WO2019212224A1 - 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2019212224A1
WO2019212224A1 PCT/KR2019/005185 KR2019005185W WO2019212224A1 WO 2019212224 A1 WO2019212224 A1 WO 2019212224A1 KR 2019005185 W KR2019005185 W KR 2019005185W WO 2019212224 A1 WO2019212224 A1 WO 2019212224A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
information
terminal
qcl
Prior art date
Application number
PCT/KR2019/005185
Other languages
English (en)
French (fr)
Inventor
이길봄
강지원
박종현
윤석현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/041,272 priority Critical patent/US11863476B2/en
Publication of WO2019212224A1 publication Critical patent/WO2019212224A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the following description relates to a wireless communication system, and a method for transmitting and receiving channel state information between a terminal and a base station in a wireless communication system and an apparatus supporting the same.
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime, anywhere, is also being considered in next-generation communications.
  • MTC Massive Machine Type Communications
  • a communication system design considering a service / UE that is sensitive to reliability and latency is being considered.
  • An object of the present invention is to provide a method for transmitting and receiving channel state information between a terminal and a base station in a wireless communication system, and apparatuses for supporting the same.
  • the present invention provides a method and apparatus for transmitting and receiving channel state information between a terminal and a base station in a wireless communication system.
  • a terminal in a method for a terminal to report channel state information (CSI) in a wireless communication system, receiving configuration information related to a first channel state information reference signal (CSI-RS) resource for measurement,
  • the configuration information includes quasi co located (QCL) information between the first CSI-RS resource and a second CSI-RS resource associated with a neighbor cell;
  • QCL quasi co located
  • the terminal receiving the CSI-RS from the neighbor cell is based on the timing of the CSI-RS determined based on the QCL information and the configuration information, the terminal from the neighbor cell It may include receiving the CSI-RS.
  • the timing of the CSI-RS is set in association with the second CSI-RS resource. It may be determined based on.
  • the timing of the CSI-RS may be determined based on a cell determined based on the reference serving cell information.
  • synchronization signal block (SSB) information associated with the second CSI-RS resource is not set, and reference serving cell information associated with the second CSI-RS resource is not set. If not, the timing of the neighbor cell may be determined based on the serving cell connected to the terminal.
  • SSB synchronization signal block
  • the QCL information may include one or more of the following information.
  • Type A Information indicating that the first CSI-RS resource and the second CSI-RS resource are QCL in terms of Doppler shift, Doppler spread, average delay, and delay spread.
  • QCL type B information indicating that the first CSI-RS resource and the second CSI-RS resource are QCL in terms of Doppler shift and Doppler spread.
  • QCL type C information indicating that the first CSI-RS resource and the second CSI-RS resource are QCL in terms of Doppler shift and average delay.
  • QCL type D information indicating that the first CSI-RS resource and the second CSI-RS resource are QCL in terms of spatial Rx parameters.
  • receiving the CSI-RS transmitted from the neighbor cell based on the QCL information includes: Doppler shift information related to the second CSI-RS resource; Based on the average delay information, it may include receiving the CSI-RS transmitted from the neighbor cell.
  • receiving the CSI-RS transmitted from the neighbor cell based on the QCL information is based on the received beam information related to the second CSI-RS resource. This may include receiving the CSI-RS transmitted from the neighbor cell.
  • receiving the CSI-RS transmitted from the neighbor cell based on the QCL information includes: the second CSI-RS resource; And receiving the CSI-RS transmitted from the neighbor cell based on related Doppler shift information, average delay information, and received beam information.
  • the CSI-RS may be received from the neighbor cell based on resource configuration associated with the first CSI-RS resource.
  • the CSI-RS may be received from the neighbor cell based on resource configuration related to the second CSI-RS resource.
  • the resource setting associated with the second CSI-RS resource may include one or more of the following.
  • the CSI-RS is received from the neighbor cell based on a resource configuration that satisfies both a first resource configuration associated with the first CSI-RS resource and a second resource configuration associated with the second CSI-RS resource. Can be.
  • the CSI-RS may include a first frequency resource related to the first CSI-RS resource included in the first resource configuration and a second CSI-RS resource associated with the second CSI-RS resource included in the second resource configuration. Two frequency resources may be received from the neighbor cell based on the overlapping frequency resources.
  • the configuration information may be received through higher layer signaling.
  • the first CSI-RS resource may be a non-zero power (NZP) CSI-RS resource or a channel state information interference measurement (CSI-IM) resource.
  • NZP non-zero power
  • CSI-IM channel state information interference measurement
  • the second CSI-RS resource may be a CSI-RS resource for RRM (Radio Resource Management) measurement.
  • RRM Radio Resource Management
  • a terminal for reporting channel state information (CSI) in a wireless communication system comprising: at least one radio frequency (RF) module; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform the following operations, the following operations comprising: the at least Control one RF module to receive configuration information related to a first channel state information reference signal (CSI-RS) resource for measurement, wherein the configuration information is a second associated with the first CSI-RS resource and a neighbor cell; Includes QCL (Quasi Co Located) information between CSI-RS resources; Controlling the at least one RF module to receive a CSI-RS transmitted from the neighbor cell based on the configuration information; And controlling the at least one RF module to report the CSI measured to the serving cell based on the received CSI-RS.
  • CSI-RS channel state information reference signal
  • the terminal may be configured to communicate with at least one of a mobile terminal, a network, and an autonomous vehicle other than the vehicle including the terminal.
  • a base station for receiving channel state information (CSI) in a wireless communication system
  • the base station comprising: at least one radio frequency (RF) module; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform the following operations, the following operations comprising: the at least Control one RF module and transmit configuration information related to a first channel state information reference signal (CSI-RS) resource for measurement to a terminal, wherein the configuration information is related to the first CSI-RS resource and a neighbor cell.
  • CSI-RS channel state information reference signal
  • the terminal may measure the channel state information reference signal transmitted from a neighbor cell rather than the serving cell currently providing the service, and report the channel state information to the serving cell.
  • the network controls the interference of the neighbor cell with respect to the terminal or (if the neighbor cell provides a service with the serving cell) the terminal.
  • the reception performance of the neighboring cell may be improved.
  • the terminal can support the operation of reporting the channel state information for the neighbor cell.
  • 1 is a diagram illustrating a physical channel and a signal transmission method using the same.
  • FIG. 2 is a diagram illustrating a structure of a radio frame based on an NR system to which embodiments of the present invention are applicable.
  • FIG. 3 is a diagram illustrating a slot structure based on an NR system to which embodiments of the present invention are applicable.
  • FIG. 4 is a diagram illustrating a self-contained slot structure based on an NR system to which embodiments of the present invention are applicable.
  • FIG. 5 is a diagram illustrating one REG structure based on an NR system to which embodiments of the present invention are applicable.
  • 6 and 7 illustrate exemplary connection schemes of a TXRU and an antenna element.
  • FIG. 8 is a diagram schematically illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention.
  • FIG. 9 is a diagram briefly illustrating a beam sweeping operation for a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
  • FIG. 10 is a view briefly showing an example of the front loaded DMRS of the first DMRS configuration type applicable to the present invention.
  • FIG. 11 is a diagram schematically illustrating a radio frame structure of two cells (or a base station, a carrier, etc.) applicable to the present invention.
  • FIG. 12 is a diagram illustrating a relationship between a terminal and base stations applicable to the present invention.
  • 13 is a view simply showing the operation of the terminal and the base station applicable to the present invention.
  • FIG. 14 is a diagram briefly showing a method of transmitting and receiving channel state information between a terminal and a base station according to the present invention
  • FIG. 15 is a flowchart illustrating a method of reporting channel state information by a terminal according to the present invention
  • 17 is a diagram illustrating a configuration of a terminal and a base station in which the proposed embodiments can be implemented.
  • FIG. 18 is a block diagram of a communication device in which proposed embodiments can be implemented.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' is replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point. Can be.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system and 3GPP2 system
  • 3GPP 3rd Generation Partnership Project
  • embodiments of the present invention may be supported by 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents. That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents.
  • all terms disclosed in the present document can be described by the above standard document.
  • 3GPP NR system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • FIG. 1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station is performed in step S11.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), and a RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel (S13). Random Access Response) may be received (S14).
  • the UE transmits a PUSCH (Physical Uplink Shared Channel) using scheduling information in the RAR (S15), and contention resolution procedure such as receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal. (S16).
  • PUSCH Physical Uplink Shared Channel
  • the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
  • a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • BI Beam Indication
  • UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH according to an embodiment (eg, when control information and traffic data should be transmitted simultaneously).
  • the UE may transmit the UCI aperiodically through the PUSCH by request / instruction of the network.
  • FIG. 2 is a diagram illustrating a structure of a radio frame based on an NR system to which embodiments of the present invention are applicable.
  • Uplink and downlink transmission based on the NR system are based on a frame as shown in FIG. 2.
  • One radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HFs).
  • One half-frame is defined as five 1 ms subframes (SFs).
  • One subframe is divided into one or more slots, and the number of slots in the subframe depends on subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot contains 14 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a DFT-s-OFDM symbol).
  • Table 1 shows the number of symbols for each slot according to SCS, the number of slots for each frame and the number of slots for each subframe when general CP is used. It indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
  • N slot symb represents the number of symbols in the slot
  • N subframe ⁇ slot represents the number of slots in the subframe
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • FIG. 3 is a diagram illustrating a slot structure based on an NR system to which embodiments of the present invention are applicable.
  • One slot includes a plurality of symbols in the time domain. For example, one slot includes seven symbols in the case of a normal CP, but one slot includes six symbols in the case of an extended CP.
  • a carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
  • the bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.).
  • numerology eg, SCS, CP length, etc.
  • the carrier may include up to N (eg, 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE. Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • N e.g. 5
  • RE resource element
  • FIG. 4 is a diagram illustrating a self-contained slot structure based on an NR system to which embodiments of the present invention are applicable.
  • the base station and the UE may sequentially perform DL transmission and UL transmission in one slot, and may transmit and receive DL data and transmit and receive UL ACK / NACK for the DL data in the one slot.
  • this structure reduces the time taken to retransmit data in the event of a data transmission error, thereby minimizing the delay of the final data transfer.
  • a time gap of a certain length is required for the base station and the UE to switch from the transmission mode to the reception mode or from the reception mode to the transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the independent slot structure may be set to a guard period (GP).
  • the independent slot structure includes both the DL control region and the UL control region.
  • the control regions may be selectively included in the independent slot structure.
  • the independent slot structure according to the present invention may include not only the case of including both the DL control region and the UL control region as shown in FIG. 4 but also the case of including only the DL control region or the UL control region.
  • one slot may be configured in the order of a DL control area / DL data area / UL control area / UL data area, or may be configured in the order of a UL control area / UL data area / DL control area / DL data area.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • Downlink control information for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH.
  • uplink control information for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted.
  • ACK / NACK positive acknowledgment / negative acknowledgment
  • CSI channel state information
  • SR scheduling request
  • PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply.
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry a maximum of two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • 64 QAM 64 QAM
  • 256 QAM 256 QAM
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, 16 CCEs (Control Channel Elements) according to an aggregation level (AL).
  • One CCE consists of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • FIG. 5 is a diagram illustrating one REG structure based on an NR system to which embodiments of the present invention are applicable.
  • D represents a resource element (RE) to which DCI is mapped
  • R represents an RE to which DMRS is mapped.
  • DMRS is mapped to the 1st, 5th, and 9th REs in the frequency domain direction in one symbol.
  • CORESET is defined as a set of REGs with a given pneumonology (eg, SCS, CP length, etc.). A plurality of CORESET for one terminal may be overlapped in the time / frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • system information eg, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of symbols (maximum 3) constituting the CORESET may be set by higher layer signaling.
  • PUSCH carries uplink data (eg, UL-shared channel transport block, UL-SCH TB) and / or uplink control information (UCI), and uses a Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform. Or based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on a CP-OFDM waveform, and when conversion precoding is possible (eg, transform precoding is enabled), the UE is CP-OFDM.
  • PUSCH may be transmitted based on the waveform or the DFT-s-OFDM waveform.
  • PUSCH transmissions are dynamically scheduled by UL grants in DCI, or semi-statically based on higher layer (eg RRC) signaling (and / or Layer 1 (L1) signaling (eg PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on codebook or non-codebook.
  • the PUCCH carries uplink control information, HARQ-ACK and / or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • Table 3 illustrates the PUCCH formats.
  • PUCCH format 0 carries a maximum of 2 bits of UCI, and is mapped and transmitted based on a sequence. Specifically, the terminal transmits one sequence of the plurality of sequences through the PUCCH of PUCCH format 0 to transmit a specific UCI to the base station. The UE transmits PUCCH having PUCCH format 0 in the PUCCH resource for SR configuration only when transmitting a positive SR.
  • PUCCH format 1 carries UCI of up to 2 bits in size, and modulation symbols are spread by an orthogonal cover code (OCC) that is set differently depending on whether frequency hopping or not.
  • OCC orthogonal cover code
  • the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (ie, transmitted by time division multiplexing (TDM)).
  • PUCCH format 2 carries a UCI having a bit size larger than 2 bits, and modulation symbols are transmitted by DMRS and Frequency Division Multiplexing (FDM).
  • the DM-RS is located at symbol indexes # 1, # 4, # 7 and # 10 in a given resource block with a density of 1/3.
  • PN Pulseudo Noise sequence is used for DM_RS sequence.
  • Frequency hopping may be activated for two symbol PUCCH format 2.
  • PUCCH format 3 is not UE multiplexed in the same physical resource blocks and carries a UCI of a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbol is transmitted by time division multiplexing (DMD) with DMRS.
  • PUCCH format 4 supports multiplexing up to 4 terminals in the same physical resource block, and carries UCI of a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted by time division multiplexing (DMD) with DMRS.
  • millimeter wave the short wavelength allows the installation of multiple antenna elements in the same area. That is, since the wavelength is 1 cm in the 30 GHz band, a total of 100 antenna elements can be installed in a 2-dimension array at 0.5 lambda intervals on a 5 * 5 cm panel. Accordingly, in millimeter wave (mmW), a plurality of antenna elements may be used to increase beamforming (BF) gain to increase coverage or to increase throughput.
  • BF beamforming
  • each antenna element may include a TXRU (Transceiver Unit) to enable transmission power and phase adjustment for each antenna element.
  • TXRU Transceiver Unit
  • each antenna element may perform independent beamforming for each frequency resource.
  • a hybrid BF having B TXRUs having a smaller number than Q antenna elements may be considered as an intermediate form between digital beamforming and analog beamforming.
  • the direction of the beam that can be transmitted at the same time may be limited to B or less.
  • the TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna element.
  • FIG. 6 is a diagram illustrating how a TXRU is connected to a sub-array.
  • the antenna element is connected to only one TXRU.
  • Figure 7 shows how the TXRU is connected to all antenna elements.
  • the antenna element is connected to all TXRUs.
  • the antenna element requires a separate adder as shown in FIG. 7 to be connected to all TXRUs.
  • W denotes a phase vector multiplied by an analog phase shifter.
  • W is a main parameter that determines the direction of analog beamforming.
  • the mapping between the CSI-RS antenna port and the TXRUs may be 1: 1 or 1: 1-to-many.
  • analog beamforming refers to an operation of performing precoding (or combining) in the RF stage.
  • the baseband stage and the RF stage respectively perform precoding (or combining). This reduces the number of RF chains and the number of digital-to-analog (D / A) (or analog-to-digital) converters while providing near-digital beamforming performance.
  • the hybrid beamforming structure may be represented by N transceiver units (TXRUs) and M physical antennas.
  • TXRUs transceiver units
  • the digital beamforming for the L data layers to be transmitted by the transmitter may be represented by an N * L (N by L) matrix.
  • the converted N digital signals are converted into analog signals through TXRU, and analog beamforming is applied to the converted signals represented by an M * N (M by N) matrix.
  • FIG. 8 is a diagram schematically illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention.
  • the number of digital beams is L and the number of analog beams is N.
  • the base station is designed to change the analog beamforming in units of symbols and considers a method for supporting more efficient beamforming for a terminal located in a specific region.
  • specific N TXRU and M RF antennas as one antenna panel as shown in FIG. 8
  • a plurality of antenna panels to which hybrid beamforming independent of each other can be applied are defined. It is also considered to adopt.
  • the analog beams advantageous for signal reception may be different for each terminal. Accordingly, in the NR system to which the present invention is applicable, the base station transmits a signal (at least a synchronization signal, system information, paging, etc.) by applying a different analog beam for each symbol within a specific subframe (SF) or slot. Beam sweeping operation that allows the UE to have a reception opportunity is being considered.
  • a signal at least a synchronization signal, system information, paging, etc.
  • FIG. 9 is a diagram briefly illustrating a beam sweeping operation for a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
  • a physical resource (or physical channel) through which system information of an NR system to which the present invention is applicable is transmitted in a broadcasting manner is referred to as a physical broadcast channel (xPBCH).
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels in one symbol may be transmitted simultaneously.
  • a configuration for measuring channels for analog beams is applied to a single analog beam (corresponding to a specific antenna panel) to which a reference signal is transmitted.
  • a beam reference signal (Beam RS, BRS), which is RS, may be introduced.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • the synchronization signal or the xPBCH may be transmitted by applying all the analog beams in the analog beam group so that any terminal can receive well.
  • the DMRS may be transmitted and received in a first load structure.
  • an additional DMRS (Additional DMRS) other than the first DMRS may be additionally transmitted and received.
  • Front loaded DMRS can support fast decoding.
  • the first FODM symbol location may be indicated by a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • the number of OFDM symbols occupied by the front loaded DMRS may be indicated by a combination of downlink control information (DCI) and radio resource control (RRC) signaling.
  • DCI downlink control information
  • RRC radio resource control
  • Additional DMRS may be set for a high speed terminal. Additional DMRS may be located in the middle / last symbol (s) in the slot. When one Front loaded DMRS symbol is set, Additional DMRS may be allocated to 0 to 3 OFDM symbols. If two front loaded DMRS symbols are configured, Additional DMRS may be allocated to zero or two OFDM symbols.
  • Front loaded DMRS is composed of two types, and one of the two types may be indicated through higher layer signaling (eg, RRC signaling).
  • higher layer signaling eg, RRC signaling
  • FIG. 8 is a diagram briefly showing two types of DMRS settings applicable to the present invention.
  • P0 to P11 may correspond to port numbers 1000 to 1011, respectively.
  • the DMRS configuration type substantially configured for the UE among the two DMRS configuration types may be indicated by higher layer signaling (eg, RRC).
  • DMRS configuration type 1 In the case of the first DMRS configuration type (DMRS configuration type 1), it may be classified as follows according to the number of OFDM symbols to which the front loaded DMRS is allocated.
  • Up to four ports may be multiplexed based on the length-2 F-CDM (Frequency-Code Division Multiplexing) and FDM (Frequency Division Multiplexing) methods.
  • RS density may be set to 6 RE per port in RB (Resource Block).
  • Up to eight ports can be multiplexed based on length-2 F-CDM, length-2 time-code division multiplexing (T-CDM) and FDM methods.
  • T-CDM length-2 time-code division multiplexing
  • RS density may be set to 12 REs per port in the RB.
  • DMRS configuration type 2 In the case of the second DMRS configuration type (DMRS configuration type 2), it may be classified as follows according to the number of OFDM symbols to which the front loaded DMRS is allocated.
  • the number of OFDM symbols to which the second DMRS configuration type (DMRS configuration type 2) and the front loaded DMRS are allocated 1
  • RS density may be set to 4 RE per port in RB (Resource Block).
  • the number of OFDM symbols to which the second DMRS configuration type (DMRS configuration type 2) and the front loaded DMRS are allocated 2
  • Up to twelve ports can be multiplexed based on the length-2 F-CDM, length-2 T-CDM and FDM methods.
  • the T-CDM may be fixed to [1 1].
  • RS density may be set to 8 REs per port in the RB.
  • FIG. 10 is a view briefly showing an example of the front loaded DMRS of the first DMRS configuration type applicable to the present invention.
  • FIG. 10 (a) shows a structure in which a DMRS is loaded on one symbol first
  • FIG. 10 (b) shows a structure in which the DMRS is loaded on two symbols first. DMRS with two symbols).
  • means a DMRS offset value on the frequency axis.
  • DMRS ports having the same ⁇ may be code division multiplexing in frequency domain (CDM-F) or code division multiplexing in time domain (CDM-T) in the frequency domain.
  • CDM-F code division multiplexing in frequency domain
  • CDM-T code division multiplexing in time domain
  • the terminal may obtain DMRS port configuration information set by the base station through the DCI.
  • the DMRS port group may mean a collection of DMRSs that are in a quasi co-located (QCL) or partial quasi co-located (QCL) relationship.
  • QCL relationship means that long-term channel parameters such as Doppler spread and / or Doppler shift, average delay, and delay spread are the same. It can be assumed, and the partial QCL relationship can mean that only some of the long-term channel variables can be assumed to be the same.
  • the NR system may support DCI format 0_0 and DCI format 0_1 as a DCI format for PUSCH scheduling, and support DCI format 1_0 and DCI format 1_1 as a DCI format for PDSCH scheduling.
  • the NR system may additionally support DCI format 2_0, DCI format 2_1, DCI format 2_2, and DCI format 2_3.
  • DCI format 0_0 is used for scheduling TB (Transmission Block) based (or TB-level) PUSCH
  • DCI format 0_1 is used for TB (Transmission Block) based (or TB-level) PUSCH or (CBG (Code Block Group) Base signal transmission / reception may be used to schedule a CBG-based (or CBG-level) PUSCH.
  • DCI format 1_0 is used for scheduling TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used for TB-based (or TB-level) PDSCH or CBG-based (or CBG-based signal transmission and reception). level) may be used to schedule the PDSCH.
  • DCI format 2_0 is used for notifying the slot format (used for notifying the slot format)
  • DCI format 2_1 is used for notifying PRB and OFDM symbols assuming that a specific UE has no intended signal transmission ( used for notifying the PRB (s) and OFDM symbol (s) where UE may assume no transmission is intended for the UE)
  • DCI format 2_2 is used for transmission of Transmission Power Control (TPC) commands of PUCCH and PUSCH.
  • TPC Transmission Power Control
  • the DCI format 2_3 may be used for transmission of a TPC command group for SRS transmission by one or more UEs (used for the transmission of a group of TPC commands for SRS transmissions by one or more UEs).
  • One CORESET includes N CORESET RB RBs in the frequency domain, and includes N CORESET symb symbols (values having 1,2,3 values) in the time domain.
  • One control channel element includes 6 resource element groups (REGs), and one REG is equal to one RB on one OFDM symbol.
  • REGs in CORESET are numbered in order according to a time-first manner. Specifically, the numbering starts from '0' for the first OFDM symbol and the lowest-numbered RB in CORESET.
  • a plurality of CORESETs may be set for one terminal.
  • Each CORESET is related to only one CCE-to-REG mapping.
  • CCE-to-REG mapping for one CORESET can be interleaved or non-interleaved.
  • Configuration information for CORESET may be set by the upper layer parameter ControlResourceSet IE.
  • the configuration information for CORESET 0 (eg common CORESET) may be set by the upper layer parameter ControlResourceSetZero IE.
  • a list of the maximum M Transmission Configuration Indicator (M TCI) state configuration may be configured for one UE.
  • the maximum M TCI state setting may be set by a higher layer parameter PDSCH-Config so that (the UE) can decode PDSCH upon detection of a PDCCH including an (intended) DCI intended for the UE and a given serving cell. have.
  • the M value may be determined depending on the capability of the terminal.
  • Each TCI-state includes a parameter for configuring a quasi co-location (QCL) relationship between one or two downlink reference signals and DMRS ports of the PDSCH.
  • the QCL relationship is established based on the upper layer parameter qcl-Type1 for the first downlink reference signal (DL RS) and the upper layer parameter qcl-Type2 (if set) for the second DL RS.
  • the QCL types should not be the same, regardless of whether the reference signals are the same DL RS or different DL RS.
  • the QCL types correspond to each DL RS given by the higher layer parameter qcl-Type in the higher layer parameter QCL-Info , and the QCL types may have one of the following values.
  • 'QCL-TypeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • the terminal receives an activation command used to map the maximum 8 TCI states with a codepoint of a Transmission Configuration Indication (TCI) field in DCI.
  • TCI Transmission Configuration Indication
  • the mapping between the code points of the TCIs states and the TCI fields in the DCI is slot # (n + 3 * N subframe, ⁇ slot + Applicable from 1).
  • N subframe, ⁇ slot is determined based on Table 1 or Table 2 described above.
  • the UE may assume that the DMRS port (s) of the PDSCH of the serving cell are QCLed with the SS / PBCH block determined in the initial access procedure in terms of 'QCL-TypeD'.
  • the UE assumes that the TCI field exists in the PDCCH of DCI format 1_1 transmitted on the CORESET.
  • the upper layer parameter tci-PresentInDCI is not set for CORESET scheduling the PDSCH or the PDSCH is scheduled by DCI format 1_0, and the time offset between the reception time of the DL DCI and the reception time of the PDSCH corresponding to the threshold Threshold-Sched If greater than or equal to -Offset (the threshold value is determined based on the reported UE capability ), to determine the PDSCH antenna port QCL, the UE determines that the TCI state or QCL hypothesis for the PDSCH is used for PDCCH transmission. It is assumed to be the same as the TCI state or QCL assumption applied to.
  • the UE uses the TCI-State based on the TCI field included in the DCI in the detected PDCCH to determine the PDSCH antenna port QCL. If the time offset between the reception time of the DL DCI and the reception time of the corresponding PDSCH is greater than or equal to a threshold Threshold-Sched-Offset (the threshold value is determined based on the reported UE capability), the UE may determine the PDSCH of the serving cell.
  • a threshold Threshold-Sched-Offset the threshold value is determined based on the reported UE capability
  • the indicated TCI state should be based on activated TCI states in a slot of the scheduled PDSCH.
  • the terminal assumes that a higher layer parameter tci-PreInentInDC I is set to 'enabled' for the CORESET.
  • the UE may determine a time between a reception time of a detected PDCCH in the search region set and a reception time of a corresponding PDSCH.
  • the offset is expected to be greater than or equal to the threshold Threshold-Sched-Offset .
  • both the upper layer parameter tci-PresentInDC I is set to 'enabled' or the upper layer parameter tci-PresentInDC I is not set in RRC connected mode, offset between the reception time of the DL DCI and the reception time of the corresponding PDSCH. If it is smaller than the threshold Threshold-Sched-Offset , the terminal assumes the following. (i) The DMRS port (s) of the PDSCH of the serving cell have a QCL relationship with respect to the QCL parameter (s) and RS (s) of the TCI state.
  • the QCL parameter (s) is for the PDCCH QCL indication of the CORESET associated with the search area monitored with the lowest CORESET-ID in the last slot in one or more CORESET in the active BWP of the serving cell monitored by the terminal.
  • the UE may assume that the DM-RS ports of PDSCH of a serving cell are quasi co-located with the RS (s) in the TCI state with respect to the QCL parameter (s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored by the UE.
  • the UE when the 'QCL-TypeD' of the PDSCH DMRS is different from the 'QCL-TypeD' of the PDCCH DMRS overlapping on at least one symbol, the UE expects to prioritize reception of the PDCCH associated with the corresponding CORESET.
  • the operation may also apply equally to intra band CA cases (when PDSCH and CORESET are in different CCs). If there is no TCI state including 'QCL-TypeD' among the configured TCI states, the UE indicates a TCI indicated for the scheduled PDSCH regardless of a time offset between a reception time of a DL DCI and a reception time of a corresponding PDSCH. Get different QCL assumptions from state.
  • the terminal For the periodic CSI-RS resource in the higher layer parameter NZP-CSI-RS-ResourceSet with the higher layer parameter trs-Info set, the terminal should assume that the TCI status indicates one of the following QCL type (s):
  • the terminal For the CSI-RS resource in the higher layer parameter NZP-CSI-RS-ResourceSet configured without the higher layer parameter trs-Info and the higher layer parameter repetition , the terminal should assume that the TCI state indicates one of the following QCL type (s). :
  • -'QCL-TypeA' for the CSI-RS resource in the upper layer parameter NZP-CSI-RS-ResourceSet in which the upper layer parameter trs-Info is set, and the upper layer parameter repetition is set if (QCL-TypeD) is applicable.
  • 'QCL-TypeD' for periodic CSI-RS resources in layer parameter NZP-CSI-RS-ResourceSet , or
  • the terminal For the CSI-RS resource in the higher layer parameter NZP-CSI-RS-ResourceSet in which the higher layer parameter repetition is configured, the terminal should assume that the TCI state indicates one of the following QCL type (s):
  • the UE For DMRS of the PDCCH, the UE should assume that the TCI status indicates one of the following QCL type (s):
  • the UE For DMRS of PDSCH, the UE should assume that the TCI state indicates one of the following QCL type (s):
  • terminal and the base station according to the present invention may operate as follows.
  • QCL linkage and signaling as shown in the above table may be applied between the terminal and the base station according to the present invention.
  • the operation can be extended to not only 6 GHz or more / above band (above 6 GHz) but also 6 GHz or less band (below 6 GHz).
  • the UE when the CSI-RS resource in the upper layer parameter NZP-CSI-RS-ResourceSet in which the upper layer parameter trs-Info is set is included, the UE performs the following two possible settings for the upper layer parameter TCI-state . expect a (possible configuration).
  • * indicates the case where QCL type-D is applicable. Therefore, when QCL type-D is applicable, DL RS2 and QCL type-2 should be configured for the UE.
  • the UE may perform the following on the upper layer parameter TCI-state . Expect three possible configurations.
  • * indicates the case where QCL type-D is not applicable.
  • ** indicates the case where QCL type-D is applicable. Therefore, when QCL type-D is applicable, DL RS2 and QCL type-2 should be configured for the UE.
  • the UE may configure the following three possible settings for the higher layer parameter TCI-state : Expect configuration.
  • DL RS2 and QCL type-2 should be set to the UE except for a default case (eg, the fourth row of the following two tables).
  • the TRS for downlink is used for QCL type-D, the TRS should have an SS / PBCH block or CSI-RS as a source RS for QCL type-D.
  • the UE For DMRS of the PDCCH, the UE expects the following three possible configurations for the upper layer parameter TCI-state , and the fourth configuration is valid as a default before the TRS is configured.
  • * indicates before the TRS is set.
  • the setting may be a valid QCL hypothesis rather than a TCI state.
  • ** indicates that the QCL parameters may not be derived directly from the CSI-RS (CSI).
  • the UE For DMRS of PDSCH, the UE expects the following three possible configurations for the upper layer parameter TCI-state , and the fourth configuration is valid as a default before the TRS is configured.
  • * indicates before the TRS is set.
  • the setting may be a valid QCL hypothesis rather than a TCI state.
  • ** indicates that the QCL parameters may not be derived directly from the CSI-RS (CSI).
  • the higher layer parameter CSI-ResourceConfig applicable to the present invention may be configured as shown in the following table.
  • the parameter may include one or more higher layer parameters NZP-CSI-RS-ResourceSet , CSI-IM-ResourceSet and / or CSI-SSB-ResourceSet .
  • Each field included in the parameter may be defined as shown in the following table.
  • the higher layer parameter NZP-CSI-RS-ResourceSet applicable to the present invention may be configured as shown in the following table.
  • the parameter may include one or more higher layer parameters NZP-CSI-RS-Resource .
  • Each field included in the parameter may be defined as shown in the following table.
  • the higher layer parameter NZP-CSI-RS-Resource applicable to the present invention may be configured as shown in the following table.
  • Each field included in the parameter may be defined as shown in the following table.
  • conditional presence may be defined as shown in the following table.
  • the higher layer parameter CSI-IM-ResourceSet applicable to the present invention may be configured as shown in the following table.
  • the parameter may include one or more higher layer parameters CSI-IM-resources IE.
  • Each field included in the parameter may be defined as shown in the following table.
  • the higher layer parameter CSI-IM-Resource applicable to the present invention may be configured as shown in the following table.
  • Each field included in the parameter may be defined as shown in the following table.
  • conditional presence may be defined as shown in the following table.
  • the higher layer parameter CSI-RS-ResourceConfigMobility applicable to the present invention may be configured as shown in the following table.
  • Each field included in the parameter may be defined as shown in the following tables.
  • the upper layer parameter CSI-ReportConfig applicable to the present invention may be configured as shown in the following table.
  • reportQuantity of Table 28 represents the quantity related to the CSI to be reported by the terminal.
  • Each field included in the parameter may be defined as shown in the following tables.
  • FIG. 11 is a diagram schematically illustrating a radio frame structure of two cells (or a base station, a carrier, etc.) applicable to the present invention.
  • an area denoted by #n means an nth slot (or subframe).
  • radio frame boundaries of cell # 0 and cell # 1 may be different from each other. In other words, the radio frame boundaries of cell # 0 and cell # 1 may not be aligned. These two cells can be regarded as an asynchronous state in terms of timing.
  • the actual transmission / reception time point of the terminal may vary according to a cell related to the short message.
  • the CSI-RS resource timing set up for neighboring cell measurement needs to match the timing of the cell transmitting the CSI-RS resource, not the serving cell timing.
  • the timing of two cells is asynchronous, meaning that the time difference between the two cells is in one or more OFDM symbol units (eg, the time synchronization of two cells differs by one OFDM symbol), or one or more times. It may be a sample unit.
  • a white listed cell may mean a neighbor cell to be measured by the terminal.
  • the base station may inform the terminal (in the form of a white list cell) of an identifier of a neighbor cell to be measured.
  • the UE may measure cells on a frequency to be measured even if a neighbor cell to be measured is not specified.
  • a black listed cell may mean a cell that the terminal should not measure or a cell that should not be measured even if the terminal measures.
  • the network may be configured not to perform event evaluation or send a measurement report to a specific cell. Through this, the network may prevent the terminal from handing over to a specific cell.
  • the black list cell may be used for the purpose of preventing a terminal, which has been serviced from another cell, from handing over to the specific cell in consideration of a specific cell with a heavy load.
  • FIG. 12 is a diagram illustrating a relationship between a terminal and base stations applicable to the present invention.
  • the base station or the network may operate as follows.
  • a serving cell or a serving transmission reception point (TRP)
  • TRP serving transmission reception point
  • the base station or the network can improve the reception performance of the terminal.
  • the UE when the UE can measure and report the CSI-RS transmitted from the neighbor cell, it is possible to improve system-wide throughput in terms of inter-cell interference management and / or CoMP operation.
  • the serving cell and the neighbor cell are asynchronous with each other as described above.
  • the configuration of the present invention may be equally applied even when the serving cell and the neighbor cell are in synchronization with each other. Accordingly, the UE needs to determine the timing of the CSI-RS (eg, CSI-RS resource # 10, # 11) of the neighboring cell based on the timing of the neighboring cell and perform CSI reporting based on the timing.
  • the CSI-RS eg, CSI-RS resource # 10, # 11
  • the timing of the higher layer parameter NZP-CSI-RS-resource is set to follow the timing of the serving cell.
  • the recent NR standard does not disclose any specific method for adjusting the timing of the upper layer parameter NZP-CSI-RS-Resource to the timing of the neighboring cell. Therefore, according to the conventional NR standard technology, the timing of the CSI-RS resources can only be determined based on the serving cell.
  • a base station or The network may set the timing of the CSI-RS-Resource-Mobility to operate based on the timing of a cell other than the serving cell.
  • the CSI-RS for mobility does not have a separate connection relationship with the aforementioned CSI-ReportConfig IE (in other words, a separate connection relationship between the CSI-RS for mobility and the above-described CSI-ReportConfig IE is defined.
  • the UE may perform measurement (eg, L3 reporting) by measuring the CSI-RS for mobility.
  • reporting based on CSI-RS for mobility includes only L3 reporting and does not include L1 reporting.
  • CSI-RS-Resource-Mobility cannot be used for L1 beam measurement (ie, L1 measurement and / or L1 reporting).
  • the present invention will be described in detail for a solution to the above problems. More specifically, the present invention describes in detail the signaling method that can be used for the CSI-RS-Resource-Mobility for L1 beam measurement (or L1 measurement). According to the present invention, with a minimum spec impact on the 5G standard discussed until recently, the base station or the network may configure the CSI-RS resource for beam management of the neighbor cell to the terminal.
  • the CSI-RS resource Type I represents a CSI-RS resource defined within the CSI framework.
  • the CSI-RS resource Type I may include CSI-RS for (beam) measurement and / or CSI acquisition and / or tracking.
  • the CSI-RS resource Type I may include a CSI-RS determined based on the higher layer parameter NZP-CSI-RS-Resource IE or CSI-IM resource IE described above.
  • CSI-RS resource Type II represents CSI-RS resource for mobility.
  • the CSI-RS resource Type II may include a CSI-RS determined based on the higher layer parameter CSI-RS-resource-Mobility IE described above.
  • the higher layer parameter means a parameter defined based on a radio resource control (RRC), a medium access control-control element (MAC-CE), and a combination of the RRC and MAC-CE.
  • RRC radio resource control
  • MAC-CE medium access control-control element
  • the SSB ID indicates a synchronization signal block (time) index or synchronization signal block (time) identification.
  • a network refers to a configuration including a base station, and in some embodiments, the network may be represented by being replaced with a base station.
  • the network is a QCL source for CSI-RS resource Type I (or NZP-CSI-RS-Resource or CSI-IM-resource), and the CSI-RS resource ID for mobility (or CSI-RS-Resource-Mobility or csi-RS-Index of CSI-RS-Resource-Mobility) and one or more QCL-Types may be set.
  • the terminal may be based on time synchronization (eg, average delay or timing) and / or frequency synchronization (or Doppler shift or Carrier Frequency Offset) and / or spatial Rx information of CSI-RS resources for mobility.
  • time synchronization for example, average delay or timing
  • frequency synchronization or Doppler shift or Carrier Frequency Offset
  • spatial Rx information of the CSI-RS resource Type I may be set.
  • the network is a CCL-RS resource ID (or CSI-RS-) for mobility as a QCL source of CSI-RS resources (or NZP-CSI-RS-Resource or CSI-IM-Resource) for (beam) measurement.
  • Resource-Mobility or csi-RS-Index in CSI-RS-Resource-Mobility may be configured.
  • the QCL type may be set to QCL-Type A and / or QCL-Type B and / or QCL-Type C and / or D.
  • the terminal may operate as follows.
  • QCL-Type C + D have two RS (Reference Signals) in terms of average delay (time synchronization and / or timing), Doppler shift (CFO or frequency synchronization), and Spatial Rx parameter (receive beam). It may mean that it is QCL. Accordingly, the terminal may utilize time / frequency synchronization and received beam information provided by CSI-RS-Resource-Mobility to receive CSI-RS for (beam) measurement.
  • time synchronization may mean only an average delay.
  • time synchronization may refer to a configuration including all configurations in which timing is added in addition to the average delay.
  • QCL-Type C may be set alone.
  • QCL-Type D eg, spatial Rx parameter
  • the terminal may operate as follows.
  • the UE may use received beam information provided by CSI-RS-Resource-Mobility when receiving a CSI-RS for (beam) measurement. Can be.
  • the timing of the NZP-CSI-RS-Resource is a serving cell ( Or based on the timing of the PCell).
  • the UE May determine the timing of the NZP-CSI-RS-Resource based on the timing of the serving cell (or PCell).
  • the UE may not expect that QCL-Type C is configured. This is because, when the associatedSSB is not configured, the UE cannot synchronize time / frequency synchronization through the SSB.
  • the network may set the csi-RS-Index of the CSI-RS-Resource-Mobility as the QCL source of the NZP-CSI-RS-Resource to the UE.
  • the csi-RS-Index may be set to one of 0 to 95.
  • the NZP-CSI-RS-ResourceId may be set to one of 0 to 191.
  • the NZP-CSI-RS-Resource can be set as the QCL source of the NZP-CSI-RS-Resource, but there is a limitation that the csi-RS-Index cannot be set.
  • the present invention proposes the following method as a method of setting the csi-RS-Index as the QCL source using the CSI-RS-Resource-Mobility.
  • the UE when not only the NZP-CSI-RS-Resource but also the csi-RS-Index can be set as the QCL source of the NZP-CSI-RS-Resource, the UE has a value of 0 to 95. There is a problem that can not distinguish whether the set QCL source is NZP-CSI-RS-Resource or CSI-RS-Resource-Mobility.
  • the present invention proposes a method of adding a higher layer parameter csi-rs-mobility for CSI-RS-Resource-Mobility in the higher layer parameter QCL-Info as shown in the following table.
  • the NZP-CSI-RS-Resource IE and the CSI-RS-Resource-Mobility IE may overlap some parameters (see Table 12 and Table 22).
  • the CSI-RS-Resource-Mobility is used as a QCL source, so that the UE may include time / frequency position and / or period and / or scrambling ID for the IE in the NZP-CSI-RS-Resource. (Priority) from (e.g., resourceMapping, periodicAndOffset, scramblingID). Alternatively, the terminal according to the present invention may obtain (priority) the time / frequency position and / or period and / or scrambling ID for the RS from the CSI-RS-Resource-Mobility.
  • Priority from (e.g., resourceMapping, periodicAndOffset, scramblingID).
  • the terminal according to the present invention may obtain (priority) the time / frequency position and / or period and / or scrambling ID for the RS from the CSI-RS-Resource-Mobility.
  • the terminal according to the present invention may always expect that peridociAndOffset and scramblingID are the same as slotConfig and sequenceGenerationConfig, respectively.
  • the higher layer parameter CSI-RS-Resource-Mobility does not include frequency information (eg, BW information and frequency density).
  • the parameter is included in the higher IE, CSI-RS-CellMobility, provided that the terminal includes CSI-RS-Resource-Mobility frequency information having CSI-RS-Resource-Mobility as a QCL source. Can be obtained from
  • the UE is a subcarrier spacing of the NZP-CSI-RS-Resource having the CSI-RS-Resource-Mobility as a QCL source from the subcarrierSpacing of the upper layer parameter CSI-RS-ResourceConfigMobility IE (which is the upper IE of the CSI-RS-CellMobility)
  • the upper layer parameter CSI-RS-ResourceConfigMobility IE which is the upper IE of the CSI-RS-CellMobility
  • information about numerology may be obtained.
  • the network can easily solve the synchronization problem by setting the CSI-RS resource ID for mobility as the QCL source of the CSI-RS resource Type I.
  • existing (L1) CSI reporting methods can be used.
  • the network may provide / configure information on the subcarrier spacing to the terminal through the CSI-RS-ResourceConfigMobility IE.
  • the network and the UE may utilize the CSI-RS of the neighbor cell for (L1 beam) measurement.
  • the UE when the CSI-RS resource Type I has a QCL relationship with the CSI-RS resource for mobility (or when the CSI-RS-Resource-Mobility is set as the QCL source of the NZP-CSI-RS-Resource), the UE It can be seen that the CSI-RS resource Type I is a CSI-RS transmitted from a cell. This is because CSI-RS-CellMobility, which is a higher IE including the higher layer parameter CSI-RS-Resource-Mobility, includes Cell ID information.
  • 13 is a view simply showing the operation of the terminal and the base station applicable to the present invention.
  • the base station may configure CSI-RS-Resource-Mobility as a QCL source of the NZP-CSI-RS-Resource to the UE.
  • the base station may set QCL-Type A and / or QCL-Type B and / or QCL-Type C and / or QCL-Type D as QCL-Type information, or may not set any QCL-Type.
  • the base station transmits a CSI-RS corresponding to the NZP-CSI-RS-Resource (or CSI-RS-Resource-Mobility) to the terminal.
  • the terminal may receive the CSI-RS by adjusting the time synchronization " G / or frequency synchronization of the NZP-CSI-RS-Resource based on the serving cell.
  • the terminal may receive the CSI-RS received from the base station based on time synchronization and / or frequency synchronization based on a serving cell.
  • the terminal adjusts the time synchronization and / or frequency synchronization of the NZP-CSI-RS-Resource based on the cell having the cell ID indicated by CSI-RS-CellMobility
  • the CSI-RS may be received.
  • the terminal may receive the CSI-RS in time synchronization and / or frequency synchronization based on the associated SSB of CSI-RS-Resource-Mobility.
  • the terminal is received from the base station based on time synchronization and / or frequency synchronization for a cell indicated by associatedSSB of CSI-RS-Resource-Mobility or CSI-RS-Resource-Mobility.
  • the CSI-RS may be received.
  • the base station may configure that the CSI-RS resource Type I is transmitted from the neighboring cell instead of the serving cell to the terminal through higher layer signaling (eg, higher layer parameter) and / or DCI.
  • the terminal may interpret / review the N_ID (eg ScramblingID) value set in the CSI-RS resource as the cell ID.
  • the terminal may interpret / review the SSB ID set in the CSI-RS resource as the SSB ID of a cell having the cell ID.
  • the terminal may set the timing of the CSI-RS resource based on the timing of a cell having the cell ID.
  • the base station may instruct the terminal that the CSI-RS resource for the (beam) measurement is transmitted in a cell other than the serving cell through a higher layer parameter.
  • the UE interprets / reviews the N_ID and SSB ID set for the CSI-RS resource as the SSB ID of the cell having the cell ID and the cell ID, respectively, and determines the timing of the cell based on the indicated SSB. Can be.
  • the base station can inform that the CSI-RS resource Type I configured in the terminal through one higher layer parameter is transmitted from the neighbor cell. Accordingly, other pre-configured parameters can be reinterpreted in accordance with the signaling, so that existing parameters can be used as they are (without definition of new parameters). That is, according to the method proposed by the present invention, it is possible to minimize the minimization of the existing 5G standard technology.
  • the base station can define the CSI-RS resource type I of the neighbor cell to the terminal.
  • the base station may additionally set the higher layer parameter QuasiColocatedforTypeI to the terminal.
  • the base station can inform the terminal whether the CSI-RS resource is QCL in the SSB and QCL-Type D perspective set.
  • the parameter may perform the same function as the higher layer parameter QuasiColocated of the conventional CSI-RS for mobility.
  • the base station directs the terminal to the neighbor cell ID directly, and may be configured to measure the CSI-RS resource transmitted in the cell having the cell ID.
  • the terminal may apply various Rx beams to receive the CSI-RS resource.
  • the terminal consumes considerable resources to find an optimal Rx beam for receiving the CSI-RS.
  • the base station sets the cell ID based on the white-listed cells, since the terminal already knows the Rx beam for receiving the cell in advance, the resource consumption can be minimized.
  • the base station configures the CSI-RS resource Type I is transmitted from a neighbor cell other than the serving cell to the UE through a higher layer parameter or DCI
  • the UE has a cell ID set to CSI-RS resource white- You can expect it to be included in the listed cell.
  • the terminal may not expect that a cell ID not present in the white-listed cell is set in the CSI-RS resource.
  • RSRPs of CSI-RS resource # 00 and CSI-RS resource # 10 may be different (eg, Rx # 0 or # 1) according to a reception beam of a terminal. Accordingly, if the UE reports RSRP of CSI-RS resource # 00 based on Rx # 0 and reports RSRP of CSI-RS resource # 10 based on Rx # 1, a problem may occur as follows.
  • the serving cell may provide a service to the terminal by using a resource (or beam) based on CSI-RS resource # 00, and thus, the neighboring cell may be based on CSI-RS resource # 10 to avoid interference.
  • the same time / frequency resource as the serving cell may not be used to provide a service to a UE belonging to a neighbor cell by using a resource (or a beam).
  • the terminal may already receive the signal by selecting Rx # 0, thereby avoiding most of the signal (or interference) transmitted from the neighbor cell. That is, neighboring cells avoid unnecessary interference.
  • the network can perform inefficient scheduling.
  • the network may set an RSRP report based on the same Rx beam to the UE.
  • the network reports the measurement report to the terminal Limited to the same UE Rx beam and may be configured (via upper layer parameters and / or DCI).
  • the network may allow the UE to report at least one CSI-RS resource for each resource set or resource setting (upper layer parameter). And / or via DCI).
  • FIG. 14 is a diagram briefly showing a method of transmitting and receiving channel state information between a terminal and a base station according to the present invention
  • FIG. 15 is a flowchart illustrating a method of reporting channel state information by a terminal according to the present invention
  • the base station may mean a configuration including both the serving cell and the neighboring cell shown in FIG. 12.
  • base station may be replaced with "network”.
  • the terminal receives configuration information related to the first channel state information reference signal (CSI-RS) resource for measurement from the base station (S1410, S1510).
  • the base station transmits configuration information related to a first channel state information reference signal (CSI-RS) resource for measurement to the terminal (S1410 and S1610).
  • the base station may transmit the configuration information to the terminal through higher layer signaling.
  • the base station may transmit the configuration information to the terminal through a serving cell providing a service to the terminal.
  • the configuration information may include QCL (Quasi Co Located) information between the first CSI-RS resource and the second CSI-RS resource related to the neighbor cell. More specifically, the QCL information may include one or more of the following information.
  • Type A Information indicating that the first CSI-RS resource and the second CSI-RS resource are QCL in terms of Doppler shift, Doppler spread, average delay, and delay spread.
  • QCL type B information indicating that the first CSI-RS resource and the second CSI-RS resource are QCL in terms of Doppler shift and Doppler spread.
  • QCL type C information indicating that the first CSI-RS resource and the second CSI-RS resource are QCL in terms of Doppler shift and average delay.
  • QCL type D information indicating that the first CSI-RS resource and the second CSI-RS resource are QCL in terms of spatial Rx parameters.
  • the terminal receives the CSI-RS transmitted from the neighbor cell based on the configuration information (S1420, S1520). In response, the base station transmits the CSI-RS to the terminal through the neighbor cell based on the configuration information (S1420, S1620).
  • the UE may receive the CSI-RS from the neighbor cell as follows.
  • the terminal is based on the Doppler shift information and the average delay information related to the second CSI-RS resource.
  • RS may be received.
  • the terminal may receive the CSI-RS transmitted from the neighbor cell based on the reception beam information associated with the second CSI-RS resource. Can be.
  • the terminal is based on Doppler shift information, average delay information, and received beam information related to the second CSI-RS resource.
  • the CSI-RS transmitted from the neighbor cell can be received.
  • the terminal measures the CSI based on the received CSI-RS (S1430, S1630).
  • the CSI is CQI (Channel Quality Information), PMI (Precoding Matrix Indicator), CRI (CSI-RS Resource Indicator), SSBRI (SS / PBCH Resource Block Indicator), LI (Layer Indicator), RI ( Rank indicator).
  • the terminal transmits the measured CSI to the base station (S1440, S1540). More specifically, the terminal transmits the measured CSI to the serving cell. In response, the base station receives the CSI measured from the terminal through the serving cell (S1440, S1630).
  • the terminal can measure and report the CSI for the neighbor cell, and the base station can receive the CSI for the neighbor cell from the terminal.
  • the serving cell and the neighbor cell may not be aligned in timing with each other.
  • the serving cell and the neighbor cell may be asynchronous with each other.
  • the asynchronous state may mean a case in which the frame boundary of the serving cell and the frame boundary of the neighboring cell have a difference by at least one (OFDM) symbol interval.
  • the frame boundary of the serving cell that is in an asynchronous state and the frame boundary of the neighboring cell may have a difference by at least one (OFDM) symbol interval and at least one slot interval.
  • the terminal according to the present invention can receive the CSI-RS from the neighbor cell through the following method. More specifically, the terminal may receive the CSI-RS from the neighbor cell based on the timing of the CSI-RS determined based on the QCL information and the configuration information.
  • the timing of the CSI-RS transmitted from the neighbor cell may be determined as follows.
  • the timing of the CSI-RS is determined based on a cell configured in association with the second CSI-RS resource.
  • SSB synchronization signal block
  • CSI-RS when synchronization signal block (SSB) information associated with the second CSI-RS resource is not set and reference serving cell information associated with the second CSI-RS resource is set. Is determined based on the cell determined based on the reference serving cell information.
  • SSB synchronization signal block
  • SSB synchronization signal block
  • the resource in which the CSI-RS is received from the neighbor cell may be set based on various methods.
  • a resource for which the CSI-RS is received from the neighbor cell may be determined based on a resource configuration related to the first CSI-RS resource. Accordingly, based on a resource configuration associated with the first CSI-RS resource, the terminal may receive the CSI-RS from the neighbor cell.
  • the location of the time / frequency resource on which the CSI-RS is transmitted may be determined based on an upper layer parameter NZP-CSI-RS-Resource associated with the first CSI-RS resource.
  • the resource from which the CSI-RS is received from the neighbor cell may be determined based on a resource configuration associated with the second CSI-RS resource. Accordingly, based on a resource configuration associated with the second CSI-RS resource, the terminal may receive the CSI-RS from the neighbor cell.
  • the resource setting associated with the second CSI-RS resource may include one or more of the following.
  • the time / frequency resource for transmitting the CSI-RS may be determined based on a higher layer parameter CSI-RS-Resource-Mobility related to the second CSI-RS resource.
  • a resource for which the CSI-RS is received from the neighbor cell may be configured to satisfy both a first resource setting associated with the first CSI-RS resource and a second resource setting associated with the second CSI-RS resource. It can be determined based on. Accordingly, based on a resource configuration that satisfies both a first resource configuration associated with the first CSI-RS resource and a second resource configuration associated with the second CSI-RS resource, the terminal selects the CSI-RS from the neighbor. Can receive from the cell.
  • a first frequency resource associated with the first CSI-RS resource included in the first resource configuration and a second frequency resource associated with the second CSI-RS resource included in the second resource configuration overlap. Based on the frequency resource, the terminal may receive the CSI-RS from the neighbor cell.
  • the first CSI-RS resource refers to a non-zero power (NZP) CSI-RS resource or channel state information interference measurement (CSI-IM). ) May be a resource.
  • NZP non-zero power
  • CSI-IM channel state information interference measurement
  • the second CSI-RS resource may be a CSI-RS resource set for RRM (Radio Resource Management) measurement.
  • RRM Radio Resource Management
  • examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
  • the above-described proposed schemes may be independently implemented, some proposed schemes may be implemented in a combination (or merge) form.
  • Information on whether the proposed methods are applied may be defined so that the base station informs the terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • FIG. 17 is a diagram illustrating a configuration of a terminal and a base station in which the proposed embodiment can be implemented.
  • the terminal and the base station illustrated in FIG. 17 operate to implement the above-described embodiments of the method for transmitting and receiving channel state information between the terminal and the base station.
  • a UE (UE) 1 may operate as a transmitting end in uplink and a receiving end in downlink.
  • the base station eNB or gNB 100 may operate as a receiver in uplink and as a transmitter in downlink.
  • the terminal and the base station may include transmitters 10 and 110 and receivers 20 and 120, respectively, to control transmission and reception of information, data and / or messages.
  • the antenna may include antennas 30 and 130 for transmitting and receiving messages.
  • the terminal and the base station each include processors 40 and 140 for performing the above-described embodiments of the present invention.
  • the processor 40, 140 may be configured to control the memory 50, 150 and / or the transmitter 10, 110 and / or the receiver 20, 120 to implement the procedures and / or methods described / proposed above. .
  • processors 40 and 140 include communication modems designed to implement wireless communication technology (eg, LTE, NR).
  • the memories 50 and 150 are connected to the processors 40 and 140 and store various information related to the operation of the processors 40 and 140.
  • the memory 50, 150 may include software code that includes instructions for performing some or all of the processes controlled by the processor 40, 140, or for performing the procedures and / or methods described / proposed above. Can be stored.
  • Transmitters 10 and 110 and / or receivers 20 and 120 are connected to processors 40 and 140 and transmit and / or receive wireless signals.
  • the processors 40 and 140 and the memories 50 and 150 may be part of a processing chip (eg, a System on a Chip, SoC).
  • the transmitter and receiver included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission. Packet scheduling and / or channel multiplexing may be performed.
  • the terminal and the base station of FIG. 17 may further include a low power radio frequency (RF) / intermediate frequency (IF) unit.
  • RF radio frequency
  • IF intermediate frequency
  • FIG. 18 is a block diagram of a communication device in which proposed embodiments can be implemented.
  • the apparatus shown in FIG. 18 may be a user equipment (UE) and / or a base station (eg, eNB or gNB) adapted to perform the above-described mechanism, or any device performing the same task.
  • UE user equipment
  • base station eg, eNB or gNB
  • the apparatus may include a digital signal processor (DSP) / microprocessor 210 and a radio frequency (RF) module (transceiver) 235.
  • the DSP / microprocessor 210 is electrically connected to the transceiver 235 to control the transceiver 235.
  • the device may be adapted to the power management module 205, the battery 255, the display 215, the keypad 220, the SIM card 225, the memory device 230, the speaker 245 and the input device, depending on the designer's choice. 250 may be further included.
  • FIG. 18 may represent a terminal including a receiver 235 configured to receive a request message from a network and a transmitter 235 configured to transmit timing transmit / receive timing information to the network. Such a receiver and a transmitter may configure the transceiver 235.
  • the terminal may further include a processor 210 connected to a transceiver (receiver and transmitter) 235.
  • the 18 may also show a network device including a transmitter 235 configured to transmit a request message to a terminal and a receiver 235 configured to receive transmission and reception timing information from the terminal.
  • the transmitter and receiver may configure the transceiver 235.
  • the network further includes a processor 210 coupled to the transmitter and the receiver.
  • the processor 210 may calculate a latency based on the transmission / reception timing information.
  • a processor included in a terminal may control a corresponding memory and operate as follows.
  • a processor included in a base station may control a corresponding memory and operate as follows.
  • the terminal at least one radio frequency (RF) module; At least one processor; And at least one memory operatively connected to the at least one processor and storing instructions to cause the at least one processor to perform the following operation when executed.
  • the communication device included in the terminal may be configured to include the at least one processor and the at least one memory, and the communication device includes the at least one RF module or the at least one RF. It may be configured to be connected to the at least one RF module without including a module.
  • At least one processor included in the terminal controls the at least one RF module to perform a first channel state information reference signal (CSI-RS) for measurement.
  • CSI-RS channel state information reference signal
  • the configuration information may include QCL (Quasi Co Located) information between the first CSI-RS resource and the second CSI-RS resource related to the neighbor cell.
  • the at least one processor may control the at least one RF module and receive a CSI-RS transmitted from the neighbor cell based on the configuration information.
  • the at least one processor may control the at least one RF module and report the measured CSI to a serving cell based on the received CSI-RS.
  • the terminal (or a communication device included in the terminal) may be configured to communicate with at least one of a mobile terminal, a network, and an autonomous vehicle other than the vehicle including the terminal.
  • a base station comprises: at least one radio frequency (RF) module; At least one processor; And at least one memory operatively connected to the at least one processor and storing instructions to cause the at least one processor to perform the following operation when executed.
  • the communication device included in the base station may be configured to include the at least one processor and the at least one memory, and the communication device includes the at least one RF module or the at least one RF. It may be configured to be connected to the at least one RF module without including a module.
  • the at least one processor included in the base station controls the at least one RF module so as to control the first channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the configuration information may include QCL (Quasi Co Located) information between the first CSI-RS resource and the second CSI-RS resource related to the neighbor cell.
  • the at least one processor may control the at least one RF module to receive the CSI measured from the terminal.
  • the CSI may include measurement information about the CSI-RS transmitted from the neighbor cell to the terminal based on the configuration information.
  • the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS Multi Mode-Multi Band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
  • a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors and the like can be implemented.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors and the like can be implemented.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • software code may be stored in memory units 50 and 150 and driven by processors 40 and 140.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the above-described communication device includes a base station, a network node, a transmission terminal, a reception terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, an unmanned aerial vehicle (UAV), an artificial intelligence (AI) module, It may be a robot, an Augmented Reality (AR) device, a Virtual Reality (VR) device, or other device.
  • UAV unmanned aerial vehicle
  • AI artificial intelligence
  • It may be a robot, an Augmented Reality (AR) device, a Virtual Reality (VR) device, or other device.
  • the terminal may be a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, a slate PC, a tablet. It may include a tablet PC, an ultrabook, a wearable device (eg, a smartwatch, a glass glass, a head mounted display), and the like.
  • a drone may be a vehicle in which humans fly by radio control signals.
  • the HMD may be a display device worn on the head.
  • the HMD can be used to implement VR or AR.
  • Embodiments of the present invention can be applied to various wireless access systems.
  • various radio access systems include 3rd Generation Partnership Project (3GPP) or 3GPP2 systems.
  • 3GPP 3rd Generation Partnership Project
  • Embodiments of the present invention can be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied.
  • the proposed method can be applied to mmWave communication system using ultra high frequency band.
  • embodiments of the present invention may be applied to various applications such as a free running vehicle and a drone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에서는 무선 통신 시스템에서 단말과 기지국 간 채널 상터 쟁보를 송수신하는 방법 및 이를 지원하는 장치를 개시한다. 본 발명에 적용 가능한 일 실시예에 따르면, 단말은 기지국으로부터 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 수신하고, 상기 설정 정보에 기초하여 이웃 셀로부터 전송되는 CSI-RS을 이용하여 채널 상태 정보를 측정하고, 상기 측정된 채널 상태 정보를 상기 기지국으로 전송할 수 있다.

Description

무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.
이와 같이 향상된 모바일 브로드밴드 통신, 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.
본 발명의 목적은 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치들을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 발명은 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치들을 제공한다.
본 발명의 일 양태로서, 무선 통신 시스템에서 단말이 채널 상태 정보 (CSI)를 보고하는 방법에 있어서, 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 수신하되, 상기 설정 정보는 상기 제1 CSI-RS 자원 및 이웃 셀과 관련된 제2 CSI-RS 자원 간 QCL (Quasi Co Located) 정보를 포함하고; 상기 설정 정보에 기초하여, 상기 이웃 셀로부터 전송되는 CSI-RS를 수신; 및 상기 수신된 CSI-RS에 기초하여 측정된 상기 CSI를 서빙 셀로 보고하는 것을 포함하는, 단말의 채널 상태 정보 보고 방법을 제안한다.
본 발명에 있어, 상기 단말이 상기 이웃 셀로부터 상기 CSI-RS를 수신하는 것은, 상기 QCL 정보 및 상기 설정 정보에 기초하여 결정되는 상기 CSI-RS의 타이밍에 기초하여, 상기 단말이 상기 이웃 셀로부터 상기 CSI-RS를 수신하는 것을 포함할 수 있다.
적용 가능한 일 예로, 상기 제2 CSI-RS 자원과 연관된 동기 신호 블록 (synchronization signal block; SSB) 정보가 설정 되어 있는 경우, 상기 CSI-RS의 타이밍은 상기 제2 CSI-RS 자원과 연관되어 설정된 셀을 기준으로 결정될 수 있다.
적용 가능한 다른 예로, 상기 제2 CSI-RS 자원과 연관된 동기 신호 블록 (synchronization signal block; SSB) 정보가 설정 되어 있지 않고 상기 제2 CSI-RS 자원과 연관되는 참조 서빙 셀 정보가 설정 되어 있는 경우, 상기 CSI-RS 의 타이밍은 상기 참조 서빙 셀 정보에 기초하여 결정되는 셀을 기준으로 결정될 수 있다.
적용 가능한 또 다른 예로, 상기 제2 CSI-RS 자원과 연관된 동기 신호 블록 (synchronization signal block; SSB) 정보가 설정 되어 있지 않고, 상기 제2 CSI-RS 자원과 연관되는 참조 서빙 셀 정보가 설정되어 있지 않는 경우, 상기 이웃 셀의 타이밍은 상기 단말과 연결된 상기 서빙 셀을 기준으로 결정될 수 있다.
본 발명에 있어, 상기 QCL 정보는 다음 중 하나 이상의 정보를 포함할 수 있다.
- 상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 도플러 시프트 (Doppler shift), 도플러 확산 (Doppler spread), 평균 지연 (average delay), 지연 확산 (delay spread) 관점에서 QCL 됨을 알리는 QCL 타입 A 정보
- 상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 도플러 시프트 (Doppler shift), 도플러 확산 (Doppler spread) 관점에서 QCL 됨을 알리는 QCL 타입 B 정보
- 상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 도플러 시프트 (Doppler shift), 평균 지연 (average delay) 관점에서 QCL 됨을 알리는 QCL 타입 C 정보
- 상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 공간적 수신 파라미터 (spatial Rx parameter) 관점에서 QCL 됨을 알리는 QCL 타입 D 정보
이 경우, 상기 QCL 정보가 상기 QCL 타입 C 정보를 포함하는 경우, 상기 QCL 정보에 기초하여 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신함은, 상기 제2 CSI-RS 자원과 관련된 도플러 시프트 정보 및 평균 지연 정보에 기초하여, 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신하는 것을 포함할 수 있다.
또는, 상기 QCL 정보가 상기 QCL 타입 D 정보를 포함하는 경우, 상기 QCL 정보에 기초하여 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신함은, 상기 제2 CSI-RS 자원과 관련된 수신 빔 정보에 기초하여, 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신하는 것을 포함할 수 있다.
또는, 상기 QCL 정보가 상기 QCL 타입 C 정보 및 상기 QCL 타입 D 정보를 포함하는 경우, 상기 QCL 정보에 기초하여 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신함은, 상기 제2 CSI-RS 자원과 관련된 도플러 시프트 정보, 평균 지연 정보 및 수신 빔 정보에 기초하여, 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신하는 것을 포함할 수 있다.
본 발명에 있어, 상기 CSI-RS는, 상기 제1 CSI-RS 자원과 관련된 자원 설정에 기초하여, 상기 이웃 셀로부터 수신될 수 있다.
또는, 상기 CSI-RS는, 상기 제2 CSI-RS 자원과 관련된 자원 설정에 기초하여, 상기 이웃 셀로부터 수신될 수 있다.
이때, 상기 제2 CSI-RS 자원과 관련된 상기 자원 설정은 다음 중 하나 이상을 포함할 수 있다.
- 상기 제2 CSI-RS 자원과 관련된 시간 자원 설정
- 상기 제2 CSI-RS 자원과 관련된 주파수 자원 설정
- 상기 제2 CSI-RS 자원과 관련된 뉴머롤로지 (numerology) 설정
또는, 상기 CSI-RS는, 상기 제1 CSI-RS 자원과 관련된 제1 자원 설정 및 상기 제2 CSI-RS 자원과 관련된 제2 자원 설정을 모두 만족하는 자원 설정에 기초하여, 상기 이웃 셀로부터 수신될 수 있다.
구체적인 일 예로, 상기 CSI-RS는, 상기 제1 자원 설정에 포함된 상기 제1 CSI-RS 자원과 관련된 제1 주파수 자원 및 상기 제2 자원 설정에 포함된 상기 제2 CSI-RS 자원과 관련된 제2 주파수 자원이 중첩되는 주파수 자원에 기초하여, 상기 이웃 셀로부터 수신될 수 있다.
본 발명에 있어, 상기 설정 정보는 상위 계층 시그널링을 통해 수신될 수 있다.
본 발명에 있어, 상기 제1 CSI-RS 자원은, 논-제로 파워 (non-zero power, NZP) CSI-RS 자원 또는 채널 상태 정보 간섭 측정 (channel state information interference measurement; CSI-IM) 자원일 수 있다.
본 발명에 있어, 상기 제2 CSI-RS 자원은, RRM (Radio Resource Management) 측정을 위한 CSI-RS 자원일 수 있다.
본 발명의 다른 양태로서, 무선 통신 시스템에서 채널 상태 정보 (CSI)를 보고하는 단말에 있어서, 적어도 하나의 무선 주파수 (RF) 모듈; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 하기 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 하기 동작은: 상기 적어도 하나의 RF 모듈을 제어하여, 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 수신하되, 상기 설정 정보는 상기 제1 CSI-RS 자원 및 이웃 셀과 관련된 제2 CSI-RS 자원 간 QCL (Quasi Co Located) 정보를 포함하고; 상기 적어도 하나의 RF 모듈을 제어하여, 상기 설정 정보에 기초하여 상기 이웃 셀로부터 전송되는 CSI-RS를 수신; 및 상기 적어도 하나의 RF 모듈을 제어하여, 상기 수신된 CSI-RS에 기초하여 측정된 상기 CSI를 서빙 셀로 보고하는 것을 포함하는, 단말을 제안한다.
이때, 상기 단말은, 이동 단말기, 네트워크 및 상기 단말이 포함된 차량 이외의 자율 주행 차량 중 적어도 하나와 통신하도록 구성될 수 있다.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 채널 상태 정보 (CSI)를 수신하는 기지국에 있어서, 적어도 하나의 무선 주파수 (RF) 모듈; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 하기 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 하기 동작은: 상기 적어도 하나의 RF 모듈을 제어하여, 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 단말로 전송하되, 상기 설정 정보는 상기 제1 CSI-RS 자원 및 이웃 셀과 관련된 제2 CSI-RS 자원 간 QCL (Quasi Co Located) 정보를 포함하고; 및 상기 적어도 하나의 RF 모듈을 제어하여, 상기 단말로부터 측정된 상기 CSI를 수신하는 것을 포함하고, 상기 CSI는, 상기 설정 정보에 기초하여 상기 이웃 셀로부터 상기 단말로 전송되는 CSI-RS에 대한 측정 정보를 포함하는, 기지국을 제안한다.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시 예들에 따르면 다음과 같은 효과가 있다.
본 발명에 따르면, 단말은 현재 서비스를 제공하고 있는 서빙 셀이 아닌 이웃 셀 (neighbor cell)로부터 전송되는 채널 상태 정보 참조 신호를 측정하고, 이에 대한 채널 상태 정보를 상기 서빙 셀로 보고할 수 있다.
상기 이웃 셀에 대한 채널 상태 정보에 기초하여, 네트워크 (또는 서빙 셀)는 상기 단말에 대한 상기 이웃 셀의 간섭을 제어하거나, (상기 이웃 셀이 상기 서빙 셀과 함께 서비스를 제공하는 경우) 상기 단말에 대한 상기 이웃 셀의 수신 성능을 향상시킬 수도 있다.
특히, 본 발명에서 제안하는 구성에 따르면, 기존 3GPP 5G NR 표준에 대한 최소한의 수정을 통해, 상기 단말이 이웃 셀에 대한 채널 상태 정보를 보고하는 동작을 지원할 수 있다.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 본 발명의 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임의 구조를 나타낸 도면이다.
도 3은 본 발명의 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
도 4는 본 발명의 실시예들이 적용 가능한 NR 시스템에 기초한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 5는 본 발명의 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.
도 6 및 도 7은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다.
도 8은 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다.
도 9는 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 10은 본 발명에 적용 가능한 제1 DMRS 설정 타입의 Front loaded DMRS 에 대한 예를 간단히 나타낸 도면이다.
도 11은 본 발명에 적용 가능한 두 셀 (또는 기지국, 반송파 등)의 무선 프레임 (radio frame) 구조를 간단히 나타낸 도면이다.
도 12는 본 발명에 적용 가능한 단말과 기지국들과의 관계를 간단히 나타낸 도면이다.
도 13은 본 발명에 적용 가능한 단말과 기지국의 동작을 간단히 나타낸 도면이다.
도 14는 본 발명에 따른 단말과 기지국 간 채널 상태 정보를 송수신하는 방법을 간단히 나타낸 도면이고, 도 15는 본 발명에 따른 단말이 채널 상태 정보를 보고하는 방법을 나타낸 흐름도이고, 도 16은 본 발명에 따른 기지국이 단말로부터 채널 상태 정보를 수신하는 방법을 나타낸 흐름도이다.
도 17은 제안하는 실시 예들이 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다.
도 18은 제안하는 실시예들이 구현될 수 있는 통신 장치의 블록도이다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP NR 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP NR 시스템을 위주로 기술한다. 다만, 본 발명에서 제안하는 실시예는 다른 무선 시스템 (예: 3GPP LTE, IEEE 802.16, IEEE 802.11 등)에도 동일하게 적용될 수 있다.
1. NR 시스템
1.1 물리 채널들 및 일반적인 신호 전송
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 RAR (Random Access Response)를 수신할 수 있다(S14). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)을 전송하고 (S15), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다(S16).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication), BI (Beam Indication) 정보 등을 포함한다.
NR 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 실시예에 따라 (예: 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우) PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 무선 프레임 (Radio Frame) 구조
도 2는 본 발명의 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임의 구조를 나타낸 도면이다.
NR 시스템에 기초한 상향링크 및 하향링크 전송은 도 2와 같은 프레임에 기초한다. 하나의 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하나의 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 하나의 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA 심볼 (또는, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 2는 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.
Figure PCTKR2019005185-appb-img-000001
Figure PCTKR2019005185-appb-img-000002
상기 표에서, N slot symb 는 슬롯 내 심볼의 개수를 나타내고, N frame,μ slot는 프레임 내 슬롯의 개수를 나타내고, N subframe,μ slot는 서브프레임 내 슬롯의 개수를 나타낸다.
본 발명이 적용 가능한 NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
도 3은 본 발명의 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
하나의 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다.
반송파(carrier)는 주파수 도메인에서 복수의 부반송파(subcarrier)를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다.
BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다.
반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4 는 본 발명의 실시예들이 적용 가능한 NR 시스템에 기초한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 4에서 빗금친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환 또는 수신모드에서 송신 모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간 (guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 발명에 따른 자립적 슬롯 구조는 도 4와 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
또한, 하나의 슬롯을 구성하는 상기 영역들의 순서는 실시예에 따라 달라질 수 있다. 일 예로, 하나의 슬롯은 DL 제어 영역 / DL 데이터 영역 / UL 제어 영역 / UL 데이터 영역 순서로 구성되거나, UL 제어 영역 / UL 데이터 영역 / DL 제어 영역 / DL 데이터 영역 순서 등으로 구성될 수 있다.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다.
PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다.
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
도 5는 본 발명의 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.
도 5에서, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로 1 번째, 5 번째, 9 번째 RE에 매핑된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 3은 PUCCH 포맷들을 예시한다.
Figure PCTKR2019005185-appb-img-000003
PUCCH format 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH format 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH format 0인 PUCCH를 전송한다.
PUCCH format 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH format 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH format 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH format 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH format 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
1.3. 아날로그 빔포밍 (Analog beamforming)
밀리미터 파 (Millimeter Wave, mmW)에서는 파장이 짧아 동일 면적에 다수개의 안테나 요소(element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm이므로, 5 * 5 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-차원 (2-dimension) 배열을 하는 경우 총 100개의 안테나 요소를 설치할 수 있다. 이에 따라, 밀리미터 파 (mmW)에서는 다수개의 안테나 요소를 사용하여 빔포밍 (beamforming, BF) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)을 높일 수 있다.
이때, 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 각 안테나 요소는 TXRU(Transceiver Unit)을 포함할 수 있다. 이를 통해, 각 안테나 요소는 주파수 자원 별로 독립적인 빔포밍을 수행할 수 있다.
그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 아날로그 위상 시프터 (analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍이 어렵다는 단점을 갖는다.
이에 대한 해결 방안으로, 디지털 빔포밍과 아날로그 빔포밍의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍 (hybrid BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔(beam)의 방향은 B개 이하로 제한될 수 있다.
도 6 및 도 7은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다. 여기서 TXRU 가상화 (virtualization) 모델은 TXRU의 출력 신호와 안테나 요소의 출력 신호의 관계를 나타낸다.
도 6은 TXRU가 서브 어레이 (sub-array)에 연결된 방식을 나타낸 도면이다. 도 6의 경우, 안테나 요소는 하나의 TXRU에만 연결된다.
반면, 도 7은 TXRU가 모든 안테나 요소에 연결된 방식을 나타낸 도면이다. 도 7의 경우, 안테나 요소는 모든 TXRU에 연결된다. 이때, 안테나 요소가 모든 TXRU에 연결되기 위하여 도 7에 도시된 바와 같이 별도의 덧셈기를 필요로 한다.
도 6 및 도 7에서, W는 아날로그 위상 시프터 (analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W는 아날로그 빔포밍의 방향을 결정하는 주요 파라미터이다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1:1 또는 1:다(多) (1-to-many) 일 수 있다.
도 6의 구성에 따르면, 빔포밍의 포커싱이 어려운 단점이 있으나, 전체 안테나 구성을 적은 비용으로 구성할 수 있다는 장점이 있다.
도 7의 구성에 따르면, 빔포밍의 포커싱이 쉽다는 장점이 있다. 다만, 모든 안테나 요소에 TXRU가 연결되는 바, 전체 비용이 증가한다는 단점이 있다.
본 발명이 적용 가능한 NR 시스템에서 복수의 안테나가 사용되는 경우, 디지털 빔포밍 (Digital beamforming) 및 아날로그 빔포밍 (Analog beamforming)을 결합한 하이브리드 빔포밍 (Hybrid beamforming) 기법이 적용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF (Radio Frequency) 빔포밍)은 RF 단에서 프리코딩 (또는 콤바이닝 (Combining))을 수행하는 동작을 의미한다. 그리고, 하이브리드 빔포밍에서 베이스밴드 (Baseband) 단과 RF 단은 각각 프리코딩 (또는 콤바이닝)을 수행한다. 이로 인해 RF 체인 수와 D/A (Digital-to-Analog) (또는 A/D (Analog-to-Digital) 컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다.
설명의 편의상, 상기 하이브리드 빔포밍 구조는 N개 송수신단 (Transceiver unit, TXRU)과 M개의 물리적 안테나로 표현될 수 있다. 이때, 송신단에서 전송할 L개 데이터 계층 (Data layer)에 대한 디지털 빔포밍은 N * L (N by L) 행렬로 표현될 수 있다. 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환되고, 상기 변환된 신호에 대해 M * N (M by N) 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 8은 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다. 이때, 상기 도 8에서 디지털 빔의 개수는 L개이며, 아날로그 빔의 개수는 N개이다.
추가적으로, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방법을 고려하고 있다. 더 나아가, 도 8과 같이 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 본 발명에 따른 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.
상기와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 이에 따라, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 특정 서브프레임 (SF) 또는 슬롯 내에서 심볼 별로 상이한 아날로그 빔을 적용하여 (적어도 동기 신호, 시스템 정보, 페이징 (Paging) 등) 신호를 전송함으로써 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 (Beam sweeping) 동작이 고려되고 있다.
도 9는 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 9에 있어, 본 발명이 적용 가능한 NR 시스템의 시스템 정보가 브로드캐스팅 (Broadcasting) 방식으로 전송되는 물리적 자원 (또는 물리 채널)을 xPBCH (physical broadcast channel)으로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시에 전송될 수 있다.
또한, 도 9에 도시된 바와 같이, 본 발명이 적용 가능한 NR 시스템에서는 아날로그 빔 별 채널을 측정하기 위한 구성으로써 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 참조 신호 (Reference signal, RS)인 빔 참조 신호 (Beam RS, BRS)가 도입될 수 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 이때, BRS와 달리, 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 그룹 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
1.4. DMRS (Demodulation Reference Signal)
본 발명이 적용 가능한 NR 시스템에서 DMRS는 먼저 실리는 구조 (frond load structure)로 송수신될 수 있다. 또는, 상기 먼저 실리는 DMRS 외 추가적인 DMRS(Additional DMRS)가 추가적으로 송수신될 수 있다.
Front loaded DMRS는 빠른 디코딩을 지원할 수 있다. Front loaded DMRS가 실리는 첫 번째 OFDM 심볼은 3 번째 (예: l=2)또는 4 번째 OFDM 심볼 (예: l=3)로 결정될 수 있다. 상기 첫 번째 FODM 심볼 위치는 PBCH (Physical Broadcast Channel)에 의해 지시될 수 있다.
Front loaded DMRS가 점유하는 OFDM 심볼 개수는 DCI (Downlink Control Information) 및 RRC (Radio Resource Control) 시그널링의 조합에 의해 지시될 수 있다.
Additional DMRS는 높은 속도의 단말을 위해 설정될 수 있다. Additional DMRS는 슬롯 내 중간/마지막 심볼(들)에 위치할 수 있다. 1개의 Front loaded DMRS 심볼이 설정된 경우, Additional DMRS는 0 내지 3 개의 OFDM 심볼에 할당될 수 있다. 2개의 Front loaded DMRS 심볼이 설정된 경우, Additional DMRS는 0 또는 2개의 OFDM 심볼에 할당될 수 있다.
Front loaded DMRS는 2개의 타입으로 구성되고, 상위 계층 시그널링 (예: RRC 시그널링)을 통해 상기 2개의 타입 중 하나가 지시될 수 있다.
도 8 은 본 발명에 적용 가능한 두 가지 DMRS 설정 타입을 간단히 나타낸 도면이다.
도 8에 있어, P0 내지 P11은 포트 번호 1000 내지 1011에 각각 대응할 수 있다. 상기 두 가지 DMRS 설정 타입 중 실질적으로 단말에 대해 설정되는 DMRS 설정 타입은 상위 계층 시그널링 (예: RRC)에 의해 지시될 수 있다.
제1 DMRS 설정 타입(DMRS configuration type 1)의 경우, Front loaded DMRS가 할당되는 OFDM 심볼 개수에 따라 다음과 같이 구분될 수 있다.
제1 DMRS 설정 타입(DMRS configuration type 1) 및 Front loaded DMRS가 할당되는 OFDM 심볼 개수 = 1
최대 4개의 포트 (예: P0 ~ P3)가 길이-2 F-CDM (Frequency - Code Division Multiplexing) 및 FDM (Frequency Division Multiplexing) 방법에 기초하여 다중화될 수 있다. RS 밀도는 RB (Resource Block) 내 포트 당 6 RE로 설정될 수 있다.
제1 DMRS 설정 타입(DMRS configuration type 1) 및 Front loaded DMRS가 할당되는 OFDM 심볼 개수 = 2
최대 8개의 포트 (예: P0 ~ P7)가 길이-2 F-CDM, 길이-2 T-CDM (Time - Code Division Multiplexing) 및 FDM 방법에 기초하여 다중화될 수 있다. 여기서, 상위 계층 시그널링에 의해 PT-RS의 존재가 설정되는 경우, T-CDM은 [1 1]로 고정될 수 있다. RS 밀도는 RB 내 포트 당 12 RE로 설정될 수 있다.
제2 DMRS 설정 타입(DMRS configuration type 2)의 경우, Front loaded DMRS가 할당되는 OFDM 심볼 개수에 따라 다음과 같이 구분될 수 있다.
제2 DMRS 설정 타입(DMRS configuration type 2) 및 Front loaded DMRS가 할당되는 OFDM 심볼 개수 = 1
최대 6개의 포트 (예: P0 ~ P5)가 길이-2 F-CDM 및 FDM 방법에 기초하여 다중화될 수 있다. RS 밀도는 RB (Resource Block) 내 포트 당 4 RE로 설정될 수 있다.
제2 DMRS 설정 타입(DMRS configuration type 2) 및 Front loaded DMRS가 할당되는 OFDM 심볼 개수 = 2
최대 12개의 포트 (예: P0 ~ P11)가 길이-2 F-CDM, 길이-2 T-CDM 및 FDM 방법에 기초하여 다중화될 수 있다. 여기서, 상위 계층 시그널링에 의해 PT-RS의 존재가 설정되는 경우, T-CDM은 [1 1]로 고정될 수 있다. RS 밀도는 RB 내 포트 당 8 RE로 설정될 수 있다.
도 10은 본 발명에 적용 가능한 제1 DMRS 설정 타입의 Front loaded DMRS 에 대한 예를 간단히 나타낸 도면이다.
보다 구체적으로, 도 10(a) 에서는 DMRS가 하나의 심볼에 먼저 실리는 구조 (front loaded DMRS with one symbol)를 나타내고, 도 10(b)에서는 DMRS가 두 개의 심볼에 먼저 실리는 구조 (front loaded DMRS with two symbols)를 나타낸다.
도 10에 있어, △는 주파수 축에서의 DMRS 오프셋 값을 의미한다. 이때, 동일한 △를 갖는 DMRS ports는 서로 주파수 도메인에서 코드 분할 다중화 (code division multiplexing in frequency domain; CDM-F) 또는 시간 도메인에서 코드 분할 다중화 (code division multiplexing in time domain; CDM-T)될 수 있다. 또한, 서로 다른 △를 갖는 DMRS ports는 서로 CDM-F 될 수 있다.
단말은 DCI를 통해 기지국에 의해 설정된 DMRS 포트 설정 정보를 획득할 수 있다.
1.5. DMRS 포트 그룹 (DMRS port group)
본 발명에 있어, DMRS 포트 그룹이라 함은 서로 QCL (Quasi co-located) 또는 부분적 QCL (Quasi co-located) 관계에 있는 DMRS들의 집합을 의미할 수 있다. 여기서, QCL 관계라 함은 도플러 확산 (Doppler spread) 및/또는 도플러 시프트 (Doppler shift), 평균 지연 (average delay), 지연 확산 (delay spread) 등 장기 채널 변수 (long-term channel parameter)가 동일하다고 가정될 수 있음을 의미하고, 부분적 QCL 관계라 함은 상기 장기 채널 변수 중 일부만이 동일하다고 가정될 수 있음을 의미할 수 있다.
1.6. DCI 포맷
본 발명이 적용 가능한 NR 시스템에서는, 다음과 같은 DCI 포맷들을 지원할 수 있다. 먼저, NR 시스템에서는 PUSCH 스케줄링을 위한 DCI 포맷으로 DCI format 0_0, DCI format 0_1을 지원하고, PDSCH 스케줄링을 위한 DCI 포맷으로 DCI format 1_0, DCI format 1_1을 지원할 수 있다. 또한, 이외 목적으로 활용 가능한 DCI 포맷으로써, NR 시스템에서는 DCI format 2_0, DCI format 2_1, DCI format 2_2, DCI format 2_3을 추가적으로 지원할 수 있다.
여기서, DCI format 0_0은 TB (Transmission Block) 기반 (또는 TB-level) PUSCH를 스케줄링하기 위해 사용되고, DCI format 0_1은 TB (Transmission Block) 기반 (또는 TB-level) PUSCH 또는 (CBG (Code Block Group) 기반 신호 송수신이 설정된 경우) CBG 기반 (또는 CBG-level) PUSCH를 스케줄링하기 위해 사용될 수 있다.
또한, DCI format 1_0은 TB 기반 (또는 TB-level) PDSCH를 스케줄링하기 위해 사용되고, DCI format 1_1은 TB 기반 (또는 TB-level) PDSCH 또는 (CBG 기반 신호 송수신이 설정된 경우) CBG 기반 (또는 CBG-level) PDSCH를 스케줄링하기 위해 사용될 수 있다.
또한, DCI format 2_0은 슬롯 포맷 (slot format)을 알리기 위해 사용되고 (used for notifying the slot format), DCI format 2_1은 특정 UE가 의도된 신호 전송이 없음을 가정하는 PRB 및 OFDM 심볼을 알리기 위해 사용되고 (used for notifying the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE), DCI format 2_2는 PUCCH 및 PUSCH의 TPC (Transmission Power Control) 명령 (command)의 전송을 위해 사용되고, DCI format 2_3은 하나 이상의 UE에 의한 SRS 전송을 위한 TPC 명령 그룹의 전송을 위해 사용될 수 있다 (used for the transmission of a group of TPC commands for SRS transmissions by one or more UEs).
상기 DCI 포맷에 대한 구체적인 특징은 3GPP TS 38.212 문서에 의해 뒷받침될 수 있다. 즉, DCI 포맷 관련 특징 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서를 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
1.7. CORESET (Control resource set)
하나의 CORESET은 주파수 도메인에서 N CORESET RB 개의 RB를 포함하고, 시간 도메인에서 N CORESET symb (해당 값은 1,2,3 값을 가짐) 개의 심볼을 포함한다.
하나의 CCE (control channel element)는 6 REG (resource element group)을 포함하고, 하나의 REG는 하나의 OFDM 심볼 상 하나의 RB와 동일하다. CORESET 내 REG들은 시간-우선 방식 (time-first manner)에 따른 순서로 넘버링된다. 구체적으로, 상기 넘버링은 CORESET 내 첫 번째 OFDM 심볼 및 가장-낮은 번호의 RB을 위해 '0'부터 시작한다.
하나의 단말에 대해 복수 개의 CORESET들이 설정될 수 있다. 각 CORESET은 하나의 CCE-to-REG 매핑에만 관련된다.
하나의 CORESET을 위한 CCE-to-REG 매핑은 인터리빙되거나 논-인터리빙될 수 있다.
CORESET을 위한 설정 정보는 상위 계층 파라미터 ControlResourceSet IE에 의해 설정될 수 있다.
또한 CORESET 0 (예: 공통 CORESET)을 위한 설정 정보는 상위 계층 파라미터 ControlResourceSetZero IE에 의해 설정될 수 있다.
1.8. 안테나 포트 의사 코-로케이션 (antenna ports quasi co-location)
하나의 단말에 대해 최대 M TCI (Transmission Configuration Indicator) 상태(state) 설정의 리스트가 설정될 수 있다. 상기 최대 M TCI 상태 설정은 상기 단말 및 주어진 서빙 셀을 위해 의도된 (intended) DCI를 포함한 PDCCH의 검출에 따라 (상기 단말이) PDSCH를 디코딩할 수 있도록 상위 계층 파라미터 PDSCH-Config에 의해 설정될 수 있다. 여기서, M 값은 단말의 캐퍼빌리티에 의존하여 결정될 수 있다.
각 TCI-state는 하나 또는 두 개의 하향링크 참조 신호들과 PDSCH의 DMRS 포트들 간 QCL (quasi co-location) 관계를 설정하기 위한 파라미터를 포함한다. 상기 QCL 관계는 제1 DL RS (downlink reference signal)을 위한 상위 계층 파라미터 qcl-Type1 및 제2 DL RS을 위한 상위 계층 파라미터 qcl-Type2 (설정될 경우)에 기초하여 설정된다. 두 DL RS들의 경우를 위해, 상기 참조 신호들이 동일한 DL RS 또는 상이한 DL RS인지 여부와 관계 없이, QCL 타입들은 동일하지 않아야 한다 (shall not be the same). QCL 타입들은 상위 계층 파라미터 QCL-Info 내 상위 계층 파라미터 qcl-Type에 의해 주어지는 각 DL RS에 대응하고, 상기 QCL 타입들은 다음 중 하나의 값을 가질 수 있다.
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
단말은 상기 최대 8 TCI states를 DCI 내 TCI (Transmission Configuration Indication) 필드의 코드 포인트(codepoint)와 매핑하기 위해 사용되는 활성화 코맨드 (activation command)를 수신한다. 상기 활성화 코맨드를 포함한 PDSCH에 대응하는 HARQ-ACK 신호가 슬롯 #n에서 전송되는 경우, 상기 TCIs states 및 상기 DCI 내 TCI 필드의 코드 포인트 간 매핑은 슬롯 #(n+3*N subframe, μ slot+1) 부터 적용될 수 있다. 여기서, N subframe, μ slot는 앞서 상술한 표 1 또는 표 2에 기초하여 결정된다. 상기 단말이 TCI states의 초기 상위 계층 설정 (initial higher layer configuration)을 수신한 이후이며 상기 단말이 활성화 코맨드를 수신하기 이전에, 상기 단말은 서빙 셀의 PDSCH의 DMRS 포트(들)이 'QCL-TypeA' 관점에서 상기 초기 접속 절차에서 결정되는 SS/PBCH 블록과 QCL 되었다고 가정한다. 추가적으로, 상기 시점에 상기 단말은 서빙 셀의 PDSCH의 DMRS 포트(들)이 'QCL-TypeD' 관점에서 상기 초기 접속 절차에서 결정되는 SS/PBCH 블록과 QCL 되었다고 가정할 수 있다.
PDSCH를 스케줄링하는 CORESET을 위해 상위 계층 파라미터 tci-PresentInDCI가 'enabled'로 설정되는 경우, 단말은 상기 CORESET 상에서 전송되는 DCI 포맷 1_1의 PDCCH 내 상기 TCI 필드가 존재한다고 가정한다. 상기 PDSCH를 스케줄링하는 CORESET을 위해 상위 계층 파라미터 tci-PresentInDCI가 설정되지 않거나 상기 PDSCH가 DCI 포맷 1_0에 의해 스케줄링되고, 상기 DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋이 문턱치 Threshold-Sched-Offset (상기 문턱치는 보고된 UE 캐퍼빌리티에 기초하여 결정됨) 보다 크거나 같은 경우, PDSCH 안테나 포트 QCL을 결정하기 위해, 단말은 상기 PDSCH를 위한 TCI state 또는 QCL 가정이 PDCCH 전송을 위해 사용되는 CORESET에 적용되는 TCI state 또는 QCL 가정과 동일하다고 가정한다.
상위 계층 파라미터 tci-PresentInDCI가 'enabled'로 설정되고, CC (component carrier)를 스케줄링하는 DCI 내 TCI 필드가 상기 스케줄링된 CC 또는 DL BW 내 활성화된 TCI states를 지시하는 경우 (point to), 상기 PDSCH가 DCI 포맷 1_1에 의해 스케줄링되면, 단말은 PDSCH 안테나 포트 QCL을 결정하기 위해 상기 검출된 PDCCH 내 DCI에 포함된 TCI 필드에 기초한 TCI-State를 이용한다. DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋이 문턱치 Threshold-Sched-Offset (상기 문턱치는 보고된 UE 캐퍼빌리티에 기초하여 결정됨) 보다 크거나 같은 경우, 상기 단말은 서빙 셀의 PDSCH의 DMRS 포트(들)이 지시된 TCI stated 의해 주어지는 QCL 타입 파라미터(들)에 대한 TCI state 내 RS(s)와 QCL 된다고 가정한다. 상기 단말에 대해 단일 슬롯 PDSCH가 설정되는 경우, 상기 지시된 TCI state는 상기 스케줄링된 PDSCH의 슬롯 내 활성화된 TCI states에 기초해야 한다. 크로스-반송파 스케줄링을 위한 검색 영역 세트 (search space set)와 연관된 CORESET이 상기 단말에게 설정되는 경우, 상기 단말은 상기 CORESET을 위해 상위 계층 파라미터 tci-PresentInDCI가 'enabled'로 설정된다고 가정하고, 상기 검색 영역 세트에 의해 스케줄링된 서빙 셀을 위해 설정된 하나 이상의 TCI states들이 'QCL-TypeD'를 포함하는 경우, 상기 단말은 상기 검색 영역 세트 내 검출된 PDCCH의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋은 문턱치 Threshold-Sched-Offset 보다 크거나 같을 것을 기대한다.
상위 계층 파라미터 tci-PresentInDCI가 'enabled'로 설정되거나 RRC 연결 모드에서 상기 상위 계층 파라미터 tci-PresentInDCI가 설정되지 않은 경우 모두에 대해, 만약 DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 오프셋이 문턱치 Threshold-Sched-Offset 보다 작은 경우, 상기 단말은 다음과 같은 사항을 가정한다. (i) 서빙 셀의 PDSCH의 DMRS 포트(들)은 TCI state의 RS(s)와 QCL 파라미터(들)에 대해 QCL 관계를 가짐. (ii) 이때, 상기 QCL 파라미터(들)은, 단말에 의해 모니터링되는 서빙 셀의 활성화 BWP 내 하나 이상의 CORESET에서 마지막 슬롯 내 가장 낮은 CORESET-ID로 모니터링된 검색 영역과 연관된 CORESET의 PDCCH QCL 지시를 위해 사용된 QCL 파라미터(들)임 (For both the cases when higher layer parameter tci-PresentInDCI is set to 'enabled' and the higher layer parameter tci-PresentInDCI is not configured in RRC connected mode, if the offset between the reception of the DL DCI and the corresponding PDSCH is less than the threshold Threshold-Sched-Offset, the UE may assume that the DM-RS ports of PDSCH of a serving cell are quasi co-located with the RS(s) in the TCI state with respect to the QCL parameter(s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored by the UE.)
상기 경우에 있어, PDSCH DMRS의 'QCL-TypeD'가 적어도 하나의 심볼 상에서 중첩되는 PDCCH DMRS의 'QCL-TypeD'와 상이한 경우, 상기 단말은 해당 CORESET과 연관된 PDCCH의 수신을 우선시하는 것을 기대한다. 해당 동작은 또한 밴드-내 (intra band) CA 경우에도 동일하게 적용될 수 있다 (PDSCH 및 CORESET이 상이한 CC에 있는 경우). 만약 설정된 TCI states들 중 'QCL-TypeD'를 포함한 TCI state가 없는 경우, 상기 단말은, DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋에 관계 없이, 스케줄링된 PDSCH를 위해 지시된 TCI state로부터 다른 QCL 가정을 획득한다.
상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 주기적 CSI-RS 자원을 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- SS/PBCH 블록에 대한 'QCL-TypeC', (QCL-TypeD가) 적용 가능한 경우 (when applicable), 동일한 SS/PBCH 블록에 대한 'QCL-TypeD', 또는
- SS/PBCH 블록에 대한 'QCL-TypeC' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 주기적 CSI-RS 자원에 대한 'QCL-TypeD'
상위 계층 파라미터 trs-Info 및 상위 계층 파라미터 repetition 없이 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원을 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, SS/PBCH 블록에 대한 'QCL-TypeD', 또는
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 주기적 CSI-RS 자원에 대한 'QCL-TypeD', 또는
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeB', 'QCL-TypeD'가 적용 가능하지 않은 경우
상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원을 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- SS/PBCH 블록에 대한 'QCL-TypeC' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 SS/PBCH 블록에 대한 'QCL-TypeD'
PDCCH의 DMRS를 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 및 상위 계층 파라미터 repetition 없이 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD'
PDSCH의 DMRS를 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터 repetition가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터 trs-Info 및 상위 계층 파라미터 repetition 없이 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD'
추가적으로, 본 발명에 따른 단말 및 기지국은 다음과 같이 동작할 수 있다.
Figure PCTKR2019005185-appb-img-000004
보다 구체적으로, 단말의 RRC 연결이 수립된 이후, 본 발명에 따른 단말 및 기지국 간에는 상기 표와 같은 QCL 링키지 및 시그널링이 적용될 수 있다. 본 발명에 있어, 상기 동작은 6GHz 이상/초과 대역 (above 6GHz) 뿐만 아니라 6GHz 이하 대역 (below 6GHz)에도 확장 적용될 수 있다.
이하 설명에 있어, 표 내 하나의 행(row)이 동일한 RS 타입을 갖는 경우, 이에 대해서는 동일한 RS ID가 가정될 수 있다.
본 발명에 있어, 상위 계층 파라미터 trs-Info 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원이 포함되는 경우, 단말은 상위 계층 파라미터 TCI-state에 대해 다음의 두 가지 가능한 설정들(possible configuration)을 기대한다.
Figure PCTKR2019005185-appb-img-000005
상기 표에서, *는 QCL type-D가 적용 가능한 경우를 나타낸다. 이에, QCL type-D 이 적용 가능한 경우, DL RS2 및 QCL type-2 은 단말에게 설정되어야 한다.
본 발명에 있어, 상위 계층 파라미터 trs-Info 및 상위 계층 파라미터 repetition 없이 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원이 포함되는 경우, 단말은 위 계층 파라미터 TCI-state에 대해 다음의 세 가지 가능한 설정들(possible configuration)을 기대한다.
Figure PCTKR2019005185-appb-img-000006
상기 표에서, *는 QCL type-D 이 적용 가능하지 않은 경우를 나타낸다.
상기 표에서, **는 QCL type-D가 적용 가능한 경우를 나타낸다. 이에, QCL type-D 이 적용 가능한 경우, DL RS2 및 QCL type-2 은 단말에게 설정되어야 한다.
본 발명에 있어, 상위 계층 파라미터 repetition 가 설정된 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 내 CSI-RS 자원이 포함되는 경우, 단말은 상위 계층 파라미터 TCI-state에 대해 다음의 세 가지 가능한 설정들(possible configuration)을 기대한다.
Figure PCTKR2019005185-appb-img-000007
다음의 두 표들에 있어, QCL type-D가 적용 가능한 경우, 디폴트 케이스 (예: 하기 두 표의 네 번째 행(row))를 제외하고 DL RS2 및 QCL type-2 은 단말에게 설정되어야 한다. 하향링크를 위한 TRS가 QCL type-D를 위해 사용되는 경우, 상기 TRS는 QCL type-D를 위한 소스 RS로써 SS/PBCH 블록 또는 CSI-RS를 가져야 한다.
PDCCH의 DMRS를 위해, 단말은 상위 계층 파라미터 TCI-state에 대해 다음의 세 가지 가능한 설정들(possible configuration)을 기대하며, 네 번째 설정은 TRS가 설정되기 이전에 디폴트로써 유효하다.
Figure PCTKR2019005185-appb-img-000008
상기 표에서, *는 TRS가 설정되기 이전을 나타낸다. 이때, 상기 설정은 TCI 상태이기 보다는 유효한 QCL 가정일 수 있다.
상기 표에서, **는 QCL 파라미터들이 직접적으로 CSI-RS (CSI)로부터 도출되지 않을 수 있음을 나타낸다.
PDSCH의 DMRS를 위해, 단말은 상위 계층 파라미터 TCI-state에 대해 다음의 세 가지 가능한 설정들(possible configuration)을 기대하며, 네 번째 설정은 TRS가 설정되기 이전에 디폴트로써 유효하다.
Figure PCTKR2019005185-appb-img-000009
상기 표에서, *는 TRS가 설정되기 이전을 나타낸다. 이때, 상기 설정은 TCI 상태이기 보다는 유효한 QCL 가정일 수 있다.
상기 표에서, **는 QCL 파라미터들이 직접적으로 CSI-RS (CSI)로부터 도출되지 않을 수 있음을 나타낸다.
이하에서는, 앞서 상술한 동작들을 위하여 활용되는 상위 계층 파라미터들의 구성예를 상술한다.
본 발명에 적용 가능한 상위 계층 파라미터 CSI-ResourceConfig는 다음 표와 같이 구성될 수 있다. 상기 파라미터는 하나 이상의 상위 계층 파라미터 NZP-CSI-RS-ResourceSet, CSI-IM-ResourceSet 및/또는 CSI-SSB-ResourceSet을 포함할 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-10
상기 파라미터에 포함된 각 필드들은 다음 표와 같이 정의될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-11
본 발명에 적용 가능한 상위 계층 파라미터 NZP-CSI-RS-ResourceSet 는 다음 표와 같이 구성될 수 있다. 상기 파라미터는 하나 이상의 상위 계층 파라미터 NZP-CSI-RS-Resource를 포함할 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-12
상기 파라미터에 포함된 각 필드들은 다음 표와 같이 정의될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-13
본 발명에 적용 가능한 상위 계층 파라미터 NZP-CSI-RS-Resource 는 다음 표와 같이 구성될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-14
상기 파라미터에 포함된 각 필드들은 다음 표와 같이 정의될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-15
상기 파라미터에 있어, 조건부 존재(conditional presence)는 다음 표와 같이 정의될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-16
본 발명에 적용 가능한 상위 계층 파라미터 CSI-IM-ResourceSet 는 다음 표와 같이 구성될 수 있다. 상기 파라미터는 하나 이상의 상위 계층 파라미터 CSI-IM-resources IE을 포함할 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-17
상기 파라미터에 포함된 각 필드들은 다음 표와 같이 정의될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-18
본 발명에 적용 가능한 상위 계층 파라미터 CSI-IM-Resource 는 다음 표와 같이 구성될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-19
상기 파라미터에 포함된 각 필드들은 다음 표와 같이 정의될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-20
상기 파라미터에 있어, 조건부 존재(conditional presence)는 다음 표와 같이 정의될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-21
본 발명에 적용 가능한 상위 계층 파라미터 CSI-RS-ResourceConfigMobility 는 다음 표와 같이 구성될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-22
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-23
상기 파라미터에 포함된 각 필드들은 다음 표들과 같이 정의될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-24
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-25
[규칙 제91조에 의한 정정 29.05.2019] 
본 발명에 적용 가능한 상위 계층 파라미터 CSI-ReportConfig 는 다음 표와 같이 구성될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-27
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-28
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-29
이 중, 표 28의 reportQuantity는 단말이 보고할 CSI 관련 quantity을 나타낸다.
상기 파라미터에 포함된 각 필드들은 다음 표들과 같이 정의될 수 있다.
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-30
[규칙 제91조에 의한 정정 29.05.2019] 
Figure WO-DOC-TABLE-31
1.9. 비동기 다중 셀들 (Asynchronous multi-cells)
도 11은 본 발명에 적용 가능한 두 셀 (또는 기지국, 반송파 등)의 무선 프레임 (radio frame) 구조를 간단히 나타낸 도면이다.
도 11에 있어, #n으로 표시된 영역은 n 번째 슬롯 (또는 서브프레임)을 의미한다.
도 11에 도시된 바와 같이, cell #0과 cell #1의 무선 프레임 경계 (radio frame boundary)는 서로 다를 수 있다. 다시 말해, cell #0과 cell #1의 무선 프레임 경계 (radio frame boundary)는 정렬되지 않을 수 있다 (not aligned). 이와 같은 두 cell은 타이밍 (timing) 관점에서 비동기 상태라고 볼 수 있다.
이에 따라, 단말에게 slot#2가 할당되는 경우, 상기 단마ㄹ과 관련된 cell에 따라 상기 단말의 실제 송수신 시점이 달라질 수 있다.
이와 같은 관점에서, 이웃 셀 측정 (neighboring cell measurement)을 위해 설정된 CSI-RS 자원 타이밍 (resource timing)은 서빙 셀의 타이밍이 아닌 CSI-RS 자원을 전송하는 셀의 타이밍에 맞출 필요가 있다.
본 발명에 있어, 두 셀의 타이밍이 비동기 상태라 함은, 상기 두 셀의 시간 차가 하나 이상의 OFDM 심볼 단위 이거나 (예: 두 셀의 시간 동기가 1개의 OFDM symbol만큼 차이가 남), 또는 하나 이상의 샘플 단위일 수도 있다.
1.10. 화이트/블랙 리스트 셀 (White/Black listed cell)
본 발명에 있어, 화이트 리스트 셀 (White listed cell)은 단말이 측정 해야 하는 이웃 셀을 의미할 수 있다.
일 예로, 기지국은 단말에게 측정 대상이 되는 이웃 셀의 식별자를 (화이트 리스트 셀의 형태로) 알려 줄 수 있다. 추가적으로, 상기 단말은 측정 해야 할 이웃 셀이 명시되지 않더라도, 측정 대상이 되는 주파수상의 셀들을 측정할 수도 있다.
본 발명에 있어, 블랙 리스트 셀 (Black listed cell)은 단말이 측정 하지 말아야 할 셀 또는 상기 단말이 측정을 하더라도 측정 보고를 하지 말아야 할 셀을 의미할 수 있다.
일 예로, 네트워크는 단말에게 특정 셀에 대해 이벤트 평가(event evaluation)을 하지 않거나 측정 보고를 보내지 못하도록 설정할 수 있다. 이를 통해, 상기 네트워크는 상기 단말이 특정 셀로 핸드 오버하는 것을 방지할 수 있다.
또는, 부하가 너무 심한 특정 셀을 고려하여, 상기 블랙 리스트 셀은 다른 셀에서 서비스를 받고 있던 단말이 상기 특정 셀로 핸드오버 하는 것을 방지 하기 위한 목적으로 활용될 수도 있다.
2. 제안하는 실시예
이하에서는, 상기와 같은 기술적 사상에 기반하여 본 발명에서 제안하는 구성에 대해 보다 상세히 설명한다.
도 12는 본 발명에 적용 가능한 단말과 기지국들과의 관계를 간단히 나타낸 도면이다.
도 12에 있어, 단말이 CSI-RS resource #10 및 #11의 RSRP (Reference Signal Received Power)를 기지국으로 보고할 수 있는 경우, 기지국 또는 네트워크는 다음과 같이 동작할 수 있다.
일 예로, 서빙 셀 (또는 서빙 TRP (Transmission Reception Point)이 상기 단말에게 서비스를 제공하는 경우, 이웃 셀은 CSI-RS resource #10 방향의 자원 (또는 빔)을 이용한 신호를 전송하지 않음으로써 셀 간 간섭을 줄일 수 있다.
다른 예로, 서빙 셀의 CSI-RS resource #00과 이웃 셀의 CSI-RS resource #10 방향의 자원 (또는 빔)을 이용하여 상기 단말에게 서비스를 제공하는 경우 (즉, CoMP (Coordinated Multi Point) 상황인 경우), 기지국 또는 네트워크는 단말의 수신 성능을 향상 시킬 수 있다.
결과적으로, 단말이 이웃 셀로부터 전송되는 CSI-RS을 측정 및 보고할 수 있는 경우, 셀 간 간섭 관리 및/또는 CoMP 동작 측면에서 시스템 전체 쓰루풋을 향상시킬 수 있다.
설명의 편의 상, 본 발명에서는 서빙 셀과 이웃 셀은 위와 같이 서로 비동기 상태임을 가정한다. 다만, 본 발명의 구성은 서빙 셀과 이웃 셀이 서로 동기 상태인 경우로도 동일하게 학장 적용될 수 있다. 이에 따라, 단말은 이웃 셀의 CSI-RS (예: CSI-RS resource#10, #11) 의 타이밍을 이웃 셀의 타이밍을 기준으로 결정하고, 이에 기초한 CSI 보고를 수행할 필요가 있다.
다만, 최근까지 정리된 NR 표준에 따르면, 상위 계층 파라미터 NZP-CSI-RS-resource의 타이밍은 서빙 셀의 타이밍을 따르도록 설정되어 있다. 다시 말해, 최근 NR 표준에서는 상위 계층 파라미터 NZP-CSI-RS-Resource의 타이밍을 이웃 셀의 타이밍으로 맞출 수 있는 구체적인 방법에 대하여 전혀 개시하고 있지 않다. 따라서, 종래 NR 표준 기술에 따르면, 상기 CSI-RS resource들의 타이밍은 서빙 셀 기준으로 결정될 수 밖에 없다.
한편, 최근 5G 표준에서 정의된 모빌리티를 위한 CSI-RS (CSI-RS for mobility) (또는 CSI-RS-Resource-Mobility)에 있어, CSI-RS-CellMobility에 설정 된 cell ID에 기초하여, 기지국 또는 네트워크는 상기 CSI-RS-Resource-Mobility의 타이밍을 서빙 셀이 아닌 다른 셀의 타이밍에 기반하여 동작하도록 설정할 수 있다.
다만, 상기 CSI-RS for mobility는 앞서 상술한 CSI-ReportConfig IE와 별도의 연결 관계를 갖지 않는 바 (다시 말해, 상기 CSI-RS for mobility와 앞서 상술한 CSI-ReportConfig IE 간 별도의 연결 관계가 정의되지 않은 바), 단말은 상기 CSI-RS for mobility을 측정하여 보고 (예: L3 reporting)를 수행할 수 있다. 다만, 여기서, CSI-RS for mobility에 기초한 보고라 함은 L3 reporting만을 포함할 뿐, L1 reporting은 포함하지 않는다.
이와 같은 두 가지 사항들을 고려할 때, 최근 표준 기술에 따르면, CSI-RS-Resource-Mobility는 L1 빔 측정 (즉, L1 measurement 및/또는 L1 reporting)을 위해 사용될 수 없다.
따라서, 본 발명에서는 상기와 같은 문제점을 해결할 수 있는 방안에 대해 상세히 설명한다. 보다 구체적으로, 본 발명에서는 상기 CSI-RS-Resource-Mobility을 L1 빔 측정 (또는 L1 측정)을 위해 사용될 수 있는 시그널링 방법에 대해 상세히 설명한다. 본 발명에 따르면, 최근까지 논의된 5G 표준에 대한 최소한의 spec impact으로, 기지국 또는 네트워크가 단말에게 이웃 셀의 CSI-RS resource for beam management을 설정할 수 있다.
본 발명에 있어, CSI-RS resource Type I는 CSI 프레임워크 (framework) 내에서 정의 되는 CSI-RS resource을 나타낸다. 일 예로, CSI-RS resource Type I은 (빔) 측정 및/또는 CSI 획득 및/또는 트래킹 등을 위한 CSI-RS를 포함할 수 있다. 또는, CSI-RS resource Type I은 앞서 상술한 상위 계층 파라미터 NZP-CSI-RS-Resource IE 또는 CSI-IM resource IE에 기반하여 결정되는 CSI-RS를 포함할 수 있다.
본 발명에 있어, CSI-RS resource Type II는 모빌리티를 위한 CSI-RS 자원 (CSI-RS resource for mobility)을 나타낸다. 또는, CSI-RS resource Type II는 앞서 상술한 상위 계층 파라미터 CSI-RS-resource-Mobility IE에 기반하여 결정되는 CSI-RS를 포함할 수 있다.
본 발명에 있어, 상위 계층 파라미터라 함은, RRC (radio resource control), MAC-CE (Medium Access Control - Control Element), 상기 RRC 및 MAC-CE 조합에 기초하여 정의되는 파라미터를 의미한다.
본 발명에 있어, SSB ID는 Synchronization Signal Block (time) index 또는 Synchronization Signal Block (time) identification을 나타낸다.
이하 설명에 있어, 네트워크라 함은 기지국을 포함한 구성을 나타내고, 실시예에 따라 상기 네트워크는 기지국으로 대체되어 표현될 수도 있다.
2.1. 제1 방안
네트워크는 CSI-RS resource Type I (또는 NZP-CSI-RS-Resource 또는 CSI-IM-resource)를 위한 QCL 소스 (source)로써 모빌리티를 위한 CSI-RS 자원 ID (또는 CSI-RS-Resource-Mobility 또는 csi-RS-Index of CSI-RS-Resource-Mobility) 및 한 개 이상의 QCL-Type을 설정할 수 있다.
이에 대응하여, 단말은, 모빌리티를 위한 CSI-RS 자원의 시간 동기 (예: average delay 또는 timing) 및/또는 주파수 동기(또는 Doppler shift 또는 CFO (Carrier Frequency Offset)) 및/또는 spatial Rx 정보들을 기반으로, 상기 CSI-RS resource Type I의 시간 동기 (예: average delay 또는 timing) 및/또는 주파수 동기 (또는 Doppler shift 또는 CFO (Carrier Frequency Offset)) 및/또는 spatial Rx 정보를 각각 설정할 수 있다.
보다 구체적으로, 네트워크는 (빔) 측정을 위한 CSI-RS 자원 (또는 NZP-CSI-RS-Resource 또는 CSI-IM-Resource)의 QCL 소스로써 모빌리티를 위한 CSI-RS 자원 ID (또는 CSI-RS-Resource-Mobility 또는 csi-RS-Index in CSI-RS-Resource-Mobility) 을 설정할 수 있다. 이때, QCL type은 QCL-Type A 및/또는 QCL-Type B 및/또는 QCL-Type C 및/또는 D로 설정될 수 있다.
상기 구성에 있어, 네트워크가 QCL type을 QCL-Type C + D로 설정한 경우를 가정하면 단말은 다음과 같이 동작할 수 있다.
- QCL-Type C + D와 같은 설정은 두 RS (Reference Signal)가 average delay (시간 동기 및/또는 타이밍(timing)), Doppler shift (CFO 또는 주파수 동기), Spatial Rx parameter (수신 빔) 관점에서 QCL 되어 있음을 의미할 수 있다. 따라서, 단말은 (빔) 측정을 위한 CSI-RS 를 수신하기 위해, CSI-RS-Resource-Mobility 가 제공하는 시간/주파수 동기 및 수신 빔 정보를 활용할 수 있다.
- 여기서, associatedSSB of CSI-RS-Resource-Mobility가 설정 되는 경우, 단말은 QCL-Type C가 설정됨을 기대할 수 있다 (또는 단말은 QCL-Type C가 설정되었다고 간주할 수 있다). 왜냐하면, CSI-RS-Resource-Mobility의 타이밍은 CSI-RS-CellMobility가 제공하는 cell Id을 갖는 셀의 타이밍을 따라야 하기 때문이다. 이 경우, 단말은 assocaitedSSB을 통해 timing 과 별개로 상기 셀에 대한 시간 동기 및 주파수 동기를 획득할 수 있다. 본 발명의 일 예에 있어, 시간 동기라 함은 average delay만을 의미할 수 있다. 또는, 다른 예로써, 시간 동기라 함은 average delay 외 timing을 추가한 구성을 모두 포함하는 구성을 의미할 수 있다.
- 또는, 상기 구성에 있어, QCL-Type C만이 단독적으로 설정될 수 있다. 일 예로, QCL-Type D (예: spatial Rx parameter)가 applicable하지 않는 경우, QCL-Type D 설정이 가능하지 않기 때문이다.
앞서 상술한 가정과 달리, 네트워크가 QCL type을 QCL-Type D만으로 설정한 경우를 가정하면 단말은 다음과 같이 동작할 수 있다.
-두 RS 가 Spatial Rx parameter (수신 빔) 관점에서 QCL 되어 있음에 기반하여, 단말은 (빔) 측정을 위한 CSI-RS를 수신할 때 CSI-RS-Resource-Mobility 가 제공하는 수신 빔 정보를 이용할 수 있다.
- 다만, 상기 구성에 있어, 단말이 CSI-RS-Resource-Mobility을 QCL 소스로 갖는 NZP-CSI-RS-Resource의 타이밍을 결정함에 있어, 상기 NZP-CSI-RS-Resource의 타이밍은 서빙 셀 (또는 PCell)의 타이밍을 기준으로 결정될 수 있다.
- 또는, QCL-Type C의 설정 여부와 무관하게, 상위 계층 파라미터 associatedSSB가 포함되지 않는 CSI-RS-Resource-Mobility가 설정되고, CSI-RS-ResourceConfigMobility 내 상위 계층 파라미터 refServCellIndex가 설정 되지 않는 경우, 단말은 NZP-CSI-RS-Resource의 타이밍을 서빙 셀 (또는 PCell)의 타이밍을 기준으로 결정할 수 있다.
- 여기서, associatedSSB of CSI-RS-Resource-Mobility가 설정 되어 있지 않는 경우, 단말은 QCL-Type C가 설정됨을 기대하지 않을 수 있다. 왜냐하면, associatedSSB가 설정 되어 있지 않는 경우, 단말은 SSB을 통한 시간/주파수 동기를 맞출 수 없기 때문이다.
- 또는, 상기 구성에 있어, QCL-Type D가 applicable 하지 않는 경우, 어떤 QCL-Type도 설정되지 않을 수 있다.
앞서 상술한 동작들을 지원하기 위해, 네트워크는 단말에게 NZP-CSI-RS-Resource의 QCL 소스로써 CSI-RS-Resource-Mobility의 csi-RS-Index을 설정할 수 있다. 이때, 상기 csi-RS-Index는 0~95 중 하나의 값으로 설정될 수 있다.
한편, 본 발명에 있어, NZP-CSI-RS-ResourceId는 0~191 중 하나의 값으로 설정될 수 있다.
기존 NR 표준 기술에서는 NZP-CSI-RS-Resource의 QCL 소스로써 NZP-CSI-RS-Resource을 설정할 수 있으나, csi-RS-Index를 설정할 수 없는 제한이 있다. 이와 달리, 본 발명에서는 CSI-RS-Resource-Mobility를 QCL 소스로써 csi-RS-Index를 설정하는 방안으로써 다음과 같은 방법을 제안한다.
본 발명에서 제안하는 바와 같이, NZP-CSI-RS-Resource의 QCL 소스로써 NZP-CSI-RS-Resource 뿐만 아니라 csi-RS-Index가 설정될 수 있는 경우, 단말은 0 ~ 95 중 하나의 값으로 설정된 QCL 소스가 NZP-CSI-RS-Resource인지 CSI-RS-Resource-Mobility인지를 구분할 수 없는 문제점이 있다.
이와 같은 문제점을 해결하기 위하여, 본 발명에서는, 하기 표와 같이 상위 계층 파라미터 QCL-Info 내 CSI-RS-Resource-Mobility 를 위한 상위 계층 파라미터 csi-rs-mobility을 추가하는 방안을 제안한다. 이를 통해, NZP-CSI-RS-Resource와 CSI-RS-Resource-Mobility 간에 모호함 (ambiguity)은 해소될 수 있다.
Figure PCTKR2019005185-appb-img-000032
추가적으로, 앞서 상술한 바와 같이, NZP-CSI-RS-Resource IE 및 CSI-RS-Resource-Mobility IE는 일부 파라미터들을 중첩하여 포함할 수 있다 (표 12 및 표 22 참조).
이를 고려할 때, 단말 관점에서 상기 파라미터들의 중첩에 대한 동작의 구체화 (또는 clarification)이 필요할 수 있다.
본 발명에 있어, CSI-RS-Resource-Mobility는 QCL 소스로써 사용되는 바, 단말은 RS에 대한 시간/주파수 위치 및/또는 주기 및/또는 scrambling ID을 NZP-CSI-RS-Resource에 포함 된 IEs (예: resourceMapping, periodicAndOffset, scramblingID)로부터 (우선적으로) 획득할 수 있다. 이와 달리, 본 발명에 따른 단말은 RS에 대한 시간/주파수 위치 및/또는 주기 및/또는 scrambling ID을 CSI-RS-Resource-Mobility에 포함 된 IE로부터 (우선적으로) 획득할 수도 있다.
또는, 본 발명에 따른 단말은 항상 peridociAndOffset, scramblingID가 각각slotConfig, sequenceGenerationConfig와 동일하다고 기대할 수 있다.
한편, 상위 계층 파라미터 CSI-RS-Resource-Mobility는 주파수 정보 (예: BW 정보, 주파수 density)을 포함하지 않는다. 다만, 상기 파라미터는 상위 IE인 CSI-RS-CellMobility에 포함되어 제공되는 바, 단말은 CSI-RS-Resource-Mobility을 QCL 소스로써 갖는 CSI-RS-Resource-Mobility의 주파수 정보를 CSI-RS-CellMobility로부터 획득할 수 있다.
또한, 단말은 상위 계층 파라미터 CSI-RS-ResourceConfigMobility IE (CSI-RS-CellMobility의 상위 IE임)의 subcarrierSpacing으로부터 CSI-RS-Resource-Mobility을 QCL 소스로 갖는 NZP-CSI-RS-Resource의 부반송파 간격 (또는 numerology)에 대한 정보를 획득할 수도 있다.
상기와 같은 방법에 따르면, 서빙 셀과 이웃 셀 간의 시간/주파수 동기가 다르더라도, 네트워크가 CSI-RS resource Type I의 QCL 소스로써 CSI-RS resource ID for mobility 을 설정함으로써 상기 동기화 문제를 간단히 해소함과 동시에 기존의 (L1) CSI 보고 방법도 그대로 활용할 수 있다. 추가적으로, 서빙 셀과 이웃 셀 간의 뉴머롤로지가 다른 경우에도, 네트워크는 CSI-RS-ResourceConfigMobility IE 을 통해 단말에게 부반송파 간격에 대한 정보를 제공/설정할 수 있다.
이에 따라, 기존 5G NR 표준 기술에 대한 최소한의 수정을 통해, 네트워크 및 단말은 이웃 셀의 CSI-RS을 (L1 beam) 측정을 위해 활용할 수 있다.
이에 따라, CSI-RS resource Type I이 CSI-RS resource for mobility와 QCL 관계를 갖는 경우 (또는 NZP-CSI-RS-Resource의 QCL source로 CSI-RS-Resource-Mobility가 설정 된 경우), 단말은 상기 CSI-RS resource Type I이 어떤 셀로부터 전송된 CSI-RS임을 알 수 있다. 왜냐하면, 상위 계층 파라미터 CSI-RS-Resource-Mobility 를 포함하는 상위 IE인 CSI-RS-CellMobility가 Cell ID 정보를 포함하기 때문이다.
도 13은 본 발명에 적용 가능한 단말과 기지국의 동작을 간단히 나타낸 도면이다.
도 13에 도시된 바와 같이, 기지국은 단말에게, NZP-CSI-RS-Resource의 QCL 소스로써 CSI-RS-Resource-Mobility을 설정할 수 있다. 이때, 기지국은 QCL-Type 정보로써 QCL-Type A 및/또는 QCL-Type B 및/또는 QCL-Type C 및/또는 QCL-Type D을 설정하거나 어떠한 QCL-Type을 설정하지 않을 수도 있다.
이어, 기지국은 단말에게 NZP-CSI-RS-Resource (또는 CSI-RS-Resource-Mobility)에 대응하는 CSI-RS를 전송한다.
이때, 기지국에 의해 QCL-Type C가 설정 되지 않는 경우, 단말은 상기 NZP-CSI-RS-Resource의 시간 동기 "G/또는 주파수 동기를 서빙 셀 기준으로 맞추어 상기 CSI-RS를 수신할 수 있다. 다시 말해, 상기와 같은 경우, 상기 단말은 서빙 셀 기준의 시간 동기 및/또는 주파수 동기에 기초하여, 상기 기지국으로부터 수신되는 CSI-RS를 수신할 수 있다.
또는, 기지국에 의해 QCL-Type C가 설정 되는 경우, 단말은 상기 NZP-CSI-RS-Resource의 시간 동기 및/또는 주파수 동기를 CSI-RS-CellMobility에서 지시한 cell ID을 갖는 셀을 기준으로 맞추어 상기 CSI-RS를 수신할 수 있다. 또는, 상기 단말은 associatedSSB of CSI-RS-Resource-Mobility을 기준으로 시간 동기 및/또는 주파수 동기를 맞추어 상기 CSI-RS를 수신할 수 있다. 다시 말해, 상기와 같은 경우, 상기 단말은 associatedSSB of CSI-RS-Resource-Mobility 또는 CSI-RS-Resource-Mobility에서 지시하는 셀에 대한 시간 동기 및/또는 주파수 동기에 기초하여, 상기 기지국으로부터 수신되는 CSI-RS를 수신할 수 있다.
2.2. 제2 방안
기지국은 CSI-RS resource Type I을 서빙 셀이 아닌 이웃 셀에서 전송됨을 상위 계층 시그널링 (예: 상위 계층 파라미터) 및/또는 DCI를 통해 단말에게 설정할 수 있다. 이 경우, 단말은 CSI-RS resource에 설정된 N_ID (예: ScramblingID) 값을 cell ID로 해석/간주할 수 있다. 또한, 상기 단말은 상기 CSI-RS resource에 설정된 SSB ID을 상기 cell ID을 갖는 cell의 SSB ID로 해석/간주할 수 있다. 또한, 상기 단말은 상기 CSI-RS resource의 타이밍을 상기 cell ID을 갖는 셀의 타이밍에 기초하여 설정할 수 있다.
보다 구체적인 예로, 기지국은 상위 계층 파라미터를 통해 (빔) 측정을 위한 CSI-RS 자원이 서빙 셀이 아닌 셀에서 전송됨을 단말에게 지시할 수 있다. 이에 대응하여, 단말은 상기 CSI-RS 자원에 대해 설정된 N_ID, SSB ID을 각각 cell ID 및 상기 cell ID을 갖는 cell의 SSB ID로 해석/간주하고, 상기 지시된 SSB을 기준으로 셀의 타이밍을 결정할 수 있다.
상기 방법에 따르면, 기지국은 하나의 상위 계층 파라미터를 통해 단말에게 설정된 CSI-RS resource Type I이 이웃 셀에서 전송됨을 알려줄 수 있다. 이에 따라, 기-설정된 다른 파라미터들은 상기 시그널링에 맞춰 재해석될 수 있어, (새로운 파라미터의 정의 없이) 기존 파라미터들을 그대로 활용할 수 있다. 즉, 본 발명에서 제안하는 방법에 따르면, 기존 5G 표준 기술의 최소화를 최소화 할 수 있다.
또한, 상기 방법에 따르면, CSI-RS resource for mobility를 정의하지 않더라도, 기지국은 단말에게 이웃 셀의 CSI-RS resource type I을 정의할 수 있다.
추가적으로, CSI-RS resource Type I의 경우, 기지국은 추가적으로 상위 계층 파라미터 QuasiColocatedforTypeI를 단말에게 설정할 수 있다. 상기 파라미터를 통해, 기지국은 상기 CSI-RS 자원이 설정된 SSB와 QCL-Type D관점에서 QCL되어 있는지 여부를 단말에게 알려줄 수 있다. 다시 말해, 상기 파라미터는 종래 CSI-RS for mobility의 상위 계층 파라미터 QuasiColocated와 동일한 기능을 수행할 수 있다.
2.3. 제3 방안
기지국은 단말에게 이웃 셀 ID을 직접 지시하여, 상기 cell ID을 갖는 셀에서 전송되는 CSI-RS 자원을 측정하도록 설정할 수 있다. 이때, 단말은 상기 CSI-RS 자원을 수신하기 위하여 다양한 Rx 빔을 적용할 수 있다.
이 경우, 상기 단말은 상기 CSI-RS을 수신하기 위한 최적 Rx 빔을 찾는데 상당한 자원을 소모하게 된다.
반면, 기지국이 white-listed cells 기준으로 상기 cell ID을 설정해 주는 경우, 단말은 이미 상기 셀을 수신하기 위한 Rx 빔을 미리 알고 있으므로, 상기 자원 소모를 최소화 할 수 있다.
보다 구체적으로, 기지국이 CSI-RS resource Type I이 서빙 셀이 아닌 이웃 셀에서 전송됨을 상위 계층 파라미터 또는 DCI을 통해 단말에게 설정하는 경우, 상기 단말은 CSI-RS 자원에 설정되는 cell ID가 white-listed cell에 포함됨을 기대할 수 있다. 또는, 상기 단말은 white- listed cell에 없는 cell ID가 상기 CSI-RS 자원에 설정됨을 기대하지 않을 수 있다.
2.4. 제3 방안
도 12에 있어, CSI-RS resource #00과 CSI-RS resource #10의 RSRP는 단말의 수신 빔에 따라 (예: Rx#0 또는 #1) 상이할 수 있다. 이에 따라, 만약 단말이 Rx#0 기준으로 CSI-RS resource #00의 RSRP을 보고하고 Rx#1 기준으로 CSI-RS resource #10의 RSRP을 보고하는 경우, 다음과 같이 문제점이 발생할 수 있다.
일 예로, 단말이 Rx#0 및 Rx#1에 기초하여 보고한 두 RSRP 값이 모두 크다고 (또는 일정 문턱치 이상이라고) 가정한다. 이 경우, 서빙 셀은 CSI-RS resource #00 에 기초한 자원 (또는 빔)을 이용하여 상기 단말에게 서비스를 제공할 수 있고, 이에 따라 이웃 셀은 간섭을 피해주기 위해 CSI-RS resource #10에 기초한 자원 (또는 빔)을 이용하여 이웃 셀 내에 속한 단말에게 서비스를 제공하기 위해 상기 서빙 셀과 동일한 시간/주파수 자원을 이용하지 않을 수 있다.
그러나, 이 경우 이미 단말은 Rx #0을 선택하여 신호를 수신할 수 있고, 이에 따라 이웃 셀로부터 전송되는 신호 (또는 간섭)를 대부분 회피할 수 있다. 즉, 이웃 셀은 불필요한 간섭 회피를 하게 된 것이다.
결과적으로, 네트워크는 비효율적인 스케줄링을 수행할 수 있다.
이와 같은 문제점을 해결하기 위해, 특정 단말이 두 개의 CSI-RS 자원에 대한 RSRP를 보고하는 경우, 네트워크는 동일한 Rx 빔 기준으로 한 RSRP 보고를 단말에게 설정할 수 있다.
보다 구체적으로, 서로 다른 자원 세트 또는 자원 세팅에 포함된 복수의 CSI-RS 자원을 측정하여 이를 바탕으로 CRI (CSI-RS resource Indicator) 및 RSRP 보고를 설정하는 경우, 네트워크는 단말에게 상기 측정 보고를 동일 UE Rx 빔으로 한정하여 (상위 계층 파라미터 및/또는 DCI를 통해) 설정할 수 있다.
이때, 전체 CSI-RS 자원 개수보다 단말이 보고 가능한 CSI 자원 개수가 작은 경우, 네트워크는 상기 단말이 각 자원 세트 또는 자원 세팅 당 최소 한 개 이상의 CSI-RS 자원에 대한 보고를 수행하도록 (상위 계층 파라미터 및/또는 DCI를 통해) 설정할 수 있다.
도 14는 본 발명에 따른 단말과 기지국 간 채널 상태 정보를 송수신하는 방법을 간단히 나타낸 도면이고, 도 15는 본 발명에 따른 단말이 채널 상태 정보를 보고하는 방법을 나타낸 흐름도이고, 도 16은 본 발명에 따른 기지국이 단말로부터 채널 상태 정보를 수신하는 방법을 나타낸 흐름도이다.
이하 설명에 있어, 기지국이라 함은 도 12에 도시된 서빙 셀 및 이웃 셀을 모두 포함하는 구성을 의미할 수 있다. 이에, 이하 설명에서 “기지국”은 “네트워크”로 대체될 수 있다.
본 발명에 따르면, 단말은 기지국으로부터 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 수신한다 (S1410, S1510). 이에 대응하여, 기지국은 상기 단말로 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 전송한다 (S1410, S1610). 이때, 상기 기지국은 상기 설정 정보를 상위 계층 시그널링을 통해 상기 단말로 전송할 수 있다. 또한, 상기 기지국은 상기 설정 정보를 상기 단말에게 서비스를 제공 중인 서빙 셀을 통해 상기 단말로 전송할 수 있다.
본 발명에 있어, 상기 설정 정보는 상기 제1 CSI-RS 자원 및 이웃 셀과 관련된 제2 CSI-RS 자원 간 QCL (Quasi Co Located) 정보를 포함할 수 있다. 상기 QCL 정보는, 보다 구체적으로, 하기 정보 중 하나 이상을 포함할 수 있다.
- 상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 도플러 시프트 (Doppler shift), 도플러 확산 (Doppler spread), 평균 지연 (average delay), 지연 확산 (delay spread) 관점에서 QCL 됨을 알리는 QCL 타입 A 정보
- 상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 도플러 시프트 (Doppler shift), 도플러 확산 (Doppler spread) 관점에서 QCL 됨을 알리는 QCL 타입 B 정보
- 상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 도플러 시프트 (Doppler shift), 평균 지연 (average delay) 관점에서 QCL 됨을 알리는 QCL 타입 C 정보
- 상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 공간적 수신 파라미터 (spatial Rx parameter) 관점에서 QCL 됨을 알리는 QCL 타입 D 정보
단말은 상기 설정 정보에 기초하여, 이웃 셀로부터 전송되는 CSI-RS를 수신한다 (S1420, S1520). 이에 대응하여, 기지국은 상기 설정 정보에 기초하여 이웃 셀을 통해 상기 CSI-RS를 단말로 전송한다 (S1420, S1620).
보다 구체적으로, 수신된 QCL 정보에 포함된 QCL 타입 정보에 따라, 단말은 하기와 같이 상기 이웃 셀로부터 상기 CSI-RS를 수신할 수 있다.
일 예로, 상기 QCL 정보가 상기 QCL 타입 C 정보를 포함하는 경우, 상기 단말은, 상기 제2 CSI-RS 자원과 관련된 도플러 시프트 정보 및 평균 지연 정보에 기초하여, 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신할 수 있다.
다른 예로, 상기 QCL 정보가 상기 QCL 타입 D 정보를 포함하는 경우, 상기 단말은, 상기 제2 CSI-RS 자원과 관련된 수신 빔 정보에 기초하여, 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신할 수 있다.
또 다른 예로, 상기 QCL 정보가 상기 QCL 타입 C 정보 및 상기 QCL 타입 D 정보를 포함하는 경우, 상기 단말은, 상기 제2 CSI-RS 자원과 관련된 도플러 시프트 정보, 평균 지연 정보 및 수신 빔 정보에 기초하여, 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신할 수 있다.
단말은 수신된 CSI-RS에 기초하여 CSI를 측정한다 (S1430, S1630). 본 발명에 있어, 상기 CSI는, CQI (Channel Quality Information), PMI (Precoding Matrix Indicator), CRI (CSI-RS Resource Indicator), SSBRI (SS/PBCH Resource Block Indicator), LI (Layer Indicator), RI (Rank Indicator) 중 하나 이상을 포함할 수 있다.
단말은 측정된 CSI를 상기 기지국으로 전송한다 (S1440, S1540). 보다 구체적으로, 상기 단말은 측정된 CSI를 서빙 셀로 전송한다. 이에 대응하여, 기지국은 서빙 셀을 통해 상기 단말로부터 측정된 CSI를 수신한다 (S1440, S1630).
이와 같은 과정을 통해, 단말은 이웃 셀에 대한 CSI를 측정하여 보고할 수 있고, 기지국은 상기 단말로부터 이웃 셀에 대한 CSI를 수신할 수 있다.
추가적으로, 앞서 상술한 바와 같이, 서빙 셀과 이웃 셀은 서로 타이밍이 정렬되지 않을 수 있다. 다시 말해, 상기 서빙 셀과 상기 이웃 셀은 서로 비동기 상태일 수 있다. 여기서 비동기 상태란, 상기 서빙 셀의 프레임 경계와 상기 이웃 셀의 프레임 경계가 적어도 하나의 (OFDM) 심볼 간격만큼 차이를 갖는 경우를 의미할 수 있다. 이에 따라, 비동기 상태인 서빙 셀의 프레임 경계와 이웃 셀의 프레임 경계는, 적어도 하나의 (OFDM) 심볼 간격, 적어도 하나의 슬롯 간격 만큼 차이를 가질 수 있다.
이 경우, 본 발명에 따른 단말은 하기와 같은 방법을 통해 상기 이웃 셀로부터 상기 CSI-RS를 수신할 수 있다. 보다 구체적으로, 상기 단말은, 상기 QCL 정보 및 상기 설정 정보에 기초하여 결정되는 상기 CSI-RS의 타이밍에 기초하여, 상기 이웃 셀로부터 상기 CSI-RS를 수신할 수 있다.
이때, 상기 이웃 셀로부터 전송되는 CSI-RS의 타이밍은 다음과 같이 결정될 수 있다.
- 상기 제2 CSI-RS 자원과 연관된 동기 신호 블록 (synchronization signal block; SSB) 정보가 설정 되어 있는 경우, 상기 CSI-RS 의 타이밍은 상기 제2 CSI-RS 자원과 연관되어 설정된 셀을 기준으로 결정됨
- 상기 제2 CSI-RS 자원과 연관된 동기 신호 블록 (synchronization signal block; SSB) 정보가 설정 되어 있지 않고 상기 제2 CSI-RS 자원과 연관되는 참조 서빙 셀 정보가 설정 되어 있는 경우, 상기 CSI-RS 의 타이밍은 상기 참조 서빙 셀 정보에 기초하여 결정되는 셀을 기준으로 결정됨
- 상기 제2 CSI-RS 자원과 연관된 동기 신호 블록 (synchronization signal block; SSB) 정보가 설정 되어 있지 않고, 상기 제2 CSI-RS 자원과 연관되는 참조 서빙 셀 정보가 설정되어 있지 않는 경우, 상기 CSI-RS의 타이밍은 상기 단말과 연결된 상기 서빙 셀을 기준으로 결정됨
앞서 상술한 구성에 있어, 상기 CSI-RS가 상기 이웃 셀로부터 수신되는 자원은 다양한 방법에 기초하여 설정될 수 있다.
일 예로, 상기 CSI-RS가 상기 이웃 셀로부터 수신되는 자원은 상기 제1 CSI-RS 자원과 관련된 자원 설정에 기초하여 결정될 수 있다. 이에 따라, 상기 제1 CSI-RS 자원과 관련된 자원 설정에 기초하여, 상기 단말은 상기 CSI-RS를 상기 이웃 셀로부터 수신할 수 있다.
보다 구체적인 일 예로, 상기 CSI-RS가 전송되는 시간/주파수 자원의 위치는 상기 제1 CSI-RS 자원과 관련된 상위 계층 파라미터 NZP-CSI-RS-Resource에 기초하여 결정될 수 있다.
다른 예로, 상기 CSI-RS가 상기 이웃 셀로부터 수신되는 자원은 상기 제2 CSI-RS 자원과 관련된 자원 설정에 기초하여 결정될 수 있다. 이에 따라, 상기 제2 CSI-RS 자원과 관련된 자원 설정에 기초하여, 상기 단말은 상기 CSI-RS를 상기 이웃 셀로부터 수신할 수 있다.
본 발명에 있어, 상기 제2 CSI-RS 자원과 관련된 상기 자원 설정은 다음 중 하나 이상을 포함할 수 있다.
- 상기 제2 CSI-RS 자원과 관련된 시간 자원 설정
- 상기 제2 CSI-RS 자원과 관련된 주파수 자원 설정
- 상기 제2 CSI-RS 자원과 관련된 뉴머롤로지 (numerology) 설정
보다 구체적인 일 예로, 상기 CSI-RS가 전송되는 시간/주파수 자원은 상기 제2 CSI-RS 자원과 관련된 상위 계층 파라미터 CSI-RS-Resource-Mobility에 기초하여 결정될 수 있다.
또 다른 예로, 상기 CSI-RS가 상기 이웃 셀로부터 수신되는 자원은 상기 제1 CSI-RS 자원과 관련된 제1 자원 설정 및 상기 제2 CSI-RS 자원과 관련된 제2 자원 설정을 모두 만족하는 자원 설정에 기초하여 결정될 수 있다. 이에 따라, 상기 제1 CSI-RS 자원과 관련된 제1 자원 설정 및 상기 제2 CSI-RS 자원과 관련된 제2 자원 설정을 모두 만족하는 자원 설정에 기초하여, 상기 단말은 상기 CSI-RS를 상기 이웃 셀로부터 수신할 수 있다.
보다 구체적인 일 예로, 상기 제1 자원 설정에 포함된 상기 제1 CSI-RS 자원과 관련된 제1 주파수 자원 및 상기 제2 자원 설정에 포함된 상기 제2 CSI-RS 자원과 관련된 제2 주파수 자원이 중첩되는 주파수 자원에 기초하여, 상기 단말은 상기 CSI-RS를 상기 이웃 셀로부터 수신할 수 있다.
앞서 상술한 구성에 있어, 상기 제1 CSI-RS 자원이라 함은, 논-제로 파워 (non-zero power, NZP) CSI-RS 자원 또는 채널 상태 정보 간섭 측정 (channel state information interference measurement; CSI-IM) 자원일 수 있다.
또한, 상기 제2 CSI-RS 자원이라 함은, RRM (Radio Resource Management) 측정을 위해 설정되는 CSI-RS 자원일 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
3. 장치 구성
도 17은 제안하는 실시 예가 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다. 도 17에 도시된 단말 및 기지국은 앞서 설명한 단말과 기지국 간 채널 상태 정보 송수신 방법의 실시 예들을 구현하기 위해 동작한다.
단말(UE: User Equipment, 1)은 상향링크에서는 송신단으로 동작하고, 하향링크에서는 수신단으로 동작할 수 있다. 또한, 기지국(eNB 또는 gNB, 100)은 상향링크에서는 수신단으로 동작하고, 하향링크에서는 송신단으로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신기(Transmitter: 10, 110) 및 수신기(Receiver: 20, 120)를 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(30, 130) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시 예들을 수행하기 위한 프로세서(Processor: 40, 140)를 포함한다. 상기 프로세서 (40, 140)은 메모리 (50, 150) 및/또는 송신기 (10,110) 및/또는 수신기 (20, 120)를 제어하여, 앞에서 설명/제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다.
일 예로, 프로세서(40, 140)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀을 포함한다. 메모리(50, 150)는 프로세서(40, 140)와 연결되고 프로세서(40, 140)의 동작과 관련한 다양한 정보를 저장한다. 예를 들어, 메모리(50, 150)는 프로세서(40, 140)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 송신기 (10,110) 및/또는 수신기 (20, 120)는 프로세서(40, 140)와 연결되고 무선 신호를 송신 및/또는 수신한다. 여기서, 프로세서(40, 140)와 메모리(50, 150)는 프로세싱 칩(예, System on a Chip, SoC)의 일부일 수 있다.
단말 및 기지국에 포함된 송신기 및 수신기는 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 17의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 유닛을 더 포함할 수 있다.
도 18은 제안하는 실시예들이 구현될 수 있는 통신 장치의 블록도이다.
도 18에 도시된 장치는 상술한 매커니즘을 수행하도록 적응된 사용자 장치(User Equipment, UE) 및/또는 기지국 (예: eNB 또는 gNB)이거나, 동일한 작업을 수행하는 임의의 장치일 수 있다.
도 18에 도시된 바와 같이, 장치는 DSP(Digital Signal Processor)/마이크로프로세서(210) 및 RF(Radio Frequency) 모듈(송수신기; 235)을 포함할 수도 있다. DSP/마이크로프로세서(210)는 송수신기(235)에 전기적으로 연결되어 송수신기(235)를 제어한다. 장치는, 설계자의 선택에 따라서, 전력 관리 모듈(205), 베터리(255), 디스플레이(215), 키패드(220), SIM 카드(225), 메모리 디바이스(230), 스피커(245) 및 입력 디바이스(250)을 더 포함할 수도 있다.
특히, 도 18은 네트워크로부터 요청 메시지를 수신하도록 구성된 수신기(235) 및 네트워크로 타이밍 송/수신 타이밍 정보를 송신하도록 구성된 송신기(235)를 포함하는 단말을 나타낼 수도 있다. 이러한 수신기와 송신기는 송수신기(235)를 구성할 수 있다. 단말은 송수신기(수신기 및 송신기, 235)에 연결된 프로세서(210)를 더 포함할 수도 있다.
또한, 도 18은 단말로 요청 메시지를 송신하도록 구성된 송신기(235) 및 단말로부터 송수신 타이밍 정보를 수신하도록 구성된 수신기(235)를 포함하는 네트워크 장치를 나타낼 수도 있다. 송신기 및 수신기는 송수신기(235)를 구성할 수도 있다. 네트워크는 송신기 및 수신기에 연결된 프로세서(210)를 더 포함한다. 이 프로세서(210)는 송수신 타이밍 정보에 기초하여 지연(latency)을 계산할 수도 있다.
이에, 본 발명에 따른 단말 (또는 상기 단말에 포함된 통신 장치)에 포함된 프로세서 및 기지국 (또는 상기 기지국에 포함된 통신 장치)에 포함된 프로세서는 대응하는 메모리를 제어하며 다음과 같이 동작할 수 있다.
본 발명에 있어, 단말은, 적어도 하나의 무선 주파수 (RF) 모듈; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 하기 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함할 수 있다. 이때, 상기 단말에 포함된 통신 장치라 함은, 상기 적어도 하나의 프로세서 및 상기 적어도 하나의 메모리를 포함하도록 구성될 수 있고, 상기 통신 장치는 상기 적어도 하나의 RF 모듈을 포함하거나 상기 적어도 하나의 RF 모듈을 포함하지 않고 상기 적어도 하나의 RF 모듈과 연결되도록 구성될 수 있다.
상기 단말에 포함된 적어도 하나의 프로세서 (또는 상기 단말에 포함된 통신 장치의 적어도 하나의 프로세서)는, 상기 적어도 하나의 RF 모듈을 제어하여, 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 수신할 수 있다. 이때, 상기 설정 정보는 상기 제1 CSI-RS 자원 및 이웃 셀과 관련된 제2 CSI-RS 자원 간 QCL (Quasi Co Located) 정보를 포함할 수 있다. 상기 적어도 하나의 프로세서는, 상기 적어도 하나의 RF 모듈을 제어하여, 상기 설정 정보에 기초하여 상기 이웃 셀로부터 전송되는 CSI-RS를 수신할 수 있다. 상기 적어도 하나의 프로세서는, 상기 적어도 하나의 RF 모듈을 제어하여, 상기 수신된 CSI-RS에 기초하여 측정된 상기 CSI를 서빙 셀로 보고할 수 있다.
상기 단말 (또는 상기 단말에 포함된 통신 장치)은, 이동 단말기, 네트워크 및 상기 단말이 포함된 차량 이외의 자율 주행 차량 중 적어도 하나와 통신하도록 구성될 수 있다.
본 발명에 있어, 기지국은, 적어도 하나의 무선 주파수 (RF) 모듈; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 하기 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함할 수 있다. 이때, 상기 기지국에 포함된 통신 장치라 함은, 상기 적어도 하나의 프로세서 및 상기 적어도 하나의 메모리를 포함하도록 구성될 수 있고, 상기 통신 장치는 상기 적어도 하나의 RF 모듈을 포함하거나 상기 적어도 하나의 RF 모듈을 포함하지 않고 상기 적어도 하나의 RF 모듈과 연결되도록 구성될 수 있다.
상기 기지국에 포함된 적어도 하나의 프로세서 (또는 상기 기지국에 포함된 통신 장치의 적어도 하나의 프로세서)는, 상기 적어도 하나의 RF 모듈을 제어하여, 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 단말로 전송할 수 있다. 이때, 상기 설정 정보는 상기 제1 CSI-RS 자원 및 이웃 셀과 관련된 제2 CSI-RS 자원 간 QCL (Quasi Co Located) 정보를 포함할 수 있다. 상기 적어도 하나의 프로세서는, 상기 적어도 하나의 RF 모듈을 제어하여, 상기 단말로부터 측정된 상기 CSI를 수신할 수 있다. 이때, 상기 CSI는, 상기 설정 정보에 기초하여 상기 이웃 셀로부터 상기 단말로 전송되는 CSI-RS에 대한 측정 정보를 포함할 수 있다.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시 예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시 예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(50, 150)에 저장되어 프로세서(40, 140)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
앞서 상술한 통신 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치 또는 그 이외의 장치일 수 있다.
예를 들어, 단말은 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR 또는 AR을 구현하기 위해 사용될 수 있다. 
본 발명은 본 발명의 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 발명의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.
추가적으로, 본 발명의 실시예들은 자유 주행 차량, 드론 등 다양한 애플리케이션에도 적용될 수 있다.

Claims (20)

  1. 무선 통신 시스템에서 단말이 채널 상태 정보 (CSI)를 보고하는 방법에 있어서,
    측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 수신하되,
    상기 설정 정보는 상기 제1 CSI-RS 자원 및 이웃 셀과 관련된 제2 CSI-RS 자원 간 QCL (Quasi Co Located) 정보를 포함하고;
    상기 설정 정보에 기초하여, 상기 이웃 셀로부터 전송되는 CSI-RS를 수신; 및
    상기 수신된 CSI-RS에 기초하여 측정된 상기 CSI를 서빙 셀로 보고하는 것을 포함하는, 단말의 채널 상태 정보 보고 방법.
  2. 제 1항에 있어서,
    상기 단말이 상기 이웃 셀로부터 상기 CSI-RS를 수신하는 것은,
    상기 QCL 정보 및 상기 설정 정보에 기초하여 결정되는 상기 CSI-RS의 타이밍에 기초하여, 상기 단말이 상기 이웃 셀로부터 상기 CSI-RS를 수신하는 것을 포함하는, 단말의 채널 상태 정보 보고 방법.
  3. 제 2항에 있어서,
    상기 제2 CSI-RS 자원과 연관된 동기 신호 블록 (synchronization signal block; SSB) 정보가 설정 되어 있는 경우, 상기 CSI-RS의 타이밍은 상기 제2 CSI-RS 자원과 연관되어 설정된 셀을 기준으로 결정되는, 단말의 채널 상태 정보 보고 방법.
  4. 제 2항에 있어서,
    상기 제2 CSI-RS 자원과 연관된 동기 신호 블록 (synchronization signal block; SSB) 정보가 설정 되어 있지 않고 상기 제2 CSI-RS 자원과 연관되는 참조 서빙 셀 정보가 설정 되어 있는 경우, 상기 CSI-RS 의 타이밍은 상기 참조 서빙 셀 정보에 기초하여 결정되는 셀을 기준으로 결정되는, 단말의 채널 상태 정보 보고 방법.
  5. 제 2항에 있어서,
    상기 제2 CSI-RS 자원과 연관된 동기 신호 블록 (synchronization signal block; SSB) 정보가 설정 되어 있지 않고, 상기 제2 CSI-RS 자원과 연관되는 참조 서빙 셀 정보가 설정되어 있지 않는 경우, 상기 이웃 셀의 타이밍은 상기 단말과 연결된 상기 서빙 셀을 기준으로 결정되는, 단말의 채널 상태 정보 보고 방법.
  6. 제 1항에 있어서,
    상기 QCL 정보는,
    상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 도플러 시프트 (Doppler shift), 도플러 확산 (Doppler spread), 평균 지연 (average delay), 지연 확산 (delay spread) 관점에서 QCL 됨을 알리는 QCL 타입 A 정보,
    상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 도플러 시프트 (Doppler shift), 도플러 확산 (Doppler spread) 관점에서 QCL 됨을 알리는 QCL 타입 B 정보,
    상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 도플러 시프트 (Doppler shift), 평균 지연 (average delay) 관점에서 QCL 됨을 알리는 QCL 타입 C 정보, 또는
    상기 제1 CSI-RS 자원과 상기 제2 CSI-RS 자원이 공간적 수신 파라미터 (spatial Rx parameter) 관점에서 QCL 됨을 알리는 QCL 타입 D 정보, 중 하나 이상을 포함하는, 단말의 채널 상태 정보 보고 방법.
  7. 제 6항에 있어서,
    상기 QCL 정보가 상기 QCL 타입 C 정보를 포함하는 경우, 상기 QCL 정보에 기초하여 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신함은,
    상기 제2 CSI-RS 자원과 관련된 도플러 시프트 정보 및 평균 지연 정보에 기초하여, 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신하는 것을 포함하는, 단말의 채널 상태 정보 보고 방법.
  8. 제 6항에 있어서,
    상기 QCL 정보가 상기 QCL 타입 D 정보를 포함하는 경우, 상기 QCL 정보에 기초하여 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신함은,
    상기 제2 CSI-RS 자원과 관련된 수신 빔 정보에 기초하여, 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신하는 것을 포함하는, 단말의 채널 상태 정보 보고 방법.
  9. 제 6항에 있어서,
    상기 QCL 정보가 상기 QCL 타입 C 정보 및 상기 QCL 타입 D 정보를 포함하는 경우, 상기 QCL 정보에 기초하여 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신함은,
    상기 제2 CSI-RS 자원과 관련된 도플러 시프트 정보, 평균 지연 정보 및 수신 빔 정보에 기초하여, 상기 이웃 셀로부터 전송되는 상기 CSI-RS를 수신하는 것을 포함하는, 단말의 채널 상태 정보 보고 방법.
  10. 제 1항에 있어서,
    상기 CSI-RS는,
    상기 제1 CSI-RS 자원과 관련된 자원 설정에 기초하여, 상기 이웃 셀로부터 수신되는, 단말의 채널 상태 정보 보고 방법.
  11. 제 1항에 있어서,
    상기 CSI-RS는,
    상기 제2 CSI-RS 자원과 관련된 자원 설정에 기초하여, 상기 이웃 셀로부터 수신되는, 단말의 채널 상태 정보 보고 방법.
  12. 제 11항에 있어서,
    상기 제2 CSI-RS 자원과 관련된 상기 자원 설정은,
    상기 제2 CSI-RS 자원과 관련된 시간 자원 설정,
    상기 제2 CSI-RS 자원과 관련된 주파수 자원 설정, 또는
    상기 제2 CSI-RS 자원과 관련된 뉴머롤로지 (numerology) 설정, 중 하나 이상을 포함하는, 단말의 채널 상태 정보 보고 방법.
  13. 제 1항에 있어서,
    상기 CSI-RS는,
    상기 제1 CSI-RS 자원과 관련된 제1 자원 설정 및 상기 제2 CSI-RS 자원과 관련된 제2 자원 설정을 모두 만족하는 자원 설정에 기초하여, 상기 이웃 셀로부터 수신되는, 단말의 채널 상태 정보 보고 방법.
  14. 제 13항에 있어서,
    상기 CSI-RS는,
    상기 제1 자원 설정에 포함된 상기 제1 CSI-RS 자원과 관련된 제1 주파수 자원 및 상기 제2 자원 설정에 포함된 상기 제2 CSI-RS 자원과 관련된 제2 주파수 자원이 중첩되는 주파수 자원에 기초하여, 상기 이웃 셀로부터 수신되는, 단말의 채널 상태 정보 보고 방법.
  15. 제 1항에 있어서,
    상기 설정 정보는 상위 계층 시그널링을 통해 수신되는, 단말의 채널 상태 정보 보고 방법.
  16. 제 1항에 있어서,
    상기 제1 CSI-RS 자원은,
    논-제로 파워 (non-zero power, NZP) CSI-RS 자원 또는 채널 상태 정보 간섭 측정 (channel state information interference measurement; CSI-IM) 자원인, 단말의 채널 상태 정보 보고 방법.
  17. 제 1항에 있어서,
    상기 제2 CSI-RS 자원은,
    RRM (Radio Resource Management) 측정을 위한 CSI-RS 자원인, 단말의 채널 상태 정보 보고 방법.
  18. 무선 통신 시스템에서 채널 상태 정보 (CSI)를 보고하는 단말에 있어서,
    적어도 하나의 무선 주파수 (RF) 모듈;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 하기 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 하기 동작은:
    상기 적어도 하나의 RF 모듈을 제어하여, 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 수신하되,
    상기 설정 정보는 상기 제1 CSI-RS 자원 및 이웃 셀과 관련된 제2 CSI-RS 자원 간 QCL (Quasi Co Located) 정보를 포함하고;
    상기 적어도 하나의 RF 모듈을 제어하여, 상기 설정 정보에 기초하여 상기 이웃 셀로부터 전송되는 CSI-RS를 수신; 및
    상기 적어도 하나의 RF 모듈을 제어하여, 상기 수신된 CSI-RS에 기초하여 측정된 상기 CSI를 서빙 셀로 보고하는 것을 포함하는, 단말.
  19. 제 18항에 있어서,
    상기 단말은, 이동 단말기, 네트워크 및 상기 단말이 포함된 차량 이외의 자율 주행 차량 중 적어도 하나와 통신하는, 단말.
  20. 무선 통신 시스템에서 채널 상태 정보 (CSI)를 수신하는 기지국에 있어서,
    적어도 하나의 무선 주파수 (RF) 모듈;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 하기 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 하기 동작은:
    상기 적어도 하나의 RF 모듈을 제어하여, 측정을 위한 제1 채널 상태 정보 참조 신호 (CSI-RS) 자원과 관련된 설정 정보를 단말로 전송하되,
    상기 설정 정보는 상기 제1 CSI-RS 자원 및 이웃 셀과 관련된 제2 CSI-RS 자원 간 QCL (Quasi Co Located) 정보를 포함하고; 및
    상기 적어도 하나의 RF 모듈을 제어하여, 상기 단말로부터 측정된 상기 CSI를 수신하는 것을 포함하고,
    상기 CSI는, 상기 설정 정보에 기초하여 상기 이웃 셀로부터 상기 단말로 전송되는 CSI-RS에 대한 측정 정보를 포함하는, 기지국.
PCT/KR2019/005185 2018-04-30 2019-04-30 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치 WO2019212224A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/041,272 US11863476B2 (en) 2018-04-30 2019-04-30 Method for transmitting and receiving channel state information between terminal and base station in wireless communication system and apparatus supporting same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0049667 2018-04-30
KR20180049667 2018-04-30
KR20190030901 2019-03-19
KR10-2019-0030901 2019-03-19

Publications (1)

Publication Number Publication Date
WO2019212224A1 true WO2019212224A1 (ko) 2019-11-07

Family

ID=68386106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005185 WO2019212224A1 (ko) 2018-04-30 2019-04-30 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치

Country Status (2)

Country Link
US (1) US11863476B2 (ko)
WO (1) WO2019212224A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021093197A1 (en) 2020-02-11 2021-05-20 Zte Corporation Method for parameter configuration of frequency modulation
EP4072197A4 (en) * 2019-12-05 2023-02-01 Vivo Mobile Communication Co., Ltd. METHOD FOR TRANSMITTING AND METHOD FOR RECEIVING CSI REPORT FROM NEIGHBOR CELL, AND ASSOCIATED DEVICES
CN116171548A (zh) * 2020-06-30 2023-05-26 高通股份有限公司 用于高多普勒***的信道状态信息(csi)参考信号(csi-rs)重复配置
EP4156759A4 (en) * 2020-06-10 2023-07-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD AND TERMINAL DEVICE
EP4136764A4 (en) * 2020-09-29 2023-08-23 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR RADIATION MEASUREMENT AND REPORTING
EP4133876A4 (en) * 2020-04-08 2024-01-24 Apple Inc. METHOD AND APPARATUS FOR BEAM SCANNING FOR MEASURING CSI-RS MOBILITY
WO2024037339A1 (zh) * 2022-08-19 2024-02-22 中兴通讯股份有限公司 信道状态信息处理方法、装置、通信节点及存储介质
US11963113B2 (en) 2019-08-09 2024-04-16 Qualcomm Incorporated Estimating a timing for a non-serving cell of a user equipment
EP4213404A4 (en) * 2020-10-06 2024-06-19 LG Electronics Inc. METHOD FOR TRANSMITTING AND RECEIVING CHANNEL STATE INFORMATION AND RELATED DEVICE IN WIRELESS COMMUNICATION SYSTEM

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115622674A (zh) * 2017-02-07 2023-01-17 中兴通讯股份有限公司 一种相位噪声导频的配置、确定方法及装置
EP3651525B1 (en) * 2018-08-03 2021-11-24 LG Electronics Inc. Method for configuring reference point independent of common resource block grid, and device therefor
CN113228773B (zh) * 2018-10-31 2024-03-12 株式会社Ntt都科摩 用户终端以及无线通信方法
US11770806B2 (en) * 2018-11-12 2023-09-26 Qualcomm Incorporated Spatial quasi co-location conflict handling
US11811484B2 (en) * 2019-05-13 2023-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Apparatuses and methods for multi-user transmissions
JPWO2021029068A1 (ko) * 2019-08-15 2021-02-18
US20220225291A1 (en) * 2021-01-14 2022-07-14 Qualcomm Incorporated Techniques for quasi-colocation prioritization rule for control channel repetition
CN114124629B (zh) * 2021-10-15 2023-05-09 北京长焜科技有限公司 一种5g-nr高速场景下多普勒频偏捕获和跟踪方法
CN116073964B (zh) * 2021-10-23 2024-06-11 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
CN116074887A (zh) * 2021-11-04 2023-05-05 维沃移动通信有限公司 上报方法、装置及终端
CN116567683A (zh) * 2022-01-27 2023-08-08 ***通信有限公司研究院 一种信息采集方法、终端及计算机可读存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130050273A (ko) * 2010-03-17 2013-05-15 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 채널상태정보-참조신호의 설정 정보를 제공하는 방법 및 장치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10085202B2 (en) * 2012-04-19 2018-09-25 Samsung Electronics Co., Ltd. Quasi co-location identification of reference symbol ports for coordinated multi-point communication systems
US9621316B2 (en) * 2012-07-03 2017-04-11 Lg Electronics Inc. Method and device for receiving downlink signal in wireless communication system
CN104604283B (zh) * 2012-08-30 2019-04-26 Lg 电子株式会社 在无线通信***中估计信道的方法和设备
US9763154B2 (en) * 2013-01-03 2017-09-12 Intel Corporation Apparatus and method for Cross-Carrier Quasi Co-Location Signaling in a new carrier type (NCT) wireless network
US20150304997A1 (en) * 2013-03-26 2015-10-22 Lg Electronics Inc. Method for transmitting and receiving signal in multiple cell-based wireless communication system, and apparatus for same
EP3050232B1 (en) * 2013-09-27 2020-04-01 Samsung Electronics Co., Ltd. Method and apparatus for discovery signals for lte advanced
WO2016052824A1 (ko) * 2014-10-01 2016-04-07 엘지전자 주식회사 무선 통신 시스템에서 3 차원 mimo를 위한 참조 신호 설정 방법 및 이를 위한 장치
US10361757B2 (en) * 2015-04-10 2019-07-23 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
WO2017039384A1 (ko) * 2015-09-03 2017-03-09 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2017061744A1 (ko) * 2015-10-04 2017-04-13 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2017078464A1 (ko) * 2015-11-04 2017-05-11 엘지전자(주) 무선 통신 시스템에서 하향링크 데이터 송수신 방법 및 이를 위한 장치
WO2017078503A1 (ko) * 2015-11-05 2017-05-11 주식회사 윌러스표준기술연구소 비인가 대역에서 신호 전송 방법, 장치 및 시스템
KR102527279B1 (ko) * 2015-11-18 2023-04-28 삼성전자주식회사 이동통신 시스템에서 채널 상태 정보의 송수신 방법 및 장치
WO2018038556A1 (ko) * 2016-08-24 2018-03-01 삼성전자 주식회사 이동 통신 시스템에서의 기준 신호 송신을 위한 방법 및 장치
CN112702099B (zh) * 2016-09-30 2023-01-06 华为技术有限公司 一种速率匹配方法、装置、网络设备及存储介质
WO2018097582A1 (en) * 2016-11-22 2018-05-31 Samsung Electronics Co., Ltd. Method and apparatus for channel estimation and data decoding in wireless communication system
CN108282212B (zh) * 2017-01-06 2022-06-14 华为技术有限公司 一种信道状态信息处理的方法、装置和***
US10644777B2 (en) * 2017-05-05 2020-05-05 Huawei Technologies Co., Ltd. Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
US10686574B2 (en) * 2017-08-17 2020-06-16 Industrial Technology Research Institute Methods and apparatus for indicating a radio resource to a receiver in a wireless communication system
WO2019100257A1 (en) * 2017-11-22 2019-05-31 Qualcomm Incorporated Configuration of non-zero power interference management resource (nzp-imr) based channel state information (csi) reporting
US10582489B2 (en) * 2018-01-12 2020-03-03 Telefonaktiebolaget Lm Ericsson (Publ) Signaling in RRC and MAC for PDSCH resource mapping for periodic and semipersistent reference signal assumptions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130050273A (ko) * 2010-03-17 2013-05-15 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 채널상태정보-참조신호의 설정 정보를 제공하는 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining Issues on NR Mobility Management", R1-1803734, 3GPP TSG RAN WG1 MEETING #92BIS, 7 April 2018 (2018-04-07), XP051413671 *
INTEL COOPERATION: "Remaining details of RRM measurements", R1-1802388, 3GPP TSG RAN WG1 MEETING #9 2, 17 February 2018 (2018-02-17), XP051397913 *
INTEL COOPERATION: "Summary of Offline Discussion for NR RRM measurements", R1-1805696, 3GPP TSG RAN WG1 MEETING #92BIS, 24 April 2018 (2018-04-24), XP051515423 *
ZTE: "Summary of offline discussion on CSI measurement", R1-1805606, 3GPP TSG RAN WG1 MEETING #92BIS, 24 April 2018 (2018-04-24), XP051427764 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963113B2 (en) 2019-08-09 2024-04-16 Qualcomm Incorporated Estimating a timing for a non-serving cell of a user equipment
EP4072197A4 (en) * 2019-12-05 2023-02-01 Vivo Mobile Communication Co., Ltd. METHOD FOR TRANSMITTING AND METHOD FOR RECEIVING CSI REPORT FROM NEIGHBOR CELL, AND ASSOCIATED DEVICES
WO2021093197A1 (en) 2020-02-11 2021-05-20 Zte Corporation Method for parameter configuration of frequency modulation
EP4104294A4 (en) * 2020-02-11 2023-11-08 ZTE Corporation METHOD FOR CONFIGURING FREQUENCY MODULATION PARAMETERS
EP4133876A4 (en) * 2020-04-08 2024-01-24 Apple Inc. METHOD AND APPARATUS FOR BEAM SCANNING FOR MEASURING CSI-RS MOBILITY
EP4156759A4 (en) * 2020-06-10 2023-07-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD AND TERMINAL DEVICE
CN116171548A (zh) * 2020-06-30 2023-05-26 高通股份有限公司 用于高多普勒***的信道状态信息(csi)参考信号(csi-rs)重复配置
EP4136764A4 (en) * 2020-09-29 2023-08-23 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR RADIATION MEASUREMENT AND REPORTING
US11937107B2 (en) 2020-09-29 2024-03-19 Samsung Electronics Co., Ltd. Method and apparatus for fast beam measurement and reporting
EP4213404A4 (en) * 2020-10-06 2024-06-19 LG Electronics Inc. METHOD FOR TRANSMITTING AND RECEIVING CHANNEL STATE INFORMATION AND RELATED DEVICE IN WIRELESS COMMUNICATION SYSTEM
WO2024037339A1 (zh) * 2022-08-19 2024-02-22 中兴通讯股份有限公司 信道状态信息处理方法、装置、通信节点及存储介质

Also Published As

Publication number Publication date
US20210111846A1 (en) 2021-04-15
US11863476B2 (en) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2019212224A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2018174546A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018084661A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2019112374A1 (en) Method of transmitting uplink phase tracking reference signal by user euqipment in wireless communication system and apparatus supporting same
WO2018128493A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 상향링크 신호 송수신 방법 및 이를 지원하는 장치
WO2018203682A1 (ko) 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2018231014A1 (ko) 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2018174653A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2019139298A1 (ko) 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2019199143A1 (ko) 무선 통신 시스템에서 단말의 데이터 신호 획득 방법 및 이를 지원하는 장치
WO2018004246A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2018169347A1 (ko) 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2018151565A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
WO2018182248A1 (ko) 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치
WO2018016921A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 하향링크 제어 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2018230996A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 확인 응답 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2015163645A1 (ko) 무선 통신 시스템에서의 사운딩 참조 신호 전송 방법 및 단말
WO2016171399A1 (ko) 데이터 채널을 송수신하는 방법 및 lc 기기
WO2018151564A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
WO2018128492A1 (ko) 무선 통신 시스템에서 단말의 상향링크 신호 전송 방법 및 이를 지원하는 장치
WO2020091496A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2021187967A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치
WO2018230999A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 확인 응답 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2018062899A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
WO2015160171A1 (ko) 탐색 신호 검출 방법 및 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19795814

Country of ref document: EP

Kind code of ref document: A1