WO2019216288A1 - Method for producing sugar from cellulose and device therefor - Google Patents

Method for producing sugar from cellulose and device therefor Download PDF

Info

Publication number
WO2019216288A1
WO2019216288A1 PCT/JP2019/018106 JP2019018106W WO2019216288A1 WO 2019216288 A1 WO2019216288 A1 WO 2019216288A1 JP 2019018106 W JP2019018106 W JP 2019018106W WO 2019216288 A1 WO2019216288 A1 WO 2019216288A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
cellulose
functional group
group
chamber
Prior art date
Application number
PCT/JP2019/018106
Other languages
French (fr)
Japanese (ja)
Inventor
乘明 伊集院
江利子 池田
Original Assignee
アイカーボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイカーボン株式会社 filed Critical アイカーボン株式会社
Priority to JP2020518285A priority Critical patent/JPWO2019216288A1/en
Publication of WO2019216288A1 publication Critical patent/WO2019216288A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for producing saccharides from cellulose and an apparatus therefor.
  • this invention relates to the manufacturing method of saccharides from the celluloses which are the main components of plant biomass. More specifically, the present invention relates to a method for obtaining a saccharide such as glucose by electrolyzing cellulose using a carbon material as a cathode as a method for obtaining a saccharide such as glucose by saccharifying celluloses.
  • This application claims the priority of Japanese Patent Application No. 2018-089481 filed May 7, 2018, the entire description of which is specifically incorporated herein by reference.
  • CO 2 carbon dioxide
  • biomass resources produced by plants are converted to useful substances and used to reduce the amount of fossil fuel that is the source of CO 2 (carbon dioxide).
  • bioethanol obtained by fermenting food containing starch and sugars such as corn and sugar cane is used as a fuel for automobiles.
  • studies are underway to obtain useful chemicals from non-edible biomass resources that do not compete with food.
  • Non-edible biomass is also called lignocellulose, mainly composed of cellulose, hemicellulose, and lignin, and the main component is cellulose containing about 50%.
  • Cellulose is a polymer in which glucose is linked by ⁇ -1,4 glycosides, but has high crystallinity due to intermolecular hydrogen bonding, so it is insoluble in water and ordinary solvents, and is hardly decomposable. Are known.
  • glucose can be obtained by decomposing cellulose, which is a polymer of glucose, saccharides such as fructose, organic acids such as citric acid, sugar alcohols such as ethanol and sorbitol
  • water-soluble cellooligols can be obtained by fermentation or chemical conversion.
  • Various materials such as sugar can be obtained.
  • the water-soluble cellooligosaccharide means a polymer of about 2 to 12 glucose.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-212888
  • cellulose having an average degree of polymerization of 100 or more is treated in a very short time of 0.1 second or less under conditions of a temperature of 400 ° C. and a pressure of 40 MPa.
  • the yield of glucose is 20% or less, and glucose degradation products are produced in a range of 23% to 46%.
  • a pressurized hydrothermal method using a solid acid catalyst has been studied as an alternative to the high-temperature and high-pressure hydrothermal method near supercritical / subcritical.
  • eucalyptus is carbonized and then sulfonated with sulfuric acid or fuming sulfuric acid as a solid acid catalyst.
  • JP 2009-201405 A Patent Document 4
  • activated carbon that has been sulfonated is used as a solid acid catalyst, and pulverized cellulose is reacted in an autoclave at 150 ° C. for 24 hours under hot hot water.
  • the yield is higher than that of the untreated activated carbon, the glucose yield is only 40%.
  • Patent Document 5 hydrolysis reaction of cellulose is carried out under pressurized hot water using a porous carbon material having a limited surface area (BET specific surface area) and supporting ruthenium. I'm trying. In this study, after the glucose is produced to some extent, the reaction temperature is lowered and the temperature is set in two stages so as not to cause excessive decomposition. However, the yield of glucose remains at about 32% at the maximum.
  • Patent Document 6 In WO2014 / 007295 (Patent Document 6) by the same inventor, a glucose yield is nearly 90% by adding an inorganic acid, particularly hydrochloric acid, under a pressurized hot water condition of 170 to 200 ° C. using a carbon-based solid acid catalyst. Has increased.
  • Patent Document 7 Japanese Patent Laying-Open No. 2017-109187 (Patent Document 7) describes an apparatus related to the manufacture of Patent Document 6. However, although the glucose yield is increased by this method, corrosion of the reactor is expected to be severe under pressurized hot water conditions using hydrochloric acid or other inorganic acids.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2003-212888
  • Patent Document 2 WO2009 / 004938
  • Patent Document 3 WO2009 / 004950
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2009-201405
  • Patent Document 5 WO2011 / 036955
  • Patent Document 6 WO2014 / 007295
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2017-109187
  • the pressurized hot water method utilizes the phenomenon that when water is heated to a high temperature, it is easily dissociated into hydrogen ions (protons), and has been actively studied as a method for saccharifying cellulose.
  • a pressure vessel corresponding to an internal pressure of 10 atmospheres or more is necessary, the equipment cost tends to be high. If the equipment cost is high, the amount of production commensurate with it will be required.
  • the collection cost will be bulky and unprofitable, making commercialization difficult.
  • an object of the present invention is to provide a cellulose saccharification process at normal temperature and pressure, which can cope with various and scattered biomass raw materials and does not require high-pressure equipment which increases equipment costs.
  • the present inventor divided an electrolysis tank into two chambers, an anode tank and a cathode tank, using a proton conducting membrane as a diaphragm, and electrolysis using a specific carbon material as a cathode.
  • the present inventors have found that cellulose can be saccharified at room temperature and normal pressure by electrolyzing cellulose in a cathode chamber using an apparatus, and the present invention has been achieved.
  • a method for producing saccharides from a cellulose raw material comprising using a two-chamber electrolysis tank in which a cathode chamber and an anode chamber are separated by a diaphragm, and electrolyzing the cellulose raw material in the cathode tank to obtain a saccharide,
  • the diaphragm is a proton conducting membrane
  • the peak ratio of O 1S / C 1S is 0.01 or more
  • the carboxyl group concentration COOH / C ratio in the C 1s spectrum is 0.01 or more
  • the total acidic functional group amount measured by the Boehm method is 0.01 mmol / g or more
  • the carboxyl group concentration measured by the Boehm method is 0.002 mmol / g or more.
  • a two-chamber electrolysis tank in which a cathode chamber having a cathode and an anode chamber having an anode are separated by a diaphragm;
  • the diaphragm is a proton conducting membrane
  • the cathode is an electrolyzer comprising a carbon material containing a graphite structure, at least a part of the surface of which is a graphene structure, and having an oxygen-containing functional group.
  • the oxygen-containing functional group is at least one functional group selected from the group consisting of a hydroxyl group, a ketone group, an epoxy group, and a carboxyl group.
  • monosaccharides and polysaccharides such as glucose and xylose can be obtained in high yield at normal temperature and pressure under the boiling point of water and under atmospheric pressure.
  • FIG. 1 is a schematic explanatory diagram of one embodiment (box type) of an electrolysis apparatus used in the present invention.
  • FIG. 2 shows a schematic explanatory view of one aspect (round tube type) of the electrolysis apparatus used in the present invention.
  • the present invention relates to a method for producing a saccharide from a cellulose raw material, comprising using a two-chamber electrolysis tank in which a cathode chamber and an anode chamber are separated by a diaphragm, and electrolyzing the cellulose raw material in the cathode tank to obtain a saccharide.
  • the diaphragm is a proton conducting membrane
  • the cathode in the cathode chamber contains a carbon structure having a graphite structure, at least part of its surface having a graphene structure, and having an oxygen-containing functional group.
  • an electrolysis apparatus in which an electrolytic reaction tank is divided into two chambers, an anode tank and a cathode tank, using a proton conducting membrane as a diaphragm.
  • the electrolysis apparatus of the present invention includes a two-chamber electrolysis tank in which a cathode chamber having a cathode and an anode chamber having an anode are separated by a diaphragm, the diaphragm is a proton conducting membrane, and the cathode contains a graphite structure,
  • An electrolysis apparatus including a carbon material having at least a part of a surface having a graphene structure and having an oxygen-containing functional group.
  • the proton conducting membrane is also called a proton exchange membrane or a cation exchange membrane, and has a structure in which the main chain is made of a polymer having a fluorine-based Teflon skeleton, polyimide, or the like, and has a sulfonic acid group at the hydrophilic end in the side chain. be able to.
  • the proton conductive membrane is not particularly limited as long as it has good proton conductivity, and for example, a proton conductive membrane used for a membrane of a polymer electrolyte fuel cell can be used as it is.
  • the carbon material used for the cathode contains a graphite structure, at least a part of its surface has a graphene structure, and has an oxygen-containing functional group.
  • the cellulose raw material is hydrolyzed in the vicinity of the cathode surface in the cathode chamber to obtain saccharides.
  • the cellulose raw material In order for the cellulose raw material to be hydrolyzed near the cathode surface, it is necessary for the cellulose raw material to approach the cathode surface, and for the hydrogen ions (protons) necessary to hydrolyze the cellulose raw material that has approached the cathode surface. It must be present in a sufficient amount near the cathode surface.
  • the carbon material used for the cathode contains a graphite structure. It is appropriate that at least a part of the surface has a graphene structure. Furthermore, the carbon material used for the cathode has an oxygen-containing functional group from the viewpoint that the cellulose raw material easily approaches the vicinity of the cathode surface. The surface oxygen-containing functional group of the carbon material has adsorptivity to cellulose.
  • the carbon material containing a graphite structure and having at least a part of its surface having a graphene structure preferably has a g / d ratio of 2.0 or more of the carbon material measured by Raman spectroscopy, for example.
  • the g / d ratio of the carbon material by Raman spectroscopy has a positive correlation with the degree of graphitization of the carbon-based material, and thus the content of the graphene structure.
  • g shows the peak intensity around 1585 cm ⁇ 1 derived from graphite
  • d shows the peak intensity around 1390 cm ⁇ 1 due to the non-graphite part.
  • the hydrogen ion generation ability tends to be high, and the ability to increase the abundance of hydrogen ions near the cathode surface during electrolysis tends to be high.
  • the carbon material used in the present invention has a g / d ratio of 2.0 or more, preferably 3.0 or more, more preferably 5.0 or more.
  • the larger the g / d ratio the more the graphene structure is present, which is preferable. From the viewpoint of allowing a sufficient amount of hydrogen ions (protons) to exist near the cathode surface, there is no reason for determining the upper limit of the g / d ratio, and the larger the ratio, the more preferable .
  • the carbon materials described below that are practically available have a large g / d ratio of 10 to 20 and a maximum of about 100.
  • the carbon material used in the present invention preferably has the above g / d ratio.
  • all or a part of natural graphite or artificial graphite, carbon fiber, single-walled or multi-walled carbon nanotube, single-walled carbon nanotube, A layer or multilayer graphene, a porous carbon material containing a graphene structure, activated carbon and activated carbon fiber, carbon black, or the like can be appropriately selected.
  • the carbon material can be used alone or as a composite using a metal, conductor, plastic, ceramic, or the like, which is stable during electrolysis, as a carrier in order to form an electrode.
  • a preferred carbon material is a carbon fiber or a composite thereof, which is easy to use as an electrode because it has a high degree of graphitization and a continuous fiber shape, and a composite material coated with carbon nanotubes or graphene.
  • the carbon material used in the present invention has an oxygen-containing functional group.
  • the oxygen-containing functional group is, for example, a functional group such as a hydroxyl group, a ketone group, an epoxy group, or a carboxyl group, and contributes to adsorption of the cellulose raw material during electrolysis. Further, when a large number of carboxyl groups are present on the electrode surface, not only adsorption but also hydrolysis of cellulose tends to be promoted, which tends to contribute to an improvement in yield.
  • the amount of the oxygen-containing functional group should satisfy, for example, at least one of the following (1) to (4) from the viewpoint of exhibiting good adsorptivity, promoting hydrolysis of cellulose, and improving yield. Is preferable, more preferably at least two are satisfied, and most preferably all four are satisfied.
  • the peak ratio of O 1S / C 1S is 0.01 or more
  • the carboxyl group concentration COOH / C ratio in the C 1s spectrum is 0.01 or more
  • the total acidic functional group amount measured by the Boehm method is 0.01 mmol / g or more
  • the carboxyl group concentration measured by the Boehm method is 0.002 mmol / g or more.
  • the amount of the oxygen-containing functional group present in the vicinity of the surface of the carbon material can be determined by X-ray photoelectron spectroscopy or the beam method.
  • X-ray photoelectron spectroscopy is effective for identifying the type and amount of oxygen-containing functional groups of a carbon material.
  • the peak ratio of O 1S / C 1S is 0.01 or more, or the narrow spectrum by X-ray photoelectron spectroscopy
  • the carboxyl group concentration COOH / C in the C 1s spectrum is preferably 0.01 or more.
  • the peak ratio of O 1S / C 1S is preferably 0.05 or more, more preferably 0.1 or more.
  • the carboxyl group concentration COOH / C in the C 1s spectrum is preferably 0.03 or more, more preferably 0.05 or more. From the viewpoint that the peak ratio of O 1S / C 1S and the carboxyl group concentration COOH / C in the C 1s spectrum show good adsorptivity, promote hydrolysis of cellulose, and improve yield, it is preferable that it is large. There is no reason to set the upper limit.
  • the peak ratio of O 1S / C 1S is about 0.4 at the maximum, and the carboxyl group concentration COOH / C in the C 1s spectrum is about 0.2 at the maximum. It is.
  • the boehm method is excellent in the quantification of oxygen-containing functional groups present on the surface, and in order to increase the hydrolysis rate, the total acidic functional group amount of the carbon material measured by the boehm method is 0.01 mmol / g or more, Or it is preferable that the carboxyl group concentration of the carbon material measured by the Boehm method is 0.002 mmol / g or more.
  • the total acidic functional group amount is preferably 0.1 mmol / g or more, more preferably 0.15 mmol / g or more, and the carboxyl group concentration is preferably 0.01 mmol / g or more, more preferably 0.05 mmol / g. That's it.
  • the total acid functional group amount and the carboxyl group concentration are preferably as large as possible from the viewpoint of showing good adsorptivity, promoting hydrolysis of cellulose, and improving the yield, and there is no reason for determining the upper limit.
  • the total amount of acidic functional groups is about 4 mmol / g at the maximum
  • the carboxyl group concentration is about 2 mmol at the maximum.
  • Carbon materials having such oxygen-containing functional groups on the surface include carbon fibers, activated carbon, activated carbon fibers, single-walled and multi-walled carbon nanotubes, single-walled and multi-layered graphene, fullerenes and derivatives thereof, carbon black, porous carbon, etc.
  • the carbon material having the above-mentioned g / d ratio is selected from the existing carbon materials and the surface thereof is oxidized.
  • Various oxidizing agents and oxidation methods can be used for oxidizing the surface of the carbon material.
  • a method of treating with a single or mixture of inorganic acids such as nitric acid, sulfuric acid, sulfuric anhydride, phosphoric acid, hydrogen peroxide, permanganic acid and its metal compound, perchloric acid and its metal compound, A method of anodizing using an acid or alkaline aqueous solution as an electrolyte, acetic acid, acetic anhydride, picric acid, ascorbic acid, aspartic acid, glutamic acid, salicylic acid, maleic acid, maleic anhydride, monocarboxylic acid of organic acid such as oxalic acid, A method is used in which surface treatment is performed under appropriate reaction conditions using dicarboxylic acid or polycarboxylic acid. In addition, a method of performing plasma treatment, ozone treatment, or high temperature treatment in the presence of oxygen or the above compound is used.
  • inorganic acids such as nitric acid, sulfuric acid, sulfuric anhydride, phosphoric acid, hydrogen peroxide, permanganic acid
  • a carbon material having a predetermined g / d ratio and a predetermined oxygen-containing functional group concentration can be obtained by heat-treating and carbonizing organic substances and many herbs in the presence of oxygen.
  • oxidizing agents and oxidation methods can be used alone or in combination.
  • Such a carbon material having an oxygen-containing functional group on the surface may contain an oxygen-containing compound in addition to the oxygen-containing functional group on the surface depending on the surface oxidation method and conditions.
  • an oxygen-containing compound can be additionally contained in the carbon material having an oxygen-containing functional group on the surface.
  • the adsorptivity of the cellulose raw material to the surface of the carbon material can be modified.
  • oxygen-containing compounds include compounds containing at least one oxygen-containing functional group such as hydroxy group, aldehyde group, carbonyl group, carboxyl group, epoxy group, ether bond, and ester bond. .
  • the anode is not particularly limited as long as it does not react with the electrolyte. It is possible to appropriately modify the existing electrode having excellent durability against water electrolysis.
  • the anode and the cathode are separated by a proton conductive membrane, and the anode tank and the cathode tank are filled with an electrolytic solution. Protons generated at the anode pass through the proton conducting membrane and move to the cathode chamber.
  • a specific carbon material is used for the cathode, cellulose raw materials are put into a cathode tank, and these raw materials are saccharified (hydrolyzed) with protons accumulated on the cathode.
  • a proton conducting membrane is provided as a diaphragm between the anode tank and the cathode tank as in the present invention
  • oxygen generated at the anode is blocked by the proton conducting membrane and cannot enter the cathode tank
  • the cathode is cellulose.
  • Glucose generated from the raw material is also blocked by the proton conducting membrane, and is prevented from being further oxidized by oxygen and converted to another compound.
  • protons generated at the anode pass through the proton conducting membrane, move to the cathode chamber, and move to the cathode surface.
  • protons accumulate in the vicinity of the interface between the cathode and the electrolytic solution, and the concentration can be equivalent to concentrated sulfuric acid depending on the cathode material and electrolysis conditions.
  • Protons can have a concentration equivalent to concentrated sulfuric acid only in a minimal space region near the interface.
  • the minimal space region near the interface is, for example, a region whose distance from the electrode interface is about 30 ⁇ m or less.
  • the cathode used in the present invention includes a graphite structure, a carbon material having at least a part of its surface having a graphene structure, and having an oxygen-containing functional group.
  • the cellulose raw material is dispersed in an appropriate electrolytic solution and reacted in a cathode tank.
  • the cellulose raw material is not particularly limited, but is preferably in a form that can be easily dispersed in the electrolyte and easily hydrolyzed.
  • Examples of the cellulose raw material include papermaking pulp, chemical dissolving pulp, refined linter, powdered cellulose, crystalline cellulose, wheat straw, rice straw, waste paper, wood chips, and regenerated cellulose fibers.
  • plate-like, paper-like, and linear materials such as waste pulp, rice straw, wheat straw, wood chips, and regenerated cellulose fibers are pre-treated by cutting, crushing, etc. before acid hydrolysis and explosion. Etc. may be processed.
  • an acidic aqueous solution as the electrolytic solution during the electrolysis of cellulose.
  • an inorganic acid, an organic acid, or a mixture thereof can be used as the acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and the like. Sulfuric acid and hydrochloric acid are preferred because of their high properties.
  • the organic acid include formic acid, acetic acid, citric acid, succinic acid, and picric acid.
  • the concentration of the electrolyte in the electrolytic solution can be appropriately determined according to the production conditions such as the type of electrolyte and electrolysis conditions.
  • the concentration of the electrolyte in the electrolytic solution is a concentration of 3.0 M or less. It is appropriate that An aqueous electrolyte solution containing an alkali metal, an alkaline earth metal, or the like can be used at a concentration that does not inhibit the electrochemical reaction. However, it may not be used.
  • the proton concentration in the minimal space region from the electrode surface is equal to that of concentrated sulfuric acid.
  • the proton concentration in the minimal space region is proportional to the surface charge density obtained by dividing the current per unit time flowing through the carbon-based material, that is, the electric charge expressed by the amount of coulomb, divided by the surface area of the carbon material per unit weight.
  • the surface charge density is 0.01 Q ⁇ g / cm 2 or more, preferably 0.1 Q ⁇ g / cm 2 or more, more preferably 1.0 Q ⁇ g / cm 2 or more.
  • the hydrolysis of cellulose can be carried out satisfactorily. By setting it within the range of these conditions, the surface charge density becomes sufficient, a sufficient proton concentration is obtained in the boundary film, and the hydrolysis efficiency of cellulose tends to be further improved. The higher the surface charge density, the more the hydrolysis efficiency of cellulose may be improved. From a practical viewpoint, the upper limit is about 50 Q ⁇ g / cm 2 , but it is not intended to be limited to this.
  • electrolysis in the present invention is electrolysis using an aqueous electrolyte solution, for example, it is carried out under atmospheric pressure at a temperature of 100 ° C. or less. However, from the point of promoting the hydrolysis reaction rate, the temperature is, for example, 30 ° C. to 100 ° C. It is preferably carried out at a temperature of 60 ° C., more preferably 60 ° C. to 100 ° C. However, it is not the intention limited to these.
  • Example 1 Preparation of surface-modified carbon fiber 1.1
  • a carbon fiber (trade name Torayca T800SC-24000) manufactured by Toray Industries, Inc. was cut to a length of 50 cm and immersed in a dimethyl sulfoxide solution at 90 ° C. for 5 hours to remove the surface sizing agent.
  • the carbon fiber after the treatment was a hair-like shape in which the fiber was unbound, and components other than carbon were not detected by fluorescent X-ray analysis and elemental analysis.
  • a voltage of 5 V and a current of 3 A were applied with a DC ammeter, and anodization was performed for 4 hours.
  • sample 1 After the anodized carbon fiber was washed with a large amount of water, it was dried under reduced pressure at 80 ° C. for 10 hours to obtain Sample 1.
  • the g / d ratio of sample 1 is measured by Raman spectroscopy, and the surface oxygen content (O / C ratio) and carboxyl group concentration (COOH / C 1S ) are measured by X-ray photoelectron spectroscopy. The amount was measured by the Boehm method. The analysis results are shown in Sample 1 of Table 1.
  • the total amount of the cellulose dispersion in the cathode chamber was recovered, 1 g was collected with a syringe with a filter, diluted, and the amount of glucose was determined by the phenol-sulfuric acid method.
  • the amount of glucose was determined from a calibration curve prepared in advance. Based on the amount of glucose obtained, the conversion rate from cellulose to glucose was measured.
  • a cation exchange membrane cylinder which is a cathode tank, was filled with 19 mL of a 1M sulfuric acid aqueous solution, and 1.3 g of a round bar electrode 1-2 was immersed (FIG. 2). 1 g (38 ⁇ m mesh) of Wako Pure Chemical Crystalline Cellulose was added to the cathode chamber, a voltage of 8 V and a current of 5 A were applied with a DC ammeter, and the reaction was carried out at 90 ° C. for 6 hours.
  • Example 2 Preparation of carbon fiber using carbon fiber prepreg as raw material
  • a prepreg manufactured by Toray Industries, Inc. (trade name P2255S-20: carbon fiber content 76% by weight) impregnated with carbon fiber in epoxy resin was 480 in a high-temperature tank under reduced pressure.
  • a heat treatment was performed at 1 ° C. for 1 hour to obtain a carbonized sheet having a thickness of 0.25 mm, a width of 10 cm, and a length of 30 cm.
  • the carbonized sheet anode was connected, and in a 0.4 M sodium hydroxide aqueous solution, a voltage of 5 V and a current of 3 A were applied with a DC ammeter, and anodization was performed for 4 hours.
  • the carbonized sheet after anodization was immersed in a 10% aqueous citric acid solution for 20 hours, washed with a large amount of water, and dried under reduced pressure at 150 ° C. for 10 hours. Two sheets of this sheet were stacked to prepare a plurality of samples 2 having a thickness of 0.5 mm.
  • the g / d ratio of sample 2 was measured by Raman spectroscopy, and the oxygen content (O / C ratio) and carboxyl group concentration (COOH / C 1S ) on the sheet surface were measured by X-ray photoelectron spectroscopy.
  • the basis weight was measured by the Boehm method.
  • the analysis results are shown in Sample 2 of Table 1. Since sample 2 was a sheet in which binding was maintained, it was cut into a width of 3 cm and a length of 15 cm and used as electrode 2.
  • Example 3 Preparation of multi-wall carbon nanotube-coated carbon material Nanocyl multi-wall carbon nanotubes (product name “NC7000” BET specific surface area 290 m 2) 0.1 g was added to a glass container filled with nitric acid 100 ml / sulfuric acid 300 ml, and a bath made by ASONE The reaction was performed at 70 ° C. for 6 hours while irradiating with an ultrasonic wave (product name: ACU3).
  • NC7000 BET specific surface area 290 m 2
  • the obtained carbon nanotubes are washed with water, dried, added to 500 ml of an N-methyl 2-pyrrolidone (NMP) solution, and a probe type ultrasonic device (manufactured by Mitsui Electric Seiki Co., Ltd., product name UX300, output 300 W, frequency 20000 kHz, irradiation time 20 minutes) ) To uniformly disperse.
  • NMP N-methyl 2-pyrrolidone
  • Example 2 the sample 2 sheet (10 cm ⁇ 30 cm) obtained in Example 2 was immersed in a 1% aqueous solution of an aminosilane coupling agent (3-aminopropyltrimethoxysilane product name “KBM903”) manufactured by Shin-Etsu Chemical Co., Ltd. for 3 hours. And dried at 150 ° C. for 3 hours.
  • an aminosilane coupling agent (3-aminopropyltrimethoxysilane product name “KBM903”) manufactured by Shin-Etsu Chemical Co., Ltd.
  • a carbon nanotube dispersion added with a small amount of an acrylic resin emulsion was poured into a stainless steel vat, and the silane coupling-treated sheet was immersed for 30 minutes and then dried under reduced pressure at 200 ° C. for 3 hours. This operation was repeated to prepare a sheet-like sample 3 in which the surface of the carbon fiber sheet was covered with the modified carbon nanotubes.
  • Sample 3 had a BET specific surface area of 440 cm 2 / g.
  • the g / d ratio of sample 3 was measured by Raman spectroscopy, and the oxygen content (O / C ratio) and carboxyl group concentration (COOH / C 1S ) on the sheet surface were measured by X-ray photoelectron spectroscopy.
  • the basis weight was measured by the Boehm method.
  • the analysis results are shown in Sample 3 of Table 1. Sample 3 was cut into a width of 3 cm and a length of 15 cm and used as electrode 3.
  • the electrode 3 was used as a cathode and the platinum-coated titanium electrode was used as an anode, and the hydrolysis reaction of cellulose was carried out in the reaction tank of FIG.
  • the experimental results using the electrode 3 are shown in Tables 17-18.
  • Example 4 Preparation of graphene-coated carbon material 0.1 g of multilayer graphene powder (product name xGNP (R) grade R BET specific surface area 32 m2) manufactured by XG Sciences is added to a glass container filled with nitric acid 100 ml / sulfuric acid 300 ml, and ASONE The reaction was performed at 70 ° C. for 6 hours while irradiating with a bath type ultrasonic irradiator (product name: ACU3).
  • xGNP R
  • ACU3 bath type ultrasonic irradiator
  • the obtained graphene is washed with water, dried, added to 500 ml of an N-methyl 2-pyrrolidone (NMP) solution, and a probe type ultrasonic device (manufactured by Mitsui Electric Seiki Co., Ltd., product name UX300, output 300 W, frequency 20000 kHz, irradiation time 20 minutes) was uniformly dispersed.
  • NMP N-methyl 2-pyrrolidone
  • the g / d ratio of sample 4 was measured by Raman spectroscopy, and the oxygen content (O / C ratio) and carboxyl group concentration (COOH / C 1S ) on the sheet surface were measured by X-ray photoelectron spectroscopy.
  • the basis weight was measured by the Boehm method. And measured by the Boehm method.
  • the analysis results are shown in Sample 4 of Table 1. Sample 4 was cut into a width of 3 cm and a length of 15 cm and used as electrode 4.
  • All of the carbon materials of Sample 1 to Sample 4 in Table 1 have a g band / d band ratio measured by Raman spectroscopy of 2.0 or more, and all four of the following (1) to (4) are included. Satisfied.
  • the cellulose raw material was hydrolyzed under the conditions shown in Table 2 using a sample made of these carbon materials as a cathode material. As a result, under any condition, the glucose yield at the reaction time of 6 hours was 30% or more.
  • Reference example 1 100ml of 0.5M sulfuric acid aqueous solution is injected into a glass container (non-two-chamber electrolysis tank) with a long side of 7cm, a short side of 3cm, and a height of 10cm, and powdered glucose is added. And stirred.
  • the glass vessel was not separated by a cation exchange membrane, and the electrolytic cell was one chamber.
  • the electrode 1-1 was used as the anode
  • the platinum-coated titanium electrode was used as the cathode
  • a voltage of 10 V and a current of 6 A were applied with a DC ammeter, and the reaction was carried out at 90 ° C. for 6 hours to examine the glucose decomposition rate.
  • the results are shown in 101 of Table 3.
  • Reference example 2 Using platinum-coated titanium as an anode and electrode 1-1 as a cathode, 3 g (38 ⁇ m mesh) of crystalline cellulose manufactured by Wako Pure Chemical Industries, Ltd. was added, and cellulose was subjected to the same reaction conditions as in Reference Example 1 using the non-two-chamber electrolysis tank. The hydrolysis experiment was conducted. The results are shown in 103 of Table 4.
  • the sample in Table 4 is the result of hydrolysis of cellulose under the reaction conditions not using the two-chamber electrolysis tank as in Reference Example 1, but the yield of glucose was only 1% or less.
  • ⁇ Phenol sulfate method > i) Add 1 ml of a 5% phenol aqueous solution to 1 ml of the sample aqueous solution containing glucose and mix. ii) Add and mix 5.0 ml of concentrated sulfuric acid as soon as it is added dropwise. iii) After standing for 10 minutes, it was confirmed that the color was changed from yellow to brown, and after cooling for 10 minutes or more in a water bath at room temperature, the absorbance at 490 nm was quantified with a spectrophotometer ASV11D manufactured by ASONE. iV) The glucose concentration was determined from a previously determined calibration curve.
  • the present invention is useful in the field of manufacturing technology for obtaining a sugar-containing liquid such as glucose from biomass resources containing cellulose.

Abstract

The present invention pertains to a method that is for producing a sugar from a cellulose raw material, the method including subjecting the cellulose raw material to electrolysis in the cathode tank to obtain the sugar by using a two-chamber electrolysis tank in which a cathode chamber and an anode chamber are separated from each other by a diaphragm. The diaphragm is a proton conductive membrane. The cathode in the cathode chamber contains a graphite structure. At least a portion of the surface of the cathode has a graphene structure, and the cathode contains a carbon material having an oxygen-containing functional group. The present invention provides a cellulose saccharification production method which can be used for various and dispersed biomass raw materials, does not require expensive high-pressure equipment, and can be performed at room temperature and under atmospheric pressure.

Description

セルロースから糖類の製造方法及びその装置Method and apparatus for producing saccharides from cellulose
 本発明は、セルロースから糖類の製造方法及びその装置に関する。より詳細には、本発明は、植物性バイオマスの主成分であるセルロース類から糖類の製造方法に関する。さらに詳しく言えば、セルロース類を糖化してグルコース等の糖類を得る方法として、炭素材料を陰極に用いてセルロースを電気分解してグルコース等の糖類を得る方法に関する。
関連出願の相互参照
 本出願は、2018年5月7日出願の日本特願2018-089481号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The present invention relates to a method for producing saccharides from cellulose and an apparatus therefor. In more detail, this invention relates to the manufacturing method of saccharides from the celluloses which are the main components of plant biomass. More specifically, the present invention relates to a method for obtaining a saccharide such as glucose by electrolyzing cellulose using a carbon material as a cathode as a method for obtaining a saccharide such as glucose by saccharifying celluloses.
This application claims the priority of Japanese Patent Application No. 2018-089481 filed May 7, 2018, the entire description of which is specifically incorporated herein by reference.
 CO2(炭酸ガス)は地球温暖化の主原因とされ、その発生源である化石燃料の使用量を低減すべく、植物が生産するバイオマス資源を有用物質に変換して利用することが行われている。例えばとうもろこしやさとうきびなどでんぷんや糖類を含む食物を発酵して得られたバイオエタノールが自動車用燃料として使用されている。しかし食糧を原料にすることへの懸念から、食料と競合しない非可食性のバイオマス資源を原料にして有用な化学物質を得る検討が行われている。 CO 2 (carbon dioxide) is a major cause of global warming, and biomass resources produced by plants are converted to useful substances and used to reduce the amount of fossil fuel that is the source of CO 2 (carbon dioxide). ing. For example, bioethanol obtained by fermenting food containing starch and sugars such as corn and sugar cane is used as a fuel for automobiles. However, due to concerns about using food as a raw material, studies are underway to obtain useful chemicals from non-edible biomass resources that do not compete with food.
 非可食性バイオマスはリグノセルロースとも呼ばれ、主にセルロース、ヘミセルロース、リグニンから成り、主成分は50%程度含まれるセルロースである。セルロースは、グルコースがβ-1,4グリコシド結合した重合体であるが、分子間の水素結合により高い結晶化度を有するため、水や通常の溶媒に不溶であり、難分解性であることが知られている。 Non-edible biomass is also called lignocellulose, mainly composed of cellulose, hemicellulose, and lignin, and the main component is cellulose containing about 50%. Cellulose is a polymer in which glucose is linked by β-1,4 glycosides, but has high crystallinity due to intermolecular hydrogen bonding, so it is insoluble in water and ordinary solvents, and is hardly decomposable. Are known.
 しかし、グルコースの重合体であるセルロースを分解してグルコースを得ることができれば、発酵または化学変換によって、フラクトース等の糖類、クエン酸等の有機酸、エタノール、ソルビトール等の糖アルコール類、水溶性セロオリゴ糖等の各種素材を得ることができる。なお、水溶性セロオリゴ糖とは、グルコースの2~12程度の重合体を意味する。 However, if glucose can be obtained by decomposing cellulose, which is a polymer of glucose, saccharides such as fructose, organic acids such as citric acid, sugar alcohols such as ethanol and sorbitol, water-soluble cellooligols can be obtained by fermentation or chemical conversion. Various materials such as sugar can be obtained. The water-soluble cellooligosaccharide means a polymer of about 2 to 12 glucose.
 このため、リグノセルロースの主成分であるセルロースからグルコースを得る検討が盛んにおこなわれている。セルロースの元の単量体であるグルコースに戻すことを糖化ないしは加水分解と言うが、加水分解はグルコース―グルコース間の結合であるβ-1,4グリコシド結合にプロトン(H+)を付加させて切断する反応であり、プロトンを供与するための種々の方法が検討されてきた。 For this reason, studies for obtaining glucose from cellulose, which is the main component of lignocellulose, have been actively conducted. Returning to glucose, which is the original monomer of cellulose, is called saccharification or hydrolysis. In hydrolysis, protons (H + ) are added to β-1,4 glycosidic bonds, which are glucose-glucose bonds. Various methods for donating protons, which are cleavage reactions, have been investigated.
 当初は無機酸による加水分解が試みられ、例えば、濃硫酸を用いる方法では、前処理によってヘミセルロースを分離・分解後、80%硫酸でセルロースを加水分解し、その後希硫酸で後処理をしてグルコースを得ようとした。しかし、この方法は、酸によって設備が腐食する、硫酸回収にコストがかかる、酸によりグルコースがさらに分解される等の欠点が明らかとなり、それらの改善が試みられたが、濃硫酸法は実用化には至らなかった。また、酵素を用いてセルロースを糖化する方法も盛んに検討されてきたが、酵素法は酵素が高価かつ反応が遅く、反応生成物から酵素の分離が必要であるという問題があった。 Initially, hydrolysis with an inorganic acid was attempted. For example, in a method using concentrated sulfuric acid, hemicellulose was separated and decomposed by pretreatment, and then cellulose was hydrolyzed with 80% sulfuric acid, and then posttreated with dilute sulfuric acid. Tried to get. However, this method has revealed drawbacks such as corrosion of equipment by acid, cost of sulfuric acid recovery, and further degradation of glucose by acid, and attempts have been made to improve them. It did not reach. In addition, methods for saccharifying cellulose using an enzyme have been actively studied. However, the enzyme method has a problem that the enzyme is expensive and the reaction is slow, and the enzyme needs to be separated from the reaction product.
 このため硫酸法や酵素法に代わるセルロースの加水分解法として、超臨界または亜臨界状態の水を溶媒として用いて、セルロースを加水分解する加圧熱水法と呼ばれる方法が検討されている。例えば特開2003-212888(特許文献1)では平均重合度100以上のセルロースを、温度400℃、圧力40MPaの条件下、0.1秒以下のごく短い時間でセルロースを処理している。しかし、グルコースの収率は20%以下であり、グルコース分解物が23%~46%生成している。高温の加圧熱水法にて生成したグルコースがグルコースで留まらず、フルフラール類や、アルデヒド類、有機酸などまで変換する現象は過分解と呼ばれ加圧熱水法の問題点の一つである。 For this reason, as a method for hydrolyzing cellulose in place of the sulfuric acid method or the enzymatic method, a method called a pressurized hydrothermal method in which cellulose is hydrolyzed using supercritical or subcritical water as a solvent has been studied. For example, in Japanese Patent Application Laid-Open No. 2003-212888 (Patent Document 1), cellulose having an average degree of polymerization of 100 or more is treated in a very short time of 0.1 second or less under conditions of a temperature of 400 ° C. and a pressure of 40 MPa. However, the yield of glucose is 20% or less, and glucose degradation products are produced in a range of 23% to 46%. The phenomenon that glucose produced by high-temperature pressurized hydrothermal method does not stay with glucose and converts to furfurals, aldehydes, organic acids, etc. is called hyperlysis and is one of the problems of pressurized hydrothermal method. is there.
 超臨界・亜臨界付近での高温高圧熱水法に替わる方法として固体酸触媒を用いた加圧熱水法が検討されている。例えばWO2009/004938(特許文献2)及びWO2009/004950(特許文献3)では、ユーカリを炭化処理した後、硫酸や発煙硫酸でスルホン化したものを固体酸触媒として用い、100~120℃でセルロースの糖化を試みている。これは固体酸触媒の表面を利用してセルロースを加水分解させようとしたものであるが、グルコースの収率は仕込み量の数重量%にとどまっている。 A pressurized hydrothermal method using a solid acid catalyst has been studied as an alternative to the high-temperature and high-pressure hydrothermal method near supercritical / subcritical. For example, in WO2009 / 004938 (Patent Document 2) and WO2009 / 004950 (Patent Document 3), eucalyptus is carbonized and then sulfonated with sulfuric acid or fuming sulfuric acid as a solid acid catalyst. I am trying saccharification. This is an attempt to hydrolyze cellulose using the surface of a solid acid catalyst, but the yield of glucose is only several weight% of the charged amount.
 また、特開2009-201405号公報(特許文献4)ではスルホン化処理した活性炭を固体酸触媒として用い、粉砕したセルロースをオートクレーブ中で150℃、24時間加圧熱水下で反応させている。しかし、無処理の活性炭よりは収率は高いもののグルコース収率は40%に留まっている。 In JP 2009-201405 A (Patent Document 4), activated carbon that has been sulfonated is used as a solid acid catalyst, and pulverized cellulose is reacted in an autoclave at 150 ° C. for 24 hours under hot hot water. However, although the yield is higher than that of the untreated activated carbon, the glucose yield is only 40%.
 また、WO2011/036955(特許文献5)では、限定された範囲の表面積(BET比表面積)を有しルテニウムを担持した多孔性炭素材料などを用いて加圧熱水下でセルロースの加水分解反応を試みている。この検討では、グルコースがある程度生成した後、過分解させないために反応温度を下げて2段階の温度条件で行っているが、グルコースの収率は最高でも32%程度に留まっている。 In WO2011 / 036955 (Patent Document 5), hydrolysis reaction of cellulose is carried out under pressurized hot water using a porous carbon material having a limited surface area (BET specific surface area) and supporting ruthenium. I'm trying. In this study, after the glucose is produced to some extent, the reaction temperature is lowered and the temperature is set in two stages so as not to cause excessive decomposition. However, the yield of glucose remains at about 32% at the maximum.
 なお、同じ発明者によるWO2014/007295(特許文献6)では、炭素系固体酸触媒を用い170~200℃の加圧熱水条件下、無機酸、特に塩酸を加えてグルコース収率を90%近くまで高めている。特開2017-109187号公報(特許文献7)には、特許文献6の製造に関する装置が記載されている。しかし、該方法ではグルコース収率は高まるものの塩酸や他の無機酸を使用した加圧熱水条件下では反応装置の腐食が激しいと予想される。 In WO2014 / 007295 (Patent Document 6) by the same inventor, a glucose yield is nearly 90% by adding an inorganic acid, particularly hydrochloric acid, under a pressurized hot water condition of 170 to 200 ° C. using a carbon-based solid acid catalyst. Has increased. Japanese Patent Laying-Open No. 2017-109187 (Patent Document 7) describes an apparatus related to the manufacture of Patent Document 6. However, although the glucose yield is increased by this method, corrosion of the reactor is expected to be severe under pressurized hot water conditions using hydrochloric acid or other inorganic acids.
特許文献1: 日本特開2003-212888号公報
特許文献2: WO2009/004938
特許文献3: WO2009/004950
特許文献4: 日本特開2009-201405号公報
特許文献5: WO2011/036955
特許文献6: WO2014/007295
特許文献7: 日本特開2017-109187号公報
Patent Document 1: Japanese Unexamined Patent Application Publication No. 2003-212888 Patent Document 2: WO2009 / 004938
Patent Document 3: WO2009 / 004950
Patent Document 4: Japanese Patent Application Laid-Open No. 2009-201405 Patent Document 5: WO2011 / 036955
Patent Document 6: WO2014 / 007295
Patent Document 7: Japanese Unexamined Patent Publication No. 2017-109187
 加圧熱水法は、水を高温加熱すると水素イオン(プロトン)に解離し易いという現象を利用しており、セルロースの糖化方法として盛んに研究されてきた。しかし、10気圧以上の内圧に対応する耐圧容器が必要なため設備費が高額になり易い。設備費が高額になるとそれに見合う生産量が必要になるが、リグノセルロースを原料とする場合、広範囲に収集しようとすると収集コストがかさみ採算が合わず、事業化を困難にしている。このため、加圧熱水法で事業を行う場合、原料のリグノセルロースが集約栽培された隣接地で設備化するなどの制約が生じている。このような事情により、地上に散在する草本類の処理は進まず、発電用を除く多くのバイオマス資源は依然、廃棄、焼却や埋立て処理されているか放置されているのが現状であり、有効活用されていない。 The pressurized hot water method utilizes the phenomenon that when water is heated to a high temperature, it is easily dissociated into hydrogen ions (protons), and has been actively studied as a method for saccharifying cellulose. However, since a pressure vessel corresponding to an internal pressure of 10 atmospheres or more is necessary, the equipment cost tends to be high. If the equipment cost is high, the amount of production commensurate with it will be required. However, when using lignocellulose as a raw material, if it is attempted to collect it over a wide area, the collection cost will be bulky and unprofitable, making commercialization difficult. For this reason, when doing business by a pressurized hot water method, restrictions, such as installing in the adjacent land where the lignocellulose of the raw material was intensively cultivated, have arisen. Under such circumstances, the treatment of herbs scattered on the ground does not proceed, and many biomass resources except for power generation are still disposed of, incinerated or landfilled or left untreated. It is not utilized.
 このためリグノセルロースの主成分であるセルロース並びにヘミセルロース、特にセルロースを安価に糖化する製造法が求められている。しかし、従来の工業的製法の多くは加圧熱水法であるため高圧設備を必要とし、高圧設備を必要としない省エネルギー可能な製法が求められていた。 Therefore, there is a demand for a production method for saccharifying cellulose and hemicellulose, which are the main components of lignocellulose, particularly cellulose at low cost. However, since many of the conventional industrial production methods are pressurized hot water methods, high-pressure equipment is required, and a production method capable of saving energy that does not require high-pressure equipment has been demanded.
 そこで本発明の目的は、多様かつ散在したバイオマス原料に対応でき、設備費がかさむ高圧設備を必要としない常温常圧のセルロース糖化製法を提供することにある。 Therefore, an object of the present invention is to provide a cellulose saccharification process at normal temperature and pressure, which can cope with various and scattered biomass raw materials and does not require high-pressure equipment which increases equipment costs.
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、プロトン伝導膜を隔膜として電気分解槽を陽極槽と陰極槽の二室に分け、特定の炭素材料を陰極とした電気分解装置を用い、陰極槽にあるセルロースを電気分解することによって、常温常圧でセルロースを糖化できることを見出し、本発明に至った。 As a result of intensive research in order to solve the above problems, the present inventor divided an electrolysis tank into two chambers, an anode tank and a cathode tank, using a proton conducting membrane as a diaphragm, and electrolysis using a specific carbon material as a cathode. The present inventors have found that cellulose can be saccharified at room temperature and normal pressure by electrolyzing cellulose in a cathode chamber using an apparatus, and the present invention has been achieved.
 すなはち、本発明は以下の通りである。
[1]
陰極室及び陽極室を隔膜で分離した二室電気分解槽を用い、陰極槽においてセルロース原料を電気分解して糖類を得ることを含む、セルロース原料から糖類を製造する方法であって、
隔膜はプロトン伝導膜であり、
陰極室における陰極は、グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造であり、かつ酸素含有官能基を有する炭素材料を含む、前記製造方法。
[2]
酸素含有官能基は、水酸基、ケトン基、エポキシ基、及びカルボキシル基から成る群から選ばれる少なくとも1種の官能基である、[1]に記載の製造方法。
[3]
炭素材料は、ラマン分光法により測定されるgバンド/dバンド比が2.0以上である、[1]又は[2]に記載の製造方法。
[4]
炭素材料は、下記(1)~(4)の少なくとも1つを満足する、[1]~[3]のいずれかに記載の製造方法。
(1)X線光電子分光法による広域スペクトル測定において、O1S/C1Sのピーク比が0.01以上、
(2)X線光電子分光法による狭域スペクトル測定において、C1sスペクトルにおけるカルボキシル基濃度COOH/C比が0.01以上、
(3)ベーム法により測定される全酸性官能基量が0.01mmol/g以上、
(4)ベーム法により測定されるカルボキシル基濃度が0.002mmol/g以上。
[5]
電気分解は、陰極に流れる電力(Q:クーロン)を陰極のBET比表面積(cm2/g)で割った表面電荷密度(Q・g/cm2)が0.1以上で実施する、[1]~[4]のいずれかに記載の方法。
[6]
糖類が、グルコース及び水溶性セロオリゴ糖を含む、[1]~[5]のいずれかに記載の方法。
[7]
陰極を有する陰極室及び陽極を有する陽極室を隔膜で分離した二室電気分解槽を含み、
隔膜はプロトン伝導膜であり、
陰極は、グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造であり、かつ酸素含有官能基を有する炭素材料を含む、電気分解装置。
[8]
酸素含有官能基は、水酸基、ケトン基、エポキシ基、及びカルボキシル基から成る群から選ばれる少なくとも1種の官能基である、[7]に記載の電気分解装置。
[9]
炭素材料は、ラマン分光法により測定されるgバンド/dバンド比が2.0以上である、[7]又は[8]に記載の電気分解装置。
[10]
炭素材料は、下記(1)~(4)の少なくとも1つを満足する、[7]~[9]のいずれかに記載の電気分解装置。
(1)X線光電子分光法による広域スペクトル測定において、O1S/C1Sのピーク比が0.01以上、
(2)X線光電子分光法による狭域スペクトル測定において、C1sスペクトルにおけるカルボキシル基濃度COOH/C比が0.01以上、
(3)ベーム法により測定される全酸性官能基量が0.01mmol/g以上、
(4)ベーム法により測定されるカルボキシル基濃度が0.002mmol/g以上。
[11]
陰極槽においてセルロース原料を電気分解して糖類を得ることを含む、セルロース原料から糖類を製造する方法に用いられる、[7]~[10]のいずれかに記載の電気分解装置。
That is, the present invention is as follows.
[1]
A method for producing saccharides from a cellulose raw material, comprising using a two-chamber electrolysis tank in which a cathode chamber and an anode chamber are separated by a diaphragm, and electrolyzing the cellulose raw material in the cathode tank to obtain a saccharide,
The diaphragm is a proton conducting membrane,
The manufacturing method according to the above, wherein the cathode in the cathode chamber contains a carbon material having a graphite structure, at least a part of the surface of which is a graphene structure, and having an oxygen-containing functional group.
[2]
The production method according to [1], wherein the oxygen-containing functional group is at least one functional group selected from the group consisting of a hydroxyl group, a ketone group, an epoxy group, and a carboxyl group.
[3]
The production method according to [1] or [2], wherein the carbon material has a g-band / d-band ratio measured by Raman spectroscopy of 2.0 or more.
[4]
The production method according to any one of [1] to [3], wherein the carbon material satisfies at least one of the following (1) to (4).
(1) In the broad spectrum measurement by X-ray photoelectron spectroscopy, the peak ratio of O 1S / C 1S is 0.01 or more,
(2) In the narrow spectrum measurement by X-ray photoelectron spectroscopy, the carboxyl group concentration COOH / C ratio in the C 1s spectrum is 0.01 or more,
(3) The total acidic functional group amount measured by the Boehm method is 0.01 mmol / g or more,
(4) The carboxyl group concentration measured by the Boehm method is 0.002 mmol / g or more.
[5]
The electrolysis is carried out with a surface charge density (Q · g / cm 2 ) obtained by dividing the power (Q: Coulomb) flowing through the cathode by the BET specific surface area (cm 2 / g) of the cathode is 0.1 or more, [1 ] To [4].
[6]
The method according to any one of [1] to [5], wherein the saccharide comprises glucose and water-soluble cellooligosaccharide.
[7]
A two-chamber electrolysis tank in which a cathode chamber having a cathode and an anode chamber having an anode are separated by a diaphragm;
The diaphragm is a proton conducting membrane,
The cathode is an electrolyzer comprising a carbon material containing a graphite structure, at least a part of the surface of which is a graphene structure, and having an oxygen-containing functional group.
[8]
The electrolysis apparatus according to [7], wherein the oxygen-containing functional group is at least one functional group selected from the group consisting of a hydroxyl group, a ketone group, an epoxy group, and a carboxyl group.
[9]
The electrolysis apparatus according to [7] or [8], wherein the carbon material has a g band / d band ratio measured by Raman spectroscopy of 2.0 or more.
[10]
The electrolysis apparatus according to any one of [7] to [9], wherein the carbon material satisfies at least one of the following (1) to (4).
(1) In the broad spectrum measurement by X-ray photoelectron spectroscopy, the peak ratio of O 1S / C 1S is 0.01 or more,
(2) In the narrow spectrum measurement by X-ray photoelectron spectroscopy, the carboxyl group concentration COOH / C ratio in the C 1s spectrum is 0.01 or more,
(3) The total acidic functional group amount measured by the Boehm method is 0.01 mmol / g or more,
(4) The carboxyl group concentration measured by the Boehm method is 0.002 mmol / g or more.
[11]
The electrolysis apparatus according to any one of [7] to [10], which is used in a method for producing a saccharide from a cellulose raw material, comprising electrolyzing the cellulose raw material in a cathode chamber.
 本発明の方法及び電気分解装置によれば、水の沸点以下並びに大気圧下、常温常圧で高収率でグルコースやキシロース等の単糖類及び多糖類を得ることができる。 According to the method and the electrolyzer of the present invention, monosaccharides and polysaccharides such as glucose and xylose can be obtained in high yield at normal temperature and pressure under the boiling point of water and under atmospheric pressure.
図1は、本発明で用いる電気分解装置の一態様(箱タイプ)の概略説明図を示す。
図2は、本発明で用いる電気分解装置の一態様(丸筒タイプ)の概略説明図を示す。
FIG. 1 is a schematic explanatory diagram of one embodiment (box type) of an electrolysis apparatus used in the present invention.
FIG. 2 shows a schematic explanatory view of one aspect (round tube type) of the electrolysis apparatus used in the present invention.
 本発明は、陰極室及び陽極室を隔膜で分離した二室電気分解槽を用い、陰極槽においてセルロース原料を電気分解して糖類を得ることを含む、セルロース原料から糖類を製造する方法に関する。本発明においては、隔膜はプロトン伝導膜であり、陰極室における陰極は、グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造であり、かつ酸素含有官能基を有する炭素材料を含む。 The present invention relates to a method for producing a saccharide from a cellulose raw material, comprising using a two-chamber electrolysis tank in which a cathode chamber and an anode chamber are separated by a diaphragm, and electrolyzing the cellulose raw material in the cathode tank to obtain a saccharide. In the present invention, the diaphragm is a proton conducting membrane, and the cathode in the cathode chamber contains a carbon structure having a graphite structure, at least part of its surface having a graphene structure, and having an oxygen-containing functional group.
<電気分解装置>
 本発明の製造方法においては、プロトン伝導膜を隔膜として電気分解反応槽を陽極槽と陰極槽の2室に分けた電気分解装置を用いる。本発明の電気分解装置は、陰極を有する陰極室及び陽極を有する陽極室を隔膜で分離した二室電気分解槽を含み、隔膜はプロトン伝導膜であり、陰極は、グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造であり、かつ酸素含有官能基を有する炭素材料を含む、電気分解装置である。
<Electrolysis device>
In the production method of the present invention, an electrolysis apparatus is used in which an electrolytic reaction tank is divided into two chambers, an anode tank and a cathode tank, using a proton conducting membrane as a diaphragm. The electrolysis apparatus of the present invention includes a two-chamber electrolysis tank in which a cathode chamber having a cathode and an anode chamber having an anode are separated by a diaphragm, the diaphragm is a proton conducting membrane, and the cathode contains a graphite structure, An electrolysis apparatus including a carbon material having at least a part of a surface having a graphene structure and having an oxygen-containing functional group.
 プロトン伝導膜は、プロトン交換膜ないしはカチオン交換膜とも呼ばれ、主鎖がフッ素系テフロン骨格の高分子やポリイミドなどからなり、側鎖に親水性末端のスルホン酸基を有する構造から成るものであることができる。プロトン伝導膜は、良好なプロトン伝導性を有する物であれば特に制限はなく、例えば、固体高分子型燃料電池の隔膜などに用いられるものをそのまま利用できる。 The proton conducting membrane is also called a proton exchange membrane or a cation exchange membrane, and has a structure in which the main chain is made of a polymer having a fluorine-based Teflon skeleton, polyimide, or the like, and has a sulfonic acid group at the hydrophilic end in the side chain. be able to. The proton conductive membrane is not particularly limited as long as it has good proton conductivity, and for example, a proton conductive membrane used for a membrane of a polymer electrolyte fuel cell can be used as it is.
 陰極に用いる炭素材料は、グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造であり、かつ酸素含有官能基を有する。 The carbon material used for the cathode contains a graphite structure, at least a part of its surface has a graphene structure, and has an oxygen-containing functional group.
 本発明の製造方法においては、陰極室において陰極表面付近でセルロース原料が加水分解されて、糖類が得られる。陰極表面付近でセルロース原料が加水分解されるためには、セルロース原料が陰極表面付近に近付く必要があり、かつ陰極表面付近に近付いたセルロース原料が加水分解されるに必要な水素イオン(プロトン)が、陰極表面付近に十分量存在する必要がある。 In the production method of the present invention, the cellulose raw material is hydrolyzed in the vicinity of the cathode surface in the cathode chamber to obtain saccharides. In order for the cellulose raw material to be hydrolyzed near the cathode surface, it is necessary for the cellulose raw material to approach the cathode surface, and for the hydrogen ions (protons) necessary to hydrolyze the cellulose raw material that has approached the cathode surface. It must be present in a sufficient amount near the cathode surface.
 陰極表面付近に近付いたセルロース原料が加水分解されるに必要な水素イオン(プロトン)を、陰極表面付近に十分量存在させる、という観点から、陰極に用いる炭素材料は、グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造であることが適当である。さらに、セルロース原料が陰極表面付近に近付き易くなるという観点から、陰極に用いる炭素材料は、酸素含有官能基を有する。炭素材料の表面酸素含有官能基はセルロースに対して吸着性を有する。 From the viewpoint of allowing a sufficient amount of hydrogen ions (protons) necessary for hydrolysis of the cellulose raw material approaching the cathode surface to exist near the cathode surface, the carbon material used for the cathode contains a graphite structure. It is appropriate that at least a part of the surface has a graphene structure. Furthermore, the carbon material used for the cathode has an oxygen-containing functional group from the viewpoint that the cellulose raw material easily approaches the vicinity of the cathode surface. The surface oxygen-containing functional group of the carbon material has adsorptivity to cellulose.
 グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造である炭素材料は、例えば、ラマン分光法により測定される炭素材料のg/d比が2.0以上であることが好ましい。 The carbon material containing a graphite structure and having at least a part of its surface having a graphene structure preferably has a g / d ratio of 2.0 or more of the carbon material measured by Raman spectroscopy, for example.
 ラマン分光法による炭素材料のg/d比は、炭素系材料の黒鉛化度、ひいてはグラフェン構造の含有量と正の相関関係にある。gはグラファイト由来の1585cm-1付近のピーク強度を示し、dは非グラファイト部に起因する1390cm-1付近のピーク強度を示す。g/d比が大きいほど黒鉛化度が高く、これに伴いグラフェン構造も多量に存在する。その結果、水素イオン生成能力が高く、電解時における陰極表面付近の水素イオンの存在量を高める能力が高い傾向がある。本発明に用いる炭素材料は、g/d比が2.0以上、好ましくは3.0以上、さらに好ましくは5.0以上である。g/d比が大きいほどグラフェン構造の存在量も多くなり好ましく、水素イオン(プロトン)を陰極表面付近に十分量存在させるという観点から、g/d比の上限を定める理由はなく、大きいほど好ましい。但し、現実的に入手可能な後述する炭素材料では、g/d比は大きいもので10~20、最大100程度である。 The g / d ratio of the carbon material by Raman spectroscopy has a positive correlation with the degree of graphitization of the carbon-based material, and thus the content of the graphene structure. g shows the peak intensity around 1585 cm −1 derived from graphite, and d shows the peak intensity around 1390 cm −1 due to the non-graphite part. The higher the g / d ratio, the higher the degree of graphitization, and a large amount of graphene structure is associated therewith. As a result, the hydrogen ion generation ability tends to be high, and the ability to increase the abundance of hydrogen ions near the cathode surface during electrolysis tends to be high. The carbon material used in the present invention has a g / d ratio of 2.0 or more, preferably 3.0 or more, more preferably 5.0 or more. The larger the g / d ratio, the more the graphene structure is present, which is preferable. From the viewpoint of allowing a sufficient amount of hydrogen ions (protons) to exist near the cathode surface, there is no reason for determining the upper limit of the g / d ratio, and the larger the ratio, the more preferable . However, the carbon materials described below that are practically available have a large g / d ratio of 10 to 20 and a maximum of about 100.
 本発明に用いる炭素材料は、好ましくは上記g/d比を有するものであり、例えば、一般的には天然黒鉛や人造黒鉛の全部ないしは一部、炭素繊維、単層ないしは多層のカーボンナノチューブ、単層ないしは多層のグラフェン、グラフェン構造を含む多孔質炭素材料、活性炭及び活性炭繊維、カーボンブラックなどから適宜選択できる。 The carbon material used in the present invention preferably has the above g / d ratio. For example, generally, all or a part of natural graphite or artificial graphite, carbon fiber, single-walled or multi-walled carbon nanotube, single-walled carbon nanotube, A layer or multilayer graphene, a porous carbon material containing a graphene structure, activated carbon and activated carbon fiber, carbon black, or the like can be appropriately selected.
 炭素材料は、電極とするために単独ないしは電気分解時安定な金属や導電体、プラスチック、セラミックなどを担体とした複合体として用いることができる。好ましい炭素材料は、黒鉛化度が高く、形状が連続繊維状であることから電極として使用し易い炭素繊維やその複合体、カーボンナノチューブやグラフェンを被覆させた複合材料である。 The carbon material can be used alone or as a composite using a metal, conductor, plastic, ceramic, or the like, which is stable during electrolysis, as a carrier in order to form an electrode. A preferred carbon material is a carbon fiber or a composite thereof, which is easy to use as an electrode because it has a high degree of graphitization and a continuous fiber shape, and a composite material coated with carbon nanotubes or graphene.
 本発明に用いる炭素材料は、酸素含有官能基を有する。酸素含有官能基は、例えば、水酸基、ケトン基、エポキシ基、カルボキシル基などの官能基であり、電気分解時のセルロース原料の吸着に寄与する。さらにカルボキシル基が電極表面に多数存在すると、吸着のみならずセルロースの加水分解を促進し、収率の向上に寄与する傾向がある。 The carbon material used in the present invention has an oxygen-containing functional group. The oxygen-containing functional group is, for example, a functional group such as a hydroxyl group, a ketone group, an epoxy group, or a carboxyl group, and contributes to adsorption of the cellulose raw material during electrolysis. Further, when a large number of carboxyl groups are present on the electrode surface, not only adsorption but also hydrolysis of cellulose tends to be promoted, which tends to contribute to an improvement in yield.
 酸素含有官能基の量は、良好な吸着性を示し、セルロースの加水分解を促進し、収率を向上できるとい観点から、例えば、下記(1)~(4)の少なくとも1つを満足することが好ましく、より好ましくは少なくとも2つを満足することであり、最も好ましくは4つ全部を満足することである。
(1)X線光電子分光法による広域スペクトル測定において、O1S/C1Sのピーク比が0.01以上、
(2)X線光電子分光法による狭域スペクトル測定において、C1sスペクトルにおけるカルボキシル基濃度COOH/C比が0.01以上、
(3)ベーム法により測定される全酸性官能基量が0.01mmol/g以上、
(4)ベーム法により測定されるカルボキシル基濃度が0.002mmol/g以上。
The amount of the oxygen-containing functional group should satisfy, for example, at least one of the following (1) to (4) from the viewpoint of exhibiting good adsorptivity, promoting hydrolysis of cellulose, and improving yield. Is preferable, more preferably at least two are satisfied, and most preferably all four are satisfied.
(1) In the broad spectrum measurement by X-ray photoelectron spectroscopy, the peak ratio of O 1S / C 1S is 0.01 or more,
(2) In the narrow spectrum measurement by X-ray photoelectron spectroscopy, the carboxyl group concentration COOH / C ratio in the C 1s spectrum is 0.01 or more,
(3) The total acidic functional group amount measured by the Boehm method is 0.01 mmol / g or more,
(4) The carboxyl group concentration measured by the Boehm method is 0.002 mmol / g or more.
 炭素材料の表面付近に存在する酸素含有官能基量はX線光電子分光ないしはベーム法にて求めることが出来る。X線光電子分光は、炭素材料の酸素含有官能基の種類及び量を特定するのに有効である。セルロース原料の加水分解効率を高めるためには、X線光電子分光法による広域スペクトル測定において、O1S/C1Sのピーク比が0.01以上であるか、またはX線光電子分光法による狭域スペクトル測定において、C1sスペクトルにおけるカルボキシル基濃度COOH/Cが0.01以上であることが好ましい。O1S/C1Sのピーク比は、好ましくは0.05以上、より好ましくは0.1以上である。C1sスペクトルにおけるカルボキシル基濃度COOH/Cは、好ましくは0.03以上、より好ましくは0.05以上である。O1S/C1Sのピーク比及びC1sスペクトルにおけるカルボキシル基濃度COOH/Cは、良好な吸着性を示し、セルロースの加水分解を促進し、収率を向上できるとい観点からは、大きいほど好ましく、その上限を定める理由はない。但し、現実的に入手可能な上記する炭素材料では、O1S/C1Sのピーク比は最大で0.4程度であり、C1sスペクトルにおけるカルボキシル基濃度COOH/Cは、最大で0.2程度である。 The amount of the oxygen-containing functional group present in the vicinity of the surface of the carbon material can be determined by X-ray photoelectron spectroscopy or the beam method. X-ray photoelectron spectroscopy is effective for identifying the type and amount of oxygen-containing functional groups of a carbon material. In order to increase the hydrolysis efficiency of the cellulose raw material, in the broad spectrum measurement by X-ray photoelectron spectroscopy, the peak ratio of O 1S / C 1S is 0.01 or more, or the narrow spectrum by X-ray photoelectron spectroscopy In the measurement, the carboxyl group concentration COOH / C in the C 1s spectrum is preferably 0.01 or more. The peak ratio of O 1S / C 1S is preferably 0.05 or more, more preferably 0.1 or more. The carboxyl group concentration COOH / C in the C 1s spectrum is preferably 0.03 or more, more preferably 0.05 or more. From the viewpoint that the peak ratio of O 1S / C 1S and the carboxyl group concentration COOH / C in the C 1s spectrum show good adsorptivity, promote hydrolysis of cellulose, and improve yield, it is preferable that it is large. There is no reason to set the upper limit. However, in the above-described carbon materials that can be actually obtained, the peak ratio of O 1S / C 1S is about 0.4 at the maximum, and the carboxyl group concentration COOH / C in the C 1s spectrum is about 0.2 at the maximum. It is.
 ベーム法は表面に存在する酸素含有官能基の定量性に優れており、加水分解率を高めるためには、ベーム法で測定される炭素材料の全酸性官能基量が0.01mmol/g以上、又はベーム法により測定される炭素材料のカルボキシル基濃度が0.002mmol/g以上であることが好ましい。全酸性官能基量は、好ましくは0.1mmol/g以上、より好ましくは0.15mmol/g以上であり、カルボキシル基濃度は、好ましくは0.01mmol/g以上、より好ましくは0.05mmol/g以上である。全酸性官能基量及びカルボキシル基濃度は、良好な吸着性を示し、セルロースの加水分解を促進し、収率を向上できるとい観点からは、大きいほど好ましく、その上限を定める理由はない。但し、現実的に入手可能な上記する炭素材料では、全酸性官能基量は最大で4 mmol/g程度であり、カルボキシル基濃度は最大で2mmol程度である。 The boehm method is excellent in the quantification of oxygen-containing functional groups present on the surface, and in order to increase the hydrolysis rate, the total acidic functional group amount of the carbon material measured by the boehm method is 0.01 mmol / g or more, Or it is preferable that the carboxyl group concentration of the carbon material measured by the Boehm method is 0.002 mmol / g or more. The total acidic functional group amount is preferably 0.1 mmol / g or more, more preferably 0.15 mmol / g or more, and the carboxyl group concentration is preferably 0.01 mmol / g or more, more preferably 0.05 mmol / g. That's it. The total acid functional group amount and the carboxyl group concentration are preferably as large as possible from the viewpoint of showing good adsorptivity, promoting hydrolysis of cellulose, and improving the yield, and there is no reason for determining the upper limit. However, in the above-mentioned carbon materials that can be actually obtained, the total amount of acidic functional groups is about 4 mmol / g at the maximum, and the carboxyl group concentration is about 2 mmol at the maximum.
 X線光電子分光ないしはベーム法で得られる酸素含有官能基の量が上記の範囲内であることで、炭素電極表面に対するセルロースの吸着が促進され、比較的高い加水分解収率が得られる傾向がある。 When the amount of the oxygen-containing functional group obtained by X-ray photoelectron spectroscopy or the boehm method is within the above range, adsorption of cellulose on the carbon electrode surface is promoted, and a relatively high hydrolysis yield tends to be obtained. .
 このような酸素含有官能基を表面に有する炭素材料は、炭素繊維、活性炭、活性炭素繊維、単層及び多層カーボンナノチューブ、単層及び多層グラフェン、フラーレン及びその誘導体、カーボンブラック、並びに多孔質炭素などの既存の炭素材料の中から、好ましくは、前記のg/d比を有するものを選択し、かつその表面を酸化することで得ることができる。炭素材料の表面の酸化には、各種酸化剤や酸化方法を用いることができる。具体的には、硝酸や硫酸、無水硫酸、リン酸などの無機酸の単独ないしは混合物、過酸化水素、過マンガン酸及びその金属化合物、過塩素酸及びその金属化合物を用いて処理する方法や、酸ないしはアルカリ水溶液を電解液として陽極酸化を行う方法、酢酸、無水酢酸、ピクリン酸、アスコルビン酸、アスパラギン酸、グルタミン酸、サリチル酸、マレイン酸、無水マレイン酸、シュウ酸などの有機酸のモノカルボン酸、ジカルボン酸や多価カルボン酸を用いて適当な反応条件下で表面処理をする方法が用いられる。また、酸素や上記化合物の存在下で、プラズマ処理、オゾン処理、高温処理をする方法が用いられる。 Carbon materials having such oxygen-containing functional groups on the surface include carbon fibers, activated carbon, activated carbon fibers, single-walled and multi-walled carbon nanotubes, single-walled and multi-layered graphene, fullerenes and derivatives thereof, carbon black, porous carbon, etc. Preferably, the carbon material having the above-mentioned g / d ratio is selected from the existing carbon materials and the surface thereof is oxidized. Various oxidizing agents and oxidation methods can be used for oxidizing the surface of the carbon material. Specifically, a method of treating with a single or mixture of inorganic acids such as nitric acid, sulfuric acid, sulfuric anhydride, phosphoric acid, hydrogen peroxide, permanganic acid and its metal compound, perchloric acid and its metal compound, A method of anodizing using an acid or alkaline aqueous solution as an electrolyte, acetic acid, acetic anhydride, picric acid, ascorbic acid, aspartic acid, glutamic acid, salicylic acid, maleic acid, maleic anhydride, monocarboxylic acid of organic acid such as oxalic acid, A method is used in which surface treatment is performed under appropriate reaction conditions using dicarboxylic acid or polycarboxylic acid. In addition, a method of performing plasma treatment, ozone treatment, or high temperature treatment in the presence of oxygen or the above compound is used.
 また、有機物や多くの草本類を酸素存在下で加熱処理し炭化させることによって、所定のg/d比を有し、かつ所定の酸素含有官能基濃度を有する炭素材料を得ることもできる。これら酸化剤や酸化方法は単独ないしは複数組み合わせることが出来る。 Also, a carbon material having a predetermined g / d ratio and a predetermined oxygen-containing functional group concentration can be obtained by heat-treating and carbonizing organic substances and many herbs in the presence of oxygen. These oxidizing agents and oxidation methods can be used alone or in combination.
 このような酸素含有官能基を表面に有する炭素材料は、表面酸化の方法や条件により、酸素含有官能基を表面に有する以外に、含酸素化合物を含有することもある。あるいは、表面に酸素含有官能基を有する炭素材料に、含酸素化合物を追加で含有させることもできる。含酸素化合物を追加で含有させることで、炭素材料の表面に対するセルロース原料の吸着性などを改変することもできる。そのような含酸素化合物としては、例えば、ヒドロキシ基、アルデヒド基、カルボニル基、カルボキシル基、エポキシ基、エーテル結合、及びエステル結合など酸素含有官能基を少なくとも1種以上含む化合物などを挙げることかできる。 Such a carbon material having an oxygen-containing functional group on the surface may contain an oxygen-containing compound in addition to the oxygen-containing functional group on the surface depending on the surface oxidation method and conditions. Alternatively, an oxygen-containing compound can be additionally contained in the carbon material having an oxygen-containing functional group on the surface. By additionally containing an oxygen-containing compound, the adsorptivity of the cellulose raw material to the surface of the carbon material can be modified. Examples of such oxygen-containing compounds include compounds containing at least one oxygen-containing functional group such as hydroxy group, aldehyde group, carbonyl group, carboxyl group, epoxy group, ether bond, and ester bond. .
 陽極は、電解液と反応しない電極であれば特に限定はない。水電気分解に対して耐久性に優れた既存の電極から適宜修正することができる。 The anode is not particularly limited as long as it does not react with the electrolyte. It is possible to appropriately modify the existing electrode having excellent durability against water electrolysis.
 本発明の電気分解槽において、陽極と陰極はプロトン伝導膜で隔離され、陽極槽及び陰極槽は電解液で満たされる。陽極で発生したプロトンはプロトン伝導膜を通過して陰極槽に移動する。陰極に特定の炭素材料を使用し、セルロース原料を陰極槽に入れて、陰極上に集積したプロトンでこれら原料を糖化(加水分解)させる。 In the electrolysis tank of the present invention, the anode and the cathode are separated by a proton conductive membrane, and the anode tank and the cathode tank are filled with an electrolytic solution. Protons generated at the anode pass through the proton conducting membrane and move to the cathode chamber. A specific carbon material is used for the cathode, cellulose raw materials are put into a cathode tank, and these raw materials are saccharified (hydrolyzed) with protons accumulated on the cathode.
 イオン化傾向が比較的大きい電解質の水溶液において電気分解を行うと下式のように水が陽極において酸化され、酸素と水素カチオンであるプロトンが発生し、陰極では水素イオンが電子を受け取り、水素分子が発生する。 When electrolysis is performed in an aqueous solution of an electrolyte having a relatively large ionization tendency, water is oxidized at the anode as shown in the following formula, protons that are oxygen and hydrogen cations are generated, hydrogen ions receive electrons at the cathode, and hydrogen molecules appear.
陽極  2H2O       →  O2 + 4H+ + 4e-
陰極  4H+ + 4e-  →  2H2
Anode 2H 2 O → O 2 + 4H + + 4e
Cathode 4H + + 4e - → 2H 2
 陽極槽と陰極槽が隔離で分離されていない電解槽において、セルロース分散液の電気分解反応を行うと、陰極近傍でセルロースが加水分解されてグルコースが生成しても、生成したグルコースは陽極側に経時的に拡散し、陽極で発生し、電解液中に含まれる酸素で酸化される可能性がある。このような系では、セルロースを分解することはできるが、生成物としてグルコースを選択的に収率良く得ることはできない。 When an electrolysis reaction of a cellulose dispersion is performed in an electrolytic cell in which the anode cell and the cathode cell are not separated and separated, even if cellulose is hydrolyzed in the vicinity of the cathode to produce glucose, the produced glucose remains on the anode side. It may diffuse over time, generate at the anode, and be oxidized by oxygen contained in the electrolyte. In such a system, cellulose can be decomposed, but glucose cannot be selectively obtained in a high yield as a product.
 本発明のように陽極槽と陰極槽との間の隔膜としてプロトン伝導膜を設けた場合、陽極で発生した酸素はプロトン伝導膜にて遮断され陰極槽に入り込むことができず、かつ陰極でセルロース原料から生成したグルコースも、プロトン伝導膜にて遮断され、グルコースが酸素によってさらに酸化されて別の化合物に転換されることが防止される。一方、陽極で生成したプロトンは、プロトン伝導膜を通過して陰極槽に移動し、かつ陰極表面に移動する。その結果、陰極と電解液との界面近傍には高濃度のプロトンが集積し、陰極材料や電解条件によっては濃硫酸相当の濃度になり得る。プロトンが濃硫酸相当の濃度になり得るのは、界面近傍の極小空間領域に限られるが、この極小空間領域にセルロース原料が存在できれば、原理的にはセルロースの加水分解が可能である。界面近傍の極小空間領域は、例えば、電極界面からの距離が約30μm以下の領域である。しかし、これまで、このような極小空間領域に巨大分子であるセルロース原料を有効かつ多量に引きつけることができ、かつ、電極(陰極)となりうる材料は知られていなかった。 When a proton conducting membrane is provided as a diaphragm between the anode tank and the cathode tank as in the present invention, oxygen generated at the anode is blocked by the proton conducting membrane and cannot enter the cathode tank, and the cathode is cellulose. Glucose generated from the raw material is also blocked by the proton conducting membrane, and is prevented from being further oxidized by oxygen and converted to another compound. On the other hand, protons generated at the anode pass through the proton conducting membrane, move to the cathode chamber, and move to the cathode surface. As a result, high-concentration protons accumulate in the vicinity of the interface between the cathode and the electrolytic solution, and the concentration can be equivalent to concentrated sulfuric acid depending on the cathode material and electrolysis conditions. Protons can have a concentration equivalent to concentrated sulfuric acid only in a minimal space region near the interface. However, if a cellulose raw material can exist in this minimal space region, in principle, hydrolysis of cellulose is possible. The minimal space region near the interface is, for example, a region whose distance from the electrode interface is about 30 μm or less. However, until now, there has been no known material capable of attracting a large amount of a cellulose raw material, which is a macromolecule, to such a very small space region and capable of serving as an electrode (cathode).
 本発明で用いる、グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造であり、かつ酸素含有官能基を有する炭素材料を含む陰極は、これを可能とする。 The cathode used in the present invention includes a graphite structure, a carbon material having at least a part of its surface having a graphene structure, and having an oxygen-containing functional group.
 本発明では、セルロース原料は適当な電解液に分散させ陰極槽で反応させる。セルロース原料はとくに制限はないが、電解液への分散が容易で、加水分解が容易に生じる形態であることが好ましい。セルロース原料は、例えば、製紙用パルプ、化学用溶解パルプ、精製リンター、粉末セルロース、結晶セルロース、麦わら、稲わら、古紙、木材チップ、再生セルロース繊維等が挙げられる。これらの中でも、パルプ古紙、稲わら、麦わら、木材チップ、再生セルロース繊維のような板状、紙状、線状の素材はあらかじめ切断、粉砕等の前処理をしてから、酸加水分解、爆砕等を処理を行ってもかまわない。 In the present invention, the cellulose raw material is dispersed in an appropriate electrolytic solution and reacted in a cathode tank. The cellulose raw material is not particularly limited, but is preferably in a form that can be easily dispersed in the electrolyte and easily hydrolyzed. Examples of the cellulose raw material include papermaking pulp, chemical dissolving pulp, refined linter, powdered cellulose, crystalline cellulose, wheat straw, rice straw, waste paper, wood chips, and regenerated cellulose fibers. Among these, plate-like, paper-like, and linear materials such as waste pulp, rice straw, wheat straw, wood chips, and regenerated cellulose fibers are pre-treated by cutting, crushing, etc. before acid hydrolysis and explosion. Etc. may be processed.
 セルロースの電気分解時の電解液として、酸性水溶液を使用することが好ましい。酸性水溶液は、酸として無機酸、有機酸、またはそれらの混合物を用いることができ、無機酸としては、例えば、硫酸、塩酸、硝酸、リン酸等を挙げることができ、入手の容易さや加水分解性が高いことから硫酸、塩酸が好ましい。有機酸としては、ギ酸、酢酸、クエン酸、蓚酸、ピクリン酸等を挙げることができる。電解液中の電解質の濃度は、電解質の種類や電解条件等の製造条件に応じて適宜決定することができる。但し、反応後に生成物を中和処理する必要があり、中和が容易であるという観点から、比較的薄い濃度であることが好ましく、電解液中の電解質の濃度は、3.0M以下の濃度であることが適当である。また、アルカリ金属やアルカリ土類金属などを含む電解質水溶液は電気化学反応を阻害しない程度の濃度で使用することができる。但し、使用しなくても良い。 It is preferable to use an acidic aqueous solution as the electrolytic solution during the electrolysis of cellulose. In the acidic aqueous solution, an inorganic acid, an organic acid, or a mixture thereof can be used as the acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and the like. Sulfuric acid and hydrochloric acid are preferred because of their high properties. Examples of the organic acid include formic acid, acetic acid, citric acid, succinic acid, and picric acid. The concentration of the electrolyte in the electrolytic solution can be appropriately determined according to the production conditions such as the type of electrolyte and electrolysis conditions. However, it is necessary to neutralize the product after the reaction, and from the viewpoint that neutralization is easy, it is preferable that the concentration is relatively thin. The concentration of the electrolyte in the electrolytic solution is a concentration of 3.0 M or less. It is appropriate that An aqueous electrolyte solution containing an alkali metal, an alkaline earth metal, or the like can be used at a concentration that does not inhibit the electrochemical reaction. However, it may not be used.
 陰極表面上に吸着したセルロースを加水分解するために、電極表面から30μm位までの極小空間領域内のプロトン濃度を濃硫酸と同等にすることが好ましい。極小空間領域のプロトン濃度は、炭素系材料に流れる単位時間あたりの電流、すなわちクーロン量で表される電荷を、単位重量あたりの炭素材料の表面積で割った表面電荷密度に比例する。 In order to hydrolyze the cellulose adsorbed on the cathode surface, it is preferable that the proton concentration in the minimal space region from the electrode surface to about 30 μm is equal to that of concentrated sulfuric acid. The proton concentration in the minimal space region is proportional to the surface charge density obtained by dividing the current per unit time flowing through the carbon-based material, that is, the electric charge expressed by the amount of coulomb, divided by the surface area of the carbon material per unit weight.
 種々の検討の結果、表面電荷密度は、0.01Q・g/cm2以上、好ましくは0.1Q・g/cm2以上、さらに好ましくは1.0Q・g/cm2以上とすることで、セルロースの加水分解を良好に実施することができる。これら条件の範囲内とすることで、表面電荷密度が十分になり、境膜内で十分なプロトン濃度が得られ、セルロースの加水分解効率がより向上する傾向がある。表面電荷密度は、高いほどセルロースの加水分解効率がより向上する場合があり、実用的な観点から、上限は50Q・g/cm2程度であるが、これに限定される意図ではない。 As a result of various studies, the surface charge density is 0.01 Q · g / cm 2 or more, preferably 0.1 Q · g / cm 2 or more, more preferably 1.0 Q · g / cm 2 or more, The hydrolysis of cellulose can be carried out satisfactorily. By setting it within the range of these conditions, the surface charge density becomes sufficient, a sufficient proton concentration is obtained in the boundary film, and the hydrolysis efficiency of cellulose tends to be further improved. The higher the surface charge density, the more the hydrolysis efficiency of cellulose may be improved. From a practical viewpoint, the upper limit is about 50 Q · g / cm 2 , but it is not intended to be limited to this.
 本発明における電解は、電解質水溶液による電気分解であることから、例えば、大気圧下100℃以下の条件で行われるが、加水分解反応速度を促進する点から、温度は、例えば、30℃~100℃で実施する事が好ましく、更に好ましくは60℃~100℃である。但し、これらに限定される意図ではない。 Since electrolysis in the present invention is electrolysis using an aqueous electrolyte solution, for example, it is carried out under atmospheric pressure at a temperature of 100 ° C. or less. However, from the point of promoting the hydrolysis reaction rate, the temperature is, for example, 30 ° C. to 100 ° C. It is preferably carried out at a temperature of 60 ° C., more preferably 60 ° C. to 100 ° C. However, it is not the intention limited to these.
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であり、本発明は実施例に限定される意図ではない。また、下記実施例ないしは比較例にて記述されている「変性または変性処理」とは、各種炭素材料表面に特定の官能基を導入するための酸化などの操作ないしはその物質を意味する。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples. In addition, “denaturation or modification treatment” described in the following examples or comparative examples means an operation such as oxidation for introducing a specific functional group on the surface of various carbon materials or a substance thereof.
実施例1
1.表面を変性処理した炭素繊維の調製
1.1
 東レ株式会社製炭素繊維(商品名トレカT800SC-24000)を長さ50cmに切断し、90℃のジメチルスルホキシド溶液に5時間浸漬して表面のサイジング剤を除去した。処理後の炭素繊維は繊維の結束が解けた髪の毛状であり、蛍光X線分析及び元素分析では炭素以外の成分は検出されなかった。次にこの炭素繊維を陽極として、0.5M硫酸水溶液中で、直流電流計にて電圧5V、電流3Aを印加し、4時間陽極酸化を行った。陽極酸化後の炭素繊維を多量の水で洗浄した後、80℃で10時間減圧乾燥を行い、サンプル1を得た。サンプル1のg/d比をラマン分光で測定し、表面の含酸素濃度(O/C比)とカルボキシル基濃度(COOH/C1S)をX線光電子分光で、全酸性官能基量及びカルボキシル基量をベーム法で測定した。分析結果を表1のサンプル1に示した。
Example 1
1. Preparation of surface-modified carbon fiber 1.1
A carbon fiber (trade name Torayca T800SC-24000) manufactured by Toray Industries, Inc. was cut to a length of 50 cm and immersed in a dimethyl sulfoxide solution at 90 ° C. for 5 hours to remove the surface sizing agent. The carbon fiber after the treatment was a hair-like shape in which the fiber was unbound, and components other than carbon were not detected by fluorescent X-ray analysis and elemental analysis. Next, using this carbon fiber as an anode, in a 0.5 M sulfuric acid aqueous solution, a voltage of 5 V and a current of 3 A were applied with a DC ammeter, and anodization was performed for 4 hours. After the anodized carbon fiber was washed with a large amount of water, it was dried under reduced pressure at 80 ° C. for 10 hours to obtain Sample 1. The g / d ratio of sample 1 is measured by Raman spectroscopy, and the surface oxygen content (O / C ratio) and carboxyl group concentration (COOH / C 1S ) are measured by X-ray photoelectron spectroscopy. The amount was measured by the Boehm method. The analysis results are shown in Sample 1 of Table 1.
1.2
 上記炭素繊維が密に接触するように一方向に揃え、両端を接着剤で固定した。得られた繊維束を数枚密に重ねて厚さ0.5mm、幅3cm、長さ15cmの電極シートを作成した。この炭素繊維シートを電極1-1とした。また、繊維を一方向に束ねて直径6mm、長さ15cmになるようによじり、両端と中央部を細い結束バンドで固定した円柱状の電極も作成した。この炭素繊維丸棒を電極1-2とした。
1.2
The carbon fibers were aligned in one direction so as to come into close contact, and both ends were fixed with an adhesive. Several pieces of the obtained fiber bundles were densely stacked to prepare an electrode sheet having a thickness of 0.5 mm, a width of 3 cm, and a length of 15 cm. This carbon fiber sheet was used as electrode 1-1. Further, a cylindrical electrode in which the fibers are bundled in one direction and twisted so as to have a diameter of 6 mm and a length of 15 cm and both ends and a central portion are fixed with a thin binding band was also prepared. This carbon fiber round bar was designated as an electrode 1-2.
2.セルロースの加水分解
2.1
 幅2.8cm、長さ15cmのSigma-Aldrich社供給のカチオン交換膜Nafion(R)424の両端を、接着剤を塗布した厚み1mm、幅1cmのガラス板で挟み隔膜とした。これを底面の長辺が6.5cm、短辺が3cmで、高さが15cmのガラス製容器の長辺の中間に設置して2室に区切り、液漏れが無いよう隙間部分をシリコン系シール材でシールしてそれぞれ陽極槽、陰極槽とした(図1参照)。
2. Hydrolysis of cellulose 2.1
Width 2.8 cm, both ends of the cation exchange Sigma-Aldrich Co. supplied the 15cm long film Nafion (R) 424, thickness and applying the adhesive 1 mm, and a diaphragm sandwiched between glass plates having a width 1 cm. This is installed in the middle of the long side of a glass container with a long side of 6.5cm, a short side of 3cm, and a height of 15cm. The material was sealed to form an anode tank and a cathode tank, respectively (see FIG. 1).
2.2
 陽極槽と陰極槽にそれぞれ、電解液として0.5M硫酸水溶液を100ml注入し、電極1-1を陰極槽に、白金被覆チタン電極を陽極槽に浸漬させた。陰極槽に和光純薬製結晶性セルロース(38μmメッシュ)3gを加え、直流電流計で電圧10V,電流6Aを印加し、攪拌しながら90℃で6時間反応させた。
2.2
100 ml of 0.5 M sulfuric acid aqueous solution was injected as an electrolyte into the anode tank and the cathode tank, respectively, and the electrode 1-1 was immersed in the cathode tank and the platinum-coated titanium electrode was immersed in the anode tank. 3 g of Wako Pure Chemical Crystalline Cellulose (38 μm mesh) was added to the cathode chamber, a voltage of 10 V and a current of 6 A were applied with a DC ammeter, and the mixture was reacted at 90 ° C. for 6 hours with stirring.
2.3
 反応終了後、陰極槽中のセルロース分散液を全量回収し、フィルター付きシリンジで1gを採取し、希釈してフェノール硫酸法でグルコース量を定量した。グルコース量は予め作成した検量線から求めた。得られたグルコース量をもとにセルロースからグルコースへの転化率を測定した。
2.3
After completion of the reaction, the total amount of the cellulose dispersion in the cathode chamber was recovered, 1 g was collected with a syringe with a filter, diluted, and the amount of glucose was determined by the phenol-sulfuric acid method. The amount of glucose was determined from a calibration curve prepared in advance. Based on the amount of glucose obtained, the conversion rate from cellulose to glucose was measured.
 上記実験を含め、電極1-1を使用した各種実験を行った。結果を表2の11~12に示した。 Various experiments using the electrode 1-1 were conducted including the above experiment. The results are shown in Tables 11 to 12.
2.4
 旭硝子製カチオン交換膜フレミオンを直径2cmになるように丸め、長辺両端を接着剤で貼り合わせて、長さ10cmの円筒を作成した。更に、円筒の一方を4cm角の平坦なガラス板に固定し、液漏れが無いよう隙間部分をシリコン系シール材でシールし陰極槽とした。1Lのビーカーに0.5M硫酸水溶液を800mL入れ、白金チタン電極を浸漬させ陽極槽とした。陰極槽であるカチオン交換膜円筒内部に、1M硫酸水溶液19mLを充填し、1.3gの丸棒状電極1-2を浸した(図2)。陰極槽に和光純薬製結晶性セルロース1g(38μmメッシュ)を添加し、直流電流計で電圧8V,電流5Aを印加し、90℃で6時間反応を行った。
2.4
Asahi Glass Cation Exchange Membrane Flemion was rounded so as to have a diameter of 2 cm, and both ends of the long side were bonded with an adhesive to prepare a cylinder having a length of 10 cm. Furthermore, one side of the cylinder was fixed to a 4 cm square flat glass plate, and the gap portion was sealed with a silicon-based sealing material so that there was no liquid leakage, thereby forming a cathode chamber. A 1 L beaker was charged with 800 mL of 0.5 M sulfuric acid aqueous solution, and a platinum titanium electrode was immersed therein to form an anode tank. A cation exchange membrane cylinder, which is a cathode tank, was filled with 19 mL of a 1M sulfuric acid aqueous solution, and 1.3 g of a round bar electrode 1-2 was immersed (FIG. 2). 1 g (38 μm mesh) of Wako Pure Chemical Crystalline Cellulose was added to the cathode chamber, a voltage of 8 V and a current of 5 A were applied with a DC ammeter, and the reaction was carried out at 90 ° C. for 6 hours.
 上記実験を含め、電極1-2を使用した各種実験を行った。結果を表2の13~14に示した。 Including the above experiment, various experiments using the electrode 1-2 were conducted. The results are shown in Table 2 at 13-14.
実施例2
1.炭素繊維プリプレグを原料にした炭素繊維の調製
 炭素繊維をエポキシ樹脂に含浸させた東レ株式会社製プリプレグ(商品名P2255S-20:炭素繊維含有率76重量%)を、減圧下、高温槽内で480℃、1時間加熱処理を行い、厚さ0.25mm、幅10cm、長さ30cmの炭化シートを得た。次にこの炭化シート陽極につなぎ、0.4M水酸化ナトリウム水溶液中で、直流電流計で電圧5V,電流3Aを印加し、4時間陽極酸化を行った。陽極酸化後の炭化シートを10%クエン酸水溶液に20時間浸漬した後、多量の水で洗浄し、150℃で10時間減圧乾燥を行った。このシートを2枚重ね、厚さ0.5mmのサンプル2を複数枚作成した。サンプル2のg/d比をラマン分光で測定し、シート表面の含酸素濃度(O/C比)とカルボキシル基濃度(COOH/C1S)をX線光電子分光で、全酸性官能基量及びカルボキシル基量をベーム法で測定した。分析結果を表1のサンプル2に示した。サンプル2は結束が保たれたシートであるため、幅3cm、長さ15cmに切り、電極2として使用した。
Example 2
1. Preparation of carbon fiber using carbon fiber prepreg as raw material A prepreg manufactured by Toray Industries, Inc. (trade name P2255S-20: carbon fiber content 76% by weight) impregnated with carbon fiber in epoxy resin was 480 in a high-temperature tank under reduced pressure. A heat treatment was performed at 1 ° C. for 1 hour to obtain a carbonized sheet having a thickness of 0.25 mm, a width of 10 cm, and a length of 30 cm. Next, the carbonized sheet anode was connected, and in a 0.4 M sodium hydroxide aqueous solution, a voltage of 5 V and a current of 3 A were applied with a DC ammeter, and anodization was performed for 4 hours. The carbonized sheet after anodization was immersed in a 10% aqueous citric acid solution for 20 hours, washed with a large amount of water, and dried under reduced pressure at 150 ° C. for 10 hours. Two sheets of this sheet were stacked to prepare a plurality of samples 2 having a thickness of 0.5 mm. The g / d ratio of sample 2 was measured by Raman spectroscopy, and the oxygen content (O / C ratio) and carboxyl group concentration (COOH / C 1S ) on the sheet surface were measured by X-ray photoelectron spectroscopy. The basis weight was measured by the Boehm method. The analysis results are shown in Sample 2 of Table 1. Since sample 2 was a sheet in which binding was maintained, it was cut into a width of 3 cm and a length of 15 cm and used as electrode 2.
2.セルロースの加水分解
2.1
 電極2を陰極として使用し、白金被覆チタン電極を陽極として、実施例1と同様、図1の反応槽でセルロースの加水分解反応を行った。陽極槽と陰極槽各々に、電解液として0.5M硫酸水溶液を100ml注入し、陰極槽に和光純薬製結晶性セルロース3g(38μmメッシュ)を添加した。直流電流計で電圧10V,電流6Aを印加し、陰極槽を攪拌翼で攪拌しながら90℃で6時間反応を行った。
2. Hydrolysis of cellulose 2.1
As in Example 1, the electrode 2 was used as the cathode and the platinum-coated titanium electrode was used as the anode, and the hydrolysis reaction of cellulose was performed in the reaction tank of FIG. 100 ml of 0.5M sulfuric acid aqueous solution was injected into each of the anode tank and the cathode tank, and 3 g (38 μm mesh) of Wako Pure Chemical Crystalline Cellulose was added to the cathode tank. A voltage of 10 V and a current of 6 A were applied with a direct current ammeter, and the reaction was performed at 90 ° C. for 6 hours while stirring the cathode tank with a stirring blade.
2.2
 上記実験を含め、電極2を使用した実験結果を表2の15~16に示した。
2.2
The results of experiments using the electrode 2 including the above experiments are shown in Tables 16-16.
実施例3
1.多層カーボンナノチューブ被覆炭素材料の調製
 Nanocyl社製多層カーボンナノチューブ(製品名「NC7000」BET比表面積290m2)0.1gを硝酸100ml/硫酸300mlを充填したガラス容器に加え、アズワン(ASONE)社製バス型超音波照射機(製品名ACU3)で超音波照射しながら、70℃で6時間反応させた。得られたカーボンナノチューブを水洗後乾燥し、N-メチル2-ピロリドン(NMP)溶液500mlに加え、プローブ型超音波装置(三井電機精機社製、製品名UX300 出力300W、周波数20000kHz、照射時間20分間)を用いて均一に分散させた。
Example 3
1. Preparation of multi-wall carbon nanotube-coated carbon material Nanocyl multi-wall carbon nanotubes (product name “NC7000” BET specific surface area 290 m 2) 0.1 g was added to a glass container filled with nitric acid 100 ml / sulfuric acid 300 ml, and a bath made by ASONE The reaction was performed at 70 ° C. for 6 hours while irradiating with an ultrasonic wave (product name: ACU3). The obtained carbon nanotubes are washed with water, dried, added to 500 ml of an N-methyl 2-pyrrolidone (NMP) solution, and a probe type ultrasonic device (manufactured by Mitsui Electric Seiki Co., Ltd., product name UX300, output 300 W, frequency 20000 kHz, irradiation time 20 minutes) ) To uniformly disperse.
 これとは別に信越化学社製アミノシランカップリング剤(3-アミノプロピルトリメトキシシラン製品名「KBM903」)の1%水溶液に実施例2で得たサンプル2のシート(10cm×30cm)を3時間浸し、150℃で3時間乾燥させた。 Separately, the sample 2 sheet (10 cm × 30 cm) obtained in Example 2 was immersed in a 1% aqueous solution of an aminosilane coupling agent (3-aminopropyltrimethoxysilane product name “KBM903”) manufactured by Shin-Etsu Chemical Co., Ltd. for 3 hours. And dried at 150 ° C. for 3 hours.
 次に、カーボンナノチューブ分散液に少量のアクリル樹脂エマルジョンを加えたものをステンレスバットに注ぎ、シランカップリング処理したシートを30分間浸した後、200℃で3時間減圧乾燥した。この操作を繰り返して、炭素繊維シートの表面が変性カーボンナノチューブで覆われたシート状のサンプル3を作成した。 Next, a carbon nanotube dispersion added with a small amount of an acrylic resin emulsion was poured into a stainless steel vat, and the silane coupling-treated sheet was immersed for 30 minutes and then dried under reduced pressure at 200 ° C. for 3 hours. This operation was repeated to prepare a sheet-like sample 3 in which the surface of the carbon fiber sheet was covered with the modified carbon nanotubes.
 サンプル3に付着したカーボンナノチューブの量は0.0108gであった。また、サンプル3のBET比表面積は440cm2/gであった。 The amount of carbon nanotubes adhering to Sample 3 was 0.0108 g. Sample 3 had a BET specific surface area of 440 cm 2 / g.
 サンプル3のg/d比をラマン分光で測定し、シート表面の含酸素濃度(O/C比)とカルボキシル基濃度(COOH/C1S)をX線光電子分光で、全酸性官能基量及びカルボキシル基量をベーム法で測定した。分析結果を表1のサンプル3に示した。サンプル3を幅3cm、長さ15cmに切り、電極3として使用した。 The g / d ratio of sample 3 was measured by Raman spectroscopy, and the oxygen content (O / C ratio) and carboxyl group concentration (COOH / C 1S ) on the sheet surface were measured by X-ray photoelectron spectroscopy. The basis weight was measured by the Boehm method. The analysis results are shown in Sample 3 of Table 1. Sample 3 was cut into a width of 3 cm and a length of 15 cm and used as electrode 3.
2.セルロースの加水分解
 電極3を陰極とし、白金被覆チタン電極を陽極として、実施例2と同様、図1の反応槽でセルロースの加水分解反応を行った。電極3を使用した実験結果を表2の17~18に示した。
2. Cellulose hydrolysis The electrode 3 was used as a cathode and the platinum-coated titanium electrode was used as an anode, and the hydrolysis reaction of cellulose was carried out in the reaction tank of FIG. The experimental results using the electrode 3 are shown in Tables 17-18.
実施例4
1.グラフェン被覆炭素材料の調製
 XG Sciences社製多層グラフェン粉末(製品名xGNP(R)グレードR BET比表面積32m2)0.1gを、硝酸100ml/硫酸300mlを充填したガラス容器に加え、アズワン(ASONE)社製バス型超音波照射機(製品名ACU3)で超音波照射しながら、70℃で6時間反応させた。得られたグラフェンを水洗後乾燥し、N-メチル2-ピロリドン(NMP)溶液500mlに加え、プローブ型超音波装置(三井電機精機社製、製品名UX300 出力300W、周波数20000kHz、照射時間20分間)を用いて均一に分散させた。
Example 4
1. Preparation of graphene-coated carbon material 0.1 g of multilayer graphene powder (product name xGNP (R) grade R BET specific surface area 32 m2) manufactured by XG Sciences is added to a glass container filled with nitric acid 100 ml / sulfuric acid 300 ml, and ASONE The reaction was performed at 70 ° C. for 6 hours while irradiating with a bath type ultrasonic irradiator (product name: ACU3). The obtained graphene is washed with water, dried, added to 500 ml of an N-methyl 2-pyrrolidone (NMP) solution, and a probe type ultrasonic device (manufactured by Mitsui Electric Seiki Co., Ltd., product name UX300, output 300 W, frequency 20000 kHz, irradiation time 20 minutes) Was uniformly dispersed.
 次に、グラフェン分散液に少量のアクリル樹脂エマルジョンを加えたものをステンレスバットに注ぎ、実施例3で得られたシランカップリング剤処理シートを30分間浸し、200℃で3時間減圧乾燥した。この操作を繰り返して、炭素繊維シートの表面が変性グラフェンで覆われたシート状のサンプル4を作成した。サンプル4に付着したグラフェンの量は0.0171gであった。また、サンプル3のBET比表面積は170cm2/gであった。 Next, a graphene dispersion added with a small amount of an acrylic resin emulsion was poured into a stainless steel vat, and the silane coupling agent-treated sheet obtained in Example 3 was immersed for 30 minutes and dried under reduced pressure at 200 ° C. for 3 hours. This operation was repeated to prepare a sheet-like sample 4 in which the surface of the carbon fiber sheet was covered with modified graphene. The amount of graphene attached to Sample 4 was 0.0171 g. Sample 3 had a BET specific surface area of 170 cm 2 / g.
 サンプル4のg/d比をラマン分光で測定し、シート表面の含酸素濃度(O/C比)とカルボキシル基濃度(COOH/C1S)をX線光電子分光で、全酸性官能基量及びカルボキシル基量をベーム法で測定した。及びベーム法で測定した。分析結果を表1のサンプル4に示した。サンプル4を幅3cm、長さ15cmに切り、電極4として使用した。 The g / d ratio of sample 4 was measured by Raman spectroscopy, and the oxygen content (O / C ratio) and carboxyl group concentration (COOH / C 1S ) on the sheet surface were measured by X-ray photoelectron spectroscopy. The basis weight was measured by the Boehm method. And measured by the Boehm method. The analysis results are shown in Sample 4 of Table 1. Sample 4 was cut into a width of 3 cm and a length of 15 cm and used as electrode 4.
2.セルロースの加水分解
 電極4を陰極とし、白金被覆チタン電極を陽極として、実施例2と同様に図1の反応槽でセルロースの加水分解反応を行った。電極4を使用した実験の結果を表2の19~20に示した。
2. Cellulose Hydrolysis Cellulose hydrolysis reaction was carried out in the reaction tank of FIG. 1 in the same manner as in Example 2 using the electrode 4 as a cathode and the platinum-coated titanium electrode as an anode. The results of the experiment using the electrode 4 are shown in Tables 19 to 20 in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
 表1のサンプル1からサンプル4の炭素材料は、いずれもラマン分光法により測定されるgバンド/dバンド比が2.0以上であり、かつ下記(1)~(4)の4つ全てを満足する。
(1)X線光電子分光法による広域スペクトル測定において、O1S/C1Sのピーク比が0.01以上、
(2)X線光電子分光法による狭域スペクトル測定において、C1sスペクトルにおけるカルボキシル基濃度COOH/C比が0.01以上、
(3)ベーム法により測定される全酸性官能基量が0.01mmol/g以上、
(4)ベーム法により測定されるカルボキシル基濃度が0.002mmol/g以上。
All of the carbon materials of Sample 1 to Sample 4 in Table 1 have a g band / d band ratio measured by Raman spectroscopy of 2.0 or more, and all four of the following (1) to (4) are included. Satisfied.
(1) In the broad spectrum measurement by X-ray photoelectron spectroscopy, the peak ratio of O 1S / C 1S is 0.01 or more,
(2) In the narrow spectrum measurement by X-ray photoelectron spectroscopy, the carboxyl group concentration COOH / C ratio in the C 1s spectrum is 0.01 or more,
(3) The total acidic functional group amount measured by the Boehm method is 0.01 mmol / g or more,
(4) The carboxyl group concentration measured by the Boehm method is 0.002 mmol / g or more.
 これらの炭素材料からなるサンプルを陰極材料として用いて、表2に示す条件でセルロース原料の加水分解を行った。その結果、いずれの条件においても、反応時間6時間目のグルコース収率が30%以上であった。 The cellulose raw material was hydrolyzed under the conditions shown in Table 2 using a sample made of these carbon materials as a cathode material. As a result, under any condition, the glucose yield at the reaction time of 6 hours was 30% or more.
参考例1
 底面の長辺が7cm、短辺が3cmで、高さが10cmのガラス製容器(非二室電気分解槽)に、電解液として0.5M硫酸水溶液を100ml注入し、粉末状のグルコースを添加し攪拌した。なお、ガラス製容器はカチオン交換膜で区切らず電解槽は1室とした。電極1-1を陽極とし、白金被覆チタン電極を陰極として、直流電流計で電圧10V、電流6Aを印加し、90℃で6時間反応を行い、グルコースの分解率を調べた。結果を表3の101に示した。
Reference example 1
100ml of 0.5M sulfuric acid aqueous solution is injected into a glass container (non-two-chamber electrolysis tank) with a long side of 7cm, a short side of 3cm, and a height of 10cm, and powdered glucose is added. And stirred. The glass vessel was not separated by a cation exchange membrane, and the electrolytic cell was one chamber. The electrode 1-1 was used as the anode, the platinum-coated titanium electrode was used as the cathode, a voltage of 10 V and a current of 6 A were applied with a DC ammeter, and the reaction was carried out at 90 ° C. for 6 hours to examine the glucose decomposition rate. The results are shown in 101 of Table 3.
 次に、白金被覆チタンを陽極とし、電極11を陰極として同様な実験を行い、グルコースの分解率を調べた。結果を表3の102に示した。 Next, a similar experiment was performed using platinum-coated titanium as an anode and the electrode 11 as a cathode, and the decomposition rate of glucose was examined. The results are shown at 102 in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3のサンプルの結果より、非二室電気分解槽を用いる反応系においては、反応の進行に伴って、グルコースが分解していくことが分かった。すなわち、セルロースが加水分解してグルコースが生成したとしても、グルコースが逐次的に分解してグルコースが得られないことが分かった。 From the results of the samples in Table 3, it was found that glucose was decomposed as the reaction progressed in the reaction system using the non-two-chamber electrolysis tank. That is, even when cellulose was hydrolyzed to produce glucose, it was found that glucose was sequentially decomposed and glucose could not be obtained.
参考例2
 白金被覆チタンを陽極とし、電極1-1を陰極として、和光純薬製結晶性セルロース3g(38μmメッシュ)を添加し、参考例1と同じ非二室電気分解槽を用いた反応条件にてセルロースの加水分解実験を行った。結果を表4の103に示した。
Reference example 2
Using platinum-coated titanium as an anode and electrode 1-1 as a cathode, 3 g (38 μm mesh) of crystalline cellulose manufactured by Wako Pure Chemical Industries, Ltd. was added, and cellulose was subjected to the same reaction conditions as in Reference Example 1 using the non-two-chamber electrolysis tank. The hydrolysis experiment was conducted. The results are shown in 103 of Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4のサンプルは参考例1と同じく二室電気分解槽を用いない反応条件にてセルロースの加水分解を行った結果であるが、グルコースの収率は1%以下しか得られなかった。 The sample in Table 4 is the result of hydrolysis of cellulose under the reaction conditions not using the two-chamber electrolysis tank as in Reference Example 1, but the yield of glucose was only 1% or less.
 以下に、分析に使用した機器、方法を記す。 The following describes the equipment and methods used for the analysis.
<ベーム法の原理・測定法>
 強塩基性溶液である水酸化ナトリウム(NaOH)は全ての酸性官能基と中和反応を起こす。炭素材料との接触前後では、塩基性溶液間で濃度変化差が生じる。よって、中和滴定により接触前後の濃度変化を算出し、全酸性官能基量を定量することができる。試料に水酸化ナトリウム、炭酸水素ナトリウムを個々に加え、平沼産業株式会社製「電位差自動滴定装置COM300A」により、塩酸溶液を用いた逆滴定を行い、全酸性官能基量、カルボキシル基量を求めた。
i)全酸性官能基量:水酸化ナトリウムを添加した条件下での塩酸溶液消費量
ii)カルボキシル基量:炭酸水素ナトリウム添加条件下での塩酸溶液消費量
<The principle and measurement method of the Boehm method>
Sodium hydroxide (NaOH), which is a strongly basic solution, causes a neutralization reaction with all acidic functional groups. Before and after contact with the carbon material, a concentration change difference occurs between the basic solutions. Therefore, the concentration change before and after contact can be calculated by neutralization titration, and the total amount of acidic functional groups can be quantified. Sodium hydroxide and sodium hydrogen carbonate were individually added to the sample, and back titration with a hydrochloric acid solution was performed using a “potentiometric automatic titrator COM300A” manufactured by Hiranuma Sangyo Co., Ltd. to determine the total acidic functional group amount and carboxyl group amount. .
i) Total acidic functional group: Consumption of hydrochloric acid solution under the condition of adding sodium hydroxide
ii) Amount of carboxyl group: Consumption of hydrochloric acid solution under the condition of sodium bicarbonate
<フェノール硫酸法手順>
i)グルコースを含む試料水溶液1mlに5%のフェノール水溶液1.0mlを加え混合する。
ii)濃硫酸5.0mlを速やかに直接滴下するように加え混合する。
iii)10分放置後、黄色から褐色に呈色したのを確認し、常温の水浴中で10分以上冷却した後、490nmの吸光度をアズワン社製分光光度計ASV11Dで定量した。
iV)予め求めた検量線からグルコース濃度を決定した。
<Phenol sulfate method>
i) Add 1 ml of a 5% phenol aqueous solution to 1 ml of the sample aqueous solution containing glucose and mix.
ii) Add and mix 5.0 ml of concentrated sulfuric acid as soon as it is added dropwise.
iii) After standing for 10 minutes, it was confirmed that the color was changed from yellow to brown, and after cooling for 10 minutes or more in a water bath at room temperature, the absorbance at 490 nm was quantified with a spectrophotometer ASV11D manufactured by ASONE.
iV) The glucose concentration was determined from a previously determined calibration curve.
(X線光電子分光)
 株式会社島津製作所製 KRATOS AXIS-NOVAを使用し、分析並びに解析を行った。
(X-ray photoelectron spectroscopy)
Analysis and analysis were performed using KRATOS AXIS-NOVA manufactured by Shimadzu Corporation.
(ラマン分光)
 サーモフィッシャーサイエンティフィック株式会社製 型式Nicolet Almega XRを使用し、分析並びに解析を行った。
(Raman spectroscopy)
Analysis and analysis were performed using a model Nicolet Almega XR manufactured by Thermo Fisher Scientific Co., Ltd.
(BET表面積)
 日本ベル株式会社製 BELSORP-mini II を使用し、分析並びに解析を行った。
(BET surface area)
Analysis and analysis were performed using BELSORP-mini II manufactured by Nippon Bell Co., Ltd.
 本発明は、セルロースを含むバイオマス資源からグルコースなどの糖含有液を得る製造技術分野において有用である。 The present invention is useful in the field of manufacturing technology for obtaining a sugar-containing liquid such as glucose from biomass resources containing cellulose.

Claims (11)

  1. 陰極室及び陽極室を隔膜で分離した二室電気分解槽を用い、陰極槽においてセルロース原料を電気分解して糖類を得ることを含む、セルロース原料から糖類を製造する方法であって、
    隔膜はプロトン伝導膜であり、
    陰極室における陰極は、グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造であり、かつ酸素含有官能基を有する炭素材料を含む、前記製造方法。
    A method for producing saccharides from a cellulose raw material, comprising using a two-chamber electrolysis tank in which a cathode chamber and an anode chamber are separated by a diaphragm, and electrolyzing the cellulose raw material in the cathode tank to obtain a saccharide,
    The diaphragm is a proton conducting membrane,
    The manufacturing method according to the above, wherein the cathode in the cathode chamber contains a carbon material having a graphite structure, at least a part of the surface of which is a graphene structure, and having an oxygen-containing functional group.
  2. 酸素含有官能基は、水酸基、ケトン基、エポキシ基、及びカルボキシル基から成る群から選ばれる少なくとも1種の官能基である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the oxygen-containing functional group is at least one functional group selected from the group consisting of a hydroxyl group, a ketone group, an epoxy group, and a carboxyl group.
  3. 炭素材料は、ラマン分光法により測定されるgバンド/dバンド比が2.0以上である、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the carbon material has a g band / d band ratio of 2.0 or more as measured by Raman spectroscopy.
  4. 炭素材料は、下記(1)~(4)の少なくとも1つを満足する、請求項1~3のいずれかに記載の製造方法。
    (1)X線光電子分光法による広域スペクトル測定において、O1S/C1Sのピーク比が0.01以上、
    (2)X線光電子分光法による狭域スペクトル測定において、C1sスペクトルにおけるカルボキシル基濃度COOH/C比が0.01以上、
    (3)ベーム法により測定される全酸性官能基量が0.01mmol/g以上、
    (4)ベーム法により測定されるカルボキシル基濃度が0.002mmol/g以上。
    4. The production method according to claim 1, wherein the carbon material satisfies at least one of the following (1) to (4).
    (1) In the broad spectrum measurement by X-ray photoelectron spectroscopy, the peak ratio of O 1S / C 1S is 0.01 or more,
    (2) In the narrow spectrum measurement by X-ray photoelectron spectroscopy, the carboxyl group concentration COOH / C ratio in the C 1s spectrum is 0.01 or more,
    (3) The total acidic functional group amount measured by the Boehm method is 0.01 mmol / g or more,
    (4) The carboxyl group concentration measured by the Boehm method is 0.002 mmol / g or more.
  5. 電気分解は、陰極に流れる電力(Q:クーロン)を陰極のBET比表面積(cm2/g)で割った表面電荷密度(Q・g/cm2)が0.1以上で実施する、請求項1~4のいずれかに記載の方法。 The electrolysis is carried out at a surface charge density (Q · g / cm 2 ) obtained by dividing the electric power (Q: coulomb) flowing through the cathode by the BET specific surface area (cm 2 / g) of the cathode is 0.1 or more. The method according to any one of 1 to 4.
  6. 糖類が、グルコース及び水溶性セロオリゴ糖を含む、請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the saccharide comprises glucose and water-soluble cellooligosaccharide.
  7. 陰極を有する陰極室及び陽極を有する陽極室を隔膜で分離した二室電気分解槽を含み、
    隔膜はプロトン伝導膜であり、
    陰極は、グラファイト構造を含有し、その表面の少なくとも一部がグラフェン構造であり、かつ酸素含有官能基を有する炭素材料を含む、電気分解装置。
    A two-chamber electrolysis tank in which a cathode chamber having a cathode and an anode chamber having an anode are separated by a diaphragm;
    The diaphragm is a proton conducting membrane,
    The cathode is an electrolyzer comprising a carbon material containing a graphite structure, at least a part of the surface of which is a graphene structure, and having an oxygen-containing functional group.
  8. 酸素含有官能基は、水酸基、ケトン基、エポキシ基、及びカルボキシル基から成る群から選ばれる少なくとも1種の官能基である、請求項7に記載の電気分解装置。 The electrolysis apparatus according to claim 7, wherein the oxygen-containing functional group is at least one functional group selected from the group consisting of a hydroxyl group, a ketone group, an epoxy group, and a carboxyl group.
  9. 炭素材料は、ラマン分光法により測定されるgバンド/dバンド比が2.0以上である、請求項7又は8に記載の電気分解装置。 The electrolysis apparatus according to claim 7 or 8, wherein the carbon material has a g band / d band ratio measured by Raman spectroscopy of 2.0 or more.
  10. 炭素材料は、下記(1)~(4)の少なくとも1つを満足する、請求項7~9のいずれかに記載の電気分解装置。
    (1)X線光電子分光法による広域スペクトル測定において、O1S/C1Sのピーク比が0.01以上、
    (2)X線光電子分光法による狭域スペクトル測定において、C1sスペクトルにおけるカルボキシル基濃度COOH/C比が0.01以上、
    (3)ベーム法により測定される全酸性官能基量が0.01mmol/g以上、
    (4)ベーム法により測定されるカルボキシル基濃度が0.002mmol/g以上。
    The electrolyzer according to any one of claims 7 to 9, wherein the carbon material satisfies at least one of the following (1) to (4).
    (1) In the broad spectrum measurement by X-ray photoelectron spectroscopy, the peak ratio of O 1S / C 1S is 0.01 or more,
    (2) In the narrow spectrum measurement by X-ray photoelectron spectroscopy, the carboxyl group concentration COOH / C ratio in the C 1s spectrum is 0.01 or more,
    (3) The total acidic functional group amount measured by the Boehm method is 0.01 mmol / g or more,
    (4) The carboxyl group concentration measured by the Boehm method is 0.002 mmol / g or more.
  11. 陰極槽においてセルロース原料を電気分解して糖類を得ることを含む、セルロース原料から糖類を製造する方法に用いられる、請求項7~10のいずれかに記載の電気分解装置。 The electrolyzer according to any one of claims 7 to 10, which is used in a method for producing a saccharide from a cellulose raw material, comprising electrolyzing the cellulose raw material in a cathode tank to obtain a saccharide.
PCT/JP2019/018106 2018-05-07 2019-04-26 Method for producing sugar from cellulose and device therefor WO2019216288A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020518285A JPWO2019216288A1 (en) 2018-05-07 2019-04-26 Method for producing saccharides from cellulose and its equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-089481 2018-05-07
JP2018089481 2018-05-07

Publications (1)

Publication Number Publication Date
WO2019216288A1 true WO2019216288A1 (en) 2019-11-14

Family

ID=68467554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018106 WO2019216288A1 (en) 2018-05-07 2019-04-26 Method for producing sugar from cellulose and device therefor

Country Status (2)

Country Link
JP (1) JPWO2019216288A1 (en)
WO (1) WO2019216288A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701338A (en) * 2009-11-25 2010-05-05 河北工业大学 Method for depolymerizing cellulose
JP2010144203A (en) * 2008-12-17 2010-07-01 Mitsubishi Gas Chemical Co Inc Cathode for hydrogen peroxide production
US20100213075A1 (en) * 2006-11-08 2010-08-26 Guinea Diaz Domingo Reactor for the electrochemical treatment of biomass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100213075A1 (en) * 2006-11-08 2010-08-26 Guinea Diaz Domingo Reactor for the electrochemical treatment of biomass
JP2010144203A (en) * 2008-12-17 2010-07-01 Mitsubishi Gas Chemical Co Inc Cathode for hydrogen peroxide production
CN101701338A (en) * 2009-11-25 2010-05-05 河北工业大学 Method for depolymerizing cellulose

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG F ET AL.: "Electrochemical control of the conversion of cellulose oligosaccharides into glucose", JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 20, no. 5, 1 January 2014 (2014-01-01), pages 3487 - 3492, XP055651175, ISSN: 1226-086X, DOI: 10.1016/j.jiec.2013.12.039 *

Also Published As

Publication number Publication date
JPWO2019216288A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
Deng et al. Alfalfa leaf-derived porous heteroatom-doped carbon materials as efficient cathodic catalysts in microbial fuel cells
Wang et al. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review
de Oliveira et al. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems
Hibino et al. Efficient hydrogen production by direct electrolysis of waste biomass at intermediate temperatures
Li et al. A novel single-enzymatic biofuel cell based on highly flexible conductive bacterial cellulose electrode utilizing pollutants as fuel
Yang et al. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation
Holade et al. Highly selective oxidation of carbohydrates in an efficient electrochemical energy converter: Cogenerating organic electrosynthesis
Ingle et al. New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass
JP4297850B2 (en) Polymer nanocomposite membrane and fuel cell employing the same
Xu et al. Converting cellulose waste into a high-efficiency photocatalyst for Cr (VI) reduction via molecular oxygen activation
Wang et al. Anatase titania coated CNTs and sodium lignin sulfonate doped chitosan proton exchange membrane for DMFC application
Oh et al. Phosphomolybdic acid as a catalyst for oxidative valorization of biomass and its application as an alternative electron source
CN110054170A (en) A kind of method and product using lignin preparation carbon quantum dot
Xu et al. A waste-minimized biorefinery scenario for the hierarchical conversion of agricultural straw into prebiotic xylooligosaccharides, fermentable sugars and lithium-sulfur batteries
Ye et al. Nitrogen-doped bagasse carbon spheres/graphene composite for high-performance supercapacitors
CN113401876B (en) Method for producing hydrogen peroxide through photocatalysis without sacrificial agent
Zhao et al. Biomass photoreforming for hydrogen and value‐added chemicals co‐production on hierarchically porous photocatalysts
Dey et al. Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery–a review
CN103343342A (en) Preparation method and application of polypyrrole-multiwalled carbon nanotube collaboratively-modified palladium-carried composite electrode
Zhang et al. Upgrading lignocellulose to porous graphene enabled by deep eutectic solvent pretreatment: insights into the role of lignin and pseudo-lignin
Parvizi et al. High-efficient photocatalytic fuel cell integrated with periodate activation for electricity production by degradation of refractory organics
Zhao et al. Interaction of lignin and xylan in the hydrothermal synthesis of lignocellulose-based carbon quantum dots and their application in in-vivo bioimaging
Souza et al. Lignin-incorporated bacterial nanocellulose for proton exchange membranes in microbial fuel cells
Tawfik et al. Sulfonated graphene nanomaterials for membrane antifouling, pollutant removal, and production of chemicals from biomass: a review
Zhou et al. Recent advances in biomass-based photocatalytic H2 production and efficient photocatalysts: A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020518285

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19799630

Country of ref document: EP

Kind code of ref document: A1