by integrating the 2nd division | segmentation upper wedge 66 and the 2nd division | segmentation lower wedge 67. FIG. At this time, the second divided lower wedge 67 protrudes from the second divided upper wedge 66 to one axial end side. Here, the integrated second divided upper wedge 66 and second divided lower wedge 67 serve as the main body, and the first conductive metal plate 68a and the second conductive metal plate 68b serve as the current conductor. An exposed surface on the other axial side of the second divided upper wedge 66 of the first conductive metal plate 68a is an inclined surface 69.
 第2分割くさび65においても、第2分割上くさび66、第2分割下くさび67、第1導電性金属板68aおよび第2導電性金属板68bに、半径方向通風路20が形成されている。第2分割上くさび66および第2分割下くさび67は、高強度の非磁性材、例えばステンレス鋼で作製されている。第1導電性金属板68aおよび第2導電性金属板68bは、導電性金属板63と同じ材料で作製される。なお、第1導電性金属板68aと第2導電性金属板68bとの2枚の金属板を用いているが、1枚の金属板を用い、第2分割くさび65から軸方向一端側への突出部を分割して上下に折り返してもよい。ここでは、スロット10の軸方向一端部に設置される第2分割くさび65について説明しているが、スロット10の軸方向他端部では、第2分割くさび65は、第2分割下くさび67が第2分割上くさび66から軸方向他端側に突出するように設置されている。 Also in the second divided wedge 65, the radial ventilation path 20 is formed in the second divided upper wedge 66, the second divided lower wedge 67, the first conductive metal plate 68a, and the second conductive metal plate 68b. The second divided upper wedge 66 and the second divided lower wedge 67 are made of a high-strength nonmagnetic material such as stainless steel. The first conductive metal plate 68 a and the second conductive metal plate 68 b are made of the same material as the conductive metal plate 63. In addition, although two metal plates of the first conductive metal plate 68a and the second conductive metal plate 68b are used, one metal plate is used, and the second divided wedge 65 extends to one end side in the axial direction. The protruding portion may be divided and folded up and down. Here, the second split wedge 65 installed at one end in the axial direction of the slot 10 is described. However, at the other end in the axial direction of the slot 10, the second split wedge 65 is replaced by the second split lower wedge 67. It is installed so as to protrude from the second divided upper wedge 66 to the other end side in the axial direction.
 第1分割くさび60、第2分割くさび65、および第3分割くさび60Aは、回転子6が回転時に遠心力を受ける際に圧縮の荷重となる箇所で上下部分割されている。第1分割くさび60、第2分割くさび65、および第3分割くさび60Aは、例えば、上位実施の形態1と同様の方法で一体化される。 The first divided wedge 60, the second divided wedge 65, and the third divided wedge 60A are divided into upper and lower parts at locations where a compression load is applied when the rotor 6 receives centrifugal force during rotation. The first divided wedge 60, the second divided wedge 65, and the third divided wedge 60A are integrated by, for example, the same method as in the first embodiment.
 このように構成された回転子においては、第2分割くさび65がスロット10の軸方向両端部に設置され、第1分割くさび60および第3分割くさび60Aが第2分割くさび65間に1列に配列してスロット10に設置されている。第1分割くさび60および第3分割くさび60Aでは、導電性金属板63の軸方向両側の露出面が傾斜面64となっている。また、第2分割くさび65では、第1導電性金属板68aの第3分割くさび60A側の露出面が傾斜面69となっている。これらの傾斜面64,69の傾斜角度は同じである。 In the rotor configured as described above, the second divided wedges 65 are installed at both axial ends of the slot 10, and the first divided wedge 60 and the third divided wedge 60 </ b> A are arranged in a row between the second divided wedges 65. They are arranged in slots 10. In the first divided wedge 60 and the third divided wedge 60 </ b> A, the exposed surfaces on both sides in the axial direction of the conductive metal plate 63 are inclined surfaces 64. In the second divided wedge 65, the exposed surface of the first conductive metal plate 68 a on the third divided wedge 60 </ b> A side is an inclined surface 69. The inclination angles of these inclined surfaces 64 and 69 are the same.
 これにより、隣り合う第1分割くさび60の導電性金属板63と第3分割くさび60Aの導電性金属板63とが電気的に接触している。隣り合う第3分割くさび60Aの導電性金属板63同士が電気的に接触している。隣り合う第3分割くさび60Aの導電性金属板63と第2分割くさび65の第1導電性金属板68aとが電気的に接触している。このように、互いに電気的に接触する状態で軸方向に1列に配列された導電性金属板63、第1導電性金属板68aおよび第2導電性金属板68bが、ダンパーバー13として機能し、ダンパーバー13を省略することができる。これにより、界磁巻線11と電機子巻線5との間の距離が短くなり、界磁巻線11から生じる磁束がより多く電機子巻線5に鎖交する。その結果、設定された出力電流を得るために界磁巻線11に通電される界磁電流を削減できるので、界磁銅損が削減され、効率が向上される。 Thereby, the conductive metal plate 63 of the adjacent first divided wedge 60 and the conductive metal plate 63 of the third divided wedge 60A are in electrical contact. The conductive metal plates 63 of the adjacent third divided wedges 60A are in electrical contact with each other. The conductive metal plate 63 of the adjacent third divided wedge 60A and the first conductive metal plate 68a of the second divided wedge 65 are in electrical contact. Thus, the conductive metal plate 63, the first conductive metal plate 68a and the second conductive metal plate 68b arranged in a line in the axial direction in a state of being in electrical contact with each other function as the damper bar 13. The damper bar 13 can be omitted. Thereby, the distance between the field winding 11 and the armature winding 5 is shortened, and more magnetic flux generated from the field winding 11 is linked to the armature winding 5. As a result, the field current passed through the field winding 11 to obtain the set output current can be reduced, so that the field copper loss is reduced and the efficiency is improved.
 また、導電性金属板63、第1導電性金属板68aおよび第2導電性金属板68bが導電性の機能を担っているので、第1分割くさび60、第2分割くさび65、および第3分割くさび60Aの本体部を高強度の非磁性材で作製でき、厚みを薄くすることができる。これにより、界磁巻線11と電機子巻線5との間の距離が短くなり、界磁巻線11から生じる磁束がより多く電機子巻線5に鎖交する。その結果、設定された出力電流を得るために界磁巻線11に通電される界磁電流を削減できるので、界磁銅損が削減され、効率が向上される。 In addition, since the conductive metal plate 63, the first conductive metal plate 68a, and the second conductive metal plate 68b have a conductive function, the first split wedge 60, the second split wedge 65, and the third split The main body of the wedge 60A can be made of a high-strength nonmagnetic material, and the thickness can be reduced. Thereby, the distance between the field winding 11 and the armature winding 5 is shortened, and more magnetic flux generated from the field winding 11 is linked to the armature winding 5. As a result, the field current passed through the field winding 11 to obtain the set output current can be reduced, so that the field copper loss is reduced and the efficiency is improved.
 また、隣り合う第1分割くさび60と第3分割くさび60Aの導電性金属板63の傾斜面64同士が、半径方向に重なって面接触状態となっている。隣り合う第3分割くさび60Aの導電性金属板63の傾斜面64同士が、半径方向に重なって面接触状態となっている。隣り合う第3分割くさび60Aの導電性金属板63と第2分割くさび65の第1導電性金属板68aとの傾斜面64,69同士が、半径方向に重なって面接触となっている。そこで、回転子の回転中の遠心力により、これらの電気的接続部の接触面圧が上昇する。これにより、導電性金属板63、第1導電性金属板68aおよび第2導電性金属板68bの電気的接続部の接触抵抗が減少し、接触部における発熱が抑制される。 Further, the inclined surfaces 64 of the conductive metal plates 63 of the adjacent first divided wedge 60 and third divided wedge 60A overlap each other in the surface contact state. The inclined surfaces 64 of the conductive metal plates 63 of the adjacent third divided wedges 60A overlap each other in the radial direction and are in a surface contact state. The inclined surfaces 64 and 69 of the adjacent conductive metal plate 63 of the third divided wedge 60A and the first conductive metal plate 68a of the second divided wedge 65 overlap with each other in the radial direction to form surface contact. Therefore, the contact surface pressure of these electrical connection portions increases due to the centrifugal force during rotation of the rotor. Thereby, the contact resistance of the electrical connection portion of the conductive metal plate 63, the first conductive metal plate 68a, and the second conductive metal plate 68b is reduced, and heat generation at the contact portion is suppressed.
 なお、上記実施の形態6による第1分割くさび60、第2分割くさび65、および第3分割くさび60Aは、実施の形態3における第1分割くさび30、第2分割くさび35、および第3分割くさび30Aの導電性金属板の露出面を傾斜面に構成したものと同等の構成である。そこで、実施の形態4における第1分割くさび40、第2分割くさび45、および第3分割くさび40Aの導電性金属板の露出面を傾斜面に構成しても、同様の効果が得られる。 The first divided wedge 60, the second divided wedge 65, and the third divided wedge 60A according to the sixth embodiment are the same as the first divided wedge 30, the second divided wedge 35, and the third divided wedge in the third embodiment. The exposed surface of the 30A conductive metal plate has the same configuration as the inclined surface. Therefore, even if the exposed surfaces of the conductive metal plates of the first divided wedge 40, the second divided wedge 45, and the third divided wedge 40A in the fourth embodiment are configured as inclined surfaces, the same effect can be obtained.
 実施の形態7.
 図31は、この発明の実施の形態7に係る回転電機における回転子のスロット周りを示す要部縦断面図、図32は、この発明の実施の形態7に係る回転電機における回転子の第1塊状くさびを示す縦断面図、図33は、この発明の実施の形態7に係る回転電機における回転子の第2塊状くさびを示す縦断面図である。
Embodiment 7 FIG.
FIG. 31 is a longitudinal sectional view of a main part showing the periphery of a slot of a rotor in a rotary electric machine according to Embodiment 7 of the present invention, and FIG. 32 is a first view of the rotor in the rotary electric machine according to Embodiment 7 of the present invention. FIG. 33 is a longitudinal sectional view showing the second wedge of the rotor in the rotary electric machine according to Embodiment 7 of the present invention.
 実施の形態7では、図31に示されるように、第1塊状くさび70が第1分割くさび60に替えてスロット10の軸方向中央部に設置され、第2塊状くさび72が第2分割くさび65に替えてスロット10の軸方向両端部に設置されている点を除いて、上記実施の形態6と同様に構成されている。実施の形態7では、くさびは、第1塊状くさび70、第2塊状くさび72、および第3分割くさび60Aに分割構成されている。 In the seventh embodiment, as shown in FIG. 31, the first lump wedge 70 is installed at the center in the axial direction of the slot 10 in place of the first split wedge 60, and the second lump wedge 72 is the second split wedge 65. The configuration is the same as that of the sixth embodiment except that it is installed at both ends in the axial direction of the slot 10 instead. In the seventh embodiment, the wedge is divided into a first lump wedge 70, a second lump wedge 72, and a third divided wedge 60A.
 第1塊状くさび70は、導電性金属板63と同様の高い導電性の材料、例えば銅又は銅合金で一塊に作製されている。傾斜面71が、図32に示されるように、第1塊状くさび70の軸方向の両端面の下部側に形成されている。
 第2塊状くさび72は、導電性金属板63と同様の高い導電性の材料、例えば銅又は銅合金で一塊に作製されている。傾斜面73が、図33に示されるように、第2塊状くさび72の軸方向の他端面の下部側に形成されている。
The first lump wedge 70 is made in one lump with a highly conductive material similar to that of the conductive metal plate 63, for example, copper or copper alloy. As shown in FIG. 32, the inclined surface 71 is formed on the lower side of both axial end surfaces of the first lump wedge 70.
The second lump wedge 72 is made of a highly conductive material similar to that of the conductive metal plate 63, such as copper or a copper alloy, in one lump. As shown in FIG. 33, the inclined surface 73 is formed on the lower side of the other end surface in the axial direction of the second massive wedge 72.
 この実施の形態7では、第1塊状くさび70、第2塊状くさび72、および第3分割くさび60Aの導電性金属板63が、互いに電気的に接触する状態で軸方向に1列に配列されている。このように、互いに電気的に接触する状態で軸方向に1列に配列された第1塊状くさび70、第2塊状くさび72、および導電性金属板63が、ダンパーバー13として機能し、ダンパーバー13を省略することができる。したがって、実施の形態7においても、上記実施の形態6と同様の効果が得られる。 In the seventh embodiment, the conductive metal plates 63 of the first massive wedge 70, the second massive wedge 72, and the third divided wedge 60A are arranged in a line in the axial direction in a state of being in electrical contact with each other. Yes. Thus, the first lump wedge 70, the second lump wedge 72, and the conductive metal plate 63 arranged in a line in the axial direction in electrical contact with each other function as the damper bar 13, and the damper bar 13 can be omitted. Therefore, in the seventh embodiment, the same effect as in the sixth embodiment can be obtained.
 また、第1塊状くさび70および第2塊状くさび72が、高い導電性の金属で塊状体に作製されているので、第1塊状くさび70と回転子コア8との間の接触抵抗が低減され、第2塊状くさび72と保持環9との間の接触抵抗が低減される。これにより、回転子コア8の表面に流れる渦電流をより多く、ダンパーバーとして機能する導電性金属板63に流すことができる。その結果、渦電流による回転子コア8の発熱を抑制することができる。 Further, since the first lump wedge 70 and the second lump wedge 72 are made into a lump with a highly conductive metal, the contact resistance between the first lump wedge 70 and the rotor core 8 is reduced, The contact resistance between the second massive wedge 72 and the retaining ring 9 is reduced. Thereby, more eddy currents flowing on the surface of the rotor core 8 can be supplied to the conductive metal plate 63 functioning as a damper bar. As a result, heat generation of the rotor core 8 due to eddy current can be suppressed.
 また、隣り合う第1塊状くさび70と第3分割くさび60Aの導電性金属板63の傾斜面71,64同士が、半径方向に重なって面接触状態となっている。隣り合う第3分割くさび60Aの導電性金属板63の傾斜面64同士が、半径方向に重なって面接触状態となっている。隣り合う第3分割くさび60Aの導電性金属板63と第2塊状くさび72との傾斜面64,73同士が、半径方向に重なって面接触となっている。そこで、回転子の回転中の遠心力により、これらの電気的接続部の接触面圧が上昇する。これにより、第1塊状くさび70と第3分割くさび60Aの導電性金属板63との電気的接続部、第3分割くさび60Aの導電性金属板63同士の電気的接続部、さらに第3分割くさび60Aの導電性金属板63と第2塊状くさび72との電気的接続部の接触抵抗が減少し、接触部における発熱が抑制される。 Further, the inclined surfaces 71 and 64 of the conductive metal plate 63 of the adjacent first lump-like wedge 70 and the third divided wedge 60A overlap each other in the radial direction to form a surface contact state. The inclined surfaces 64 of the conductive metal plates 63 of the adjacent third divided wedges 60A overlap each other in the radial direction and are in a surface contact state. The inclined surfaces 64 and 73 of the conductive metal plate 63 and the second lump wedge 72 of the adjacent third divided wedge 60A overlap in the radial direction and are in surface contact. Therefore, the contact surface pressure of these electrical connection portions increases due to the centrifugal force during rotation of the rotor. Thereby, the electrical connection portion between the first lump wedge 70 and the conductive metal plate 63 of the third split wedge 60A, the electrical connection portion between the conductive metal plates 63 of the third split wedge 60A, and the third split wedge. The contact resistance of the electrical connection portion between the 60A conductive metal plate 63 and the second lump wedge 72 is reduced, and heat generation at the contact portion is suppressed.
 なお、上記実施の形態7において、第3分割くさび60Aに替えて、実施の形態4における第3分割くさび40Aの導電性金属板43の露出面を傾斜面とした第3分割くさびを用いてもよい。 In the seventh embodiment, instead of the third divided wedge 60A, a third divided wedge having an exposed surface of the conductive metal plate 43 of the third divided wedge 40A in the fourth embodiment as an inclined surface may be used. Good.
 ここで、第1塊状くさび70および第2塊状くさび72の導電性金属板63および保持環9との接触面に、第1塊状くさび70および第2塊状くさび72よりも高い導電性の金属、例えば金、銀などのメッキを施し、接触抵抗を低減してもよい。 Here, a conductive metal higher than the first lump wedge 70 and the second lump wedge 72 on the contact surface of the first lump wedge 70 and the second lump wedge 72 with the conductive metal plate 63 and the retaining ring 9, for example, The contact resistance may be reduced by plating with gold, silver or the like.
 実施の形態8.
 図34は、この発明の実施の形8に係る回転電機における回転子のスロット周りを示す要部縦断面図、図35は、この発明の実施の形態8に係る回転電機における回転子の第1塊状くさびを示す縦断面図、図36は、この発明の実施の形態8に係る回転電機における回転子の第1塊状くさびを軸方向から見た端面図、図37は、この発明の実施の形態8に係る回転電機における回転子の第2塊状くさびを示す縦断面図、図38は、この発明の実施の形態8に係る回転電機における回転子の第2塊状くさびを軸方向から見た端面図、図39は、この発明の実施の形態8に係る回転電機における回転子の第4分割くさびを示す縦断面図、図40は、この発明の実施の形態8に係る回転電機における回転子の第4分割くさびを軸方向から見た端面図、図41は、この発明の実施の形態8に係る回転電機における回転子のくさび間接続導体を示す縦断面図、図42は、この発明の実施の形態8に係る回転電機における回転子のくさび間接続導体を軸方向から見た端面図である。
Embodiment 8 FIG.
FIG. 34 is a longitudinal sectional view of a main part showing the periphery of the rotor slot in the rotary electric machine according to Embodiment 8 of the present invention, and FIG. 35 is a first view of the rotor in the rotary electric machine according to Embodiment 8 of the present invention. FIG. 36 is a longitudinal sectional view showing the massive wedge, FIG. 36 is an end view of the first massive wedge of the rotor in the rotary electric machine according to Embodiment 8 of the present invention viewed from the axial direction, and FIG. 37 is an embodiment of the present invention. FIG. 38 is a longitudinal sectional view showing a second lump wedge of the rotor in the rotary electric machine according to FIG. 8, and FIG. 38 is an end view of the second lump wedge of the rotor in the rotary electric machine according to Embodiment 8 of the present invention as seen from the axial direction. FIG. 39 is a longitudinal sectional view showing a fourth divided wedge of the rotor in the rotary electric machine according to Embodiment 8 of the present invention, and FIG. 40 shows the fourth of the rotor in the rotary electric machine according to Embodiment 8 of the present invention. End view of the quadrant wedge as seen from the axial direction 41 is a longitudinal sectional view showing a connecting conductor between the wedges of a rotor in a rotary electric machine according to Embodiment 8 of the present invention. FIG. 42 is a view between the wedges of the rotor in the rotary electric machine according to Embodiment 8 of the present invention. It is the end elevation which looked at the connecting conductor from the axial direction.
 実施の形態8では、図34に示されるように、第1塊状くさび74がスロット10の軸方向中央部に設置され、第2塊状くさび76がスロット10の軸方向両端部に設置されている。また、複数の第4分割クサビ77が第1塊状くさび74と第2塊状クサビ76との間に軸方向に1列に設置されている。さらに、第1塊状くさび74と第4分割くさび77とが、第4分割くさび77同士が、さらに、第4分割くさび77と第2塊状くさび76とが、くさび間接続導体75を用いて接続されている。なお、他の構成は、上記実施の形態7と同様に構成されている。実施の形態8では、くさびは、第1塊状くさび74、第2塊状くさび76、および第4分割くさび77に分割構成されている。 In the eighth embodiment, as shown in FIG. 34, the first lump wedge 74 is installed at the center in the axial direction of the slot 10, and the second lump wedge 76 is installed at both axial ends of the slot 10. A plurality of fourth divided wedges 77 are arranged in a line in the axial direction between the first massive wedge 74 and the second massive wedge 76. Furthermore, the first lump wedge 74 and the fourth split wedge 77 are connected to each other by the fourth split wedge 77, and the fourth split wedge 77 and the second lump wedge 76 are connected using the inter-wedge connection conductor 75. ing. Other configurations are the same as those in the seventh embodiment. In the eighth embodiment, the wedge is divided into a first massive wedge 74, a second massive wedge 76, and a fourth divided wedge 77.
 第1塊状くさび74は、導電性金属板63と同様の高い導電性の材料、例えば銅又は銅合金で一塊に作製されている。くぼみ79が、図35および図36に示されるように、穴方向を軸方向として、第1塊状くさび74の軸方向の両端面の下部側に形成されている。くぼみ79は、軸方向と直交する断面を矩形とする穴形状を有し、くぼみ79の上面がくぼみ79の深さ方向に漸次下面側に近づく傾斜面79aとなっている。なお、第1塊状くさび74は、くぼみ79が形成されている点を除いて、第1塊状くさび70と同様に構成されている。 The first lump wedges 74 are made in one lump with a highly conductive material similar to the conductive metal plate 63, for example, copper or copper alloy. As shown in FIG. 35 and FIG. 36, the recess 79 is formed on the lower side of both end faces in the axial direction of the first lump wedge 74 with the hole direction as the axial direction. The recess 79 has a hole shape in which a cross section orthogonal to the axial direction is rectangular, and the upper surface of the recess 79 is an inclined surface 79 a that gradually approaches the lower surface side in the depth direction of the recess 79. The first lump wedge 74 is configured in the same manner as the first lump wedge 70 except that the recess 79 is formed.
 第2塊状くさび76は、導電性金属板63と同様の高い導電性の材料、例えば銅又は銅合金で一塊に作製されている。くぼみ80が、図37および図38に示されるように、第2塊状くさび76の、第4分割くさび77と相対する端面の下部側に形成されている。くぼみ80は、軸方向と直交する断面を矩形とする穴形状を有し、くぼみ80の上面がくぼみ80の深さ方向に漸次下面側に近づく傾斜面80aとなっている。なお、第2塊状くさび76は、くぼみ80が形成されている点を除いて、第2塊状くさび72と同様に構成されている。 The second lump wedges 76 are made in one lump with a highly conductive material similar to the conductive metal plate 63, for example, copper or copper alloy. As shown in FIGS. 37 and 38, the recess 80 is formed on the lower side of the end face of the second lump wedge 76 facing the fourth split wedge 77. The recess 80 has a hole shape in which a cross section orthogonal to the axial direction is a rectangle, and the upper surface of the recess 80 is an inclined surface 80 a that gradually approaches the lower surface side in the depth direction of the recess 80. The second lump wedge 76 is configured in the same manner as the second lump wedge 72 except that the recess 80 is formed.
 第4分割くさび77は、図39および図40に示されるように、第4分割上くさび81ろ、第4分割下くさび82と、導電性金属板78と、を備える複合くさびである。くぼみ83が、第4分割下くさび82の軸方向の両端面の下部側に形成されている。くぼみ83は、軸方向と直交する断面を矩形とする穴形状を有し、くぼみ83上面がくぼみ83の深さ方向に漸次下面側に近づく傾斜面となっている。導電性金属板78は、矩形平板状に作製され、軸方向両側に突出した状態で、第4分割上くさび81と第4分割下くさび82との間に挟み込まれる。導電性金属板78の突出部は、第4分割下くさび82の軸方向の両端面に沿って下方に延び、くぼみ83内に引き入れられている。くぼみ83内に引き入れられた導電性金属板78は、くぼみ83の傾斜面に沿って配置される。ここで、くぼみ83の傾斜面に沿って配置された導電性金属板78の部分の下面が傾斜面78aとなっている。第4分割上くさび81および第4分割下くさび82は、高強度の非磁性材、例えばステンレス鋼で作製されている。導電性金属板78は、導電性金属板63と同じ材料、例えば銅又は銅合金で作製される。 39 and 40, the fourth divided wedge 77 is a composite wedge including a fourth divided upper wedge 81, a fourth divided lower wedge 82, and a conductive metal plate 78. The recess 83 is formed on the lower side of both end faces in the axial direction of the fourth divided lower wedge 82. The recess 83 has a hole shape having a rectangular cross section orthogonal to the axial direction, and the upper surface of the recess 83 is an inclined surface that gradually approaches the lower surface side in the depth direction of the recess 83. The conductive metal plate 78 is formed in a rectangular flat plate shape, and is sandwiched between the fourth divided upper wedge 81 and the fourth divided lower wedge 82 in a state of projecting to both sides in the axial direction. The protruding portion of the conductive metal plate 78 extends downward along both axial end surfaces of the fourth divided lower wedge 82, and is drawn into the recess 83. The conductive metal plate 78 drawn into the recess 83 is disposed along the inclined surface of the recess 83. Here, the lower surface of the portion of the conductive metal plate 78 disposed along the inclined surface of the recess 83 is an inclined surface 78a. The fourth divided upper wedge 81 and the fourth divided lower wedge 82 are made of a high-strength nonmagnetic material such as stainless steel. The conductive metal plate 78 is made of the same material as the conductive metal plate 63, for example, copper or a copper alloy.
 第1塊状くさび74、第2塊状くさび76、および第4分割くさび77は、軸方向と直交する断面形状が同じである。くぼみ79、くぼみ80、および導電性金属板78の端部が配置された状態のくぼみ83は、同じ穴形状となっている。第1塊状くさび74と第4分割くさび77とは、くぼみ79とくぼみ83とが相対するように配置される。第2塊状くさび76と第4分割くさび77とは、くぼみ80とくぼみ83とが相対するように配置される。 The first lump wedge 74, the second lump wedge 76, and the fourth split wedge 77 have the same cross-sectional shape orthogonal to the axial direction. The recess 79, the recess 80, and the recess 83 in a state where the end portions of the conductive metal plate 78 are arranged have the same hole shape. The first lump wedge 74 and the fourth divided wedge 77 are arranged such that the recess 79 and the recess 83 face each other. The second lump wedge 76 and the fourth divided wedge 77 are arranged such that the recess 80 and the recess 83 are opposed to each other.
 第4分割くさび77は、第4分割上くさび81と第4分割下くさび82とを一体化して構成される。ここで、一体化された第4分割上くさび81と第4分割下くさび82とが本体部となり、導電性金属板78が通電体となる。 The fourth divided wedge 77 is configured by integrating a fourth divided upper wedge 81 and a fourth divided lower wedge 82. Here, the integrated fourth divided upper wedge 81 and the fourth divided lower wedge 82 serve as a main body portion, and the conductive metal plate 78 serves as a current-carrying body.
 くさび間接続導体75は、導電性金属板78と同じ材料、例えば銅又は銅合金で作製される。くさび間接続導体75は、図41および図42に示されるように、軸方向両端部がくぼみ79、くぼみ80、および導電性金属板78の端部が配置された状態のくぼみ83と嵌合可能な形状に形成されている。くさび間接続導体75の軸方向両端部の上面が、くぼみ79、くぼみ80、および導電性金属板78の端部が配置された状態のくぼみ83の傾斜面79a,80a,78aに半径方向に重なった状態で面接触する傾斜面75aとなる。 The wedge connecting conductor 75 is made of the same material as the conductive metal plate 78, for example, copper or a copper alloy. As shown in FIGS. 41 and 42, the inter-wedge connecting conductor 75 can be fitted into a recess 83 in which both ends in the axial direction are the recess 79, the recess 80, and the end of the conductive metal plate 78. It is formed in a simple shape. The upper surfaces of both end portions in the axial direction of the connection conductor 75 between the wedges overlap the inclined surfaces 79a, 80a, 78a of the recess 83 in a state where the recess 79, the recess 80, and the end portion of the conductive metal plate 78 are disposed. It becomes the inclined surface 75a which carries out surface contact in the state.
 このように構成された第1塊状くさび74、第2塊状クサビ76、第4分割クサビ77は、くさび間接続導体75を介在させてスロット10内に軸方向に1列に設置される。このとき、くさび間接続導体75の両端部がくぼみ79,80および83に嵌合させている。そこで、くさび間接続導体75の軸方向両端部の上面である傾斜面75aは、くぼみ79,80および83傾斜面79a,80a,78aと半径方向に重なって面接触状態となっている。これにより、スロット10内に1列に配列された第1塊状くさび74、第2塊状クサビ76および第4分割クサビ77が電気的に接続状態となっている。 The first lump wedges 74, the second lump wedges 76, and the fourth split wedges 77 thus configured are arranged in a row in the axial direction in the slot 10 with the inter-wedge connection conductors 75 interposed therebetween. At this time, both ends of the inter-wedge connection conductor 75 are fitted in the recesses 79, 80 and 83. Accordingly, the inclined surfaces 75a, which are the upper surfaces of both end portions in the axial direction of the inter-wedge connection conductor 75, are in surface contact with the recesses 79, 80 and the 83 inclined surfaces 79a, 80a, 78a in the radial direction. As a result, the first lump wedges 74, the second lump wedges 76, and the fourth divided wedges 77 arranged in a row in the slot 10 are electrically connected.
 この実施の形態8では、第1塊状くさび74、第2塊状くさび76、および第4分割くさび77の導電性金属板78が、くさび間接続導体75により互いに電気的に接触する状態で軸方向に1列に配列されている。このように、互いに電気的に接触する状態で軸方向に1列に配列された第1塊状くさび74、第2塊状くさび76、および導電性金属板78が、ダンパーバー13として機能し、ダンパーバー13を省略することができる。したがって、実施の形態8においても、上記実施の形態7と同様の効果が得られる。 In the eighth embodiment, the conductive metal plates 78 of the first massive wedge 74, the second massive wedge 76, and the fourth divided wedge 77 are in the axial direction in a state of being in electrical contact with each other by the inter-wedge connecting conductor 75. It is arranged in one row. As described above, the first lump wedge 74, the second lump wedge 76, and the conductive metal plate 78 arranged in a line in the axial direction in electrical contact with each other function as the damper bar 13, and the damper bar 13 can be omitted. Therefore, in the eighth embodiment, the same effect as in the seventh embodiment can be obtained.
 また、第1塊状くさび74および第2塊状くさび76が、高い導電性の金属で塊状体に作製されているので、第1塊状くさび74と回転子コア8との間の接触抵抗が低減され、第2塊状くさび76と保持環9との間の接触抵抗が低減される。これにより、回転子コア8の表面に流れる渦電流をより多く、ダンパーバーとして機能する導電性金属板78に流すことができる。その結果、渦電流による回転子コア8の発熱を抑制することができる。 In addition, since the first massive wedge 74 and the second massive wedge 76 are made of a highly conductive metal into a massive body, the contact resistance between the first massive wedge 74 and the rotor core 8 is reduced, The contact resistance between the second massive wedge 76 and the retaining ring 9 is reduced. Thereby, more eddy currents flowing on the surface of the rotor core 8 can be supplied to the conductive metal plate 78 functioning as a damper bar. As a result, heat generation of the rotor core 8 due to eddy current can be suppressed.
 また、第1塊状くさび74に形成されたくぼみ79の内壁面の上面が、くぼみ79の深さ方向に漸次内径側に変位する傾斜面79aとなっている。第2塊状くさび76に形成されたくぼみ80の内壁面の上面が、くぼみ80の深さ方向に漸次内径側に変位する傾斜面80aとなっている。第4分割クサビ77に形成されたくぼみ83の内壁面の上面に配置された導電性金属板78の下面が、くぼみ83の深さ方向に漸次内径側に変位する傾斜面78aとなっている。くさび間接続導体75の軸方向両端部が、くぼみ79、80および83に嵌合され、傾斜面75aが傾斜面79a,80a,78aに半径方向に重なって面接触状態となっている。そこで、回転子6の回転中の遠心力により、これらの電気的接続部の接触面圧が上昇する。これにより、第1塊状くさび74とくさび間接続導体75との電気的接続部、第4分割くさび77の導電性金属板78とくさび間接続導体75との電気的接続部、および第2塊状くさび76とくさび間接続導体75との電気的接続部の接触抵抗が減少し、接触部における発熱が抑制される。 Further, the upper surface of the inner wall surface of the recess 79 formed in the first lump wedge 74 is an inclined surface 79 a that gradually displaces toward the inner diameter side in the depth direction of the recess 79. The upper surface of the inner wall surface of the recess 80 formed in the second lump wedge 76 forms an inclined surface 80a that gradually displaces toward the inner diameter side in the depth direction of the recess 80. The lower surface of the conductive metal plate 78 disposed on the upper surface of the inner wall surface of the recess 83 formed in the fourth split wedge 77 forms an inclined surface 78 a that gradually displaces toward the inner diameter side in the depth direction of the recess 83. Both end portions in the axial direction of the connecting conductor 75 between the wedges are fitted into the recesses 79, 80, and 83, and the inclined surface 75a overlaps the inclined surfaces 79a, 80a, and 78a in the radial direction to form a surface contact state. Therefore, the contact surface pressure of these electrical connection portions increases due to the centrifugal force during rotation of the rotor 6. Accordingly, the electrical connection portion between the first lump wedge 74 and the inter-wedge connection conductor 75, the electrical connection portion between the conductive metal plate 78 of the fourth split wedge 77 and the inter-wedge connection conductor 75, and the second lump wedge. The contact resistance of the electrical connection portion between 76 and the inter-wedge connection conductor 75 is reduced, and heat generation at the contact portion is suppressed.
 なお、上記実施の形態8において、第4分割くさび77に替えて、実施の形態4における第3分割くさび40Aの導電性金属板43の露出面に傾斜したくぼみ設けた第3分割くさびを用いてもよい。 In the eighth embodiment, instead of the fourth divided wedge 77, a third divided wedge provided with an inclined recess on the exposed surface of the conductive metal plate 43 of the third divided wedge 40A in the fourth embodiment is used. Also good.
 ここで、第1塊状くさび74のくさび間接続導体75との接触面、第2塊状くさび76のくさび間接続導体75との接触面、および第2塊状くさび76の保持環9との接触面に、第1塊状くさび74および第2塊状くさび76よりも高い導電性の金属、例えば金、銀などのメッキを施し、接触抵抗を低減してもよい。また、第4分割くさび77の導電性金属板85のくさび間接続導体75との接触面に、導電性金属板85よりも高い導電性の金属、例えば金、銀などのメッキを施し、接触抵抗を低減してもよい。 Here, the contact surface of the first massive wedge 74 with the inter-wedge connection conductor 75, the contact surface of the second massive wedge 76 with the inter-wedge connection conductor 75, and the contact surface with the holding ring 9 of the second massive wedge 76 are provided. The contact resistance may be reduced by plating with a conductive metal that is higher than the first massive wedge 74 and the second massive wedge 76, such as gold or silver. Further, the contact surface of the conductive metal plate 85 of the fourth divided wedge 77 with the inter-wedge connection conductor 75 is plated with a conductive metal higher than the conductive metal plate 85, for example, gold, silver, etc. May be reduced.
 実施の形態9.
 図43は、この発明の実施の形態9に係る回転電機における回転子のスロット周りを示す要部縦断面図、図44は、この発明の実施の形態9に係る回転電機における回転子の第5分割くさびを示す縦断面図、図45は、この発明の実施の形態9に係る回転電機における回転子の第5分割くさびを軸方向から見た端面図である。
Embodiment 9 FIG.
FIG. 43 is a longitudinal sectional view of the main part showing the periphery of the slot of the rotor in the rotary electric machine according to Embodiment 9 of the present invention, and FIG. 44 shows the fifth aspect of the rotor in the rotary electric machine according to Embodiment 9 of the present invention. FIG. 45 is a longitudinal sectional view showing the divided wedge, and FIG. 45 is an end view of the fifth divided wedge of the rotor in the rotary electric machine according to Embodiment 9 of the present invention as seen from the axial direction.
 実施の形態9では、図43に示されるように、第4分割くさび77がスロット10の軸方向中央部に設置され、第5分割くさび84がスロット10の軸方向両端部に設置されている。さらに、複数の第4分割くさび77が、中央部に設置された第4分割くさび77と両端部に設置された第5分割くさび84との間に設置されている。第4分割くさび77同士がくさび間接続導体75により電気的に接続され、第4分割くさび77と第5分割くさび84とがくさび間接続導体75により電気的に接続されている。なお、他の構成は、上記実施の形態8と同様に構成されている。実施の形態9では、くさびは、第4分割くさび77および第5分割くさび84に分割構成されている。 In the ninth embodiment, as shown in FIG. 43, the fourth divided wedge 77 is installed at the center in the axial direction of the slot 10, and the fifth divided wedge 84 is installed at both axial ends of the slot 10. Further, a plurality of fourth divided wedges 77 are installed between a fourth divided wedge 77 installed at the center and fifth divided wedges 84 installed at both ends. The fourth divided wedges 77 are electrically connected by the inter-wedge connecting conductor 75, and the fourth divided wedge 77 and the fifth divided wedge 84 are electrically connected by the inter-wedge connecting conductor 75. Other configurations are the same as those in the eighth embodiment. In the ninth embodiment, the wedge is divided into a fourth divided wedge 77 and a fifth divided wedge 84.
 第5分割くさび84は、図44および図45に示されるように、第5分割上くさび88と、第5分割下くさび87と、導電性金属板85と、を備える複合くさびである。くぼみ86が、第5分割下くさび87の、第4分割くさび77と相対する端面の下部側に形成されている。くぼみ86は、軸方向と直交する断面を矩形とする穴形状を有し、くぼみ86上面がくぼみ86の深さ方向に漸次下面側に近づく傾斜面となっている。導電性金属板85は、矩形平板状に作製され、軸方向両側に突出した状態で、第5分割上くさび88と第5分割下くさび87との間に挟み込まれる。導電性金属板85の一方の突出部は、第5分割下くさび87の端面に沿って下方に延び、くぼみ86内に引き入れられている。くぼみ86内に引き入れられた導電性金属板85は、くぼみ86の傾斜面に沿って配置される。ここで、くぼみ86の傾斜面に沿って配置された導電性金属板85の部分の下面が傾斜面85aとなっている。第5分割上くさび88および第5分割下くさび87は、高強度の非磁性材、例えばステンレス鋼で作製されている。導電性金属板85は、導電性金属板63と同じ材料、例えば銅又は銅合金で作製される。なお、第5分割くさび84の保持環9との電気的接続部は、第2分割くさび45と同様に構成されている。 44 and 45, the fifth divided wedge 84 is a composite wedge including a fifth divided upper wedge 88, a fifth divided lower wedge 87, and a conductive metal plate 85. A recess 86 is formed on the lower side of the end face of the fifth divided lower wedge 87 facing the fourth divided wedge 77. The indentation 86 has a hole shape in which a cross section perpendicular to the axial direction is rectangular, and the upper surface of the indentation 86 is an inclined surface that gradually approaches the lower surface side in the depth direction of the indentation 86. The conductive metal plate 85 is formed in a rectangular flat plate shape, and is sandwiched between the fifth divided upper wedge 88 and the fifth divided lower wedge 87 in a state of protruding in the axial direction. One projecting portion of the conductive metal plate 85 extends downward along the end surface of the fifth divided lower wedge 87 and is drawn into the recess 86. The conductive metal plate 85 drawn into the recess 86 is disposed along the inclined surface of the recess 86. Here, the lower surface of the portion of the conductive metal plate 85 disposed along the inclined surface of the recess 86 is an inclined surface 85a. The fifth divided upper wedge 88 and the fifth divided lower wedge 87 are made of a high-strength nonmagnetic material such as stainless steel. The conductive metal plate 85 is made of the same material as the conductive metal plate 63, for example, copper or a copper alloy. The electrical connection portion of the fifth divided wedge 84 with the holding ring 9 is configured in the same manner as the second divided wedge 45.
 第4分割くさび77および第5分割くさび84は、軸方向と直交する断面形状が同じである。導電性金属板78の端部が配置された状態のくぼみ83と導電性金属板85の端部が配置された状態のくぼみ86は、同じ穴形状となっている。第4分割くさび77同士は、くぼみ83が相対するように配置される。第4分割くさび77と第5分割くさび84とは、くぼみ83とくぼみ86とが相対するように配置される。 The fourth split wedge 77 and the fifth split wedge 84 have the same cross-sectional shape orthogonal to the axial direction. The recess 83 in a state where the end portion of the conductive metal plate 78 is disposed and the recess 86 in a state where the end portion of the conductive metal plate 85 is disposed have the same hole shape. The fourth divided wedges 77 are arranged so that the recesses 83 face each other. The fourth divided wedge 77 and the fifth divided wedge 84 are arranged such that the recess 83 and the recess 86 face each other.
 第5分割くさび84は、第5分割上くさび88と第5分割下くさび87とを一体化して構成される。ここで、一体化された第5分割上くさび88と第5分割下くさび87とが本体部となり、導電性金属板85が通電体となる。 The fifth divided wedge 84 is configured by integrating a fifth divided upper wedge 88 and a fifth divided lower wedge 87. Here, the integrated fifth divided upper wedge 88 and the fifth divided lower wedge 87 serve as a main body portion, and the conductive metal plate 85 serves as a current-carrying body.
 この実施の形態9では、第4分割くさび77の導電性金属板78同士、および第4分割くさび77の導電性金属板78と第5分割くさび84の導電性金属板85とが、くさび間接続導体75により互いに電気的に接触する状態で軸方向に1列に配列されている。このように、互いに電気的に接触する状態で軸方向に1列に配列された第4分割くさび77の導電性金属板78および第5分割くさび84の導電性金属板85が、ダンパーバー13として機能し、ダンパーバー13を省略することができる。したがって、実施の形態9においても、上記実施の形態8と同様の効果が得られる。 In the ninth embodiment, the conductive metal plates 78 of the fourth divided wedge 77 and the conductive metal plates 78 of the fourth divided wedge 77 and the conductive metal plate 85 of the fifth divided wedge 84 are connected between the wedges. The conductors 75 are arranged in a line in the axial direction so as to be in electrical contact with each other. Thus, the conductive metal plate 78 of the fourth divided wedge 77 and the conductive metal plate 85 of the fifth divided wedge 84 arranged in a line in the axial direction in a state of being in electrical contact with each other are used as the damper bar 13. It functions and the damper bar 13 can be omitted. Therefore, in the ninth embodiment, the same effect as in the eighth embodiment can be obtained.
 また、第4分割クサビ77に形成されたくぼみ83の内壁面の上面に配置された導電性金属板78の下面が、くぼみ83の深さ方向に漸次内径側に変位する傾斜面78aとなっている。第5分割クサビ84に形成されたくぼみ86の内壁面の上面に配置された導電性金属板85の下面が、くぼみ86の深さ方向に漸次内径側に変位する傾斜面85aとなっている。くさび間接続導体75の軸方向両端部が、くぼみ83および86に嵌合され、傾斜面75aが傾斜面78a,85aに半径方向に重なって面接触状態となっている。そこで、回転子6の回転中の遠心力により、これらの電気的接続部の接触面圧が上昇する。これにより、第4分割くさび77の導電性金属板78とくさび間接続導体75との電気的接続部、および第5分割くさび84の導電性金属板85とくさび間接続導体75との電気的接続部の接触抵抗が減少し、接触部における発熱が抑制される。 In addition, the lower surface of the conductive metal plate 78 disposed on the upper surface of the inner wall surface of the recess 83 formed in the fourth divided wedge 77 forms an inclined surface 78 a that gradually displaces toward the inner diameter side in the depth direction of the recess 83. Yes. The lower surface of the conductive metal plate 85 disposed on the upper surface of the inner wall surface of the recess 86 formed in the fifth divided wedge 84 forms an inclined surface 85 a that gradually displaces toward the inner diameter side in the depth direction of the recess 86. Both end portions in the axial direction of the connecting conductor 75 between the wedges are fitted into the recesses 83 and 86, and the inclined surface 75a overlaps the inclined surfaces 78a and 85a in the radial direction to be in a surface contact state. Therefore, the contact surface pressure of these electrical connection portions increases due to the centrifugal force during rotation of the rotor 6. Thereby, the electrical connection between the conductive metal plate 78 of the fourth split wedge 77 and the inter-wedge connection conductor 75 and the electrical connection between the conductive metal plate 85 of the fifth split wedge 84 and the inter-wedge connection conductor 75. The contact resistance of the contact portion is reduced, and heat generation at the contact portion is suppressed.
 なお、上記実施の形態9において、第4分割くさび77に替えて、実施の形態4における第3分割くさび40Aの導電性金属板43の露出面に傾斜したくぼみ設けた第3分割くさびを用いてもよい。 In the ninth embodiment, instead of the fourth divided wedge 77, a third divided wedge provided with an inclined recess on the exposed surface of the conductive metal plate 43 of the third divided wedge 40A in the fourth embodiment is used. Also good.
 ここで、第4分割クサビ77の導電性金属板78のくさび間接続導体75との接触面、第5分割くさび84の導電性金属板85のくさび間接続導体75との接触面、および第5分割くさび84の導電性金属板85の保持環9との接触面に、導電性金属板78、85よりも高い導電性の金属、例えば金、銀などのメッキを施し、接触抵抗を低減してもよい。 Here, the contact surface of the conductive metal plate 78 of the fourth divided wedge 77 with the inter-wedge connection conductor 75, the contact surface of the conductive metal plate 85 of the fifth divided wedge 84 with the inter-wedge connection conductor 75, and the fifth The contact surface of the divided wedge 84 with the holding ring 9 of the conductive metal plate 85 is plated with a conductive metal higher than the conductive metal plates 78 and 85, such as gold and silver, to reduce the contact resistance. Also good.
 なお、上記各実施の形態では、発電機について説明されているが、本発明は、発電機に限定されず、電動機、発電電動機などの回転電機に適用できる。 In each of the above embodiments, the generator has been described. However, the present invention is not limited to the generator, and can be applied to rotating electric machines such as an electric motor and a generator motor.
 3 電機子、5 電機子巻線、6 回転子、8 回転子コア、9 保持環、10 スロット、11 界磁巻線、18 第3分割くさび、30,40,60 第1分割くさび(複合くさび)、30A,40A,60A 第3分割くさび(複合くさび)、31,41,61 第1分割上くさび(本体部)、32,42,62 第1分割下くさび(本体部)、33,43,48,63,78,85 導電性金属板(通電体)、35,45,65 第2分割くさび(複合くさび)、36,46,66 第2分割上くさび(本体部)、37,47,67 第2分割下くさび(本体部)、38a,68a 第1導電性金属板(通電体)、38b,68b 第2導電性金属板(通電体)、50,70,74 第1塊状くさび(分割くさび)、51,72,76 第2塊状くさび(分割くさび)、64,69,75a,78a,79a,80a,85a 傾斜面、75 くさび間接続導体、77 第4分割くさび(複合くさび)、81 第1分割上くさび(本体部)、82 第1分割下くさび(本体部)、84 第5分割くさび(複合くさび)、87 第2分割上くさび(本体部)、88 第1分割下くさび(本体部)。 3 armatures, 5 armature windings, 6 rotors, 8 rotor cores, 9 retaining rings, 10 slots, 11 field windings, 18 third split wedges, 30, 40, 60 first split wedges (composite wedges) ), 30A, 40A, 60A Third split wedge (composite wedge), 31, 41, 61 First split upper wedge (main part), 32, 42, 62 First split lower wedge (main part), 33, 43, 48, 63, 78, 85 Conductive metal plate (electrical conductor), 35, 45, 65 Second split wedge (composite wedge), 36, 46, 66 Second split upper wedge (main part), 37, 47, 67 2nd split lower wedge (main part), 38a, 68a 1st conductive metal plate (current carrying body), 38b, 68b 2nd conductive metal plate (current carrying body), 50, 70, 74 1st block wedge (split wedge) ), 51, 72, 6 2nd lump wedge (divided wedge), 64, 69, 75a, 78a, 79a, 80a, 85a inclined surface, 75 wedge connecting conductor, 77 4th divided wedge (composite wedge), 81 1st divided upper wedge (main body) Part), 82 1st divided lower wedge (main part), 84 5th divided wedge (composite wedge), 87 2nd divided upper wedge (main part), 88 1st divided lower wedge (main part).

Claims (16)

  1.  電機子巻線(5)を備える電機子(3)と、
     上記電機子の内径側に配置された回転子(6)と、を備え、
     上記回転子は、半径方向外方に開口し、かつ軸方向に延びるスロット(10)が周方向に複数形成された回転子コア(8)と、上記スロットのそれぞれに収納された界磁巻線(11)と、上記スロットのそれぞれの開口側に軸方向に配列して収納され、上記界磁巻線を上記スロット内に固定保持する複数の分割くさび(18,30,30A,35,40,40A,45,50,51,60,60A,65,70,72,74,76,77,84)と、上記回転子コアの軸方向両端部に装着された保持環(9)と、を含み、
     上記複数の分割くさびは、複合くさび(30,30A,35,40,40A,45,60,60A,65,77,84)を含み、
     上記複合くさび(30,30A,35,40,40A,45,60,60A,65,77,84)は、上記界磁巻線(11)を保持する本体部(31,32,36,37,41,42,46,47,61,62,66,67)と、上記本体部(31,32,36,37,41,42,46,47,61,62,66,67)に保持され、渦電流が流れる通電体(33,38a,38b,43,48,63,68a,68b,78,85)と、を備え、
     上記本体部(31,32,36,37,41,42,46,47,61,62,66,67)は、上記通電体(33,38a,38b,43,48,63,68a,68b,78,85)より高強度の非磁性材で作製され、
     上記通電体(33,38a,38b,43,48,63,68a,68b,78,85)は、上記本体部(31,32,36,37,41,42,46,47,61,62,66,67)より高導電性の金属で作製されている回転電機。
    An armature (3) comprising an armature winding (5);
    A rotor (6) disposed on the inner diameter side of the armature,
    The rotor includes a rotor core (8) having a plurality of slots (10) extending in the radial direction and opening radially outward, and a field winding housed in each of the slots. (11), and a plurality of split wedges (18, 30, 30A, 35, 40,...) That are housed in an axial arrangement on each opening side of the slot and that hold the field winding in the slot. 40A, 45, 50, 51, 60, 60A, 65, 70, 72, 74, 76, 77, 84), and holding rings (9) mounted on both axial ends of the rotor core. ,
    The plurality of divided wedges include composite wedges (30, 30A, 35, 40, 40A, 45, 60, 60A, 65, 77, 84),
    The composite wedge (30, 30A, 35, 40, 40A, 45, 60, 60A, 65, 77, 84) has a main body (31, 32, 36, 37, 37) that holds the field winding (11). 41, 42, 46, 47, 61, 62, 66, 67) and the main body (31, 32, 36, 37, 41, 42, 46, 47, 61, 62, 66, 67), An electrical current (33, 38a, 38b, 43, 48, 63, 68a, 68b, 78, 85) through which eddy current flows,
    The main body (31, 32, 36, 37, 41, 42, 46, 47, 61, 62, 66, 67) is connected to the current-carrying body (33, 38a, 38b, 43, 48, 63, 68a, 68b, 78, 85) made of a nonmagnetic material with higher strength,
    The current-carrying bodies (33, 38a, 38b, 43, 48, 63, 68a, 68b, 78, 85) are connected to the body portions (31, 32, 36, 37, 41, 42, 46, 47, 61, 62, 66, 67) A rotating electrical machine made of a metal having higher conductivity.
  2.  上記複合くさび(30,35,40,45)は、上記スロット(10)のそれぞれの軸方向中央部と軸方向両端部とのみに収納され、
    軸方向中央部と軸方向両端部とのみに収納されている上記複合くさび(30,35,40,45)を電気的に接続するダンパーバー(13)をさらに備えている請求項1記載の回転電機。
    The composite wedge (30, 35, 40, 45) is housed only in the axial center and axial ends of the slot (10),
    The rotation according to claim 1, further comprising a damper bar (13) for electrically connecting the composite wedges (30, 35, 40, 45) accommodated only in the axially central part and the axially opposite ends. Electric.
  3.  上記本体部は、分割上くさび(31,36,41,46)と、分割下くさび(32,37,42,47)と、を備え、
     上記通電体(33,38a,38b,43,48)は、上記分割上くさび31,36,41,46)と上記分割下くさび(32,37,42,47)との間に挟まれて保持され、
     上記通電体(33,38a,38b,43,48)の上記本体部(31,32,36,37,41,42,46,47)からの突出部が、上記ダンパーバー(13)と面接触している請求項2記載の回転電機。
    The main body includes a split upper wedge (31, 36, 41, 46) and a split lower wedge (32, 37, 42, 47),
    The current-carrying body (33, 38a, 38b, 43, 48) is sandwiched and held between the divided upper wedges 31, 36, 41, 46) and the divided lower wedges (32, 37, 42, 47). And
    Projections from the main body (31, 32, 36, 37, 41, 42, 46, 47) of the current-carrying body (33, 38a, 38b, 43, 48) are in surface contact with the damper bar (13). The rotating electrical machine according to claim 2.
  4.  上記複合くさび(30,35,40,45)は、上記スロット(10)のそれぞれの軸方向中央部と軸方向両端部とのみに収納されている請求項1記載の回転電機。 The rotating electrical machine according to claim 1, wherein the composite wedge (30, 35, 40, 45) is accommodated only in the axial center and the axial both ends of the slot (10).
  5.  上記複数の分割くさびの全てが、上記複合くさび(30,30A,35,40,40A,45,60,60A,65,77,84)であり、
     上記複合くさび(30,30A,35,40,40A,45,60,60A,65,77,84)は、上記通電体(33,38a,38b,43,48,63,68a,68b,78,85)が互いに電気的に接続された状態で上記スロット(10)のそれぞれに軸方向に1列に配列して収納されている請求項1記載の回転電機。
    All of the plurality of divided wedges are the composite wedges (30, 30A, 35, 40, 40A, 45, 60, 60A, 65, 77, 84),
    The composite wedge (30, 30A, 35, 40, 40A, 45, 60, 60A, 65, 77, 84) is connected to the current-carrying body (33, 38a, 38b, 43, 48, 63, 68a, 68b, 78, The rotating electrical machine according to claim 1, wherein 85) are electrically connected to each other and are accommodated in a row in the axial direction in each of the slots (10).
  6.  上記複数の分割くさびは、上記スロット(10)のそれぞれの軸方向中央部と軸方向両端部に収納されている、上記本体部(31,32)より高導電性の金属で作製された塊状くさび(50,51,70,72,74,76)と、上記スロット(10)のそれぞれの軸方向中央部と軸方向両端部を除いて収納されている上記複合くさび(60A,77)と、を備え、
     上記塊状くさび(50,51,70,72,74,76)と上記複合くさび(60A,77)は、上記塊状くさび(50,51,70,72,74,76)および上記通電体(63,78)が互いに電気的に接続された状態で上記スロットのそれぞれに軸方向に1列に配列して収納されている請求項1記載の回転電機。
    The plurality of divided wedges are bulky wedges made of a metal having higher conductivity than the main body portions (31, 32), which are housed in the axial central portion and both axial end portions of the slot (10). (50, 51, 70, 72, 74, 76) and the composite wedges (60A, 77) housed except for the axial center and the axial ends of the slot (10). Prepared,
    The massive wedge (50, 51, 70, 72, 74, 76) and the composite wedge (60A, 77) are composed of the massive wedge (50, 51, 70, 72, 74, 76) and the current-carrying body (63, 78) The rotating electrical machine according to claim 1, wherein 78) are housed in an array in an axial direction in each of the slots in a state of being electrically connected to each other.
  7.  上記複数の分割くさび(60,60A,65)の隣接する分割くさび同士の電気的接続部が、半径方向に重なった状態で面接触する傾斜面(64,69)に構成されている請求項4から請求項6のいずれか1項に記載の回転電機。 5. The electrical connection portion between the adjacent divided wedges of the plurality of divided wedges (60, 60 A, 65) is configured as an inclined surface (64, 69) in surface contact with each other in a state of overlapping in the radial direction. The rotating electrical machine according to claim 6.
  8.  隣り合う上記複合くさび(77,84)の間のそれぞれに配置されたくさび間接続導体(75)をさらに備え、
     上記複合くさび(77,84)の上記通電体(78,85)と上記くさび間接続導体(75)との電気的接続部のそれぞれが、半径方向に重なった状態で面接触する傾斜面(75a,78a,85a)に構成されている請求項5記載の回転電機。
    A wedge connecting conductor (75) disposed between each of the adjacent composite wedges (77, 84);
    An inclined surface (75a) in which the electrical connection portions of the current-carrying body (78, 85) of the composite wedge (77, 84) and the inter-wedge connecting conductor (75) are in surface contact with each other in a state of overlapping in the radial direction. 78a, 85a).
  9.  隣り合う上記塊状くさび(74,76)と上記複合くさび(77)との間、および隣り合う上記複合くさび(77)の間のそれぞれに配置されたくさび間接続導体(75)をさらに備え、
     上記塊状くさび(74,76)と上記くさび間接続導体(75)との電気的接続部、および上記複合くさび(77)の上記通電体(78)と上記くさび間接続導体(75)との電気的接続部のそれぞれが、半径方向に重なった状態で面接触する傾斜面(75a,78a,79a,80a)に構成されている請求項6記載の回転電機。
    A wedge connecting conductor (75) disposed between the adjacent wedges (74, 76) and the composite wedge (77) and between the adjacent composite wedges (77);
    Electrical connection between the massive wedges (74, 76) and the inter-wedge connection conductor (75), and electrical connection between the current-carrying body (78) of the composite wedge (77) and the inter-wedge connection conductor (75) The rotating electrical machine according to claim 6, wherein each of the mechanical connection portions is formed on an inclined surface (75a, 78a, 79a, 80a) in surface contact with each other in a state of overlapping in the radial direction.
  10.  上記本体部は、分割上くさび(31,36,41,46,61,66,81,88)と、分割下くさび(32,37,42,47,62,67,82,87)と、を備え、
     上記複合くさび(30,30A,35,40,40A,45,60,60A,65,77,84)は、上記通電体(33,38a,38b,43,48,63,68a,68b,78,85)が上記分割上くさび(30,30A,35,40,40A,45,60,60A,65,81,88)と上記分割下くさび(32,37,42,47,62,67,82,87)との間に挟まれて保持された状態で、上記分割上くさびと上記分割下くさびとを一体化して構成されている請求項1および請求項4から請求項9のいずれか1項に記載の回転電機。
    The main body includes a divided upper wedge (31, 36, 41, 46, 61, 66, 81, 88) and a divided lower wedge (32, 37, 42, 47, 62, 67, 82, 87). Prepared,
    The composite wedge (30, 30A, 35, 40, 40A, 45, 60, 60A, 65, 77, 84) is connected to the current-carrying body (33, 38a, 38b, 43, 48, 63, 68a, 68b, 78, 85) is the above divided upper wedge (30, 30A, 35, 40, 40A, 45, 60, 60A, 65, 81, 88) and the above divided lower wedge (32, 37, 42, 47, 62, 67, 82, 87), and the divided upper wedge and the divided lower wedge are integrated to each other. The rotating electrical machine described.
  11.  溝方向を軸方向とする凹部(41a,46a)が上記分割上くさび(41,46)の下面に形成され、軸方向に延びる凸部(42a,47a)が上記分割下くさび(42,47)の上面に形成されており、
     上記分割上くさび(41,46)と上記分割下くさび(42,47)は、上記凹部(41a,46a)と上記凸部(42a,47a)とが嵌合され、かつ上記通電体(43,48)が上記凹部(41a,46a)と上記凸部(42a,47a)との間に挟まれて保持された状態で一体化されている請求項10記載の回転電機。
    Concave portions (41a, 46a) whose axial direction is the groove direction are formed on the lower surface of the divided upper wedge (41, 46), and convex portions (42a, 47a) extending in the axial direction are formed on the divided lower wedge (42, 47). Formed on the top surface of
    The divided upper wedges (41, 46) and the divided lower wedges (42, 47) are configured such that the concave portions (41a, 46a) and the convex portions (42a, 47a) are fitted, and the current-carrying bodies (43, The rotating electrical machine according to claim 10, wherein 48) is integrated in a state of being sandwiched and held between the concave portion (41a, 46a) and the convex portion (42a, 47a).
  12.  上記通電体(33,38a,38b,43,48,63,68a,68b,78,85)よりも高い導電性の金属が、上記通電体(33,38a,38b,43,48,63,68a,68b,78,85)の他の部材との電気的接続部に被覆されている請求項2から請求項11のいずれか1項に記載の回転電機。 A conductive metal higher than the current-carrying body (33, 38a, 38b, 43, 48, 63, 68a, 68b, 78, 85) is used for the current-carrying body (33, 38a, 38b, 43, 48, 63, 68a). , 68b, 78, 85) The rotating electrical machine according to any one of claims 2 to 11, which is covered with an electrical connection portion with another member.
  13.  上記塊状くさび(50,51,70,72,74,76)よりも高い導電性の金属が、上記塊状くさび(50,51,70,72,74,76)の他の部材との電気的接続部に被覆されている請求項6記載の回転電機。 The conductive metal higher than the massive wedge (50, 51, 70, 72, 74, 76) is electrically connected to the other members of the massive wedge (50, 51, 70, 72, 74, 76). The rotating electrical machine according to claim 6, wherein the portion is covered.
  14.  請求項10又は請求項11記載の回転電機の製造方法において、焼き嵌め、冷やし嵌め、接着、溶接、ろう付け、攪拌接合のいずれかの方法で、上記分割上くさび(31,36,41,46,61,66,81,88)と上記分割下くさび(32,37,42,47,62,67,82,87)とを一体化する回転電機の製造方法。 12. The method of manufacturing a rotating electrical machine according to claim 10 or 11, wherein the split upper wedge (31, 36, 41, 46) is formed by any one of shrink fitting, cold fitting, adhesion, welding, brazing, and stir welding. , 61, 66, 81, 88) and the divided lower wedge (32, 37, 42, 47, 62, 67, 82, 87).
  15.  請求項10又は請求項11記載の回転電機の製造方法において、焼き嵌めおよび冷やし嵌めのいずれかと、接着、溶接、ろう付けおよび攪拌接合のいずれかと、を併用して、上記分割上くさび(31,36,41,46,61,66,81,88)と上記分割下くさび(32,37,42,47,62,67,82,87)とを一体化する回転電機の製造方法。 12. The method of manufacturing a rotating electrical machine according to claim 10 or 11, wherein any one of shrink fitting and cold fitting and any one of adhesion, welding, brazing, and stir welding is used in combination, and the split upper wedge (31, 36, 41, 46, 61, 66, 81, 88) and the above divided lower wedge (32, 37, 42, 47, 62, 67, 82, 87).
  16.  請求項10又は請求項11記載の回転電機の製造方法において、接着と、溶接、ろう付けおよび攪拌接合のいずれかと、を併用して、上記分割上くさび(31,36,41,46,61,66,81,88)と上記分割下くさび(32,37,42,47,62,67,82,87)とを一体化する回転電機の製造方法。 The method of manufacturing a rotating electrical machine according to claim 10 or 11, wherein the split upper wedge (31, 36, 41, 46, 61, 61) is used in combination with adhesion and any one of welding, brazing, and stir welding. 66, 81, 88) and the divided lower wedge (32, 37, 42, 47, 62, 67, 82, 87).
PCT/JP2018/038835 2018-05-17 2018-10-18 Rotary electric machine and method for manufacturing same WO2019220660A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511671A JP6522272B1 (en) 2018-05-17 2018-10-18 Rotating electrical machine and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095565 2018-05-17
JP2018-095565 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019220660A1 true WO2019220660A1 (en) 2019-11-21

Family

ID=68540065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038835 WO2019220660A1 (en) 2018-05-17 2018-10-18 Rotary electric machine and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2019220660A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11646614B2 (en) 2019-06-05 2023-05-09 Mitsubishi Electric Corporation Rotor of rotating electrical machine and repairing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198745A (en) * 1997-09-19 1999-04-09 Hitachi Ltd Cylindrical rotor of rotary electric machine
JPH11178261A (en) * 1997-12-11 1999-07-02 Hitachi Ltd Rotor of rotating electric machine
JP2001086685A (en) * 1999-09-17 2001-03-30 Toshiba Corp Rotor of electric rotating machine
JP2006296064A (en) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp Rotor of rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198745A (en) * 1997-09-19 1999-04-09 Hitachi Ltd Cylindrical rotor of rotary electric machine
JPH11178261A (en) * 1997-12-11 1999-07-02 Hitachi Ltd Rotor of rotating electric machine
JP2001086685A (en) * 1999-09-17 2001-03-30 Toshiba Corp Rotor of electric rotating machine
JP2006296064A (en) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp Rotor of rotary electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11646614B2 (en) 2019-06-05 2023-05-09 Mitsubishi Electric Corporation Rotor of rotating electrical machine and repairing method therefor

Similar Documents

Publication Publication Date Title
US11496025B2 (en) Stator for an electric rotating machine
US20170237323A1 (en) Rotor design for an electric motor having brazed structure for connecting rotor bars
JP6624671B2 (en) Cage rotor
JP3833262B2 (en) Electric rotor winding
US20120217839A1 (en) Squirrel-cage rotor for induction motor
US20190173333A1 (en) Rotor Assembly Manufacturing Technique
CN110867993A (en) Annular stator of electric motor
CZ234894A3 (en) Exciting current line in an electric machine rotor
CA2215765C (en) Rotors and methods of manufacturing such rotors
KR20110069047A (en) Stator structure for electric machine
WO2019220660A1 (en) Rotary electric machine and method for manufacturing same
JP4431037B2 (en) Rotor for electrical machine
JP6522272B1 (en) Rotating electrical machine and method of manufacturing the same
CN211351843U (en) Stator and rotating electrical machine
WO2015155096A1 (en) C-shaped or u-shaped half-coil, rotor winding with such a half-coil and its manufacturing method
US5498918A (en) Rotor for an electric machine
JPH10322942A (en) Rotating machine
US2073760A (en) Synchronous machine
JP5175126B2 (en) Rotating electrical machine rotor and rotating electrical machine
US11811280B2 (en) Squirrel-cage rotor and associated asynchronous electrical machine
JP7115010B2 (en) Rotating electric machine
CN111564915A (en) Stator
WO2020245941A1 (en) Rotor of rotating electrical machine and method for repairing said rotor
CN111630752A (en) Stator of rotating electric machine and method for manufacturing stator of rotating electric machine
JP4514439B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511671

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918791

Country of ref document: EP

Kind code of ref document: A1