WO2019218937A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2019218937A1
WO2019218937A1 PCT/CN2019/086355 CN2019086355W WO2019218937A1 WO 2019218937 A1 WO2019218937 A1 WO 2019218937A1 CN 2019086355 W CN2019086355 W CN 2019086355W WO 2019218937 A1 WO2019218937 A1 WO 2019218937A1
Authority
WO
WIPO (PCT)
Prior art keywords
mib
electronic device
rmsi
unlicensed
period
Prior art date
Application number
PCT/CN2019/086355
Other languages
English (en)
French (fr)
Inventor
王松
崔琪楣
崔焘
解宇瑄
左惠玲
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司 filed Critical 索尼公司
Priority to EP19804377.0A priority Critical patent/EP3793235A4/en
Priority to US16/963,505 priority patent/US11425574B2/en
Priority to CN202210718983.7A priority patent/CN115066021A/zh
Priority to CN201980008427.7A priority patent/CN111602421B/zh
Publication of WO2019218937A1 publication Critical patent/WO2019218937A1/zh
Priority to US17/866,564 priority patent/US20220353692A1/en
Priority to US18/215,829 priority patent/US12015931B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular to random access on an unlicensed frequency band. More particularly, it relates to an electronic device and method for wireless communication and a computer readable storage medium.
  • New Radio is a next-generation wireless access method for Long Term Evolution (LTE), and is a Radio Access Technology (RAT) different from LTE.
  • NR is capable of coping with various use cases including Enhanced Mobile Broadband (eMBB), Massive Machine Type Communications (mMTC), and Ultra reliable and low latency communications (URLLC). (use case) access technology.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communications
  • URLLC Ultra reliable and low latency communications
  • unlicensed bands In the NR, it is also possible to communicate using an unlicensed band.
  • the use of unlicensed bands includes standalone (SA) scenarios and Licensed Assisted Access (LAA) scenarios.
  • SA standalone
  • LAA Licensed Assisted Access
  • both data and control signaling are transmitted through unlicensed bands
  • control signaling can be transmitted via licensed bands.
  • an electronic device for wireless communication comprising: processing circuitry configured to: perform periodic channel detection on a plurality of unlicensed channels of an unlicensed band in a first cycle;
  • the channel detection result indicates that at least a part of the available unlicensed channels are respectively sent to the user equipment (User Equipment, UE) to send a main information block (MIB) having the same content, and the MIB includes a minimum system. Part of the information.
  • User Equipment, UE User Equipment
  • MIB main information block
  • a method for wireless communication comprising: performing periodic channel detection on a plurality of unlicensed channels of an unlicensed frequency band in a first period; and indicating available non-distribution in a channel detection result
  • a primary system information block MIB having the same content is transmitted to the user equipment on at least a part of the unauthorized channels, and the MIB includes a part of the minimum system information.
  • an electronic device for wireless communication comprising: processing circuitry configured to: determine a period of detecting a primary system information block MIB; and use the periodicity for an unlicensed frequency band The unlicensed channels are tested to obtain an MIB, wherein the MIBs on the plurality of unlicensed channels have the same content, and the MIB includes a portion of the minimum system information.
  • a method for wireless communication comprising: determining a period of detecting a primary system information block MIB; and detecting, by the period, a plurality of unlicensed channels for an unlicensed frequency band to obtain The MIB, wherein the MIBs on the plurality of unlicensed channels have the same content, and the MIB includes a portion of the minimum system information.
  • a computer program code and computer program product for implementing the above method for wireless communication, and a computer having the computer program code for implementing the above method for wireless communication recorded thereon Readable storage media.
  • the electronic device and the method according to the present application improve the probability that the user equipment can correctly detect the MIB in the SA scenario by redundantly transmitting the MIB on the unlicensed frequency band, thereby realizing reliable transmission of the MIB.
  • FIG. 1 shows a functional block diagram of an electronic device for wireless communication in accordance with one embodiment of the present application
  • Figure 2 shows an illustrative example of redundant transmission of an MIB
  • FIG. 3 shows another illustrative example of redundant transmission of an MIB
  • Figure 4 shows an example of a sync signal block
  • FIG. 5 shows an example of transmission of minimum remaining system information
  • FIG. 6 shows an illustrative example of adjustment of a transmission period of minimum remaining system information
  • FIG. 7 illustrates a functional block diagram of an electronic device for wireless communication in accordance with another embodiment of the present application.
  • FIG. 8 shows a flow chart of a method for wireless communication in accordance with one embodiment of the present application.
  • FIG. 9 shows a flow chart of a method for wireless communication in accordance with another embodiment of the present application.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB or a gNB to which the technology of the present disclosure may be applied;
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of an eNB or a gNB to which the technology of the present disclosure may be applied;
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 14 is a block diagram of an exemplary structure of a general purpose personal computer in which methods and/or apparatus and/or systems in accordance with embodiments of the present invention may be implemented.
  • the electronic device 100 includes a channel detecting unit 101 configured to be in a first cycle. Multiple unlicensed channels of the unlicensed band perform periodic channel detection; and the transmitting unit 102 is configured to respectively send the same content to the user equipment on at least a part of the unlicensed channels of the channel detection result indicating available unlicensed channels MIB, which includes part of the minimum system information
  • the channel detecting unit 101 and the transmitting unit 102 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip. Also, it should be understood that the various functional units in the apparatus shown in FIG. 1 are only logical blocks that are divided according to the specific functions that they are implemented, and are not intended to limit the specific implementation.
  • the electronic device 100 may be disposed at the base station side or communicably connected to the base station.
  • the electronic device 100 can be implemented at the chip level or at the device level.
  • the electronic device 100 can operate as the base station itself, and can also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to perform to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, user equipment, other base stations, etc.), and implementations of the transceiver are not specifically limited herein.
  • the base station described herein may further include a Transmitting and Receiving Point (TRP).
  • TRP Transmitting and Receiving Point
  • SI System Information
  • SI can be divided into minimum SI and other SIs, and the minimum SI can be broadcast periodically, and includes basic information required for initial access and information required to acquire other SIs. Other SIs may be broadcast periodically or on demand.
  • the minimum SI includes a main system information block MIB and Remaining Minimum System Information (RMSI). Wherein, the MIB and the RMSI can be sent via different channels, and the UE will receive the MIB first and then receive the RMSI.
  • MIB and RMSI Remaining Minimum System Information
  • the MIB transmits on the unlicensed band. Due to the uncertainty of the channel, the UE may not receive the MIB stably. Similarly, the UE may also fail to receive the RMSI steadily.
  • the channel detecting unit 101 is configured to perform channel detection on a plurality of unlicensed channels of the unlicensed frequency band, such as Listen Before Talk (LBT) to determine whether the channel is available.
  • LBT Listen Before Talk
  • the transmitting unit 102 transmits the MIB having the same content on the N channels or a part of the N channels, that is, implements redundant transmission in the frequency domain to ensure that an unlicensed channel is available. Can complete the transmission of MIB. Accordingly, the UE listens on multiple unlicensed channels to ensure that the MIB is received correctly.
  • Figure 2 shows an illustrative example of a redundant transmission of an MIB. As shown in FIG. 2, each gray-filled square represents MIB transmission, wherein the MIB information of 1 and A is the same, the MIB information of 2 and B is the same, and the MIB information of 3 and C is the same.
  • one or more different unlicensed channels may be assigned to different operators as fixed system information access anchors, in which case channel detection unit 101 detects for the specified unlicensed channel and The MIB is sent on an unlicensed channel whose detection result is available.
  • the sending unit 102 may be further configured to continuously transmit the MIB multiple times on each of the at least one unlicensed channel in a first period, that is, to implement redundant transmission in the time domain.
  • the MIB information of 1-3 and A-C are the same, redundant transmission in the frequency domain and the time domain of the MIB is simultaneously implemented.
  • Fig. 3 shows another illustrative example of redundant transmission in the frequency domain and the time domain of the MIB, in which the MIB is transmitted multiple times in the first cycle on each of the unlicensed channels.
  • the transmitting unit 102 can be configured to transmit the MIB via a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • the transmission of the MIB is periodic, and the transmission period is represented by the first period, which may also be referred to as a PBCH period. It should be understood that in this document, the first, second, ... are only for the purpose of distinction, and do not represent any order or importance.
  • the channel detecting unit 101 may adjust the first period according to the usage status of the at least a part of the unlicensed channel, and the transmitting unit 102 includes the information of the adjustment of the first period in the MIB.
  • the adjusted information may include, for example, the size of the adjusted period or the rule of adjustment, and the like. Due to the uncertainty of the unlicensed channel, the first period of the unlicensed channel can be set to be shorter than the scenario in which the MIB is transmitted via the licensed band.
  • the usage status of the unlicensed channel may include, for example, one or more of the following: the number of times the MIB was successfully transmitted within the predetermined time period; the time elapsed since the last successful transmission of the MIB. For example, if the number of times the MIB is successfully sent within a predetermined time period exceeds a predetermined threshold, the channel is considered to be idle, and a larger first period may be set. Otherwise, a smaller first period needs to be set. Similarly, if the time elapsed since the last successful transmission of the MIB is shorter than a predetermined value (the predetermined value may be the first period or a multiple thereof), the channel is considered to be relatively idle, and a larger first period may be set, and vice versa. A smaller first cycle needs to be set.
  • the channel detecting unit 101 may be further configured to perform periodic channel detection on a specific unlicensed channel in a second period, and the transmitting unit 102 is further configured to be in a specific non-authorization if the channel detection result indicates that the channel is available.
  • the RMSI is sent on the channel.
  • Synchronization Signal Block may be included in the RMSI.
  • the SSB is used to complete cell search and synchronization, and is composed of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a PBCH. Multiple SSBs form an SS burst, as shown in Figure 4.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH PBCH
  • Multiple SSBs form an SS burst, as shown in Figure 4.
  • the time-frequency resources allocated to the SSB are not used, that is, the time-frequency resources originally reserved for the SSB are idle and can be used for transmitting actual control signaling and data, as shown by the gray slash in FIG. The filled box is shown.
  • the location information of these unoccupied SSBs needs to be explicitly indicated by the base station side to the UE side to ensure that the UE side may not receive the SSBs of these locations or receive control signaling and data at these locations.
  • the RMSI can include these location information, so the RMSI is very important for the UE to correctly receive other control signaling and data and to indicate the location of the actual transmitted SSB.
  • the RMSI may be transmitted via a Physical Downlink Share Channel (PDSCH). Due to the uncertainty of the unlicensed channel, each time the RMSI is to be transmitted, the channel detecting unit 101 needs to first detect the unlicensed channel to ensure that the channel is available. The transmission period (or attempted transmission period) of the RMSI is referred to as a second period. In order to increase the probability that the UE receives the RMSI, the transmitting unit 102 may continuously transmit the RMSI multiple times on a specific unlicensed channel in a second period.
  • the specific unlicensed channel here is, for example, an unlicensed channel that the UE has accessed or an unlicensed channel through which the MIB was successfully received.
  • information indicating the receive window of the RMSI may be included in the MIB.
  • the UE determines the location at which the RMSI is received based on the information of the receive window. Wherein, the UE may try to receive the RMSI in the receiving window until the reception is successful.
  • information on the number of times the RMSI is transmitted in one second period may be included in the MIB. Since the UE has received the MIB first, the information of the number of times can be acquired based on the MIB, thereby performing a corresponding number of detection attempts.
  • Figure 5 shows an example of transmitting RMSI 3 times in a second period, where each slash filled box represents a single transmission of RMSI. Accordingly, the UE side will perform three attempts to receive the RMSI.
  • the channel detecting unit 101 can adjust the second period according to the usage condition of the specific unlicensed channel, and the transmitting unit 102 includes the information of the adjustment of the second period in the MIB.
  • the UE can learn the adjustment of the transmission period of the RMSI according to the received MIB.
  • the adjusted information may include, for example, the size of the adjusted period or the rule of adjustment, and the like.
  • the usage status of a particular unlicensed channel may include, for example, one or more of the following: the number of times the RMSI was successfully transmitted within a predetermined time period; the time elapsed since the last successful transmission of the RMSI. For example, if the number of times the RMSI is successfully transmitted within a predetermined time period exceeds a predetermined threshold, the channel is considered to be relatively idle, and a larger second period may be set at this time, otherwise a smaller second period needs to be set.
  • the channel is considered to be relatively idle, and a larger first period may be set, and vice versa. A smaller first cycle needs to be set.
  • Fig. 6 shows an illustrative example of the adjustment of the second period.
  • the base station attempts to access the channel at t1, but the LBT fails, so no RMSI is transmitted.
  • the RMSI should be attempted to be transmitted at time t3, but since the RMSI is not successfully transmitted at time t1, the second period is adjusted, for example, to be half of the original second period, thereby attempting at time t2.
  • the adjusted information may be sent to the UE via the MIB to enable the UE to learn to attempt to receive the RMSI at time t2.
  • the electronic device 100 may further include a memory configured to store information of a usage status of the at least a portion of the unlicensed channel.
  • the electronic device 100 can implement reliable transmission of the MIB and the RMSI in the SA scenario by performing redundant transmission on the MIB and the RMSI.
  • FIG. 7 illustrates a functional block diagram of an electronic device 200 for wireless communication in accordance with another embodiment of the present application.
  • the electronic device 200 includes: a determining unit 201 configured to determine a period for detecting the MIB; and a detecting unit 202 configured to detect the plurality of unlicensed channels for the unlicensed band in the period A MIB is obtained in which MIBs on multiple unlicensed channels have the same content and the MIB includes a portion of the minimum system information.
  • the determining unit 201 and the detecting unit 202 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip. Also, it should be understood that the various functional units in the apparatus shown in FIG. 7 are only logical blocks that are divided according to the specific functions that they are implemented, and are not intended to limit the specific implementation.
  • the electronic device 200 may be provided, for example, on the user equipment (UE) side or communicably connected to the UE.
  • the electronic device 200 can be implemented at the chip level or can also be implemented at the device level.
  • the electronic device 200 can operate as the user device itself, and can also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the user device needs to perform to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (e.g., base stations, other user equipment, etc.), and implementations of the transceivers are not specifically limited herein.
  • the UE In order to normally perform cell search, synchronization, and other related measurements, the UE needs to obtain system information from the base station, including MIB, RMSI, and the like.
  • the MIB periodically broadcasts, for example, on the PBCH.
  • the base station can transmit MIBs having the same content on multiple unlicensed channels.
  • the determining unit 101 determines a period for detecting the listening MIB, which may be determined, for example, based on one or more of the following: a transmission period of the MIB, and a power amount of the UE in which the electronic device 200 is located. For example, when the transmission period is long, the period in which the UE detects the MIB is also set to be long. When the power of the UE is low, the period in which the UE detects the MIB is set to be long to reduce the power consumption.
  • the detecting unit 202 periodically determines to access a plurality of unlicensed channels to listen to the MIB by determining the period determined by the unit 201.
  • the detecting unit 202 determines whether the channel is available, for example, by performing LBT, and accesses the channel to acquire the MIB transmitted thereon when the LBT indicates that the channel is available.
  • one or more different unlicensed channels may be assigned to different operators as fixed system information access anchors, in which case detection unit 202 only detects for the specified unlicensed channel and The MIB is received on an unlicensed channel whose detection result is available.
  • the UE correctly receives the MIB there may be consecutive multiple MIBs having the same content within one transmission period of the MIB.
  • the UE After the UE receives the MIB, it continues to receive the RMSI.
  • the RMSI can be transmitted via the PDSCH channel.
  • the determining unit 201 is further configured to determine a receive window for receiving the RMSI based on the obtained MIB; the detecting unit 202 is further configured to perform channel detection on the specific unlicensed channel in the receive window to receive the RMSI.
  • detection unit 202 performs an LBT on a particular unlicensed channel to determine if the channel is available, and attempts to receive the RMSI on the particular unlicensed channel if the LBT indication is available until the reception is successful.
  • the MIB may further include a transmission period of the RMSI and a number N of transmitting the RMSI in one transmission period, and the detecting unit 202 is configured to receive the RMSI N times in a reception window of a transmission period equal to the RMSI, where N is a positive integer .
  • the base station adjusts the transmission period of the MIB and the RMSI according to the usage status of the unlicensed channel, specifically, for example, the number of times the base station successfully transmits the MIB according to the predetermined time period or the time elapsed since the last successful transmission of the MIB.
  • the base station adjusts the transmission period of the RMSI according to the number of times the RMSI is successfully transmitted within a predetermined time period or the time elapsed since the last successful transmission of the RMSI.
  • the information of the adjustment of the transmission period of the RMSI and/or the adjustment of the transmission period of the MIB may also be included in the MIB, and the detection unit 202 is configured to receive the RMSI or the MIB based on the adjusted transmission period.
  • the adjusted information may include, for example, the size of the adjusted transmission period or the adjusted rule, and the like.
  • the adjusted transmission period of the RMSI is half of the original transmission period, and information about the adjustment may be included in the previously received MIB.
  • Detection unit 202 will receive the RMSI using the adjusted transmission period, for example, starting to attempt to receive the RMSI during the period beginning at time t2 (assuming no delay is considered).
  • the electronic device 200 according to the present embodiment is capable of realizing reliable transmission of the MIB and the RMSI in the SA scenario by receiving the MIB and the RMSI transmitted redundantly.
  • the method includes: periodically scheduling a plurality of unlicensed channels of an unlicensed band in a first cycle.
  • Channel detection (S11) and transmitting a main system information block MIB having the same content to the user equipment on at least a part of the unlicensed channels indicating the available unlicensed channels, wherein the minimum system information is included in the MIB a part of.
  • the MIB may also be transmitted multiple times on each of the at least a portion of the unlicensed channels in a first period.
  • the MIB can be sent via a physical broadcast channel.
  • the first period may also be adjusted according to the usage status of at least a part of the unlicensed channel, and the information of the adjustment of the first period is included in the MIB in step S12.
  • the usage status of at least a portion of the unlicensed channel includes one or more of the following: the number of times the MIB was successfully transmitted within the predetermined time period; the time elapsed since the last successful transmission of the MIB.
  • Information of the usage status of at least a portion of the unlicensed channel may be stored, for example, in a memory.
  • the above method may further include the steps of: performing periodic channel detection on a specific unlicensed channel in a second period (S13); and in a case where the channel detection result indicates that the channel is available
  • the remaining minimum system information RMSI is transmitted on the unlicensed channel (S14).
  • the RMSI includes information indicating different content included in the synchronization signal block, and the RMSI may be transmitted via the physical downlink shared channel. Information indicating the reception window of the RMSI may be included in the MIB.
  • the RMSI may be transmitted multiple times on a particular unlicensed channel in a second period.
  • the information on the number of times the RMSI is transmitted in a second period may be included in the MIB.
  • the second period may also be adjusted according to the usage condition of the specific unlicensed channel in step S13, and the information of the adjustment of the second period is included in the MIB.
  • the usage status of a particular unlicensed channel includes one or more of the following: the number of times the RMSI was successfully transmitted within a predetermined time period; the time elapsed since the last successful transmission of the RMSI.
  • FIG. 9 shows a flowchart of a method for wireless communication according to another embodiment of the present application, as shown in FIG. 9, the method includes: determining a period of detecting a main system information block MIB (S21); The plurality of unlicensed channels for the unlicensed band are detected in the cycle to obtain an MIB (S22), wherein the MIBs on the plurality of unlicensed channels have the same content, and a part of the minimum system information is included in the MIB.
  • S21 main system information block MIB
  • S22 an MIB
  • the period may be determined in step S21 according to one or more of the following: a transmission period of the MIB, and a power quantity of the user equipment where the electronic device is located.
  • the MIB can be received via a physical broadcast channel.
  • MIBs There may be consecutive multiple MIBs having the same content within one transmission cycle of the MIB.
  • the method may further include: determining a reception window for receiving the RMSI based on the obtained MIB (S23); and performing channel detection on the specific unlicensed channel in the reception window to receive the RMSI (S24) ).
  • the MIB may further include a transmission period of the RMSI and a number N of transmissions of the RMSI in one transmission period, and in step S24, the RMSI is received N times in a reception window of a transmission period having a length equal to the RMSI, where N is a positive integer.
  • the RMSI can be received via a physical downlink shared channel.
  • the MIB may further include information of adjustment of the transmission period of the RMSI and/or information of adjustment of the transmission period of the MIB, and the RMSI or MIB is received based on the adjusted transmission period in step S24.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 100 can be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • the eNB includes, for example, a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of user equipment can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the electronic device 200 can be implemented as various user devices.
  • the user device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router and a digital camera device) or an in-vehicle terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB or a gNB to which the technology of the present disclosure can be applied. Note that the following description takes an eNB as an example, but can also be applied to a gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 10 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 10 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiver of the electronic device 100 can be implemented by the wireless communication interface 825. At least a portion of the functionality can also be implemented by controller 821.
  • the controller 821 can implement redundant transmission and reliable transmission of the MIB and RMSI in the SA scenario by performing the functions of the channel detecting unit 101 and the transmitting unit 102.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 11 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 10, except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 11 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 11 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiver of the electronic device 100 can be implemented by the wireless communication interface 825. At least a portion of the functionality can also be implemented by controller 821.
  • the controller 821 can implement redundant transmission and reliable transmission of the MIB and RMSI in the SA scenario by performing the functions of the channel detecting unit 101 and the transmitting unit 102.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 12, the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914
  • the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 12 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in Figure 12 via feeders, which are shown partially as dashed lines in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the transceiver of the electronic device 200 can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can implement reliable transmission of MIB and RMSI in the SA scenario by performing the functions of the determining unit 201 and the detecting unit 202.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 13 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 13 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in Figure 13 via feeders, which are partially shown as dashed lines in the figure. Battery 938 accumulates power supplied from the vehicle.
  • the transceiver of the electronic device 200 can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can implement reliable transmission of MIB and RMSI in the SA scenario by performing the functions of the determining unit 201 and the detecting unit 202.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 1400 shown in FIG. 14), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 1401 executes various processes in accordance with a program stored in a read only memory (ROM) 1402 or a program loaded from a storage portion 1408 to a random access memory (RAM) 1403.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1401 executes various processes and the like is also stored as needed.
  • the CPU 1401, the ROM 1402, and the RAM 1403 are connected to each other via a bus 1404.
  • Input/output interface 1405 is also coupled to bus 1404.
  • the following components are connected to the input/output interface 1405: an input portion 1406 (including a keyboard, a mouse, etc.), an output portion 1407 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 1408 (including a hard disk or the like), the communication portion 1409 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 1409 performs communication processing via a network such as the Internet.
  • the driver 1410 can also be connected to the input/output interface 1405 as needed.
  • a removable medium 1411 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1410 as needed, so that the computer program read therefrom is installed into the storage portion 1408 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1411.
  • such a storage medium is not limited to the removable medium 1411 shown in FIG. 14 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 1411 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1402, a hard disk included in the storage portion 1408, and the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:以第一周期对非授权频段的多个非授权信道进行周期性信道检测;以及在信道检测结果指示可用的非授权信道中的至少一部分非授权信道上分别向用户设备发送具有相同内容的主***信息块MIB,MIB中包括最小***信息的一部分。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2018年5月17日提交中国专利局、申请号为201810474440.9、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及非授权频段上的随机接入。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
新空口(New Radio,NR)作为针对长期演进(Long Term Evolution,LTE)的下一代的无线接入方式,是与LTE不同的无线接入技术(Radio Access Technology,RAT)。NR是能够应对包括增强移动宽带(Enhanced mobile broadband,eMBB)、大规模机器类型通信(Massive machine type communications,mMTC)以及超可靠和低延迟通信(Ultra reliable and low latency communications,URLLC)的各种用例(use case)的接入技术。
在NR中,还可以使用非授权频段进行通信。对于非授权频段的利用包括独立(standalone,SA)场景和授权辅助接入(Licensed Assisted Access,LAA)场景两种。在SA场景中,数据和控制信令均通过非授权频段来传输,而在LAA场景中,可以经由授权频段来传输控制信令。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论 述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:以第一周期对非授权频段的多个非授权信道进行周期性信道检测;以及在信道检测结果指示可用的非授权信道中的至少一部分非授权信道上分别向用户设备(User Equipment,UE)发送具有相同内容的主***信息块(Master Information Block,MIB),该MIB中包括最小***信息的一部分。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:以第一周期对非授权频段的多个非授权信道进行周期性信道检测;以及在信道检测结果指示可用的非授权信道中的至少一部分非授权信道上分别向用户设备发送具有相同内容的主***信息块MIB,该MIB中包括最小***信息的一部分。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:确定对主***信息块MIB进行检测的周期;以及以该周期针对非授权频段的多个非授权信道进行检测以获得MIB,其中,多个非授权信道上的MIB具有相同的内容,并且MIB中包括最小***信息的一部分。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:确定对主***信息块MIB进行检测的周期;以及以该周期针对非授权频段的多个非授权信道进行检测以获得MIB,其中,多个非授权信道上的MIB具有相同的内容,并且MIB中包括最小***信息的一部分。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
根据本申请的电子设备和方法通过在非授权频段上冗余发送MIB,提高了在SA场景中用户设备能够正确检测到MIB的概率,实现了MIB的可靠传输。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了MIB的冗余发送的一个示意性示例;
图3示出了MIB的冗余发送的另一个示意性示例;
图4示出了同步信号块的一个示例;
图5示出了最小剩余***信息的发送的一个示例;
图6示出了最小剩余***信息的发送周期的调整的一个示意性示例;
图7示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图8示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图9示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图10是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图12是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图13是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图14是其中可以实现根据本发明的实施例的方法和/或装置和/或***的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与***及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:信道检测单元101,被配置为以第一周期对非授权频段的多个非授权信道进行周期性信道检测;以及发送单元102,被配置为在信道检测结果指示可用的非授权信道中的至少一部分非授权信道上分别向用户设备发送具有相同内容的MIB,该MIB中包括最小***信息的一部分
其中,信道检测单元101和发送单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图1中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100可以设置在基站侧或者可通信地连接到基站。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为基站本身,并且还可以包括诸如 存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他基站等等)间的通信,这里不具体限制收发器的实现形式。此外,本文所述的基站还可以包括收发点(Transmitting and Receiving Point,TRP)。
***信息(System Information,SI)可以被划分为最小SI和其他SI,最小SI可以被周期性地广播,并且包括初始接入所需要的基本信息以及获取其他SI所需的信息。其他SI可以被周期性地广播或者按需(on demand)提供。最小SI包括主***信息块MIB和剩余最小***信息(Remaining Minimum System Information,RMSI)。其中,MIB和RMSI可以经由不同的信道发送,UE将先接收MIB,再接收RMSI。
在SA场景下,MIB在非授权频段上传输,由于信道的不确定性,因此UE可能无法稳定地接收到MIB。类似地,UE也可能无法稳定地接收到RMSI。
在电子设备100中,信道检测单元101用于对非授权频段的多个非授权信道进行信道检测比如先听后说(Listen Before Talk,LBT)以确定信道是否可用。当检测到N个非授权信道可用时,发送单元102在这N个信道或者N个信道的一部分上发送具有相同内容的MIB,即实现频域上的冗余发送,以确保有可用非授权信道能够完成MIB的传输。相应地,UE会在多个非授权信道上进行侦听,以确保正确接收到MIB。图2示出了MIB的冗余发送的一个示意性示例。如图2所示,各个灰色填充的方块代表MIB传输,其中,1和A的MIB信息相同,2和B的MIB信息相同,3和C的MIB信息相同。
在一个示例中,可以为不同的运营商指定一个或多个不同的非授权信道作为固定的***信息接入锚点,在这种情况下,信道检测单元101针对指定的非授权信道进行检测并在检测结果为可用的非授权信道上发送MIB。
此外,发送单元102还可以被配置为在一个第一周期内在所述至少一部分非授权信道中的每一个非授权信道上连续多次发送MIB,即实现时域上的冗余发送。在图2所示的示例中,如果1-3和A-C的MIB信息均相同,则同时实现了MIB的频域和时域上的冗余发送。并且,图3示 出了MIB的频域和时域上的冗余发送的另一个示意性示例,其中,在每一个非授权信道上,在第一周期内多次发送MIB。
例如,发送单元102可以被配置为经由物理广播信道(Physical Broadcast Channel,PBCH)来发送MIB。
如上所述,MIB的发送是周期性的,其发送周期用第一周期表示,也可以称为PBCH周期。应该理解,在本文中,第一、第二、……仅是为了区分的需要,而不代表任何顺序或重要性的含义。
信道检测单元101可以根据所述至少一部分非授权信道的使用状况来调整第一周期,并且发送单元102将第一周期的调整的信息包含在MIB中。该调整的信息例如可以包括调整后的周期的大小或者调整的规则等等。由于非授权信道的不确定性,与经由授权频段传输MIB的场景相比,非授权信道的第一周期可以设置地更短。
非授权信道的使用状况例如可以包括如下中的一个或多个:预定时间段内成功发送MIB的次数;距离上一次成功发送MIB所经过的时间。例如,如果预定时间段内成功发送MIB的次数超过预定阈值,则认为信道较为空闲,此时可以设置较大的第一周期,反之则需要设置较小的第一周期。类似地,如果距离上一次成功发送MIB所经过的时间短于预定值(预定值可以为第一周期或其倍数),则认为信道较为空闲,此时可以设置较大的第一周期,反之则需要设置较小的第一周期。
作为一个示例,信道检测单元101还可以被配置为以第二周期对特定非授权信道进行周期性信道检测,并且发送单元102还被配置为在信道检测结果指示信道可用的情况下在特定非授权信道上发送RMSI。
RMSI中可以包括指示同步信号块(Synchronization Signal Block,SSB)中包括的不同内容的信息。SSB用于完成小区搜索和同步等,由主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和PBCH组成。多个SSB组成一个SS突发(SS burst),如图4所示。实际中存在某些分配给SSB的时频资源未被使用的情况,即原本预留给SSB的时频资源空闲从而可以用于传输实际的控制信令和数据,如图4中的灰色斜线填充的方框所示。这些未被占用的SSB的位置信息需要由基站侧明确指示UE侧,以保证UE侧可以不接收这些位置的SSB或者接收这些位置处的控制信令 和数据。RMSI可以包括这些位置信息,因此,RMSI对于UE正确接收其他控制信令和数据以及指示实际传输SSB的位置非常重要。
RMSI可以经由物理下行共享信道(Physical Downlink Share Channel,PDSCH)来发送。由于非授权信道的不确定性,因此每次要发送RMSI,信道检测单元101都需要先对非授权信道进行检测以确保信道可用。将RMSI的发送周期(或者尝试发送周期)称为第二周期。为了提高UE接收到RMSI的概率,发送单元102可以在一个第二周期内在特定非授权信道上连续多次发送RMSI。这里的特定非授权信道例如是UE已接入的非授权信道或者经由其成功接收了MIB的非授权信道。
例如,MIB中可以包括指示RMSI的接收窗的信息。UE根据该接收窗的信息来确定接收RMSI的位置。其中,UE可以在该接收窗中尝试接收RMSI直到接收成功为止。
或者,可以将在一个第二周期内发送RMSI的次数的信息包括在MIB中。由于UE已经先接收到MIB,所以可以基于MIB来获取该次数的信息,从而进行相应次数的检测尝试。图5示出了在一个第二周期内发送3次RMSI的示例,其中,每一个斜线填充的方框代表RMSI的一次发送。相应地,UE侧将进行3次RMSI的尝试接收。
此外,信道检测单元101可以根据特定非授权信道的使用状况来调整第二周期,并且发送单元102将第二周期的调整的信息包括在MIB中。UE可以根据接收到的MIB来获知RMSI的发送周期的调整。该调整的信息例如可以包括调整后的周期的大小或者调整的规则等等。
例如,特定非授权信道的使用状况例如可以包括如下中的一个或多个:预定时间段内成功发送RMSI的次数;距离上一次成功发送RMSI所经过的时间。例如,如果预定时间段内成功发送RMSI的次数超过预定阈值,则认为信道较为空闲,此时可以设置较大的第二周期,反之则需要设置较小的第二周期。类似地,如果距离上一次成功发送RMSI所经过的时间短于预定值(预定值可以为第二周期或其倍数),则认为信道较为空闲,此时可以设置较大的第一周期,反之则需要设置较小的第一周期。
图6示出了第二周期的调整的一个示意性示例。其中,基站在t1时 刻尝试接入信道,但是LBT失败,因此没有发送RMSI。按照正常的第二周期,应该在t3时刻处尝试发送RMSI,但是由于t1时刻没有成功发送RMSI,因此对第二周期进行调整,例如减小为原第二周期的一半,从而在时刻t2处尝试接入信道并发送RMSI。该调整的信息可以经由MIB发送给UE,以使得UE能够获知在时刻t2处尝试接收RMSI。
如上所述,信道的使用状况需要被保存以调整MIB和/或RMSI的发送周期。因此,电子设备100还可以包括存储器,被配置为存储所述至少一部分非授权信道的使用状况的信息。
根据本实施例的电子设备100通过对MIB和RMSI进行冗余发送,可以实现SA场景下MIB和RMSI的可靠传输。
<第二实施例>
图7示出了根据本申请的另一个实施例的用于无线通信的电子设备200的功能模块框图。如图7所示,该电子设备200包括:确定单元201,被配置为确定对MIB进行检测的周期;以及检测单元202,被配置为以该周期针对非授权频段的多个非授权信道进行检测以获得MIB,其中,多个非授权信道上的MIB具有相同的内容,并且MIB包括最小***信息的一部分。
其中,确定单元201和检测单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图7所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在用户设备(UE)侧或者可通信地连接到UE。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为用户设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
为了正常地完成小区搜索、同步以及其他的相关测量等,UE需要获 取来自基站的***信息,包括MIB、RMSI等。其中,MIB例如在PBCH上周期性地广播发送。
如前所述,为了使得UE能够更可靠地侦听到MIB,基站可以在多个非授权信道上发送具有相同内容的MIB。确定单元101确定检测听MIB的周期,该周期例如可以基于如下中的一个或多个确定:MIB的发送周期、电子设备200所在的UE的电量。例如,当发送周期长时,UE检测MIB的周期也设置地较长,当UE的电量低时,UE检测MIB的周期设置地较长以减小耗电量。
检测单元202以确定单元201所确定的周期,周期性地尝试接入多个非授权信道以侦听MIB。在SA场景下,检测单元202例如通过执行LBT来确定信道是否可用,并且在LBT指示信道可用的情况下接入该信道来获取其上传输的MIB。
在一个示例中,可以为不同的运营商指定一个或多个不同的非授权信道作为固定的***信息接入锚点,在这种情况下,检测单元202仅针对指定的非授权信道进行检测并在检测结果为可用的非授权信道上接收MIB。
在一个示例中,为了提高UE正确接收MIB的概率,在MIB的一个发送周期内可以存在连续的具有相同内容的多个MIB。
在UE接收到MIB之后,继续接收RMSI。例如,RMSI可以经由PDSCH信道来传输。示例性地,确定单元201还被配置为基于所获得的MIB来确定接收RMSI的接收窗;检测单元202还被配置为在该接收窗中对特定非授权信道进行信道检测以接收RMSI。
类似地,检测单元202例如对特定非授权信道执行LBT以确定该信道是否可用,并在LBT指示可用的情况下在该特定非授权信道上尝试接收RMSI,直到接收成功为止。
例如,MIB中还可以包括RMSI的发送周期以及一个发送周期内发送RMSI的次数N,检测单元202被配置为在长度等于RMSI的发送周期的接收窗中N次接收RMSI,其中,N为正整数。返回参照图5的示例,RMSI的发送周期为图5中所示的第二周期,检测单元202在该第二周期中尝试接收RMSI三次,在该示例中,N=3。应该理解,如果在少于N次的尝试中成功接收到了RMSI,则不再进行后面的接收尝试, 比如,在图5的示例中,如果在第2次尝试中成功接收到了RMSI,则不再进行第3次的接收尝试。
如前所述,基站会根据非授权信道的使用状况来调整MIB和RMSI的发送周期,具体地,例如,基站根据预定时间段内成功发送MIB的次数或者距离上一次成功发送MIB所经过的时间来调整MIB的发送周期;基站根据预定时间段内成功发送RMSI的次数或者距离上一次成功发送RMSI所经过的时间来调整RMSI的发送周期。
因此,MIB中还可以包括RMSI的发送周期的调整的信息以及/或者MIB的发送周期的调整的信息,检测单元202被配置为基于调整的发送周期来接收RMSI或MIB。类似地,该调整的信息例如可以包括调整后的发送周期的大小或者调整的规则等等。
例如,返回参照图6所示的示例,RMSI的调整后的发送周期为原发送周期的一半,关于该调整的信息可以包含在在先接收的MIB中。检测单元202将使用调整后的发送周期来接收RMSI,例如,在t2时刻开始的周期内开始尝试接收RMSI(假设不考虑延迟)。
根据本实施例的电子设备200能够通过对冗余发送的MIB和RMSI的接收,实现SA场景下MIB和RMSI的可靠传输。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图8示出了根据本申请的一个实施例的用于无线通信的方法的流程图,如图8所示,该方法包括:以第一周期对非授权频段的多个非授权信道进行周期性信道检测(S11);以及在信道检测结果指示可用的非授 权信道中的至少一部分非授权信道上分别向用户设备发送具有相同内容的主***信息块MIB(S12),该MIB中包括最小***信息的一部分。
在步骤S12中,还可以在一个第一周期内在至少一部分非授权信道中的每一个非授权信道上连续多次发送MIB。例如,MIB可以经由物理广播信道发送。
在步骤S11中,还可以根据至少一部分非授权信道的使用状况来调整第一周期,并且在步骤S12中将第一周期的调整的信息包括在MIB中。例如,至少一部分非授权信道的使用状况包括如下中的一个或多个:预定时间段内成功发送MIB的次数;距离上一次成功发送MIB所经过的时间。至少一部分非授权信道的使用状况的信息例如可以存储在存储器中。
此外,如图8的虚线框所示,上述方法还可以包括如下步骤:以第二周期对特定非授权信道进行周期性信道检测(S13);以及在信道检测结果指示信道可用的情况下在特定非授权信道上发送剩余最小***信息RMSI(S14)。
其中,RMSI中包括指示同步信号块中包括的不同内容的信息,RMSI可以经由物理下行共享信道发送。MIB中可以包括指示RMSI的接收窗的信息。
在步骤S14中,可以在一个第二周期内在特定非授权信道上连续多次发送RMSI。其中,在一个第二周期内发送RMSI的次数的信息可以包括在MIB中。
在步骤S13中还可以根据特定非授权信道的使用状况来调整第二周期,并且将第二周期的调整的信息包括在MIB中。特定非授权信道的使用状况包括如下中的一个或多个:预定时间段内成功发送RMSI的次数;距离上一次成功发送RMSI所经过的时间。
图9示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,如图9所示,该方法包括:确定对主***信息块MIB进行检测的周期(S21);以及以该周期针对非授权频段的多个非授权信道进行检测以获得MIB(S22),其中,多个非授权信道上的MIB具有相同的内容,并且MIB中包括最小***信息的一部分。
在步骤S21中可以根据如下中的一个或多个确定所述周期:MIB的发送周期,电子设备所在的用户设备的电量。MIB可以经由物理广播信道来接收。
在MIB的一个发送周期内可以存在连续的具有相同的内容的多个MIB。
如图9中的虚线框所示,该方法还可以包括:基于所获得的MIB确定接收RMSI的接收窗(S23);以及在该接收窗中对特定非授权信道进行信道检测以接收RMSI(S24)。
MIB中还可以包括RMSI的发送周期以及一个发送周期内发送RMSI的次数N,在步骤S24中,在长度等于RMSI的发送周期的接收窗中N次接收RMSI,其中,N为正整数。RMSI可以经由物理下行共享信道来接收。
此外,MIB中还可以包括RMSI的发送周期的调整的信息以及/或者MIB的发送周期的调整的信息,在步骤S24中基于调整的发送周期来接收RMSI或MIB。
注意,上述各个方法可以结合或单独使用,其细节在第一至第二实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
例如,电子设备100可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备200可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携 式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图10是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图10所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图10示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。 控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为***到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图10所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图10所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图10示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图10所示的eNB 800中,电子设备100的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行信道检测单元101和发送单元102的功能来实现SA场景下MIB和RMSI的冗余发送和可靠传输。
(第二应用示例)
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配 置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图11所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图11示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图12描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图10描述的BB处理器826相同。如图11所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图11示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混 频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图11所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图11示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图11所示的eNB 830中,电子设备100的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行信道检测单元101和发送单元102的功能来实现SA场景下MIB和RMSI的冗余发送和可靠传输。
[关于用户设备的应用示例]
(第一应用示例)
图12是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上***(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911 将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图12所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图12示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图12所示,智能电话900可以包括多个天线916。虽然图12示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电 池918经由馈线向图12所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图12所示的智能电话900中,电子设备200的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行确定单元201和检测单元202的功能来实现SA场景下MIB和RMSI的可靠传输。
(第二应用示例)
图13是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位***(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被***到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934 和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图13所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图13示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图13所示,汽车导航设备920可以包括多个天线937。虽然图13示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图13所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图13示出的汽车导航设备920中,电子设备200的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行确定单元201和检测单元202的功能来实现SA场景下MIB和RMSI的可靠传输。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网 络941以及车辆模块942中的一个或多个块的车载***(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图14所示的通用计算机1400)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图14中,中央处理单元(CPU)1401根据只读存储器(ROM)1402中存储的程序或从存储部分1408加载到随机存取存储器(RAM)1403的程序执行各种处理。在RAM 1403中,也根据需要存储当CPU 1401执行各种处理等等时所需的数据。CPU 1401、ROM 1402和RAM 1403经由总线1404彼此连接。输入/输出接口1405也连接到总线1404。
下述部件连接到输入/输出接口1405:输入部分1406(包括键盘、鼠标等等)、输出部分1407(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1408(包括硬盘等)、通信部分1409(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1409经由网络比如因特网执行通信处理。根据需要,驱动器1410也可连接到输入/输出接口1405。可移除介质1411比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1410上,使得从中读出的计 算机程序根据需要被安装到存储部分1408中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1411安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图14所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1411。可移除介质1411的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1402、存储部分1408中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和***中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (25)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    以第一周期对非授权频段的多个非授权信道进行周期性信道检测;以及
    在信道检测结果指示可用的非授权信道中的至少一部分非授权信道上分别向用户设备发送具有相同内容的主***信息块MIB,所述MIB中包括最小***信息的一部分。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为在一个第一周期内在所述至少一部分非授权信道中的每一个非授权信道上连续多次发送所述MIB。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为根据所述至少一部分非授权信道的使用状况来调整所述第一周期,并且将所述第一周期的调整的信息包括在所述MIB中。
  4. 根据权利要求3所述的电子设备,其中,所述至少一部分非授权信道的使用状况包括如下中的一个或多个:预定时间段内成功发送所述MIB的次数;距离上一次成功发送所述MIB所经过的时间。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为经由物理广播信道发送所述MIB。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    以第二周期对特定非授权信道进行周期性信道检测;以及
    在信道检测结果指示信道可用的情况下在所述特定非授权信道上发送剩余最小***信息RMSI。
  7. 根据权利要求6所述的电子设备,其中,所述MIB中包括指示所述RMSI的接收窗的信息。
  8. 根据权利要求6所述的电子设备,其中,所述处理电路还被配置为在一个第二周期内在所述特定非授权信道上连续多次发送所述RMSI。
  9. 根据权利要求8所述的电子设备,其中,在一个第二周期内发送所述RMSI的次数的信息包括在所述MIB中。
  10. 根据权利要求6所述的电子设备,其中,所述处理电路还被配置为根据所述特定非授权信道的使用状况来调整所述第二周期,并且将所述第二周期的调整的信息包括在所述MIB中。
  11. 根据权利要求10所述的电子设备,其中,所述特定非授权信道的使用状况包括如下中的一个或多个:预定时间段内成功发送所述RMSI的次数;距离上一次成功发送所述RMSI所经过的时间。
  12. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为经由物理下行共享信道发送所述RMSI。
  13. 根据权利要求6所述的电子设备,其中,所述RMSI中包括指示同步信号块中包括的不同内容的信息。
  14. 根据权利要求3所述的电子设备,还包括:存储器,被配置为存储所述至少一部分非授权信道的使用状况的信息。
  15. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    确定对主***信息块MIB进行检测的周期;以及
    以所述周期针对非授权频段的多个非授权信道进行检测以获得所述MIB,其中,所述多个非授权信道上的MIB具有相同的内容,并且所述MIB中包括最小***信息的一部分。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路被配置为根据如下中的一个或多个确定所述周期:所述MIB的发送周期,所述电子设备所在的用户设备的电量。
  17. 根据权利要求15所述的电子设备,其中,在所述MIB的一个发送周期内存在连续的具有相同的内容的多个MIB。
  18. 根据权利要求15所述的电子设备,其中,所述处理电路被配置为经由物理广播信道来接收所述MIB。
  19. 根据权利要求15所述的电子设备,其中,所述处理电路还被配置为:
    基于所获得的MIB确定接收剩余最小***信息RMSI的接收窗;以及
    在所述接收窗中对特定非授权信道进行信道检测以接收所述RMSI。
  20. 根据权利要求19所述的电子设备,其中,所述MIB中还包括所述RMSI的发送周期以及一个发送周期内发送所述RMSI的次数N,所述处理电路被配置为在长度等于所述RMSI的发送周期的所述接收窗中N次接收所述RMSI,其中,N为正整数。
  21. 根据权利要求19所述的电子设备,其中,所述处理电路被配置为经由物理下行共享信道来接收所述RMSI。
  22. 根据权利要求19所述的电子设备,其中,所述MIB中还包括所述RMSI的发送周期的调整的信息以及/或者所述MIB的发送周期的调整的信息,所述处理电路被配置为基于调整的发送周期来接收所述RMSI或所述MIB。
  23. 一种用于无线通信的方法,包括:
    以第一周期对非授权频段的多个非授权信道进行周期性信道检测;以及
    在信道检测结果指示可用的非授权信道中的至少一部分非授权信道上分别向用户设备发送具有相同内容的主***信息块MIB,所述MIB中包括最小***信息的一部分。
  24. 一种用于无线通信的方法,包括:
    确定对主***信息块MIB进行检测的周期;以及
    以所述周期针对非授权频段的多个非授权信道进行检测以获得所述MIB,其中,所述多个非授权信道上的MIB具有相同的内容,并且所述MIB中包括最小***信息的一部分。
  25. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求23或24所述的用于无线通信的方法。
PCT/CN2019/086355 2018-05-17 2019-05-10 用于无线通信的电子设备和方法、计算机可读存储介质 WO2019218937A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19804377.0A EP3793235A4 (en) 2018-05-17 2019-05-10 ELECTRONIC DEVICE AND METHOD FOR WIRELESS COMMUNICATION AND COMPUTER-READABLE STORAGE MEDIUM
US16/963,505 US11425574B2 (en) 2018-05-17 2019-05-10 Electronic device and method for wireless communication, and computer readable storage medium
CN202210718983.7A CN115066021A (zh) 2018-05-17 2019-05-10 用于无线通信的电子设备和方法、计算机可读存储介质
CN201980008427.7A CN111602421B (zh) 2018-05-17 2019-05-10 用于无线通信的电子设备和方法、计算机可读存储介质
US17/866,564 US20220353692A1 (en) 2018-05-17 2022-07-18 Electronic device and method for wireless communication, and computer readable storage medium
US18/215,829 US12015931B2 (en) 2018-05-17 2023-06-29 Electronic device and method for wireless communication, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810474440.9A CN110505694A (zh) 2018-05-17 2018-05-17 用于无线通信的电子设备和方法、计算机可读存储介质
CN201810474440.9 2018-05-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/963,505 A-371-Of-International US11425574B2 (en) 2018-05-17 2019-05-10 Electronic device and method for wireless communication, and computer readable storage medium
US17/866,564 Continuation US20220353692A1 (en) 2018-05-17 2022-07-18 Electronic device and method for wireless communication, and computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2019218937A1 true WO2019218937A1 (zh) 2019-11-21

Family

ID=68539429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086355 WO2019218937A1 (zh) 2018-05-17 2019-05-10 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (4)

Country Link
US (3) US11425574B2 (zh)
EP (1) EP3793235A4 (zh)
CN (3) CN110505694A (zh)
WO (1) WO2019218937A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505694A (zh) 2018-05-17 2019-11-26 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768160A (zh) * 2014-01-03 2015-07-08 上海朗帛通信技术有限公司 一种非授权频谱的调度方法和装置
CN106255124A (zh) * 2016-09-09 2016-12-21 宇龙计算机通信科技(深圳)有限公司 通信方法和通信装置
CN106470425A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 基于非授权载波的数据传输方法及装置、资源抢占方法及装置
EP3316511A1 (en) * 2016-10-28 2018-05-02 Nanchang Coolpad Intelligent Technology Company Limited Subframe alignment of synchronization channel and pbch with different numerologies

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9762343B2 (en) * 2015-01-30 2017-09-12 Telefonaktiebolaget L M Ericsson (Publ) Interference rejection for improved cell detection
US20160278088A1 (en) * 2015-03-17 2016-09-22 Telefonaktiebolaget L M Ericsson (Publ) LBT Operation Based on Channel Activity and/or Traffic Load
US9814058B2 (en) * 2015-05-15 2017-11-07 Qualcomm Incorporated Scaled symbols for a self-contained time division duplex (TDD) subframe structure
WO2017100355A1 (en) 2015-12-07 2017-06-15 Intel IP Corporation Master information block and system information block transmissions in unlicensed spectrum
WO2017113279A1 (zh) * 2015-12-31 2017-07-06 华为技术有限公司 ***信息传输方法、基站和用户设备
CN108476458B (zh) * 2016-02-19 2021-03-09 苹果公司 发现参考信号传输窗口内、外的到在免授权频段中操作的ue的pbch传输
US10200169B2 (en) * 2016-03-11 2019-02-05 Qualcomm Incorporated Narrowband wireless communications cell search
US10104692B2 (en) * 2016-06-03 2018-10-16 Nokia Technologies Oy Adaptive energy detection threshold for clear channel assessment
US10531459B2 (en) * 2016-07-15 2020-01-07 Qualcomm Incorporated Methods and apparatus for IOT operation in unlicensed spectrum
CN107645730B (zh) 2016-07-20 2019-08-30 电信科学技术研究院 一种***信息的获取、发送方法、移动终端及接入点
KR101895170B1 (ko) * 2016-08-11 2018-09-05 주식회사 케이티 멀티캐스트 통신 방법 및 장치
CN107734692B (zh) * 2016-08-11 2021-10-08 株式会社Kt 在无线通信***中分配数据信道资源的方法和装置
US11252709B2 (en) * 2016-09-01 2022-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Channel partitioning for frequency-hopping narrowband IoT
US10708897B2 (en) * 2016-09-30 2020-07-07 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for downlink control channel transmission and detection in a wireless communication system
EP3528929B1 (en) * 2016-10-18 2023-08-16 BASF Corporation Low temperature nox reduction using h2-scr for diesel vehicles
WO2018073792A1 (en) * 2016-10-21 2018-04-26 Telefonaktiebolaget L M Ericsson (Publ) Harq feedback for unscheduled uplink
WO2018204629A1 (en) * 2017-05-05 2018-11-08 Intel IP Corporation Multefire design of random access channel and random access channel procedure for internet of things device operation in unlicensed spectrum
US10856296B2 (en) * 2017-06-28 2020-12-01 Qualcomm Incorporated Techniques and apparatuses for determining channels for frequency hopping in an unlicensed radio frequency spectrum band
US10405263B2 (en) * 2018-02-05 2019-09-03 Verizon Patent And Licensing Inc. Private radio networks
US11375515B2 (en) * 2018-02-27 2022-06-28 Qualcomm Incorporated Enhanced non-linear interference cancellation (NLIC) operation
CN110505694A (zh) 2018-05-17 2019-11-26 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
JP7115325B2 (ja) * 2019-01-09 2022-08-09 トヨタ自動車株式会社 サーバ、車載装置、車両、プログラム、及び情報提供方法
WO2020178632A1 (en) * 2019-03-01 2020-09-10 Lenovo (Singapore) Pte. Ltd. User equipment authentication
US11497025B2 (en) * 2019-03-20 2022-11-08 Lenovo (Singapore) Pte. Ltd. Multiple resource allocation mode configurations
WO2021059089A1 (en) * 2019-09-23 2021-04-01 Lenovo (Singapore) Pte. Ltd. Determining data transmission preemption

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768160A (zh) * 2014-01-03 2015-07-08 上海朗帛通信技术有限公司 一种非授权频谱的调度方法和装置
CN106470425A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 基于非授权载波的数据传输方法及装置、资源抢占方法及装置
CN106255124A (zh) * 2016-09-09 2016-12-21 宇龙计算机通信科技(深圳)有限公司 通信方法和通信装置
EP3316511A1 (en) * 2016-10-28 2018-05-02 Nanchang Coolpad Intelligent Technology Company Limited Subframe alignment of synchronization channel and pbch with different numerologies

Also Published As

Publication number Publication date
US20230337007A1 (en) 2023-10-19
CN110505694A (zh) 2019-11-26
US20220353692A1 (en) 2022-11-03
US11425574B2 (en) 2022-08-23
CN111602421B (zh) 2022-07-12
CN111602421A (zh) 2020-08-28
US20200374704A1 (en) 2020-11-26
US12015931B2 (en) 2024-06-18
CN115066021A (zh) 2022-09-16
EP3793235A1 (en) 2021-03-17
EP3793235A4 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
US11765600B2 (en) Electronic device and method for wireless communication and computer-readable storage medium
US20220110151A1 (en) Base station-side and user equipment-side apparatuses and methods, and wireless communication system
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
WO2021169904A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP3826404A1 (en) Electronic device and communication method
WO2019001411A1 (zh) 电子装置、无线通信设备和无线通信方法
US20230345530A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
US11690093B2 (en) Electronic device and method for wireless communication, and computer readable storage medium
US20190044634A1 (en) Electronic device in wireless communication system and wireless communication method
US10674515B2 (en) User equipment and base station in wireless communications system, and wireless communications method
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US12015931B2 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2018205885A1 (zh) 用于无线通信的电子设备和方法
WO2021031881A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2019218925A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4016911A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2020143522A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021147746A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019804377

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019804377

Country of ref document: EP

Effective date: 20201210