WO2019218163A1 - 基于液态金属的动态型同位素电池 - Google Patents

基于液态金属的动态型同位素电池 Download PDF

Info

Publication number
WO2019218163A1
WO2019218163A1 PCT/CN2018/086916 CN2018086916W WO2019218163A1 WO 2019218163 A1 WO2019218163 A1 WO 2019218163A1 CN 2018086916 W CN2018086916 W CN 2018086916W WO 2019218163 A1 WO2019218163 A1 WO 2019218163A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
thermoelectric
disposed
based material
isotope battery
Prior art date
Application number
PCT/CN2018/086916
Other languages
English (en)
French (fr)
Inventor
何佳清
周毅
何东升
黄亦
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to PCT/CN2018/086916 priority Critical patent/WO2019218163A1/zh
Publication of WO2019218163A1 publication Critical patent/WO2019218163A1/zh
Priority to US16/694,392 priority patent/US11929185B2/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/10Cells in which radiation heats a thermoelectric junction or a thermionic converter
    • G21H1/103Cells provided with thermo-electric generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present application belongs to the field of liquid metal and isotope batteries, and particularly relates to a dynamic isotope battery based on liquid metal.
  • the atomic nucleus component changes spontaneously, and the isotope that emits radiation is called a radioactive isotope.
  • the radioactive dynamic isotope battery referred to as the dynamic isotope battery, converts the energy released by the radioactive isotope into a power output by using the transducer component, thereby achieving the purpose of power supply. Because isotope batteries have the advantages of long service life, strong environmental adaptability, good work stability, no maintenance, and miniaturization, they are widely used in important fields such as military defense, deep space deep sea, polar exploration, biomedical, and electronics industries. .
  • thermoelectric type thermoelectric/thermoelectric, thermionic emission, Contact potential difference, thermal photovoltaic, alkali metal thermoelectric conversion
  • 2 radiation volt effect Schottky, PN / PIN junction
  • 3 dynamic thermoelectric Brayton cycle, Stirling cycle, Rankine cycle, Magnetic fluid power generation, jet driving piezoelectric type
  • 4 special energy transfer mechanism direct collection, radiant luminescence, decay LC circuit coupling resonance, piezoelectric cantilever beam, external neutron source driven, cosmic ray/electromagnetic wave collection, magnetic Constrained beta particle electromagnetic radiation, magnetic separation,
  • thermoelectric isotope batteries show that the low energy conversion efficiency is still the commonality of current isotope batteries.
  • the development of static thermoelectric isotope batteries is mainly due to research and development at the national level.
  • RTG radioisotope thermoelectric generators
  • Energy conversion efficiency is low, even though NASA's newly reported enhanced multi-mission radioisotope thermoelectric generators (eMMRTG) have a conversion efficiency of less than 8%, so its use range is limited and the civilization process is difficult. .
  • Radiation volt effect isotope battery with semiconductor material as the transducing unit can realize the miniaturization of isotope battery devices, improve its application in MEMS/NEMS and low power / ultra low power electronic devices, and with wide band gap semiconductors and multi-dimensional
  • the rapid development of ordered structural materials has achieved certain research results, but the radiation volts effect isotope battery has the problem of degradation of semiconductor material performance under long-term radiation, which reduces the service life of the radiation volts effect isotope battery.
  • dynamic thermoelectric isotope batteries have higher energy conversion efficiency and have become an important research direction of current isotope batteries.
  • the traditional dynamic isotope battery is based on turbine or heat engine power generation, and there are technical bottlenecks such as difficulty in lubrication of high-speed running parts and inertia vector generated by high-speed rotation, which have failed to achieve practical application.
  • the research on dynamic isotope batteries needs to be further studied.
  • an object of the present application is to provide a technical bottleneck capable of breaking through the traditional dynamic isotope battery, which has a single energy conversion, poor reliability, and large energy loss, and has high energy conversion efficiency, good working stability or adjustable output power.
  • a dynamic isotope battery with features are provided.
  • the present application proposes a dynamic isotope battery.
  • the dynamic isotope battery includes: a metal pipe; a heat source cavity cladding, the heat source cavity cladding defines a heat source cavity, and opposite ends are respectively opposite to the two ends of the metal pipe Connected to form a closed circulation line, and the heat source cavity envelope is provided with a one-way inflation valve; a fuel cartridge, the fuel cartridge is fixedly disposed inside the heat source cavity cladding; a radioactive source, a The radiation source is disposed in the fuel cartridge; the liquid metal is present in the circulation pipeline; and the piezoelectric transducer assembly is disposed on the inner surface of the metal conduit a heat dissipating structure, the heat dissipating structure is disposed on an outer surface of the metal pipe, and is spaced apart from the piezoelectric transducing component in an axial direction of the metal pipe; an electromagnetic pump, the electromagnetic pump is disposed at On the metal pipe, used to drive
  • the dynamic isotope battery can break through the technical bottleneck of the traditional dynamic isotope battery with single conversion, poor reliability and large energy loss, and has the characteristics of high energy conversion efficiency, good working stability, adjustable output power, and the like.
  • the environment is practical and has a long service life.
  • an upper surface of the fuel cartridge is disposed on an inner surface of the heat source cavity cladding, and a first opening is formed on an upper surface of the fuel cartridge, and the heat source cavity is encased a second opening is formed on the inner surface, the first opening and the second opening are correspondingly disposed, and a gasket is disposed in the first opening and the second opening to set the first opening and the first The two openings are sealed, one end of the radiation source is disposed on the gasket, and the other end of the radiation source extends into the fuel cartridge.
  • the gasket is provided with a fixing member, and the radiation source is disposed on the fixing member.
  • the materials forming the fuel cartridge, the gasket, and the fixing member are each selected from at least one of a niobium alloy, a zirconium alloy, and a niobium alloy.
  • the dynamic isotope battery further includes a first fixing bracket and a second fixing bracket that clamp the fuel cartridge, wherein the first fixing bracket is disposed on a lower surface of the fuel cartridge and Between the inner surfaces of the heat source cavity cladding; the second fixing bracket is disposed between the upper surface of the fuel cartridge and the inner surface of the heat source cavity cladding, and has a third opening, the first Three openings are provided corresponding to the first opening and the second opening, and are sealed by the gasket.
  • the materials forming the heat source cavity cladding, the metal pipe, the first fixing bracket, and the second fixing bracket are respectively selected from at least 316 stainless steel, 304 stainless steel, and 310 stainless steel.
  • the dynamic isotope battery further includes a nano-lead plexiglass composite coating disposed on an inner surface of the heat source cavity cladding.
  • the radiation source is selected from at least one of an alpha source, a beta source, a pan-fuel cured product, a small modular nuclear heat source, and a small modular reactor.
  • the alpha source is selected from the group consisting of 210 Po, Gd 210 Po, Y 210 Po, La 210 Po, Ce 210 Po, Pr 210 Po, Nd 210 Po, Sm 210 Po, Eu 210 Po, Tb 210 Po, Dy 210 Po, Ho 210 Po, Er 210 Po, Tm 210 Po, Yb 210 Po, Lu 210 Po, Pm 210 Po, Sc 210 Po, Gd 3 210 Po, Y 3 210 Po, La 3 210 Po, Ce 3 210 Po, Pr 3 210 Po, Nd 3 210 Po, Sm 3 210 Po, Eu 3 210 Po, Tb 3 210 Po, Dy 3 210 Po, Ho 3 210 Po, Er 3 210 Po, Tm 3 210 Po, Yb 3 210 Po, Lu 3 210 Po, 228 Th, 228 ThO 2 , 235 U, 238 Pu, 238 PuO 2 microspheres, 238 PuO 2 -Mo ceramic
  • the liquid metal is selected from the group consisting of liquid metal Ga, GaSn liquid alloy, GaIn liquid alloy, GaZn liquid alloy, GaInSn liquid alloy, GaInZn liquid alloy, GaInSnZn liquid alloy, BiInSn liquid alloy and BiInSnGa liquid alloy. At least one.
  • the piezoelectric transducer component is a single-sided fixed piezoelectric transducer component or a bilateral fixed piezoelectric transducer component, and the material forming the piezoelectric transducer component is selected from the group consisting of lead titanate and zirconium-titanium. At least one of lead acid, lead magnesium niobate, lead lanthanum zincate, lead ruthenate, barium titanate, barium strontium titanate, polyvinylidene fluoride and perovskite piezoelectric materials.
  • the material forming the heat dissipation structure is selected from at least one of graphite, copper, and aluminum alloy.
  • the dynamic isotope battery further includes a thermoelectric transducing component disposed between an outer surface of the metal conduit and the heat dissipation structure.
  • the thermoelectric conversion assembly includes: a first insulating heat conductive substrate and a second insulating heat conductive substrate disposed opposite to each other, the second insulating heat conductive substrate is disposed on an outer surface of the metal pipe; a thermoelectric group, the plurality of thermoelectric groups are distributed along a circumferential direction of the metal pipe, each of the thermoelectric groups extending along an axial direction of the metal pipe, and each of the thermoelectric groups includes a plurality of p-types a thermoelectric leg and a plurality of n-type thermoelectric legs, a plurality of said p-type thermoelectric legs and a plurality of said n-type thermoelectric legs are alternately disposed and electrically connected in sequence, and said plurality of said one of said two said thermoelectric groups A p-type thermoelectric leg and a plurality of p-type thermoelectric legs in the other of the two adjacent thermoelectric groups are staggered, and two adjacent thermoelectric groups are electrically connected end to end.
  • the thermoelectric conversion module further includes a plurality of first electrodes and a plurality of second electrodes, and the plurality of the first electrodes are disposed between the thermoelectric group and the first insulated thermally conductive substrate a plurality of the second electrodes are disposed between the thermoelectric group and the second insulated thermally conductive substrate, and one of the p-type thermoelectric legs adjacent to and electrically connected and one of the n-type thermoelectric legs constitute a thermoelectric pair
  • the p-type thermoelectric leg and the n-type thermoelectric leg of each of the thermoelectric pairs are electrically connected by the first electrode, and the p-type thermoelectric leg and phase in one of two adjacent thermoelectric pairs
  • the n-type thermoelectric leg in the other of the two adjacent thermoelectric pairs is electrically connected through the second electrode.
  • the material forming the p-type thermoelectric leg is selected from the group consisting of a p-type Bi 2 Te 3 -based material, a p-type Sb 2 Se 3 -based material, a p-type Sb 2 Te 3 -based material, and a p-type PbTe-based material.
  • a material of the n-type thermoelectric leg at least one of a p-type CoSb 3 -based material, a p-type Half-Heusler (semi-Haasler) material, a p-type Cu 1.8 S-based material, and a p-type AgSbTe 2 -based material Selected from n-type Bi 2 Te 3 based material, n-type BiSb based material, n-type Zn 4 Sb 3 based material, n-type Mg 3 Sb 2 based material, n-type Bi 2 Se 3 based material, n-type Sb 2 Se 3 Base material, n-type PbTe-based material, n-type PbS-based material, n-type CoSb 3 -based material, n-type Mg 2 Si-based material, n-type Zn 4 Sb 3 -based material, n-type InSb-based material, n-type Half-Heusler At least one of a
  • the piezoelectric transducer component is provided with a first piezoelectric output electrode and a second piezoelectric output electrode
  • the thermoelectric conversion component is provided with a first thermoelectric output electrode and a second thermoelectric output.
  • the electrodes, the materials forming the first piezoelectric output electrode, the second piezoelectric output electrode, the first thermoelectric output electrode and the second thermoelectric output electrode are respectively selected from the group consisting of Au, Pd, Pt, Al, Cu At least one of Ni, and Ti.
  • the electromagnetic pump is a cylindrical pump.
  • the dynamic isotope battery uses a liquid metal and a piezoelectric transducer component as a transducing component (the transducing component can further include a thermoelectric transducing component), and relies on an electromagnetic pump to realize a stable circulation of liquid metal, effectively breaking through the traditional dynamics.
  • the high-speed operation of the isotope battery is difficult to lubricate, the inertia vector generated by the rotation of the high-speed running component affects the stability of the system, the reliability of the one-way pneumatic valve compression inert gas working fluid is poor, and the dynamic isotope is greatly improved.
  • the energy conversion efficiency of the battery has the characteristics of high energy conversion efficiency, continuous adjustable output power, strong environmental applicability, good working stability, long service life and easy implementation.
  • This application uses a piezoelectric transducer module driven by liquid metal, a thermoelectric transducer component to realize cascaded step-change, and relies on an electromagnetic pump to achieve stable reflux of liquid metal, effectively breaking through the traditional dynamic isotope battery limited to turbines. Or the technical bottleneck generated by the heat engine power generation mode and the one-way pneumatic valve compression inert gas recirculation, which greatly improves the cycle stability and energy conversion efficiency of the battery, and meets the requirements of energy low carbon environmental protection, integrated high efficiency, and economic universality. .
  • the heat source structure used in this application can be loaded with a radioactive source, a pan-fuel solidified material, a small modular nuclear heat source or a small modular reactor, and further supplemented by a fuel tank and a fixed bracket, and a curved bread shell nano-lead composite coating. Improve the working safety and environmental adaptability of the battery.
  • This application realizes the reciprocating closed circulation of liquid metal in the pipeline through the electromagnetic pump, which helps to adjust the mechanical extrusion and thermal stress existing between the liquid metal and the heat source structure, the energy conversion component and the internal structure of the battery. While improving the reliability of battery operation, the output power range of the battery is expanded to further meet the needs of different fields.
  • FIG. 1 is a schematic view showing the structure of a dynamic isotope battery in an embodiment of the present application.
  • FIG. 2 is a top plan view showing a heat source structure in a dynamic isotope battery in another embodiment of the present application.
  • FIG 3 is a front elevational view showing the structure of a heat source in a dynamic isotope battery in still another embodiment of the present application.
  • FIG. 4 is a top plan view of a piezoelectric transducer assembly in a dynamic isotope battery in still another embodiment of the present application.
  • FIG. 5 is a schematic structural view of a dynamic isotope battery in still another embodiment of the present application.
  • thermoelectric conversion module in a dynamic isotope battery in still another embodiment of the present application.
  • Embodiments of the present application are described in detail below.
  • the embodiments described below are illustrative and are merely illustrative of the present application and are not to be construed as limiting.
  • specific techniques or conditions are not indicated in the examples, they are carried out according to the techniques or conditions described in the literature in the art or in accordance with the product specifications.
  • the reagents or instruments used are not indicated by the manufacturer, and are conventional products that can be obtained commercially.
  • the present application proposes a dynamic isotope battery.
  • the dynamic isotope battery 1 includes: a metal pipe 109; a heat source cavity cladding 106, the heat source cavity cladding 106 defines a heat source cavity 107, and a heat source cavity package
  • the opposite ends of the shell 106 are respectively connected with the two ends of the metal pipe 109 to form a closed circulation line, and the heat source cavity envelope 106 is provided with a one-way inflation valve 108; the fuel cartridge 102 and the fuel cartridge 102 are fixedly disposed.
  • the radiation source 101, the radiation source 101 is disposed in the fuel cartridge 102; the liquid metal 110, the liquid metal 110 (the arrow indicates the flow direction of the liquid metal) exists in the circulation pipeline;
  • the electric transducing component 201, the piezoelectric transducing component 201 is disposed on the inner surface of the metal pipe 109; the heat radiating structure 204b, the heat radiating structure 204b is disposed on the outer surface of the metal pipe 109, and is pressed in the axial direction of the metal pipe 109.
  • the electric transducer assembly 201 is spaced apart; an electromagnetic pump 207, the electromagnetic pump 207 is disposed on the metal conduit 109 for driving the liquid metal 110 to circulate.
  • the dynamic isotope battery can break through the technical bottleneck of the traditional dynamic isotope battery with single conversion, poor reliability and large energy loss, and has the characteristics of high energy conversion efficiency, good working stability, adjustable output power, and the like.
  • the environment is practical and has a long service life.
  • the working principle of the dynamic isotope battery of the present application is that the thermal energy generated by the decay of the isotope heat source (ie, the radiation source) heats the liquid metal through the fuel cartridge, and the liquid metal is thermally expanded to form a steady fluid to drive the piezoelectric transducer component to deform the output electric energy, and the heat dissipation structure The liquid metal is cooled, and finally the liquid metal is driven to return to the heat source cavity by the electromagnetic pump, and heated again to form a closed cycle.
  • the thermal energy generated by the decay of the isotope heat source ie, the radiation source
  • the liquid metal is thermally expanded to form a steady fluid to drive the piezoelectric transducer component to deform the output electric energy, and the heat dissipation structure
  • the liquid metal is cooled, and finally the liquid metal is driven to return to the heat source cavity by the electromagnetic pump, and heated again to form a closed cycle.
  • the upper surface of the fuel cartridge 102 may be disposed inside the heat source chamber 107, and the upper surface of the fuel cartridge 102 has the first Opening, the heat source cavity enclosure 106 has a second opening on the inner surface thereof, and the first opening and the second opening are correspondingly disposed (ie, the interior of the fuel cartridge can communicate with the exterior of the heat source cavity through the first opening and the second opening) And a gasket 105 is disposed in the first opening and the second opening to seal the first opening and the second opening, one end of the radiation source 101 is disposed on the gasket 105, and the other end of the radiation source 101 protrudes into the fuel cartridge 102 .
  • the radiation source 101 can be replaced by the detachable gasket 105, thereby prolonging the service life of the dynamic isotope battery, reducing the design cost of the isotope battery, and the number of the radiation source can be flexibly adjusted according to the actual application.
  • the gasket 105 is provided with a fixing member 102a on which the radiation source 101 is disposed.
  • the specific kind of the fixing member is not particularly limited.
  • the fixing member 102a is a fixed grid, and the radiation source 101 is cooperatively disposed in the fixed grid.
  • the fixing member 102a has a simple structure and is easy to manufacture, and the mounting and dismounting operation of the radiation source 101 is convenient and easy to operate.
  • FIG. 2 is a cross section AB in FIG.
  • the dynamic isotope battery 1 further includes a first fixing bracket 103 and a second fixing bracket 104 that clamp the fuel cartridge 102, wherein the first fixing bracket 103 is disposed on the lower surface of the fuel cartridge 102 and the heat source chamber Between the inner surfaces of the body casing 106; the second fixing bracket 104 is disposed between the upper surface of the fuel cartridge 102 and the inner surface of the heat source cavity casing 106, and has a third opening (not shown), and a third The opening is disposed corresponding to the first opening and the second opening and is sealed by the gasket 105. Thereby, the operational stability and the service life of the dynamic isotope battery can be improved.
  • the heat source structure 10 in FIG. 1 and FIG. 5 mainly includes a heat source cavity 107, a heat source cavity package 106, a fuel cartridge 102, a radiation source 101 disposed in the fuel cartridge, and may further include a gasket 105,
  • the structure of the first fixing bracket 103 and the second fixing bracket 104; the transducing structure 20 mainly includes the piezoelectric transducing component 201, and may further include a thermoelectric transducing component 204a.
  • the materials forming the fuel cartridge, the gasket and the fixing member may be the same or different.
  • the materials forming the fuel cartridge, the gasket and the fixing member are respectively It is at least one selected from the group consisting of niobium alloys, zirconium alloys and niobium alloys
  • the radioactive source can be ensured to be in a safe and stable working environment, thereby ensuring the stability, safety and reliability of the dynamic isotope battery.
  • those skilled in the art can adjust the geometry, physical size and quantity of the fixture according to the requirements of the output voltage and current in practical applications.
  • the materials forming the heat source cavity cladding, the metal pipe first fixing bracket, and the second fixing bracket are respectively selected from at least one of 316 stainless steel, 304 stainless steel, and 310 stainless steel.
  • 316 stainless steel 304 stainless steel
  • 310 stainless steel 310 stainless steel
  • the maximum width of the heat source cavity cladding is greater than the width of the metal pipe, whereby the two ends of the heat source cavity cladding are respectively narrowed and respectively communicated with the two ends of the metal pipe, and the specific shape may be
  • the intermediate shape is thick, the ends are thin cylindrical, the chamfered square cylinder, etc., and the specific shape of the metal pipe matches the openings at both ends of the heat source cavity cladding.
  • the person skilled in the art can determine the number and size of the first fixed bracket and the second fixing bracket according to the requirements of the actual working environment, and adjust the geometric shape and physical size of the fuel box.
  • the inner surface of the heat source cavity can be provided with a nano-lead plexiglass composite coating, wherein the thickness of the nano-lead plexiglass composite coating It can be flexibly adjusted according to the requirements of the actual working environment. Thereby, the ray shielding property and safety of the battery are good.
  • the dynamic isotope battery of the present application expands the selection range of the radiation source selected from the group consisting of an alpha source, a beta source, a pan-fuel solid, a small modular nuclear heat source, and a small modular reactor. At least one of them.
  • the alpha source is selected from the group consisting of 210 Po, Gd 210 Po, Y 210 Po, La 210 Po, Ce 210 Po, Pr 210 Po, Nd 210 Po, Sm 210 Po, and Eu 210 Po, Tb 210 Po, Dy 210 Po, Ho 210 Po, Er 210 Po, Tm 210 Po, Yb 210 Po, Lu 210 Po, Pm 210 Po, Sc 210 Po, Gd 3 210 Po, Y 3 210 Po, La 3 210 Po, Ce 3 210 Po, Pr 3 210 Po, Nd 3 210 Po, Sm 3 210 Po, Eu 3 210 Po, Tb 3 210 Po, Dy 3 210 Po, Ho 3 210 Po, Er 3 210 Po, Tm 3 210 Po, Yb 3 210 Po, Lu 3 210 Po, 228 Th, 228 ThO 2 , 235 U, 238 Pu, 238 PuO 2 microspheres, 238 PuO 2 -Mo
  • general fuel solidified material refers to at least one of a nuclear fuel asphalt cured product, a nuclear fuel cement cured product, a nuclear fuel glass cured product or a nuclear fuel ceramic cured product;
  • small modular core refers to at least one of a General Purpose Heater Source or a Lighted Weighted Radioisotope Heater Unit;
  • Small Modular Reactor refers to a combination of small-scale power generation and modular production.
  • At least one of the large-scale reactors mainly based on the third-generation nuclear reactor technology; and when the source is (C 4 H 3 3 H 5 -) n , it represents deuterated poly(1-ethylethylene), wherein n represents the degree of polymerization, and the selection of the specific value has no limitation.
  • the source is (C 4 H 3 3 H 5 -) n , it represents deuterated poly(1-ethylethylene), wherein n represents the degree of polymerization, and the selection of the specific value has no limitation.
  • Those skilled in the art can flexibly select the degree of polymerization of the above-mentioned radioactive source according to the application field of the battery or the specific parameter requirements.
  • the activity magnitude, the loading amount, the physical size, and the like of the radiation source can be adjusted according to the requirements of the output voltage and current in actual application.
  • the liquid metal is selected from the group consisting of liquid metal Ga, GaSn liquid alloy, GaIn liquid alloy, GaZn liquid alloy, GaInSn liquid alloy, GaInZn liquid alloy, GaInSnZn liquid alloy, BiInSn liquid alloy and BiInSnGa liquid alloy. At least one of them.
  • the liquid metal can form a steady current to drive the piezoelectric transducer assembly to form an output electric energy after being thermally expanded, thereby ensuring current stability of the dynamic isotope battery.
  • a person skilled in the art may select a single-side fixed piezoelectric transducer component 201a or a bilateral fixed piezoelectric transducer component according to specific parameter requirements of a dynamic isotope battery.
  • 201b (refer to FIG. 4), wherein the material forming the piezoelectric transducer component is selected from the group consisting of lead titanate, lead zirconate titanate, lead magnesium niobate, lead lanthanum zincate, lead citrate, barium titanate, barium titanate At least one of sodium, polyvinylidene fluoride and perovskite piezoelectric materials.
  • it can be flexibly selected to assemble single crystal or double crystal piezoelectric transducer components, and the number of piezoelectric transducer components can be flexibly selected, and different combinations such as series, parallel or series-parallel connection can be used to integrate the transducers. Component.
  • the heat dissipation structure may be at least one of a heat sink, a heat dissipation fin, and a ring heat sink.
  • the material forming the heat dissipation structure is selected from at least one of graphite, copper, and aluminum alloy.
  • the electromagnetic pump in order to allow the electromagnetic pump to be stably fixed to the metal pipe, the electromagnetic pump may be selected as a cylindrical pump. Thereby, the operational stability of the dynamic isotope battery can be further improved.
  • the dynamic isotope battery of the present application may further include a thermoelectric conversion component 204a, and the thermoelectric conversion component 204a is disposed at The outer surface of the metal pipe 109 and the heat dissipation structure 204b. Therefore, by using the thermoelectric conversion component, the temperature difference between the liquid metal and the environment can be realized to generate electricity, the conversion efficiency of the dynamic isotope battery can be improved, and the technical problem of the single dynamic isotope battery transduction can be solved.
  • thermoelectric transducing components can flexibly select the number of thermoelectric transducing components, and can also flexibly select different combinations of series, parallel or series-parallel to integrate the transducing components.
  • thermoelectric conversion component 204a includes: a first insulating and thermally conductive substrate 208 and a second insulation disposed opposite to each other.
  • the heat conducting substrate 213, the second insulating heat conducting substrate 213 is disposed on the outer surface of the metal pipe 109; the plurality of thermoelectric groups, the plurality of thermoelectric groups are distributed along the circumferential direction of the metal pipe 109, and each thermoelectric group is along the axis of the metal pipe Extending, and each thermoelectric group includes a plurality of p-type thermoelectric legs 210 and a plurality of n-type thermoelectric legs 211, and a plurality of p-type thermoelectric legs 210 and a plurality of n-type thermoelectric legs 211 are alternately arranged and sequentially electrically connected, adjacent to two A plurality of p-type thermoelectric legs 210 in one of the thermoelectric groups and a plurality of p-type thermoelectric legs 210 in the other of the two adjacent thermoelectric groups are staggered, and two adjacent thermoelectric groups are electrically connected end to end (phase The situation of the two adjacent thermoelectric groups is not shown in the figure). Thereby, the temperature difference between the liquid metal and the environment
  • thermoelectric conversion component 204a further includes a plurality of first electrodes 209 and a plurality of second electrodes 212 disposed on the thermoelectric group and the first insulating and thermally conductive substrate 208.
  • thermoelectric leg 210 and an n-type thermoelectric leg 211 adjacent and electrically connected constitute a thermoelectric pair, and each thermoelectric pair
  • the p-type thermoelectric leg and the n-type thermoelectric leg are electrically connected through the first electrode 209, the p-type thermoelectric leg 210 in one of the two adjacent thermoelectric pairs, and the n-type in the other of the two adjacent thermoelectric pairs
  • the thermoelectric legs 211 are electrically connected by the second electrode 212.
  • the material forming the p-type thermoelectric leg is selected from the group consisting of a p-type Bi 2 Te 3 -based material, a p-type Sb 2 Se 3 -based material, a p-type Sb 2 Te 3 -based material, and a p-type PbTe-based material.
  • a material of the n-type thermoelectric leg at least one of a p-type CoSb 3 -based material, a p-type Half-Heusler (semi-Haasler) material, a p-type Cu 1.8 S-based material, and a p-type AgSbTe 2 -based material Selected from n-type Bi 2 Te 3 based material, n-type BiSb based material, n-type Zn 4 Sb 3 based material, n-type Mg 3 Sb 2 based material, n-type Bi 2 Se 3 based material, n-type Sb 2 Se 3 Base material, n-type PbTe-based material, n-type PbS-based material, n-type CoSb 3 -based material, n-type Mg 2 Si-based material, n-type Zn 4 Sb 3 -based material, n-type InSb-based material, n-type Half-Heusler At least one of a
  • the materials forming the first electrode and the second electrode are respectively selected from at least one of Au, Pd, Pt, Al, Cu, Ni, and Ti.
  • the dynamic isotope battery in order to increase the temperature difference between the liquid metal and the environment, and improve the transduction efficiency of the thermoelectric conversion module, the dynamic isotope battery further includes a heat dissipation structure, and the heat dissipation structure is disposed on the outer surface of the thermoelectric conversion component 204a. on.
  • the specific structure of the heat dissipation structure is not limited, and can be flexibly designed according to actual needs by a person skilled in the art, for example, at least one selected from the group consisting of a heat sink, a heat dissipating fin, and a ring heat sink.
  • a heat sink a heat dissipating fin
  • a ring heat sink ring heat sink
  • the heat dissipation structure may include an annular heat sink 214 and a plurality of heat dissipation fins 215 disposed on an outer surface of the thermoelectric transducer assembly 204a, a plurality of heat dissipation fins The 215 is spaced apart on a side of the annular heat sink 214 that is remote from the thermoelectric transducing assembly 204a. Thereby, the heat dissipation effect is better, the temperature difference between the liquid metal and the environment can be maximized, and the conversion efficiency of the thermoelectric conversion component is further improved.
  • the specific material for forming the heat dissipation structure is not limited as long as the temperature difference between the liquid metal and the environment can be increased.
  • the material forming the heat dissipation structure is selected from at least one of graphite, copper, and aluminum alloy.
  • the piezoelectric transducer module 201 is provided with a first piezoelectric output electrode 202 and a second piezoelectric output electrode.
  • the thermoelectric conversion component 204a is provided with a first thermoelectric output electrode 205 and a second thermoelectric output electrode 206, wherein the first piezoelectric output electrode, the second piezoelectric output electrode, the first thermoelectric output electrode and the second thermoelectricity are formed
  • the material of the output electrode is respectively selected from at least one of Au, Pd, Pt, Al, Cu, Ni, and Ti. Thereby, the conductivity is good, which is beneficial to the power output of the battery.
  • the dynamic isotope battery structure is: the heat source cavity cladding 106 (the cavity formed by the heat source cavity cladding 106 is the heat source cavity 107)
  • the two ends of the pipe 109 are connected to each other to form a closed circulation line, and a one-way inflation valve 108 is disposed above the heat source cavity cladding 106, and the liquid metal 110 is added to the metal pipe through the one-way inflation valve 108 to fill it.
  • the inner surface of the heat source cavity cladding 106 is provided with a nano-lead plexiglass composite coating; the inner surface of the heat source cavity cladding 106 is provided with a first fixing bracket 103 and a second fixing bracket 104, and the fuel cartridge 102
  • the first fixing bracket 103 is sandwiched between the first fixing bracket 103 and the second fixing bracket 104 (or the first fixing bracket 103 is disposed between the lower surface of the fuel cartridge 102 and the inner surface of the heat source cavity casing 106;
  • the second fixing bracket 104 is disposed between the upper surface of the fuel cartridge 102 and the inner surface of the heat source cavity cladding 106), the isotope heat source 101 (radiation source) is disposed in the fuel cartridge 102 through the fixing member 102a, and the gasket 105 connects the second fixing bracket 104 with
  • the fuel cartridge 102 is sealed (or,
  • the sealing pad 105 is provided with a fixing member 102a, and the radiation source 101 is disposed on the fixing member; the
  • the heat dissipation structure 204b is disposed on the outer surface of the metal pipe 109, and in the axial direction of the metal pipe, the heat dissipation structure 204b
  • the battery is further spaced from the piezoelectric transducer assembly 201; the battery further includes an electromagnetic pump 207 disposed on the metal conduit 109 for driving the liquid metal to circulate.
  • the isotope heat source 101 is 238 PuO 2 ceramic;
  • the liquid metal 110 is a GaInSnZn liquid alloy;
  • the electromagnetic pump 207 is a cylindrical pump;
  • the fuel cartridge 102, the fixing member 102a and the gasket 105 are made of the same material and are a bismuth alloy;
  • the piezoelectric transducer assembly 201 is a single-sided fixed piezoelectric component 201a made of lead magnesium niobate (PMN);
  • the first fixing bracket 103, the second fixing bracket 104, the heat source cavity cladding 106 and the metal pipe 109 are made of the same material.
  • the specific materials of the above structures may also adopt other materials as described above, for example, the fuel cartridge 102, the fixing member 102a, and the fuel cartridge gasket 105 may be made of a material such as a ruthenium alloy or a zirconium alloy, and the other structures are the same. This will not be repeated one by one.
  • the working principle of the dynamic isotope battery in the above embodiment is that the thermal energy generated by the decay of the isotope heat source heats the liquid metal through the fuel cartridge, and the liquid metal is thermally expanded to form a steady fluid to drive the piezoelectric transducer component to deform the output electrical energy, and finally the liquid is driven by the electromagnetic pump.
  • the metal is returned to the heat source chamber and heated again to form a closed loop.
  • the dynamic isotope battery structure is: the opposite ends of the heat source cavity cladding 106 (the cavity formed by the heat source cavity cladding 106 is the heat source cavity 107)
  • the two ends of the metal pipe 109 communicate with each other to form a closed circulation line, and a one-way inflation valve 108 is disposed above the heat source cavity envelope 106, and the liquid metal 110 is added to the metal pipe through the one-way inflation valve 108, so that Filled in the circulation pipeline, the inner surface of the heat source cavity cladding 106 is provided with a nano-lead plexiglass composite coating;
  • the inner surface of the heat source cavity cladding 106 is provided with a first fixing bracket 103 and a second fixing bracket 104, and a fuel cartridge 102 is clamped between the first fixing bracket 103 and the second fixing bracket 104 (or the first fixing bracket 103 is disposed between the lower surface of the fuel cartridge 102 and the inner surface of the heat source cavity casing 106;
  • the isotope heat source 101 (radiation source) is disposed in the fuel cartridge 102 through the fixing member 102a, and the gasket 105 will be the second fixing bracket 104. Sealed with fuel cartridge 102 (or The sealing pad 105 is provided with a fixing member 102a, and the radiation source 101 is disposed on the fixing member.
  • the transducing structure 20 mainly comprises a piezoelectric transducing component 201 and a thermoelectric transducing component 204a.
  • the piezoelectric transducing component 201 is disposed on the metal pipe.
  • thermoelectric conversion component 204a (the specific structure thereof is referred to FIG. The detailed description is provided on the outer surface of the metal pipe 109, and is spaced apart from the piezoelectric transducer assembly 201 in the axial direction of the metal pipe 109.
  • the two ends of the thermoelectric transducer assembly 204a are respectively equipped with a first thermoelectric output for outputting electric energy.
  • the electrode 205 and the second thermoelectric output electrode 206; the heat dissipation structure 204b is disposed on the outer surface of the thermoelectric transducer assembly 204a.
  • the battery further includes an electromagnetic pump 207 disposed on the metal conduit 109 for driving the liquid metal 110 to circulate. flow.
  • the isotope heat source 101 is a small modular reactor;
  • the liquid metal 110 is a GaInSn liquid alloy;
  • the electromagnetic pump 207 is a cylindrical pump;
  • the p-type thermoelectric leg 210 is a p-type Bi 2 Te 3 based material, and the n-type thermoelectric leg 211 is an n-type Bi 2 Te 3 based material;
  • the fuel cartridge 102, the fixing member 102a and the gasket 105 are made of the same material and are zirconium alloy;
  • the piezoelectric transducer assembly 201 is a single-sided fixed piezoelectric component 201a, and the material is barium magnesium oxide.
  • the first fixing bracket 103, the second fixing bracket 104, the heat source cavity cladding 106 and the metal pipe 109 are made of the same material and are 316 stainless steel;
  • the first piezoelectric output electrode 202 and the second piezoelectric output electrode 203 The first thermoelectric output electrode 205, the second thermoelectric output electrode 206, the first electrode layer 209, and the second electrode layer 212 are made of the same material, and the first insulating and thermally conductive substrate 208 and the second insulating and thermally conductive substrate 213 are made of the same material.
  • It is an alumina ceramic;
  • the heat dissipation structure 204b (including the annular heat sink 214 and the heat dissipation fins 215) is made of graphite.
  • the specific materials of the above structures may also adopt other materials as described above, for example, the fuel cartridge 102, the fixing member 102a, and the fuel cartridge gasket 105 may be made of a material such as tantalum alloy or tantalum alloy, and other structures are the same. This will not be repeated one by one.
  • the working principle of the dynamic isotope battery in the above embodiment is that the thermal energy generated by the decay of the isotope heat source heats the liquid metal through the fuel cartridge, and the liquid metal is thermally expanded to form a steady fluid to drive the piezoelectric transducer component to deform the output electrical energy, and the thermoelectric transducer component is used at the same time.
  • the temperature difference between the liquid metal and the environment is realized, and finally the liquid metal is driven to return to the heat source cavity by the electromagnetic pump, and is heated again to form a closed cycle.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features are indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Abstract

提供了基于液态金属的动态型同位素电池。所述动态型同位素电池包括:金属管道;热源腔体包壳,热源腔体包壳相对的两端分别与所述金属管道的两端相连通,以构成封闭的循环管路,且热源腔体包壳上设有单向充气阀;燃料盒,燃料盒固定设置在热源腔体包壳内部;放射源,放射源设在所述燃料盒中;液态金属,液态金属存在于循环管路中;压电换能组件,压电换能组件设在所述金属管道的内表面上;散热结构,散热结构设在所述金属管道的外表面上,且与压电换能组件间隔设置;电磁泵,电磁泵设在所述金属管道上,用于驱动所述液态金属循环流动。由此,该动态型同位素电池可靠性好、能量转换效率高、工作稳定性好、输出功率可调,且使用寿命较长。

Description

基于液态金属的动态型同位素电池 技术领域
本申请属于液态金属与同位素电池领域,具体涉及基于液态金属的动态型同位素电池。
背景技术
原子核成分(或能态)自发地发生变化,同时放射出射线的同位素称为放射性同位素。放射性动态型同位素电池,简称动态型同位素电池,它是利用换能组件将放射性同位素衰变时释放出射线的能量转换成电能输出,从而达到供电目的。由于同位素电池具有服役寿命长、环境适应性强、工作稳定性好、无需维护、小型化等优点,目前已在军事国防、深空深海、极地探测、生物医疗、电子工业等重要领域被广泛应用。
同位素电池首先由英国物理学家Henry Moseley于1913年提出,而有关动态型同位素电池的研究主要集中在过去的100年。2017年,周毅等人结合不同换能方式下同位素电池换能效率高低与输出功率大小将同位素电池的换能方式分成了四类:①静态型热电式(温差电/热电、热离子发射、接触电势差、热光伏、碱金属热电转换)同位素电池;②辐射伏特效应(肖特基、PN/PIN结)同位素电池;③动态型热电式(布雷顿循环、斯特林循环、朗肯循环、磁流体发电、射流驱动压电式)同位素电池;④特殊换能机理(直接收集、辐射发光、衰变LC电路耦合谐振、压电悬臂梁、外中子源驱动式、宇宙射线/电磁波收集、磁约束下β粒子电磁辐射、磁分离式、辐射电离)同位素电池。
上述四类同位素电池的研究结果表明,能量转换效率低仍是目前同位素电池的共性所在。静态型热电式同位素电池的发展主要得益于国家层面的研究开发,特别是温差式同位素电池(radioisotope thermoelectric generators,RTG)的设计与制造目前在美国已日趋完善,但其基于热电材料换能电池能量转换效率较低,即便NASA最新报道的增强型多任务温差式同位素电池(enhanced multi-mission radioisotope thermoelectric generators,eMMRTG)的换能效率也不足8%,因而其使用范围有限、民用化过程较为困难。辐射伏特效应同位素电池以半导体材料为换能单元,可实现同位素电池器件小型化,提高了其在MEMS/NEMS与低功率/超低功率电子器件方面的应用,且随着宽禁带半导体与多维有序结构材料的快速发展取得了一定的研究成效,但辐射伏特效应同位素电池存在射线长期辐照下半导体材料性能退化问题,降低了辐射伏特效应同位素电池的使用寿命。与静态型热电式同位素电池和辐射伏特效应同位素电池相比,动态型热电式同位素电池具有较高的能量转换效率并已成为目前同位素电池的重要研究方向。然而,传统动态型同位素电池基于涡轮机或热机发电, 存在高速运转部件润滑困难、高速转动产生的惯性矢量影响***稳定性等技术瓶颈,未能实现实际应用。综上所述,关于动态型同位素电池的研究有待深入。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种能够突破传统动态型同位素电池存在单一换能、可靠性差、能损较大的技术瓶颈,具有能量转换效率高、工作稳定性好或输出功率可调等特点的动态型同位素电池。
在本申请的一方面,本申请提出了一种动态型同位素电池。根据本申请的实施例,所述动态型同位素电池包括:金属管道;热源腔体包壳,所述热源腔体包壳限定出热源腔体,相对的两端分别与所述金属管道的两端相连通,以构成封闭的循环管路,且所述热源腔体包壳上设有单向充气阀;燃料盒,所述燃料盒固定设置在所述热源腔体包壳内部;放射源,所述放射源设在所述燃料盒中;液态金属,所述液态金属存在于所述循环管路中;压电换能组件,所述压电换能组件设在所述金属管道的内表面上;散热结构,所述散热结构设在所述金属管道的外表面上,且在所述金属管道的轴向上与所述压电换能组件间隔设置;电磁泵,所述电磁泵设在所述金属管道上,用于驱动所述液态金属循环流动。由此,该动态型同位素电池能够突破传统动态型同位素电池存在单一换能、可靠性差、能量损失较大的技术瓶颈,具有能量转换效率高、工作稳定性好、输出功率可调等特点,且环境实用性强,使用寿命较长。
根据本申请的实施例,所述燃料盒的上表面设在所述热源腔体包壳的内表面上,且所述燃料盒的上表面上具有第一开口,所述热源腔体包壳的内表面上具有第二开口,所述第一开口和所述第二开口对应设置,且所述第一开口和所述第二开口中设有密封垫以将所述第一开口和所述第二开口密封,所述放射源的一端设置在所述密封垫上,所述放射源的另一端伸入所述燃料盒中。
根据本申请的实施例,所述密封垫上设置有固定件,所述放射源设置在所述固定件上。
根据本申请的实施例,形成所述燃料盒、所述密封垫和所述固定件的材料分别选自钽合金、锆合金和铱合金中的至少一种。
根据本申请的实施例,所述动态型同位素电池还包括夹持所述燃料盒的第一固定支架与第二固定支架,其中,所述第一固定支架设在所述燃料盒的下表面和所述热源腔体包壳的内表面之间;所述第二固定支架设在所述燃料盒上表面和所述热源腔体包壳的内表面之间,且具有第三开口,所述第三开口与所述第一开口和所述第二开口对应设置,并被所述密封垫密封。
根据本申请的实施例,形成所述热源腔体包壳、所述金属管道、所述第一固定支架和所述第二固定支架的材料分别选自316不锈钢、304不锈钢和310不锈钢中的至少一种。
根据本申请的实施例,所述动态型同位素电池还包括纳米铅有机玻璃复合涂层,所述纳米铅有机玻璃复合涂层设在所述热源腔体包壳的内表面上。
根据本申请的实施例,所述放射源选自α放射源、β放射源、泛燃料固化物、小型模块化核热源和小型模块化反应堆中的至少一种。
根据本申请的实施例,所述α放射源选自 210Po、Gd 210Po、Y 210Po、La 210Po、Ce 210Po、Pr 210Po、Nd 210Po、Sm 210Po、Eu 210Po、Tb 210Po、Dy 210Po、Ho 210Po、Er 210Po、Tm 210Po、Yb 210Po、Lu 210Po、Pm 210Po、Sc 210Po、Gd 3 210Po、Y 3 210Po、La 3 210Po、Ce 3 210Po、Pr 3 210Po、Nd 3 210Po、Sm 3 210Po、Eu 3 210Po、Tb 3 210Po、Dy 3 210Po、Ho 3 210Po、Er 3 210Po、Tm 3 210Po、Yb 3 210Po、Lu 3 210Po、 228Th、 228ThO 2235U、 238Pu、 238PuO 2微球、 238PuO 2-Mo陶瓷、 238PuO 2燃料球、 238PuO 2陶瓷、 238Pu-Zr合金、 238Pu-Ga合金、 238Pu-Pt合金、 238Pu-Sc合金、 238PuN、 238PuC、 241Am、 242Cm、 242Cm 2O 3244Cm和 244Cm 2O 3中的至少一种;所述β放射源选自(C 4H 3 3H 5-) n、Sc 3H 214C、 35S、 63Ni、 90Sr、 90Sr/ 90Y、 90SrTiO 399Tc、 106Ru、 137Cs、 137CsCl、 144Ce、 144CeO 2147Pm、 147Pm 2O 3151Sm和 226Ra中的至少一种。
根据本申请的实施例,所述液态金属选自液态金属Ga、GaSn液态合金、GaIn液态合金、GaZn液态合金、GaInSn液态合金、GaInZn液态合金、GaInSnZn液态合金、BiInSn液态合金和BiInSnGa液态合金中的至少一种。
根据本申请的实施例,所述压电换能组件为单边固定压电换能组件或双边固定压电换能组件,形成所述压电换能组件的材料选自钛酸铅、锆钛酸铅、铌镁酸铅、铌锌酸铅、钽钪酸铅、钛酸钡、钛酸铋钠、聚偏氟乙烯和钙钛矿压电材料中的至少一种。
根据本申请的实施例,形成所述散热结构的材料选自石墨、铜和铝合金中的至少一种。
根据本申请的实施例,所述动态型同位素电池进一步包括热电换能组件,所述热电换能组件设在所述金属管道的外表面和所述散热结构之间。
根据本申请的实施例,所述热电换能组件包括:相对设置的第一绝缘导热基底和第二绝缘导热基底,所述第二绝缘导热基底设在所述金属管道的外表面上;多个热电组,所述多个热电组沿着所述金属管道的周向间隔分布,每个所述热电组沿着所述金属管道的轴向延伸,且每个所述热电组包括多个p型热电腿和多个n型热电腿,多个所述p型热电腿和多个所述n型热电腿交替设置且依次电连接,相邻两个所述热电组中的一个的多个所述p型热电腿和相邻两个所述热电组中的另一个中的多个p型热电腿交错设置,且相邻两个所述热电组首尾电连接。
根据本申请的实施例,所述热电换能组件还包括多个第一电极和多个第二电极,多个 所述第一电极设置在所述热电组和所述第一绝缘导热基底之间,多个所述第二电极设在所述热电组和所述第二绝缘导热基底之间,相邻且电连接的一个所述p型热电腿和一个所述n型热电腿构成一个热电对,每个所述热电对中的所述p型热电腿和所述n型热电腿通过所述第一电极电连接,相邻两个热电对中的一个中的所述p型热电腿和相邻两个热电对中的另一个中的所述n型热电腿通过所述第二电极电连接。
根据本申请的实施例,形成所述p型热电腿的材料选自p型Bi 2Te 3基材料、p型Sb 2Se 3基材料、p型Sb 2Te 3基材料、p型PbTe基材料、p型CoSb 3基材料、p型Half-Heusler(半哈斯勒)材料、p型Cu 1.8S基材料和p型AgSbTe 2基材料中的至少一种,形成所述n型热电腿的材料选自n型Bi 2Te 3基材料、n型BiSb基材料、n型Zn 4Sb 3基材料、n型Mg 3Sb 2基材料、n型Bi 2Se 3基材料、n型Sb 2Se 3基材料、n型PbTe基材料、n型PbS基材料、n型CoSb 3基材料、n型Mg 2Si基材料、n型Zn 4Sb 3基材料、n型InSb基材料、n型Half-Heusler(半哈斯勒)材料、n型氧化物材料和n型AgSbTe 2基材料中的至少一种。
根据本申请的实施例,所述压电换能组件上设有第一压电输出电极和第二压电输出电极,所述热电换能组件上设有第一热电输出电极和第二热电输出电极,形成所述第一压电输出电极、所述第二压电输出电极、所述第一热电输出电极和所述第二热电输出电极的材料分别选自Au、Pd、Pt、Al、Cu、Ni和Ti中的至少一种。
根据本申请的实施例,所述电磁泵为圆柱泵。
本申请提供的动态型同位素电池通过采用液态金属和压电换能组件为换能组件(换能组件还可进一步包括热电换能组件),依靠电磁泵实现液态金属稳定循环,有效突破了传统动态型同位素电池存在的高速运转部件润滑困难、高速运转部件转动产生的惯性矢量影响***稳定性、单向气动阀压缩惰性气体工质回流可靠性差等技术瓶颈,同时较大程度地提升了动态型同位素电池的能量转换效率,具有能量转换效率高、输出功率连续可调、环境适用性强、工作稳定性好、使用寿命长、易于实施等特点,可长时间稳定工作于军事国防、深空深海、极地探测、生物医疗、电子工业等重要领域,进一步满足了能源需求的环保、高效、便携、普适。与相关技术相比,至少具有以下有益效果:
1、本申请采用比如液态金属驱动的压电换能组件、热电换能组件实现级联梯级换能,并依靠电磁泵实现液态金属的稳定回流,有效突破了传统了动态型同位素电池局限于涡轮机或热机发电模式、单向气动阀压缩惰性气体回流所产出的技术瓶颈,较大程度地提高了电池的循环稳定性与能量转化效率,满足能源低碳环保、集成高效、经济普适的要求。
2、本申请所采用的热源结构可加载放射源、泛燃料固化物、小型模块化核热源或小型模块化反应堆,并通过燃料盒与固定支架,辅之曲面包壳纳米铅复合涂层,进一步提高了电池的工作安全性与环境适应性。
3、本申请通过电磁泵实现液态金属在管道内的往复闭式循环,有助于调节液态金属同热源结构、换能组件与管道等电池内部结构之间存在的机械挤压与热应力,在提高了电池工作可靠性的同时,扩大了电池的输出功率范围,进一步满足不同领域需求。
附图说明
图1是本申请一个实施例中动态型同位素电池的结构示意图。
图2是本申请另一个实施例中动态型同位素电池中热源结构的俯视图。
图3是本申请又一个实施例中动态型同位素电池中热源结构的正视图。
图4是本申请又一个实施例中动态型同位素电池中压电换能组件的俯视图。
图5是本申请又一个实施例中动态型同位素电池的结构示意图。
图6是本申请又一个实施例中动态型同位素电池中热电换能组件的剖视图。
具体实施方式
下面详细描述本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本申请的一方面,本申请提出了一种动态型同位素电池。根据本申请的实施例,参照图1,所述动态型同位素电池1包括:金属管道109;热源腔体包壳106,所述热源腔体包壳106限定出热源腔体107,热源腔体包壳106相对的两端分别与金属管道109的两端相连通,以构成封闭的循环管路,且热源腔体包壳106上设有单向充气阀108;燃料盒102,燃料盒102固定设置在热源腔体包壳106内部;放射源101,放射源101设在燃料盒102中;液态金属110,所述液态金属110(图中箭头表示液态金属的流向)存在于循环管路中;压电换能组件201,压电换能组件201设在金属管道109的内表面上;散热结构204b,散热结构204b设在金属管道109的外表面上,且在金属管道109的轴向上与压电换能组件201间隔设置;电磁泵207,电磁泵207设在金属管道109上,用于驱动所述液态金属110循环流动。由此,该动态型同位素电池能够突破传统动态型同位素电池存在单一换能、可靠性差、能量损失较大的技术瓶颈,具有能量转换效率高、工作稳定性好、输出功率可调等特点,且环境实用性强,使用寿命较长。
本申请的动态型同位素电池的工作原理是:同位素热源(即放射源)衰变产生的热能通过燃料盒加热液态金属,液态金属受热膨胀形成稳恒流体驱动压电换能组件形变输出电能,散热结构将液态金属降温,最后通过电磁泵驱动液态金属回流到热源腔体,再次加热 形成闭式循环。
其中,需要说明的是,本申请的附图中采用的标号“■”表示垂直纸面向外,“×”表示垂直纸面向里。
根据本申请的实施例,为了便于放射源的设置和更换,参照图1-图3,可使燃料盒102的上表面设在热源腔体107内部,且燃料盒102的上表面上具有第一开口,热源腔体包壳106的内表面上具有第二开口,第一开口和第二开口对应设置(即燃料盒内部通过第一开口和第二开口可以和热源腔体包壳外部相连通),且第一开口和第二开口中设有密封垫105以将第一开口和第二开口密封,放射源101的一端设置在密封垫105上,放射源101的另一端伸入燃料盒102中。由此,可以通过可拆卸的密封垫105来更换放射源101,进而延长动态型同位素电池的使用寿命,降低同位素电池的设计成本,且放射源的数目可以根据实际应用情况灵活调整。
为了进一步固定放射源,根据本申请的实施例,密封垫105上设置有固定件102a,放射源101设置在所述固定件102a上。根据本申请的实施例,固定件的具体种类没有特别限制,在本申请的一些实施例中,固定件102a为固定栅格,放射源101配合设置在所述固定栅格中。由此,固定件102a结构简单,便于制作,且放射源101的安装和拆卸操作方便,易于操作。
根据本申请的实施例,为了防止电池在工作时燃料盒102晃动,影响电池的正常使用,故而可对燃料盒102进行固定,参照图1-图3,其中图2是图1中沿截面AB线的俯视图,具体的:动态型同位素电池1还包括夹持燃料盒102的第一固定支架103与第二固定支架104,其中,第一固定支架103设在燃料盒102的下表面和热源腔体包壳106的内表面之间;第二固定支架104设在燃料盒102上表面和热源腔体包壳106的内表面之间,且具有第三开口(图中未示出),第三开口与第一开口和第二开口对应设置,并被密封垫105密封。由此,可以提高动态型同位素电池的工作稳定性和使用寿命。
需要说明的是,图1和图5中的热源结构10主要包括热源腔体107、热源腔体包壳106、燃料盒102、设置在燃料盒中放射源101,还可以进一步包括密封垫105、第一固定支架103以及第二固定支架104等结构;换能结构20主要包括压电换能组件201,还可以进一步包括热电换能组件204a。
根据本申请的实施例,形成燃料盒、密封垫和固定件的材料可以相同,也可不同,为了提高动态型同位素电池的安全性和稳定性,形成燃料盒、密封垫和固定件的材料分别选自钽合金、锆合金和铱合金中的至少一种。由此,可保证放射源处于一个安全稳定的工作环境,进而保证动态型同位素电池的稳定性和安全可靠性。此外,本领域技术人员可根据实际应用时输出电压电流的需求,可调整固定件的几何形状、物理尺寸与数量。
根据本申请的实施例,形成热源腔体包壳、金属管道第一固定支架和第二固定支架的材料分别选自316不锈钢、304不锈钢和310不锈钢中的至少一种。其中,热源腔体包壳的形状没有限制要求,本领域技术人员可以根据实际需求灵活设计。在本申请的实施例中,热源腔体包壳的最大宽度大于金属管道的宽度,由此,热源腔体包壳的两端分别收窄,并分别与金属管道的两端连通,具体形状可以为中间粗、两端细的圆柱状、倒角方柱体等等,金属管道的具体形状与热源腔体包壳两端的开口匹配。此外,本领域技术人员可根据实际工作环境的要求,来确定第一固定支架和第二固定支架的数量和尺寸,调节燃料盒的几何形状、物理尺寸。
根据本申请的实施例,为了提高射线屏蔽作用,提高电池的安全性,热源腔体包壳的内表面上可以设置有纳米铅有机玻璃复合涂层,其中,纳米铅有机玻璃复合涂层的厚度可以根据实际工作环境的要求灵活调整。由此,电池的射线屏蔽性和安全性较好。
根据本申请的实施例,本申请的动态型同位素电池扩大了放射源的选择范围,放射源选自α放射源、β放射源、泛燃料固化物、小型模块化核热源和小型模块化反应堆中的至少一种。在本申请的一些具体实施例中,所述α放射源选自 210Po、Gd 210Po、Y 210Po、La 210Po、Ce 210Po、Pr 210Po、Nd 210Po、Sm 210Po、Eu 210Po、Tb 210Po、Dy 210Po、Ho 210Po、Er 210Po、Tm 210Po、Yb 210Po、Lu 210Po、Pm 210Po、Sc 210Po、Gd 3 210Po、Y 3 210Po、La 3 210Po、Ce 3 210Po、Pr 3 210Po、Nd 3 210Po、Sm 3 210Po、Eu 3 210Po、Tb 3 210Po、Dy 3 210Po、Ho 3 210Po、Er 3 210Po、Tm 3 210Po、Yb 3 210Po、Lu 3 210Po、 228Th、 228ThO 2235U、 238Pu、 238PuO 2微球、 238PuO 2-Mo陶瓷、 238PuO 2燃料球、 238PuO 2陶瓷、 238Pu-Zr合金、 238Pu-Ga合金、 238Pu-Pt合金、 238Pu-Sc合金、 238PuN、 238PuC、 241Am、 242Cm、 242Cm 2O 3244Cm和 244Cm 2O 3中的至少一种;在本申请的另一些具体实施例中,所述β放射源选自(C 4H 3 3H 5-) n、Sc 3H 214C、 35S、 63Ni、 90Sr、 90Sr/ 90Y、 90SrTiO 399Tc、 106Ru、 137Cs、 137CsCl、 144Ce、 144CeO 2147Pm、 147Pm 2O 3151Sm和 226Ra中的至少一种。
需要说明的是,本文中所采用的描述方式“泛燃料固化物”是指核燃料沥青固化物、核燃料水泥固化物、核燃料玻璃固化物或核燃料陶瓷固化物中的至少一种;“小型模块化核热源”是指通用核热源(General Purpose Heater Source)或轻量核热源(Lighted Weighted Radioisotope Heater Unit)中的至少一种;“小型模块化反应堆”是指结合了小规模发电和模块化生产这两大特点、以第三代核反应堆技术为主的反应堆中的至少一种;另外,当放射源为(C 4H 3 3H 5-) n时,表示氚化聚1-乙基乙烯,其中,n代表聚合度,具体值的选择没有限制要求,本领域技术人员可以根据电池的应用领域或具体参数要求灵活选择上述放射源的聚合度。
根据本申请的实施例,在实际使用中,可根据实际应用时输出电压电流的要求,调整放射源的活度大小、加载数量和物理尺寸等。
根据本申请的实施例中,所述液态金属选自液态金属Ga、GaSn液态合金、GaIn液态合金、GaZn液态合金、GaInSn液态合金、GaInZn液态合金、GaInSnZn液态合金、BiInSn液态合金和BiInSnGa液态合金中的至少一种。由此,上述液态金属在受热膨胀后可形成稳恒电流驱动压电换能组件形成输出电能,保证动态型同位素电池的电流稳定性。
根据本申请的实施例,本领域技术人员可以根据动态型同位素电池的具体参数要求,所述压电换能组件201可选择为单边固定压电换能组件201a或双边固定压电换能组件201b(参照图4),其中,形成压电换能组件的材料选自钛酸铅、锆钛酸铅、铌镁酸铅、铌锌酸铅、钽钪酸铅、钛酸钡、钛酸铋钠、聚偏氟乙烯和钙钛矿压电材料中的至少一种。由此,可以满足压电换能组件的使用需求,提高动态型同位素电池的能量转换效率、可靠性、稳定性,且保证电池的输出功率的可调性。
根据具体参数要求,可灵活选择装配单晶或双晶压电换能组件,也可灵活选择压电择换能组件的数量,及其串联、并联或串并联等不同的结合方式来集成换能组件。
根据本申请的实施例,散热结构可以为散热片、散热翅片和环形散热器中的至少一种。形成散热结构的材料选自石墨、铜和铝合金中的至少一种。当散热结构设置在热电换能组件远离金属管道的一侧时,可以降低液态金属的温度,进而增加热电换能组件两端的温差,提高热电换能组件的能量转化效率,同时提供放射源的能量利用率。
根据本申请的实施例,为了使得电磁泵可以稳定的固定在金属管道上,可选择电磁泵为圆柱泵。由此,可以进一步提高动态型同位素电池的工作稳定性。
根据本申请的实施例,为了进一步更好的解决动态型同位素电池换能单一的问题,参照图5,本申请的动态型同位素电池可进一步包括热电换能组件204a,热电换能组件204a设在金属管道109的外表面和散热结构204b之间。由此,通过采用热电换能组件,可以实现液态金属与环境之间的温差进行发电,提高动态型同位素电池换能效率,解决传统动态型同位素电池换能单一的技术问题。
根据具体参数要求,本领域技术人员可灵活选择热电换能组件的数量,也可灵活选择串联、并联或串并联等不同的结合方式来集成换能组件。
根据本申请的实施例,参照图6(图6中为环形结构中两个不相邻的热电组),其中,热电换能组件204a包括:相对设置的第一绝缘导热基底208和第二绝缘导热基底213,第二绝缘导热基底213设在金属管道109的外表面上;多个热电组,多个热电组沿着金属管道109的周向间隔分布,每个热电组沿着金属管道的轴向延伸,且每个热电组包括多个p型热电腿210和多个n型热电腿211,多个p型热电腿210和多个n型热电腿211交替设置且依次电连接,相邻两个热电组中的一个中的多个p型热电腿210和相邻两个热电组中的另一个中的多个p型热电腿210交错设置,且相邻两个热电组首尾电连接(相邻两个热电 组的情况图中未示出)。由此,通过多个热电组实现将液态金属与环境之间的温差转换为电能,实现热电换能组件的换能效果。
根据本申请的实施例,参照图6,热电换能组件204a还包括多个第一电极209和多个第二电极212,多个第一电极209设置在热电组和第一绝缘导热基底208之间,多个第二电极212设在热电组和第二绝缘导热基底213之间,相邻且电连接的一个p型热电腿210和一个n型热电腿211构成一个热电对,每个热电对中的p型热电腿和n型热电腿通过第一电极209电连接,相邻两个热电对中的一个中的p型热电腿210和相邻两个热电对中的另一个中的n型热电腿211通过第二电极212电连接。由此,通过多个热电组实现将液态金属与环境之间的温差转换为电能,实现热电换能组件的换能效果。
根据本申请的实施例,形成所述p型热电腿的材料选自p型Bi 2Te 3基材料、p型Sb 2Se 3基材料、p型Sb 2Te 3基材料、p型PbTe基材料、p型CoSb 3基材料、p型Half-Heusler(半哈斯勒)材料、p型Cu 1.8S基材料和p型AgSbTe 2基材料中的至少一种,形成所述n型热电腿的材料选自n型Bi 2Te 3基材料、n型BiSb基材料、n型Zn 4Sb 3基材料、n型Mg 3Sb 2基材料、n型Bi 2Se 3基材料、n型Sb 2Se 3基材料、n型PbTe基材料、n型PbS基材料、n型CoSb 3基材料、n型Mg 2Si基材料、n型Zn 4Sb 3基材料、n型InSb基材料、n型Half-Heusler(半哈斯勒)材料、n型氧化物材料和n型AgSbTe 2基材料中的至少一种。由此,热电换能组件的换能效率高,工作时稳定性好,使用寿命长。
根据本申请的实施例,形成第一电极和第二电极的材料分别选自Au、Pd、Pt、Al、Cu、Ni和Ti中的至少一种。由此,导电性好,与p型热电腿和n型热电腿的相容性好。
根据本申请的实施例,为了增大液态金属与环境之间的温差,提高热电换能组件的换能效率,动态型同位素电池还包括散热结构,散热结构设置在热电换能组件204a的外表面上。其中,散热结构的具体结构没有限制要求,本领域技术人员可以根据实际需求灵活设计,例如可以选自散热片、散热翅片和环形散热器中的至少一种。在本申请的一些实施例中,参照图6,散热结构可包括环形散热器214和多个散热翅片215,环形散热器214设置在热电换能组件204a的外表面上,多个散热翅片215间隔设置在环形散热器214远离热电换能组件204a的一侧。由此,散热效果更佳,可以最大程度的增大液态金属与环境之间的温差,更进一步的提高热电换能组件的换能效率。
根据本申请的实施例,形成散热结构的具体材料没有限制要求,只要可以增大液态金属与环境之间的温差即可。在本申请的实施例中,形成散热结构的材料选自石墨、铜和铝合金中的至少一种。
根据本申请的实施例,为了实现动态型同位素电池的电能输出,参照图1、图5和图6,压电换能组件201上设有第一压电输出电极202和第二压电输出电极203,热电换能组件 204a上设有第一热电输出电极205和第二热电输出电极206,其中,形成第一压电输出电极、第二压电输出电极、第一热电输出电极和第二热电输出电极的材料分别选自Au、Pd、Pt、Al、Cu、Ni和Ti中的至少一种。由此,导电性能佳,有利于电池的电能输出。
下面结合本申请的两个具体实施例详细介绍一下本申请的动态型同位素电池:
根据本申请的一个具体实施例,参照图1,动态型同位素电池结构为:热源腔体包壳106(热源腔体包壳106形成的腔体为热源腔体107)相对的两端分别与金属管道109的两端相连通,以构成封闭的循环管路,且热源腔体包壳106上方设有单向充气阀108,通过单向充气阀108向金属管道中加入液态金属110,使其填充在循环管路中,热源腔体包壳106内表面设置有纳米铅有机玻璃复合涂层;热源腔体包壳106内表面上设有第一固定支架103和第二固定支架104,燃料盒102被夹持第一固定支架103与第二固定支架104之间(或者说,第一固定支架103设在燃料盒102的下表面和热源腔体包壳106的内表面之间;第二固定支架104设在燃料盒102上表面和热源腔体包壳106的内表面之间),同位素热源101(放射源)通过固定件102a设置于燃料盒102内,密封垫105将第二固定支架104与燃料盒102密封(或者说,密封垫105上设置有固定件102a,放射源101设置在固定件上);换能结构20主要包括压电换能组件201,压电换能组件201设在金属管道109的内表面上,且其底部装配有用于电能的输出的第一压电输出电极202与第二压电输出电极203,散热结构204b设在金属管道109的外表面上,且在金属管道的轴向上,散热结构204b与压电换能组件201间隔设置;该电池还包括电磁泵207,电磁泵207设在金属管道109上,用于驱动液态金属循环流动。
在上述具体实施例中,同位素热源101是 238PuO 2陶瓷;液态金属110为GaInSnZn液态合金;电磁泵207为圆柱泵;燃料盒102、固定件102a和密封垫105的材质相同,是钽合金;压电换能组件201为单边固定压电组件201a,材质是铌镁酸铅(PMN);第一固定支架103、第二固定支架104、热源腔体包壳106和金属管道109的材质相同,是316不锈钢;第一压电输出电极202、第二压电输出电极203的材质相同,为金属Cu;散热片204b为石墨散热片。当然,上述各个结构的具体材料还可以采用前面所述的其他材料,比如燃料盒102、固定件102a和燃料盒密封垫105的材质还可以是铱合金或锆合金等材料,其他结构一样,在此不再一一赘述。
上述实施例中动态型同位素电池的工作原理是:同位素热源衰变产生的热能通过燃料盒加热液态金属,液态金属受热膨胀形成稳恒流体驱动压电换能组件形变输出电能,最后通过电磁泵驱动液态金属回流到热源腔体,再次加热形成闭式循环。
根据本申请的另一个具体实施例,参照图5,动态型同位素电池结构为:热源腔体包壳106(热源腔体包壳106形成的腔体为热源腔体107)相对的两端分别与金属管道109的两 端相连通,以构成封闭的循环管路,且热源腔体包壳106上方设有单向充气阀108,通过单向充气阀108向金属管道中加入液态金属110,使其填充在循环管路中,热源腔体包壳106内表面设置有纳米铅有机玻璃复合涂层;热源腔体包壳106内表面上设有第一固定支架103和第二固定支架104,燃料盒102被夹持第一固定支架103与第二固定支架104之间(或者说,第一固定支架103设在燃料盒102的下表面和热源腔体包壳106的内表面之间;第二固定支架104设在燃料盒102上表面和热源腔体包壳106的内表面之间),同位素热源101(放射源)通过固定件102a设置于燃料盒102内,密封垫105将第二固定支架104与燃料盒102密封(或者说,密封垫105上设置有固定件102a,放射源101设置在固定件上);换能结构20主要包括压电换能组件201和热电换能组件204a,压电换能组件201设在金属管道109的内表面上,且其底部装配有用于电能的输出的第一压电输出电极202与第二压电输出电极203,热电换能组件204a(其具体结构参照图6,在此便不再详细描述)设在金属管道109的外表面上,且在金属管道109的轴向上与压电换能组件201间隔设置,热电换能组件204a两端分别装配有用于输出电能的第一热电输出电极205与第二热电输出电极206;散热结构204b设在热电换能组件204a的外表面上,该电池还包括电磁泵207,电磁泵207设在金属管道109上,用于驱动液态金属110循环流动。
在上述具体实施例中,同位素热源101是小型模块化反应堆;液态金属110为GaInSn液态合金;电磁泵207为圆柱泵;p型热电腿210为p型Bi 2Te 3基材料,n型热电腿211为n型Bi 2Te 3基材料;燃料盒102、固定件102a和密封垫105的材质相同,是锆合金;压电换能组件201为单边固定压电组件201a,材质是铌镁酸铅(PMN);第一固定支架103、第二固定支架104、热源腔体包壳106和金属管道109的材质相同,是316不锈钢;第一压电输出电极202、第二压电输出电极203、第一热电输出电极205、第二热电输出电极206、第一电极层209和第二电极层212的材质相同,为金属Au;第一绝缘导热基底208和第二绝缘导热基底213材质相同,为氧化铝陶瓷;散热结构204b(包括环形散热器214和散热翅片215)的材质为石墨。当然,上述各个结构的具体材料还可以采用前面所述的其他材料,比如燃料盒102、固定件102a和燃料盒密封垫105的材质还可以是铱合金或钽合金等材料,其他结构一样,在此不再一一赘述。
上述实施例中动态型同位素电池的工作原理是:同位素热源衰变产生的热能通过燃料盒加热液态金属,液态金属受热膨胀形成稳恒流体驱动压电换能组件形变输出电能,同时采用热电换能组件实现液态金属与环境之间的温差发电,最后通过电磁泵驱动液态金属回流到热源腔体,再次加热形成闭式循环。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、 “宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种动态型同位素电池,其特征在于,包括:
    金属管道;
    热源腔体包壳,所述热源腔体包壳限定出热源腔体,相对的两端分别与所述金属管道的两端相连通,以构成封闭的循环管路,且所述热源腔体包壳上设有单向充气阀;
    燃料盒,所述燃料盒固定设置在所述热源腔体包壳内部;
    放射源,所述放射源设在所述燃料盒中;
    液态金属,所述液态金属存在于所述循环管路中;
    压电换能组件,所述压电换能组件设在所述金属管道的内表面上;
    散热结构,所述散热结构设在所述金属管道的外表面上,且在所述金属管道的轴向上与所述压电换能组件间隔设置;
    电磁泵,所述电磁泵设在所述金属管道上,用于驱动所述液态金属循环流动。
  2. 根据权利要求1所述的动态型同位素电池,其特征在于,所述燃料盒的上表面设在所述热源腔体包壳的内表面上,且所述燃料盒的上表面上具有第一开口,所述热源腔体包壳的内表面上具有第二开口,所述第一开口和所述第二开口对应设置,且所述第一开口和所述第二开口中设有密封垫以将所述第一开口和所述第二开口密封,所述放射源的一端设置在所述密封垫上,所述放射源的另一端伸入所述燃料盒中。
  3. 根据权利要求2所述的动态型同位素电池,其特征在于,所述密封垫上设置有固定件,所述放射源设置在所述固定件上。
  4. 根据权利要求3所述的动态型同位素电池,其特征在于,形成所述燃料盒、所述密封垫和所述固定件的材料分别选自钽合金、锆合金和铱合金中的至少一种。
  5. 根据权利要求2所述的动态型同位素电池,其特征在于,还包括夹持所述燃料盒的第一固定支架与第二固定支架,其中,
    所述第一固定支架设在所述燃料盒的下表面和所述热源腔体包壳的内表面之间;
    所述第二固定支架设在所述燃料盒上表面和所述热源腔体包壳的内表面之间,且具有第三开口,所述第三开口与所述第一开口和所述第二开口对应设置,并被所述密封垫密封。
  6. 根据权利要求5所述的动态型同位素电池,其特征在于,形成所述热源腔体包壳、所述金属管道、所述第一固定支架和所述第二固定支架的材料分别选自316不锈钢、304不锈钢和310不锈钢中的至少一种。
  7. 根据权利要求1所述的动态型同位素电池,其特征在于,还包括纳米铅有机玻璃复合涂层,所述纳米铅有机玻璃复合涂层设在所述热源腔体包壳的内表面上。
  8. 根据权利要求1所述的动态型同位素电池,其特征在于,所述放射源选自α放射源、 β放射源、泛燃料固化物、小型模块化核热源和小型模块化反应堆中的至少一种。
  9. 根据权利要求8所述的动态型同位素电池,其特征在于,所述α放射源选自 210Po、Gd 210Po、Y 210Po、La 210Po、Ce 210Po、Pr 210Po、Nd 210Po、Sm 210Po、Eu 210Po、Tb 210Po、Dy 210Po、Ho 210Po、Er 210Po、Tm 210Po、Yb 210Po、Lu 210Po、Pm 210Po、Sc 210Po、Gd 3 210Po、Y 3 210Po、La 3 210Po、Ce 3 210Po、Pr 3 210Po、Nd 3 210Po、Sm 3 210Po、Eu 3 210Po、Tb 3 210Po、Dy 3 210Po、Ho 3 210Po、Er 3 210Po、Tm 3 210Po、Yb 3 210Po、Lu 3 210Po、 228Th、 228ThO 2235U、 238Pu、 238PuO 2微球、 238PuO 2-Mo陶瓷、 238PuO 2燃料球、 238PuO 2陶瓷、 238Pu-Zr合金、 238Pu-Ga合金、 238Pu-Pt合金、 238Pu-Sc合金、 238PuN、 238PuC、 241Am、 242Cm、 242Cm 2O 3244Cm和 244Cm 2O 3中的至少一种;所述β放射源选自(C 4H 3 3H 5-) n、Sc 3H 214C、 35S、 63Ni、 90Sr、 90Sr/ 90Y、 90SrTiO 399Tc、 106Ru、 137Cs、 137CsCl、 144Ce、 144CeO 2147Pm、 147Pm 2O 3151Sm和 226Ra中的至少一种。
  10. 根据权利要求1所述的动态型同位素电池,其特征在于,所述液态金属选自液态金属Ga、GaSn液态合金、GaIn液态合金、GaZn液态合金、GaInSn液态合金、GaInZn液态合金、GaInSnZn液态合金、BiInSn液态合金和BiInSnGa液态合金中的至少一种。
  11. 根据权利要求1所述的动态型同位素电池,其特征在于,所述压电换能组件为单边固定压电换能组件或双边固定压电换能组件,形成所述压电换能组件的材料选自钛酸铅、锆钛酸铅、铌镁酸铅、铌锌酸铅、钽钪酸铅、钛酸钡、钛酸铋钠、聚偏氟乙烯和钙钛矿压电材料中的至少一种。
  12. 根据权利要求1所述的动态型同位素电池,其特征在于,形成所述散热结构的材料分别选自石墨、铜和铝合金中的至少一种。
  13. 根据权利要求1所述的动态型同位素电池,其特征在于,进一步包括热电换能组件,所述热电换能组件设在所述金属管道的外表面和所述散热结构之间。
  14. 根据权利要求13所述的动态型同位素电池,其特征在于,所述热电换能组件包括:
    相对设置的第一绝缘导热基底和第二绝缘导热基底,所述第二绝缘导热基底设在所述金属管道的外表面上;
    多个热电组,所述多个热电组沿着所述金属管道的轴向间隔分布,每个所述热电组沿着所述金属管道的轴向延伸,且每个所述热电组包括多个p型热电腿和多个n型热电腿,多个所述p型热电腿和多个所述n型热电腿交替设置且依次电连接,
    相邻两个所述热电组中的一个的多个所述p型热电腿和相邻两个所述热电组中的另一个中的多个p型热电腿交错设置,且相邻两个所述热电组首尾电连接。
  15. 根据权利要求14所述的动态型同位素电池,其特征在于,所述热电换能组件还包括多个第一电极和多个第二电极,多个所述第一电极设置在所述热电组和所述第一绝缘导热基底之间,多个所述第二电极设在所述热电组和所述第二绝缘导热基底之间,相邻且电 连接的一个所述p型热电腿和一个所述n型热电腿构成一个热电对,每个所述热电对中的所述p型热电腿和所述n型热电腿通过所述第一电极电连接,相邻两个热电对中的一个中的所述p型热电腿和相邻两个热电对中的另一个中的所述n型热电腿通过所述第二电极电连接。
  16. 根据权利要求14或15所述的动态型同位素电池,其特征在于,形成所述p型热电腿的材料选自p型Bi 2Te 3基材料、p型Sb 2Se 3基材料、p型Sb 2Te 3基材料、p型PbTe基材料、p型CoSb 3基材料、p型半哈斯勒材料、p型Cu 1.8S基材料和p型AgSbTe 2基材料中的至少一种,
    形成所述n型热电腿的材料选自n型Bi 2Te 3基材料、n型BiSb基材料、n型Zn 4Sb 3基材料、n型Mg 3Sb 2基材料、n型Bi 2Se 3基材料、n型Sb 2Se 3基材料、n型PbTe基材料、n型PbS基材料、n型CoSb 3基材料、n型Mg 2Si基材料、n型Zn 4Sb 3基材料、n型InSb基材料、n型半哈斯勒材料、n型氧化物材料和n型AgSbTe 2基材料中的至少一种。
  17. 根据权利要求13所述的动态型同位素电池,其特征在于,所述压电换能组件上设有第一压电输出电极和第二压电输出电极,所述热电换能组件上设有第一热电输出电极和第二热电输出电极,形成所述第一压电输出电极、所述第二压电输出电极、所述第一热电输出电极和所述第二热电输出电极的材料分别选自Au、Pd、Pt、Al、Cu、Ni和Ti中的至少一种。
  18. 根据权利要求1所述的动态型同位素电池,其特征在于,所述电磁泵为圆柱泵。
PCT/CN2018/086916 2018-05-15 2018-05-15 基于液态金属的动态型同位素电池 WO2019218163A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/086916 WO2019218163A1 (zh) 2018-05-15 2018-05-15 基于液态金属的动态型同位素电池
US16/694,392 US11929185B2 (en) 2018-05-15 2019-11-25 Dynamic isotope battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086916 WO2019218163A1 (zh) 2018-05-15 2018-05-15 基于液态金属的动态型同位素电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/694,392 Continuation US11929185B2 (en) 2018-05-15 2019-11-25 Dynamic isotope battery

Publications (1)

Publication Number Publication Date
WO2019218163A1 true WO2019218163A1 (zh) 2019-11-21

Family

ID=68539238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086916 WO2019218163A1 (zh) 2018-05-15 2018-05-15 基于液态金属的动态型同位素电池

Country Status (2)

Country Link
US (1) US11929185B2 (zh)
WO (1) WO2019218163A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635093A (zh) * 2020-12-30 2021-04-09 中国工程物理研究院核物理与化学研究所 一种基于90Sr同位素的温差发电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120080978A1 (en) * 2010-09-30 2012-04-05 Saade Makhlouf Radioactive isotope electrostatic generator
CN105427913A (zh) * 2015-12-29 2016-03-23 兰州大学 一种基于pzt下的动态型同位素电池及其制备方法
CN105575453A (zh) * 2015-12-29 2016-05-11 兰州大学 一种基于纳米材料复合式动态型同位素电池及其制备方法
CN205302969U (zh) * 2015-12-29 2016-06-08 兰州大学 一种基于pzt下动态热电转换机制的放射性同位素电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107605557B (zh) 2017-10-16 2019-04-26 中国科学院理化技术研究所 一种有机朗肯循环发电***
CN108550412B (zh) * 2018-05-15 2020-04-17 南方科技大学 压电热电动态型同位素电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120080978A1 (en) * 2010-09-30 2012-04-05 Saade Makhlouf Radioactive isotope electrostatic generator
CN105427913A (zh) * 2015-12-29 2016-03-23 兰州大学 一种基于pzt下的动态型同位素电池及其制备方法
CN105575453A (zh) * 2015-12-29 2016-05-11 兰州大学 一种基于纳米材料复合式动态型同位素电池及其制备方法
CN205302969U (zh) * 2015-12-29 2016-06-08 兰州大学 一种基于pzt下动态热电转换机制的放射性同位素电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635093A (zh) * 2020-12-30 2021-04-09 中国工程物理研究院核物理与化学研究所 一种基于90Sr同位素的温差发电装置
CN112635093B (zh) * 2020-12-30 2022-11-04 中国工程物理研究院核物理与化学研究所 一种基于90Sr同位素的温差发电装置

Also Published As

Publication number Publication date
US11929185B2 (en) 2024-03-12
US20200090825A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2019218486A1 (zh) 压电热电动态型同位素电池
US3173032A (en) Means for close placement of electrode plates in a thermionic converter
BR112019016584A2 (pt) Sistema de fornecimento de energia que gera pelo menos uma dentre energia elétrica e energia térmica
CN106941017B (zh) 一种热离子-光电-热电复合式同位素电池及其制备方法
JP2011514670A (ja) エネルギー変換デバイス
CN107123457B (zh) 一种直接收集-光电-热电复合式同位素电池及制备方法
CN108648847B (zh) 基于液态金属的动态型同位素电池
WO2019218163A1 (zh) 基于液态金属的动态型同位素电池
KR102022429B1 (ko) 냉각용 열전모듈 및 그 제조방법
RU90612U1 (ru) Источник электрического тока
CN114121315B (zh) 一种脉动热管冷却反应堆热管理***
US3266944A (en) Hermetically sealed thermoelectric generator
US3281921A (en) Swaging process for forming a flattened composite thermoelectric member
CN108630336B (zh) 压电热电静态型同位素电池
CN108039219A (zh) 直接收集-辐射电离-光电-热电同位素电池及其制备方法
CN108538422B (zh) 直接收集-热离子发射-热电同位素电池及其制备方法
WO2019218164A1 (zh) 摩擦发光同位素电池
CN110491542B (zh) 摩擦发光同位素电池
CN108053911B (zh) 辐射电离-离子渗透复合式同位素电池及其制备方法
CN220272167U (zh) 基于形状记忆合金的同位素电池和用电设备
CN217640684U (zh) 一种热离子-温差梯级发电同位素电池
CN112635093B (zh) 一种基于90Sr同位素的温差发电装置
CN108631649B (zh) 基于二维薄膜的碱金属热电转换器和同位素电池
JP2003110157A (ja) 熱電発電装置
CN116417172A (zh) 一种深海环境下高性能Sr-90同位素温差电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919018

Country of ref document: EP

Kind code of ref document: A1