WO2019213891A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2019213891A1
WO2019213891A1 PCT/CN2018/086301 CN2018086301W WO2019213891A1 WO 2019213891 A1 WO2019213891 A1 WO 2019213891A1 CN 2018086301 W CN2018086301 W CN 2018086301W WO 2019213891 A1 WO2019213891 A1 WO 2019213891A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
information
wireless signals
node
signal
Prior art date
Application number
PCT/CN2018/086301
Other languages
English (en)
French (fr)
Inventor
张晓博
杨林
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN201880090959.5A priority Critical patent/CN111971928B/zh
Priority to CN202210427027.3A priority patent/CN114828164A/zh
Priority to CN202210428879.4A priority patent/CN114666872A/zh
Priority to PCT/CN2018/086301 priority patent/WO2019213891A1/zh
Publication of WO2019213891A1 publication Critical patent/WO2019213891A1/zh
Priority to US17/023,372 priority patent/US11265941B2/en
Priority to US17/580,673 priority patent/US11622401B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a multi-antenna related transmission scheme and apparatus in wireless communication.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • the new air interface technology was decided at the #72 (3rd Generation Partnership Project) RAN (Radio Access Network) #72 plenary meeting.
  • New Radio) or Fifth Generation, 5G
  • 5G conducted research, and passed the NR (Work Item) of the NR at the 3GPP RAN #75 plenary meeting, and began to standardize the NR.
  • V2X Vehicle-to-Everything
  • 3GPP has also started standardization and research work under the NR framework.
  • 3GPP has completed the requirements development for 5G V2X services and wrote it into the standard TS22.886.
  • 3GPP identifies and defines four Use Case Groups for 5G V2X services, including: Vehicles Platnooning, Extended Sensors, Advanced Driving, and Remote Driving. (Remote Driving).
  • the NR V2X system has higher throughput, higher reliability, lower latency, longer transmission distance, more precise positioning, more variable packet size and transmission period variability than LTE V2X systems. Strong, and key technical features that coexist more effectively with existing 3GPP technologies and non-3GPP technologies. Further, NR V2X will be applied to higher frequency bands.
  • 3GPP is discussing a sublink (Sidelink) channel model above 6 GHz.
  • Synchronization is a prerequisite for sub-link transmission.
  • the system will instruct the user equipment to send a Synchronization Signal (SLSS) and some necessary system information on the sub-link.
  • SLSS Synchronization Signal
  • the user equipment acquires the time and frequency synchronization of the transmission or reception of the secondary link through these synchronization signals.
  • the user equipment needs to prioritize the user equipments to select an SLSS as its synchronization reference.
  • the SLSS Since the existing LTE D2D/V2X is mainly applied to the low frequency band, the SLSS mainly adopts a single-wave quasi-omnidirectional transmission scheme. However, high-frequency scenes have severe signal attenuation, short transmission distance, extremely wide bandwidth, narrow beam and other propagation characteristics. It is expected that the SLSS of the NR system will adopt multi-beam transmission. Therefore, a user equipment may receive SLSS from different beam of multiple user equipments. How to select a SLSS from the multi-beam SLSS as its synchronization reference is a problem to be solved.
  • the present application discloses a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station, and vice versa. The features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict. Further, although the original intention of the present application is directed to multi-antenna based transmission, the present application can also be applied to single antenna transmission. Further, although the original intention of the present application is for high frequency band communication, the present application can also be applied to low frequency band communication.
  • the present application discloses a method in a first node used for wireless communication, comprising:
  • the Q second type wireless signals respectively include Q first type information; whether each of the second second type wireless signals can be selected as a synchronization reference and the first included Class information is related; the Q first type information is generated independently; the Q is a positive integer greater than one.
  • the present application discloses a method in a first node used for wireless communication, comprising:
  • the Q second type wireless signals respectively include Q first type information; whether each of the second second type wireless signals can be selected as a synchronization reference and the first included
  • the class information is related; whether the Q first type information is independently generated is related to whether the first node is in coverage; the Q is a positive integer greater than 1.
  • the problem to be solved by the present application is: in a high frequency or multi-antenna scenario, when the first node transmits multiple synchronous broadcast signals by using multiple beams, how does the second node select the synchronous broadcast signals of the beams as The problem of synchronizing references.
  • the above method separately carries each beam related information by using the Q first type information separately generated, and the Q first type information is used to determine that the synchronous broadcast signal of each beam is selected as a priority of the synchronization reference to solve the problem. This problem ensures the reliability of the synchronization of the second node.
  • the above method is characterized in that an association is established between the beam-related information and the synchronization reference priority.
  • the above method is characterized in that an association is established between whether the first type of information and the second type of wireless signal are selected as synchronization references.
  • the above method is characterized in that when a transmission beam of a synchronous broadcast signal and a reception beam of a synchronization source signal have a beam correspondence (Beam Correspondance), the one synchronization broadcast signal is selected as a priority of the synchronization reference. higher.
  • the foregoing method is advantageous in that when a synchronous broadcast signal has a beam correspondence relationship with a synchronization source signal, a transmission timing of the one synchronization broadcast signal matches a reception timing of the synchronization source signal, and The transmission reliability of a synchronous broadcast signal selected as a synchronous reference is higher.
  • the above method is characterized in that a relationship is established between the manner in which the first type of information is generated and the location in which the first node is located.
  • the above method is characterized in that whether the first type of information is multi-beam common information or beam-specific information is determined by a location where the first node is located.
  • the above method is characterized in that the first node is in coverage and the first type of information is beam specific information. As an embodiment, the above method is characterized in that the first node is out of coverage, and the first type of information is multi-beam common information.
  • the above method has the advantage that the generation of the second wireless signal can take into account the characteristics of the multiple beams when the first node is within coverage.
  • the above method has the advantage that the generation of the second wireless signal does not take into account the characteristics of the multi-beam when the first node is out of coverage.
  • the above method is characterized by comprising:
  • each of the first information of the Q first types of information is related to a spatial reception parameter of a first type of wireless signal of the P first type of wireless signals.
  • the above method is characterized in that
  • Each of the Q second type of wireless signals includes second information, the second information being used to indicate whether the first node is within coverage.
  • the above method is characterized by comprising:
  • Receiving a target specific signal determining whether it is within the coverage according to the target reception quality of the target specific signal.
  • the above method is characterized in that
  • the Q first type information is independently generated; if the first node is in coverage, the Q first type information is not independently generated.
  • the above method is characterized in that
  • the first node is a user equipment.
  • the above method is characterized in that
  • the first node is a relay node.
  • the present application discloses a method for use in a second node for wireless communication, comprising:
  • the Q second type wireless signals respectively include Q first type information; whether each of the Q0 second type wireless signals can be selected as a synchronization reference and the first included
  • the class information is related; the Q first type information is independently generated; the Q is a positive integer greater than 1, and the Q0 is a positive integer not greater than the Q.
  • the present application discloses a method for use in a second node for wireless communication, comprising:
  • the Q second type wireless signals respectively include Q first type information; whether each of the Q0 second type wireless signals can be selected as a synchronization reference and the first included Related to class information; whether the Q first type information is independently generated and whether the sender of the Q second type wireless signals is in coverage; the Q is a positive integer greater than 1, and the Q0 is not A positive integer greater than the Q.
  • each of the first type information of the Q0 first type information is related to a spatial receiving parameter of a first type of wireless signal of the P first type wireless signals.
  • the P first type wireless signals are received by the sender of the Q second type wireless signals; the P is a positive integer.
  • the method is characterized in that the Q0 second type wireless signals respectively comprise the second information, and the second information indicates whether a sender of the Q second type wireless signals is located Covered inside.
  • the above method is characterized in that the received quality of the received specific signal is used by the sender of the Q second type of wireless signals to determine whether it is within the coverage.
  • the above method is characterized in that if the senders of the Q second type wireless signals are within coverage, the Q first type information is independently generated; The senders of the Q second type wireless signals are out of coverage, and the Q first type information is not independently generated.
  • the above method is characterized in that the second node is a user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the present application discloses a first node device that is used for wireless communication, and includes:
  • a first processing module determining whether the first node is in an overlay
  • a first transmitter module transmitting Q second type wireless signals
  • the Q second type wireless signals respectively include Q first type information; whether each of the second second type wireless signals can be selected as a synchronization reference and the first included Class information is related; the Q first type information is generated independently; the Q is a positive integer greater than one.
  • the present application discloses a first node device that is used for wireless communication, and includes:
  • a first processing module determining whether the first node is in an overlay
  • a first transmitter module transmitting Q second type wireless signals
  • the Q second type wireless signals respectively include Q first type information; whether each of the second second type wireless signals can be selected as a synchronization reference and the first included
  • the class information is related; whether the Q first type information is independently generated is related to whether the first node is in coverage; the Q is a positive integer greater than 1.
  • the first node device is characterized by comprising:
  • a first receiver module receiving P first type wireless signals, wherein P is a positive integer
  • the first type information of the Q first type information is related to a spatial receiving parameter of one of the P first type wireless signals.
  • the first node device is characterized in that each of the second type of wireless signals includes second information, and the second information is used to indicate Whether the first node is in the coverage.
  • the first node device is characterized by comprising:
  • the first receiver module receives the target specific signal and determines whether it is located within the coverage according to the target reception quality of the target specific signal.
  • the first node device is characterized in that: if the first node is in coverage, the Q first type information is independently generated; if the first node is in coverage, The Q first type information is not generated independently.
  • the first node device is characterized in that the first node is a user equipment.
  • the first node device is characterized in that the first node is a relay node.
  • the present application discloses a second node device that is used for wireless communication, and includes:
  • a second receiver module receiving Q0 second type wireless signals in the Q second type wireless signals
  • the Q second type wireless signals respectively include Q first type information; whether each of the Q0 second type wireless signals can be selected as a synchronization reference and the first included
  • the class information is related; the Q first type information is independently generated; the Q is a positive integer greater than 1, and the Q0 is a positive integer not greater than the Q.
  • the present application discloses a second node device that is used for wireless communication, and includes:
  • a second receiver module receiving Q0 second type wireless signals in the Q second type wireless signals
  • the Q second type wireless signals respectively include Q first type information; whether each of the Q0 second type wireless signals can be selected as a synchronization reference and the first included Related to class information; whether the Q first type information is independently generated and whether the sender of the Q second type wireless signals is in coverage; the Q is a positive integer greater than 1, and the Q0 is not A positive integer greater than the Q.
  • the second node device is characterized by: a space of each of the first type information of the Q0 first type information and a first type of wireless signal of the P first type wireless signals.
  • the P first type wireless signals are received by the sender of the Q second type wireless signals; the P is a positive integer.
  • the second node device is characterized in that the Q0 second type wireless signals respectively comprise the second information, and the second information indicates the sending of the Q second type wireless signals Whether the person is inside the coverage.
  • the second node device is characterized in that the received quality of the received target specific signal is used by the sender of the Q second type wireless signals to determine whether it is within the coverage.
  • the second node device is characterized in that, if the senders of the Q second type wireless signals are in coverage, the Q first type information is independently generated; The senders of the Q second type radio signals are out of coverage, and the Q first type information are not independently generated.
  • the second node device is characterized in that the second node is a user equipment.
  • the second node device is characterized in that the second node is a relay node.
  • the application has the following advantages:
  • This application establishes an association between beam related information and synchronization reference priority.
  • the application establishes an association between whether the first type of information and the second type of wireless signal are selected as synchronization references.
  • the present application configures a higher synchronization reference priority for the synchronous broadcast signal having a beam correspondence relationship with the synchronization source signal, thereby making the transmission reliability of the secondary link higher.
  • the present application establishes a relationship between the manner in which the first type of information is generated and the location in which the first node is located.
  • the present application determines whether the first type of information is multi-beam common information or beam-specific information based on the location of the first node.
  • the present application is for the first node within the coverage, the first type of information is beam specific information, and the generation of the second wireless signal can take into account the characteristics of the multiple beams.
  • the present application is for the first node outside the coverage, the first type of information is multi-beam common information.
  • the generation of the second wireless signal does not consider the characteristics of the multi-beam.
  • FIG. 1 shows a flow chart for transmitting Q second type wireless signals in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication device and a second communication device in accordance with an embodiment of the present application
  • FIG. 5 illustrates a wireless signal transmission flow diagram in accordance with one embodiment of the present application
  • FIG. 6 illustrates a flow chart for determining whether to generate Q first class information independently, in accordance with one embodiment of the present application
  • Figure 7 shows a flow chart for selecting a synchronization reference in accordance with one embodiment of the present application
  • FIG. 8 shows a schematic diagram of a time-frequency resource unit according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a time-frequency resource unit occupied by a second time-frequency resource according to an embodiment of the present application.
  • FIG. 10 is a diagram showing the relationship between Q second type wireless signals according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram showing the relationship between an antenna port and a first type of antenna port group according to an embodiment of the present application
  • FIG. 12 is a diagram showing a relationship between a first type of information, a second information, and a second type of wireless signal, in accordance with an embodiment of the present application;
  • FIG. 13 is a schematic diagram showing a positional relationship between a first node and a second node according to an embodiment of the present application.
  • FIG. 14 is a block diagram showing the structure of a processing device used in a first node device according to an embodiment of the present application.
  • Figure 15 shows a block diagram of a structure for a processing device in a second node device in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart for transmitting and transmitting Q second type wireless signals, as shown in FIG.
  • the first node in the application determines whether the first node is in the coverage; sends Q second type wireless signals; the Q second type wireless signals respectively include Q first type information Whether each of the Q second type wireless signals can be selected as a synchronization reference related to the included first type information; the Q first type information is independently generated; the Q Is a positive integer greater than one.
  • the first node in the application determines whether the first node is in the coverage; sends Q second type wireless signals; the Q second type wireless signals respectively include Q first type information Whether each of the Q second type wireless signals can be selected as a synchronization reference related to the included first type information; whether the Q first type information is independently generated and Whether the first node is within the coverage; the Q is a positive integer greater than one.
  • At least one of the Q second type wireless signals is used by the second node to determine a received signal timing, and the receiver of the Q second type wireless signals includes the Two nodes.
  • At least one of the Q second type radio signals is used by the second node to determine a transmission signal timing, and the receiver of the Q second type radio signals includes the Two nodes.
  • one of the Q second type wireless signals includes a SLSS (Sidelink Synchronisation Signal).
  • one of the Q second type radio signals includes a PSSS (Primary Sidelink Synchronisation Signal).
  • PSSS Primary Sidelink Synchronisation Signal
  • one of the Q second type radio signals includes a SSSS (Secondary Sidelink Synchronisation Signal).
  • SSSS Single Sidelink Synchronisation Signal
  • one of the Q second type radio signals includes a SBS (Sidelink Broadcast Signal).
  • a second type of wireless signal of the Q second type of wireless signals includes an RS (Reference Signal).
  • one of the Q second type wireless signals includes a SLSSB (SLSS/PSBCH block, sub-link synchronization broadcast signal block).
  • SLSSB SLSS/PSBCH block, sub-link synchronization broadcast signal block
  • one of the Q second type radio signals includes a SDRS (Sidelink Discovery Reference Signal).
  • one of the Q second type wireless signals includes a Preamble.
  • one of the Q second type radio signals is transmitted on a SL-BCH (Sidelink Broadcast Channel).
  • SL-BCH Seglink Broadcast Channel
  • one of the Q second type radio signals is transmitted on a PSBCH (Physical Sidelink Broadcast Signal).
  • PSBCH Physical Sidelink Broadcast Signal
  • one of the Q second type radio signals is transmitted on a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • one of the Q second type radio signals is transmitted on a PSSCH (Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel
  • one of the Q second type radio signals is transmitted on a PSDCH (Physical Sidelink Discovery Channel).
  • PSDCH Physical Sidelink Discovery Channel
  • a second type of radio signal of the Q second type radio signals includes a PSBCH-DMRS (PSBCH Demodulation Reference Signal, a physical sub-link broadcast channel-demodulation reference signal).
  • PSBCH-DMRS PSBCH Demodulation Reference Signal
  • a physical sub-link broadcast channel-demodulation reference signal a PSBCH Demodulation Reference Signal
  • a second type of radio signal of the Q second type radio signals includes a PSBCH-DMRS (PSBCH Demodulation Reference Signal), the PSBCH-DMRS Used to demodulate the PSBCH.
  • PSBCH-DMRS PSBCH Demodulation Reference Signal
  • the second target wireless signal is a second type of wireless signal of the Q second type of wireless signals.
  • the second target wireless signal comprises a second sequence.
  • the second sequence is a pseudo-random sequence.
  • the second sequence is a Gold sequence.
  • the second sequence is an M sequence.
  • the second sequence is a Zadeoff-Chu sequence.
  • the second sequence comprises a first subsequence and a second subsequence.
  • the first subsequence is a pseudo-random sequence.
  • the first subsequence is a Gold sequence.
  • the first subsequence is an M sequence.
  • the first subsequence is a Zadeoff-Chu sequence.
  • the second subsequence is a pseudo-random sequence.
  • the second subsequence is a Gold sequence.
  • the second subsequence is an M sequence.
  • the second subsequence is a Zadeoff-Chu sequence.
  • the second sequence is used to generate an SLSS.
  • the first subsequence is used to generate a PSSS and the second subsequence is used to generate an SSSS.
  • the first subsequence is used to generate a SLSS and the second subsequence is used to generate a PSBCH-DMRS.
  • a second sequence is used to generate the second target wireless signal.
  • the second target wireless signal is sequentially subjected to DFT (Discrete Fourier Transform), mapped to physical resources, and baseband signal by the second sequence. Generation), the output after modulation and upconversion.
  • DFT Discrete Fourier Transform
  • the second target wireless signal is an output that is filtered, modulated, and upconverted by the second sequence in sequence.
  • the second target wireless signal is an output after the second sequence is pre-coded, mapped to physical resources, baseband occurs, modulated, and upconverted.
  • the second target wireless signal is output after the second sequence is modulated, DFT, precoded, mapped to at least one of physical resources, baseband signal generation, filtering, modulation, and upconversion. .
  • the second target wireless signal includes a SLSSID (Sidelink synchronization signal identity).
  • SLSSID Seglink synchronization signal identity
  • the SLSSID of the second target wireless signal is a non-negative integer.
  • the SLSSID of the second target wireless signal is not greater than 336.
  • the second sequence is used to indicate a SLSSID of the second target wireless signal.
  • the SLSSID of the second target wireless signal is used to generate the second sequence.
  • the SLSSID of the second target wireless signal is used to calculate a sequence generation initial value of the second sequence.
  • the SLSSID of the second target wireless signal is configured by a higher layer signaling.
  • the SLSSID of the second target wireless signal is semi-statically configured.
  • the SLSSID of the second target wireless signal is configured by System Information.
  • the SLSSID of the second target wireless signal is configured by an SIB (System Information Block).
  • SIB System Information Block
  • the SLSSID of the second target radio signal is configured by RRC (Radio Resource Control) layer signaling.
  • the SLSSID of the second target wireless signal is configured by MAC (Medium Access Control) layer signaling.
  • the SLSSID of the second target wireless signal is configured by one physical layer signaling.
  • the SLSSID of the second target radio signal is configured by DCI (Downlink Control Information).
  • the second target wireless signal includes an SBS (Sidelink Broadcast Signal).
  • SBS Servicelink Broadcast Signal
  • the second target wireless signal is transmitted on a SL-BCH (Sidelink Broadcast Channel).
  • SL-BCH Seglink Broadcast Channel
  • the second target radio signal is transmitted on a PSBCH (Physical Sidelink Broadcast Signal).
  • PSBCH Physical Sidelink Broadcast Signal
  • the second target wireless signal includes a second block of bits, and the second block of bits includes a positive integer number of sequentially arranged bits.
  • the second bit block includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the second bit block includes one or more fields in a MIB-SL (Master Information Block-Sidelink).
  • MIB-SL Master Information Block-Sidelink
  • the second bit block includes all or part of bits in a TB (Transport Block).
  • the second bit block includes all or part of bits in a CB (Code Block).
  • all or part of the bits of the second bit block are sequentially scrambling, and a block-level CRC (Cyclic Redundancy Check) attach, channel coding (Channel) Coding), Rate Matching, Secondary Scrambling, Modulation, Layer Mapping, Transform Precoding, Precoding, Mapping to Physical Resources
  • CRC Cyclic Redundancy Check
  • the second target wireless signal is subjected to one-stage scrambling by all or part of bits of the second bit block, transport block level CRC attachment, segmentation, coding block level CRC attachment, channel Coding, rate matching, concatenation, secondary scrambling, modulation, layer mapping, spreading, transform precoding, precoding, mapping to physical resources, baseband signal generation, and at least modulation and upconversion One after the output.
  • the second bit block includes a transmission bandwidth (SL-bandwidth) of the secondary link, an uplink/downlink configuration of the secondary link TDD, a system frame number of the secondary link (Frame Number), and a sub-link of the sub-link.
  • SL-bandwidth transmission bandwidth
  • TDD uplink/downlink configuration of the secondary link
  • Frame Number system frame number of the secondary link
  • sub-link sub-link
  • the SLSSID of the second target wireless signal is used to generate a secondary scrambling sequence of the second target wireless signal.
  • the second target wireless signal comprises the second sequence and the second block of bits.
  • the second target wireless signal comprises the first subsequence, the second subsequence and the second bit block.
  • the second target wireless signal includes one or more of SLSS, PSSS, SSSS, SBS, and PSBCH-DMRS.
  • the second target wireless signal comprises SLSS, SBS and PSBCH-DMRS.
  • the second target wireless signal includes PSSS, SSSS, SBS, and PSBCH-DMRS.
  • the Synchronisation Reference is used to determine timing information for sub-link transmissions.
  • the synchronization reference is used to determine timing information for a secondary link communication.
  • the synchronization reference is used to determine timing information for Sidelink discovery.
  • the synchronization reference is used to determine timing information of a V2X-to-Everything sidelink communication.
  • the recipient of the synchronization reference determines the transmission timing based on the reception timing of the synchronization reference.
  • the transmission timing is a reception timing of the synchronization reference plus an offset.
  • the one offset is fixed.
  • the one offset is determined by the recipient of the synchronization reference.
  • the one offset is configured.
  • the one offset is a time offset.
  • the unit of one offset is seconds (s).
  • the unit of one offset is milliseconds (ms).
  • the unit of one offset is microseconds (us).
  • the unit of one offset is the number of samples.
  • the transmission timing is used to transmit a PSSCH.
  • the transmission timing is used to transmit a PSCCH.
  • the transmission timing is used to transmit a PSBCH.
  • the transmission timing is used to transmit a PSDCH.
  • the transmission timing is used to transmit a PUSCH.
  • the transmission timing is used to transmit a PUCCH.
  • the transmission timing is used to transmit an SRS.
  • the receiver of the synchronization reference determines the reception timing according to the reception timing of the synchronization reference.
  • a receiver of the synchronization reference determines a reception timing of a wireless signal other than the synchronization reference according to a reception timing of the synchronization reference, where a sender of a wireless signal other than the synchronization reference is The sender of the synchronization reference.
  • the receiving timing of the synchronization reference according to the synchronization reference is a reception timing of a wireless signal other than the synchronization reference.
  • the first information is one of the Q first type information.
  • the second target wireless signal is a second type of wireless signal including the first information among the Q second type wireless signals.
  • At least two of the Q second type wireless signals include different first information.
  • the P is greater than 1, the first information is any one of the Q first type information, and the second wireless signal is the Q second type wireless signals. a second type of wireless signal of the first information; if the first type of antenna port group corresponding to the first information in the Q first type antenna port groups is associated with at least one of the P first type wireless signals a first type of wireless signal, the level at which the second wireless signal is selected as the synchronization reference is a first synchronization level; otherwise the level at which the second wireless signal is selected as the synchronization reference is a second synchronization level; The synchronization level has a higher priority than the second synchronization level.
  • the P is equal to 1
  • the first information is any second type information of the Q first type information
  • the second wireless signal is included in the Q second type wireless signals.
  • a second type of wireless signal of the first information if the first type of antenna port group corresponding to the first information in the Q first type antenna port groups is associated with the P first type wireless signals, The level at which the second wireless signal is selected as the synchronization reference is the first synchronization level; otherwise the level at which the second wireless signal is selected as the synchronization reference is the second synchronization level; the first synchronization level is compared to the second The synchronization level has a higher priority.
  • the receiver of the at least one second type of wireless signal of the Q second type wireless signals includes a user equipment, and the sender of the P first type wireless signals is non-co-shared with the one user equipment. Address.
  • the sender of the P first type radio signals and the one user equipment are non-co-located, including: the sender of the P first type radio signals and the one user equipment The communication delay between the two cannot be ignored.
  • the sender of the P first type radio signals and the one user equipment are non-co-located, including: the sender of the P first type radio signals and the one user equipment There is no wired link between them.
  • the receiver of the at least one second type of wireless signal of the Q second type of wireless signals includes a user equipment, and the sender of the P first type of wireless signals includes a serving cell.
  • the receiver of the at least one second type of wireless signal of the Q second type wireless signals includes a user equipment, the P is greater than 1, and at least two of the P first type wireless signals are present.
  • the first type of wireless signals are respectively transmitted by two serving cells.
  • the level of the synchronization reference includes a first synchronization level and a second synchronization level, the first synchronization level having a higher priority than the second synchronization level.
  • the level of the synchronization reference includes a first synchronization level and a second synchronization level, and the first synchronization level is selected as the synchronization reference more preferentially than the second synchronization level.
  • whether each of the second type of wireless signals in the second type of wireless signals can be selected as a synchronization reference is related to the included first type of information, that is, the Q second type wireless signals
  • the priority of each of the second type of wireless signals as a synchronization reference is determined by the included first type of information.
  • the second target wireless signal is used as a synchronization
  • the level of reference is the first synchronization level.
  • the second target wireless signal is The level of the synchronization reference is the second synchronization level.
  • the second target wireless The level at which the signal is used as a synchronization reference is the first synchronization level.
  • the second target wireless The level at which the signal is used as a synchronization reference is the second synchronization level.
  • the first information is used to indicate that a spatial transmission parameter of the second target wireless signal is related to a spatial reception parameter of at least one of the P first type of wireless signals
  • the level of the second target wireless signal as a synchronization reference is the first synchronization level.
  • the level of the second target wireless signal as a synchronization reference is the second synchronization level.
  • the first information is used to indicate the second target antenna port group corresponding to the second target wireless signal and at least one of the P first type wireless signals
  • the first type of wireless The signal is related, and the level of the second target wireless signal as a synchronization reference is the first synchronization level.
  • the level of the second target wireless signal as a synchronization reference is the second synchronization level.
  • the second target wireless The level at which the signal is used as a synchronization reference is the first synchronization level.
  • the second target wireless The level at which the signal is used as a synchronization reference is the second synchronization level.
  • whether each of the second type of wireless signals in the second type of wireless signals can be selected as a synchronization reference is related to the included first type of information, that is, the Q second type wireless signals
  • Each of the second type of wireless signals is indicated as the priority of the synchronization reference by the first type of information included.
  • the first information indicates the level of the second target wireless signal as a synchronization reference.
  • the first information includes one of TRUE (YES) and FALSE (No).
  • the level of the second target wireless signal as a synchronization reference is the first synchronization level.
  • the level of the second target wireless signal as a synchronization reference is the second synchronization level.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG.
  • the 5G NR or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmission and reception node), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video device, digital audio player (eg MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video device, digital audio player (eg MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • multimedia devices video device, digital audio player (eg MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle
  • a person skilled in the art may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through an S1/NG interface.
  • the EPC/5G-CN 210 includes an MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 211, and other MME/AMF/UPF214.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a packet-switched streaming service.
  • the first node in this application includes the UE 201.
  • the terminal in this application includes the UE 201.
  • the base station device in the present application is the gNB 203.
  • the second node in the present application includes the UE 241.
  • the UE 201 supports secondary link transmission.
  • the UE 241 supports secondary link transmission.
  • the UE 201 supports beamforming based sub-link transmission.
  • the UE 241 supports beamforming based sub-link transmission.
  • the gNB 203 supports beamforming based Downlink transmission.
  • the UE 201 supports a Massive MIMO based Sidelink transmission.
  • the UE 241 supports Massite MIMO based Sidelink transmission.
  • the gNB 203 supports downlink transmission based on a large-scale array antenna.
  • the UE 201 determines whether the UE 201 is within the coverage in the present application based on the target specific signal.
  • the UE 201 acquires time and frequency synchronization based on the P first type wireless signals.
  • the sender of the P first type wireless signals includes a GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the sender of the P first type wireless signals includes the gNB 203.
  • the UE 241 selects a synchronization reference based on the Q0 second type wireless signals in the Q second type of wireless signals.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: Layer 1 , layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions, and layers above layer 1 belong to higher layers.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the user equipment and the base station equipment through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the base station device on the network side.
  • the user equipment may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for user equipment between base station devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between user equipments.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the user equipment and the base station equipment is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the base station device and the user equipment.
  • the wireless protocol architecture of Figure 3 is applicable to the first node in the present application.
  • the wireless protocol architecture of Figure 3 is applicable to the second node in this application.
  • the radio protocol architecture of FIG. 3 is applicable to the base station device in this application.
  • the target specific signal in the present application is generated by the PHY 301.
  • the P first type wireless signals in the present application are generated by the PHY 301.
  • the Q second type wireless signals in the present application are generated by the PHY 301.
  • the second sequence in the present application is generated by the PHY 301.
  • the second bit block in the present application is generated by the PHY 301.
  • the second bit block in the present application is generated in the MAC sublayer 302.
  • the second bit block in the present application is generated in the RRC sublayer 306.
  • the second bit block in the present application is passed to the PHY 301 by the L2 layer.
  • the second bit block in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • the Q first type information in the present application is generated in the RRC sublayer 306.
  • the Q first type information in the present application is generated in the MAC sublayer 302.
  • the Q first type information in the present application is generated by the PHY 301.
  • the Q first type information in the present application is delivered by the L2 layer to the PHY 301.
  • the Q first type information in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • the second information in this application is generated in the RRC sublayer 306.
  • the second information in the present application is generated in the MAC sublayer 302.
  • the second information in the present application is generated by the PHY 301.
  • the second information in the present application is delivered to the PHY 301 by the L2 layer.
  • the second information in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • the third information in this application is generated in the RRC sublayer 306.
  • the third information in the present application is generated in the MAC sublayer 302.
  • the third information in the present application is generated by the PHY 301.
  • the third information in the present application is delivered to the PHY 301 by the L2 layer.
  • the third information in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • the fourth information in this application is generated in the RRC sublayer 306.
  • the fourth information in the present application is generated in the MAC sublayer 302.
  • the fourth information in the present application is generated by the PHY 301.
  • the fourth information in the present application is delivered to the PHY 301 by the L2 layer.
  • the fourth information in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • the Q fifth type information in the present application is generated in the RRC sublayer 306.
  • the Q fifth type information in the present application is generated in the MAC sublayer 302.
  • the Q fifth type information in the present application is generated in the PHY 301.
  • the Q fifth type information in the present application is delivered to the PHY 301 by the L2 layer.
  • the Q fifth type information in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that are in communication with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, and a transmitter/receiver 454 And antenna 452.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between the logical and transport channels Multiplexing, and allocation of radio resources to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer). Transmit processor 416 performs encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, as well as based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shifting) Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM).
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook based precoding and non-codebook based precoding, and beamforming processing to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to subcarriers, multiplexes with reference signals (e.g., pilots) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then transmits an analog precoding/beamforming operation to the time domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multicarrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • each receiver 454 receives a signal through its respective antenna 452. Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream for providing to the receive processor 456.
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer. Multi-antenna receive processor 458 performs a receive analog precoding/beamforming operation on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multicarrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, wherein the reference signal is to be used for channel estimation, and the data signal is recovered by multi-antenna detection in the multi-antenna receive processor 458 to
  • the second communication device 450 is any spatial stream of destinations.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and a soft decision is generated.
  • the receive processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 can be referred to as a computer readable medium.
  • the controller/processor 459 provides demultiplexing, packet reassembly, decryption, header decompression between the transport and logical channels. Control signal processing to recover upper layer packets from the core network. The upper layer packet is then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the base station in the present application includes the first communication device 410, and the first node in the present application includes the second communication device 450.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the second communication device 450 comprises: at least one controller/processor; the at least one controller/processor is responsible for using an acknowledgment (ACK) and/or a negative acknowledgment (NACK)
  • ACK acknowledgment
  • NACK negative acknowledgment
  • the protocol performs error detection to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be At least one processor is used together.
  • the second communication device 450 means at least: receiving the target specific signal in the present application; determining whether the target receiving quality is within the coverage according to the target receiving quality of the target specific signal.
  • the second communication device 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: receiving the present a target specific signal in the application; determining whether the target reception quality of the target specific signal is within the coverage.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be At least one processor is used together.
  • the second communication device 450 is configured to: at least: receive P first type wireless signals in the application, where P is a positive integer; each of the first information of the Q first types of information in the application is A spatial reception parameter of a first type of wireless signal of the P first type of wireless signals is related.
  • the second communication device 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: receiving the present P first type of wireless signals in the application, the P is a positive integer; each of the first information of the Q first type information in the application and one of the P first type wireless signals The spatial reception parameters of a class-like wireless signal are related.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be At least one processor is used together.
  • the first communication device 410 means at least: transmitting the target specific signal in the present application; determining whether the target reception quality is within the coverage according to the target reception quality of the target specific signal.
  • the first communication device 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: transmitting the present a target specific signal in the application; determining whether the target reception quality of the target specific signal is within the coverage.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be At least one processor is used together.
  • the first communication device 410 is configured to: at least: transmit P first type radio signals in the application, where P is a positive integer; each of the first information in the Q first type information in the application is A spatial reception parameter of a first type of wireless signal of the P first type of wireless signals is related.
  • the first communication device 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: transmitting the present P first type of wireless signals in the application, the P is a positive integer; each of the first information of the Q first type information in the application and one of the P first type wireless signals The spatial reception parameters of a class-like wireless signal are related.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the target specific signal in the present application;
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data
  • the sources 467 ⁇ is used to receive the P first type wireless signals in the present application
  • At least one of the processor 471, the controller/processor 475, the memory 476 ⁇ is used to transmit the P first type wireless signals in the present application.
  • a data source 467 is used to provide an upper layer data packet to the controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410.
  • the transmit processor 468 performs modulation mapping, channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook based precoding and non-codebook based precoding, and beamforming processing, followed by transmission.
  • Processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via transmitter 454 after an analog pre-coding/beamforming operation in multi-antenna transmit processor 457.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a stream of radio frequency symbols and provides it to the antenna 452.
  • the function at the first communication device 410 is similar to that from the first communication device 410 to the second communication device 450
  • Each receiver 418 receives a radio frequency signal through its respective antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to a multi-antenna receive processor 472 and a receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 collectively implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer function. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 can be referred to as a computer readable medium.
  • the controller/processor 475 provides demultiplexing, packet reassembly, decryption, header decompression between the transport and logical channels. Control signal processing to recover upper layer data packets from the UE 450. Upper layer data packets from controller/processor 475 can be provided to the core network.
  • the first node in the present application includes the second communication device 450, and the second node in the present application includes the first communication device 410.
  • the first node and the second node are user equipments, respectively.
  • the first node is a relay node
  • the second node is a user equipment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be At least one processor is used together.
  • the second communication device 450 is configured to: at least determine that the second communication device 450 is within the coverage in the present application; and send the Q second type wireless signals in the application; the Q second type wireless signals respectively include The Q first type information; whether each of the Q second type wireless signals can be selected as a synchronization reference related to the included first type information; One type of information is generated independently; the Q is a positive integer greater than one.
  • the second communication device 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: determining The second communication device 450 is within the coverage of the present application; the Q second type wireless signals in the present application are transmitted; the Q second type wireless signals respectively include the Q first type information; Whether each of the second type of wireless signals can be selected as a synchronization reference related to the included first type of information; the Q first type information is independently generated; the Q is greater than one A positive integer.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be At least one processor is used together.
  • the second communication device 450 is configured to: at least determine that the second communication device 450 is within the coverage in the present application; and send the Q second type wireless signals in the application; the Q second type wireless signals respectively include The Q first type information; whether each of the Q second type wireless signals can be selected as a synchronization reference related to the included first type information; Whether a type of information is independently generated is related to whether the first node is within coverage; the Q is a positive integer greater than one.
  • the second communication device 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: determining The second communication device 450 is within the coverage of the present application; the Q second type wireless signals in the present application are transmitted; the Q second type wireless signals respectively include the Q first type information; Whether each of the second type of wireless signals can be selected as a synchronization reference related to the included first type of information; whether the Q first type information is independently generated and whether the first node is Within the coverage; the Q is a positive integer greater than one.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be At least one processor is used together.
  • the first communication device 410 is configured to: at least: receive Q0 second type wireless signals in the Q second type wireless signals in the application; the Q second type wireless signals respectively include Q first type information; Whether each of the Q0 second type wireless signals can be selected as a synchronization reference is related to the included first type information; the Q first type information is independently generated, or Whether the Q first type information is independently generated and whether the sender of the Q second type wireless signals is in coverage; the Q is a positive integer greater than 1, and the Q0 is not greater than the positive of the Q Integer.
  • the first communication device 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: receiving the present Q0 second type wireless signals among the Q second type wireless signals in the application; the Q second type wireless signals respectively include Q first type information; each of the Q0 second type wireless signals Whether the second type of wireless signal can be selected as a synchronization reference is related to the included first type of information; the Q first type information is independently generated, or whether the Q first type information is independently generated and Whether the sender of the Q second type wireless signals is within the coverage; the Q is a positive integer greater than 1, and the Q0 is a positive integer not greater than the Q.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to determine that the second communication device 450 is within the coverage of the present application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit the Q second type wireless signals in the present application;
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ One of the signals is used to receive the Q0 second type wireless signals of the Q second type wireless signals in the present application.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 ⁇ One is used to select a synchronization reference.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to one embodiment of the present application, as shown in FIG.
  • the base station N1 is a maintenance base station of the serving cell of the first node U2
  • the second node U3 is a communication node transmitted by the first node U2 via the sub-link.
  • the steps in the dashed box identified as F0, the steps in the dashed box identified as F1 and the steps in the dashed box identified as F2 are optional, respectively.
  • the base station N1 the target specific signal transmitted in step S11; P first type of wireless transmission signal in step S12.
  • the target specific signal For the first node U2, received at step S21, the target specific signal; receiving P first type of wireless signal in step S22; step S23 it is determined in the first node is within the coverage U2; Q independently generated in a first step S24 One type of information; Q second type wireless signals are transmitted in step S25.
  • step S31 For the second point U3, receiving a second type of wireless Q signal Q0 of the second type of wireless signal in step S31; synchronization reference selected in step S32.
  • the Q second type wireless signals respectively include Q first type information; and the Q second type wireless signals Whether each of the second type of wireless signals can be selected as a synchronization reference is related to the included first type of information; the Q first type information is independently generated, or whether the Q first type information is independently generated Relating to whether the first node is in coverage; the Q is a positive integer greater than 1; each of the first information of the Q first types of information and the P first type of wireless signals The spatial reception parameter of a first type of wireless signal is related; said P is a positive integer.
  • the Q first class information is generated independently.
  • the Q first type information is not generated independently.
  • the steps in block F0 in FIG. 5 do not exist.
  • the steps in block F1 of Figure 5 exist if the U2 is out of coverage.
  • At least one of the P first type of wireless signals is used by the first node to determine a transmission timing of the Q second type wireless signals.
  • a reception timing of at least one of the P first type wireless signals is used by the first node to determine a transmission timing of the Q second type wireless signals.
  • the sender of the P first type wireless signals includes a GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the sender of the P first type radio signals includes a cell.
  • the sender of the P first type radio signals includes a serving cell.
  • the sender of the P first type radio signals includes a primary cell (PCell).
  • PCell primary cell
  • the sender of the P first type radio signals includes a secondary cell (SCell).
  • SCell secondary cell
  • the sender of the P first type radio signals includes a SyncRef UE (Synchronization Reference User Equipment).
  • SyncRef UE Synchronization Reference User Equipment
  • the sender of the P first type of wireless signals includes an In-Coverage SynRef UE.
  • the sender of the P first type of wireless signals includes an Out-of-Coverage SyncRef UE.
  • one of the P first type of wireless signals includes a SS (Synchronisation Signal).
  • one of the P first type of wireless signals includes a PSS (Primary Synchronisation Signal).
  • PSS Primary Synchronisation Signal
  • one of the P first type of wireless signals includes a secondary synchronisation signal (SSS).
  • SSS secondary synchronisation signal
  • one of the P first type of wireless signals includes a physical broadcast signal.
  • a first type of radio signal of the P first type radio signals includes a PBCH-DMRS (PBCH Demodulation Reference Signal).
  • PBCH-DMRS PBCH Demodulation Reference Signal
  • one of the P first type of wireless signals includes a SLSS (Sidelink Synchronisation Signal).
  • one of the P first type of wireless signals includes a PSSS (Primary Sidelink Synchronisation Signal).
  • PSSS Primary Sidelink Synchronisation Signal
  • one of the P first type of wireless signals includes a SSSS (Secondary Sidelink Synchronisation Signal).
  • SSSS Single Sidelink Synchronisation Signal
  • one of the P first type of wireless signals includes a SBS (Sidelink Broadcast Signal).
  • SBS Systemlink Broadcast Signal
  • one of the P first type of radio signals includes a PSBCH-DMRS (PSBCH Demodulation Reference Signal).
  • PSBCH-DMRS PSBCH Demodulation Reference Signal
  • one of the P first type of wireless signals includes a RS (Reference Signal).
  • one of the P first type of wireless signals includes a SSB (SS/PBCH block).
  • one of the P first type of wireless signals includes a DRS (Discovery Reference Signal).
  • DRS Digital Reference Signal
  • one of the P first type of wireless signals is transmitted on a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • one of the P first type of wireless signals is transmitted on an NPBCH (Narrowband PBCH).
  • NPBCH Narrowband PBCH
  • one of the P first type radio signals is transmitted on a SL-BCH (Sidelink Broadcast Channel).
  • SL-BCH Seglink Broadcast Channel
  • one of the P first type of radio signals is transmitted on a PSBCH (Physical Sidelink Broadcast Signal).
  • PSBCH Physical Sidelink Broadcast Signal
  • one of the P first type of radio signals is transmitted on a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • one of the P first type of radio signals is transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • one of the P first type of radio signals is transmitted on a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • one of the P first type radio signals is transmitted on a PSSCH (Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel
  • one of the P first type of radio signals is transmitted on a PSDCH (Physical Sidelink Discovery Channel).
  • PSDCH Physical Sidelink Discovery Channel
  • the first target wireless signal is a first type of wireless signal of the P first type of wireless signals.
  • the first target wireless signal includes a PCID (Physical Layer Cell Identity).
  • PCID Physical Layer Cell Identity
  • the first target wireless signal is a sequence.
  • the first target wireless signal comprises a first sequence.
  • the first sequence is a pseudo-random sequence.
  • the first sequence is a Gold sequence.
  • the first sequence is an M sequence.
  • the first sequence is a Zadeoff-Chu sequence.
  • the first sequence is used to generate the first target wireless signal.
  • the first target wireless signal is sequentially subjected to DFT (Discrete Fourier Transform), mapped to physical resources (Mapping to Physical Resources), and baseband signal (Baseband Signal). Generation), the output after modulation and upconversion.
  • DFT Discrete Fourier Transform
  • Mapping to Physical Resources Mapping to Physical Resources
  • Baseband Signal Baseband Signal
  • the first target wireless signal is an output that is sequentially filtered, modulated, and upconverted by the first sequence.
  • the first target wireless signal is an output after the first sequence is pre-coded, mapped to physical resources, baseband occurs, modulated, and upconverted.
  • the first target wireless signal is an output after the first sequence is modulated, DFT, precoded, mapped to at least one of physical resources, baseband signal generation, filtering, modulation, and upconversion. .
  • the first target wireless signal is a block of bits.
  • the first target wireless signal comprises a first block of bits, the first block of bits comprising a positive integer number of sequentially arranged bits.
  • the first bit block includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first bit block includes all or part of bits in a TB (Transport Block).
  • the first bit block includes all or part of bits in a CB (Code Block).
  • all or part of the bits of the first bit block are subjected to one-stage scrambling, and a block-level CRC (Cyclic Redundancy Check) attach, channel coding (Channel) Coding), Rate Matching, Secondary Scrambling, Modulation, Layer Mapping, Transform Precoding, Precoding, Mapping to Physical Resources
  • a block-level CRC Cyclic Redundancy Check
  • the first target wireless signal is first-stage scrambled by all or part of the bits of the first bit block, transport block level CRC attachment, segmentation, coding block level CRC attachment, channel Coding, rate matching, concatenation, secondary scrambling, modulation, layer mapping, spreading, transform precoding, precoding, mapping to physical resources, baseband signal generation, and at least modulation and upconversion One after the output.
  • the PCID is used to scramble the first target wireless signal.
  • Embodiment 6 exemplifies a flowchart for determining whether to generate Q first type information independently, as shown in FIG. 6, according to an embodiment of the present application.
  • Embodiment 6 if the first node is in coverage, the Q first type information is independently generated; if the first node is in coverage, the Q first type information is not Independently generated.
  • the Q first type information is independently generated, and any two of the Q first type information cannot be considered to be necessarily equal.
  • the Q first type information is independently generated, and the first type information of the Q first type information cannot be used to infer another one of the Q2 first type information.
  • the first type of information is independently generated, and the first type information of the Q first type information cannot be used to infer another one of the Q2 first type information. The first type of information.
  • the Q first type information is not independently generated, and the Q first type information is considered to be equal.
  • the Q first type information is not independently generated, and the first type information of the Q first type information can be used to infer another one of the Q first type information.
  • a first type of information is not independently generated, and the first type information of the Q first type information can be used to infer another one of the Q first type information.
  • the first node is in coverage, and the Q first type information is independently generated.
  • the first node is out of coverage, and the Q first type information is independently generated.
  • the first information is used to generate the second target wireless signal.
  • the first information is used to scramble the second target wireless signal.
  • the first information is used to generate the second sequence.
  • the first information is used to select the second sequence from a positive integer number of candidate sequences, the second sequence being one of the positive integer candidate sequences.
  • the first information is used to determine a SLSSID of the second target wireless signal.
  • the first information is used to generate an initial value of the second sequence.
  • the first information is used to generate a cyclic shift of the second sequence.
  • the first information is used to generate a sequence segment of the second sequence.
  • the first information is used to generate the second block of bits.
  • the second bit block includes the first information.
  • the first information is used to generate a CRC-Mask (Cyclic Redundancy Check Mask) of the second target wireless signal.
  • CRC-Mask Cyclic Redundancy Check Mask
  • the first information is used to select a CRC-Mask of the second target wireless signal from a positive integer number of candidate CRC-Masks, and the CRC-Mask of the second target wireless signal is the positive A candidate CRC-Mask in an integer number of candidate CRC-Masks.
  • the first information is used to generate a primary scrambling sequence of the second target wireless signal.
  • the first information is used to generate a secondary scrambling sequence of the second target wireless signal.
  • the first information is jointly indicated by any of the above fourteen embodiments.
  • Embodiment 7 illustrates a flow chart for selecting a synchronization reference, as shown in FIG. 7, in accordance with one embodiment of the present application.
  • the second node in the application receives Q0 second type wireless signals in the Q second type wireless signals; the Q second type wireless signals respectively include Q first type information; Whether each of the second type of wireless signals of the Q0 second type wireless signals can be selected as a synchronization reference is related to the included first type information; the Q first type information is independently generated; the Q is greater than A positive integer of 1, the Q0 being a positive integer not greater than the Q.
  • Q0 second type wireless signals of the Q second type wireless signals are received; the Q second type wireless signals respectively include Q first type information; the Q0 second type wireless Whether each of the second type of wireless signals in the signal can be selected as a synchronization reference is related to the included first type of information; whether the Q first type of information is independently generated and transmitted by the Q second type of wireless signals Whether the person is within the coverage; the Q is a positive integer greater than 1, and the Q0 is a positive integer not greater than the Q.
  • the sender of the Q second type of wireless signals is included in the first node in the present application.
  • whether any one of the Q0 second type wireless signals can be selected as a synchronization reference is related to the first type of information included in the any one of the second type of wireless signals.
  • the level of the synchronization reference of the second target wireless signal as the synchronization reference is the first synchronization level; otherwise the level of the second target wireless signal as the synchronization reference of the synchronization reference is The second synchronization level.
  • the level of the synchronization reference of the second target wireless signal as the synchronization reference is the first synchronization level; otherwise the second target wireless signal is used as the synchronization reference
  • the level of the synchronization reference is the second synchronization level.
  • the first information indicates that the first antenna port group corresponding to the second target wireless signal is related to at least one of the P first type wireless signals
  • Determining, by the second target wireless signal, the level of the synchronization reference of the synchronization reference is the first synchronization level; otherwise the second target wireless signal is used as a level of the synchronization reference of the synchronization reference Is the second synchronization level.
  • the second target wireless signal is The level of the synchronization reference of the synchronization reference is the first synchronization level; otherwise the level of the second target wireless signal as the synchronization reference of the synchronization reference is the second synchronization level .
  • a level of the second reference wireless signal as the synchronization reference of the synchronization reference is the first synchronization level; otherwise the second target wireless signal is used as the synchronization reference of the synchronization reference The level is the second synchronization level.
  • the second target wireless signal is The level of the synchronization reference of the synchronization reference is the first synchronization level; otherwise the level of the second target wireless signal as the synchronization reference of the synchronization reference is the second synchronization level.
  • the level of the synchronization reference of the second target wireless signal as the synchronization reference is the first synchronization level; otherwise the second target wireless signal is used as the synchronization reference
  • the level of the synchronization reference is the second synchronization level.
  • Embodiment 8 illustrates a schematic diagram of a time-frequency resource unit according to one embodiment of the present application, as shown in FIG.
  • a small dotted square represents RE (Resource Element), and a thick square represents a time-frequency resource unit.
  • the time-frequency resource unit occupies K subcarriers in the frequency domain, and occupies L multicarrier symbols (Symbol) in the time domain, and the K and the L are positive integers.
  • t 1 , t 2 , ..., t L represents the L Symbols, f 1 , f 2 , ..., f K represents the K Subcarriers.
  • the time-frequency resource unit occupies K subcarriers in the frequency domain, and occupies L multicarrier symbols (Symbols) in the time domain, where K and L are positive integers.
  • the K is equal to 12.
  • the K is equal to 72.
  • the K is equal to 127.
  • the K is equal to 240.
  • the L is equal to one.
  • the L is equal to two.
  • the L is no greater than 14.
  • any one of the L multi-carrier symbols is an FDMA (Frequency Division Multiple Access) symbol and an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • DFTS-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Multi-Carrier, filter bank multi-carrier
  • IFDMA Interleaved Frequency Division Multiple Access
  • the time-frequency resource unit is composed of R REs (Resource Element), and the R is a positive integer.
  • the time-frequency resource unit includes R REs (Resource Element), and the R is a positive integer.
  • any one of the R REs occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • a symbol duration of a multi-carrier symbol of one of the R REs is inversely proportional to a sub-carrier spacing (SubCarrier Spacing) of the one RE, and a multi-carrier symbol of the one RE
  • the symbol length is the length of time occupied by the multi-carrier symbol of the one RE in the time domain
  • the sub-carrier spacing of the one RE is the frequency width occupied by the sub-carrier of the one RE in the frequency domain.
  • the unit of the subcarrier spacing of the one RE is Hz (Hertz).
  • the unit of subcarrier spacing of the one RE is kHz (Kilohertz, kilohertz).
  • the unit of subcarrier spacing of the one RE is MHz (Megahertz).
  • the unit of symbol length of the multicarrier symbol of the one RE is a sampling point.
  • the unit of the symbol length of the multicarrier symbol of the one RE is microseconds (us).
  • the unit of the symbol length of the multicarrier symbol of the one RE is milliseconds (ms).
  • the smaller the subcarrier spacing of the one RE the longer the symbol length of the corresponding multi-carrier symbol of the one RE.
  • the subcarrier spacing of the one RE is at least one of 1.25 kHz, 2.5 kHz, 5 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz.
  • the product of the K of the time-frequency resource unit and the L is not less than the R.
  • the time-frequency resource unit does not include an RE that is allocated to a GP (Guard Period).
  • the time-frequency resource unit does not include an RE that is allocated to an RS (Reference Signal).
  • the time-frequency resource unit does not include an RE that is assigned to the SLSS.
  • the time-frequency resource unit does not include an RE that is allocated to the PSSS.
  • the time-frequency resource unit does not include an RE that is assigned to the SSSS.
  • the time-frequency resource unit does not include an RE that is allocated to the PSBCH.
  • the time-frequency resource unit does not include an RE that is allocated to the PSBCH-DMRS.
  • the time-frequency resource unit does not include an RE that is allocated to the PRACH.
  • the time-frequency resource unit does not include an RE that is allocated to NPRACH.
  • the time-frequency resource unit does not include an RE that is allocated to the PUCCH.
  • the time-frequency resource unit does not include an RE that is allocated to the SPUCCH.
  • the time-frequency resource unit does not include an RE that is allocated to the PUSCH.
  • the time-frequency resource unit does not include an RE that is allocated to the NPUSCH.
  • the time-frequency resource unit includes a positive integer number of RBs (Resource Blocks).
  • the time-frequency resource unit belongs to one RB.
  • the time-frequency resource unit is equal to one RB in the frequency domain.
  • the time-frequency resource unit includes 6 RBs in the frequency domain.
  • the time-frequency resource unit includes 20 RBs in the frequency domain.
  • the time-frequency resource unit includes a positive integer number of PRBs (Physical Resource Blocks).
  • the time-frequency resource unit belongs to one PRB.
  • the time-frequency resource unit is equal to one PRB in the frequency domain.
  • the time-frequency resource unit includes a positive integer number of VRBs (Virtual Resource Blocks).
  • the time-frequency resource unit belongs to one VRB.
  • the time-frequency resource unit is equal to one VRB in the frequency domain.
  • the time-frequency resource unit includes a positive integer number of PRB pairs (Physical Resource Block Pairs).
  • the time-frequency resource unit belongs to one PRB pair.
  • the time-frequency resource unit is equal to one PRB pair in the frequency domain.
  • the time-frequency resource unit includes a positive integer number of frames (radio frames).
  • the time-frequency resource unit belongs to a Frame.
  • the time-frequency resource unit is equal to one Frame in the time domain.
  • the time-frequency resource unit includes a positive integer number of subframes.
  • the time-frequency resource unit belongs to a Subframe.
  • the time-frequency resource unit is equal to one Subframe in the time domain.
  • the time-frequency resource unit includes a positive integer number of slots.
  • the time-frequency resource unit belongs to one slot.
  • the time-frequency resource unit is equal to one slot in the time domain.
  • the time-frequency resource unit includes a positive integer number of Symbols.
  • the time-frequency resource unit belongs to one Symbol.
  • the time-frequency resource unit is equal to one Symbol in the time domain.
  • the time-frequency resource unit belongs to a PRACH.
  • the time-frequency resource unit belongs to NPRACH.
  • the time-frequency resource unit belongs to a PUSCH.
  • the time-frequency resource unit belongs to an NPUSCH.
  • the time-frequency resource unit belongs to a PUCCH.
  • the time-frequency resource unit belongs to SPUCCH.
  • the time-frequency resource unit includes an RE that is allocated to the RS.
  • the time-frequency resource unit includes an RE that is assigned to the GP.
  • Embodiment 9 illustrates a schematic diagram of a time-frequency resource unit occupied by a second time-frequency resource according to an embodiment of the present application, as shown in FIG.
  • the second target wireless signal in the present application includes the second sequence in the present application and the second bit block in the present application, and the solid line box of the twill pad represents the second sequence.
  • the solid line box filled with dots represents the second bit block;
  • the second target wireless signal in the present application includes the first subsequence in the present application, the second subsequence in the present application and the present application
  • the second bit block, the solid line box filled with the twill represents the first subsequence
  • the solid line box filled with the oblique square represents the second subsequence
  • the solid line box filled with the dot represents the second bit block;
  • the frame represents a second time-frequency resource, and the second target wireless signal is transmitted on the second time-frequency resource.
  • the second target wireless signal is transmitted on the second time-frequency resource.
  • the second time-frequency resource includes S1 of the time-frequency resource units, and the S1 is a positive integer.
  • the second time-frequency resource is composed of S1 of the time-frequency resource units, and the S1 is a positive integer.
  • the S1 is equal to 12.
  • the S1 is equal to 13.
  • At least two of the time-frequency resource units included in the second time-frequency resource are TDM (Time Division Multiplexing).
  • At least two of the time-frequency resource units included in the second time-frequency resource are FDM (Frequency Division Multiplexing).
  • the second target wireless signal includes S2 second-type sub-radio signals, and any one of the S2 second-type sub-radio signals includes a PSSS, an SSSS, an SBS, and a PSBCH. At least one of -DMRS, the S2 being a positive integer.
  • the second time-frequency resource includes S2 second-type sub-time-frequency resources, and the S2 second-type sub-radio signals are respectively sent on the S2 second-type sub-time-frequency resources.
  • the S2 is equal to two.
  • the S2 is equal to four.
  • At least two of the second type of sub-time-frequency resources included in the second time-frequency resource are TDM.
  • At least two of the second types of sub-time-frequency resources included in the second time-frequency resource are FDM.
  • any one of the S2 second-class sub-time-frequency resources includes a positive integer number of the time-frequency resource units.
  • At least one second type of sub-time-frequency resources of the S2 second-class sub-time-frequency resources includes two of the time-frequency resource units.
  • At least one second type of sub-time-frequency resources of the S2 second-class sub-time-frequency resources includes three of the time-frequency resource units.
  • At least one second type of sub-time-frequency resources of the S2 second-class sub-time-frequency resources includes four of the time-frequency resource units.
  • At least one second type of sub-time-frequency resources of the S2 second-class sub-time-frequency resources includes six of the time-frequency resource units.
  • the number of the time-frequency resource units included in at least two second-class sub-time-frequency resources of the S2 second-class sub-time-frequency resources is different.
  • At least two adjacent time-frequency resource units included in at least one of the S2 second-class sub-time-frequency resources are consecutive in the time domain.
  • At least two adjacent time-frequency resource units included in at least one of the S2 second-class sub-time-frequency resources are discontinuous in the time domain.
  • At least two adjacent ones of the S2 second-class sub-time-frequency resources are separated by at least two adjacent time-frequency resource units in the time domain.
  • One of the time-frequency resource units is selected from the S2 second-class sub-time-frequency resources.
  • At least two adjacent ones of the S2 second-class sub-time-frequency resources are separated by at least two adjacent time-frequency resource units in the time domain.
  • a multi-carrier symbol is provided.
  • At least two adjacent time-frequency resource units included in at least one of the S2 second-class sub-time-frequency resources are consecutive in the frequency domain.
  • At least two adjacent time-frequency resource units included in at least one second-type sub-time-frequency resource of the S2 second-class sub-time-frequency resources are discontinuous in the frequency domain.
  • At least two adjacent time-frequency resource units included in at least one second-type sub-time-frequency resource of the S2 second-class sub-time-frequency resources are spaced apart in the frequency domain at least One of the time-frequency resource units.
  • At least two adjacent time-frequency resource units included in at least one second-type sub-time-frequency resource of the S2 second-class sub-time-frequency resources are spaced apart in the frequency domain at least One subcarrier.
  • Embodiment 10 illustrates a schematic diagram of the relationship between Q second type wireless signals in accordance with one embodiment of the present application, as shown in FIG.
  • a solid-line box filled with a square represents a second-type time-frequency resource of the Q second-class time-frequency resources; the Q second-class wireless signals in the present application are respectively in the Q is sent on the second type of time-frequency resources.
  • the Q second type time-frequency resources include a second type of time-frequency resource #0, a second type of time-frequency resource #1, ..., and a second type of time-frequency resource #(Q-1);
  • the Q second type time-frequency resources TDM (Time-Division Mulitplexing);
  • the Q second-class time-frequency resources are both TDM and FDM.
  • the Q second type radio signals are respectively sent on Q second type time-frequency resources, and the second time-frequency resource is a second type of Q second-class time-frequency resources. Frequency resources.
  • At least two of the Q second type of time-frequency resources are TDM.
  • At least two of the Q second type of time-frequency resources are FDM.
  • At least two of the Q second type of time-frequency resources are TDM and are also FDM.
  • the P first type radio signals are respectively sent on P first type time-frequency resources, and the first time-frequency resource is one of the P first-type time-frequency resources. Frequency resources.
  • At least two of the P first type time-frequency resources are TDM.
  • At least two of the P first type time-frequency resources are FDM.
  • At least two of the P first type time-frequency resources are TDM and are also FDM.
  • the first time-frequency resource includes S3 time-frequency resource units, and the S3 is a positive integer.
  • the first time-frequency resource is composed of S3 time-frequency resource units, and the S3 is a positive integer.
  • At least two of the time-frequency resource units included in the first time-frequency resource are TDM.
  • At least two of the time-frequency resource units included in the first time-frequency resource are FDM.
  • Embodiment 11 illustrates a schematic diagram of the relationship between an antenna port and a first type of antenna port group according to an embodiment of the present application, as shown in FIG.
  • a first type of antenna port group includes a positive integer number of antenna ports; one antenna port is formed by superposition of antennas in a positive integer number of antenna groups by antenna virtualization; one antenna group includes a positive integer root antenna.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • a given antenna port is one of the positive integer number of antenna ports; a mapping coefficient of all antennas within a positive integer number of antenna groups included in the given antenna port to the given antenna port constitutes the given The beamforming vector corresponding to the antenna port.
  • the mapping coefficients of the plurality of antennas included in any given antenna group included in a given integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the diagonal arrangement of the analog beamforming vectors corresponding to a positive integer number of antenna groups included in the given antenna port constitutes an analog beam shaping matrix corresponding to the given antenna port.
  • the mapping coefficients of a positive integer number of antenna groups included in the given antenna port to the given antenna port constitute a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beam shaping matrix and the digital beam shaping vector corresponding to the given antenna port.
  • the first node in the present application receives P first type wireless signals, and the P is a positive integer; each of the first information of the Q first types of information and the P The spatial reception parameters of a first type of wireless signal of the first type of wireless signals are related.
  • the Q second type radio signals are respectively sent by using Q spatial transmission parameters (Spatial Tx Parameter).
  • each of the spatial transmission parameters in the Q spatial transmission parameters includes an antenna node (Antenna Port), a transmission antenna port group, a transmission beam, an analog beamforming matrix, and a transmission simulation.
  • An antenna node Antenna Port
  • a transmission antenna port group An antenna node
  • a transmission beam Antenna Port
  • a transmission beam An analog beamforming matrix
  • a transmission simulation One or more of a beamforming vector, a transmit beamforming vector, a transmission spatial filtering, and a spatial domain transmission filter.
  • At least two of the Q second type wireless signals have different spatial transmission parameters corresponding to the second type of wireless signals.
  • a partial spatial transmission parameter used by one of the Q second type wireless signals and a second wireless signal of the second second type of wireless signals are used.
  • the part of the space is sent differently.
  • a partial spatial transmission parameter used by one of the Q second type wireless signals and a second wireless signal of the second second type of wireless signals are used.
  • the partial space sends the same parameters.
  • At least two of the Q second type of wireless signals are not QCL.
  • all or part of the large-scale properties of the second type of wireless signals of the Q second-type wireless signals cannot be used to infer the Q second-class wireless signals. All or part of the large-scale characteristics of another second type of wireless signal.
  • the large-scale characteristics include Delay spread, Doppler spread, Doppler shift, Path loss, and Average gain. ), one or more of Average Delay, Spatial Rx parameters, and Spatial Tx parameters.
  • the QCL parameter of one of the Q second type of wireless signals cannot be used to infer another second type of wireless signal of the Q second type of wireless signals.
  • QCL parameters
  • the QCL parameters include Delay spread, Doppler spread, Doppler shift, Path loss, Average gain, and average.
  • all or part of the small-scale channel parameters experienced by one of the Q second-class wireless signals cannot be used to infer another of the Q second-class wireless signals. All or part of the small-scale channel parameters experienced by a second type of wireless signal.
  • the small-scale channel parameters include a CIR (Channel Impulse Response), a PMI (Precoding Matrix Indicator), a CQI (Channel Quality Indicator), and a RI (Rank Indicator).
  • CIR Channel Impulse Response
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • the Q second type wireless signals are respectively sent on the Q first type antenna port groups.
  • the second target wireless signal is transmitted on a first antenna port group
  • the first antenna port group is a first type antenna port group in the Q first type antenna port groups.
  • each of the first antenna-type port groups of the Q first-class antenna port groups includes a positive integer number of antenna ports.
  • each of the first antenna-type port groups of the Q first-class antenna port groups includes only one antenna port.
  • At least two of the first antenna-type port groups of the Q first-class antenna port groups include different numbers of antenna ports.
  • one of the positive integer antenna ports is formed by superposing antennas in a positive integer number of antenna groups through antenna virtualization.
  • one of the positive integer groups of antenna groups includes a positive integer antenna.
  • one of the positive integer antenna groups is connected to the baseband processor through an RF (Radio Frequency) Chain, and different antenna groups in the positive integer antenna group are different.
  • RF Chain Radio Frequency
  • mapping coefficients of all antennas within a positive integer number of antenna groups included in a given antenna port to the given antenna port constitute a beamforming vector corresponding to the given antenna port.
  • the mapping coefficient of a positive integer antenna included in any given antenna group included in a given integer antenna group to a given antenna port of the given antenna port constitutes the given antenna group.
  • Analog beamforming vector
  • the diagonal arrangement of the analog beamforming vectors corresponding to a positive integer number of antenna groups included in the given antenna port constitutes an analog beam shaping matrix corresponding to the given antenna port.
  • a mapping system comprising a positive integer number of antenna groups to a given antenna port of a given antenna port constitutes a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beam shaping matrix and the digital beamforming vector corresponding to the given antenna port.
  • the different antenna ports included in the first type of antenna port group are composed of the same antenna group.
  • the different antenna ports included in the first type of antenna port group correspond to different beamforming vectors.
  • the first antenna port group of the first type includes only the one antenna group, that is, one RF chain.
  • the analog beam shaping matrix corresponding to the antenna port included in the first type of antenna port is reduced to an analog beamforming vector.
  • the digital beamforming vector corresponding to the antenna port included in the first type of antenna port is reduced to a scalar.
  • the beamforming vector corresponding to the antenna port included in the first type of antenna port is equal to the analog beamforming vector corresponding to the antenna port included in the first antenna port.
  • the first type of antenna port group of the day includes one antenna port.
  • the one first type of antenna port group includes a positive integer number of antenna groups, that is, multiple RF chains.
  • the one first type of antenna port group includes a positive integer number of antenna ports.
  • the different antenna ports included in the first type of antenna port group correspond to the same analog beam shaping matrix.
  • the different antenna ports included in the first type of antenna port group correspond to different digital beamforming vectors.
  • the antenna ports included in the at least two first-type antenna port groups included in the Q first-class antenna port groups correspond to different analog beam shaping matrices.
  • the one antenna port is an antenna port.
  • the small-scale channel parameters experienced by a wireless signal transmitted from the one antenna port may infer the small-scale channel experienced by another wireless signal transmitted from the one antenna port parameter.
  • any two antenna ports included in the first type of antenna port group are QCL.
  • the fact that one antenna port and the other antenna port are QCL means that all or part of the large-scale characteristic of the wireless signal that can be transmitted from the one antenna port is inferred to occur on the other antenna port. All or part of the large-scale characteristics of the wireless signal.
  • the P first type wireless signals are respectively received by P spatial receiving parameters (Spatial Tx Parameter).
  • each of the P spatial receiving parameters includes a receiving beam, an analog beamforming matrix, an analog beamforming vector, a receiving beamforming vector, and a receiving space.
  • One or more of a spatial filter and a spatial domain reception filter is included in each of the P spatial receiving parameters.
  • At least two of the P first type wireless signals are not QCL.
  • all or part of the large-scale properties of the first type of wireless signals of the P first-type wireless signals cannot be used to infer the P first-class wireless signals. All or part of the large-scale characteristics of another first type of wireless signal.
  • a QCL parameter of one of the P first type of wireless signals cannot be used to infer another first type of wireless signal of the P first type of wireless signals.
  • QCL parameters are used.
  • all or part of the small-scale channel parameters experienced by one of the Q second-class wireless signals cannot be used to infer another of the Q second-class wireless signals. All or part of the small-scale channel parameters experienced by a second type of wireless signal.
  • the first information is used to indicate whether the one spatial transmission parameter corresponding to the second target wireless signal is related to at least one of the P first type wireless signals. .
  • the first information is used to indicate whether the one spatial transmission parameter corresponding to the second target wireless signal corresponds to at least one of the P first type wireless signals.
  • the one of the spatial receiving parameters is related.
  • the one spatial transmission parameter is related to the one spatial reception parameter, that is, the one spatial transmission parameter includes a transmission beam that is opposite to a reception beam transmission direction included by the one spatial reception parameter.
  • the one spatial transmission parameter is related to the one spatial receiving parameter, where the one spatial transmission parameter includes a transmitting analog beam shaping matrix and the receiving spatial beam shaping included by the one spatial receiving parameter.
  • the matrix is the same.
  • the one spatial transmission parameter is related to the one spatial reception parameter, wherein the one spatial transmission parameter includes a transmission analog beam shaping matrix that is a received analog beam shaping included in the one spatial receiving parameter.
  • the inverse matrix of the matrix is a transmission analog beam shaping matrix that is a received analog beam shaping included in the one spatial receiving parameter.
  • the one spatial transmission parameter is related to the one spatial reception parameter, where the one spatial transmission parameter includes a transmission analog beam shaping vector and the received spatial beam shaping included in the one spatial receiving parameter.
  • the vectors are the same.
  • the one spatial transmission parameter is related to the one spatial reception parameter, that is, the one of the spatial transmission parameters includes a transmission analog beam shaping vector, which is a received analog beam shaping included in the one spatial receiving parameter.
  • the inverse vector of the vector is a transmission analog beam shaping vector, which is a received analog beam shaping included in the one spatial receiving parameter.
  • the one spatial transmission parameter is related to the one spatial reception parameter, that is, the one spatial transmission parameter includes a transmission spatial filtering that is the same as the reception spatial filtering included by the one spatial reception parameter.
  • the first information is used to indicate that the first antenna port group corresponding to the second target wireless signal is related to at least one first type wireless signal of the P first type wireless signals. .
  • the first information is used to indicate whether the first antenna port group is associated with at least one of the P first type of wireless signals.
  • the first information is used to indicate whether the first radio port group is associated with the one spatial reception corresponding to at least one of the P first type radio signals parameter.
  • the first information is used to indicate whether the second time-frequency resource is related to at least one of the P first-type wireless signals.
  • the first information is used to indicate whether the second time-frequency resource and the one first class occupied by at least one of the P first-type wireless signals are occupied by the first type of wireless signal. Time-frequency resource association.
  • a spatial transmission parameter used by the wireless signal transmitted on the second time-frequency resource is related to at least one spatial reception parameter of the P spatial reception parameters
  • the one spatial reception parameter is used.
  • the first target wireless signal is a first type of wireless signal of the P first type of wireless signals
  • the second time-frequency resource is associated with the first target wireless signal.
  • the first target radio signal is transmitted on a first type of time-frequency resource of the P first-type time-frequency resources, and the second time-frequency resource is A first type of time-frequency resource association.
  • each of the first information of the Q first types of information indicates whether a corresponding first type of antenna port group is associated with at least one of the P first type of wireless signals. wireless signal.
  • the first antenna port group is any one of the Q first type antenna port groups.
  • the first antenna port group is associated with at least one of the P first type of wireless signals, the first antenna is selected by the first antenna.
  • the first type of information sent by the port group indicates the identity of the sender of the P first type of wireless signals.
  • the first of the Q first type information is the first The first type of information sent by the antenna port group is set to the default value.
  • the identifier of the sender of the P first type wireless signals is a non-negative integer.
  • the identifier of the sender of the P first type radio signals is a PCI (Physical Cell Identifier).
  • the identifier of the sender of the P first type radio signals is an integer not less than 0 and not more than 1007.
  • the default value is fixed (ie, not configurable).
  • the default value is configurable.
  • the first node receives the P first type radio signals by using P spatial receiving parameters respectively; if at least one antenna port in the first antenna port group is associated to the P spaces Receiving at least one spatial reception parameter of the parameter, the first antenna port group being associated to at least one of the P first type of wireless signals; otherwise the first antenna port group is not associated To any of the P first type of wireless signals.
  • the first node receives the P first type wireless signals by using P spatial receiving parameters respectively; if any one of the first antenna port groups is not associated with the P Any one of the spatial reception parameters, the first antenna port group is not associated with at least one of the P first type of wireless signals; otherwise the first antenna port group Associated with at least one of the P first type of wireless signals.
  • the first node receives the P first type wireless signals by using P spatial receiving parameters respectively; if each antenna port in the first antenna port group is associated with the P spatial receiving At least one of the parameters receiving parameters, the first set of antenna ports being associated to at least one of the P first type of wireless signals; otherwise the first set of antenna ports is not associated Any one of the P first type wireless signals.
  • the transmit beam corresponding to the one antenna port is spatially correlated with the receive beam corresponding to a spatial receive parameter
  • the one antenna port is associated with the one spatial receive parameter; otherwise the one The antenna port is not associated with the one spatial receive parameter.
  • a beamforming vector for generating an antenna port is the same as a beamforming vector included in a spatial receiving parameter, the one antenna port is associated with the one spatial receiving parameter; otherwise An antenna port is not associated with the one spatial receive parameter.
  • the beamforming vector used to generate one antenna port has a correlation with a beamforming vector included in a spatial receiving parameter that is greater than a certain threshold, the one antenna port is associated with the one spatial reception a parameter; otherwise the one antenna port is not associated with the one spatial receive parameter; the particular threshold is greater than zero and no greater than one.
  • the first vector is used to generate one antenna port
  • the second vector is used to generate a spatial reception parameter; if the second vector is used to generate another antenna port, and the one antenna port is opposite to the other
  • the antenna ports are spatially related, the one antenna port being associated to the one spatial receive parameter, otherwise the one antenna port is not associated to the one spatial receive parameter.
  • the one antenna port is spaced with the other antenna port. related.
  • the one antenna port is spatially related to the other antenna port.
  • the one antenna port is spatially related to the other antenna port.
  • the one antenna port is spatially related to the other antenna port.
  • the large scale characteristic includes a maximum multipath delay.
  • the large scale characteristic includes a maximum Doppler shift.
  • the beamforming vector comprises a vector for generating an analog beam.
  • the beamforming vector comprises a vector for generating a digital beam.
  • Embodiment 12 illustrates a first type of information, a relationship between a second information and a second type of wireless signal, as shown in FIG. 12, in accordance with an embodiment of the present application.
  • each of the Q second type of wireless signals includes second information, the second information being used to indicate whether the first node is within coverage.
  • the second information included in any two of the Q second type wireless signals is the same.
  • the second information includes one of TRUE and FALSE.
  • the second information is TRUE, it is used to indicate that the first node is located within the coverage.
  • the second information is FALSE, it is used to indicate that the first node is outside the coverage.
  • the second information includes one of a cell coverage, a GNSS coverage, and an outer coverage.
  • the second information is used to generate the second target wireless signal.
  • the second information is used to scramble the second target wireless signal.
  • the second information is used to generate the second sequence.
  • the second information is used to generate the second block of bits.
  • the second bit block includes the second information.
  • each of the Q second type wireless signals includes third information, and the third information is used to indicate a sender of the P first type wireless signals. .
  • the third information included in any two of the Q second type wireless signals is the same.
  • the third information includes a GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the third information includes a cell.
  • the third information includes a serving cell.
  • the third information includes a primary cell (PCell).
  • PCell primary cell
  • the third information includes a secondary cell (SCell).
  • SCell secondary cell
  • the third information includes a Neighboring Cell.
  • the third information comprises a base station.
  • the third information comprises an E-UTRAN base station.
  • the third information comprises an NR base station.
  • the third information includes a UE (User Equipment).
  • UE User Equipment
  • the third information includes a SyncRef UE (Synchronization Reference User Equipment).
  • the SyncRef UE means that a user equipment is configured for the synchronization reference.
  • the third information includes an In-Coverage SynRef UE.
  • the third information includes an Out-of-Coverage SyncRef UE.
  • the third information includes one of the P first type of wireless signals.
  • the third information includes a SyncRefBeam (Synchronization Reference Beam).
  • SyncRefBeam Synchronization Reference Beam
  • the SyncRefBeam is a first type of wireless signal of the P first type of wireless signals, and the one spatial receiving parameter is used for the one first type of wireless signal.
  • the one spatial reception parameter is configured for the synchronization reference.
  • the third information includes a SyncRefResource (Synchronization Reference Resource), and the SyncRefResource is sent on a first type of time-frequency resource of the P first-type time-frequency resources. signal.
  • a SyncRefResource Synchronization Reference Resource
  • the SyncRefResource refers to a first type of time-frequency resource configured for the synchronization reference.
  • the P first type SyncRefResources respectively include the P first type time-frequency resources
  • the third information includes a first type SyncRefResource of the P first types SyncRefResource.
  • the P first type SyncRefResources belong to the P first type time-frequency resources
  • the third information includes a first type SyncRefResource of the P first types SyncRefResource.
  • the P first type wireless signals are respectively transmitted on the P first type SyncRefResources.
  • the third information is used to determine a SLSSID of the second target wireless signal.
  • the SLSSID of the second target wireless signal is equal to the first specific value.
  • the first specific value is zero.
  • the third information is used to indicate a SyncRef UE, if the SLSSID of the P first type wireless signals is equal to the first specific value, the SLSSID of the second target wireless signal is equal to the first specific value.
  • J1 first class identifiers are used to generate J1 first class PSSS and J1 first class SSSS, respectively, and J1 is a positive integer.
  • any one of the J1 first class identifiers is a non-negative integer.
  • any two of the J1 first-class PSSSs are the same, and any two of the J1 first-type SSSSs are different.
  • the SLSSID of the second target wireless signal is equal to one of the J1 first class identifiers.
  • the one first class identifier is a non-negative integer from 0 to 167.
  • J2 second class identifiers are used to generate J2 second class PSSS and J2 second class SSSS, respectively, and J2 is a positive integer.
  • any one of the J2 second class identifiers is a non-negative integer.
  • any two of the J2 second-type PSSSs are the same, and any two of the J2 second-type SSSSs are different.
  • any one of the J1 first type PSSSs is different from any one of the J2 second type PSSSs.
  • any one of the J1 first class identifiers is different from any one of the J2 second class identifiers.
  • the SLSSID of the second target wireless signal is equal to one of the J2 second-class identifiers.
  • the third information is used to generate the second target wireless signal.
  • the third information is used to scramble the second target wireless signal.
  • the third information is used to generate the second sequence.
  • the third information is used to generate the second block of bits.
  • the second bit block includes the third information.
  • each of the Q second type wireless signals includes fourth information, and the fourth information is used to indicate that the Q second type wireless signals are sent.
  • SFN System Frame Number
  • each of the Q second type wireless signals includes fourth information, and the fourth information is used to indicate that the Q second type wireless signals are sent.
  • DFN Direct Frame Number, Direct Link Frame Number or Sublink Frame Number.
  • each of the Q second type wireless signals includes fourth information, and the fourth information is used to indicate that the Q second type wireless signals are sent.
  • a half frame index the half frame index including one of a first half (First Half) and a second half (Second Half).
  • each of the Q second type wireless signals includes fourth information, and the fourth information is used to indicate that the Q second type wireless signals are sent.
  • the sub-link subframe is a sub-subframe number in a sub-link frame in which the Q second-class radio signals are transmitted.
  • each of the second types of wireless signals of the second type of wireless signals includes fourth information, the fourth information is used to indicate a transmission bandwidth of the secondary link, and the secondary link TDD (Time) Divi sion Duplex) One or both of the configurations.
  • each of the Q second type wireless signals includes fourth information, and the fourth information is used to indicate SCS of the Q second type wireless signals (SubCarrier Spacing, subcarrier spacing).
  • each of the Q second type wireless signals includes fourth information, and the fourth information is used to indicate a frequency domain of the Q second type wireless signals.
  • each of the Q second type wireless signals includes fourth information, and the fourth information is used to indicate a frequency domain position of the secondary link and the entire system time frequency.
  • the frequency offset of the Resource Block Grid which includes an integer number of subcarriers.
  • the fourth information is common to the Q second type wireless signals.
  • the fourth information included in any two of the Q second type wireless signals is the same.
  • the fourth information is used to generate the second target wireless signal.
  • the fourth information is used to scramble the second target wireless signal.
  • the fourth information is used to generate the second sequence.
  • the fourth information is used to generate the second block of bits.
  • the second bit block includes the fourth information.
  • the Q second type wireless signals respectively include Q fifth type information
  • the second target wireless signal is a second type wireless signal of the Q second type wireless signals
  • the fifth information Is a fifth type information of the Q fifth type information
  • the second target wireless signal includes the fifth information
  • the fifth information is used to indicate an index of the second target wireless signal in the Q second type of wireless signals.
  • the index of the second target wireless signal in the Q second type wireless signals is a non-negative integer smaller than the Q.
  • the index of the second target wireless signal in the Q second type wireless signals is one of ⁇ #0, #1, . . . , #(Q-1) ⁇ .
  • any of the two second types of wireless signals includes different fifth information.
  • the fifth information is used to indicate a time-frequency resource location of the second target wireless signal.
  • the fifth information is used to generate the second target wireless signal.
  • the fifth information is used to scramble the second target wireless signal.
  • the fifth information is used to generate the second sequence.
  • the fifth information is used to generate the second block of bits.
  • the second bit block includes the fifth information.
  • Embodiment 13 illustrates a schematic diagram of a positional relationship between a first node and a second node according to an embodiment of the present application, as shown in FIG.
  • the elliptical dotted line frame represents the inside of the cover, and the elliptical dotted line frame represents the outside of the cover.
  • the first node in the present application receives the target specific signal, and determines whether it is located within the coverage according to the target reception quality of the target specific signal.
  • the first node in the present application is in coverage, and the second node in the present application is out of coverage.
  • the first node if the target reception quality of the target specific signal received by the first node is not less than a target threshold, the first node is within coverage.
  • the first node if the target reception quality of the target specific signal received by the first node is less than a target threshold, the first node is out of coverage.
  • the target specific signal includes an SS (Synchronization Signal).
  • the target specific signal includes a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the target specific signal includes an SSS (Secondary Synchronization Signal).
  • the target specific signal includes a physical broadcast signal (Physical Broadcast Signal).
  • the target specific signal includes a signal transmitted on a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the target specific signal includes a PBCH-DMRS (PBCH Demodulation Reference Signal).
  • PBCH-DMRS PBCH Demodulation Reference Signal
  • the target specific signal includes an SSB (SS/PBCH block, a synchronous broadcast signal block).
  • SSB SS/PBCH block, a synchronous broadcast signal block.
  • the target specific signal includes an RS (Reference Signal).
  • the target specific signal includes a DRS (Discovery Reference Signal).
  • DRS Data Reference Signal
  • the target specific signal includes a signal transmitted on a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the target specific signal includes a signal transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the target receiving quality includes RSRP (Reference Signal Received Power).
  • the target reception quality includes S-RSRP (Sidelink Reference Signal Received Power).
  • the target reception quality includes SCH_RP (Received (linear) average power of the resource elements that carry E-UTRA synchronisation signal, measured at the UE antenna connector, synchronization signal linear average power).
  • SCH_RP Receiveived (linear) average power of the resource elements that carry E-UTRA synchronisation signal, measured at the UE antenna connector, synchronization signal linear average power.
  • the target reception quality includes RSRQ (Reference Signal Received Quality).
  • the target receiving quality includes an RSSI (Reference Signal Strength Indicator).
  • the target reception quality includes an SNR (Signal to Noise Ratio).
  • the target reception quality includes a SINR (Signal to Interference plus Noise Ratio).
  • the target receiving quality includes a BLER (Block Error Rate).
  • the target reception quality includes a BER (Bit Error Rate).
  • the target receiving quality includes a PER (Packet Error Rate).
  • the unit of the target threshold is dB (decibel).
  • the unit of the target threshold is dBm (millimeters).
  • the unit of the target threshold is W (milliwatts).
  • the unit of the target threshold is mW (milliwatts).
  • the target threshold is predefined, ie no signaling configuration is required.
  • the target threshold is configured by a higher layer signaling.
  • the target threshold is configured by system information.
  • the target threshold is configured by one SIB.
  • the target threshold is configured by RRC layer signaling.
  • the target threshold is configured by MAC layer signaling.
  • the target threshold is configured by physical layer signaling.
  • each of the second second type of wireless signals includes second information, the second information being used to indicate whether the first node is within a cell coverage.
  • the first node is in the cell coverage
  • the first specific signal includes an SS (Synchronization Signal).
  • the first specific signal includes a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the first specific signal includes an SSS (Secondary Synchronization Signal).
  • the first specific signal includes a physical broadcast signal (Physical Broadcast Signal).
  • the first specific signal includes a signal transmitted on a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the first specific signal includes a PBCH-DMRS (PBCH Demodulation Reference Signal).
  • PBCH-DMRS PBCH Demodulation Reference Signal
  • the first specific signal includes an SSB (SS/PBCH block, a synchronous broadcast signal block).
  • SSB SS/PBCH block, a synchronous broadcast signal block.
  • the first specific signal includes an RS (Reference Signal).
  • the first specific signal includes a DRS (Discovery Reference Signal).
  • DRS Digital Reference Signal
  • the first specific signal includes a signal transmitted on a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first target specific signal includes a signal transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first receiving quality includes an RSRP (Reference Signal Received Power).
  • RSRP Reference Signal Received Power
  • the first receiving quality includes a SCH_RP (Received (linear) average power of the resource elements that carry E-UTRA synchronisation signal, measured at the UE antenna connector, synchronous signal linear average power).
  • SCH_RP Receiveived (linear) average power of the resource elements that carry E-UTRA synchronisation signal, measured at the UE antenna connector, synchronous signal linear average power.
  • the first receiving quality includes an RSRQ (Reference Signal Received Quality).
  • RSRQ Reference Signal Received Quality
  • the first receiving quality includes an RSSI (Reference Signal Strength Indicator).
  • RSSI Reference Signal Strength Indicator
  • the first reception quality includes an SNR (Signal to Noise Ratio).
  • the first receiving quality includes a SINR (Signal to Interference plus Noise Ratio).
  • the first receiving quality includes a BLER (Block Error Rate).
  • the first receiving quality includes a BER (Bit Error Rate).
  • the first receiving quality includes a PER (Packet Error Rate).
  • the unit of the first threshold is dBm (millimeters).
  • the unit of the first threshold is mW (milliwatts).
  • the first threshold is predefined, ie no signaling configuration is required.
  • the first threshold is configured by a higher layer signaling.
  • the first threshold is configured by system information.
  • the first threshold is configured by one SIB.
  • the first threshold is configured by RRC layer signaling.
  • the first threshold is configured by MAC layer signaling.
  • the first threshold is configured by physical layer signaling.
  • each of the Q second type wireless signals includes second information, and the second information is used to indicate whether the first node is in GNSS (Global Navigation Satellite System , GNSS) coverage.
  • GNSS Global Navigation Satellite System
  • the GNSS includes GPS (Global Positioning System), Galileo (European Galileo Positioning System), Compass (China Beidou Satellite Navigation System), GLONASS (Glonas Global Navigation Satellite System of Russia) , one or more of IRNSS (Indian Regional Navigation Satellite System), QZSS (Quasi-Zenith Satellite System, Japan).
  • GPS Global Positioning System
  • Galileo European Galileo Positioning System
  • Compass China Beidou Satellite Navigation System
  • GLONASS Global Navigation Satellite System of Russia
  • IRNSS Indian Regional Navigation Satellite System
  • QZSS Quadrati-Zenith Satellite System, Japan
  • the first node is within the GNSS coverage.
  • the second specific signal includes an SS (Synchronization Signal).
  • the second specific signal includes a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the second specific signal includes an SSS (Secondary Synchronization Signal).
  • the second specific signal includes a physical broadcast signal (Physical Broadcast Signal).
  • the second specific signal includes a signal transmitted on a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the second specific signal includes a PBCH-DMRS (PBCH Demodulation Reference Signal).
  • PBCH-DMRS PBCH Demodulation Reference Signal
  • the second specific signal includes an SSB (SS/PBCH block, a synchronous broadcast signal block).
  • SSB SS/PBCH block, a synchronous broadcast signal block.
  • the second specific signal includes an RS (Reference Signal).
  • the second specific signal includes a DRS (Discovery Reference Signal).
  • DRS Digital Reference Signal
  • the second specific signal includes a signal transmitted on a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the second target specific signal includes a signal transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second receiving quality includes RSRP (Reference Signal Received Power).
  • the second receiving quality includes a SCH_RP (Received (linear) power of the resource elements that carry E-UTRA synchronisation signal, measured at the UE antenna connector, synchronous signal linear average power).
  • SCH_RP Received (linear) power of the resource elements that carry E-UTRA synchronisation signal, measured at the UE antenna connector, synchronous signal linear average power.
  • the second receiving quality includes an RSRQ (Reference Signal Received Quality).
  • RSRQ Reference Signal Received Quality
  • the second receiving quality includes an RSSI (Reference Signal Strength Indicator).
  • the second reception quality includes an SNR (Signal to Noise Ratio).
  • the second receiving quality includes a SINR (Signal to Interference plus Noise Ratio).
  • the second receiving quality includes a BLER (Block Error Rate).
  • the second receiving quality includes a BER (Bit Error Rate).
  • the second receiving quality includes a PER (Packet Error Rate).
  • the unit of the second threshold is dBm (millimeters).
  • the unit of the second threshold is mW (milliwatts).
  • the second threshold is predefined, ie no signaling configuration is required.
  • the second threshold is configured by a higher layer signaling.
  • the second threshold is configured by system information.
  • the second threshold is configured by one SIB.
  • the second threshold is configured by RRC layer signaling.
  • the second threshold is configured by MAC layer signaling.
  • the second threshold is configured by physical layer signaling.
  • the first node if the first node fails to detect that the first reception quality of the first specific signal of one serving cell is greater than the first threshold, the first node is outside the cell coverage.
  • the first node if the first node fails to detect that the second reception quality of the second specific signal of one GNSS is greater than the second threshold, the first node is outside the GNSS coverage.
  • the first node fails to detect that the first reception quality of the first specific signal of one serving cell is greater than the first threshold, or if the first node fails to detect the second of one GNSS The second received quality of the particular signal is greater than the second threshold, the first node being out of coverage.
  • the first node fails to detect that the first reception quality of the first specific signal of one serving cell is greater than the first threshold, and if the first node fails to detect the second of one GNSS The second received quality of the particular signal is greater than the second threshold, the first node being out of coverage.
  • Embodiment 14 illustrates a structural block diagram of a processing device for use in a first node device, as shown in FIG.
  • the first node device processing apparatus 1400 is mainly composed of a first receiver module 1401, a first processing module 1402, and a first transmitter module 1403.
  • the first receiver module 1401 includes the antenna 452, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 in FIG. 4 of the present application. And at least one of the data sources 467.
  • the first processing module 1402 includes at least one of the controller/processor 459, the memory 460, and the data source 467 of FIG. 4 of the present application.
  • the first transmitter module 1403 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitter processor 457, the transmit processor 468, the controller/processor 459, and the memory in FIG. 4 of the present application. At least one of 460 and data source 467.
  • the first processing module 1402 determines whether the first node is in the coverage; the first transmitter module 1403 transmits Q second type wireless signals; wherein the Q second type wireless signals respectively include Q first type information; whether each of the Q second type wireless signals can be selected as a synchronization reference related to the included first type information; the Q first type information is Independently generated; the Q is a positive integer greater than one.
  • the first processing module 1402 determines whether the first node is in the coverage; the first transmitter module 1403 transmits Q second type wireless signals; wherein the Q second type wireless signals respectively include Q first type information; whether each of the Q second type wireless signals can be selected as a synchronization reference related to the included first type information; whether the Q first type information is Independently generated is related to whether the first node is in coverage; the Q is a positive integer greater than one.
  • the first receiver module 1401 receives P first type of wireless signals, and the P is a positive integer; wherein each of the first information of the Q first types of information and the P first A spatial reception parameter of a first type of wireless signal in a class of wireless signals.
  • each of the Q second type wireless signals includes second information, and the second information is used to indicate whether the first node is within coverage.
  • the first receiver module 1401 receives the target specific signal and determines whether it is within the coverage according to the target reception quality of the target specific signal.
  • the Q first type information is generated independently.
  • the Q first type information is not generated independently.
  • the first node is a user equipment.
  • the first node is a relay node.
  • Embodiment 15 illustrates a structural block diagram of a processing device for use in a second node device, as shown in FIG.
  • the second node device processing apparatus 1500 is mainly composed of a second receiver module 1501 and a second processing module 1502.
  • the second receiver module 1501 includes the antenna 420, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 of FIG. 4 of the present application. At least one of them.
  • the second processing module 1502 includes at least one of the controller/processor 475 and the memory 476 of FIG. 4 of the present application.
  • the second receiver module 1501 receives Q0 second type wireless signals of the Q second type wireless signals; wherein the Q second type wireless signals respectively include Q first type information; Whether each of the Q0 second type wireless signals can be selected as a synchronization reference is related to the included first type information; the Q first type information is independently generated; the Q is A positive integer greater than 1, the Q0 being a positive integer not greater than the Q.
  • the second receiver module 1501 receives Q0 second type wireless signals of the Q second type wireless signals; wherein the Q second type wireless signals respectively include Q first type information Whether each of the Q0 second type wireless signals can be selected as a synchronization reference related to the included first type information; whether the Q first type information is independently generated and Whether the senders of the Q second type wireless signals are within the coverage; the Q is a positive integer greater than 1, and the Q0 is a positive integer not greater than the Q.
  • each of the first type information of the Q0 first type information is related to a spatial receiving parameter of a first type of wireless signal of the P first type wireless signals, the P first class A wireless signal is received by a sender of the Q second type of wireless signals; the P is a positive integer.
  • the Q0 second type wireless signals respectively include the second information, and the second information indicates whether a sender of the Q second type wireless signals is located in an overlay.
  • the received quality of the received target specific signal is used by the sender of the Q second type of wireless signals to determine whether it is within the coverage.
  • the Q first type information is independently generated
  • the Q first type information is not independently generated.
  • the second node is a user equipment.
  • the second node is a relay node.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the first node device in this application includes but is not limited to mobile phones, tablets, notebooks, network cards, low power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc.
  • the second node device in this application includes but is not limited to mobile phones, tablets, notebooks, network cards, low power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc.
  • Wireless communication device The user equipment or the UE or the terminal in the present application includes but is not limited to a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, an in-vehicle communication device, an aircraft, an airplane, a drone, and a remote control. Wireless communication equipment such as airplanes.
  • the base station device or the base station or the network side device in the present application includes but is not limited to a macro cellular base station, a micro cellular base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, a relay satellite, a satellite base station, an air base station, and the like.
  • Wireless communication device includes but is not limited to a macro cellular base station, a micro cellular base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, a relay satellite, a satellite base station, an air base station, and the like.
  • Wireless communication device includes but is not limited to a macro cellular base station, a micro cellular base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, a relay satellite, a satellite base station, an air base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点判断所述第一节点是否处于覆盖内;然后发送Q个第二类无线信号;所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成,或者,所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数。本申请提升了副链路的传输可靠性。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及无线通信中多天线相关的传输方案和装置。
背景技术
未来无线通信***的应用场景越来越多元化,不同的应用场景对***提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务识别和定义了4大用例组(Use Case Group),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。
发明内容
为了满足新的业务需求,相比LTE V2X***,NR V2X***具有更高吞吐量,更高可靠性,更低延时,更远传输距离,更精准定位,数据包大小和发送周期可变性更强,以及与现有3GPP技术和非3GPP技术更有效共存的关键技术特征。进一步的,NR V2X将被应用于更高频段。目前,3GPP正在讨论6GHz以上的副链路(Sidelink)信道模型。
同步是副链路传输的先决条件。为了让用户设备(User Equipement,UE)间保持同步,***会指导用户设备在副链路上发送同步信号(Sidelink Synchronization Signal,SLSS)和一些必要的***信息。用户设备通过这些同步信号获取副链路发送或接收的时间和频率同步。当一个用户设备收到来自多个用户设备的SLSS时,这个用户设备需要区分这些用户设备的优先级,从而选择一个SLSS作为它的同步参考。
由于现有的LTE D2D/V2X主要应用于低频段,SLSS主要采用单波准全向的传输方案。然而高频场景具有信号衰减严重,传输距离短,极宽带宽,波束窄等传播特性,预计NR***的SLSS将会采用多波束传输。因此一个用户设备可能会收到来自多个用户设备不同波束的SLSS,这个用户设备如何从多波束的SLSS中选择一个SLSS作为它的同步参考是一个需要解决的问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对基于多天线的传输,但本申请也能被用于单天线传输。更进一步的,虽然本申请的初衷是针对高频段通信,但本申请也能被用于低频段通信。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
判断所述第一节点是否处于覆盖内;
发送Q个第二类无线信号;
其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
判断所述第一节点是否处于覆盖内;
发送Q个第二类无线信号;
其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数。
作为一个实施例,本申请要解决的问题是:在高频或者多天线场景下,第一节点采用多波束的方式发送多个同步广播信号时,第二节点如何选取各波束的同步广播信号作为同步参考的问题。上述方法通过独立生成的所述Q个第一类信息分别携带各波束相关信息,所述Q个第一类信息被分别用于确定各波束的同步广播信号被选为同步参考的优先级来解决这个问题,从而保证第二节点同步的可靠性。
作为一个实施例,上述方法的特质在于,在波束相关信息与同步参考优先级之间建立关联。
作为一个实施例,上述方法的特质在于,在所述第一类信息与所述第二类无线信号是否被选为同步参考之间建立关联。
作为一个实施例,上述方法的特质在于,当一个同步广播信号的发送波束与同步源信号的接收波束具有波束对应关系(Beam Correspondance)时,所述一个同步广播信号被选为同步参考的优先级更高。
作为一个实施例,上述方法的好处在于,当一个同步广播信号与同步源信号具有波束对应关系时,所述一个同步广播信号的发送定时与所述同步源信号的接收定时匹配度更高,所述一个同步广播信号被选为同步参考的传输可靠性更高。
作为一个实施例,上述方法的特质在于,在所述第一类信息的生成方式与所述第一节点所处的位置之间建立联系。
作为一个实施例,上述方法的特质在于,所述第一类信息是多波束公共信息还是波束特定信息由所述第一节点所处的位置确定。
作为一个实施例,上述方法的特质在于,所述第一节点处于覆盖内,所述第一类信息是波束特定信息。作为一个实施例,上述方法的特质在于,所述第一节点处于覆盖外,所述第一类信息是多波束公共信息。
作为一个实施例,上述方法的好处在于,当所述第一节点处于覆盖内时,所述第二无线信号的生成能够考虑多波束的特性。
作为一个实施例,上述方法的好处在于,当所述第一节点处于覆盖外时,所述第二无线信号的生成不用考虑多波束的特性。
根据本申请的一个方面,上述方法的特征在于,包括:
接收P个第一类无线信号,所述P是正整数;
其中,其中,所述Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
根据本申请的一个方面,上述方法的特征在于,
所述Q个第二类无线信号中的每个第二类无线信号都包括第二信息,所述第二信息被用于指示所述第一节点是否处于覆盖内。
根据本申请的一个方面,上述方法的特征在于,包括:
接收目标特定信号,根据所述目标特定信号的目标接收质量判断是否位于覆盖内。
根据本申请的一个方面,上述方法的特征在于,
如果所述第一节点处于覆盖内,所述Q个第一类信息是被独立生成的;如果所述第一节点处于覆盖外,所述Q个第一类信息不被独立生成。
根据本申请的一个方面,上述方法的特征在于,
所述第一节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,
所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收Q个第二类无线信号中的Q0个第二类无线信号;
其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收Q个第二类无线信号中的Q0个第二类无线信号;
其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述Q个第二类无线信号的发送者是否处于覆盖内有关;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
根据本申请的一个方面,上述方法的特征在于,所述Q0个第一类信息中的每个第一类信息与P个第一类无线信号中的一个第一类无线信号的空间接收参数有关,所述P个第一类无线信号被所述所述Q个第二类无线信号的发送者接收;所述P是正整数。
根据本申请的一个方面,上述方法的特征在于,所述Q0个第二类无线信号分别包括所述第二信息,所述第二信息指示所述Q个第二类无线信号的发送者是否位于覆盖内。
根据本申请的一个方面,上述方法的特征在于,接收到的特定信号的接收质量被所述所述Q个第二类无线信号的发送者用于判断是否位于覆盖内。
根据本申请的一个方面,上述方法的特征在于,如果所述所述Q个第二类无线信号的发送者处于覆盖内,所述Q个第一类信息是被独立生成的;如果所述所述Q个第二类无线信号的发送者处于覆盖外,所述Q个第一类信息不被独立生成。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一处理模块:判断所述第一节点是否处于覆盖内;
第一发射机模块:发送Q个第二类无线信号;
其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一处理模块:判断所述第一节点是否处于覆盖内;
第一发射机模块:发送Q个第二类无线信号;
其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数。
根据本申请的一个方面,上述第一节点设备的特征在于,包括:
第一接收机模块:接收P个第一类无线信号,所述P是正整数;
其中,所述Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
根据本申请的一个方面,上述第一节点设备的特征在于,所述Q个第二类无线信号中的每个第二类无线信号都包括第二信息,所述第二信息被用于指示所述第一节点是否处于覆盖内。
根据本申请的一个方面,上述第一节点设备的特征在于,包括:
所述第一接收机模块接收目标特定信号,根据所述目标特定信号的目标接收质量判断是否位于覆盖内。
根据本申请的一个方面,上述第一节点设备的特征在于,如果所述第一节点处于覆盖内,所述Q个第一类信息是被独立生成的;如果所述第一节点处于覆盖外,所述Q个第一类信息不被独立生成。
根据本申请的一个方面,上述第一节点设备的特征在于,所述第一节点是用户设备。
根据本申请的一个方面,上述第一节点设备的特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二接收机模块:接收Q个第二类无线信号中的Q0个第二类无线信号;
其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二接收机模块:接收Q个第二类无线信号中的Q0个第二类无线信号;
其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述Q个第二类无线信号的发送者是否处于覆盖内有关;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
根据本申请的一个方面,上述第二节点设备的特征在于,所述Q0个第一类信息中的每个第一类信息与P个第一类无线信号中的一个第一类无线信号的空间接收参数有关,所述P个第一类无线信号被所述所述Q个第二类无线信号的发送者接收;所述P是正整数。
根据本申请的一个方面,上述第二节点设备的特征在于,所述Q0个第二类无线信号分别包括所述第二信息,所述第二信息指示所述Q个第二类无线信号的发送者是否位于覆盖内。
根据本申请的一个方面,上述第二节点设备的特征在于,接收到的目标特定信号的接收质量被所述所述Q个第二类无线信号的发送者用于判断是否位于覆盖内。
根据本申请的一个方面,上述第二节点设备的特征在于,如果所述所述Q个第二类无线信号的发送者处于覆盖内,所述Q个第一类信息是被独立生成的;如果所述所述Q个第二类无线信号的发送者处于覆盖外,所述Q个第一类信息不被独立生成。
根据本申请的一个方面,上述第二节点设备的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述第二节点设备的特征在于,所述第二节点是中继节点。
作为一个实施例,本申请具备如下优势:
-本申请在波束相关信息与同步参考优先级之间建立关联。
-本申请在所述第一类信息与所述第二类无线信号是否被选为同步参考之间建立关联。
-在多个同步广播信号中,本申请为与同步源信号具有波束对应关系的同步广播信号配置了更高的同步参考优先级,从而使副链路的传输可靠性更高。。
-本申请在所述第一类信息的生成方式与所述第一节点所处的位置之间建立联系。
-本申请根据所述第一节点所处的位置来确定所述第一类信息是多波束公共信息还是波束特定信息由。
-本申请对于处于覆盖内的所述第一节点,所述第一类信息是波束特定信息,所述第二无线信号的生成能够考虑多波束的特性。
-本申请对于处于覆盖外的所述第一节点,所述第一类信息是多波束公共信息所述第二无线信号的生成不用考虑多波束的特性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的发送Q个第二类无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的确定是否独立生成Q个第一类信息的流程图;
图7示出了根据本申请的一个实施例的选择同步参考的流程图;
图8示出了根据本申请的一个实施例的时频资源单元示意图;
图9示出了根据本申请的一个实施例的第二时频资源所占用的时频资源单元的示意图;
图10示出了根据本申请的一个实施例的Q个第二类无线信号之间关系的示意图;
图11示出了根据本申请的一个实施例的天线端口和第一类天线端口组之间关系的示意图;
图12示出了根据本申请的一个实施例的第一类信息,第二信息与第二类无线信号之间关系的示意图;
图13示出了根据本申请的一个实施例的第一节点与第二节点之间的位置关系的示意图;
图14示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了发送发送Q个第二类无线信号的流程图,如附图1所示。
在实施例1中,本申请中的第一节点判断所述第一节点是否处于覆盖内;发送Q个第二类无线信号;所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数。
在实施例1中,本申请中的第一节点判断所述第一节点是否处于覆盖内;发送Q个第二类无线信号;所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数。
作为一个实施例,所述Q个第二类无线信号中的至少一个第二类无线信号被第二节点用于确定接收信号定时,所述Q个第二类无线信号的接收者包括所述第二节点。
作为一个实施例,所述Q个第二类无线信号中的至少一个第二类无线信号被第二节点用于确定发送信号定时,所述Q个第二类无线信号的接收者包括所述第二节点。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括SLSS(Sidelink Synchronisation Signal,副链路同步信号)。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括PSSS(Primary Sidelink Synchronisation Signal,副链路主同步信号)。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括SSSS(Secondary Sidelink Synchronisation Signal,副链路辅同步信号)。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括SBS(Sidelink Broadcast Signal,副链路广播信号)。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括RS(Reference Signal,参考信号)。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括SLSSB(SLSS/PSBCH block,副链路同步广播信号块)。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括SDRS(Sidelink Discovery Reference Signal,副链路发现参考信号)。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括Preamble(前导)。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号在SL-BCH(Sidelink Broadcast Channel,副链路广播信道)上传输。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号在PSBCH(Physical Sidelink Broadcast Signal,物理副链路广播信道)上传输。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上传输。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上传输。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号在PSDCH(Physical Sidelink Discovery Channel,物理副链路发现信道)上传输。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括PSBCH-DMRS(PSBCH Demodulation Reference Signal,物理副链路广播信道-解调参考信号)。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号包括PSBCH-DMRS(PSBCH Demodulation Reference Signal,物理副链路广播信道-解调参考信号),所述PSBCH-DMRS被用于解调PSBCH。
作为一个实施例,第二目标无线信号是所述Q个第二类无线信号中的一个第二类无线信号。
作为一个实施例,所述第二目标无线信号包括第二序列。
作为一个实施例,所述第二序列是伪随机序列。
作为一个实施例,所述第二序列是Gold序列。
作为一个实施例,所述第二序列是M序列。
作为一个实施例,所述第二序列是Zadeoff-Chu序列。
作为一个实施例,所述第二序列包括第一子序列和第二子序列。
作为一个实施例,所述第一子序列是伪随机序列。
作为一个实施例,所述第一子序列是Gold序列。
作为一个实施例,所述第一子序列是M序列。
作为一个实施例,所述第一子序列是Zadeoff-Chu序列。
作为一个实施例,所述第二子序列是伪随机序列。
作为一个实施例,所述第二子序列是Gold序列。
作为一个实施例,所述第二子序列是M序列。
作为一个实施例,所述第二子序列是Zadeoff-Chu序列。
作为一个实施例,所述第二序列被用于生成SLSS。
作为一个实施例,所述第一子序列被用于生成PSSS,第二子序列被用于生成SSSS。
作为一个实施例,所述第一子序列被用于生成SLSS,第二子序列被用于生成PSBCH-DMRS。
作为一个实施例,第二序列被用于生成所述第二目标无线信号。
作为一个实施例,所述第二目标无线信号是由所述第二序列依次经过DFT(Discrete Fourier Transform,离散傅里叶变换),映射到物理资源(Mapping to Physical Resources),基带发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后的输出。
作为一个实施例,所述第二目标无线信号是由所述第二序列依次经过滤波(Filter), 调制和上变频之后的输出。
作为一个实施例,所述第二目标无线信号是由所述第二序列依次经过预编码(Precoding),映射到物理资源,基带发生,调制和上变频之后的输出。
作为一个实施例,所述第二目标无线信号是由所述第二序列经过调制,DFT,预编码,映射到物理资源,基带信号发生,滤波,调制和上变频中的至少之一之后的输出。
作为一个实施例,所述第二目标无线信号包括SLSSID(Sidelink synchronization signal identity,副链路同步信号标识)。
作为一个实施例,所述第二目标无线信号的SLSSID是非负整数。
作为一个实施例,所述第二目标无线信号的SLSSID不大于336。
作为一个实施例,所述第二序列被用于指示所述第二目标无线信号的SLSSID。
作为一个实施例,所述第二目标无线信号的SLSSID被用于生成所述第二序列。
作为一个实施例,所述第二目标无线信号的SLSSID被用于计算所述第二序列的序列生成初始值。
作为一个实施例,所述第二目标无线信号的SLSSID由一个更高层信令配置。
作为一个实施例,所述第二目标无线信号的SLSSID是半静态配置的。
作为一个实施例,所述第二目标无线信号的SLSSID是由***信息(System Information)配置的。
作为一个实施例,所述第二目标无线信号的SLSSID是由一个SIB(System Information Block,***信息块)配置的。
作为一个实施例,所述第二目标无线信号的SLSSID由RRC(Radio Resource Control,无线资源控制)层信令配置。
作为一个实施例,所述第二目标无线信号的SLSSID由MAC(Medium Access Control,媒体接入控制)层信令配置。
作为一个实施例,所述第二目标无线信号的SLSSID由一个物理层信令配置。
作为一个实施例,所述第二目标无线信号的SLSSID由DCI(Downlink Control Information,下行控制信息)配置。
作为一个实施例,所述第二目标无线信号包括SBS(Sidelink Broadcast Signal,副链路广播信号)。
作为一个实施例,所述第二目标无线信号在SL-BCH(Sidelink Broadcast Channel,副链路广播信道)上传输。
作为一个实施例,所述第二目标无线信号在PSBCH(Physical Sidelink Broadcast Signal,物理副链路广播信道)上传输。
作为一个实施例,所述第二目标无线信号包括第二比特块,所述第二比特块包括正整数个依次排列的比特。
作为一个实施例,所述第二比特块包括一个MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二比特块包括一个MIB-SL(Master Information Block-Sidelink,主信息块-副链路)中的一个或多个域(Field)。
作为一个实施例,所述第二比特块包括一个TB(Transport Block,传输块)中的全部或部分比特。
作为一个实施例,所述第二比特块包括一个CB(Code Block,码块)中的全部或部分比特。
作为一个实施例,所述第二比特块的全部或部分比特依次经过一级加扰(scrambling),传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),信道编码(Channel Coding),速率匹配(Rate Matching),二级加扰,调制(Modulation),层映射(Layer Mapping),变换预编码(Transform Precoding), 预编码(Precoding),映射到物理资源(Mapping to Physical Resources),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第二目标无线信号。
作为一个实施例,所述第二目标无线信号是由所述第二比特块的全部或部分比特经过一级加扰,传输块级CRC附着,分段(Segmentation),编码块级CRC附着,信道编码,速率匹配,串联(Concatenation),二级加扰,调制,层映射,扩频(Spreading),变换预编码,预编码,映射到物理资源,基带信号发生以及调制和上变频中的至少之一之后的输出。
作为一个实施例,所述第二比特块包括副链路的传输带宽(SL-bandwidth),副链路TDD上/下行配置,副链路的***帧号(Frame Number)和副链路的子帧号(Subframe Number)中的一种或多种。
作为一个实施例,所述第二目标无线信号的SLSSID被用于生成所述第二目标无线信号的二级加扰序列。
作为一个实施例,所述第二目标无线信号包括所述第二序列和所述第二比特块。
作为一个实施例,所述第二目标无线信号包括所述第一子序列,所述第二子序列和所述第二比特块。
作为一个实施例,所述第二目标无线信号包括SLSS,PSSS,SSSS,SBS和PSBCH-DMRS中的一个或多个。
作为一个实施例,所述第二目标无线信号包括SLSS,SBS和PSBCH-DMRS。
作为一个实施例,所述第二目标无线信号包括PSSS,SSSS,SBS和PSBCH-DMRS。
作为一个实施例,所述同步参考(Synchronisation Reference)被用于确定副链路传输的定时信息。
作为一个实施例,所述同步参考被用于确定副链路通信(Sidelink communication)的定时信息。
作为一个实施例,所述同步参考被用于确定副链路发现(Sidelink discovery)的定时信息。
作为一个实施例,所述同步参考被用于确定V2X副链路通信(Vehicle-to-Everything sidelink communication)的定时信息。
作为一个实施例,所述同步参考的接收者根据所述同步参考的接收定时确定发送定时。
作为一个实施例,所述发送定时是所述同步参考的接收定时加上一个偏移量。
作为一个实施例,所述一个偏移量是固定的。
作为一个实施例,所述一个偏移量是所述同步参考的接收者自行确定的。
作为一个实施例,所述一个偏移量是配置的。
作为一个实施例,所述一个偏移量是时间偏移量。
作为一个实施例,所述一个偏移量的单位是秒(s)。
作为一个实施例,所述一个偏移量的单位是毫秒(ms)。
作为一个实施例,所述一个偏移量的单位是微秒(us)。
作为一个实施例,所述一个偏移量的单位是采样点数。
作为一个实施例,所述发送定时被用于发送PSSCH。
作为一个实施例,所述发送定时被用于发送PSCCH。
作为一个实施例,所述发送定时被用于发送PSBCH。
作为一个实施例,所述发送定时被用于发送PSDCH。
作为一个实施例,所述发送定时被用于发送PUSCH。
作为一个实施例,所述发送定时被用于发送PUCCH。
作为一个实施例,所述发送定时被用于发送SRS。
作为一个实施例,所述同步参考的接收者根据所述同步参考的接收定时确定接收定时。
作为一个实施例,所述同步参考的接收者根据所述同步参考的接收定时确定所述同步参考之外的无线信号的接收定时,所述所述同步参考之外的无线信号的发送者是所述同步参考的发送者。
作为一个实施例,所述同步参考的接收者根据所述同步参考的接收定时是所述所述同步参考之外的无线信号的接收定时。
作为一个实施例,第一信息是所述Q个第一类信息中的一个第一类信息。
作为一个实施例,第二目标无线信号是所述Q个第二类无线信号中包括所述第一信息的一个第二类无线信号。
作为一个实施例,所述Q个第二类无线信号中至少两个第二类无线信号包括的第一信息不同。
作为一个实施例,所述P大于1,第一信息是所述Q个第一类信息中的任一第一类信息,第二无线信号是所述Q个第二类无线信号中包括所述第一信息的第二类无线信号;如果所述Q个第一类天线端口组中对应所述第一信息的第一类天线端口组被关联到所述P个第一类无线信号中的至少一个第一类无线信号,所述第二无线信号被选为同步参考的等级是第一同步等级;否则所述第二无线信号被选为同步参考的等级是第二同步等级;所述第一同步等级相比于所述第二同步等级具备更高的优先级。
作为一个实施例,所述P等于1,第一信息是所述Q个第一类信息中的任一第二类信息,第二无线信号是所述Q个第二类无线信号中包括所述第一信息的第二类无线信号;如果所述Q个第一类天线端口组中对应所述第一信息的第一类天线端口组被关联到所述P个第一类无线信号,所述第二无线信号被选为同步参考的等级是第一同步等级;否则所述第二无线信号被选为同步参考的等级是第二同步等级;所述第一同步等级相比于所述第二同步等级具备更高的优先级。
作为一个实施例,所述Q个第二类无线信号中至少一个第二类无线信号的接收者包括一个用户设备,所述P个第一类无线信号的发送者与所述一个用户设备是非共址的。
作为一个实施例,所述P个第一类无线信号的发送者与所述一个用户设备是非共址的包括:所述所述P个第一类无线信号的发送者与所述一个用户设备之间的通信延迟不能被忽略不计。
作为一个实施例,所述P个第一类无线信号的发送者与所述一个用户设备是非共址的包括:所述所述P个第一类无线信号的发送者与所述一个用户设备之间不存在有线链路。
作为一个实施例,所述Q个第二类无线信号中至少一个第二类无线信号的接收者包括一个用户设备,所述P个第一类无线信号的发送者包括一个服务小区。
作为一个实施例,所述Q个第二类无线信号中至少一个第二类无线信号的接收者包括一个用户设备,所述P大于1,所述P个第一类无线信号中的至少存在两个第一类无线信号分别被两个服务小区发送。
作为一个实施例,所述同步参考的等级包括第一同步等级和第二同步等级,所述第一同步等级相比于所述第二同步等级具备更高的优先级。
作为一个实施例,所述同步参考的等级包括第一同步等级和第二同步等级,所述第一同步等级相比于所述第二同步等级会被更优先地选为所述同步参考。
作为一个实施例,所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关是指:所述Q个第二类无线信号中的每一个第二类无线信号作为同步参考的优先级由所包括的第一类信息确定。
作为一个实施例,如果所述第一信息指示所述第二目标无线信号被关联到所述P个第一类无线信号中的至少一个第一类无线信号,所述第二目标无线信号作为同步参考的 等级是所述第一同步等级。
作为一个实施例,如果所述第一信息指示所述第二目标无线信号没有被关联到所述P个第一类无线信号中的任意一个第一类无线信号,所述第二目标无线信号作为同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息指示所述第二目标无线信号的空间发送参数与所述P个第一类无线信号中的至少一个第一类无线信号有关,所述第二目标无线信号作为同步参考的等级是所述第一同步等级。
作为一个实施例,如果所述第一信息指示所述第二目标无线信号的空间发送参数与所述P个第一类无线信号中的任意一个第一类无线信号无关,所述第二目标无线信号作为同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息被用于指示所述第二目标无线信号的空间发送参数与所述P个第一类无线信号中的至少一个第一类无线信号的空间接收参数有关,所述第二目标无线信号作为同步参考的等级是所述第一同步等级。
作为一个实施例,如果所述第一信息被用于指示所述第二目标无线信号的空间发送参数是否与所述P个第一类无线信号中的任意一个第一类无线信号的空间接收参数无关,所述第二目标无线信号作为同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息被用于指示所述第二目标无线信号对应的所述第二目标天线端口组与所述P个第一类无线信号中的至少一个第一类无线信号有关,所述第二目标无线信号作为同步参考的等级是所述第一同步等级。
作为一个实施例,如果所述第一信息被用于指示所述第二目标无线信号对应的所述第二目标天线端口组与所述P个第一类无线信号中的任意一个第一类无线信号无关,所述第二目标无线信号作为同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息被用于指示所述第二时频资源是否与所述P个第一类无线信号中的至少一个第一类无线信号有关,所述第二目标无线信号作为同步参考的等级是所述第一同步等级。
作为一个实施例,如果所述第一信息被用于指示所述第二时频资源是否与所述P个第一类无线信号中的任意一个第一类无线信号无关,所述第二目标无线信号作为同步参考的等级是所述第二同步等级。
作为一个实施例,所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关是指:所述Q个第二类无线信号中的每一个第二类无线信号作为同步参考的优先级被所包括的第一类信息指示。
作为一个实施例,所述第一信息指示所述第二目标无线信号作为同步参考的等级。
作为一个实施例,所述第一信息包括TRUE(是)和FALSE(否)中的之一。
作为一个实施例,如果第一信息是TRUE,所述第二目标无线信号作为同步参考的等级是所述第一同步等级。
作为一个实施例,如果第一信息是FALSE,所述第二目标无线信号作为同步参考的等级是所述第二同步等级。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包 交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述终端包括所述UE201。
作为一个实施例,本申请中的所述基站设备所述gNB203。
作为一个实施例,本申请中的所述第二节点包括所述UE241。
作为一个实施例,所述UE201支持副链路传输。
作为一个实施例,所述UE241支持副链路传输。
作为一个实施例,所述UE201支持基于波束赋形(Beamforming)的副链路传输。
作为一个实施例,所述UE241支持基于波束赋形(Beamforming)的副链路传输。
作为一个实施例,所述gNB203支持基于波束赋形的下行(Downlink)传输。
作为一个实施例,所述UE201支持基于大规模阵列天线(Massive MIMO)的Sidelink传输。
作为一个实施例,所述UE241支持基于大规模阵列天线(Massive MIMO)的Sidelink传输。
作为一个实施例,所述gNB203支持基于大规模阵列天线的下行传输。
作为一个实施例,所述UE201基于所述目标特定信号判断所述UE201是否处于本申请中的覆盖内。
作为一个实施例,所述UE201基于所述P个第一类无线信号获取时间和频率同步。
作为一个实施例,所述P个第一类无线信号的发送者包括GNSS(Global Navigation Satellite System,全球导航卫星***)。
作为一个实施例,所述P个第一类无线信号的发送者包括所述gNB203。
作为一个实施例,所述UE241基于所述Q个第二类无线信号中的所述Q0个第二类无线信号选择同步参考。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能,层1之上的层属于更高层。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在用户设备与基站设备之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的基站设备处。虽然未图示,但用户设备可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供基站设备之间的对用户设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在用户设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于用户设备和基站设备的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306。RRC子层306负责获得无线资源(即,无线承载)且使用基站设备与用户设备之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站设备。
作为一个实施例,本申请中的所述目标特定信号生成于所述PHY301。
作为一个实施例,本申请中的所述P个第一类无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述Q个第二类无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二序列生成于所述PHY301。
作为一个实施例,本申请中的所述第二比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第二比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二比特块是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第二比特块是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述Q个第一类信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述Q个第一类信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述Q个第一类信息生成于所述PHY301。
作为一个实施例,本申请中的所述Q个第一类信息是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述Q个第一类信息是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第二信息是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述第三信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第三信息生成于所述PHY301。
作为一个实施例,本申请中的所述第三信息是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第三信息是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述第四信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第四信息生成于所述PHY301。
作为一个实施例,本申请中的所述第四信息是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第四信息是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述Q个第五类信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述Q个第五类信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述Q个第五类信息生成于所述PHY301。
作为一个实施例,本申请中的所述Q个第五类信息是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述Q个第五类信息是由所述MAC子层302传递给所述PHY301的。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。 在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
作为一个实施例,本申请中的所述基站包括所述第一通信设备410,本申请中的所述第一节点包括所述第二通信设备450。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收本申请中的目标特定信号;根据所述目标特定信号的目标接收质量判断是否位于覆盖内。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的目标特定信号;根据所述目标特定信号的目标接收质量判断是否位于覆盖内。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收本申请中的P个第一类无线信号,所述P是正整数;本申请中的Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的P个第一类无线信号,所述P是正整数;本申请中的Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请中的目标特定信号;根据所述目标特定信号的目标接收质量判断是否位于覆盖内。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的目标特定信号;根据所述目标特定信号的目标接收质量判断是否位于覆盖内。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请中的P个第一类无线信号,所述P是正整数;本申请中的Q个第一类信息中的每个第一 类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的P个第一类无线信号,所述P是正整数;本申请中的Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述目标特定信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述目标特定信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述P个第一类无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述P个第一类无线信号。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点和所述第二节点分别是用户设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点分别是用户设备。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:判断所述第二通信设备450处于本申请中的覆盖内;发送本申请中的Q个第二类无线信号;所述Q个第二类无线信号分别包括所述所述Q个第一类信息;所述Q个第二类无线信号中每个第二类 无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:判断所述第二通信设备450处于本申请中的覆盖内;发送本申请中的Q个第二类无线信号;所述Q个第二类无线信号分别包括所述Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:判断所述第二通信设备450处于本申请中的覆盖内;发送本申请中的Q个第二类无线信号;所述Q个第二类无线信号分别包括所述所述Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:判断所述第二通信设备450处于本申请中的覆盖内;发送本申请中的Q个第二类无线信号;所述Q个第二类无线信号分别包括所述Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:接收本申请中的Q个第二类无线信号中的Q0个第二类无线信号;所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成,或者,所述Q个第一类信息是否被独立生成与所述Q个第二类无线信号的发送者是否处于覆盖内有关;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的Q个第二类无线信号中的Q0个第二类无线信号;所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成,或者,所述Q个第一类信息是否被独立生成与所述Q个第二类无线信号的发送者是否处于覆盖内有关;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于判断所述第二通信设备450处于本申请中的覆盖内。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述Q个第二类无线信号;
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述Q个第二类无线信号中的所述Q0个第二类无线信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线 接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于选择同步参考。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,基站N1是第一节点U2的服务小区的维持基站,第二节点U3是第一节点U2通过副链路传输的通信节点。附图5中,标识为F0的虚线框中的步骤,标识为F1的虚线框中的步骤和标识为F2的虚线框中的步骤分别是可选的。
对于 基站N1,在步骤S11中发送目标特定信号;在步骤S12中发送P个第一类无线信号。
对于 第一节点U2,在步骤S21中接收目标特定信号;在步骤S22中接收P个第一类无线信号;在步骤S23中判断第一节点U2处于覆盖内;在步骤S24中独立生成Q个第一类信息;在步骤S25中发送Q个第二类无线信号。
对于 第二节点U3,在步骤S31中接收Q个第二类无线信号中的Q0个第二类无线信号;在步骤S32中选择同步参考。
在实施例5中,根据所述目标特定信号的目标接收质量判断是否位于覆盖内;所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成,或者,所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数;所述Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关;所述P是正整数。
作为一个实施例,如果所述U2处于覆盖内,所述Q个第一类信息是被独立生成的。
作为一个实施例,如果所述第一节点处于覆盖外,所述Q个第一类信息不被独立生成。
作为一个实施例,如果所述P个第一类无线信号包括所述目标特定信号,附图5中的方框F0中的步骤不存在。
作为一个实施例,如果所述U2处于覆盖外,附图5中的方框F1中的步骤存在。
作为一个实施例,如果所述U3不做副链路发送,附图5中的方框F2中的步骤不存在。
作为一个实施例,如果所述U3不做同步操作,附图5中的方框F2中的步骤不存在。
作为一个实施例,附图5中的方框F0和方框F1中的步骤都存在。
作为一个实施例,附图5中的方框F1和方框F2中的步骤都存在。
作为一个实施例,附图5中的方框F0和方框F1中的步骤都不存在。
作为一个实施例,所述P个第一类无线信号中的至少一个第一类无线信号被所述第一节点用于确定所述Q个第二类无线信号的发送定时。
作为一个实施例,所述P个第一类无线信号中的至少一个第一类无线信号的接收定时被所述第一节点用于确定所述Q个第二类无线信号的发送定时。
作为一个实施例,所述P个第一类无线信号的发送者包括GNSS(Global Navigation Satellite System,全球导航卫星***)。
作为一个实施例,所述P个第一类无线信号的发送者包括小区(Cell)。
作为一个实施例,所述P个第一类无线信号的发送者包括服务小区(Serving Cell)。
作为一个实施例,所述P个第一类无线信号的发送者包括主小区(Primary Cell,PCell)。
作为一个实施例,所述P个第一类无线信号的发送者包括辅小区(Secondary Cell,SCell)。
作为一个实施例,所述P个第一类无线信号的发送者包括SyncRefUE(Synchronization Reference User Equipment,同步参考用户设备)。
作为一个实施例,所述P个第一类无线信号的发送者包括覆盖内(In-Coverage)SynRefUE。
作为一个实施例,所述P个第一类无线信号的发送者包括覆盖外(Out-of-Coverage)SyncRefUE。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括SS(Synchronisation Signal,同步信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括PSS(Primary Synchronisation Signal,主同步信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括SSS(Secondary Synchronisation Signal,辅同步信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括物理广播信号。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括PBCH-DMRS(PBCH Demodulation Reference Signal,物理广播信道-解调参考信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括SLSS(Sidelink Synchronisation Signal,副链路同步信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括PSSS(Primary Sidelink Synchronisation Signal,副链路主同步信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括SSSS(Secondary Sidelink Synchronisation Signal,副链路辅同步信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括SBS(Sidelink Broadcast Signal,副链路广播信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括PSBCH-DMRS(PSBCH Demodulation Reference Signal,物理副链路广播信道-解调参考信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括RS(Reference Signal,参考信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括SSB(SS/PBCH block,同步广播信号块)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号包括DRS(Discovery Reference Signal,发现参考信号)。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号在PBCH(Physical Broadcast Channel,物理广播信道)上传输。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号在NPBCH(Narrowband PBCH,窄带物理广播信道)上传输。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号在SL-BCH(Sidelink Broadcast Channel,副链路广播信道)上传输。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号在PSBCH(Physical Sidelink Broadcast Signal,物理副链路广播信道)上传输。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上传输。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上传输。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号在PSDCH(Physical Sidelink Discovery Channel,物理副链路发现信道)上传输。
作为一个实施例,第一目标无线信号是所述P个第一类无线信号中的一个第一类无线信号。
作为一个实施例,所述第一目标无线信号包括PCID(Physical Layer Cell Identity, 物理层小区标识)。
作为一个实施例,所述第一目标无线信号是一个序列。
作为一个实施例,所述第一目标无线信号包括第一序列。
作为一个实施例,所述第一序列是伪随机序列。
作为一个实施例,所述第一序列是Gold序列。
作为一个实施例,所述第一序列是M序列。
作为一个实施例,所述第一序列是Zadeoff-Chu序列。
作为一个实施例,第一序列被用于生成所述第一目标无线信号。
作为一个实施例,所述第一目标无线信号是由所述第一序列依次经过DFT(Discrete Fourier Transform,离散傅里叶变换),映射到物理资源(Mapping to Physical Resources),基带发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后的输出。
作为一个实施例,所述第一目标无线信号是由所述第一序列依次经过滤波(Filter),调制和上变频之后的输出。
作为一个实施例,所述第一目标无线信号是由所述第一序列依次经过预编码(Precoding),映射到物理资源,基带发生,调制和上变频之后的输出。
作为一个实施例,所述第一目标无线信号是由所述第一序列经过调制,DFT,预编码,映射到物理资源,基带信号发生,滤波,调制和上变频中的至少之一之后的输出。
作为一个实施例,所述第一目标无线信号是一个比特块。
作为一个实施例,所述第一目标无线信号包括第一比特块,所述第一比特块包括正整数个依次排列的比特。
作为一个实施例,所述第一比特块包括一个MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一比特块包括一个TB(Transport Block,传输块)中的全部或部分比特。
作为一个实施例,所述第一比特块包括一个CB(Code Block,码块)中的全部或部分比特。
作为一个实施例,所述第一比特块的全部或部分比特依次经过一级加扰(scrambling),传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),信道编码(Channel Coding),速率匹配(Rate Matching),二级加扰,调制(Modulation),层映射(Layer Mapping),变换预编码(Transform Precoding),预编码(Precoding),映射到物理资源(Mapping to Physical Resources),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第一目标无线信号。
作为一个实施例,所述第一目标无线信号是由所述第一比特块的全部或部分比特经过一级加扰,传输块级CRC附着,分段(Segmentation),编码块级CRC附着,信道编码,速率匹配,串联(Concatenation),二级加扰,调制,层映射,扩频(Spreading),变换预编码,预编码,映射到物理资源,基带信号发生以及调制和上变频中的至少之一之后的输出。
作为一个实施例,所述PCID被用于对所述第一目标无线信号加扰。
实施例6
实施例6示例了根据本申请的一个实施例的确定是否独立生成Q个第一类信息的流程图,如附图6所示。
在实施例6中,如果所述第一节点处于覆盖内,所述Q个第一类信息是被独立生成的;如果所述第一节点处于覆盖外,所述Q个第一类信息不被独立生成。
作为一个实施例,所述Q个第一类信息被独立生成包括:所述Q个第一类信息中的任意两个第一类信息不能被认为是必然相等的。
作为一个实施例,所述Q个第一类信息被独立生成包括:所述Q个第一类信息中的一个 第一类信息不能被用于推断所述Q2个第一类信息中的另一个第一类信息。
作为一个实施例,所述Q个第一类信息不被独立生成包括:所述Q个第一类信息被认为都相等的。
作为一个实施例,所述Q个第一类信息不被独立生成包括:所述Q个第一类信息中的一个第一类信息能被用于推断所述Q个第一类信息中的另一个第一类信息。
作为一个实施例,所述第一节点处于覆盖内,所述Q个第一类信息是被独立生成的。
作为一个实施例,所述第一节点处于覆盖外,所述Q个第一类信息是被独立生成的。
作为一个实施例,所述第一信息被用于生成所述第二目标无线信号。
作为一个实施例,所述第一信息被用于对所述第二目标无线信号加扰。
作为一个实施例,所述第一信息被用于生成所述第二序列。
作为一个实施例,所述第一信息被用于从正整数个候选序列中选择所述第二序列,所述第二序列是所述正整数个候选序列中的一个候选序列。
作为一个实施例,所述第一信息被用于确定所述第二目标无线信号的SLSSID。
作为一个实施例,所述第一信息被用于生成所述第二序列的初始值。
作为一个实施例,所述第一信息被用于生成所述第二序列的循环移位。
作为一个实施例,所述第一信息被用于生成所述第二序列的序列段。
作为一个实施例,所述第一信息被用于生成所述第二比特块。
作为一个实施例,所述第二比特块包括所述第一信息。
作为一个实施例,所述第一信息被用于生成所述第二目标无线信号的CRC-Mask(Cyclic Redundancy Check Mask,循环冗余校验-掩码)。
作为一个实施例,所述第一信息被用于从正整数个候选CRC-Mask中选择所述第二目标无线信号的CRC-Mask,所述第二目标无线信号的CRC-Mask是所述正整数个候选CRC-Mask中的一个候选CRC-Mask。
作为一个实施例,所述第一信息被用于生成所述第二目标无线信号的一级加扰序列。
作为一个实施例,所述第一信息被用于生成所述第二目标无线信号的二级加扰序列。
作为一个实施例,所述第一信息被上述十四个实施例中任意多个实施例联合指示。
实施例7
实施例7示例了根据本申请的一个实施例的选择同步参考的流程图,如附图7所示。
在实施例7中,本申请中的第二节点接收Q个第二类无线信号中的Q0个第二类无线信号;所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
在实施例7中,接收Q个第二类无线信号中的Q0个第二类无线信号;所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述Q个第二类无线信号的发送者是否处于覆盖内有关;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
作为一个实施例,所述Q个第二类无线信号的发送者包括在本申请中的第一节点。
作为一个实施例,所述Q0个第二类无线信号中任意一个第二类无线信号是否能被选为同步参考与所述任意一个第二类无线信号所包括的第一类信息有关。
作为一个实施例,如果所述第一信息指示所述第二目标无线信号对应的所述一个空间发送参数与所述P个第一类无线信号中的至少一个第一类无线信号有关,所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第一同步等级;否则所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息指示所述第二目标无线信号对应的所述一个空 间发送参数是否与所述P个第一类无线信号中的至少一个第一类无线信号对应的所述一个空间接收参数有关,所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第一同步等级;否则所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息指示所述第二目标无线信号对应的所述第一天线端口组与所述P个第一类无线信号中的至少一个第一类无线信号有关,所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第一同步等级;否则所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息指示所述第一天线端口组是否被关联到所述P个第一类无线信号中的至少一个第一类无线信号,所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第一同步等级;否则所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息指示所述第一无线端口组是否被关联到所述P个第一类无线信号中的至少一个第一类无线信号对应的所述一个空间接收参数,所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第一同步等级;否则所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息指示所述第二时频资源是否与所述P个第一类无线信号中的至少一个第一类无线信号有关,所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第一同步等级;否则所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第二同步等级。
作为一个实施例,如果所述第一信息指示所述第二时频资源是否与所述P个第一类无线信号中的至少一个第一类无线信号所占用的所述一个第一类时频资源关联,所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第一同步等级;否则所述第二目标无线信号作为所述同步参考的所述所述同步参考的等级是所述第二同步等级。
实施例8
实施例8示例了根据本申请的一个实施例的时频资源单元的示意图,如附图8所示。
在附图8中,虚线小方格代表RE(Resource Element,资源粒子),粗线方格代表时频资源单元。在附图8中,时频资源单元在频域上占用K个子载波(Subcarrier),在时域上占用L个多载波符号(Symbol),所述K和所述L是正整数。在附图8中,t 1,t 2,…,t L代表所述L个Symbol,f 1,f 2,…,f K代表所述K个Subcarrier。
作为一个实施例,时频资源单元在频域上占用K个子载波(Subcarrier),在时域上占用L个多载波符号(Symbol),所述K和所述L是正整数。
作为一个实施例,所述K等于12。
作为一个实施例,所述K等于72。
作为一个实施例,所述K等于127。
作为一个实施例,所述K等于240。
作为一个实施例,所述L等于1。
作为一个实施例,所述L等于2。
作为一个实施例,所述L不大于14。
作为一个实施例,所述L个多载波符号中的任意一个多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号,OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分多址),DFTS-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用) 符号,FBMC(Filter Bank Multi-Carrier,滤波器组多载波)符号,IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号中的至少之一。
作为一个实施例,所述时频资源单元是由R个RE(Resource Element)组成,所述R是正整数。
作为一个实施例,所述时频资源单元包括R个RE(Resource Element),所述R是正整数。
作为一个实施例,所述R个RE中的任意一个RE在时域上占用一个多载波符号,在频域上占用一个子载波。
作为一个实施例,所述R个RE中的一个RE的多载波符号的符号长度(Symbol Duration)与所述一个RE的子载波间隔(SubCarrier Spacing)成反比例关系,所述一个RE的多载波符号的符号长度是所述一个RE的多载波符号在时域上所占用的时间长度,所述一个RE的子载波间隔是所述一个RE的子载波在频域上所占用的频率宽度。
作为一个实施例,所述一个RE的子载波间隔的单位是Hz(Hertz,赫兹)。
作为一个实施例,所述一个RE的子载波间隔的单位是kHz(Kilohertz,千赫兹)。
作为一个实施例,所述一个RE的子载波间隔的单位是MHz(Megahertz,兆赫兹)。
作为一个实施例,所述一个RE的多载波符号的符号长度的单位是采样点。
作为一个实施例,所述一个RE的多载波符号的符号长度的单位是微秒(us)。
作为一个实施例,所述一个RE的多载波符号的符号长度的单位是毫秒(ms)。
作为一个实施例,所述一个RE的子载波间隔越小,对应的所述一个RE的多载波符号的符号长度越长。
作为一个实施例,所述一个RE的子载波间隔是1.25kHz,2.5kHz,5kHz,15kHz,30kHz,60kHz,120kHz和240kHz中的至少之一。
作为一个实施例,所述时频资源单元的所述K与所述L的乘积不小于所述R。
作为一个实施例,所述时频资源单元不包括被分配给GP(Guard Period,保护间隔)的RE。
作为一个实施例,所述时频资源单元不包括被分配给RS(Reference Signal,参考信号)的RE。
作为一个实施例,所述时频资源单元不包括被分配给SLSS的RE。
作为一个实施例,所述时频资源单元不包括被分配给PSSS的RE。
作为一个实施例,所述时频资源单元不包括被分配给SSSS的RE。
作为一个实施例,所述时频资源单元不包括被分配给PSBCH的RE。
作为一个实施例,所述时频资源单元不包括被分配给PSBCH-DMRS的RE。
作为一个实施例,所述时频资源单元不包括被分配给PRACH的RE。
作为一个实施例,所述时频资源单元不包括被分配给NPRACH的RE。
作为一个实施例,所述时频资源单元不包括被分配给PUCCH的RE。
作为一个实施例,所述时频资源单元不包括被分配给SPUCCH的RE。
作为一个实施例,所述时频资源单元不包括被分配给PUSCH的RE。
作为一个实施例,所述时频资源单元不包括被分配给NPUSCH的RE。
作为一个实施例,所述时频资源单元包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述时频资源单元属于一个RB。
作为一个实施例,所述时频资源单元在频域上等于一个RB。
作为一个实施例,所述时频资源单元在频域上包括6个RB。
作为一个实施例,所述时频资源单元在频域上包括20个RB。
作为一个实施例,所述时频资源单元包括正整数个PRB(Physical Resource Block pair,物理资源块)。
作为一个实施例,所述时频资源单元属于一个PRB。
作为一个实施例,所述时频资源单元在频域上等于一个PRB。
作为一个实施例,所述时频资源单元包括正整数个VRB(Virtual Resource Block,虚拟资源块)。
作为一个实施例,所述时频资源单元属于一个VRB。
作为一个实施例,所述时频资源单元在频域上等于一个VRB。
作为一个实施例,所述时频资源单元包括正整数个PRB pair(Physical Resource Block pair,物理资源块对)。
作为一个实施例,所述时频资源单元属于一个PRB pair。
作为一个实施例,所述时频资源单元在频域上等于一个PRB pair。
作为一个实施例,所述时频资源单元包括正整数个Frame(无线帧)。
作为一个实施例,所述时频资源单元属于一个Frame。
作为一个实施例,所述时频资源单元在时域上等于一个Frame。
作为一个实施例,所述时频资源单元包括正整数个Subframe(子帧)。
作为一个实施例,所述时频资源单元属于一个Subframe。
作为一个实施例,所述时频资源单元在时域上等于一个Subframe。
作为一个实施例,所述时频资源单元包括正整数个Slot(时隙)。
作为一个实施例,所述时频资源单元属于一个Slot。
作为一个实施例,所述时频资源单元在时域上等于一个Slot。
作为一个实施例,所述时频资源单元包括正整数个Symbol。
作为一个实施例,所述时频资源单元属于一个Symbol。
作为一个实施例,所述时频资源单元在时域上等于一个Symbol。
作为一个实施例,所述时频资源单元属于PRACH。
作为一个实施例,所述时频资源单元属于NPRACH。
作为一个实施例,所述时频资源单元属于PUSCH。
作为一个实施例,所述时频资源单元属于NPUSCH。
作为一个实施例,所述时频资源单元属于PUCCH。
作为一个实施例,所述时频资源单元属于SPUCCH。
作为一个实施例,所述时频资源单元包括被分配给RS的RE。
作为一个实施例,所述时频资源单元包括被分配给GP的RE。
实施例9
实施例9示例了根据本申请的一个实施例的第二时频资源所占用的时频资源单元的示意图,如附图9所示。
在附图9中,在情况A中,本申请中的第二目标无线信号包括本申请中的第二序列和本申请中的第二比特块,斜纹填充的实线方框代表第二序列,圆点填充的实线方框代表第二比特块;在情况B中,本申请中的第二目标无线信号包括本申请中的第一子序列,本申请中的第二子序列和本申请中的第二比特块,斜纹填充的实线方框代表第一子序列,斜方格填充的实线方框代表第二子序列,圆点填充的实线方框代表第二比特块;粗虚线框代表第二时频资源,所述第二目标无线信号在所述第二时频资源上发送。
作为一个实施例,所述第二目标无线信号在第二时频资源上发送。
作为一个实施例,所述第二时频资源包括S1个所述时频资源单元,所述S1是正整数。
作为一个实施例,所述第二时频资源由S1个所述时频资源单元组成,所述S1是正整数。
作为一个实施例,所述S1等于12。
作为一个实施例,所述S1等于13。
作为一个实施例,所述第二时频资源所包括的至少两个所述时频资源单元是TDM (Time Division Multiplexing,时分复用)的。
作为一个实施例,所述第二时频资源所包括的至少两个所述时频资源单元是FDM(Frequency Division Multiplexing,频分复用)的。
作为一个实施例,所述第二目标无线信号包括S2个第二类子无线信号,所述S2个第二类子无线信号中的任意一个第二类子无线信号包括PSSS,SSSS,SBS和PSBCH-DMRS中的至少之一,所述S2是正整数。
作为一个实施例,所述第二时频资源包括S2个第二类子时频资源,所述S2个第二类子无线信号分别在所述S2个第二类子时频资源上发送。
作为一个实施例,所述S2等于2。
作为一个实施例,所述S2等于4。
作为一个实施例,所述第二时频资源所包括的至少两个所述第二类子时频资源是TDM的。
作为一个实施例,所述第二时频资源所包括的至少两个所述第二类子时频资源是FDM的。
作为一个实施例,所述S2个第二类子时频资源中的任意一个第二类子时频资源包括正整数个所述时频资源单元。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源包括2个所述时频资源单元。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源包括3个所述时频资源单元。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源包括4个所述时频资源单元。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源包括6个所述时频资源单元。
作为一个实施例,所述S2个第二类子时频资源中的至少两个第二类子时频资源所包括的所述时频资源单元的个数不同。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源所包括的至少两个相邻的所述时频资源单元在时域上是连续的。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源所包括的至少两个相邻的所述时频资源单元在时域上是不连续的。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源所包括的至少两个相邻的所述时频资源单元之间在时域上间隔至少一个所述时频资源单元。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源所包括的至少两个相邻的所述时频资源单元之间在时域上间隔至少一个多载波符号。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源所包括的至少两个相邻的所述时频资源单元在频域上是连续的。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源所包括的至少两个相邻的所述时频资源单元在频域上是不连续的。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源所包括的至少两个相邻的所述时频资源单元之间在频域上间隔至少一个所述时频资源单元。
作为一个实施例,所述S2个第二类子时频资源中的至少一个第二类子时频资源所包括的至少两个相邻的所述时频资源单元之间在频域上间隔至少一个子载波。
实施例10
实施例10示例了根据本申请的一个实施例的Q个第二类无线信号之间关系的示意图,如附图10所示。
在附图10中,方格填充的实线方框代表Q个第二类时频资源中的一个第二类时频资源; 本申请中的所述Q个第二类无线信号分别在所述Q个第二类时频资源上发送。在附图10中,所述Q个第二类时频资源包括第二类时频资源#0,第二类时频资源#1,…,第二类时频资源#(Q-1);在情况A中,所述Q个第二类时频资源TDM(Time-Division Mulitplexing,时分复用);在情况B中,所述Q个第二类时频资源FDM(Frequency-Division Mulitplexing,频分复用);在情况C中,所述Q个第二类时频资源既是TDM,又是FDM。
作为一个实施例,所述Q个第二类无线信号分别在Q个第二类时频资源上发送,所述第二时频资源是Q个第二类时频资源中的一个第二类时频资源。
作为一个实施例,所述Q个第二类时频资源中的至少两个第二类时频资源是TDM的。
作为一个实施例,所述Q个第二类时频资源中的至少两个第二类时频资源是FDM的。
作为一个实施例,所述Q个第二类时频资源中的至少两个第二类时频资源是TDM,也是FDM的。
作为一个实施例,所述P个第一类无线信号分别在P个第一类时频资源上发送,第一时频资源是所述P个第一类时频资源中的一个第一类时频资源。
作为一个实施例,所述P个第一类时频资源中的至少两个第一类时频资源是TDM的。
作为一个实施例,所述P个第一类时频资源中的至少两个第一类时频资源是FDM的。
作为一个实施例,所述P个第一类时频资源中的至少两个第一类时频资源是TDM,也是FDM的。
作为一个实施例,所述第一时频资源包括S3个所述时频资源单元,所述S3是正整数。
作为一个实施例,所述第一时频资源由S3个所述时频资源单元组成,所述S3是正整数。
作为一个实施例,所述第一时频资源所包括的至少两个所述时频资源单元是TDM的。
作为一个实施例,所述第一时频资源所包括的至少两个所述时频资源单元是FDM的。
实施例11
实施例11示例了根据本申请的一个实施例的天线端口和第一类天线端口组之间关系的示意图,如附图11所示。
在实施例11中,一个第一类天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口是所述正整数个天线端口中的一个天线端口;所述给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述给定天线端口包括的正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述给定天线端口包括的正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到。
在实施例11中,本申请中的所述第一节点接收P个第一类无线信号,所述P是正整数;所述Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
作为一个实施例,所述Q个第二类无线信号分别用Q个空间发送参数(Spatial Tx Parameter)发送。
作为一个实施例,所述Q个空间发送参数(Spatial Tx Parameters)中的每一个空间发送参数包括发送天线端口(Antenna Port),发送天线端口组,发送波束,发送模拟波束赋型矩阵,发送模拟波束赋型向量,发送波束赋型向量,发送空间滤波(Spatial  filtering)和空域发送滤波(Spatial domain transmission filter)中的一种或多种。
作为一个实施例,所述Q个第二类无线信号中的至少两个第二类无线信号所对应的空间发送参数不同。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号所采用的部分空间发送参数与所述Q个第二类无线信号中的另一个第二类无线信号所采用的部分空间发送参数不同。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号所采用的部分空间发送参数与所述Q个第二类无线信号中的另一个第二类无线信号所采用的部分空间发送参数相同。
作为一个实施例,所述Q个第二类无线信号中的至少两个第二类无线信号不是QCL的。
作为一个实施例,QCL(Quasi Co-Located,准共址)的具体定义参见TS38.214中的5.1.5章节。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号的全部或部分大尺度特性(Large-scale properties)不能被用于推断出所述Q个第二类无线信号中的另一个第二类无线信号的全部或部分大尺度特性。
作为一个实施例,所述大尺度特性包括延时扩展(Delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(Path loss),平均增益(Average gain),平均延时(Average delay),空间接收参数(Spatial Rx parameters)和空间发送参数(Spatial Tx parameters)中的一种或多种。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号的QCL参数不能被用于推断出所述Q个第二类无线信号中的另一个第二类无线信号的QCL参数。
作为一个实施例,QCL参数包括延时扩展(Delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(Path loss),平均增益(Average gain),平均延时(Average delay),空间接收参数(Spatial Rx parameters)和空间发送参数(Spatial Tx parameters)中的一种或多种。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号所经历的全部或部分小尺度信道参数不能被用于推断出所述Q个第二类无线信号中的另一个第二类无线信号所经历的全部或部分小尺度信道参数。
作为一个实施例,所述小尺度信道参数包括CIR(Channel Impulse Response,信道冲击响应),PMI(Precoding Matrix Indicator,预编码矩阵指示),CQI(Channel Quality Indicator,信道质量指示)和RI(Rank Indicator,秩指示)中的一种或多种。
作为一个实施例,所述Q个第二类无线信号分别在Q个第一类天线端口组上发送。
作为一个实施例,所述第二目标无线信号在第一天线端口组上发送,所述第一天线端口组是所述Q个第一类天线端口组中一个第一类天线端口组。
作为一个实施例,所述Q个第一类天线端口组中的每个第一类天线端口组包括正整数个天线端口。
作为一个实施例,所述Q个第一类天线端口组中的每个第一类天线端口组仅包括一个天线端口。
作为一个实施例,所述Q个第一类天线端口组中至少两个第一类天线端口组所包括的天线端口的数量不同。
作为一个实施例,所述正整数个天线端口中的一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成。
作为一个实施例,所述正整数组个天线组中的一个天线组包括正整数根天线。
作为一个实施例,所述正整数个天线组中的一个天线组通过一个RF(Radio  Frequency,射频)Chain(链路)连接到基带处理器,所述正整数个天线组中不同天线组对应不同的RF Chain。
作为一个实施例,给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。
作为一个实施例,所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的正整数根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。
作为一个实施例,所述给定天线端口包括的正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。
作为一个实施例,所述给定天线端口包括的正整数个天线组到所述给定天线端口的映射***组成所述给定天线端口对应的数字波束赋型向量。
作为一个实施例,所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。
作为一个实施例,所述一个第一类天线端口组包括的不同天线端口由相同的天线组构成。
作为一个实施例,所述一个第一类天线端口组包括的不同天线端口对应不同的波束赋型向量。
作为一个实施例,所述一个第一类天线端口组只包括所述一个天线组,即一个RF Chain。
作为上述实施例的一个子实施例,所述一个第一类天线端口包括的天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量。
作为上述实施例的一个子实施例,所述一个第一类天线端口包括的天线端口对应的数字波束赋型向量降维成一个标量。
作为上述实施例的一个子实施例,所述一个第一类天线端口包括的天线端口对应的波束赋型向量等于所述一个第一类天线端口包括的天线端口对应的模拟波束赋型向量。
作为一个实施例,所述一天第一类天线端口组包括一个天线端口。
作为一个实施例,所述一个第一类天线端口组包括正整数个天线组,即多个RF Chain。
作为一个实施例,所述一个第一类天线端口组包括正整数个天线端口。
作为一个实施例,所述一个第一类天线端口组包括的不同天线端口对应相同的模拟波束赋型矩阵。
作为一个实施例,所述一个第一类天线端口组包括的不同天线端口对应不同的数字波束赋型向量。
作为一个实施例,所述Q个第一类天线端口组包括的至少两个第一类天线端口组包括的天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,所述一个天线端口是一个antenna port。
作为一个实施例,从所述一个天线端口上发送的一个无线信号所经历的所述小尺度信道参数可以推断出从所述一个天线端口上发送的另一个无线信号所经历的所述小尺度信道参数。
作为一个实施例,所述一个第一类天线端口组包括的任意两个天线端口是QCL的。
作为一个实施例,一个天线端口和另一个天线端口是QCL的是指:能够从所述一个天线端口上发送的无线信号的全部或者部分所述大尺度特性推断出所述另一个天线端口上发生的无线信号的全部或者部分所述大尺度特性。
作为一个实施例,所述P个第一类无线信号分别用P个空间接收参数(Spatial Tx Parameter)接收。
作为一个实施例,所述P个空间接收参数(Spatial Rx Parameters)中的每一个空间接收参数包括接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收波束 赋型向量,接收空间滤波(Spatial filter)和空域接收滤波(Spatial domain reception filter)中的一种或多种。
作为一个实施例,所述P个第一类无线信号中的至少两个第一类无线信号不是QCL的。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号的全部或部分大尺度特性(Large-scale properties)不能被用于推断出所述P个第一类无线信号中的另一个第一类无线信号的全部或部分大尺度特性。
作为一个实施例,所述P个第一类无线信号中的一个第一类无线信号的QCL参数不能被用于推断出所述P个第一类无线信号中的另一个第一类无线信号的QCL参数。
作为一个实施例,所述Q个第二类无线信号中的一个第二类无线信号所经历的全部或部分小尺度信道参数不能被用于推断出所述Q个第二类无线信号中的另一个第二类无线信号所经历的全部或部分小尺度信道参数。
作为一个实施例,所述第一信息被用于指示所述第二目标无线信号对应的所述一个空间发送参数是否与所述P个第一类无线信号中的至少一个第一类无线信号有关。
作为一个实施例,所述第一信息被用于指示所述第二目标无线信号对应的所述一个空间发送参数是否与所述P个第一类无线信号中的至少一个第一类无线信号对应的所述一个空间接收参数有关。
作为一个实施例,所述一个空间发送参数与所述一个空间接收参数有关是指:所述一个空间发送参数包括的发送波束与所述一个空间接收参数包括的接收波束传输方向相反。
作为一个实施例,所述一个空间发送参数与所述一个空间接收参数有关是指:所述一个空间发送参数包括的发送模拟波束赋型矩阵与所述一个空间接收参数包括的接收模拟波束赋型矩阵相同。
作为一个实施例,所述一个空间发送参数与所述一个空间接收参数有关是指:所述一个空间发送参数包括的发送模拟波束赋型矩阵是所述一个空间接收参数包括的接收模拟波束赋型矩阵的逆矩阵。
作为一个实施例,所述一个空间发送参数与所述一个空间接收参数有关是指:所述一个空间发送参数包括的发送模拟波束赋型向量与所述一个空间接收参数包括的接收模拟波束赋型向量相同。
作为一个实施例,所述一个空间发送参数与所述一个空间接收参数有关是指:所述一个空间发送参数包括的发送模拟波束赋型向量是所述一个空间接收参数包括的接收模拟波束赋型向量的逆向量。
作为一个实施例,所述一个空间发送参数与所述一个空间接收参数有关是指:所述一个空间发送参数包括的发送空间滤波与所述一个空间接收参数包括的接收空间滤波相同。
作为一个实施例,所述第一信息被用于指示所述第二目标无线信号对应的所述第一天线端口组与所述P个第一类无线信号中的至少一个第一类无线信号有关。
作为一个实施例,所述第一信息被用于指示所述第一天线端口组是否被关联到所述P个第一类无线信号中的至少一个第一类无线信号。
作为一个实施例,所述第一信息被用于指示所述第一无线端口组是否被关联到所述P个第一类无线信号中的至少一个第一类无线信号对应的所述一个空间接收参数。
作为一个实施例,所述第一信息被用于指示所述第二时频资源是否与所述P个第一类无线信号中的至少一个第一类无线信号有关。
作为一个实施例,所述第一信息被用于指示所述第二时频资源是否与所述P个第一类无线信号中的至少一个第一类无线信号所占用的所述一个第一类时频资源关联。
作为一个实施例,如果在所述第二时频资源上发送的无线信号采用的一个空间发送 参数与所述P个空间接收参数中的至少一个空间接收参数有关,所述一个空间接收参数被用于接收第一目标无线信号,所述第一目标无线信号是所述P个第一类无线信号的一个第一类无线信号,所述第二时频资源与所述第一目标无线信号关联。
作为上述实施例的一个子实施例,所述第一目标无线信号在所述P个第一类时频资源中的一个第一类时频资源上传输,所述第二时频资源与所述一个第一类时频资源关联。
作为一个实施例,所述Q个第一类信息中的每个第一类信息指示相应的第一类天线端口组是否被关联到所述P个第一类无线信号中的至少一个第一类无线信号。
作为一个实施例,第一天线端口组是所述Q个第一类天线端口组中的任一第一类天线端口组。
作为一个实施例,如果所述第一天线端口组被关联到所述P个第一类无线信号中的至少一个第一类无线信号,所述Q个第一类信息中被所述第一天线端口组发送的第一类信息指示所述P个第一类无线信号的发送者的标识。
作为一个实施例,如果所述第一天线端口组未被关联到所述P个第一类无线信号中的至少一个第一类无线信号,所述Q个第一类信息中被所述第一天线端口组发送的第一类信息被设置为缺省值。
作为一个实施例,所述所述P个第一类无线信号的发送者的标识是一个非负整数。
作为一个实施例,所述所述P个第一类无线信号的发送者的标识是一个PCI(Physical Cell Identifier,物理小区标识)。
作为一个实施例,所述所述P个第一类无线信号的发送者的标识是一个不小于0且不大于1007的整数。
作为一个实施例,所述缺省值是固定的(即不可配置的)。
作为一个实施例,所述缺省值是可配置的。
作为一个实施例,所述第一节点采用P个空间接收参数分别接收所述P个第一类无线信号;如果所述第一天线端口组中的至少一个天线端口被关联到所述P个空间接收参数中的至少一个空间接收参数,所述第一天线端口组被关联到所述P个第一类无线信号中的至少一个第一类无线信号;否则所述第一天线端口组未被关联到所述P个第一类无线信号中的任一第一类无线信号。
作为一个实施例,所述第一节点采用P个空间接收参数分别接收所述P个第一类无线信号;如果所述第一天线端口组中的任一天线端口都未被关联到所述P个空间接收参数中的任一空间接收参数,所述第一天线端口组未被关联到所述P个第一类无线信号中的至少一个第一类无线信号;否则所述第一天线端口组被关联到所述P个第一类无线信号中的至少一个第一类无线信号。
作为一个实施例,所述第一节点采用P个空间接收参数分别接收所述P个第一类无线信号;如果所述第一天线端口组中每个天线端口被关联到所述P个空间接收参数中的至少一个空间接收参数,所述第一天线端口组被关联到所述P个第一类无线信号中的至少一个第一类无线信号;否则所述第一天线端口组未被关联到所述P个第一类无线信号中的任一第一类无线信号。
作为一个实施例,如果用于生成一个天线端口对应的发送波束与一个空间接收参数所对应的接收波束是空间相关的,所述一个天线端口被关联到所述一个空间接收参数;否则所述一个天线端口不被关联到所述一个空间接收参数。
作为一个实施例,如果用于生成一个天线端口的波束赋形向量与一个空间接收参数中所包括的波束赋形向量相同,所述一个天线端口被关联到所述一个空间接收参数;否则所述一个天线端口未被关联到所述一个空间接收参数。
作为一个实施例,如果用于生成一个天线端口的波束赋形向量与一个空间接收参数中所包括的波束赋形向量的相关性大于特定阈值,所述一个天线端口被关联到所述一个空间接收参数;否则所述一个天线端口未被关联到所述一个空间接收参数;所述特定阈 值大于0且不大于1。
作为一个实施例,第一向量被用于生成一个天线端口,第二向量被用于生成一个空间接收参数;如果采用第二向量生成另一个天线端口,并且所述一个天线端口与所述另一个天线端口是空间相关的,所述一个天线端口被关联到所述一个空间接收参数,否则所述一个天线端口未被关联到所述一个空间接收参数。
作为一个实施例,如果所述一个天线端口所经历的大尺度特性能被用于推断出所述另一个天线端口所经历的大尺度特性,所述一个天线端口与所述另一个天线端口是空间相关的。
作为一个实施例,如果所述一个天线端口对应的空间接收参数能被用于接收所述另一个天线端口,所述一个天线端口与所述另一个天线端口是空间相关的。
作为一个实施例,如果所述一个天线端口对应的接收波束赋型向量能被用于接收所述另一个天线端口,所述一个天线端口与所述另一个天线端口是空间相关的。
作为一个实施例,如果所述一个天线端口对应的空域接收滤波能被用于接收所述另一个天线端口,所述一个天线端口与所述另一个天线端口是空间相关的。
作为一个实施例,所述大尺度特性包括最大多径延迟。
作为一个实施例,所述大尺度特性包括最大多普勒频偏。
作为一个实施例,所述波束赋形向量包括用于生成模拟波束的向量。
作为一个实施例,所述波束赋形向量包括用于生成数字波束的向量。
实施例12
实施例12示例了根据本申请的一个实施例的第一类信息,第二信息与第二类无线信号之间关系示意图,如附图12所示。
在实施例12中,所述Q个第二类无线信号中的每个第二类无线信号都包括第二信息,所述第二信息被用于指示所述第一节点是否处于覆盖内。
作为一个实施例,所述Q个第二类无线信号中任意两个第二类无线信号包括的第二信息都相同。
作为一个实施例,所述第二信息包括TRUE(是)和FALSE(否)中的一个。
作为一个实施例,如果所述第二信息是TRUE,被用于指示所述第一节点位于覆盖内。
作为一个实施例,如果所述第二信息是FALSE,被用于指示所述第一节点位于覆盖外。
作为一个实施例,所述第二信息包括小区覆盖内,GNSS覆盖内,覆盖外中的一个。
作为一个实施例,所述第二信息被用于生成所述第二目标无线信号。
作为一个实施例,所述第二信息被用于对所述第二目标无线信号加扰。
作为一个实施例,所述第二信息被用于生成所述第二序列。
作为一个实施例,所述第二信息被用于生成所述第二比特块。
作为一个实施例,所述第二比特块包括所述第二信息。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第三信息,所述第三信息被用于指示所述P个第一类无线信号的发送者。
作为一个实施例,所述Q个第二类无线信号中任意两个第二类无线信号包括的第三信息都相同。
作为一个实施例,所述第三信息包括GNSS(Global Navigation Satellite System,全球导航卫星***)。
作为一个实施例,所述第三信息包括小区(Cell)。
作为一个实施例,所述第三信息包括服务小区(Serving Cell)。
作为一个实施例,所述第三信息包括主小区(Primary Cell,PCell)。
作为一个实施例,所述第三信息包括辅小区(Secondary Cell,SCell)。
作为一个实施例,所述第三信息包括邻小区(Neighboring Cell)。
作为一个实施例,所述第三信息包括基站。
作为一个实施例,所述第三信息包括E-UTRAN基站。
作为一个实施例,所述第三信息包括NR基站。
作为一个实施例,所述第三信息包括UE(User Equipment,用户设备)。
作为一个实施例,所述第三信息包括SyncRefUE(Synchronization Reference User Equipment,同步参考用户设备)。
作为上述实施例的一个子实施例,所述SyncRefUE是指一个用户设备被配置用于所述同步参考。
作为一个实施例,所述第三信息包括覆盖内(In-Coverage)SynRefUE。
作为一个实施例,所述第三信息包括覆盖外(Out-of-Coverage)SyncRefUE。
作为一个实施例,所述第三信息包括所述P个第一类无线信号中的一个第一类无线信号。
作为一个实施例,所述第三信息包括SyncRefBeam(Synchronization Reference Beam,同步参考波束)。
作为上述实施例的一个子实施例,所述SyncRefBeam是所述P个第一类无线信号中的一个第一类无线信号,所述一个空间接收参数被用于所述一个第一类无线信号。
作为上述实施例的一个子实施例,所述一个空间接收参数被配置用于所述同步参考。
作为一个实施例,所述第三信息包括SyncRefResource(Synchronization Reference Resource,同步参考资源),所述SyncRefResource是在所述P个第一类时频资源中的一个第一类时频资源上所发送的信号。
作为上述实施例的一个子实施例,所述SyncRefResource是指一个第一类时频资源被配置用于所述同步参考。
作为一个实施例,P个第一类SyncRefResource分别包括所述P个第一类时频资源,所述第三信息包括所述P个第一类SyncRefResource中的一个第一类SyncRefResource。
作为一个实施例,P个第一类SyncRefResource分别属于所述P个第一类时频资源,所述第三信息包括所述P个第一类SyncRefResource中的一个第一类SyncRefResource。
作为上述实施例的一个子实施例,所述P个第一类无线信号分别在所述P个第一类SyncRefResource上传输。
作为一个实施例,所述第三信息被用于确定所述第二目标无线信号的SLSSID。
作为一个实施例,如果所述第三信息被用于指示GNSS,所述第二目标无线信号的SLSSID等于第一特定值。
作为一个实施例,所述第一特定值是0。
作为一个实施例,如果所述第三信息被用于指示SyncRefUE,如果所述P个第一类无线信号的SLSSID等于第一特定值,所述第二目标无线信号的SLSSID等于第一特定值。
作为一个实施例,J1个第一类标识被分别用于生成J1个第一类PSSS和J1个第一类SSSS,所述J1为正整数。
作为一个实施例,所述J1个第一类标识中的任意一个第一类标识是非负整数。
作为一个实施例,所述J1个第一类PSSS中的任意两个第一类PSSS都相同,所述J1个第一类SSSS中的任意两个第一类SSSS都不同。
作为一个实施例,如果所述第三信息指示覆盖内SyncRefUE,所述第二目标无线信号的SLSSID等于所述J1个第一类标识中的一个第一类标识。
作为一个实施例,所述一个第一类标识是从0到167的非负整数。
作为一个实施例,J2个第二类标识被分别用于生成J2个第二类PSSS和J2个第二类SSSS,所述J2为正整数。
作为一个实施例,所述J2个第二类标识中的任意一个第二类标识是非负整数。
作为一个实施例,所述J2个第二类PSSS中的任意两个第二类PSSS都相同,所述 J2个第二类SSSS中的任意两个第二类SSSS都不同。
作为一个实施例,所述J1个第一类PSSS中的任意一个第一类PSSS与所述J2个第二类PSSS中的任意一个第二类PSSS不同。
作为一个实施例,所述J1个第一类标识中的任意一个第一类标识与所述J2个第二类标识中的任意一个第二类标识不同。
作为一个实施例,如果所述第三信息指示覆盖外SyncRefUE,所述第二目标无线信号的SLSSID等于所述J2个第二类标识中的一个第二类标识。
作为一个实施例,所述第三信息被用于生成所述第二目标无线信号。
作为一个实施例,所述第三信息被用于对所述第二目标无线信号加扰。
作为一个实施例,所述第三信息被用于生成所述第二序列。
作为一个实施例,所述第三信息被用于生成所述第二比特块。
作为一个实施例,所述第二比特块包括所述第三信息。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第四信息,所述第四信息被用于指示所述Q个第二类无线信号被发送的SFN(System Frame Number,***帧号)。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第四信息,所述第四信息被用于指示发送所述Q个第二类无线信号被发送的DFN(Direct Frame Number,直连帧号或副链路帧号)。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第四信息,所述第四信息被用于指示所述Q个第二类无线信号被发送的半帧索引(Half Frame Index),所述半帧索引包括第一半帧(First Half)和第二半帧(Second Half)中的之一。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第四信息,所述第四信息被用于指示所述Q个第二类无线信号被发送的副链路子帧在所述Q个第二类无线信号被发送的副链路帧中的副链路子帧号(Direct Subframe Number)。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第四信息,所述第四信息被用于指示副链路传输带宽,副链路TDD(Time Divi sion Duplex)配置中的一种或两种。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第四信息,所述第四信息被用于指示所述Q个第二类无线信号的SCS(SubCarrier Spacing,子载波间隔)。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第四信息,所述第四信息被用于指示所述Q个第二类无线信号的频域位置与整个***时频资源块格(Resource Block Grid)的频率偏差,所述频率偏差包括整数个子载波。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第四信息,所述第四信息被用于指示副链路的频域位置与整个***时频资源块格(Resource Block Grid)的频率偏差,所述频率偏差包括整数个子载波。
作为一个实施例,所述第四信息是所述Q个第二类无线信号公共的。
作为一个实施例,所述Q个第二类无线信号中任意两个第二类无线信号包括的第四信息都相同。
作为一个实施例,所述第四信息被用于生成所述第二目标无线信号。
作为一个实施例,所述第四信息被用于对所述第二目标无线信号加扰。
作为一个实施例,所述第四信息被用于生成所述第二序列。
作为一个实施例,所述第四信息被用于生成所述第二比特块。
作为一个实施例,所述第二比特块包括所述第四信息。
作为一个实施例,所述Q个第二类无线信号分别包括Q个第五类信息,第二目标无 线信号是所述Q个第二类无线信号中的一个第二类无线信号,第五信息是所述Q个第五类信息中的一个第五类信息,所述第二目标无线信号包括所述第五信息。
作为一个实施例,所述第五信息被用于指示所述第二目标无线信号在所述Q个第二类无线信号中的索引。
作为一个实施例,所述第二目标无线信号在所述Q个第二类无线信号中的索引是小于所述Q的非负整数。
作为一个实施例,所述第二目标无线信号在所述Q个第二类无线信号中的索引是{#0,#1,…,#(Q-1)}中的一个。
作为一个实施例,所述Q个第二类无线信号中任意两个第二类无线信号包括的第五信息都不同。
作为一个实施例,所述第五信息被用于指示所述第二目标无线信号的时频资源位置。
作为一个实施例,所述第五信息被用于生成所述第二目标无线信号。
作为一个实施例,所述第五信息被用于对所述第二目标无线信号加扰。
作为一个实施例,所述第五信息被用于生成所述第二序列。
作为一个实施例,所述第五信息被用于生成所述第二比特块。
作为一个实施例,所述第二比特块包括所述第五信息。
实施例13
实施例13示例了根据本申请的一个实施例的第一节点与第二节点之间的位置关系的示意图,如附图13所示。
在附图13中,椭圆虚线框以内代表覆盖内,椭圆虚线框以为代表覆盖外。
在实施例13中,本申请中的所述第一节点接收目标特定信号,根据所述目标特定信号的目标接收质量判断是否位于覆盖内。
在实施例13中,本申请中的所述第一节点处于覆盖内,本申请中的所述第二节点处于覆盖外。
作为一个实施例,如果所述第一节点接收到的目标特定信号的目标接收质量不小于目标阈值,所述第一节点处于覆盖内。
作为一个实施例,如果所述第一节点接收到的目标特定信号的目标接收质量小于目标阈值,所述第一节点处于覆盖外。
作为一个实施例,所述目标特定信号包括SS(Synchronization Signal,同步信号)。
作为一个实施例,所述目标特定信号包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述目标特定信号包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述目标特定信号包括物理广播信号(Physical Broadcast Signal,物理广播信号)。
作为一个实施例,所述目标特定信号包括在PBCH(Physical Broadcast Channel,物理广播信道)上传输的信号。
作为一个实施例,所述目标特定信号包括PBCH-DMRS(PBCH Demodulation Reference Signal,PBCH解调参考信号)。
作为一个实施例,所述目标特定信号包括SSB(SS/PBCH block,同步广播信号块)。
作为一个实施例,所述目标特定信号包括RS(Reference Signal,参考信号)。
作为一个实施例,所述目标特定信号包括DRS(Discovery Reference Signal,发现参考信号)。
作为一个实施例,所述目标特定信号包括在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输的信号。
作为一个实施例,所述目标特定信号包括在PDSCH(Physical Downlink Shared  Channel,物理下行共享信道)上传输的信号。
作为一个实施例,所述目标接收质量包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述目标接收质量包括S-RSRP(Sidelink Reference Signal Received Power,副链路参考信号接收功率)。
作为一个实施例,所述目标接收质量包括SCH_RP(Received(linear)average power of the resource elements that carry E-UTRA synchronisation signal,measured at the UE antenna connector,同步信号线性平均功率)。
作为一个实施例,所述目标接收质量包括RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为一个实施例,所述目标接收质量包括RSSI(Reference Signal Strength Indicator,参考信号强度指示)。
作为一个实施例,所述目标接收质量包括SNR(Signal to Noise Ratio,信噪比)。
作为一个实施例,所述目标接收质量包括SINR(Signal to Interference plus Noise Ratio,信干噪比)。
作为一个实施例,所述目标接收质量包括BLER(Block Error Rate,误块率)。
作为一个实施例,所述目标接收质量包括BER(Bit Error Rate,误比特率)。
作为一个实施例,所述目标接收质量包括PER(Packet Error Rate,误包率)。
作为一个实施例,所述目标阈值的单位是dB(分贝)。
作为一个实施例,所述目标阈值的单位是dBm(毫分贝)。
作为一个实施例,所述目标阈值的单位是W(毫瓦)。
作为一个实施例,所述目标阈值的单位是mW(毫瓦)。
作为一个实施例,所述目标阈值是预定义的,即不需要信令配置。
作为一个实施例,所述目标阈值是由一个更高层信令配置的。
作为一个实施例,所述目标阈值是由***信息配置的。
作为一个实施例,所述目标阈值是由一个SIB配置的。
作为一个实施例,所述目标阈值是由RRC层信令配置的。
作为一个实施例,所述目标阈值是由MAC层信令配置的。
作为一个实施例,所述目标阈值是由物理层信令配置的。
作为一个实施例,所述Q个第二类无线信号中的每个第二无线信号都包括第二信息,所述第二信息被用于指示所述第一节点是否处于小区覆盖内。
作为一个实施例,如果所述第一节点接收到至少一个服务小区的第一特定信号的第一接收质量大于第一阈值,所述第一节点处于小区覆盖内;
作为一个实施例,所述第一特定信号包括SS(Synchronization Signal,同步信号)。
作为一个实施例,所述第一特定信号包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第一特定信号包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述第一特定信号包括物理广播信号(Physical Broadcast Signal,物理广播信号)。
作为一个实施例,所述第一特定信号包括在PBCH(Physical Broadcast Channel,物理广播信道)上传输的信号。
作为一个实施例,所述第一特定信号包括PBCH-DMRS(PBCH Demodulation Reference Signal,PBCH解调参考信号)。
作为一个实施例,所述第一特定信号包括SSB(SS/PBCH block,同步广播信号块)。
作为一个实施例,所述第一特定信号包括RS(Reference Signal,参考信号)。
作为一个实施例,所述第一特定信号包括DRS(Discovery Reference Signal,发现参考信号)。
作为一个实施例,所述第一特定信号包括在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输的信号。
作为一个实施例,所述第一标特定信号包括在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输的信号。
作为一个实施例,所述第一接收质量包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一接收质量包括SCH_RP(Received(linear)average power of the resource elements that carry E-UTRA synchronisation signal,measured at the UE antenna connector,同步信号线性平均功率)。
作为一个实施例,所述第一接收质量包括RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为一个实施例,所述第一接收质量包括RSSI(Reference Signal Strength Indicator,参考信号强度指示)。
作为一个实施例,所述第一接收质量包括SNR(Signal to Noise Ratio,信噪比)。
作为一个实施例,所述第一接收质量包括SINR(Signal to Interference plus Noise Ratio,信干噪比)。
作为一个实施例,所述第一接收质量包括BLER(Block Error Rate,误块率)。
作为一个实施例,所述第一接收质量包括BER(Bit Error Rate,误比特率)。
作为一个实施例,所述第一接收质量包括PER(Packet Error Rate,误包率)。
作为一个实施例,所述第一阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一阈值的单位是mW(毫瓦)。
作为一个实施例,所述第一阈值是预定义的,即不需要信令配置。
作为一个实施例,所述第一阈值是由一个更高层信令配置的。
作为一个实施例,所述第一阈值是由***信息配置的。
作为一个实施例,所述第一阈值是由一个SIB配置的。
作为一个实施例,所述第一阈值是由RRC层信令配置的。
作为一个实施例,所述第一阈值是由MAC层信令配置的。
作为一个实施例,所述第一阈值是由物理层信令配置的。
作为一个实施例,所述Q个第二类无线信号中的每个第二无线信号都包括第二信息,所述第二信息被用于指示所述第一节点是否处于GNSS(Global Navigation Satellite System,全球导航卫星***)覆盖内。
作为一个实施例,所述GNSS包括GPS(Global Positioning System,美国全球定位***),Galileo(欧盟伽利略定位***),Compass(中国北斗卫星导航***),GLONASS(俄罗斯格洛纳斯全球导航卫星***),IRNSS(Indian Regional Navigation Satellite System,印度局部导航卫星***),QZSS(Quasi-Zenith Satellite System,日本准天顶卫星***)中的一种或多种。
作为一个实施例,如果所述第一节点接收到GNSS的第二特定信号的第二接收质量大于第二阈值,所述第一节点处于GNSS覆盖内。
作为一个实施例,所述第二特定信号包括SS(Synchronization Signal,同步信号)。
作为一个实施例,所述第二特定信号包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第二特定信号包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述第二特定信号包括物理广播信号(Physical Broadcast  Signal,物理广播信号)。
作为一个实施例,所述第二特定信号包括在PBCH(Physical Broadcast Channel,物理广播信道)上传输的信号。
作为一个实施例,所述第二特定信号包括PBCH-DMRS(PBCH Demodulation Reference Signal,PBCH解调参考信号)。
作为一个实施例,所述第二特定信号包括SSB(SS/PBCH block,同步广播信号块)。
作为一个实施例,所述第二特定信号包括RS(Reference Signal,参考信号)。
作为一个实施例,所述第二特定信号包括DRS(Discovery Reference Signal,发现参考信号)。
作为一个实施例,所述第二特定信号包括在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输的信号。
作为一个实施例,所述第二标特定信号包括在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输的信号。
作为一个实施例,所述第二接收质量包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第二接收质量包括SCH_RP(Received(linear)average power of the resource elements that carry E-UTRA synchronisation signal,measured at the UE antenna connector,同步信号线性平均功率)。
作为一个实施例,所述第二接收质量包括RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为一个实施例,所述第二接收质量包括RSSI(Reference Signal Strength Indicator,参考信号强度指示)。
作为一个实施例,所述第二接收质量包括SNR(Signal to Noise Ratio,信噪比)。
作为一个实施例,所述第二接收质量包括SINR(Signal to Interference plus Noise Ratio,信干噪比)。
作为一个实施例,所述第二接收质量包括BLER(Block Error Rate,误块率)。
作为一个实施例,所述第二接收质量包括BER(Bit Error Rate,误比特率)。
作为一个实施例,所述第二接收质量包括PER(Packet Error Rate,误包率)。
作为一个实施例,所述第二阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第二阈值的单位是mW(毫瓦)。
作为一个实施例,所述第二阈值是预定义的,即不需要信令配置。
作为一个实施例,所述第二阈值是由一个更高层信令配置的。
作为一个实施例,所述第二阈值是由***信息配置的。
作为一个实施例,所述第二阈值是由一个SIB配置的。
作为一个实施例,所述第二阈值是由RRC层信令配置的。
作为一个实施例,所述第二阈值是由MAC层信令配置的。
作为一个实施例,所述第二阈值是由物理层信令配置的。
作为一个实施例,如果所述第一节点未能检测到一个服务小区的第一特定信号的第一接收质量大于第一阈值,所述第一节点处于小区覆盖外。
作为一个实施例,如果所述第一节点未能检测到一个GNSS的第二特定信号的第二接收质量大于第二阈值,所述第一节点处于GNSS覆盖外。
作为一个实施例,如果所述第一节点未能检测到一个服务小区的第一特定信号的第一接收质量大于第一阈值,或者,如果所述第一节点未能检测到一个GNSS的第二特定信号的第二接收质量大于第二阈值,所述第一节点处于覆盖外。
作为一个实施例,如果所述第一节点未能检测到一个服务小区的第一特定信号的第一接收质量大于第一阈值,并且,如果所述第一节点未能检测到一个GNSS的第二特定信 号的第二接收质量大于第二阈值,所述第一节点处于覆盖外。
实施例14
实施例14示例了一个用于第一节点设备中的处理装置的结构框图,如附图14所示。在附图14中,第一节点设备处理装置1400主要由第一接收机模块1401,第一处理模块1402和第一发射机模块1403组成。
作为一个实施例,第一接收机模块1401包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一处理模块1402包括本申请附图4中的控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机模块1403包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例14中,第一处理模块1402判断所述第一节点是否处于覆盖内;第一发射机模块1403发送Q个第二类无线信号;其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数。
在实施例14中,第一处理模块1402判断所述第一节点是否处于覆盖内;第一发射机模块1403发送Q个第二类无线信号;其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数。
作为一个实施例,第一接收机模块1401接收P个第一类无线信号,所述P是正整数;其中,所述Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
作为一个实施例,所述Q个第二类无线信号中的每个第二类无线信号都包括第二信息,所述第二信息被用于指示所述第一节点是否处于覆盖内。
作为一个实施例,第一接收机模块1401接收目标特定信号,根据所述目标特定信号的目标接收质量判断是否位于覆盖内。
作为一个实施例,如果所述第一节点处于覆盖内,所述Q个第一类信息是被独立生成的。
作为一个实施例,如果所述第一节点处于覆盖外,所述Q个第一类信息不被独立生成。
作为一个实施例,所述第一节点是用户设备。
作为一个实施例,所述第一节点是中继节点。
实施例15
实施例15示例了一个用于第二节点设备中的处理装置的结构框图,如附图15所示。在附图15中,第二节点设备处理装置1500主要由第二接收机模块1501和第二处理模块1502组成。
作为一个实施例,第二接收机模块1501包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,第二处理模块1502包括本申请附图4中的控制器/处理器475和存储器476中的至少之一。
在实施例15中,第二接收机模块1501接收Q个第二类无线信号中的Q0个第二类无线信号;其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中 每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
在实施例15中,第二接收机模块1501:接收Q个第二类无线信号中的Q0个第二类无线信号;其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息是否被独立生成与所述Q个第二类无线信号的发送者是否处于覆盖内有关;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
作为一个实施例,所述Q0个第一类信息中的每个第一类信息与P个第一类无线信号中的一个第一类无线信号的空间接收参数有关,所述P个第一类无线信号被所述所述Q个第二类无线信号的发送者接收;所述P是正整数。
作为一个实施例,所述Q0个第二类无线信号分别包括所述第二信息,所述第二信息指示所述Q个第二类无线信号的发送者是否位于覆盖内。
作为一个实施例,接收到的目标特定信号的接收质量被所述所述Q个第二类无线信号的发送者用于判断是否位于覆盖内。
作为一个实施例,如果所述所述Q个第二类无线信号的发送者处于覆盖内,所述Q个第一类信息是被独立生成的;
作为一个实施例,如果所述所述Q个第二类无线信号的发送者处于覆盖外,所述Q个第一类信息不被独立生成。
作为一个实施例,所述第二节点是用户设备。
作为一个实施例,所述第二节点是中继节点。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    判断所述第一节点处于覆盖内;
    发送Q个第二类无线信号;
    其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成,或者,所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,
    接收P个第一类无线信号,所述P是正整数;
    其中,所述Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
  3. 根据权利要求1所述的方法,其特征在于,
    所述Q个第二类无线信号中的每个第二类无线信号都包括第二信息,所述第二信息被用于指示所述第一节点是否处于覆盖内。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,包括:
    接收目标特定信号,根据所述目标特定信号的目标接收质量判断是否位于覆盖内。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,
    如果所述第一节点处于覆盖内,所述Q个第一类信息是被独立生成的;如果所述第一节点处于覆盖外,所述Q个第一类信息不被独立生成。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,
    所述第一节点是用户设备,或者,所述第一节点是中继节点。
  7. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收Q个第二类无线信号中的Q0个第二类无线信号;
    其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成,或者,所述Q个第一类信息是否被独立生成与所述Q个第二类无线信号的发送者是否处于覆盖内有关;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
  8. 根据权利要求7所述的方法,其特征在于,
    所述Q0个第一类信息中的每个第一类信息与P个第一类无线信号中的一个第一类无线信号的空间接收参数有关,所述P个第一类无线信号被所述所述Q个第二类无线信号的发送者接收;所述P是正整数。
  9. 根据权利要求7所述的方法,其特征在于,
    所述Q0个第二类无线信号分别包括所述第二信息,所述第二信息指示所述Q个第二类无线信号的发送者是否位于覆盖内。
  10. 根据权利要求7至9中任一权利要求所述的方法,其特征在于,
    接收到的目标特定信号的接收质量被所述所述Q个第二类无线信号的发送者用于判断是否位于覆盖内。
  11. 根据权利要求7至10中任一权利要求所述的方法,其特征在于,
    如果所述所述Q个第二类无线信号的发送者处于覆盖内,所述Q个第一类信息是被独立生成的;如果所述所述Q个第二类无线信号的发送者处于覆盖外,所述Q个第一类信息不被独立生成。
  12. 根据权利要求7至11中任一权利要求所述的方法,其特征在于,
    所述第二节点是用户设备,或者,所述第二节点是中继节点。
  13. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一处理模块:判断所述第一节点是否处于覆盖内;
    第一发射机模块:发送Q个第二类无线信号;
    其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成,或者,所述Q个第一类信息是否被独立生成与所述第一节点是否处于覆盖内有关;所述Q是大于1的正整数。
  14. 根据权利要求13所述的第一节点设备,其特征在于,包括:
    第一接收机模块:接收P个第一类无线信号,所述P是正整数;
    其中,所述Q个第一类信息中的每个第一类信息与所述P个第一类无线信号中的一个第一类无线信号的空间接收参数有关。
  15. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二接收机模块:接收Q个第二类无线信号中的Q0个第二类无线信号;
    其中,所述Q个第二类无线信号分别包括Q个第一类信息;所述Q0个第二类无线信号中每个第二类无线信号是否能被选为同步参考与所包括的第一类信息有关;所述Q个第一类信息被独立生成,或者,所述Q个第一类信息是否被独立生成与所述Q个第二类无线信号的发送者是否处于覆盖内有关;所述Q是大于1的正整数,所述Q0是不大于所述Q的正整数。
PCT/CN2018/086301 2018-05-10 2018-05-10 一种被用于无线通信的节点中的方法和装置 WO2019213891A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880090959.5A CN111971928B (zh) 2018-05-10 2018-05-10 一种被用于无线通信的节点中的方法和装置
CN202210427027.3A CN114828164A (zh) 2018-05-10 2018-05-10 一种被用于无线通信的节点中的方法和装置
CN202210428879.4A CN114666872A (zh) 2018-05-10 2018-05-10 一种被用于无线通信的节点中的方法和装置
PCT/CN2018/086301 WO2019213891A1 (zh) 2018-05-10 2018-05-10 一种被用于无线通信的节点中的方法和装置
US17/023,372 US11265941B2 (en) 2018-05-10 2020-09-17 Method and device for wireless communication node
US17/580,673 US11622401B2 (en) 2018-05-10 2022-01-21 Method and device for wireless communication node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086301 WO2019213891A1 (zh) 2018-05-10 2018-05-10 一种被用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/023,372 Continuation US11265941B2 (en) 2018-05-10 2020-09-17 Method and device for wireless communication node

Publications (1)

Publication Number Publication Date
WO2019213891A1 true WO2019213891A1 (zh) 2019-11-14

Family

ID=68467236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086301 WO2019213891A1 (zh) 2018-05-10 2018-05-10 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (2) US11265941B2 (zh)
CN (3) CN111971928B (zh)
WO (1) WO2019213891A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830961A (zh) * 2019-11-18 2020-02-21 英业达科技有限公司 智能车队实时通信***及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971928B (zh) * 2018-05-10 2022-05-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112947208A (zh) * 2021-02-26 2021-06-11 北京小米移动软件有限公司 设备控制方法及装置、设备、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162597A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 设备到设备d2d传输方法及装置
WO2017007285A1 (ko) * 2015-07-08 2017-01-12 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신 단말의 동기 신호 송수신 방법 및 장치
CN107439050A (zh) * 2014-11-07 2017-12-05 南炡吉 用于在无线通信***中发送设备到设备通信信道的装置和方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10348541B2 (en) * 2013-11-27 2019-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Sending and detecting synchronization signals and an associated information message
CN111212386B (zh) * 2014-10-20 2022-05-17 华为技术有限公司 信息传输方法、设备和***
US11153837B2 (en) * 2015-07-02 2021-10-19 Qualcomm Incorporated Synchronization for wireless communication systems
US10616886B2 (en) * 2015-08-25 2020-04-07 Idac Holdings, Inc. Framing, scheduling, and synchronization in wireless systems
CN107295625B (zh) * 2016-03-31 2019-08-16 电信科学技术研究院 一种同步优先级的标识方法及装置
JP6669041B2 (ja) * 2016-05-12 2020-03-18 ソニー株式会社 通信装置、通信方法及びコンピュータプログラム
EP3488646B1 (en) * 2016-07-20 2021-04-21 Convida Wireless, LLC Mobility for radio devices using beamforming and selection
CA3033555A1 (en) * 2016-08-11 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for wireless device synchronization in a beam-based communication system
US10575269B2 (en) * 2016-09-27 2020-02-25 Lg Electronics Inc. Method and device for transmitting and receiving synchronization signal of device-to-device communication terminal in wireless communication system
EP3345312A1 (en) * 2016-09-30 2018-07-11 Telefonaktiebolaget LM Ericsson (PUBL) Quasi co-location for beamforming
WO2018070845A1 (ko) * 2016-10-13 2018-04-19 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 사이드링크 동기화 신호 전송 방법 및 상기 방법을 이용하는 단말
CN114900797A (zh) * 2016-12-30 2022-08-12 英特尔公司 用于无线电通信的方法和设备
US10448364B2 (en) * 2017-01-19 2019-10-15 Qualcomm Incorporated Methods and apparatus related to time tracking in multi carrier systems
KR20210143927A (ko) * 2017-06-26 2021-11-29 텔레폰악티에볼라겟엘엠에릭슨(펍) 슬롯 및 미니 슬롯에서의 기준 신호 위치 시그널링
CN111149303B (zh) * 2017-09-24 2023-02-21 Lg电子株式会社 用于发送和接收反馈信息的方法及其车辆
US10827499B2 (en) * 2017-10-30 2020-11-03 Qualcomm Incorporated Techniques and apparatuses for prioritization for transmission power control in 5G
WO2019087128A1 (en) * 2017-11-01 2019-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Update of cell quality derivation parameters
US11304165B2 (en) * 2017-11-16 2022-04-12 Lg Electronics Inc. Method and apparatus for performing sidelink communication in wireless communication system
EP3711359B1 (en) * 2017-11-17 2022-08-03 Telefonaktiebolaget LM Ericsson (publ) Systems and methods for configuring a radio link monitoring evaluation period
WO2019124067A1 (ja) * 2017-12-19 2019-06-27 ソニー株式会社 通信装置、通信方法、及び通信システム
US11233553B2 (en) * 2018-02-05 2022-01-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and devices for estimation of MIMO channel state information
US10735059B2 (en) * 2018-02-13 2020-08-04 Qualcomm Incorporated Dynamic beamforming using a co-phasing factor
CN110234170B (zh) * 2018-03-06 2020-09-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11811563B2 (en) * 2018-04-03 2023-11-07 University Of Southern California Analog channel estimation techniques for beamformer design in massive MIMO systems
US10637544B1 (en) * 2018-04-24 2020-04-28 Genghiscomm Holdings, LLC Distributed radio system
CN110460360B (zh) * 2018-05-08 2020-06-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111971928B (zh) * 2018-05-10 2022-05-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US10880895B2 (en) * 2018-05-27 2020-12-29 Brian Gordaychik Variable length downlink control information formats for next generation radio technologies
US11026233B2 (en) * 2018-06-20 2021-06-01 Apple Inc. Emission and panel aware beam selection
US11013008B2 (en) * 2018-06-29 2021-05-18 Asustek Computer Inc. Method and apparatus of handling device-to-device resource release in a wireless communication system
KR102219997B1 (ko) * 2018-07-27 2021-02-26 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드링크 리소스에 대한 빔 센싱을 핸들링하는 방법 및 장치
CN110891252B (zh) * 2018-09-10 2022-06-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107439050A (zh) * 2014-11-07 2017-12-05 南炡吉 用于在无线通信***中发送设备到设备通信信道的装置和方法
CN106162597A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 设备到设备d2d传输方法及装置
WO2017007285A1 (ko) * 2015-07-08 2017-01-12 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신 단말의 동기 신호 송수신 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Rl-166432, Synchronization enhancements in PC5-based V2V", 3GPP TSG RAN WG1 MEETING #86, 26 August 2016 (2016-08-26), XP051140229 *
FUJITSU: "R1-153060, Discussion on discovery in partial/out of network coverage", 3GPP TSG RAN WG1 MEETING #81, 29 May 2015 (2015-05-29), XP050972291 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830961A (zh) * 2019-11-18 2020-02-21 英业达科技有限公司 智能车队实时通信***及其方法
CN110830961B (zh) * 2019-11-18 2022-11-11 英业达科技有限公司 智能车队实时通信***及其方法

Also Published As

Publication number Publication date
US11265941B2 (en) 2022-03-01
CN111971928B (zh) 2022-05-24
US20220150999A1 (en) 2022-05-12
US11622401B2 (en) 2023-04-04
CN114828164A (zh) 2022-07-29
CN114666872A (zh) 2022-06-24
US20210007165A1 (en) 2021-01-07
CN111971928A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
US11463959B2 (en) Method and device for power adjustment in UE and base station
US10945310B2 (en) Method and device for wireless communication in UE and base station
US11622401B2 (en) Method and device for wireless communication node
US11469851B2 (en) Method and device used in wireless communication node
CN116437315A (zh) 一种被用于无线通信的节点中的方法和装置
US20220191834A1 (en) Method and device in nodes used for wireless communication
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220078831A1 (en) Method and device in nodes used for wireless communication
CN115623594A (zh) 一种被用于无线通信的节点中的方法和装置
US11051335B2 (en) Method and device for wireless communication in a first node and base station
CN114598431B (zh) 一种被用于无线通信的节点中的方法和装置
CN115883032B (zh) 一种被用于无线通信的节点中的方法和装置
CN114070362B (zh) 一种被用于无线通信的节点及其方法
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027612A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN117998617A (zh) 一种被用于无线通信的节点中的方法和装置
CN116095835A (zh) 一种被用于无线通信的节点中的方法和装置
CN116133132A (zh) 一种被用于无线通信的节点中的方法和装置
CN117675135A (zh) 用于无线通信的方法和装置
CN116846432A (zh) 一种被用于无线通信的节点中的方法和装置
CN117938333A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.03.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18918168

Country of ref document: EP

Kind code of ref document: A1