WO2019216610A1 - 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치 - Google Patents

하향링크 데이터를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019216610A1
WO2019216610A1 PCT/KR2019/005396 KR2019005396W WO2019216610A1 WO 2019216610 A1 WO2019216610 A1 WO 2019216610A1 KR 2019005396 W KR2019005396 W KR 2019005396W WO 2019216610 A1 WO2019216610 A1 WO 2019216610A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
downlink data
dci
specific
information
Prior art date
Application number
PCT/KR2019/005396
Other languages
English (en)
French (fr)
Inventor
곽규환
이승민
이윤정
이현호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201980004757.9A priority Critical patent/CN111165055B/zh
Priority to JP2020562153A priority patent/JP7114741B2/ja
Priority to EP19799282.9A priority patent/EP3648536B1/en
Publication of WO2019216610A1 publication Critical patent/WO2019216610A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present invention relates to a method for transmitting and receiving downlink data and an apparatus therefor.
  • Wireless communication technology continues to increase the demands and expectations of users and operators.
  • new technological evolution is required in order to be competitive in the future.
  • cost per bit increased service availability, the use of flexible frequency bands, simple structure and open interface, and proper power consumption of the terminal are required.
  • the present invention provides a method for transmitting and receiving downlink data and an apparatus therefor.
  • downlink control information including resource element (RE) mapping information in a specific TTI
  • DCI Downlink Control Information
  • the method may include decoding the downlink data repeatedly transmitted based on the RE mapping information.
  • receiving the downlink data repeatedly transmitted may include receiving the downlink data repeatedly transmitted from the specific TTI and the at least one TTI through a same transmission point (TP). have.
  • the specific TTI and the at least one TTI may be a short TTI.
  • the DCI may be a data scheduling related DCI based on a Cell-Radio Network Temporary Identifier (C-RNTI).
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the RE mapping information may be equally used for both the specific TTI and the at least one TTI.
  • the specific TTI and the at least one TTI may be continuous in the time domain.
  • an apparatus in which transmission mode 10 is set for receiving downlink data comprising: at least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a particular operation.
  • DCI Downlink Control Information
  • RE Resource Element
  • the at least one processor may decode the repeatedly transmitted downlink data based on the RE mapping information.
  • the at least one processor may include receiving the downlink data repeatedly transmitted in the specific TTI and the at least one TTI through a same transmission point (TP).
  • TP transmission point
  • the specific TTI and the at least one TTI may be a short TTI.
  • the DCI may be a data scheduling related DCI based on a Cell-Radio Network Temporary Identifier (C-RNTI).
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the RE mapping information may be used equally for all of the plurality of TTIs.
  • the specific TTI and the at least one TTI may be continuous in the time domain.
  • a wireless communication system in a method for transmitting downlink data by a base station operating based on transmission mode 10, in a specific TTI, downlink including resource element (RE) mapping information Downlink Control Information (DCI) may be transmitted, and the downlink data repeatedly transmitted by applying the RE mapping information may be transmitted in the specific TTI and at least one TTI subsequent to the specific TTI.
  • RE resource element
  • DCI Downlink Control Information
  • a terminal in which a transmission mode 10 for receiving downlink data is set comprising: at least one transceiver; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a particular operation.
  • DCI Downlink Control Information
  • RE Resource Element
  • a base station operating based on transmission mode 10 for transmitting downlink data
  • the base station comprising: at least one transceiver; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a particular operation.
  • DCI downlink control information
  • RE resource element
  • downlink data can be repeatedly transmitted with high reliability and low latency.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol.
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame.
  • 5 is a diagram illustrating a structure of a downlink radio frame.
  • FIG. 6 is a diagram illustrating a resource unit used to configure a downlink control channel.
  • FIG. 7 is a diagram illustrating a structure of an uplink subframe.
  • TM 10 transmission mode 10
  • FIG. 10 is a diagram for describing examples in which a physical downlink shared channel (PDSCH) that is repeatedly transmitted is scheduled.
  • PDSCH physical downlink shared channel
  • 11 is a diagram for explaining an example in which PDSCH is repeatedly transmitted according to an embodiment of the present invention.
  • 12 to 14 are diagrams for explaining the operation of the terminal, the base station and the network according to the present invention.
  • 15 is a block diagram illustrating components of a wireless device for implementing the present invention.
  • the present invention relates to transmitting and receiving downlink data, and more particularly, to a method and apparatus for transmitting and receiving data repeatedly transmitted in a transmission mode (TM) 10.
  • TM transmission mode
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • the wireless system may be compatible with 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system.
  • 3GPP LTE 3rd Generation Partnership Project Long Term Evolution
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and a wireless network.
  • FIG. 2 may be a 3GPP radio access network standard between the terminal and the E-UTRAN.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an example of implementation of a wireless communication system that can be highly compatible with LTE.
  • a radio frame has a length of 10 ms (327200 ⁇ T s ) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5ms (15360 ⁇ T s).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers ⁇ 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame. Some implementations based on FIG. 5 may be compatible with LTE systems.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R0 to R3 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier and one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group. The number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a transmission type information of "C” (eg, Information about data to be transmitted using a transport block size, modulation scheme, coding information, etc. may be transmitted through a specific subframe.
  • RTI Radio Network Temporary Identity
  • C Transmission type information
  • the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
  • FIG. 6 shows a resource unit used to configure a downlink control channel. Some implementations based on FIG. 6 may be compatible with an LTE system.
  • FIG. 6A illustrates a case where the number of transmit antennas of a base station is one or two
  • FIG. 6B illustrates a case where the number of transmit antennas of a base station is four. Only the RS (Reference Signal) pattern is different according to the number of transmitting antennas, and the method of setting a resource unit associated with the control channel is the same.
  • RS Reference Signal
  • the basic resource unit of the downlink control channel is a resource element group (REG).
  • the REG consists of four neighboring resource elements (REs) with the exception of the RS.
  • REG is shown in bold in the figures.
  • PCFICH and PHICH include 4 REGs and 3 REGs, respectively.
  • the PDCCH is composed of CCE (Control Channel Elements) units, and one CCE includes nine REGs.
  • UE checks whether PDCCH composed of L CCEs is transmitted to UE It is set to check the CCEs arranged in consecutive or specific rules. There may be a plurality of L values to be considered by the UE for PDCCH reception.
  • the CCE sets that the UE needs to check for PDCCH reception are called a search space. For example, the LTE system defines a search area as shown in Table 1.
  • the CCE aggregation level L represents the number of CCEs constituting the PDCCH
  • the search area may be divided into a UE-specific search space that allows access to only a specific terminal and a common search space that allows access to all terminals in a cell.
  • the UE monitors a common search region with CCE aggregation levels of 4 and 8, and monitors a UE-specific search region with CCE aggregation levels of 1, 2, 4, and 8.
  • the common search area and the terminal specific search area may overlap.
  • PDCCH search region hashing the position of the first (with the smallest index) CCE in the PDCCH search region given to any UE for each CCE aggregation level value is changed every subframe according to the UE. This is called PDCCH search region hashing.
  • the CCE may be distributed in a system band. More specifically, a plurality of logically continuous CCEs may be input to an interleaver, and the interleaver performs a function of mixing the input CCEs in REG units. Therefore, frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe. As a result, the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
  • the structure of the uplink subframe may be compatible with the LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes: ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel state, RI (Rank Indicator) for MIMO, Scheduling Request (SR), which is an uplink resource allocation request, etc. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • CoMP transmission and reception techniques also referred to as co-MIMO, collaborative MIMO, network MIMO, etc.
  • CoMP technology can increase the performance of the terminal located in the cell-edge (cell-edge) and increase the average sector throughput (throughput).
  • inter-cell interference may reduce performance and average sector yield of a terminal located in a cell boundary.
  • FFR fractional frequency reuse
  • FFR fractional frequency reuse
  • a method of allowing a terminal located in a cell boundary to have an appropriate yield performance has been applied.
  • CoMP transmission scheme may be applied.
  • CoMP schemes applicable to downlink can be classified into joint processing (JP) techniques and coordinated scheduling / beamforming (CS / CB) techniques.
  • JP joint processing
  • CS / CB coordinated scheduling / beamforming
  • the JP technique may use data at each point (base station) of the CoMP cooperative unit.
  • CoMP cooperative unit means a set of base stations used in a cooperative transmission scheme.
  • the JP technique can be classified into a joint transmission technique and a dynamic cell selection technique.
  • the joint transmission technique refers to a technique in which a PDSCH is transmitted from a plurality of points (part or all of CoMP cooperative units) at a time. For example, data transmitted to a single terminal may be simultaneously transmitted from a plurality of transmission points. According to the joint transmission technique, the quality of a received signal may be improved coherently or non-coherently, and may also actively cancel interference to other terminals.
  • Dynamic cell selection scheme refers to a scheme in which PDSCH is transmitted from one point (of CoMP cooperative units) at a time. That is, data transmitted to a single terminal at a specific time point is transmitted from one point, and other points in the cooperative unit do not transmit data to the corresponding terminal at that time point, and a point for transmitting data to the corresponding terminal is dynamically selected. Can be.
  • CoMP cooperative units may cooperatively perform beamforming of data transmission for a single terminal.
  • data is transmitted only in a serving cell, but user scheduling / beamforming may be determined by coordination of cells of a corresponding CoMP cooperative unit.
  • coordinated multi-point reception means receiving a signal transmitted by coordination of a plurality of geographically separated points.
  • CoMP schemes applicable to uplink may be classified into joint reception (JR) and coordinated scheduling / beamforming (CS / CB).
  • the JR scheme means that a signal transmitted through a PUSCH is received at a plurality of reception points, while the CS / CB scheme receives a PUSCH only at one point, but user scheduling / beamforming is determined by coordination of cells of a CoMP cooperative unit. It means to be.
  • the terminal can be jointly supported data from a multi-cell base station.
  • each base station can improve the performance of the system by simultaneously supporting one or more terminals using the same radio frequency resource (Same Radio Frequency Resource).
  • the base station may perform a space division multiple access (SDMA) method based on channel state information between the base station and the terminal.
  • SDMA space division multiple access
  • a serving base station and one or more cooperating base stations are connected to a scheduler through a backbone network.
  • the scheduler may operate by receiving feedback of channel information about channel states between respective terminals and the cooperative base stations measured by each base station through the backbone network.
  • the scheduler may schedule information for collaborative MIMO operation for the serving base station and one or more cooperating base stations. That is, the scheduler may directly give an indication of the cooperative MIMO operation to each base station.
  • the CoMP system may be referred to as operating as a virtual MIMO system by combining a plurality of cells into one group, and basically, a communication technique of a MIMO system using multiple antennas may be applied.
  • FIG 8 is a diagram illustrating an example of downlink CoMP (transmission mode 10) operation.
  • a UE is located between eNB1 and eNB2, and two eNBs are configured to reduce interference to the corresponding UE by using Joint Transmission (JT), Dynamic Cell Selection (DCS), Dynamic Point Blanking (DPB), and CS / CB ( Perform appropriate CoMP operations such as coordinated scheduling / beamforming).
  • JT Joint Transmission
  • DCS Dynamic Cell Selection
  • DVB Dynamic Point Blanking
  • CS / CB Perform appropriate CoMP operations such as coordinated scheduling / beamforming
  • the UE performs appropriate CSI feedback to assist in CoMP operation.
  • the CSI feedback includes RI information, PMI information, and CQI information for each eNB, and additionally, channel information between two eNBs for JT (eg, phase offset information between a channel from eNB1 to a UE and a channel from eNB2 to a UE).
  • the UE reports CSI feedback to eNB1, which is its serving cell, but may report CSI feedback to eNB2 according to circumstances, or both eNBs may receive CSI feedback.
  • the UE may feed back DL DL CSI information of the neighbor eNB / TP participating in CoMP as well as DL DL CSI information of the serving eNB / TP. To this end, the UE can generate and feed back CSIs for various CSI processes reflecting various data transmission eNB / TPs and various interference environments.
  • an interference resource is used to measure interference.
  • the UE may be configured with one or more IMRs, and each IMR has an independent configuration. That is, the generation period, subframe offset, and resource setting (ie, RE mapping location) of each IMR are independently given, and this information may be signaled to the UE from the network through a higher layer (eg, an RRC layer). have.
  • CSI-RS is used for the measurement of the desired channel or signal in CoMP CSI calculation.
  • the UE may be configured with one or more CSI-RSs, and each CSI-RS has an independent configuration. That is, the transmission periods, subframe offsets, resource settings (ie, RE mapping positions), assumptions about transmission power (ie, parameter Pc), and number of antenna ports of each CSI-RS are independently given.
  • the information may be signaled to the UE from the network via a higher layer (eg, RRC layer). This may be referred to as a signal measurement resource (SMR).
  • SMR signal measurement resource
  • one CSI process is defined as an association (or combination) of one CSI-RS resource for signal measurement and one IMR for interference measurement.
  • CSI information calculated or derived for different CSI processes may be fed back from the UE to the network according to independent periods and subframe offsets. That is, each CSI process may have an independent CSI feedback setting.
  • the information on the association (or combination) of the CSI-RS resource and the IMR and the CSI feedback configuration information may be provided to the UE from the network through higher layer signaling for each CSI process.
  • three CSI processes as shown in Table 2 below may be configured for a UE.
  • CSI-RS 0 represents CSI-RS received from eNB1, which is a serving eNB of UE
  • CSI-RS 1 represents CSI-RS received from eNB2, a neighbor eNB participating in cooperation.
  • IMR 0 is set as a resource for which eNB1 performs muting (or null signal transmission) and eNB2 performs data transmission, and UE measures interference from other eNBs except for eNB1 from IMR 0.
  • IMR 1 is set as a resource for eNB2 performs muting and eNB1 performs data transmission, and the UE measures interference from other eNBs except for eNB2 from IMR 1.
  • IMR 2 is set as a resource for performing muting for both eNB1 and eNB2, and the UE measures interference from other eNBs except for eNB1 and eNB2 from IMR 2.
  • IMR eNB1 eNB2 IMR 0 Muting Data transfer IMR 1 Data transfer Muting IMR 2 Muting Muting
  • CSI information of CSI process 0 represents optimal RI, PMI, and CQI information for the case of receiving data from eNB1.
  • CSI information of CSI process 1 represents optimal RI, PMI, and CQI information for the case of receiving data from eNB2.
  • CSI information of CSI process 2 represents optimal RI, PMI, and CQI information for the case of receiving data from eNB1 and not receiving any interference from eNB2.
  • the QC or QCL (Quasi Co-Located) relationship can be described in terms of a signal or a channel.
  • the large scale properties of the signal received on one antenna port can be inferred from the signal received on the other antenna port, it can be said that these two antenna ports are QCLed.
  • the large scale characteristics of the signal may include one or more of delay spread, Doppler shift, frequency shift, average received power, and received timing. Can be.
  • these two antenna ports are QCLed if the large-scale characteristics of the channel on which the symbol on one antenna port is transmitted can be inferred from the characteristics of the channel on which the symbol on the other antenna port is transmitted.
  • the large scale characteristics of the channel may include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. .
  • the terminal may assume that two antenna ports for which the QCL hypothesis holds are present at the same transmission point (TP).
  • TP transmission point
  • the specific CSI-RS antenna port, the specific downlink DMRS antenna port, and the specific CRS antenna port may be set to be QCLed. This may be the case when a specific CSI-RS antenna port, a specific downlink DMRS antenna port, and a specific CRS antenna port are from one serving cell.
  • the CSI-RS antenna port and the downlink DMRS antenna port may be set to be QCL.
  • the UE may be informed that the specific CSI-RS antenna port and the specific DMRS antenna port are QCLed. This may be the case when the specific CSI-RS antenna port and the specific DMRS antenna port are from any one TP.
  • the UE may increase performance of channel estimation through DMRS using large-scale characteristic information of a channel acquired using CSI-RS or CRS.
  • the delay spread of the channel estimated through the CSI-RS can be used to suppress the interference of the channel estimated from the DMRS.
  • the terminal can apply the estimation result of another antenna port to perform channel estimation for one antenna port.
  • the UE transmits power-delay-profile, delay spreading and Doppler spectrum, and Doppler spreading estimation result for one antenna port to another antenna port.
  • the terminal may perform time and frequency synchronization with respect to one antenna port, and then apply the same synchronization to demodulation of another antenna port.
  • the terminal may average reference signal received power (RSRP) measurements for two or more antenna ports.
  • RSRP reference signal received power
  • the UE may receive DL scheduling information through a specific DMRS-based DL-related DCI format through PDCCH or Enhanced-PDCCH (EPDCCH).
  • the terminal performs data demodulation after performing channel estimation on the scheduled PDSCH through the configured DMRS sequence.
  • the DMRS port setting received by the UE from this DL scheduling information is QCLed with a specific RS (eg, a specific CSI-RS, a specific CRS, or its DL serving cell CRS, etc.) port. If there is, the UE can improve the performance of the DMRS-based reception by applying large-scale characteristic estimates, such as delay spread estimated from the port of the specific RS, when the channel is estimated through the corresponding DMRS port.
  • CSI-RS or CRS is a cell-specific signal transmitted over the entire band in the frequency domain, and thus it is possible to more accurately grasp the large-scale characteristics of the channel than the DMRS transmitted in the terminal-specific manner.
  • the CRS is a reference signal broadcasted at a relatively high density over the entire band in every subframe, an estimate of the large-scale characteristics of the channel can be obtained more stably and more accurately from the CRS.
  • the DMRS is UE-specifically transmitted only in a specific scheduled RB, the accuracy of the large characteristic estimate of the channel using the DMRS is inferior to that of the CRS or CSI-RS.
  • the terminal is scheduled a plurality of PRBG.
  • the precoding matrix used for transmission by the base station may change in units of physical resource block groups (PRBGs)
  • the effective channel received by the terminal may vary in units of PBRGs. Therefore, even when estimating large channel characteristics based on DMRS over a wide band, the accuracy may be degraded.
  • PRBGs physical resource block groups
  • the UE may not assume that the APs have the same large channel characteristics with respect to non-quasi-co-located (NQC) antenna ports (APs).
  • NQC non-quasi-co-located
  • the UE independently for timing acquisition and tracking, frequency offset estimation and compensation, delay estimation, and Doppler estimation independently for each NQC AP. Must be dealt with.
  • the QCL may be provided to the UE through downlink control information (eg, a PQI field (PDSCH RE mapping and QCL indicator field) of DCI format 2D).
  • a PQI field PDSCH RE mapping and QCL indicator field
  • parameter sets e.g., up to four parameter sets
  • the set can be indicated.
  • At least one of QCL type A or QCL type B is transmitted to the UE by a higher layer (eg, higher layer).
  • a higher layer eg, higher layer
  • the terminal may include the antenna port indexes 0 to 3 (ie, CRS antenna ports), 7 to 14 (ie, UE-specific RS antenna ports), and 15 to 22 (ie, CSI-RS antenna ports) of the serving cell. ) Is an operating method assuming that QCL is QCL for delay spread, Doppler spread, Doppler shift, and average delay.
  • QCL type B is an antenna port in which a terminal corresponds to a CSI-RS resource configuration identified by a non-zero power (NZP) CSI-RS configuration information (qcl-CSI-RS-ConfigNZPId-r11) given by a higher layer.
  • NZP non-zero power
  • CSI-RS configuration information qcl-CSI-RS-ConfigNZPId-r11
  • the UE configured as the QCL type B may determine the PDSCH RE mapping using the parameter set indicated by the PQI field of the DCI format 2D of the detected PDCCH / EPDCCH and may also determine the PDSCH AP QCL. Table 4 below shows a PQI field of DCI format 2D.
  • Each of the parameter sets for determining PDSCH RE mapping and PDSCH AP QCL configured by higher layer signaling includes CRS port number information (crs-PortsCount-r11), CRS frequency shift information (crs-FreqShift-r11), and MBSFN ( Multicast Broadcast Single Frequency Network (subs) configuration information (mbsfn-SubframeConfigList-r11), ZP Zero Power Channel State Information-Reference Signal (ZP CSI-RS) configuration information (csi-RS-ConfigZPId-r11), PDSCH start symbol value (pdsch Or one or more parameters from non-zero power (NZP) CSI-RS configuration information (qcl-CSI-RS-ConfigNZPId-r11).
  • CRS port number information crs-PortsCount-r11
  • CRS frequency shift information crs-FreqShift-r11
  • MBSFN Multicast Broadcast Single Frequency Network (subs) configuration information
  • a UE configured to QCL type B performs PDSCH decoding transmitted on antenna port index 7 using parameter set 1 of Table 4, which detects PDCCH / EPDCCH of DCI format 1A that is CRC masked with C-RNTI. can do.
  • PDSCH RE mapping may be determined using RS resources.
  • antenna port indexes 0 to 3 (ie, CRS antenna ports) of a serving cell include delay spread, delay spread, Doppler spread, Doppler shift, and average gain. And QCL for average delay.
  • the UE may assume that antenna port indexes 7 to 14 (ie, UE-specific RS antenna ports) of the serving cell are QCLed for delay spread, Doppler spread, Doppler shift, average gain, and average delay in a specific subframe. .
  • the terminal is the antenna port index 0 to 3 (ie, CRS antenna port) of the serving cell, 5 (ie, UE-Specific RS antenna port defined in 3GPP LTE Release 8), 7 to 14 (ie, after 3GPP LTE Release 9). It can be assumed that the defined UE-Specific RS Antenna Ports) and 15 to 22 (ie, the CSI-RS Antenna Ports) are QCL for Doppler Shift, Doppler Spread, Average Delay and Delay Spread.
  • Next generation communication systems consider methods for achieving very low latency and very high reliability when transmitting and receiving information.
  • various target Quality of Service (QoS) requirements such as latency and / or reliability, can be set and behave differently according to each target QoS requirement. Considering how to efficiently provide services that require target QoS requirements.
  • QoS Quality of Service
  • the present invention proposes a new method for performing a transmission mode 10 operation when a base station repeatedly transmits downlink data for higher reliability and lower latency in a cellular communication system.
  • the inventions and / or embodiments in the present invention may be regarded as one proposed method, but the combinations between the inventions and / or embodiments may also be regarded as new ways.
  • the particular invention is not limited to the embodiments presented in the present invention, it is not limited to the specific system and does not apply. That is, certain inventions may be extended within a range that can be easily inferred by those skilled in the art from the embodiments presented in the present invention, and if the communication system to which the embodiments of the present invention can be applied is LTE, LTE-A, LTE -It can be applied to various communication systems such as Pro, NR and IEEE.
  • all parameters, operations, combinations of each parameter and / or operation of the present invention, whether or not the corresponding parameter and / or operation are applied, and / or whether or not a combination of each parameter and / or operation are applied are determined by the base station.
  • the terminal may be instructed through higher layer signaling and / or physical layer signaling or may be previously defined in the system.
  • the descriptions of the different subframe types may be applied to different transmission modes (TM) as they are, for example, 2 set to the same subframe type. The same may be applied when the transmission mode is changed between subframes and is different.
  • TM transmission modes
  • TTI transmission time interval
  • the transmission time interval (TTI) described in the present invention may correspond to various TTI length units such as sub-slots / slots / subframes.
  • sub-slots and slots may be referred to as short TTIs. That is, the short TTI may include a sub slot and a slot.
  • the short TTI is defined as a shorter length than the downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH) having a length of 1 ms, and the control channel for supporting the short TTI includes SPDCCH (Short PDCCH) and SPUCCH (Short).
  • SPDCCH Short PDCCH
  • SPUCCH SPUCCH
  • PUCCH is also transmitted with a duration shorter than 1 ms.
  • the slot has a 0.5ms interval, and thus may consist of seven symbols.
  • the sub slot may be composed of two symbols or three symbols.
  • short TTI based transmission may be performed on a slot basis
  • short TTI based transmission on a slot and / or subslot basis may be performed.
  • one subframe may consist of six subslots, and a pattern in which subslots are arranged may vary according to the number of symbols used for the PDCCH. Specifically, when the number of symbols used for the PDCCH is 1 or 3, as shown in FIG. 9 (a), the sub slots 0 and 5 are configured with 3 symbols, and the remaining sub slots are configured with 2 symbols. .
  • the sub slot 1 and the sub slot 5 are composed of 3 symbols, and the remaining sub slots are composed of 2 symbols.
  • Data may be repeatedly transmitted in order to increase reliability of downlink transmission.
  • the control channel and the data channel scheduled by the control channel are independently transmitted for every TTI, but each HARQ process number (HARQ process number) and NDI (New) are transmitted.
  • HARQ process number HARQ process number
  • NDI New
  • the UE notifies that the data channel transmitted in the plurality of TTIs transmits the same transmission block (TB), and may repeatedly transmit the same data for the plurality of TTIs.
  • the control channel transmitted in a single TTI may schedule data repeatedly transmitted in a plurality of TTIs. That is, a control channel transmitted in a single TTI can perform data scheduling for a plurality of TTIs.
  • the control channel may be transmitted in a plurality of TTIs, where the number of TTIs on which the control channel is transmitted may be less than the number of TTIs on which the data channel is transmitted.
  • the specific information included in the DCI scheduling the repeated transmission of data may be commonly applied to the repeatedly transmitted data.
  • information such as Modulation Coding Scheme (MCS) / Resource Allocation (RA) in Downlink Control Information (DCI) that schedules data repeatedly transmitted in a plurality of TTIs may be equally applied to all TTIs in which data is repeatedly transmitted. have.
  • the DCI may include information on the number of times data is repeatedly transmitted.
  • the remaining k-1 consecutive (or discontinuous) TTIs that are repeatedly transmitted afterwards may not detect the DCI or attempt the decoding to detect the DCI. It may be set to discard the DCI.
  • the DCI that is not decoded or discarded may be a C-RNTI based data scheduling related DCI or a downlink data scheduling related DCI.
  • the DCI that has been successfully decoded may be a C-RNTI based data scheduling related DCI or a downlink data scheduling related DCI.
  • a list of PDSCH RE mapping and PDSCH AP QCL related information indicated by a 2-bit PDSCH Rate Matching and QuasCoLocation Indicator (PQI) field on DCI format 2D applied to transmission mode 10 (TM10) is as follows. .
  • the information is set corresponding to a state that can be indicated through a PQI field, and this state is indicated by the base station to the terminal through RRC signaling. If different PQI states indicate different Non Zero Power (NZP) CSI-RS information, this may be regarded as PDSCH transmission of different TPs. In other words, when different PQI states are indicated, it may be regarded as for dynamic TP switching operation of CoMP.
  • NZP Non Zero Power
  • 11 shows an example of repetitive transmission of PDSCH.
  • TTI # n + 1, n + 2, DCn may be discarded on n + 3.
  • TTI #n, n + 1 is included in subframe #k and TTI # n + 2, n + 3 is included in subframe # k + 1, subframe #
  • ZP ZP
  • the DCI and / or discarded DCI detected in the TTI #n may be a C-RNTI based data scheduling related DCI or a downlink data scheduling related DCI.
  • FIG. 12 is a diagram for describing an operation process of a terminal according to embodiments of the present disclosure.
  • the terminal receives an RRC message for operating in transmission mode 10 through a higher layer from a base station (S1201).
  • the UE detects a DCI including PDSCH RE mapping information for transmission mode 10 and the number of repetitive transmissions of data repeatedly transmitted in a TTI included in a specific subframe (S1203).
  • the terminal receives the information repeatedly included in the DCI and the data repeatedly transmitted based on the operation according to the transmission mode 10 (S1205). At this time, how to use the PDSCH mapping information included in the DCI according to the transmission mode 10 How to do this may be according to the embodiments described below.
  • the base station transmits an RRC message for operating in a transmission mode 10 to a terminal through an upper layer (S1301).
  • the base station transmits a DCI including PDSCH RE mapping information for transmission mode 10 and the number of repetitive transmissions of data repeatedly transmitted in a TTI included in a specific subframe (S1303).
  • the base station transmits data repeatedly transmitted based on the information included in the DCI and the operation according to the transmission mode 10 (S1205).
  • the base station transmits PDSCH mapping information included in the DCI according to the transmission mode 10.
  • the specific method as to whether it is utilized may be according to the embodiments described below.
  • the base station may consider embodiments to be described below when performing and / or setting an operation according to a transmission mode 10 or generating and / or configuring information included in the DCI.
  • the base station transmits an RRC message for operating in the transmission mode 10 to the terminal through the upper layer (S1401).
  • the base station transmits a DCI including PDSCH RE mapping information for transmission mode 10 and the number of repetitive transmissions of data repeatedly transmitted in a TTI included in a specific subframe (S1403).
  • the base station transmits data repeatedly transmitted based on the information included in the DCI and the operation according to the transmission mode 10 (S1405).
  • S1405 the transmission mode 10
  • a detailed method of how the terminal receiving the DCI utilizes the PDSCH mapping information included in the DCI according to the transmission mode 10 may be described in the following embodiments.
  • the base station may consider embodiments to be described later when performing and / or setting an operation according to a transmission mode 10 or generating and / or configuring information included in the DCI.
  • some TTIs of the TTIs for data repetitive transmission included in a subsequent subframe based on the subframe boundary for example, as shown in TTI # n + 2 in FIG. 11.
  • Attempts to detect a DCI having a DCI format corresponding to a corresponding transmission mode in a first TTI in a subsequent subframe and detects the PDSCH rate-matching for the corresponding subframe based on the detected DCI.
  • a pattern may be applied to attempt decoding of repeatedly transmitted data.
  • a DCI transmitted in a specific TTI scheduling retransmitted data is detected, it does not attempt to decode a DCI transmitted in a subsequent TTI or discards the DCI even if a DCI is detected by decoding. It can be an exception to the action.
  • the DCI attempting to detect in some TTI in the subsequent subframe may be a DC-related data scheduling based on the C-RNTI.
  • the terminal may follow only some information in the DCI. For example, only the information included in the PQI field is used to receive data repeatedly transmitted in a subsequent subframe among the information in the DCI detected in the partial TTI, and the information on the remaining fields is used in the TTI in the previous subframe. It is used to receive data repeatedly transmitted in a subsequent subframe using the information included in the detected DCI.
  • some TTIs eg, the first TTI in a subsequent subframe such as TTI # n + 2 in FIG. 11
  • the terminal may follow only some information in the DCI. For example, only the information included in the PQI field is used to receive data repeatedly transmitted in a subsequent subframe among the information in the DCI detected in the partial TTI, and the information on the remaining fields is used in the TTI in the previous subframe. It is used to receive data repeatedly transmitted in a subsequent subframe using the information included in the detected DCI.
  • the PDSCH RE mapping information (for example, csi-RS-ConfigZPId) corresponding to a state indicated by the PQI field of the DCI successfully decoded by the UE, and qcl-CSI- corresponding to the corresponding state; PDSCH applied to subframe # k + 1 assuming the union of PDSCH RE mapping information (for example, csi-RS-ConfigZPId) connected to a state having the same qcl-CSI-RS-ConfigNZPId as RS-ConfigNZPId Rate-matching patterns can be derived.
  • a PDSCH rate-matching pattern applied to subframe # k + 1 may be derived based on a union of ZP CSI-RS configuration # 1 and # 2.
  • the information corresponding to the union may be applied to all repetitive transmissions during data repetitive transmission. That is, the information corresponding to the union may be applied to all TTIs in which data is repeatedly transmitted.
  • the PDSCH RE mapping information corresponding to the state indicated by the PQI field of the DCI that has been successfully decoded is in a subframe in which the DCI is decoded during data repetitive transmission scheduled by the DCI, that is, in a previous subframe. Limited to the included TTI, and the information corresponding to the union may be applied to the TTI included in the subsequent subframe.
  • the PDSCH RE mapping information included in the decoded DCI may be applied to all the data repetitive transmissions. That is, when repetitive transmission is configured over different subframes, subframe #k as PDSCH RE mapping information applied to TTIs included in subframe # k + 1 among TTIs for data repetitive transmission. PDSCH RE mapping information indicated by the DCI detected in the TTI included in may be used. In other words, the UE may not expect the PDSCH rate-matching pattern to change during repeated transmission of data. In other words, the UE may not expect the PDSCH RE mapping information to be changed during repeated transmission of data. That is, the UE may perform PDSCH decoding on the assumption of the same rate-matching for all TTIs in which data is repeatedly transmitted according to information included in the PQI field of the DCI indicating repetitive transmission.
  • the UE may perform the same operation for DCI detection for repeated transmission of data, thereby reducing ambiguity.
  • the UE when performed in the transmission mode 10 as in the other embodiments, when the TPs transmitting the subframes in which the repeated transmission is performed are the same, the UE does not need to detect the additional DCI once the DCI detection is successful, If the subframes on which transmission is performed are transmitted through different TPs, additional DCI detection may be required. In fact, since the UE does not know which TP is transmitted by each subframe, whether additional DCI detection is required. There is concern about increasing confusion.
  • the UE may be effective that the UE does not expect the PDSCH rate-matching pattern to be changed during the repeated transmission of data.
  • PDSCH RE mapping related information that may be applied when data repetitive transmission is performed or when data repetitive transmission is performed over different subframes is previously defined in the system or the base station is different from the terminal. It may be informed through higher layer signaling and / or physical layer signaling.
  • the PDSCH RE mapping related information previously defined or informed by the base station to the UE may be applied to all data repetitive transmissions. It can be applied only to the TTI included in subsequent subframes.
  • the configurable PDSCH RE mapping information may be PDSCH RE mapping information assuming a worst case such as all configurable interference measurement resources (IMR) and CSI-RS of an interference cell.
  • IMR configurable interference measurement resources
  • a PDSCH rate matching pattern applied to subframe # k + 1 is previously defined for each qcl-CSI-RS-ConfigNZPId, and the base station transmits higher layer signaling and / or to the UE. It may be informed by physical layer signaling.
  • a PDSCH rate-matching pattern applied to subframe # k + 1 for each PQI state is previously defined, and the base station transmits higher layer signaling and / or physical layer to the UE. It may be informed by physical layer signaling.
  • the PQI state corresponding to the PDSCH rate-matching pattern applied to the subframe # k + 1 may correspond to a state indicated by the PQI field of the DCI which has been successfully decoded.
  • data may be repeatedly transmitted only within a single subframe type and / or a single subframe according to a set transmission mode, or may be transmitted between different subframe types and / or different subframes. Whether or not it can be defined in advance in the system or the base station may be instructed to the terminal through the upper layer signaling and / or physical layer signaling.
  • repetitive transmission of data is previously defined to be transmitted only within a single subframe type and / or a single subframe, or repetitive transmission of data is a single subframe type and / or a single subframe.
  • the base station may instruct the terminal through higher layer signaling and / or physical layer signaling to be transmitted only within.
  • each transmission corresponding to repetitive transmission may be transmitted through different TPs, and repetitive transmission for the same data may be limited to all being transmitted in the same TP.
  • the terminal when the terminal is instructed to receive repetitive transmission for the same data, the terminal may not expect the repetitive transmission to be transmitted in different TPs.
  • the base station can inform the UE of PDSCH RE mapping information for each TPs through higher layer signaling and / or physical layer signaling.
  • the UE may operate by assuming a worst case for PDSCH RE mapping.
  • the base station may inform the user equipment of the MBSFN subframe configuration for each TP or CSI-RS associated with the respective TPs through higher layer signaling and / or physical layer signaling, and is always non-MBSFN.
  • the PDSCH RE mapping can be applied assuming the worst case, such as a subframe.
  • the base station may also inform the terminal about information from which TPs of data repeatedly transmitted through higher layer signaling and / or physical layer signaling.
  • a sequence or pattern for a PQI state applied to data repeatedly transmitted over a plurality of TTIs is defined in advance in the system, or a base station provides upper layer signaling and / or physical layer signaling to a terminal. You can tell me. Or, candidates for a sequence or pattern of PQI states that can be applied to each of the data repeatedly transmitted over a plurality of TTIs are previously defined in the system, or the base station transmits higher layer signaling to the terminal. ), And may indicate through the DCI field which sequence candidate or pattern candidate the PQI state is applied to in each TTI. In this case, a field indicating whether a PQI state applied to each TTI is applied to which sequence candidate or pattern candidate may be used to reuse an existing PQI field or define a new field.
  • FIG. 15 illustrates an embodiment of a wireless communication device according to an embodiment of the present invention.
  • the wireless communication device described with reference to FIG. 15 may represent a terminal and / or a base station according to an embodiment of the present invention.
  • the wireless communication device of FIG. 15 is not necessarily limited to the terminal and / or the base station according to the present embodiment, and may be replaced with various devices such as a vehicle communication system or device, a wearable device, a laptop, a smart phone, and the like. Can be.
  • a terminal and / or a base station may include at least one processor 10, a transceiver 35, such as a digital signal processor (DSP) or a microprocessor, Power management module 5, antenna 40, battery 55, display 15, keypad 20, memory 30, subscriber identity module (SIM) card 25, speaker 45 and microphone ( 50) and the like.
  • the terminal and / or the base station may include a single antenna or multiple antennas.
  • the transceiver 35 may also be referred to as a radio frequency module (RF module).
  • RF module radio frequency module
  • the processor 10 may be configured to implement the functions, procedures, and / or methods described in FIGS. 1-14. In at least some of the embodiments described in FIGS. 1-14, the processor 10 may implement one or more protocols, such as layers of a radio interface protocol (eg, functional layers).
  • layers of a radio interface protocol eg, functional layers
  • the memory 30 is connected to the processor 10 and stores information related to the operation of the processor 10.
  • the memory 30 may be located inside or outside the processor 10 and may be connected to the processor through various technologies such as wired or wireless communication.
  • the user may enter various types of information (eg, indication information such as a telephone number) by various techniques such as pressing a button on the keypad 20 or voice activation using the microphone 50.
  • the processor 10 performs appropriate functions such as receiving and / or processing the user's information and dialing the telephone number.
  • the processor 10 may receive and process GPS information from a GPS chip to obtain location information of a terminal and / or a base station such as a vehicle navigation and a map service, or perform a function related to the location information.
  • the processor 10 may display these various types of information and data on the display 15 for the user's reference and convenience.
  • the transceiver 35 is connected to the processor 10 to transmit and / or receive a radio signal such as a radio frequency (RF) signal.
  • the processor 10 may control the transceiver 35 to initiate communication and transmit a radio signal including various types of information or data such as voice communication data.
  • Transceiver 35 may include a receiver for receiving wireless signals and a transmitter for transmitting.
  • Antenna 40 facilitates the transmission and reception of wireless signals.
  • the transceiver 35 may forward and convert the signal to a baseband frequency for processing by the processor 10.
  • the processed signal may be processed according to various techniques, such as being converted into audible or readable information, and such a signal may be output through the speaker 45.
  • the senor may also be connected to the processor 10.
  • the sensor may include one or more sensing devices configured to detect various types of information including speed, acceleration, light, vibration, and the like.
  • the processor 10 receives and processes sensor information obtained from a sensor such as proximity, location, and image, thereby performing various functions such as collision avoidance and autonomous driving.
  • a camera and a USB port may be additionally included in the terminal and / or the base station.
  • a camera may be further connected to the processor 10, and such a camera may be used for various services such as autonomous driving, vehicle safety service, and the like.
  • FIG. 15 is only an embodiment of devices configuring the terminal and / or the base station, but is not limited thereto.
  • some components such as keypad 20, global positioning system (GPS) chip, sensor, speaker 45, and / or microphone 50 may be excluded for terminal and / or base station implementation in some embodiments. It may be.
  • GPS global positioning system
  • the operation of the wireless communication apparatus illustrated in FIG. 15 is a terminal according to an embodiment of the present disclosure.
  • the processor 10 controls the transceiver 35 to receive an RRC message for operating in transmission mode 10 through a higher layer from a base station. can do.
  • the processor 10 may detect a DCI including the PDSCH RE mapping information for the transmission mode 10 and the number of repetitive transmissions of data repeatedly transmitted in a TTI included in a specific subframe.
  • the processor 10 controls the transceiver 35 to receive the information repeatedly included in the DCI and the data repeatedly transmitted based on the operation according to the transmission mode 10. Accordingly, a detailed method of using the PDSCH mapping information included in the DCI may be according to the embodiments described herein based on FIGS. 1 to 14.
  • the processor 10 when the wireless communication apparatus illustrated in FIG. 15 is a base station according to an embodiment of the present disclosure, the processor 10 operates in a transmission mode 10 to a terminal through a higher layer.
  • the transceiver 35 is controlled to transmit an RRC message.
  • the processor 10 controls the transceiver 35 to transmit a DCI including the PDSCH RE mapping information for the transmission mode 10 and the number of repetitive transmissions of data repeatedly transmitted in a TTI included in a specific subframe.
  • the processor 10 controls the transceiver 35 to transmit data repeatedly transmitted based on the information included in the DCI and the operation according to the transmission mode 10. In this case, the processor 10 controls the transceiver 35 according to the transmission mode 10.
  • a detailed method of using the PDSCH mapping information included in the DCI may be according to the embodiments described herein based on FIGS. 1 to 14.
  • the processor 10 included in the base station performs and / or sets the operation according to the transmission mode 10 or generates and / or configures the information included in the DCI
  • the present specification is based on FIGS. 1 to 14. Consider the embodiments described in.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서, 전송 모드 10이 설정된 단말이 하향링크 데이터를 수신하는 방법을 개시한다. 특히, 상기 방법은, 특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고, 상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 수신할 수 있다.

Description

하향링크 데이터를 송수신하는 방법 및 이를 위한 장치
본 발명은 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
무선 통신 기술은 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위하여는 새로운 기술 진화가 요구된다. 특히, 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
본 발명은 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 전송 모드 10이 설정된 단말이 하향링크 데이터를 수신하는 방법에 있어서, 특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고, 상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 수신할 수 있다.
이 때, 상기 RE 맵핑 정보를 기반으로 상기 반복 전송되는 상기 하향링크 데이터를 디코딩하는 것을 포함할 수 있다.
또한, 상기 반복 전송되는 상기 하향링크 데이터를 수신하는 것은, 동일한 전송 포인트(Transmission Point; TP)를 통해 상기 특정 TTI 및 상기 적어도 하나의 TTI에서 반복 전송되는 상기 하향링크 데이터를 수신하는 것을 포함할 수 있다.
또한, 상기 특정 TTI 및 상기 적어도 하나의 TTI는, 짧은 TTI일 수 있다.
또한, 상기 DCI는 C-RNTI (Cell-Radio Network Temporary Identifier) 기반으로 한 데이터 스케줄링 관련 DCI일 수 있다.
또한, 상기 RE 맵핑 정보는 상기 특정 TTI 및 상기 적어도 하나의 TTI 모두를 위해 동일하게 사용될 수 있다.
또한, 상기 특정 TTI 및 상기 적어도 하나의 TTI들은 시간 영역에서 연속될 수 있다.
본 발명에 따른 무선 통신 시스템에서, 하향링크 데이터를 수신하기 위한 전송 모드 10이 설정된 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고, 상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 수신하는 것을 포함할 수 있다.
이 때, 상기 적어도 하나의 프로세서는, 상기 RE 맵핑 정보를 기반으로 상기 반복 전송되는 상기 하향링크 데이터를 디코딩할 수 있다.
또한, 상기 적어도 하나의 프로세서는, 동일한 전송 포인트(Transmission Point; TP)를 통해 상기 특정 TTI 및 상기 적어도 하나의 TTI에서 반복 전송되는 상기 하향링크 데이터를 수신하는 것을 포함할 수 있다.
또한, 상기 특정 TTI 및 상기 적어도 하나의 TTI는, 짧은 TTI일 수 있다.
또한, 상기 DCI는 C-RNTI (Cell-Radio Network Temporary Identifier) 기반으로 한 데이터 스케줄링 관련 DCI일 수 있다.
또한, 상기 RE 맵핑 정보는 상기 복수의 TTI들 모두를 위해 동일하게 사용될 수 있다.
또한, 상기 특정 TTI 및 상기 적어도 하나의 TTI들은 시간 영역에서 연속될 수 있다.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 전송 모드 10에 기반하여 동작하는 기지국이 하향링크 데이터를 전송하는 방법에 있어서, 특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 전송하고, 상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 전송할 수 있다.
본 발명에 따른 무선 통신 시스템에서, 하향링크 데이터를 수신하기 위한 전송 모드 10이 설정된 단말에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고, 상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 수신하는 것을 포함할 수 있다.
본 발명에 따른 무선 통신 시스템에서, 하향링크 데이터를 전송하기 위해 전송 모드 10에 기반하여 동작하는 기지국에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 전송하고, 상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 전송하는 것을 포함할 수 있다.
본 발명에 따르면, 전송 모드 10 동작을 수행하는 경우에도 높은 신뢰성(reliability)와 낮은 지연 시간(latency)로 하향링크 데이터를 반복 전송할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례를 도시한 도면이다.
도 2는 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 무선 프레임의 구조를 예시하는 도면이다.
도 5는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 6은 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타내는 도면이다.
도 7은 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 8은 전송 모드 10 (Transmission Mode 10; TM 10)에서의 하향링크 동작의 예시를 나타내는 도면이다.
도 9는 짧은 TTI (Short Transmission Time Interval)의 구조를 설명하기 위한 도면이다.
도 10은 반복 전송되는 PDSCH(Physical Downlink Shared Channel)이 스케줄링 되는 예시들을 설명하기 위한 도면이다.
도 11은 본 발명의 실시 예에 따른 PDSCH가 반복 전송되는 예시를 설명하기 위한 도면이다.
도 12 내지 도 14는 본 발명에 따른 단말, 기지국 및 네트워크의 동작을 설명하기 위한 도면이다.
도 15는 본 발명을 수행하는 무선 장치의 구성요소를 나타내는 블록도이다.
본 발명은 하향링크 데이터를 송신 및 수신하는 것에 관한 것으로, 특히 전송 모드 (Transmission Mode; TM) 10에서 반복적으로 송신되는 데이터를 송신 및 수신하는 방법 및 장치에 관한 것이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
본 발명의 구현 예가 적용될 수 있는 무선 통신 시스템의 일례를 간단히 설명하도록 한다. 본 발명에 따른 일부 구현 예에서, 상기 무선 시스템은 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템과 호환될 수 있다.
도 1은 무선 통신 시스템의 구성에 관한 일례를 도시한 도면이다. 상기 무선 통신 시스템의 구성은 E-UMTS 망구조를 구현하는 데 사용될 수 있다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템이다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
도 2는 단말과 무선 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 일부 구현 예에서, 상기 도 2는 단말과 E-UTRAN 사이의 3GPP 무선 접속망 규격일 수 있다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 보다 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 고 호환될 수 있는 무선 통신 시스템의 구현 예에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200·T s)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360· T s)의 길이를 가진다. 여기에서, T s 는 샘플링 시간을 나타내고, Ts=1/(15kHzХ2048)=3.2552Х10 -8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파Х7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향 링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다. 도 5를 기반으로 하는 일부 구현 예는 LTE 시스템과 호환될 수 있다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R0 내지 R3은 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파Х하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향 링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향 링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향 링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송될 수 있다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타낸다. 도 6을 기반으로 한 일부 구현 예들은 LTE 시스템과 호환될 수 있다.
특히, 도 6의 (a)는 기지국의 송신 안테나의 개수가 1 또는 2개인 경우를 나타내고, 도 6의 (b)는 기지국의 송신 안테나의 개수가 4개인 경우를 나타낸다. 송신 안테나의 개수에 따라 RS(Reference Signal) 패턴만 상이할 뿐 제어 채널과 관련된 자원 단위의 설정 방법은 동일하다.
도 6을 참조하면, 하향링크 제어 채널의 기본 자원 단위는 REG(Resource Element Group)이다. REG는 RS를 제외한 상태에서 4개의 이웃한 자원 요소(RE)로 구성된다. REG는 도면에 굵은 선으로 도시되었다. PCFICH 및 PHICH는 각각 4개의 REG 및 3개의 REG를 포함한다. PDCCH는 CCE(Control Channel Elements) 단위로 구성되며 하나의 CCE는 9개의 REG를 포함한다.
단말은 자신에게 L 개의 CCE로 이루어진 PDCCH가 전송되는지를 확인하기 위하여
Figure PCTKR2019005396-appb-img-000001
개의 연속되거나 특정 규칙으로 배치된 CCE를 확인하도록 설정된다. 단말이 PDCCH 수신을 위해 고려해야 하는 L 값은 복수가 될 수 있다. 단말이 PDCCH 수신을 위해 확인해야 하는 CCE 집합들을 검색 영역(search space)이라고 한다. 일 예로, LTE 시스템은 검색 영역을 표 1과 같이 정의하고 있다.
[표 1]
Figure PCTKR2019005396-appb-img-000002
[표 1]의 예시에서, CCE 집성 레벨 L 은 PDCCH를 구성하는 CCE 개수를 나타내고,
Figure PCTKR2019005396-appb-img-000003
은 CCE 집성 레벨 L 의 검색 영역을 나타내며,
Figure PCTKR2019005396-appb-img-000004
은 집성 레벨 L 의 검색 영역에서 모니터링해야 하는 PDCCH 후보의 개수이다.
검색 영역은 특정 단말에 대해서만 접근이 허용되는 단말 특정 검색 영역(UE-specific search space)과 셀 내의 모든 단말에 대해 접근이 허용되는 공통 검색 영역(common search space)로 구분될 수 있다. 단말은 CCE 집성 레벨이 4 및 8인 공통 검색 영역을 모니터하고, CCE 집성 레벨이 1, 2, 4 및 8인 단말-특정 검색 영역을 모니터한다. 공통 검색 영역 및 단말 특정 검색 영역은 오버랩될 수 있다.
또한, 각 CCE 집성 레벨 값에 대하여 임의의 단말에게 부여되는 PDCCH 검색 영역에서 첫 번째(가장 작은 인덱스를 가진) CCE의 위치는 단말에 따라서 매 서브프레임마다 변화하게 된다. 이를 PDCCH 검색 영역 해쉬(hashing)라고 한다.
상기 CCE는 시스템 대역에 분산될 수 있다. 보다 구체적으로, 논리적으로 연속된 복수의 CCE가 인터리버(interleaver)로 입력될 수 있으며, 상기 인터리버는 입력된 복수의 CCE를 REG 단위로 뒤섞는 기능을 수행한다. 따라서, 하나의 CCE를 이루는 주파수/시간 자원은 물리적으로 서브프레임의 제어 영역 내에서 전체 주파수/시간 영역에 흩어져서 분포한다. 결국, 제어 채널은 CCE 단위로 구성되지만 인터리빙은 REG 단위로 수행됨으로써 주파수 다이버시티(diversity)와 간섭 랜덤화(interference randomization) 이득을 최대화할 수 있다.
도 7은 사용되는 상향 링크 서브프레임의 구조를 도시하는 도면이다. 한편, 일부 구현에서 상기 상향링크 서브프레임의 구조는 LTE 시스템과 호환될 수 있다.
도 7을 참조하면, 상향 링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향 링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향 링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
전송 모드 10(Transmission Mode 10): 협력 멀티 포인트(Coordinated Multi-Point: CoMP)
3GPP LTE-A 시스템의 개선된 시스템 성능 요구조건에 따라서, CoMP 송수신 기술 (co-MIMO, 공동(collaborative) MIMO 또는 네트워크 MIMO 등으로 표현되기도 함)이 구현되고 있다. CoMP 기술은 셀-경계(cell-edge)에 위치한 단말의 성능을 증가시키고 평균 섹터 수율(throughput)을 증가시킬 수 있다.
일반적으로, 주파수 재사용 인자(frequency reuse factor)가 1 인 다중-셀 환경에서, 셀-간 간섭(Inter-Cell Interference; ICI)으로 인하여 셀-경계에 위치한 단말의 성능과 평균 섹터 수율이 감소될 수 있다. 이러한 ICI를 저감하기 위하여, 기존의 LTE 시스템과 호환될 수 있는 일부 시스템에서는 단말 특정 전력 제어를 통한 부분 주파수 재사용(fractional frequency reuse; FFR)과 같은 단순한 수동적인 기법을 이용하여 간섭에 의해 제한을 받은 환경에서 셀-경계에 위치한 단말이 적절한 수율 성능을 가지도록 하는 방법이 적용되었다. 그러나, 셀 당 주파수 자원 사용을 낮추기보다는, ICI를 저감하거나 ICI를 단말이 원하는 신호로 재사용하는 것이 보다 바람직할 수 있다. 위와 같은 목적을 달성하기 위하여, CoMP 전송 기법이 적용될 수 있다.
하향링크의 경우에 적용될 수 있는 CoMP 기법은 크게 조인트-프로세싱(joint processing; JP) 기법 및 조정 스케줄링/빔포밍 (coordinated scheduling/beamforming; CS/CB) 기법으로 분류할 수 있다.
JP 기법은 CoMP 협력 단위의 각각의 포인트(기지국)에서 데이터를 이용할 수 있다. CoMP 협력 단위는 협력 전송 기법에 이용되는 기지국들의 집합을 의미한다. JP 기법은 조인트 전송(Joint Transmission) 기법과 동적 셀 선택(Dynamic cell selection) 기법으로 분류할 수 있다.
조인트 전송 기법은, PDSCH 가 한번에 복수개의 포인트(CoMP 협력 단위의 일부 또는 전부)로부터 전송되는 기법을 말한다. 예를 들어, 단일 단말로 전송되는 데이터는 복수개의 전송 포인트로부터 동시에 전송될 수 있다. 조인트 전송 기법에 의하면, 코히어런트하게(coherently) 또는 넌-코히어런트하게 (non-coherently) 수신 신호의 품질이 향상될 수 있고, 또한, 다른 단말에 대한 간섭을 능동적으로 소거할 수도 있다.
동적 셀 선택 기법은, PDSCH가 한번에 (CoMP 협력 단위의) 하나의 포인트로부터 전송되는 기법을 말한다. 즉, 특정 시점에서 단일 단말로 전송되는 데이터는 하나의 포인트로부터 전송되고, 그 시점에 협력 단위 내의 다른 포인트는 해당 단말에 대하여 데이터 전송을 하지 않으며, 해당 단말로 데이터를 전송하는 포인트는 동적으로 선택될 수 있다.
한편, CS/CB 기법에 의하면 CoMP 협력 단위들이 단일 단말에 대한 데이터 전송의 빔포밍을 협력적으로 수행할 수 있다. 여기서, 데이터는 서빙셀(serving-cell)에서만 전송되지만, 사용자 스케줄링/빔포밍은 해당 CoMP 협력 단위의 셀들의 조정에 의하여 결정될 수 있다.
한편, 상향링크의 경우에, 조정(coordinated) 다중-포인트 수신은 지리적으로 떨어진 복수개의 포인트들의 조정에 의해서 전송된 신호를 수신하는 것을 의미한다. 상향링크의 경우에 적용될 수 있는 CoMP 기법은 조인트 수신(Joint Reception; JR) 및 조정 스케줄링/빔포밍(coordinated scheduling/beamforming; CS/CB)으로 분류할 수 있다.
JR 기법은 PUSCH 를 통해 전송된 신호가 복수개의 수신 포인트에서 수신되는 것을 의미하고, CS/CB 기법은 PUSCH 가 하나의 포인트에서만 수신되지만 사용자 스케줄링/빔포밍은 CoMP 협력 단위의 셀들의 조정에 의해 결정되는 것을 의미한다.
이러한 CoMP 시스템을 이용하면, 단말은 다중-셀 기지국(Multi-cell base station)으로부터 공동으로 데이터를 지원받을 수 있다. 또한, 각 기지국은 동일한 무선 주파수 자원(Same Radio Frequency Resource)을 이용하여 하나 이상의 단말에 동시에 지원함으로써 시스템의 성능을 향상시킬 수 있다. 또한, 기지국은 기지국과 단말 간의 채널상태정보에 기초하여 공간 분할 다중접속(Space Division Multiple Access: SDMA) 방법을 수행할 수도 있다.
CoMP 시스템에서 서빙 기지국 및 하나 이상의 협력 기지국들은 백본망(Backbone Network)을 통해 스케줄러(scheduler)에 연결된다. 스케줄러는 백본망을 통하여 각 기지국이 측정한 각 단말 및 협력 기지국 간의 채널 상태에 관한 채널 정보를 피드백 받아 동작할 수 있다. 예를 들어, 스케줄러는 서빙 기지국 및 하나 이상의 협력 기지국에 대하여 협력적 MIMO 동작을 위한 정보를 스케줄링할 수 있다. 즉, 스케줄러에서 각 기지국으로 협력적 MIMO 동작에 대한 지시를 직접 내릴 수 있다.
상술한 바와 같이 CoMP 시스템은 복수개의 셀들을 하나의 그룹으로 묶어 가상 MIMO 시스템으로 동작하는 것이라 할 수 있으며, 기본적으로는 다중 안테나를 사용하는 MIMO 시스템의 통신 기법이 적용될 수 있다.
CoMP (전송 모드 10) 및 CSI 프로세스
도 8은 하향링크 CoMP (전송 모드 10) 동작의 예시를 나타내는 도면이다.
도 8의 예시에서 UE는 eNB1과 eNB2사이에 위치하며, 두 eNB는 해당 UE로의 간섭을 감소시키기 위해서 JT(Joint Transmission), DCS(Dynamic Cell Selection), DPB(Dynamic Point Blanking), CS/CB(coordinated scheduling/beamforming)와 같은 적절한 CoMP 동작을 수행한다. UE는 이러한 CoMP 동작을 돕기 위하여 적절한 CSI 피드백을 수행하는데, 이 CSI 피드백에는 각 eNB에 대한 RI 정보, PMI 정보와 CQI 정보가 포함되어 있으며, 추가적으로 JT를 위한 두 eNB 사이의 채널 정보(예를 들어 eNB1으로부터 UE로의 채널과 eNB2로부터 UE로의 채널 사이의 위상 오프셋 정보)가 포함될 수 있다.
도 8에서 UE는 자신의 서빙 셀인 eNB1으로 CSI 피드백을 보고하는 것으로 도시하지만, 상황에 따라 eNB2로 CSI 피드백을 보고하거나, 두 eNB가 모두 CSI 피드백을 수신할 수도 있다.
네트워크에 의한 CoMP 스케줄링을 지원하기 위해서, UE는 서빙 eNB/TP의 DL(downlink) CSI 정보뿐만 아니라 CoMP에 참여하는 이웃 eNB/TP의 DL CSI 정보도 함께 피드백할 수 있다. 이를 위해 UE는 다양한 데이터 송신 eNB/TP와 다양한 간섭 환경을 반영하는 다수 개의 CSI 프로세스에 대한 CSI를 생성 및 피드백할 수 있다.
CoMP CSI 계산에 있어서 간섭의 측정을 위해 간섭자원(IMR)이 사용된다. UE는 하나 이상의 IMR을 설정 받을 수 있으며, IMR은 각각 독립적인 설정을 가진다. 즉, 각각의 IMR의 발생 주기, 서브프레임 오프셋, 자원 설정(즉, RE 매핑 위치)은 독립적으로 주어지며, 이 정보는 상위계층(예를 들어, RRC 계층)을 통해서 네트워크로부터 UE에게 시그널링될 수 있다.
일부 구현 예에 따라 CoMP CSI 계산에 있어서 원하는(desired) 채널 또는 신호의 측정을 위해 CSI-RS가 사용된다. UE는 하나 이상의 CSI-RS를 설정 받을 수 있으며, CSI-RS는 각각 독립적인 설정을 가진다. 즉, 각각의 CSI-RS의 전송 주기, 서브프레임 오프셋, 자원 설정(즉, RE 매핑 위치), 전송 전력에 대한 가정(즉, 파라미터 Pc), 안테나 포트 개수에 대한 설정은 독립적으로 주어지며, 이 정보는 상위계층(예를 들어, RRC 계층)을 통해서 네트워크로부터 UE에게 시그널링될 수 있다. 이를 신호 측정 자원(SMR)이라고 칭할 수도 있다.
UE에게 설정된 하나 이상의 CSI-RS와 하나 이상의 IMR 중에서, 신호 측정을 위한 하나의 CSI-RS 자원과, 간섭 측정을 위한 하나의 IMR의 연관(또는 조합)으로 하나의 CSI 프로세스가 정의된다. 서로 다른 CSI 프로세스에 대해서 계산 또는 유도된 CSI 정보는, 독립적인 주기 및 서브프레임 오프셋에 따라서 UE로부터 네트워크로 피드백될 수 있다. 즉, 각각의 CSI 프로세스는 독립적인 CSI 피드백 설정을 가질 수 있다. 이러한 CSI-RS 자원과 IMR의 연관(또는 조합)에 대한 정보 및 CSI 피드백 설정 정보 등은 CSI 프로세스 별로 상위 계층 시그널링을 통해서 네트워크로부터 UE에게 제공될 수 있다. 도 10의 예시에 있어서, 예를 들어, 아래의 표 2와 같은 3개의 CSI 프로세스가 UE에 대해서 설정될 수 있다.
CSI 프로세스 SMR IMR
CSI 프로세스 0 CSI-RS 0 IMR 0
CSI 프로세스 1 CSI-RS 1 IMR 1
CSI 프로세스 2 CSI-RS 0 IMR 2
상기 표 2에서 CSI-RS 0는 UE의 서빙 eNB인 eNB1으로부터 수신하는 CSI-RS를 나타내고, CSI-RS 1은 협력에 참여하는 이웃 eNB인 eNB2로부터 수신하는 CSI-RS를 나타낸다.
아래의 표 3는 상기 표 2의 3 개의 IMR 설정(IMR 0, IMR 1 및 IMR 2)을 나타낸다. IMR 0은 eNB1은 뮤팅(muting) (또는 널(null) 신호 전송)을 수행하고 eNB2는 데이터 송신을 수행하는 자원으로 설정되고, UE는 IMR 0 로부터 eNB1을 제외한 다른 eNB들로부터의 간섭을 측정한다. IMR 1은 eNB2은 뮤팅을 수행하고 eNB1는 데이터 송신을 수행하는 자원으로 설정되며, UE는 IMR 1 로부터 eNB2을 제외한 다른 eNB들로부터의 간섭을 측정한다. IMR 2는 eNB1과 eNB2 모두 뮤팅을 수행하는 자원으로 설정되고, UE는 IMR 2 로부터 eNB1과 eNB2을 제외한 다른 eNB들로부터의 간섭을 측정한다.
IMR eNB1 eNB2
IMR 0 뮤팅 데이터 전송
IMR 1 데이터 전송 뮤팅
IMR 2 뮤팅 뮤팅
상기 표 2에서 CSI process 0의 CSI 정보는 eNB1으로부터 데이터를 수신하는 경우에 대한 최적의 RI, PMI, CQI 정보를 나타낸다. CSI process 1의 CSI 정보는 eNB2으로부터 데이터를 수신하는 경우에 대한 최적의 RI, PMI, CQI 정보를 나타낸다. CSI process 2의 CSI 정보는 eNB1으로부터 데이터를 수신하고 eNB2로부터 간섭을 전혀 받지 않는 경우에 대한 최적의 RI, PMI, CQI 정보를 나타낸다.
QCL (Quasi Co-location)
QC 또는 QCL (Quasi Co-Located) 관계는 신호에 대한 관점 또는 채널에 대한 관점에서 설명할 수 있다.
하나의 안테나 포트 상에서 수신되는 신호의 대규모 특성(large scale properties)이 다른 안테나 포트 상에서 수신되는 신호로부터 유추(infer)될 수 있는 경우에, 이들 두 안테나 포트가 QCL된 것이라고 할 수 있다. 여기서, 신호의 대규모 특성이란, 지연 확산(delay spread), 도플러 시프트(Doppler shift), 주파수 시프트(frequency shift), 평균 수신 전력(average received power), 수신 타이밍(received timing) 중의 하나 이상을 포함할 수 있다.
또는, 하나의 안테나 포트 상의 심볼이 전송되는 채널의 대규모 특성이 다른 안테나 포트 상의 심볼이 전송되는 채널의 특성으로부터 유추될 수 있는 경우에, 이들 두 안테나 포트가 QCL된 것이라고 할 수 있다. 여기서, 채널의 대규모 특성이란 지연 확산(delay spread), 도플러 확산(Doppler spread), 도플러 시프트(Doppler shift), 평균 이득(average gain), 및 평균 지연(average delay) 중의 하나 이상을 포함할 수 있다.
본 발명에서 QC 또는 QCL 이라는 용어를 사용함에 있어서, 위에서 설명하는 신호 관점 또는 채널 관점의 정의를 구분하지는 않는다.
단말의 입장에서 QCL에 대한 가정이 성립하는 안테나 포트들 간에는, 실제로는 두 안테나 포트가 co-located 되어 있지 않더라도 마치 co-located 되어 있는 것으로 가정할 수 있다. 예를 들어, 단말은 QCL 가정이 성립하는 두 안테나 포트들이 동일한 전송 포인트(TP)에 존재하는 것으로 가정할 수 있다.
예를 들어, 특정 CSI-RS 안테나 포트와, 특정 하향링크 DMRS 안테나 포트와, 특정 CRS 안테나 포트가 QCL되어 있는 것으로 설정될 수 있다. 이는, 특정 CSI-RS 안테나 포트와, 특정 하향링크 DMRS 안테나 포트와, 특정 CRS 안테나 포트가 하나의 서빙셀(serving-cell)로부터의 것인 경우일 수 있다.
또한, CSI-RS 안테나 포트와 하향링크 DMRS 안테나 포트가 QCL되어 있는 것으로 설정될 수도 있다. 예를 들어, 복수개의 TP가 참여하는 CoMP 상황에서, 어떤 CSI-RS 안테나 포트가 실제로 어떤 TP로부터 전송되는 것인지는 단말에게 명시적으로 알려지지 않는다. 이 경우에, 특정 CSI-RS 안테나 포트와 특정 DMRS 안테나 포트가 QCL되어 있는 것을 단말에게 알려줄 수 있다. 이는 상기 특정 CSI-RS 안테나 포트와 특정 DMRS 안테나 포트가 어떤 하나의 TP로부터의 것인 경우일 수도 있다.
이러한 경우, 단말은 CSI-RS 또는 CRS를 이용하여 획득한 채널의 대규모 특성 정보를 이용해서, DMRS를 통한 채널 추정의 성능을 높일 수 있다. 예를 들어, CSI-RS를 통해서 추정된 채널의 지연 확산을 이용해서, DMRS로부터 추정된 채널의 간섭을 억제하는 등의 동작을 할 수 있다.
일부 구현 예에서, 단말은 하나의 안테나 포트를 위한 채널 추정을 수행하기 위해 다른 안테나 포트의 추정 결과를 적용할 수 있다.
예를 들어, 지연 확산 및 도플러 확산에 대하여, 단말은 어떤 하나의 안테나 포트에 대한 전력-지연-프로파일(power-delay-profile), 지연 확산 및 도플러 스펙트럼, 도플러 확산 추정 결과를, 다른 안테나 포트에 대한 채널 추정 시 사용되는 위너 필터(Wiener filter) 등에 동일하게 적용할 수 있다. 또한, 주파수 시프트 및 수신 타이밍에 대해서, 단말은 어떤 하나의 안테나 포트에 대한 시간 및 주파수 동기화(synchronization)를 수행한 후, 동일한 동기화를 다른 안테나 포트의 복조에 적용할 수 있다. 또한, 평균 수신 전력에 대해서, 단말은 2 개 이상의 안테나 포트들에 대해서 참조신호수신전력(reference signal received power; RSRP) 측정을 평균화할 수 있다.
예를 들어, 단말이 PDCCH 또는 Enhanced-PDCCH(EPDCCH)를 통해 특정 DMRS 기반 DL 관련 DCI 포맷(DMRS-based DL-related DCI format)을 통하여 DL 스케줄링 정보를 수신할 수 있다. 이 경우, 단말은 설정된 DMRS 시퀀스를 통해 해당 스케줄링된 PDSCH에 대한 채널 추정을 수행한 후 데이터 복조를 수행한다. 예를 들어, 만일 단말이 이러한 DL 스케줄링 정보로부터 받은 DMRS 포트 설정이 특정 RS(예를 들어, 특정 CSI-RS, 특정 CRS, 또는 자신의 DL 서빙셀 CRS, 등) 포트와 QCL된 것으로 가정할 수 있다면, 단말은 해당 DMRS 포트를 통한 채널 추정시 상기 특정 RS의 포트로부터 추정했던 지연 확산 등의 대규모 특성 추정치를 그대로 적용하여 DMRS-기반 수신의 성능을 향상시킬 수가 있다.
이는, CSI-RS 또는 CRS는 주파수 도메인에서 전대역에 걸쳐서 전송되는 셀-특정 신호이므로, 단말-특정으로 전송되는 DMRS에 비하여 채널의 대규모 특성을 보다 정확하게 파악할 수 있기 때문이다. 특히, CRS는 매 서브프레임에서 전 대역에 걸쳐서 상대적으로 높은 밀도로 브로드캐스트되는 참조신호이기 때문에, 일반적으로 채널의 대규모 특성에 대한 추정치는 CRS로부터 안정적으로 보다 정확하게 획득할 수 있다. 반면에 DMRS는 스케줄링된 특정 RB에서만 단말-특정으로 전송되므로 DMRS를 이용한 채널의 대규모 특성 추정치의 정확도가 CRS 또는 CSI-RS에 비하여 떨어진다. 또한, 단말이 다수의 PRBG를 스케줄링 받은 경우라고 하더라도. 기지국이 송신에 사용한 프리코딩 행렬은 물리 자원 블록 그룹(PRBG) 단위로 변할 수도 있으므로 단말에게 수신되는 유효 채널은 PBRG 단위로 달라질 수 있다. 따라서, 넓은 대역에 걸쳐 DMRS를 기반으로 대규모 채널 특성을 추정하더라도 그 정확성이 떨어질 수 있다.
한편, 단말은 QCL 되어 있지 않은 (non-quasi-co-located; NQC) 안테나 포트(AP)들에 대해서는, 해당 AP들이 동일한 대규모 채널 특성을 가지는 것으로는 가정할 수 없다. 이 경우에 단말은 타이밍 획득 및 추적(timing acquisition and tracking), 주파수 오프셋 추정 및 보상(frequency offset estimation and compensation), 지연 추정(delay estimation), 및 도플러 추정(Doppler estimation) 등에 대하여 NQC AP 별로 독립적으로 처리해야 한다.
PDSCH 자원 매핑 파라미터
QCL 여부는 하향링크 제어 정보(예를 들어, DCI 포맷 2D의 PQI 필드 (PDSCH RE 매핑 및 QCL 지시자 필드))를 통해서 단말에게 제공될 수 있다. 구체적으로, QCL 설정에 대한 파라미터 세트들(예를 들어, 최대 4개의 파라미터 세트들)이 상위계층에 의해서 미리 설정되어 있고, DCI 포맷 2D의 PQI 필드를 통해서 상기 QCL 파라미터 세트들 중에서 특정 하나의 파라미터 세트가 지시될 수 있다.
또한, 안테나 포트 인덱스 7 내지 14(즉, UE-specific RS 안테나 포트) 상에서 전송되는 PDSCH의 디코딩을 위해서, 단말에게 QCL 타입 A 또는 QCL 타입 B 중의 하나 이상이 상위 계층에 의해서 (예를 들어, 상위 계층 파라미터 qcl-Operation에 따라서) 설정될 수 있다.
QCL 타입 A는, 단말이, 서빙 셀의 안테나 포트 인덱스 0 내지 3 (즉, CRS 안테나 포트), 7 내지 14 (즉, UE-specific RS 안테나 포트) 및 15 내지 22 (즉, CSI-RS 안테나 포트)가 지연 확산, 도플러 확산, 도플러 시프트 및 평균 지연에 대해서 QCL 되어 있다고 가정하는 동작 방식이라고 할 수 있다.
QCL 타입 B는, 단말이, 상위 계층에 의해서 주어지는 NZP(Non-Zero Power) CSI-RS 설정 정보(qcl-CSI-RS-ConfigNZPId-r11)에 의해 식별되는 CSI-RS 자원 설정에 해당하는 안테나 포트 인덱스 15 내지 22 (즉, CSI-RS 안테나 포트) 및 PDSCH에 연관된 안테나 포트 7 내지 14 (즉, UE-specific RS 안테나 포트)가 도플러 시프트, 도플러 확산, 평균 지연 및 지연 확산에 대해서 QCL 되어 있다고 가정하는 동작 방식이라고 할 수 있다.
QCL 타입 B로 설정된 단말은 검출된 PDCCH/EPDCCH의 DCI 포맷 2D의 PQI 필드가 지시하는 파라미터 세트를 이용하여 PDSCH RE 매핑을 결정하고 또한 PDSCH AP QCL을 결정할 수 있다. 아래의 표 4는 DCI 포맷 2D의 PQI 필드를 나타낸다.
PQI 필드의 값 설명
'00' 상위 계층에 의해서 설정된 파라미터 세트 1
'01' 상위 계층에 의해서 설정된 파라미터 세트 2
'10' 상위 계층에 의해서 설정된 파라미터 세트 3
'11' 상위 계층에 의해서 설정된 파라미터 세트 4
상위 계층 시그널링에 의해서 설정되는 PDSCH RE 매핑 및 PDSCH AP QCL을 결정하기 위한 파라미터 세트의 각각은, CRS 포트 개수 정보(crs-PortsCount-r11), CRS 주파수 시프트 정보(crs-FreqShift-r11), MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임 설정 정보(mbsfn-SubframeConfigList-r11), ZP CSI-RS(Zero Power Channel State Information-Reference Signal) 설정 정보(csi-RS-ConfigZPId-r11), PDSCH 시작 심볼 값(pdsch-Start-r11), 또는 NZP(Non-Zero Power) CSI-RS 설정 정보(qcl-CSI-RS-ConfigNZPId-r11) 중에서 하나 이상의 파라미터를 포함할 수 있다.
QCL 타입 B로 설정된 단말이 C-RNTI로 CRC 마스킹되어 있는 DCI 포맷 1A의 PDCCH/EPDCCH를 검출하는, 상기 표 4의 파라미터 세트 1을 이용하여 안테나 포트 인덱스 7 상에서 전송되는 PDSCH 디코딩을 수행하는 것으로 동작할 수 있다.
단말이 DCI 포맷 1A의 PDCCH/EPDCCH에 따라 스케줄링되는 PDSCH를 디코딩함에 있어서, 상기 PDSCH가 안테나 포트 인덱스 0 내지 3 (즉, CRS 안테나 포트) 상에서 전송되는 경우에는, 단말은 가장 낮은 인덱스의 ZP CSI-RS 자원을 이용하여 PDSCH RE 매핑을 결정할 수 있다.
PDSCH에 대한 안테나 포트 QCL
단말은 서빙 셀의 안테나 포트 인덱스 0 내지 3(즉, CRS 안테나 포트)가, 지연 확산, 지연 확산(delay spread), 도플러 확산(Doppler spread), 도플러 시프트(Doppler shift), 평균 이득(average gain) 및 평균 지연(average delay)에 대해서 QCL되어 있다고 가정할 수 있다.
단말은 서빙 셀의 안테나 포트 인덱스 7 내지 14(즉, UE-specific RS 안테나 포트)가, 특정 서브프레임에서 지연 확산, 도플러 확산, 도플러 시프트, 평균 이득 및 평균 지연에 대해서 QCL되어 있다고 가정할 수 있다.
단말은 서빙 셀의 안테나 포트 인덱스 0 내지 3(즉, CRS 안테나 포트), 5 (즉, 3GPP LTE 릴리즈 8에서 정의된 UE-Specific RS 안테나 포트), 7 내지 14 (즉, 3GPP LTE 릴리즈 9 이후에 정의된 UE-Specific RS 안테나 포트) 및 15 내지 22(즉, CSI-RS 안테나 포트)가, 도플러 시프트, 도플러 확산, 평균 지연 및 지연 확산에 대해서 QCL되어 있다고 가정할 수 있다.
이제 본격적으로 본 발명에 따른 하향링크 데이터 채널의 송수신 방법에 대해 살펴보도록 한다.
차세대 통신 시스템에서는 정보를 송수신할 때, 매우 짧은 지연시간 및 매우 높은 신뢰도를 달성하기 위한 방법들을 고려하고 있다. 이를 위해, 지연 시간 (latency) 및/또는 신뢰성(reliability)와 같은 다양한 타겟 QoS (Quality of Service) 요구 사항(requirement)들을 설정하고, 각 타겟 QoS 요구 사항(target QoS requirement)에 따라 다르게 동작함으로써 해당 타겟 QoS 요구 사항을 요구하는 서비스들을 효율적으로 제공하는 방법을 고려하고 있다.
본 발명에서는 셀룰러 통신 시스템에서 기지국이 단말에게 보다 높은 신뢰성(reliability)과 낮은 지연 시간(latency)을 위해 하향링크 데이터를 반복 전송할 때, 전송 모드 10 동작을 수행하기 위한 새로운 방법을 제안한다.
본 발명에서의 발명사항 및/또는 실시 예는 하나의 제안 방식으로 간주될 수도 있지만, 각 발명사항 및/또는 실시 예 간의 조합 또한 새로운 방식으로 간주될 수 있다. 또한, 특정 발명 사항이 본 발명에서 제시되는 실시 예에 한정되지 않으며, 특정 시스템에도 한정되어 적용되지 않는다. 즉, 특정 발명 사항이 본 발명에서 제시되는 실시 예로부터 통상의 기술자가 용이하게 유추 가능한 범위 내에서 확장될 수도 있으며, 본 발명의 실시 예들이 적용될 수 있는 통신 시스템이라면, LTE, LTE-A, LTE-Pro, NR, IEEE 등의 다양한 통신 시스템에 적용될 수 있다.
또한, 본 발명의 모든 파라미터(parameter), 동작, 각 파라미터 및/또는 동 작 간의 조합, 해당 파라미터 및/또는 동작의 적용 여부, 및/도는 각 파라미터 및/또는 동작 간의 조합의 적용 여부 등은 기지국이 단말에게 상위 계층 시그널링(higher layer signaling) 및/또는 물리 계층 시그널링(physical layer signaling)을 통해 지시하거나 사전에 시스템에 정의될 수 있다.
또한, 본 발명에서 상이한 서브프레임 타입(subframe type)에 대해 기술한 내용은 상이한 전송 모드(Transmission mode; TM)에 대해서도 그대로 적용 가능하며, 예를 들어, 동일한 서브프레임 타입(subframe type)으로 설정된 2 서브프레임 간에 전송 모드가 변경되어 상이해지는 경우에도 그대로 적용될 수 있다. 또한, 본 발명에서 설명하는 TTI(Transmission Time Interval)는 서브 슬롯 (sub-slot)/슬롯(slot)/서브프레임(subframe) 등 다양한 TTI 길이 단위에 대응될 수 있음은 자명하다.
여기서, 서브 슬롯(sub-slot) 및 슬롯(slot)은 짧은 TTI(short TTI)라고 명칭될 수 있다. 즉, 짧은 TTI는 서브 슬롯 및 슬롯을 포함할 수 있다. 짧은 TTI는 1ms의 길이를 가지는 DL-SCH (Downlink Shared Channel) 및 UL-SCH (Uplink Shared Channel)보다 짧은 길이로 정의되며, 짧은 TTI를 지원하기 위한 제어 채널은 SPDCCH (Short PDCCH) 및 SPUCCH (Short PUCCH)도 1ms 보다 짧은 지속 시간(duration)으로 전송된다. 이 때, 슬롯은 0.5ms 구간을 가지며, 따라서, 7개의 심볼들로 구성될 수 있다. 한편, 서브 슬롯은 2개의 심볼들 또는 3개의 심볼들로 구성될 수 있다.
또한, TDD 시스템의 경우에는 슬롯 단위로 짧은 TTI 기반 전송이 수행되고, FDD 시스템의 경우에는 슬롯 및/또는 서브 슬롯 단위의 짧은 TTI 기반 전송이 수행될 수 있다.
이 때, 하나의 서브프레임은 6개의 서브 슬롯들로 구성될 수 있으며, PDCCH를 위해 사용되는 심볼 수에 따라 서브 슬롯이 배치되는 패턴이 달라질 수 있다. 구체적으로, PDCCH를 위해 사용되는 심볼 수가 1 또는 3인 경우, 도 9(a)와 같이 0번 서브 슬롯과 5번 서브 슬롯이 3 심볼들로 구성되며, 나머지 서브 슬롯들은 2 심볼들로 구성된다.
반면, PDCCH를 위해 사용되는 심볼 수가 2 인 경우, 도 9(b)와 같이 1번 서브 슬롯과 5번 서브 슬롯이 3 심볼들로 구성되며, 나머지 서브 슬롯들은 2 심볼들로 구성된다.
하향링크 전송의 신뢰성(reliability)을 높이기 위해 데이터를 반복하여 전송할 수 있다. 예를 들어, 도 10(a)와 같이 제어 채널과 해당 제어 채널이 스케줄링(scheduling)하는 데이터 채널을 매 TTI마다 독립적으로 전송하되, 각 제어 채널에서 HARQ 프로세서 넘버(HARQ process number), NDI (New Data Indicator) 등을 활용하여 상기 복수의 TTI들에서 전송되는 데이터 채널이 동일한 전송 블록(Transmission Block; TB)을 전송하는 것임을 단말에게 알려주고, 동일 데이터를 복수의 TTI들 동안 반복 전송할 수 있다.
한편, 도 10(a) 보다 제어 채널의 오버헤드(overhead)를 줄이기 위해 도 10(b) 와 같이 단일 TTI에서 전송되는 제어채널이 다수개의 TTI들에서 반복 전송되는 데이터를 스케줄링 할 수 있다. 즉, 단일 TTI에서 전송되는 제어 채널이 다수개의 TTI들에 대한 데이터 스케줄링을 할 수 있다.
이와 같이, 제어 채널은 복수의 TTI들에서 전송될 수 있고, 이 때, 제어 채널이 전송되는 TTI 개수는 데이터 채널이 전송되는 TTI 개수보다 적을 수 있다. 이 때, 데이터의 반복 전송을 스케줄링하는 DCI에 포함된 특정 정보는 반복 전송되는 데이터에 공통적으로 적용될 수 있다. 또한, 다수개의 TTI들에서 반복 전송되는 데이터를 스케줄링하는 DCI(Downlink Control Information) 내의 MCS(Modulation Coding Scheme)/RA(Resource Allocation) 등의 정보는 데이터가 반복 전송되는 모든 TTI들에 동일하게 적용될 수 있다. 또한, DCI 는 데이터가 반복 전송되는 횟수 정보를 포함할 수 있다.
또한, 특정 TTI에서 전송되는 DCI를 통해 해당 TTI를 포함한 복수의 TTI들에서 반복 전송되는 데이터를 스케줄링하는 경우, 해당 DCI를 통해 데이터가 반복 전송되는 횟수 k에 대한 정보를 전송할 수 있다.
또한, 해당 DCI에 대한 디코딩(decoding)이 성공하면, 그 후 반복 전송되는 나머지 k-1 개의 연속한 (또는 불연속한) TTI에서는 DCI에 대한 디코딩을 시도하지 않거나 디코딩을 시도하여 DCI를 검출했더라도 해당 DCI를 폐기(discard)하도록 설정될 수 있다. 이 때, 상기 디코딩을 하지 않거나, 폐기되는 DCI는 C-RNTI 기반의 데이터 스케줄링 관련 DCI 또는 하향링크 데이터 스케줄링 관련 DCI일 수 있다. 또한, 디코딩에 성공한 DCI도 C-RNTI 기반의 데이터 스케줄링 관련 DCI 또는 하향링크 데이터 스케줄링 관련 DCI 일 수 있다.
현재 3GPP TS 36.213 표준 스펙에 따르면 전송 모드 10 (TM10)에 적용되는 DCI 포맷 2D 상의 2비트의 PQI (PDSCH Rate Matching and QuasCoLocation Indicator) 필드가 지시하는 PDSCH RE 맵핑 및 PDSCH AP QCL 관련 정보 리스트는 아래와 같다.
Figure PCTKR2019005396-appb-img-000005
상기 정보는 PQI 필드를 통해 지시될 수 있는 상태(state)에 대응되어 설정되고, 이러한 상태(state)는 기지국이 단말에게 RRC 시그널링을 통해 지시하게 된다. 만약, 상이한 PQI 상태(state)가 서로 다른 Non Zero Power (NZP) CSI-RS 정보를 가리킬 경우, 이는 상이한 TP (Transmission Point)의 PDSCH 전송으로 볼 수 있다. 다시 말해, 상이한 PQI 상태가 지시되는 경우, CoMP의 동적 TP 스위칭 (dynamic TP switching) 동작을 위한 것으로 볼 수 있다.
한편, 전송 모드 10이 설정된 환경에서 상술한 바와 같은 데이터 반복 전송 관련 동작이 적용되는 경우의 상기 PDSCH RE 맵핑 정보 및/또는 PDSCH AP QCL 관련 정보를 적용하는 방법에 대해 고려할 필요가 있다. 특히, 데이터의 반복 전송이 상이한 서브프레임들 간의 경계(boundary)에 걸쳐 수행될 때, 데이터의 반복 전송 중 DCI가 전송되지 않는 후속 서브프레임에 포함된 TTI에서 전송되는 데이터에 대한 PDSCH RE 맵핑 정보 및/또는 PDSCH AP QCL 관련 정보를 어떻게 적용할 것인지에 대해 고려할 필요가 있다.
도 11은 PDSCH의 반복 전송의 예시를 나타낸다.
도 11의 실시 예에서, 단말이 TTI #n에서 DCI 를 성공적으로 검출하고 해당 DCI에서 데이터의 반복 전송 횟수가 4로 설정되는 경우, 데이터 반복 전송이 수행되는 TTI #n+1, n+2, n+3 상에서는 DCI를 폐기(discard)할 수 있다. 이 때, 도 11에서 볼 수 있는 것과 같이, TTI #n, n+1은 서브프레임 #k에 포함되고 TTI #n+2, n+3은 서브프레임 #k+1에 포함되면, 서브프레임 #k에 포함된 TTI #n 에서 검출된 DCI 포맷의 PQI 필드로는 서브프레임 #k+1에 포함된 TTI #n+2, n+3에 적용되는 PDSCH 레이트 매칭(rate-matching) 용도의 Zero Power (ZP) CSI-RS 정보를 단말에게 알려줄 수 없다. 따라서, 서브프레임 #k+1에 포함된 TTI #n+2, n+3에 적용되는 PDSCH RE 맵핑 정보를 올바르게 알려주기 위한 방안이 필요하다.
한편, 상술한 기재에서 서브프레임 #k와 서브프레임 #k+1 간에 상이한 ZP CSI-RS 정보의 적용이 필요한 경우는, 서브프레임 #k와 서브프레임 #k+1 간에 IMR 존재 여부, 간섭 셀의 CSI-RS 존재 여부 등이 다른 경우 등이 있을 수 있다.
또한, 상기 TTI #n에서 검출된 DCI 및/또는 폐기(discard)된 DCI는 C-RNTI 기반의 데이터 스케줄링 관련 DCI 또는 하향링크 데이터 스케줄링 관련 DCI일 수 있다.
이제, 도 12 내지 도 14를 참고하여, 본 발명의 실시 예들에 따른 단말, 기지국 및 네트워크 관점에서의 전반적인 동작 과정을 살펴보도록 한다.
우선, 도 12는 본 발명의 실시 예들에 따른 단말의 동작 과정을 설명하기 위한 도면이다.
도 12를 참조하면, 단말은 기지국으로부터 상위 계층을 통해 전송 모드 10으로 동작하기 위한 RRC 메시지를 수신한다(S1201). 그리고 단말은 특정 서브프레임에 포함된 TTI에서 전송 모드 10을 위한 PDSCH RE 맵핑 정보와 반복 전송되는 데이터의 반복 전송 횟수를 포함하는 DCI를 검출한다(S1203).
그리고 단말은 상기 DCI에 포함된 정보들 및 상기 전송 모드 10에 따른 동작에 기반하여 반복 전송되는 데이터를 수신하는데(S1205), 이 때, 전송 모드 10에 따라 DCI에 포함된 PDSCH 맵핑 정보를 어떻게 활용할지에 대한 구체적인 방법은 후술하는 실시 예들에 따를 수 있다.
도 13을 참조하여, 본 발명의 실시 예들에 따른 기지국의 동작 과정을 살펴보면, 기지국은 상위 계층을 통해 단말에게 전송 모드 10으로 동작하기 위한 RRC 메시지를 전송한다(S1301). 그리고 기지국은 특정 서브프레임에 포함된 TTI에서 전송 모드 10을 위한 PDSCH RE 맵핑 정보와 반복 전송되는 데이터의 반복 전송 횟수를 포함하는 DCI를 전송한다(S1303).
그리고 기지국은 상기 DCI에 포함된 정보들 및 상기 전송 모드 10에 따른 동작에 기반하여 반복 전송되는 데이터를 전송하는데(S1205), 이 때, 전송 모드 10에 따라 상기 DCI에 포함된 PDSCH 맵핑 정보를 어떻게 활용되는지에 대한 구체적인 방법은 후술하는 실시 예들에 따를 수 있다. 특히, 기지국은 전송 모드 10에 따른 동작을 수행 및/또는 설정하거나, 상기 DCI에 포함된 정보를 생성 및/또는 구성할 때, 후술하는 실시 예들을 고려할 수 있다.
도 14를 통해 네트워크 관점에서의 본 발명의 실시 예에 따른 전반적인 동작을 살펴보면, 기지국은 상위 계층을 통해 단말에게 전송 모드 10으로 동작하기 위한 RRC 메시지를 전송한다(S1401). 그리고 기지국은 특정 서브프레임에 포함된 TTI에서 전송 모드 10을 위한 PDSCH RE 맵핑 정보와 반복 전송되는 데이터의 반복 전송 횟수를 포함하는 DCI를 전송한다(S1403).
그리고 기지국은 상기 DCI에 포함된 정보들 및 상기 전송 모드 10에 따른 동작에 기반하여 반복 전송되는 데이터를 전송한다(S1405). 이 때, 상기 DCI를 수신한 단말이 전송 모드 10에 따라 상기 DCI에 포함된 PDSCH 맵핑 정보를 어떻게 활용되는지에 대한 구체적인 방법은 후술하는 실시 예들에 따를 수 있다.
또한, 기지국은 전송 모드 10에 따른 동작을 수행 및/또는 설정하거나, 상기 DCI에 포함된 정보를 생성 및/또는 구성할 때, 후술하는 실시 예들을 고려할 수 있다.
이제, 본 발명에 따라 서브프레임 #k+1에 포함된 TTI #n+2, n+3에 적용되는 PDSCH RE 맵핑 정보를 알려주기 위한 실시 예들을 살펴보기로 한다.
전송 모드 10이 설정된 경우, 단말이 서브프레임 경계(boundary)를 기준으로 후속하는 서브프레임에 포함된 데이터 반복 전송을 위한 TTI들 중 일부 TTI (예를 들어, 도 11에서 TTI #n+2와 같이 후속 서브프레임 내 첫 번째 TTI)에서 항상 해당 전송 모드에 대응되는 DCI 포맷을 가지는 DCI에 대한 디코딩을 시도하여 검출하고, 상기 검출된 DCI를 기반으로 해당 서브프레임을 위한 PDSCH 레이트 매칭(rate-matching) 패턴을 적용하여 반복 전송되는 데이터에 대한 디코딩을 시도할 수 있다. 이는, 반복 전송되는 데이터를 스케줄링하는 특정 TTI에서 전송된 DCI를 검출한 경우, 후속 TTI에서 전송되는 DCI에 대한 디코딩을 시도하지 않거나 디코딩을 시도하여 DCI를 검출했더라도 해당 DCI를 폐기(discard) 하는 동작에 대한 예외가 될 수 있다. 한편, 상술한 바와 같이, 후속 서브프레임 내의 일부 TTI에서 검출을 시도하는 DCI는 C-RNTI 기반의 데이터 스케줄링 관련 DCI일 수 있다.
한편, 서브프레임 경계(boundary)에 후속하는 subframe에 속하는 데이터 반복 전송 TTI들 중 일부 TTI (예를 들어, 도 11에서 TTI #n+2와 같은 후속 서브프레임 내 첫 번째 TTI)에서 디코딩을 시도하되 DCI 내 일부 정보만을 단말이 따르도록 할 수도 있다. 예를 들어, 상기 일부 TTI에서 검출된 DCI내의 정보 중, PQI 필드에 포함된 정보만을 후속 서브프레임 내에서 반복 전송되는 데이터를 수신할 때 사용하고, 나머지 필드에 대한 정보는 이전 서브프레임 내의 TTI에서 검출된 DCI에 포함된 정보들을 사용하여 후속 서브프레임 내에서 반복 전송되는 데이터를 수신할 때 사용한다. 다시 말해, 이전 서브프레임에 포함된 TTI에서 검출된 DCI에 포함된 정보들 중, PQI 필드에 포함된 정보만 후속 서브프레임 내 일부 TTI에서 검출된 DCI에 포함된 정보로 변경하여 반복 전송되는 데이터를 수신한다.
또한, 단말이 디코딩에 성공한 DCI의 PQI 필드가 지시하는 상태(state)에 해당하는 PDSCH RE 맵핑 정보 (예를 들어, csi-RS-ConfigZPId)와, 해당 상태(state)에 대응되는 qcl-CSI-RS-ConfigNZPId와 동일한 qcl-CSI-RS-ConfigNZPId를 가지는 상태(state)에 연결된 PDSCH RE 맵핑 정보 (예를 들어, csi-RS-ConfigZPId)의 합집합을 가정하여 서브프레임 #k+1에 적용되는 PDSCH 레이트 매칭 패턴(rate-matching pattern)을 도출할 수 있다.
예를 들어, 동일 qcl-CSI-RS-ConfigNZPId를 가지는 상태(state)가 두 개이고, 각각의 상태(state)에 ZP CSI-RS 설정(configuration) #1, #2가 연동 되면, 해당 설정(configuration), 즉, ZP CSI-RS 설정(configuration) #1, #2의 합집합으로 서브프레임 #k+1에 적용되는 PDSCH 레이트 매칭 패턴(rate-matching pattern)을 도출할 수 있다. 또한, 상기 합집합에 해당하는 정보는 데이터 반복 전송 시, 해당되는 모든 반복 전송에 적용할 수 있다. 즉, 데이터가 반복 전송되는 모든 TTI에 상기 합집합에 해당하는 정보를 적용할 수 있다.
아니면, 디코딩에 성공한 DCI의 PQI 필드가 지시하는 상태(state)에 해당하는 PDSCH RE 맵핑 정보는 해당 DCI가 스케줄링(scheduling)한 데이터 반복 전송 중 해당 DCI가 디코딩된 서브프레임, 즉, 이전 서브프레임 내에 포함된 TTI에 한정적으로 적용하고, 상기 합집합에 해당하는 정보는 후속 서브프레임에 포함된 TTI에 한정하여 적용할 수 있다.
한편, 상술한 실시 예들 외에도 데이터 반복 전송을 지시하는 DCI의 디코딩에 성공하면, 상기 디코딩된 DCI에 포함된 PDSCH RE 맵핑 정보를 해당 데이터 반복 전송 모두에 적용할 수 있다. 즉, 상이한 서브프레임들에 걸쳐 반복 전송이 설정(Configuration)되는 경우, 데이터 반복 전송을 위한 TTI들 중, 서브프레임 #k+1에 포함되는 TTI들에 적용되는 PDSCH RE 맵핑 정보로 서브프레임 #k에 포함된 TTI에서 검출된 DCI에서 지시되는 PDSCH RE 맵핑 정보를 사용할 수 있다. 다시 말해, 단말은 데이터의 반복 전송 도중에 PDSCH 레이트 매칭 패턴(rate-matching pattern)이 변경되는 것을 기대하지 않을 수 있다. 다시 말해, 단말은 데이터의 반복 전송 도중에 PDSCH RE 맵핑 정보가 변경되는 것을 기대하지 않을 수 있다. 즉, 단말은 반복 전송을 지시한 DCI의 PQI 필드에 포함된 정보에 따라 데이터가 반복 전송되는 모든 TTI에 동일한 레이트 매칭(rate-matching)을 가정하고 PDSCH 디코딩을 수행할 수 있다.
이러한 경우, 반복 전송을 위한 DCI를 검출하면, 상기 반복 전송을 위한 TTI들에서 전송되는 DCI를 검출하지 않거나 폐기(discard)하는 동작의 예외 동작을 정의하지 않아도 된다. 다시 말해, 단말은 어느 전송 모드가 설정되는지에 관계 없이 데이터의 반복 전송을 위한 DCI 검출을 위해 동일한 동작을 수행하면 되므로 모호성(ambiguity)가 줄어 들 수 있다. 특히, 전송 모드 10에서 다른 실시 예들과 같이 수행되는 경우, 상기 반복 전송이 수행되는 서브프레임들을 전송하는 TP가 동일한 경우, 단말은 한번 DCI 검출에 성공하면 추가적인 DCI를 검출할 필요가 없고, 만약 반복 전송이 수행되는 서브프레임들이 서로 다른 TP를 통해 전송된다면 추가적인 DCI 검출이 필요할 수도 있는데, 실제로 단말은 각각의 서브프레임들이 어느 TP에 의해 전송되는 것인지를 인지하지 못하므로, 추가적인 DCI의 검출 동작이 필요한지에 대한 혼란을 증가시킬 우려가 있다.
따라서 이러한 단말 동작의 혼란을 줄이기 위하여, 단말은 데이터의 반복 전송 도중에 PDSCH 레이트 매칭 패턴(rate-matching pattern)이 변경되는 것을 기대하지 않도록 하는 것이 효과적일 수 있다.
다만, 이러한 실시 예들 외에도 데이터 반복 전송이 수행되는 경우, 혹은 데이터 반복 전송이 서로 다른 서브프레임들에 걸쳐 수행되는 경우에 적용될 수 있는 PDSCH RE 맵핑 관련 정보를 사전에 시스템에 정의하거나 기지국이 단말에게 상위 계층 시그널링 (higher layer signaling) 및/또는 물리 계층 시그널링 (physical layer signaling)을 통해 알려줄 수 있다.
이 때, 사전에 정의되거나 기지국이 단말에게 알려준 PDSCH RE 맵핑 관련 정보는 데이터 반복 전송 모두에 적용될 수도 있고, 서로 다른 서브프레임들에 걸쳐 반복 전송이 수행되는 경우, 데이터가 반복 전송되는 TTI들 중, 후속 서브프레임에 포함된 TTI에 한정하여 적용될 수 있다.
한편, 상기 설정 가능한 PDSCH RE 맵핑 정보로는 설정 가능한 모든 IMR(Interference Measurement Resource), 간섭 셀의 CSI-RS 등과 같이 가장 안 좋은 케이스(worst case)를 가정한 PDSCH RE 맵핑 정보일 수 있다.
또한, 서브프레임 #k+1에 적용되는 PDSCH 레이트 매칭 패턴(rate-matching pattern)을 qcl-CSI-RS-ConfigNZPId 별로 사전에 정의하고, 기지국이 단말에게 상위 계층 시그널링(higher layer signaling) 및/또는 물리 계층 시그널링 (physical layer signaling)으로 알려줄 수 있다. 또는, PQI 상태(state) 별로 서브프레임 #k+1에 적용되는 PDSCH 레이트 매칭 패턴(rate-matching pattern)을 사전에 정의하고, 기지국이 단말에게 상위 계층 시그널링 (higher layer signaling) 및/또는 물리 계층 시그널링(physical layer signaling)으로 알려줄 수 있다.
이 때, 서브프레임 #k+1에 적용되는 PDSCH 레이트 매칭 패턴(rate-matching pattern)에 대응되는 PQI 상태는 디코딩에 성공한 DCI의 PQI 필드가 지시하는 상태(state)에 대응될 수 있다.
한편, 데이터의 반복 전송 관련하여, 설정되는 전송 모드에 따라 데이터가 단일 서브프레임 타입 및/또는 단일 서브프레임 내에서만 반복 전송될지, 아니면 상이한 서브프레임 타입 및/또는 서로 다른 서브프레임들 간에 걸쳐 전송될 수 있는지 여부가 시스템에 사전에 정의되거나 기지국이 단말에게 상위 계층 시그널링 및/또는 물리 계층 시그널링을 통해 지시될 수 있다.
예를 들어, 전송 모드 10으로 설정된 경우, 데이터의 반복 전송이 단일 서브프레임 타입 및/또는 단일 서브프레임 내에서만 전송되도록 사전에 정의되거나, 데이터의 반복 전송이 단일 서브프레임 타입 및/또는 단일 서브프레임 내에서만 전송되도록 기지국이 단말에게 상위 계층 시그널링 및/또는 물리 계층 시그널링을 통해 지시할 수 있다.
한편, 데이터를 반복 전송하는 동작을 수행하는 경우, 반복 전송에 해당하는 각 전송이 각각 상이한 TP를 통해 전송될 수도 있고, 동일 데이터에 대한 반복 전송은 모두 동일 TP에서 전송되는 것으로 한정할 수 있다. 다시 말해, 단말은 동일 데이터에 대한 반복 전송을 수신하도록 지시 받은 경우, 해당 반복 전송이 상이한 TP에서 전송되는 것을 기대하지 않을 수 있다. 만일 반복 전송되는 데이터가 상이한 TP에서 전송되는 경우에는, 기지국이 단말에게 상위 계층 시그널링 및/또는 물리 계층 시그널링을 통해 각 TP들에 대한 PDSCH RE 맵핑 정보를 알려줄 수 있다.
아니면, 단말은 PDSCH RE 맵핑에 대한 가장 안 좋은 케이스(worst case)를 가정하여 동작할 수도 있다. 예를 들어, 각 TP들 또는 각 TP들에 연계된 CSI-RS에 대한 MBSFN 서브프레임 설정(configuration)을 기지국이 단말에게 상위 계층 시그널링 및/또는 물리 계층 시그널링을 통해 알려줄 수도 있고, 항상 non-MBSFN 서브프레임인 것과 같은 가장 안 좋은 케이스를 가정하여 PDSCH RE 맵핑을 적용할 수 있다. 한편, 상기의 정보와 함께 기지국은 단말에게 상위 계층 시그널링 및/또는 물리 계층 시그널링을 통해 반복 전송되는 데이터들이 각각 어떤 TP로부터 전송되는지에 대한 정보도 알려줄 수 있다.
또한, 다수 개의 TTI들에 걸쳐 반복 전송되는 데이터에 각각 적용되는 PQI 상태(state)에 대한 시퀀스(sequence) 또는 패턴을 시스템에 사전에 정의 하거나 기지국이 단말에게 상위 계층 시그널링 및/또는 물리 계층 시그널링을 통해 알려줄 수 있다. 또는, 다수 개의 TTI들에 걸쳐 반복 전송되는 데이터 각각에 적용될 수 있는 PQI 상태(state)들의 시퀀스(sequence) 또는 패턴에 대한 후보들을 사전에 시스템에 정의하거나 기지국이 단말에게 상위 계층 시그널링(higher layer signaling)을 통해 알려주고, 해당 데이터 반복 전송 시 각 TTI에서 PQI 상태(state)가 어떤 시퀀스 후보 또는 패턴 후보로 적용되는지를 DCI 필드를 통해 지시할 수 있다. 이 때, 각 TTI에서 적용되는 PQI 상태가 어떤 시퀀스 후보 또는 패턴 후보로 적용되는지 여부를 지시하는 필드는 기존의 PQI필드를 재활용할 수도 있고, 새로운 필드를 정의할 수도 있다.
도 15는 본 발명의 실시 예에 따른 무선 통신 장치의 일 실시 예를 도시한다.
도 15에서 설명하는 무선 통신 장치는 본 발명의 실시 예에 따른 단말 및/또는 기지국을 나타낼 수 있다. 그러나, 도 15의 무선 통신 장치는, 본 실시 예에 따른 단말 및/또는 기지국에 반드시 한정되는 것은 아니며, 차량 통신 시스템 또는 장치, 웨어러블(wearable) 장치, 랩톱, 스마트 폰 등과 같은 다양한 장치로 대체될 수 있다.
도 15를 참조하면, 본 발명의 실시 예에 따른 단말 및/또는 기지국은 디지털 신호 프로세서(Digital Signal Processor; DSP) 또는 마이크로 프로세서와 같은 적어도 하나의 프로세서(10), 트랜시버(Transceiver)(35), 전력 관리 모듈(5), 안테나(40), 배터리(55), 디스플레이(15), 키패드(20), 메모리(30), 가입자 식별 모듈(SIM)카드 (25), 스피커(45) 및 마이크로폰(50)등을 포함할 수 있다. 또한, 상기 단말 및/또는 기지국은 단일 안테나 또는 다중 안테나를 포함할 수 있다. 한편, 상기 트랜시버(Transceiver)(35)는 RF 모듈(Radio Frequency Module)로도 명칭될 수 있다.
프로세서(10)는 도 1 내지 14에 설명된 기능, 절차 및/또는 방법을 구현하도록 구성될 수 있다. 도 1 내지 도 14에서 설명한 실시 예들 중 적어도 일부에 있어서, 프로세서(10)는 무선 인터페이스 프로토콜의 계층들 (예를 들어, 기능 계층들(functional layers))과 같은 하나 이상의 프로토콜들을 구현할 수 있다.
메모리(30)는 프로세서(10)에 연결되어 프로세서(10)의 동작과 관련된 정보를 저장한다. 메모리(30)는 프로세서(10)의 내부 또는 외부에 위치 할 수 있으며, 유선 또는 무선 통신과 같은 다양한 기술을 통해 프로세서에 연결될 수 있다.
사용자는 키패드(20)의 버튼을 누름으로써 또는 마이크로폰(50)을 이용한 음성 활성화와 같은 다양한 기술에 의한 다양한 유형의 정보 (예를 들어, 전화 번호와 같은 지시 정보)를 입력 할 수 있다. 프로세서(10) 는 사용자의 정보를 수신 및/또는 처리하고 전화 번호를 다이얼하는 것과 같은 적절한 기능을 수행한다.
또한, 상기 적절한 기능들을 수행하기 위해 SIM 카드(25) 또는 메모리 (30)로부터 데이터(예를 들어, 조작 데이터)를 검색할 수도 있다. 또한, 프로세서 (10)는 GPS 칩으로부터 GPS 정보를 수신 및 처리하여 차량 네비게이션, 지도 서비스 등과 같은 단말 및/또는 기지국의 위치 정보를 획득하거나 위치 정보와 관련된 기능을 수행 할 수 있다. 또한, 프로세서(10)는 사용자의 참조 및 편의를 위해 이러한 다양한 유형의 정보 및 데이터를 디스플레이(15) 상에 표시할 수 있다.
트랜시버(Transceiver)(35)는 프로세서(10)에 연결되어 RF (Radio Frequency) 신호와 같은 무선 신호를 송신 및/또는 수신한다. 이 때, 프로세서(10)는 통신을 개시하고 음성 통신 데이터와 같은 다양한 유형의 정보 또는 데이터를 포함하는 무선 신호를 송신하도록 트랜시버(Transceiver)(35)를 제어 할 수 있다. 트랜시버(Transceiver) (35)는 무선 신호를 수신하는 수신기 및 송신하는 송신기를 포함할 수 있다. 안테나(40)는 무선 신호의 송신 및 수신을 용이하게 한다. 일부 실시 예에서, 무선 신호를 수신되면, 트랜시버(Transceiver)(35)는 프로세서(10)에 의한 처리를 위해 기저 대역 주파수로 신호를 포워딩하고 변환할 수 있다. 처리된 신호는 가청 또는 판독 가능한 정보로 변환되는 등, 다양한 기술에 따라 처리 될 수 있으며, 이러한 신호는 스피커 (45)를 통해 출력될 수 있다.
일부 실시 예에서, 센서 또한 프로세서(10)에 연결될 수 있다. 센서는 속도, 가속도, 광, 진동 등을 포함하는 다양한 유형의 정보를 검출하도록 구성된 하나 이상의 감지 장치를 포함 할 수 있다. 근접, 위치, 이미지 등과 같이 센서로부터 얻어진 센서 정보를 프로세서(10)가 수신하여 처리함으로써, 충돌 회피, 자율 주행 등의 각종 기능을 수행 할 수 있다.
한편, 카메라, USB 포트 등과 같은 다양한 구성 요소가 단말 및/또는 기지국에 추가로 포함될 수 있다. 예를 들어, 카메라가 프로세서(10)에 추가로 연결될 수 있으며, 이러한 카메라는 자율 주행, 차량 안전 서비스 등과 같은 다양한 서비스에 사용될 수 있다.
이와 같이, 도 15는 단말 및/또는 기지국을 구성하는 장치들의 일 실시 예에 불과하면, 이에 한정되는 것은 아니다. 예를 들어, 키패드(20), GPS (Global Positioning System) 칩, 센서, 스피커(45) 및/또는 마이크로폰(50)과 같은 일부 구성 요소는 일부 실시 예들에서 단말 및/또는 기지국 구현을 위해 제외될 수도 있다.
구체적으로, 본 발명의 실시 예들을 구현하기 위해, 도 15에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우의 동작을 살펴보도록 한다. 상기 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우, 상기 프로세서(10)는 기지국으로부터 상위 계층을 통해 전송 모드 10으로 동작하기 위한 RRC 메시지를 수신하도록 상기 트랜시버(Transceiver)(35)를 제어할 수 있다. 그리고 프로세서(10)는 특정 서브프레임에 포함된 TTI에서 전송 모드 10을 위한 PDSCH RE 맵핑 정보와 반복 전송되는 데이터의 반복 전송 횟수를 포함하는 DCI를 검출할 수 있다.
그리고 프로세서(10)는 상기 DCI에 포함된 정보들 및 상기 전송 모드 10에 따른 동작에 기반하여 반복 전송되는 데이터를 수신하도록 상기 트랜시버(Transceiver)(35)를 제어하는데, 이 때, 전송 모드 10에 따라 DCI에 포함된 PDSCH 맵핑 정보를 어떻게 활용할지에 대한 구체적인 방법은 도 1 내지 도 14를 기반으로 본 명세서에서 설명된 실시 예들에 따를 수 있다.
한편, 본 발명의 실시 예들을 구현하기 위해, 도 15에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 기지국인 경우, 상기 프로세서 (10)는 상위 계층을 통해 단말에게 전송 모드 10으로 동작하기 위한 RRC 메시지를 전송하도록 상기 트랜시버(Transceiver)(35)를 제어한다. 그리고 프로세서(10)는 특정 서브프레임에 포함된 TTI에서 전송 모드 10을 위한 PDSCH RE 맵핑 정보와 반복 전송되는 데이터의 반복 전송 횟수를 포함하는 DCI를 전송하도록 트랜시버(Transceiver)(35)를 제어한다.
그리고 프로세서(10)는 상기 DCI에 포함된 정보들 및 상기 전송 모드 10에 따른 동작에 기반하여 반복 전송되는 데이터를 전송하도록 트랜시버(Transceiver)(35)를 제어하는데, 이 때, 전송 모드 10에 따라 상기 DCI에 포함된 PDSCH 맵핑 정보를 어떻게 활용되는지에 대한 구체적인 방법은 도 1 내지 도 14를 기반으로 본 명세서에서 설명된 실시 예들에 따를 수 있다.
특히, 기지국에 포함된 프로세서(10)는 전송 모드 10에 따른 동작을 수행 및/또는 설정하거나, 상기 DCI에 포함된 정보를 생성 및/또는 구성할 때, 도 1 내지 도 14를 기반으로 본 명세서에서 설명된 실시 예들을 고려할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 하향링크 데이터 채널을 송수신하는 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (17)

  1. 무선 통신 시스템에서, 전송 모드 10이 설정된 단말이 하향링크 데이터를 수신하는 방법에 있어서,
    특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고,
    상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 수신하는,
    하향링크 데이터 수신 방법.
  2. 제 1 항에 있어서,
    상기 RE 맵핑 정보를 기반으로 상기 반복 전송되는 상기 하향링크 데이터를 디코딩하는 것을 포함하는,
    하향링크 데이터 수신 방법.
  3. 제 1 항에 있어서,
    상기 반복 전송되는 상기 하향링크 데이터를 수신하는 것은,
    동일한 전송 포인트(Transmission Point; TP)를 통해 상기 특정 TTI 및 상기 적어도 하나의 TTI에서 반복 전송되는 상기 하향링크 데이터를 수신하는 것을 포함하는,
    하향링크 데이터 수신 방법.
  4. 제 1 항에 있어서,
    상기 특정 TTI 및 상기 적어도 하나의 TTI는, 짧은 TTI인,
    하향링크 데이터 수신 방법.
  5. 제 1 항에 있어서,
    상기 DCI는 C-RNTI (Cell-Radio Network Temporary Identifier) 기반으로 한 데이터 스케줄링 관련 DCI인,
    하향링크 데이터 수신 방법.
  6. 제 1 항에 있어서,
    상기 RE 맵핑 정보는 상기 특정 TTI 및 상기 적어도 하나의 TTI 모두를 위해 동일하게 사용되는,
    하향링크 데이터 수신 방법.
  7. 제 1 항에 있어서,
    상기 특정 TTI 및 상기 적어도 하나의 TTI들은 시간 영역에서 연속된,
    하향링크 데이터 수신 방법.
  8. 무선 통신 시스템에서, 하향링크 데이터를 수신하기 위한 전송 모드 10이 설정된 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고,
    상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 수신하는 것을 포함하는,
    장치.
  9. 제 8 항에 있어서,
    상기 적어도 하나의 프로세서는,
    상기 RE 맵핑 정보를 기반으로 상기 반복 전송되는 상기 하향링크 데이터를 디코딩하는
    장치.
  10. 제 8 항에 있어서,
    상기 적어도 하나의 프로세서는,
    동일한 전송 포인트(Transmission Point; TP)를 통해 상기 특정 TTI 및 상기 적어도 하나의 TTI에서 반복 전송되는 상기 하향링크 데이터를 수신하는 것을 포함하는,
    장치.
  11. 제 8 항에 있어서,
    상기 특정 TTI 및 상기 적어도 하나의 TTI는, 짧은 TTI인,
    장치.
  12. 제 8 항에 있어서,
    상기 DCI는 C-RNTI (Cell-Radio Network Temporary Identifier) 기반으로 한 데이터 스케줄링 관련 DCI인,
    장치.
  13. 제 8 항에 있어서,
    상기 RE 맵핑 정보는 상기 복수의 TTI들 모두를 위해 동일하게 사용되는,
    장치.
  14. 제 8 항에 있어서,
    상기 특정 TTI 및 상기 적어도 하나의 TTI들은 시간 영역에서 연속된,
    장치.
  15. 무선 통신 시스템에서, 전송 모드 10에 기반하여 동작하는 기지국이 하향링크 데이터를 전송하는 방법에 있어서,
    특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 전송하고,
    상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 전송하는,
    하향링크 데이터 전송 방법.
  16. 무선 통신 시스템에서, 하향링크 데이터를 수신하기 위한 전송 모드 10이 설정된 단말에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 수신하고,
    상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 수신하는 것을 포함하는,
    단말.
  17. 무선 통신 시스템에서, 하향링크 데이터를 전송하기 위해 전송 모드 10에 기반하여 동작하는 기지국에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    특정 TTI에서, 자원 요소(Resource Element; RE) 맵핑 정보를 포함하는 하향링크 제어 정보(Downlink Control Information; DCI)를 전송하고,
    상기 특정 TTI 및 상기 특정 TTI에 후속하는 적어도 하나의 TTI에서, 상기 RE 맵핑 정보가 적용되어 반복 전송되는 상기 하향링크 데이터를 전송하는 것을 포함하는,
    기지국.
PCT/KR2019/005396 2018-05-06 2019-05-07 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치 WO2019216610A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980004757.9A CN111165055B (zh) 2018-05-06 2019-05-07 用于发送和接收下行链路数据的方法及其设备
JP2020562153A JP7114741B2 (ja) 2018-05-06 2019-05-07 下りリンクデータを送受信する方法およびそのための装置
EP19799282.9A EP3648536B1 (en) 2018-05-06 2019-05-07 Method for transmitting and receiving downlink data and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862667601P 2018-05-06 2018-05-06
US62/667,601 2018-05-06

Publications (1)

Publication Number Publication Date
WO2019216610A1 true WO2019216610A1 (ko) 2019-11-14

Family

ID=68383979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005396 WO2019216610A1 (ko) 2018-05-06 2019-05-07 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치

Country Status (7)

Country Link
US (2) US10673598B2 (ko)
EP (1) EP3648536B1 (ko)
JP (1) JP7114741B2 (ko)
KR (1) KR102104903B1 (ko)
CN (1) CN111165055B (ko)
TW (1) TWI708517B (ko)
WO (1) WO2019216610A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387942B2 (en) * 2018-05-11 2022-07-12 Apple Inc. Systems and methods for physical channel repetition for low latency communication
US11025373B2 (en) * 2018-05-11 2021-06-01 Qualcomm Incorporated Repetition-based transmission
US11362779B2 (en) * 2018-08-07 2022-06-14 Qualcomm Incorporated Using cell-specific reference signals for a machine-type communication physical downlink control channel
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
US20200107319A1 (en) * 2018-09-28 2020-04-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for generating a csi report
US12010542B2 (en) * 2019-03-29 2024-06-11 Ntt Docomo, Inc. User terminal and radio communication method
US11451934B2 (en) * 2019-07-25 2022-09-20 Qualcomm Incorporated Transport block size and rate matching for multicast communications
CN113271661B (zh) * 2020-02-14 2024-02-09 大唐移动通信设备有限公司 一种控制信息传输方法及装置
CN113938946A (zh) * 2020-07-13 2022-01-14 华为技术有限公司 通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046830A1 (ko) * 2013-09-30 2015-04-02 주식회사 케이티 하향링크 데이터 채널을 송수신하는 방법 및 그 장치
WO2015064924A1 (ko) * 2013-10-30 2015-05-07 엘지전자 주식회사 하향링크 데이터를 포함하는 pdsch를 mtc 기기로 전송하는 방법 및 그 기지국

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036398B (zh) * 2009-09-29 2015-06-03 中兴通讯股份有限公司 一种中继节点及其传输数据的方法
WO2013077517A1 (ko) * 2011-11-25 2013-05-30 엘지전자 주식회사 무선 통신 시스템에서 기지국이 하향링크 제어 채널을 전송하는 방법 및 이를 위한 장치
EP2635082A1 (en) * 2012-02-29 2013-09-04 Panasonic Corporation Dynamic subframe bundling
EP2897308B1 (en) * 2012-09-16 2019-08-28 LG Electronics Inc. Method and apparatus for receiving data in wireless communication system supporting cooperative transmission
US9973315B2 (en) * 2012-09-28 2018-05-15 Intel Corporation Systems and methods for semi-persistent scheduling of wireless communications
KR102102650B1 (ko) * 2012-10-04 2020-04-21 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
WO2014077577A1 (ko) * 2012-11-13 2014-05-22 엘지전자 주식회사 데이터 전송 방법 및 장치와, 데이터 전송 방법 및 장치
US9609637B2 (en) * 2012-12-21 2017-03-28 Telefonaktiebolaget Lm Ericsson (Publ) Override of multi-TTI scheduling messages
WO2014111144A1 (en) * 2013-01-17 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Data transmission using precoded reference symbols from multiple subframes
EP3086491B1 (en) * 2013-12-18 2018-10-17 LG Electronics Inc. Method and terminal for receiving bundle of epdcchs
CA3167284A1 (en) * 2014-06-09 2015-12-17 Airvana Lp Radio access networks
WO2016040290A1 (en) * 2014-09-08 2016-03-17 Interdigital Patent Holdings, Inc. Systems and methods of operating with different transmission time interval (tti) durations
WO2016093662A1 (ko) * 2014-12-12 2016-06-16 엘지전자 주식회사 기계타입통신을 지원하는 무선접속시스템에서 포지셔닝 참조신호를 전송하는 방법 및 장치
US10455600B2 (en) * 2015-04-08 2019-10-22 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same
WO2016190620A1 (ko) * 2015-05-22 2016-12-01 엘지전자 주식회사 하향링크 제어 채널 수신 방법 및 무선 기기
WO2017069674A1 (en) * 2015-10-23 2017-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic precoding of shared reference signals
US9801175B2 (en) * 2015-11-06 2017-10-24 Motorola Mobility Llc Method and apparatus for low latency transmissions
CN108352963B (zh) * 2015-11-06 2022-01-14 摩托罗拉移动有限责任公司 用于低延时传输的方法及装置
US11924826B2 (en) 2015-12-10 2024-03-05 Qualcomm Incorporated Flexible transmission unit and acknowledgment feedback timeline for efficient low latency communication
KR102410282B1 (ko) * 2016-04-05 2022-06-17 한국전자통신연구원 확장 상향링크 서브프레임을 이용한 상향링크 전송 방법 및 장치
EP3451759A4 (en) * 2016-05-10 2019-04-24 NTT DoCoMo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
US9826540B1 (en) * 2016-05-12 2017-11-21 Asustek Computer Inc. Uplink transmission in shortened transmission time intervals in a wireless communication system
WO2017194706A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Granting resources to a wireless device
CN107734693B (zh) * 2016-08-12 2020-09-22 华硕电脑股份有限公司 无线通信***中用于确定基础参数带宽的方法和设备
US10455570B2 (en) * 2016-09-26 2019-10-22 Ofinno, Llc Selection of DCI based upon TTI
US11019544B2 (en) * 2017-02-02 2021-05-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in mobile communication system
US10645730B2 (en) * 2017-04-06 2020-05-05 Huawei Technologies Co., Ltd. Flexible grant-free resource configuration signaling
US11751204B2 (en) * 2017-10-27 2023-09-05 Comcast Cable Communications, Llc Group common DCI for wireless resources
EP3662709B1 (en) * 2017-11-01 2021-06-30 LG Electronics Inc. Method for handling for bandwidth part operation in wireless communication system and a device therefor
US11019619B2 (en) * 2017-11-03 2021-05-25 Qualcomm Incorporated Reference signal multiplexing in shortened transmission time intervals
US10945172B2 (en) * 2017-11-16 2021-03-09 Comcast Cable Communications, Llc Power control for bandwidth part switching
US10638507B2 (en) * 2017-11-16 2020-04-28 Sharp Kabushiki Kaisha User equipments, base stations and methods
US11153060B2 (en) * 2017-12-29 2021-10-19 Comcast Cable Communications, Llc Selection of grant and CSI
US10834778B2 (en) * 2018-01-09 2020-11-10 Asustek Computer Inc. Method and apparatus of handling bandwidth part inactivity timer in a wireless communication system
US10985894B2 (en) * 2018-02-14 2021-04-20 Lenovo (Singapore) Pte. Ltd. Activating a bandwidth part
EP3528398A1 (en) * 2018-02-15 2019-08-21 Comcast Cable Communications LLC Beam failure report
KR102638627B1 (ko) * 2018-02-23 2024-02-21 삼성전자 주식회사 무선 통신 시스템에서 불연속 수신 수행 시 설정된 상향링크 데이터의 재전송을 수행하는 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046830A1 (ko) * 2013-09-30 2015-04-02 주식회사 케이티 하향링크 데이터 채널을 송수신하는 방법 및 그 장치
WO2015064924A1 (ko) * 2013-10-30 2015-05-07 엘지전자 주식회사 하향링크 데이터를 포함하는 pdsch를 mtc 기기로 전송하는 방법 및 그 기지국

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "TP on sTTI terminology 36.213", RL-1802929, 3GPP TSG-RAN WG1 MEETING #92, 16 February 2018 (2018-02-16), Athens, Greece, XP051397381 *
HUAWEI: "Compact DCI for LTE URLLC", RL-1801873, 3GPP TSG RAN WG1 MEETING #92, 16 February 2018 (2018-02-16), Athens, Greece, XP051397440 *
ZTE: "Discussion on PDSCH repetition for LTE URLLC", RL-1803962, 3GPP TSG RAN WG1 MEETING #92BIS, 6 April 2018 (2018-04-06), Sanya , China, XP051413054 *

Also Published As

Publication number Publication date
JP2021523606A (ja) 2021-09-02
CN111165055B (zh) 2023-09-15
EP3648536B1 (en) 2021-11-10
US20190342058A1 (en) 2019-11-07
US11218279B2 (en) 2022-01-04
US10673598B2 (en) 2020-06-02
JP7114741B2 (ja) 2022-08-08
US20200252188A1 (en) 2020-08-06
EP3648536A1 (en) 2020-05-06
KR20190128041A (ko) 2019-11-14
EP3648536A4 (en) 2020-11-18
CN111165055A (zh) 2020-05-15
KR102104903B1 (ko) 2020-04-27
TW201947979A (zh) 2019-12-16
TWI708517B (zh) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2019216610A1 (ko) 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치
WO2019194643A1 (ko) 하향링크 데이터 채널을 송수신하는 방법 및 이를 위한 장치
WO2017057987A1 (ko) D2d 통신에서의 참조신호 송신 방법 및 단말
WO2019209085A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2017160100A2 (ko) 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치
WO2014185674A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2014123378A1 (ko) 신호의 송수신 방법 및 이를 위한 장치
WO2013162321A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2018084604A1 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018164452A1 (ko) 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
WO2018030791A1 (ko) 무선 통신 시스템에서 단말의 d2d 데이터 전송 방법 및 장치
WO2016010379A1 (ko) 무선 통신 시스템에서 채널을 추정하는 방법 및 장치
WO2013109109A1 (ko) 제어 정보 송수신 방법 및 이를 위한 장치
WO2016021999A1 (ko) D2d 통신에서의 단말의 d2d 신호 송신 방법 및 이를 위한 장치
WO2018203621A1 (ko) 무선 통신 시스템에서 dm-rs의 송수신 방법 및 이를 위한 장치
WO2016018094A1 (ko) Mimo 기술이 적용된 d2d 통신을 지원하기 위한 방법 및 이를 위한 장치
WO2016144050A1 (ko) 무선 통신 시스템에서 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2016163814A1 (ko) 무선 통신 시스템에서 다수의 d2d 신호를 송수신 하는 방법 및 장치
WO2016093547A1 (ko) 무선 통신 시스템에서 디바이스들 간의 통신을 수행하는 방법 및 이를 수행하는 장치
WO2016167635A1 (ko) 무선 통신 시스템에서 d2d 신호의 측정/릴레이 선택 방법 및 장치
WO2012015238A2 (ko) 다중 노드 시스템에서 기지국이 노드를 반정적으로 단말에 할당하는 방법 및 장치
WO2016182294A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 디스커버리 신호 송수신 방법 및 장치
WO2016018068A1 (ko) 무선 통신 시스템에서 d2d 통신을 위한 자원 정보 송신 송신 방법 및 이를 위한 장치
WO2013147532A1 (ko) 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치
WO2016190620A1 (ko) 하향링크 제어 채널 수신 방법 및 무선 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019799282

Country of ref document: EP

Effective date: 20200130

ENP Entry into the national phase

Ref document number: 2020562153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE