WO2019212217A1 - Vinyl chloride polymer and method for preparing same - Google Patents

Vinyl chloride polymer and method for preparing same Download PDF

Info

Publication number
WO2019212217A1
WO2019212217A1 PCT/KR2019/005160 KR2019005160W WO2019212217A1 WO 2019212217 A1 WO2019212217 A1 WO 2019212217A1 KR 2019005160 W KR2019005160 W KR 2019005160W WO 2019212217 A1 WO2019212217 A1 WO 2019212217A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
vinyl chloride
chloride polymer
polymer
reactor
Prior art date
Application number
PCT/KR2019/005160
Other languages
French (fr)
Korean (ko)
Inventor
안성용
김건지
이세웅
주진혁
하현규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190048264A external-priority patent/KR102251268B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980009628.9A priority Critical patent/CN111630073B/en
Priority to US16/962,747 priority patent/US11505629B2/en
Priority to EP19795973.7A priority patent/EP3789410B1/en
Priority to JP2020540404A priority patent/JP6964196B2/en
Publication of WO2019212217A1 publication Critical patent/WO2019212217A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/02Monomers containing chlorine
    • C08F114/04Monomers containing two carbon atoms
    • C08F114/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation

Definitions

  • the present invention relates to a vinyl chloride polymer having excellent processability, improved fish eye and initial coloring properties, and a method for producing a vinyl chloride polymer having improved polymerization productivity.
  • Vinyl chloride polymers are inexpensive and have a good quality balance and are used in various fields such as hard and soft. Specifically, in the hard field, it is used for pipes, films, window frames, and the like, and in the soft field, it is used for wire coating, wrap films, sheets, and the like.
  • the polymerization reaction time is constant and the polymerization conversion rate is increased to increase the yield per batch and to shorten the polymerization reaction time.
  • U.S. Patent Publication No. 2005-008027 discloses a method of increasing the polymerization conversion rate by additionally adding an initiator at the time when the internal pressure of the polymerization reactor is lowered.
  • the vinyl chloride polymer obtained by the above method slightly increased the polymerization conversion rate.
  • the polymerization conversion rate is 70% or more at the time when the pressure inside the polymerization reactor decreases, the effect of increasing the polymerization conversion rate by the initiator added at this point is insignificant.
  • US Patent Publication No. 2005-0054795 describes a method of introducing an initiator having a short half-life in the middle of a reaction.
  • the initiator having a short half-life is introduced in the middle of the reaction by the above method, a non-uniform internal particle form is formed by locally generated heat of reaction, thereby increasing the fish-eye.
  • Japanese Patent Application Laid-Open No. 1998-338701 discloses a method of shortening the polymerization reaction time by using an oil-soluble initiator and a water-soluble initiator in the initial stage of polymerization
  • US Pat. No. 6,861,488 discloses an oil-soluble polymerization initiator, t-amylperoxyneodecanoate, and a peroxide type A method for producing a vinyl chloride polymer that prevents initial discoloration under suspension polymerization using a polymerization initiator has been described.
  • vinyl chloride monomer is a substance having useful properties, and in the initial stage of polymerization, vinyl chloride monomer and deionized water, which is polymerized water, Since most of the unreacted vinyl chloride monomer which is present in the phase separated state and then the polymerization reaction proceeds and the polymerization conversion rate of 60% or more is not converted into the polymer is dissolved in the aqueous phase, the water-soluble initiator used together with the oil-soluble initiator at the beginning of the reaction. In addition, the effect of shortening the reaction time is not large, and there remains a problem in which the whiskey is generated by the fine particles generated by the initial water-soluble initiator in the polymerization reaction.
  • the above methods may cause problems inferior in quality, such as the proposed methods in terms of improving the polymerization productivity, such as the fiscia or initial colorability of the polymer to be produced, and furthermore cannot guarantee the processability of the produced polymer. there is a problem.
  • Patent Document 1 US 2005-008027A
  • Patent Document 2 US 2005-0054795A
  • Patent Document 3 JP 1998-338701A
  • An object of the present invention was devised to solve the problems of the prior art, while solving the problem of low polymerization productivity during the production of vinyl chloride polymer, solving the problem of lowering the whiskey and initial colorability due to undissolved particles of the reactants
  • To provide a method for producing a vinyl chloride polymer having excellent processability specifically to prepare a vinyl chloride polymerization seed having a conversion rate of 5 to 20% in a prepolymerization reactor, the vinyl chloride polymerization seed to the present polymerization reactor It is to provide a production method for polymerizing vinyl chloride polymer by controlling the difference in the polymerization temperature of the pre-polymerization and the main polymerization after the transfer.
  • Another object of the present invention is a vinyl chloride polymer having a polydispersity of 2.0 to 2.3, a porosity of 60% or more, and an average pore diameter of 300 nm or more. To provide a vinyl polymer.
  • the present invention provides a vinyl chloride polymer having a polydispersity (PDI) of 2.0 to 2.3, a porosity of 60% or more, and an average pore diameter of 300 nm or more.
  • PDI polydispersity
  • the present invention comprises the steps of polymerizing the first vinyl chloride monomer in a prepolymerization reactor so that the polymerization conversion rate is 5 to 20% to prepare a vinyl chloride polymerization seed (step 1); And transferring the vinyl chloride polymerization seed to the present polymerization reactor and polymerizing with the second vinyl chloride monomer introduced into the present polymerization reactor to prepare a vinyl chloride polymer (step 2).
  • the difference in the polymerization temperature of 2 is 5 to 15 °C, the vinyl chloride polymer provides a vinyl chloride polymer manufacturing method is a vinyl chloride homopolymer.
  • the vinyl chloride polymer according to an embodiment of the present invention satisfies the polydispersity of 2.0 to 2.3 and satisfies the porosity of 60% or more, thereby lowering the melt viscosity when blended with a plasticizer and the like, and having excellent workability and excellent plasticizer absorption rate. There is an effect that the quality and initial coloring quality are improved.
  • the method for producing a vinyl chloride polymer according to an embodiment of the present invention is to polymerize such that the polymerization conversion rate is 5 to 20% through prepolymerization before the present polymerization to prepare a vinyl chloride polymerization seed, using the polymerization seed
  • the polymerization is carried out, and at this time, by controlling the conversion rate of the polymerization seed and the difference in the polymerization temperature between the preliminary polymerization and the main polymerization, the polymerization reaction time is shortened to significantly improve the polymerization productivity, and at the same time, the workability of the polymer to be prepared The coloring property is excellent in effect.
  • a polydispersity index (PDI) of 2.0 to 2.3 and a porosity of the polymer (porosity) to provide a vinyl chloride polymer PDI
  • porosity porosity
  • the average pore diameter (4 V / A) of the vinyl chloride polymer according to an embodiment of the present invention may be 300 nm or more.
  • vinyl chloride polymer refers to a compound produced by polymerizing a vinyl chloride monomer, and may mean a polymer chain derived from a vinyl chloride monomer.
  • the "polydispersity index (PDI)" is an index indicating the width of the molecular weight distribution, and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) The value representing. That is, the polydispersity is obtained by dividing the weight average molecular weight by the number average molecular weight after measuring the weight average molecular weight and the number average molecular weight.
  • the number average molecular weight and the weight average molecular weight are 0.02 g of a vinyl chloride polymer sample in 20 ml of tetrahydrofuran (THF), dissolved for 24 hours, and filtered with a 0.45 um filter, followed by a GPC device (Waters 2414 Refractive Index Detector, Waters 1525).
  • Standard sample Styrene standard molecular weight (g / mol) 1320, 2750, 6760, 19700, 50600, 124000, measured using Binary HPLC Pump and Waters 717 Autosampler, Waters Co., Ltd.
  • Standard sample Styrene standard molecular weight (g / mol) 1320, 2750, 6760, 19700, 50600, 124000, measured using Binary HPLC Pump and Waters 717 Autosampler, Waters Co., Ltd.
  • 279000, 768000, 1540000, 2350000 are used to draw the calibration curve and convert it.
  • the average pore diameter (4V / A) and porosity (porosity) of the present invention is a mercury porosity analyzer at room temperature (23 ⁇ 2 °C), atmospheric pressure (1 atm), specifically Auto Pore IV 9520 ( Using micromeritics, surface pore, accessible intravoid (Pacc) and inaccessible intravoid (Pinacc) were respectively measured from the amount of mercury invaded into the vinyl chloride polymer particles and derived from the measurement results. Value. At this time, the porosity (%) represents the percentage by volume.
  • Polyvinyl chloride polymer having a polydispersity of 2.0 to 2.3 and a porosity of 60% or more and an average pore diameter of 300 nm or more, as in the present invention, is excellent in processability, and problems of deterioration in quality and initial colorability of the fish oil may be improved. .
  • the vinyl chloride polymer having a polydispersity of 2.0 to 2.3 has excellent workability and good mechanical strength.
  • the polydispersity is less than 2.0, there is a problem that the machinability deteriorates during processing because the molecular weight distribution is narrow, and if the polydispersity exceeds 2.3, the molecular weight distribution is too wide, such as plasticizers and processed raw materials, etc. When blending, mechanical properties may be reduced.
  • the porosity when the porosity is less than 60%, the porosity may be too low, so that the absorption rate of the plasticizer and the subsidiary materials added during processing may be lowered. As a result, uniform dispersion of the formulation may not be achieved during processing. This worsening problem may occur.
  • the average pore diameter is also less than 300 nm, the same problem may occur because the absorption rate of the plasticizer and the processing sub-material may be reduced when the diameter is too small.
  • fish-eye refers to white transparent particles generated as undissolved particles of a reactant, and is an index for confirming protrusion quality of a polymer. More whiskey means less polymer quality.
  • the vinyl chloride polymer may satisfy the polydispersity, and the porosity may be 60 to 75%, and more preferably, the porosity may be 60 to 70%.
  • the average pore diameter may be 300 to 600 nm, more preferably the average pore diameter may be 300 to 500 nm.
  • the vinyl chloride polymer according to an embodiment of the present invention may have a degree of polymerization of 700 to 1300, preferably 1000 to 1200.
  • degree of polymerization indicates the number of repeated units (units or monomers) constituting the polymer and may be a value measured according to ASTM D1243-79.
  • the vinyl chloride polymer according to an embodiment of the present invention may be a homopolymer.
  • the homopolymer is a polymer formed of one type of monomer
  • the vinyl chloride polymer of the present invention may be a polymer polymerized using only vinyl chloride monomer.
  • Vinyl chloride polymer according to an embodiment of the present invention expressing the physical properties as described above may be prepared by applying a seed polymerization method.
  • the vinyl chloride polymerization seed may be prepared by polymerization so as to have a polymerization conversion ratio of 5 to 20% in a prepolymerization reactor, and the polymerization of the main polymerization which polymerizes the final vinyl chloride polymer using the prepolymerization and the seed polymerization.
  • the difference in temperature may be 5 to 15 ° C. Accordingly, according to another embodiment of the present invention, a method for preparing the vinyl chloride polymer is provided.
  • the method for producing a vinyl chloride polymer comprises the steps of preparing a vinyl chloride polymerization seed in a prepolymerization reactor so that the polymerization conversion rate is 5 to 20% (step 1); And transferring the vinyl chloride polymerization seed to the present polymerization reactor and polymerizing with the second vinyl chloride monomer introduced into the present polymerization reactor to prepare a vinyl chloride polymer (step 2).
  • the difference in the polymerization temperature of the step 1 and step 2 is 5 to 15 °C, the vinyl chloride polymer may be a vinyl chloride homopolymer.
  • the method of manufacturing the vinyl chloride polymer according to an embodiment of the present invention may be a method of preparing the vinyl chloride polymer, specifically, a polyvinyl chloride polymer having a polydispersity of 2.0 to 2.3 and a porosity of 60% or more. have.
  • the polydispersity may be a method of preparing a vinyl chloride polymer having a polydispersity of 2.0 to 2.3, a porosity of 60% or more, and an average pore diameter of 300 nm or more.
  • the polymerization of the steps 1 and 2 may be carried out by a suspension polymerization
  • the suspension polymerization may mean that is carried out in the presence of a protective colloid preparation and a polymerization initiator. That is, the manufacturing method of the vinyl chloride polymer according to an embodiment of the present invention may be to prepare the polymer by suspension seed polymerization.
  • the vinyl chloride polymerization seed is polymerized in the preliminary polymerization reactor prior to the main polymerization, the vinyl chloride polymerization seed is transferred to the polymerization reactor, and the chloride is introduced into the polymerization reactor. Since the suspension polymerization reaction with the vinyl monomer proceeds, it is possible to shorten the polymerization reaction time to significantly improve the polymerization productivity, to block the whiskey generated by the undissolved particles of the reactants and to improve the initial coloring property. In addition, when the specific polymerization conversion rate and the temperature difference between the prepolymerization and the main polymerization are satisfied in the present invention, not only the improvement effect but also the polydispersity of the polymer to be produced is improved, thereby improving workability.
  • Step 1 is to prepare a vinyl chloride polymerization seed using a prepolymerization reactor, specifically, by polymerizing the first vinyl chloride monomer in a prepolymerization reactor so that the polymerization conversion rate is 5 to 20%.
  • a vinyl chloride polymerized seed is prepared.
  • Step 1 may mean a prepolymerization step.
  • the vinyl chloride polymerization seed of step 1 may be prepared by a suspension polymerization method made in the presence of a polymerization initiator and a protective colloid preparation.
  • the vinyl chloride polymerization seed is not dissolved in the vinyl chloride monomer (VCM), the size of the seed particles is 100 to 120 ⁇ m.
  • a vinyl chloride polymerization seed by polymerizing the polymerization conversion rate to 5 to 20% using a prepolymerization reactor, but more preferably 5 to 15%, even more preferably, the polymerization conversion rate is 10 to It is preferred to polymerize to 15% to produce a vinyl chloride polymerized seed.
  • the polymerization conversion rate may be a value measured using a butane tracer equipped with gas chromatography. Specifically, the polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions is prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions may be measured based on this.
  • the polymerization productivity can be increased because the polymerization of the polymerized seed is not sufficiently performed and the amount of polymerized seed introduced into the polymerization reactor is too small.
  • the polymerization of step 1) may be carried out at a polymerization temperature of the vinyl chloride polymer by a conventional suspension polymerization, specifically, the suspension polymerization is carried out at a temperature of 30 to 80 °C, preferably at a temperature of 45 to 75 °C Can be.
  • the temperature at the time of suspension polymerization can be suitably adjusted according to the desired degree of polymerization and polymerization time (productivity) within the said range. For example, in view of the degree of polymerization, the higher the degree of polymerization, the lower the temperature, and the lower the degree of polymerization, the higher the temperature.
  • the stirring speed during the suspension polymerization may be a speed generally used to prepare the vinyl chloride polymer, and may be adjusted according to the properties of the desired vinyl chloride polymer, the size of the reactor, and the shape and type of the stirrer. Therefore, although not particularly limited, for example, in one example of the present invention, the stirring speed in the reactor of 1m 3 may be less than 180 to 250 rpm.
  • Step 1) specifically includes preparing a reaction mixture by mixing a protective colloid preparation, a first vinyl chloride monomer and a polymerization initiator in the polymerization water.
  • the first vinyl chloride monomer refers to a vinyl chloride monomer, and may be the same as the second vinyl chloride monomer, which will be described later, or a number may be specified to distinguish the order of input.
  • the polymerization solvent various kinds of polymerization water, such as distilled water or deionized water, may be used as the polymerization solvent, and deionized water may be preferably used.
  • the temperature of the polymerization water may be appropriately selected in consideration of the temperature at which the suspension polymerization is performed, and the amount of the polymerization water may be appropriately used according to the polymerization conditions, for example, the total content of the polymerization water of steps 1) and 2) is 70 parts by weight or more may be used based on 100 parts by weight of the total of the first and second vinyl chloride monomers.
  • the protective colloid preparation maintains the stability of the vinyl chloride monomer in the manufacturing process of the vinyl chloride polymer, and the average particle diameter, apparent specific gravity (BD), particle size distribution, plasticizer absorption rate (CPA), etc. of the desired degree. It may be used for the purpose of obtaining the physical properties of the, as the protective colloid preparation, for example, a vinyl alcohol-based resin having a hydration degree of 30 to 90%, a viscosity of 4% aqueous solution at room temperature of 5 to 100 cps, methoxy group 15 And at least one selected from the group consisting of cellulose and an unsaturated organic acid having a viscosity of 2 to 40% by weight, 3 to 20% by weight of propyl group, and a viscosity of 2 to 20,000 cps measured at 23 ⁇ 5 ° C., Preferably, the degree of hydration is 30 to 90%, the vinyl alcohol resin having a viscosity of 5 to 100 cps of 4% aqueous solution at room temperature,
  • the total content of the protective colloid preparation of step 1) and step 2) may be 0.03 to 5.0 parts by weight, preferably 0.05 to 2.5 parts by weight, based on 100 parts by weight of the first and second vinyl chloride monomers in total.
  • the total amount of the protective colloid preparation is less than 0.03 parts by weight, droplet stability is lowered, and the particle size of the polymerized seed and the final polymerized vinyl chloride polymer may be excessively increased to cause whiskey, and when it exceeds 5.0 parts by weight, the fine particles There is a fear of lowering the initial colorability due to the increase of these.
  • the protective colloid preparation may include a mixture of two or more vinyl alcohol resins having different degrees of hydration, and for example, vinyl alcohol resins having a degree of hydration of more than 50% and 90% or less (high degree of water resin). ) And a mixture of vinyl alcohol-based resin (low degree of hydration resin) having a degree of hydration of 30% to 50%.
  • the protective colloid preparation may be one containing the cellulose in addition to the vinyl alcohol-based resin, wherein the total content of the cellulose is 0.001 to 0.5 parts by weight based on a total of 100 parts by weight of the first and second vinyl chloride monomer It may be included in an amount, the cellulose may be methyl cellulose, hydroxyethyl cellulose, or hydroxypropyl methyl cellulose, and the like, any one or a mixture of two or more thereof may be used. Among these, hydroxypropyl methyl cellulose may be used.
  • the cellulose may have a methoxy group of 15 to 40 wt%, a propyl hydroxide group of 3 to 20 wt%, and a viscosity of 2% aqueous solution measured at 20 ⁇ 5 ° C. To 20,000 cps.
  • the unsaturated organic acid polymer may include an acrylic acid polymer, a methacrylic acid polymer, an itaconic acid polymer, a fumaric acid polymer, a maleic acid polymer, or a succinic acid polymer, and any one or a mixture of two or more thereof may be used.
  • the total content of the polymerization initiator of step 1) and step 2) according to an embodiment of the present invention is used from 0.02 to 0.2 parts by weight based on 100 parts by weight of the total of the first and second vinyl chloride monomer used in the polymerization.
  • the polymerization initiator may be used at 0.03 parts by weight to 0.12 parts by weight based on 100 parts by weight of the total of the first and second vinyl chloride monomers. If the total content of the polymerization initiator is less than 0.02 parts by weight, the polymerization reaction time is long, the conversion rate to the vinyl chloride polymer is lowered, and the productivity may be lowered. If the content is more than 0.2 parts by weight, the polymerization initiator is not completely consumed during the polymerization process. However, it may remain in the finally prepared vinyl chloride polymer, thereby degrading thermal stability and color quality of the polymer.
  • the polymerization initiator is not particularly limited, but for example, diacyl peroxide initiators such as dicumyl peroxide, dipentyl peroxide, di-3,5,5-trimethylhexanoyl peroxide, dilauroyl peroxide, Peroxydicarbonate initiators such as diisopropyl peroxydicarbonate, di-sec-butylperoxydicarbonate, di-2-ethylhexyl peroxydicarbonate, cumyl peroxydicarbonate, t-butylperoxy neodecanoate, t- Butyl peroxy neoheptanoate, t-amyl peroxy neodecanoate, cumyl peroxy neodecanoate, cumyl peroxy neoheptanoate, 1,1,3,3-tetramethylbutyl peroxy neodecano Peroxy ester-based initiators such as ate and hydroxy-di
  • Method for producing a vinyl chloride polymer may include stirring the reaction mixture prepared above may be suspended polymerization through the stirring.
  • the vinyl chloride polymer production method if necessary, sodium bicarbonate (NaHCO 3 ), sodium borate (Na 2 B 4 O 7 ), dibasic sodium phosphate (Na 2 HPO) as a hydrogen ion concentration regulator. 4 ), sodium carbonate (Na 2 CO 3 ), potassium dihydrogen phosphate (KH 2 PO 4 ), ammonium hydroxide (NH 4 OH), potassium tartarate (KHC 4 H 4 O 6 ), potassium hydrogen phthalate (KHC 8 H 4 O 4 ) or calcium hydroxide (Ca (OH) 2 ) or a mixture of two or more thereof.
  • sodium bicarbonate NaHCO 3
  • sodium borate Na 2 B 4 O 7
  • dibasic sodium phosphate Na 2 HPO
  • sodium carbonate Na 2 CO 3
  • potassium dihydrogen phosphate KH 2 PO 4
  • ammonium hydroxide NH 4 OH
  • potassium tartarate KHC 4 H 4 O 6
  • potassium hydrogen phthalate KHC 8 H 4 O 4
  • the vinyl chloride polymer production method is a diaryl maleate (DAM, DiAllyl Maleate), diaryl phthalate (DAP, DiAllyl Phthalate), ethyl glycol dimethyl acrylate as necessary (EGDMA, Ethyl Glycol DiMethyl Acrylate) or triaryl isocyanurate (TAIC, TriAllyl Isocyanurate), or may further include a mixture of two or more thereof.
  • DAM DiAllyl Maleate
  • DAP diaryl phthalate
  • Ethyl glycol dimethyl acrylate as necessary
  • EGDMA Ethyl Glycol DiMethyl Acrylate
  • TAIC TriAllyl Isocyanurate
  • step 1) all of the produced vinyl chloride polymerized seed and unreacted monomer may be transferred to the present polymerization reactor to proceed with the main polymerization.
  • Step 2) is a step of preparing a vinyl chloride polymer through the present polymerization using the vinyl chloride polymerization seed prepared in step 1), specifically, the vinyl chloride polymerization of step 1)
  • the seed may be transferred to the present polymerization reactor, and polymerized with a second vinyl chloride monomer introduced into the present polymerization reactor to prepare a vinyl chloride polymer.
  • step 2) may mean the present polymerization step.
  • the vinyl chloride polymer prepared after the step 2) may be a homopolymer.
  • step 2) the vinyl chloride polymerization seed of step 1) is transferred to the polymerization reactor, and the vinyl chloride polymer is polymerized by polymerizing the second vinyl chloride monomer and the transferred vinyl chloride polymerization seed introduced into the polymerization reactor. It may be to prepare.
  • a method for preparing a vinyl chloride polymer may improve polymerization productivity due to excellent compatibility between monomers compared to a process for preparing a copolymer as a vinyl chloride homopolymer is produced.
  • the vinyl chloride polymer of the present invention is characterized by ensuring excellent polymerization productivity and blendability while alleviating all the problems of the copolymer by specifying the vinyl chloride homopolymer.
  • the order of the time of transferring the vinyl chloride polymerization seed prepared in step 1) and the time of adding the second vinyl chloride monomer to the polymerization reactor is not particularly limited.
  • the vinyl chloride polymerization seed may be transferred to the polymerization reactor with the second vinyl chloride monomer filled in the polymerization reactor, or the second chloride may be transferred to the polymerization reactor after transferring the vinyl chloride polymerization seed to the polymerization reactor.
  • Vinyl monomers can also be added.
  • the transfer of the vinyl chloride polymerization seed and the introduction of the second vinyl chloride monomer into the polymerization reactor may be simultaneously performed.
  • step 2) the suspension polymerization method described above in step 1) may be applied in the same manner. Specifically, in addition to the vinyl chloride polymerization seed transferred in step 1), suspension polymerization may be performed in the presence of a protective colloid preparation and a polymerization initiator. have. At this time, the protective colloid preparation and the polymerization initiator may be introduced into the polymerization reactor at the same time as the second vinyl chloride monomer, or introduced into the polymerization reactor before the second vinyl chloride monomer.
  • the protective colloid preparation and the polymerization initiator may be selected from the protective colloid preparation and the polymerization initiator of the kind described above in step 1), the protective colloid preparation and polymerization initiator applied in the step 2) in the step 1) It may be the same as or different from the protective colloid preparation and the polymerization initiator.
  • the polymerization water described above in step 1) may be further included in the reaction mixture, and a hydrogen ion concentration regulator and a crosslinking agent may be further added as necessary.
  • the polymerization water, the hydrogen ion concentration regulator and the crosslinking agent applied in step 2) may be the same as or different from the polymerization water, the hydrogen ion concentration regulator and the crosslinking agent in step 1).
  • the polymerization temperature of step 2) may be a temperature having a difference of 5 to 15 °C from the polymerization temperature of step 1), preferably the difference between the polymerization temperature of step 1) and step 2) is 10 to 15 °C Can be.
  • the difference in polymerization temperature of steps 1) and 2) satisfies 5 to 15 ° C.
  • a vinyl chloride polymer having a polydispersity of 2.0 to 2.3 can be prepared, and the vinyl chloride polymer has the polydispersity. The workability is improved.
  • the polymerization temperature of the step 1) and step 2) is not particularly limited to the step 1) is higher or lower than the step 2), if the temperature difference of the above-described range, the aspect of improving the physical properties of the produced vinyl chloride polymer In step 2), the polymerization temperature of step 2) may be adjusted higher than the polymerization temperature of step 1), but considering the polymerization productivity and shortening of the polymerization time, it is preferable that the polymerization temperature of step 1) is higher than that of step 2).
  • first vinyl chloride monomer and second vinyl chloride monomer are terms used to distinguish the order of input, and in order to prepare a vinyl chloride homopolymer, the first vinyl chloride monomer and the second vinyl chloride monomer have the same vinyl chloride monomer. Is preferably.
  • the second vinyl chloride monomer of step 2) may have a higher content than the first vinyl chloride monomer of step 1), and the weight ratio of the first vinyl chloride monomer and the second vinyl chloride monomer may be 1: 1.2 to 1:10, preferably 1: 2 to 1: 8.
  • step 2) of the method for preparing a vinyl chloride polymer according to an embodiment of the present invention may further include terminating the polymerization and recovering a product (vinyl chloride polymer).
  • the suspension polymerization may terminate the polymerization by the addition of a reaction terminator, the termination point is the time when the pressure in the reactor is 6 kgf / cm 2 to 8 kgf / cm 2 (or polymerization conversion exceeds 85%) ).
  • the reaction terminator is not particularly limited, but may be, for example, a phenol compound, an amine compound, a nitrile compound, a sulfur compound, or the like.
  • the reaction terminator is triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate, hydroquinone, p-methoxyphenol, t-butylhydro Roxyanisole, n-octadecyl-3- (4-hydroxy-3,5-di-t-butylphenyl) propionate, 2,5-di-t-butyl hydroquinone, 4,4'-part Phenolic compounds such as thilidenebis (3-methyl-6-t-butyl phenol), t-butyl catechol, 4,4'-thiobis (6-t-butyl-m-cresol), tocophenol, N, Amine compounds such as N'-diphenyl-p-phenylenediamine, 4,4'-bis (di
  • the vinyl chloride polymer prepared according to the polymerization stop may be in the form of a slurry, and the slurry may be prepared in the form of the final vinyl chloride polymer by removing moisture with a fluidized bed dryer under ordinary reaction conditions.
  • the polymerization of the steps 1) and 2) may further include additives such as polymerization regulators, chain transfer agents, pH regulators, antioxidants, crosslinking agents, antistatic agents, antiscalants, surfactants, etc. It may be added, the type and content of the additive is not particularly limited and may be used in conventional types and contents known in the art. The additive may be added at any time during suspension polymerization, during polymerization or after polymerization, or may be added in batches or continuously.
  • additives such as polymerization regulators, chain transfer agents, pH regulators, antioxidants, crosslinking agents, antistatic agents, antiscalants, surfactants, etc. It may be added, the type and content of the additive is not particularly limited and may be used in conventional types and contents known in the art. The additive may be added at any time during suspension polymerization, during polymerization or after polymerization, or may be added in batches or continuously.
  • the reactor used in the present invention is not particularly limited in the shape of the stirring device such as a stirrer and baffle, and a stirring device generally used for suspension polymerization of a vinyl chloride polymer can be used.
  • a stirring device generally used for suspension polymerization of a vinyl chloride polymer
  • Specific examples of the stirrer include stirring paddles, paddle paddles, pitched paddle pads, bloomers gin pads, pudora rams, turbine pads, propeller pads, or the like.
  • Stirrers combined with more than one stirring blade may be used, and baffles may be plate-shaped, cylindrical, D-shaped, looped, or finger-type.
  • the vinyl chloride polymerized seed and the unreacted monomer produced at the time of 13% (13 ⁇ 2%) polymerization conversion are transferred to the present polymerization reactor.
  • the polymerization conversion was measured using a butane tracer equipped with gas chromatography.
  • the polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions is prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions can be measured based on this.
  • the polymerization reaction temperature was adjusted to 57 ° C. to maintain the reaction during the entire polymerization process, and triethylene was reached when the polymerization reactor pressure reached 6.5 kgf / cm 2.
  • the polymerization reaction conversion was 84% (84 ⁇ 2%). The slurry thus obtained was dried in a fluidized bed dryer in a conventional manner to obtain a vinyl chloride polymer.
  • the polymerization reaction was carried out by raising the polymerization reaction temperature of the prepolymerization reactor to 67 ° C., and the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the present polymerization reactor to 56 ° C., and then the polymerization reactor pressure reached 6.3 kgf / cm 2 ( Polymerization conversion was carried out in the same manner as in Example 1 except that the polymerization reaction was terminated at 84% (84 ⁇ 2%)) to obtain a vinyl chloride polymer.
  • the polymerization reaction was carried out by raising the polymerization reaction temperature of the prepolymerization reactor to 70 ° C., and the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the present polymerization reactor to 55.5 ° C., and then the polymerization reactor pressure reached 6.2 kgf / cm 2 ( Polymerization conversion was carried out in the same manner as in Example 1 except that the polymerization reaction was terminated at 84% (84 ⁇ 2%)) to obtain a vinyl chloride polymer.
  • the polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 67 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at the time when the polymerization conversion was 7% (7 ⁇ 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 57 ° C., the polymerization reaction was carried out when the polymerization reactor pressure reached 6.5 kgf / cm 2 (the polymerization conversion rate was 84% (84 ⁇ 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
  • the polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 68 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at a polymerization conversion rate of 18% (18 ⁇ 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 54.5 ° C., the polymerization reaction was performed at the time when the polymerization reactor pressure reached 6.0 kgf / cm 2 (the polymerization conversion rate was 84% (84 ⁇ 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
  • the polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 54.5 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at a polymerization conversion rate of 13% (13 ⁇ 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 60 ° C., the polymerization reaction was carried out when the polymerization reactor pressure reached 7.0 kgf / cm 2 (the polymerization conversion rate was 84% (84 ⁇ 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
  • Deionized water 360kg, cumylperoxydicarbonate 60g, t-butylperoxy neodecanoate 120g were added to a reactor having a reflux condenser with a volume of 1m 3, the degree of hydration was 80% and the viscosity of a 4% aqueous solution at room temperature 150 g of polyvinyl alcohol of 30 cps, 40% of hydration, 120 g of polyvinyl alcohol of 20 cps with a viscosity of 4% aqueous solution at room temperature, hydroxy group having a viscosity of 100 pcs of 2% aqueous solution measured at room temperature with 10% by weight of propyl hydroxide.
  • the polymerization reaction was carried out while maintaining the temperature of the polymerization reaction at 57 DEG C while maintaining the whole polymerization reaction.
  • 4-hydroxy-2,2,6,6-tetramethyl-piperidine- as a reaction terminator when the polymerization reactor pressure reached 6.5 kgf / cm 2 (polymerization conversion rate was 84% (84 ⁇ 2%)).
  • 15 g of 1-oxyl and 75 g of triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate were added, and then the unreacted monomers were recovered and the polymer slurry was recovered in the polymerization reactor. It was.
  • the slurry thus obtained was dried in a fluidized bed dryer in a conventional manner to obtain a vinyl chloride polymer.
  • the polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 60 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at the time when the polymerization conversion was 3% (3 ⁇ 1%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 57 ° C., the polymerization reaction was carried out when the polymerization reactor pressure reached 6.5 kgf / cm 2 (the polymerization conversion rate was 84% (84 ⁇ 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
  • the polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 65 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at the time when the polymerization conversion was 25% (25 ⁇ 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 56 ° C., the polymerization reaction was carried out at the time when the polymerization reactor pressure reached 6.3 kgf / cm 2 (the polymerization conversion rate was 84% (84 ⁇ 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
  • the polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 69 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at the time when the polymerization conversion was 18% (18 ⁇ 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 52 ° C., the polymerization reaction was carried out at the time when the polymerization reactor pressure reached 5.7 kgf / cm 2 (the polymerization conversion rate was 84% (84 ⁇ 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
  • Example 1 except that the polymerization temperature was raised to 57 ° C. in the prepolymerization reactor, and the polymerization reaction was terminated at the time of reaching 6.5 kgf / cm 2 (polymerization conversion rate of 84% (84 ⁇ 2%)) in the present polymerization.
  • the vinyl chloride polymer was obtained by the same method as described above.
  • the reaction was carried out while maintaining the temperature at 50 ° C. during the entire polymerization reaction, and when the polymerization reactor pressure reached 6.0 kgf / cm 2 (the polymerization conversion rate was 84% (84 ⁇ 2%)), 4- 5 g of hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl, triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate After the addition of 35g of unreacted monomer was isolated and recovered, the produced copolymer was recovered from the polymerization reactor, and then dried in a fluidized bed dryer to obtain a copolymer.
  • the prepolymerization conversion rate (%) means the polymerization conversion rate in the prepolymerization reaction immediately before transferring to the present polymerization reactor.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the polydispersity were measured for the vinyl chloride polymers prepared in Examples 1 to 6 and Comparative Examples 1 to 7, respectively. Specifically, 0.02 g of a vinyl chloride polymer sample was added to 20 ml of tetrahydrofuran (THF), dissolved for 24 hours, and filtered through a 0.45 um filter, followed by a GPC device (Waters 2414 Refractive Index Detector, Waters 1525 Binary HPLC Pump, and Waters 717 Autosampler, Waters, Inc.).
  • THF tetrahydrofuran
  • the pore physical properties of the vinyl chloride polymers prepared in Examples 1 to 6 and Comparative Examples 1 to 7 were measured by mercury porosimetry. Specifically, the surface pores (Pinter) from the amount of mercury infiltrated into the vinyl chloride polymer particles using a mercury porosity analyzer (Auto Pore IV 9520, manufactured by Micromeritics) under normal temperature (23 ⁇ 2 ° C) and atmospheric pressure (1atm) conditions Accessible intravoid (Pacc) and inaccessible intravoid (Pinacc) were measured, respectively, and the average pore diameter (4V / A) and porosity were calculated from the results, and the results are shown in Table 2 below. Indicated. In this case, the porosity represents a percentage with respect to the volume.
  • Examples 1 to 6 by applying a seed suspension polymerization method using a vinyl chloride polymerization seed and controlling the difference in polymerization conversion rate and each polymerization reaction temperature in preparing a polymerization seed within a specific range are Comparative Example 1 Compared to 7 to 7, the reaction time is shortened at the same conversion rate, and the polymerization yield per unit time is improved, and the average pore diameter and porosity of the polymer to be produced have a larger value, in particular, a porosity of 60% or more can be obtained.
  • PDI polydispersity
  • Comparative Examples 1 and 2 which do not apply seed polymerization, and a polymerization seed having a polymerization conversion ratio outside the numerical range of the present invention are prepared, and the polymerization temperature of the prepolymerization and the main polymerization is also outside the specific numerical range in the present invention.
  • Example 3 it can be seen that the polymerization yield is significantly lower than that of Examples 1 to 6, and the polydispersity is less than 2.0, thereby deviating from the physical properties of a specific polymer in the present invention.
  • looking at the pore characteristics in the polymer it can be seen that the average pore diameter also has a small value compared to Examples 1 to 6, the porosity has a low value of less than 60%.
  • the seed polymerization was applied in the same manner as in the present invention, but in Comparative Example 4 in which the polymerization conversion rate of the seeds was outside the numerical range of the present invention, the polymerization yield, the polydispersity, and the average pore diameter were maintained at a similar level to the present invention. It can be seen that the porosity of the polymer has a low value of less than 60%, Comparative Example 5 in which the temperature difference between the preliminary polymerization and the main polymerization is outside the numerical range of the present invention is the polymerization yield, the average pore diameter is similar to the present invention It is maintained, but the polydispersity exceeds 2.0 and out of the scope of the present invention, it can be confirmed that the porosity also has a low value of less than 60%.
  • polydispersity also has a value of less than 2.0 it can be confirmed that the desired level is not reached, the difference in polymerization conversion and pre-polymerization and polymerization temperature of the present polymerization is the same level as in Example, but the copolymer is not homopolymer
  • the prepared Comparative Example 7 can be confirmed that the average pore diameter and porosity can not meet the physical properties according to an embodiment of the present invention under the influence of the comonomer, polydispersity is also confirmed to have a low value of less than 2.0. have.
  • Comparative Example 7 has a higher polymerization time compared to Examples 1 to 6, it can be confirmed that the polymerization yield per unit time is significantly lower.
  • Comparative Example 7 has a problem that it is difficult to measure the degree of polymerization degree of reliability as it is a copolymer using two kinds of monomers.
  • Examples 1 to 6 by applying a seed suspension polymerization method using a vinyl chloride polymerization seed, and controlling the difference in polymerization conversion rate and each polymerization reaction temperature in the preparation of the polymerization seed within a specific range is Comparative Example 1 Since the number of Fuchsia has a significantly smaller value than to 7, it can be seen that the quality of the Fuchsia (protrusion quality) is improved, it can be seen that the initial colorability is also expressed at an excellent level. In addition, Examples 1 to 6 can confirm that the melt viscosity is lower than Comparative Examples 1 to 3, 6 and 7, but a low melt viscosity means that the flowability is good, indicating that it can have excellent workability It is an indicator. Therefore, Examples 1 to 6 it can be confirmed that the workability is improved compared to Comparative Examples 1 to 3, 6 and 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The present invention relates to a vinyl chloride polymer and a method for preparing same and, more specifically, to a vinyl chloride polymer of which the polydispersity index is 2.0 to 2.3 and the porosity is 60% or higher, and a method for preparing the vinyl chloride polymer. More particularly, in the method for preparing the vinyl chloride polymer, a vinyl chloride polymerization seed having a conversion rate of 5 to 20% is first prepared by means of prepolymerization, and then a vinyl chloride monomer is input to the vinyl chloride polymerization seed and a vinyl chloride polymer is polymerized (main polymerization), wherein the temperature differential between the prepolymerization and the main polymerization is adjusted to 5 to 15 °C. The preparation method has the advantage of increasing polymerization productivity. The vinyl chloride polymer polymerized by means of the preparation method shows said physical properties and thus has the advantages of enhancing the fish eye quality and initial coloration as well as enabling excellent processability.

Description

염화비닐 중합체 및 이의 제조방법 Vinyl chloride polymer and preparation method thereof
관련 출원과의 상호 인용Cross Citation with Related Applications
본 출원은 2018년 04월 30일자 한국 특허 출원 10-2018-0049563호 및 2019년 04월 25일자 한국 특허 출원 10-2019-0048264호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0049563 of April 30, 2018 and Korean Patent Application No. 10-2019-0048264 of April 25, 2019, All contents disclosed are included as part of this specification.
기술분야Technical Field
본 발명은 가공성이 우수하고, 휘시 아이 및 초기 착색성이 개선된 염화비닐 중합체 및 중합 생산성이 향상된 염화비닐 중합체의 제조방법에 관한 것이다.The present invention relates to a vinyl chloride polymer having excellent processability, improved fish eye and initial coloring properties, and a method for producing a vinyl chloride polymer having improved polymerization productivity.
염화비닐 중합체는 가격이 저렴하면서도 품질 밸런스가 우수하여 경질 및 연질 등의 여러 가지 광범위한 분야에서 이용되고 있다. 구체적으로, 경질 분야에서는 파이프, 필름, 창틀 등의 용도로 사용되고 있으며, 연질 분야에서는 전선 피복, 랩 필름, 시트 등의 용도로 사용되고 있다.Vinyl chloride polymers are inexpensive and have a good quality balance and are used in various fields such as hard and soft. Specifically, in the hard field, it is used for pipes, films, window frames, and the like, and in the soft field, it is used for wire coating, wrap films, sheets, and the like.
일반적으로, 염화비닐 중합체의 제조비용을 감소시키고, 공정 상 효율을 개선하기 위한 방법으로는 반응의 단위 부피당 중합 생산성을 향상시키는 것이 중요하다. 이러한 중합 생산성을 향상시키는 방법으로는 예컨대, 중합 반응시간은 일정하고 중합 전환율을 증가시켜 한 배치 당 산출량을 증가시키는 방법과 중합 반응 시간을 단축시키는 방법이 있다.In general, it is important to improve the polymerization productivity per unit volume of the reaction as a method for reducing the manufacturing cost of the vinyl chloride polymer and improving the process efficiency. As a method for improving the polymerization productivity, for example, the polymerization reaction time is constant and the polymerization conversion rate is increased to increase the yield per batch and to shorten the polymerization reaction time.
이와 같은 중합 생산성 향상 방법 중 중합 전환율을 증가시키는 방법으로써 염화비닐 중합체의 중합 개시제를 추가 투입하는 방법이 제안되었다. 일례로 미국특허공개 제2005-008027호는 중합 반응기의 내부 압력이 저하되는 시점에 개시제를 추가로 투입함으로써 중합 전환율을 증가시키는 방법에 대하여 개시되어 있다. 그러나, 상기의 방법에 의해 수득되는 염화비닐 중합체는 중합 전환율을 다소 증가하였으나, 중합 반응기 내부 압력이 저하되는 시점은 중합 전환율이 70%이상이므로, 이 시점에서 투입된 개시제에 의한 중합 전환율 증가 효과가 미미하고, 휘시아이가 증가하거나 미세입자가 증가하여 초기 착색성이 저하되는 문제점이 있다. 또한, 염화비닐 중합체의 품질을 고려하였을 때 일반적인 중합 전환율이 83 내지 85%임을 감안한다면 중합 전환율을 증가시키는 방법은 중합 생산성을 향상시키는데 그 효과가 큰 것은 아니다. 따라서, 염화비닐 수지의 생산성 향상을 위해서 대부분 중합 반응 시간을 단축시키고자 많은 노력을 기울이고 있다. As a method of increasing the polymerization conversion rate in such a polymerization productivity improving method, a method of further adding a polymerization initiator of a vinyl chloride polymer has been proposed. For example, U.S. Patent Publication No. 2005-008027 discloses a method of increasing the polymerization conversion rate by additionally adding an initiator at the time when the internal pressure of the polymerization reactor is lowered. However, the vinyl chloride polymer obtained by the above method slightly increased the polymerization conversion rate. However, since the polymerization conversion rate is 70% or more at the time when the pressure inside the polymerization reactor decreases, the effect of increasing the polymerization conversion rate by the initiator added at this point is insignificant. In addition, there is a problem that the initial colorability is lowered due to an increase in the amount of whiskey or an increase in fine particles. In addition, when considering the quality of the vinyl chloride polymer, considering that the general polymerization conversion rate is 83 to 85%, the method of increasing the polymerization conversion rate does not have a great effect in improving the polymerization productivity. Therefore, most efforts have been made to shorten the polymerization reaction time in order to improve the productivity of the vinyl chloride resin.
염화비닐 중합체의 중합 반응시간을 단축시키는 방법으로 미국특허공개 제2005-0054795호는 반감기가 빠른 개시제를 반응 중간에 투입하는 방법을 기술하고 있다. 그러나, 상기의 방법에 의해 반감기가 빠른 개시제가 반응 중간에 투입되기 때문에 국부적으로 발생되는 반응열에 의해 불균일한 내부 입자 형태가 만들어져서 휘시아이(Fish-eye)가 증가될 수 있는 문제점이 있다.As a method of shortening the polymerization reaction time of a vinyl chloride polymer, US Patent Publication No. 2005-0054795 describes a method of introducing an initiator having a short half-life in the middle of a reaction. However, since the initiator having a short half-life is introduced in the middle of the reaction by the above method, a non-uniform internal particle form is formed by locally generated heat of reaction, thereby increasing the fish-eye.
또한, 일본특허공개 제1998-338701호는 유용성 개시제와 수용성 개시제를 중합 초기 병용하여 중합 반응 시간을 단축하는 방법을 개시하고 있으며, 미국특허 제6,861,488호는 유용성 중합 개시제와 t-amylperoxyneodecanoate와 퍼옥사이드계 중합 개시제를 사용하여 현탁중합 하에서 초기 변색을 막는 염화비닐 중합체의 생산방법에 대하여 기술하고 있다. 그러나, 상기의 방법들에 의한 반응 시간 단축 효과는 어느 정도 기대할 수 있지만, 염화비닐 중합체 제조 시, 염화비닐 단량체는 유용성의 성질을 지닌 물질로, 중합 초기에는 염화비닐 단량체와 중합수인 탈이온수와 대부분 상분리된 상태로 존재하다가 중합 반응이 진행되어 중합 전환율 60% 이상의 중합 후기에는 중합체로 전환되지 않은 미반응 염화비닐 단량체의 대부분이 수상에 녹아 존재하므로, 반응 초기에 유용성 개시제와 함께 사용된 수용성 개시제에 의한 반응 시간 단축 효과는 크게 나타나지 않을 뿐만 아니라, 중합 반응 초기 수용성 개시제에 의해 생성된 미세입자에 의한 휘시아이가 발생하는 문제점이 남아있다.In addition, Japanese Patent Application Laid-Open No. 1998-338701 discloses a method of shortening the polymerization reaction time by using an oil-soluble initiator and a water-soluble initiator in the initial stage of polymerization, and US Pat. No. 6,861,488 discloses an oil-soluble polymerization initiator, t-amylperoxyneodecanoate, and a peroxide type A method for producing a vinyl chloride polymer that prevents initial discoloration under suspension polymerization using a polymerization initiator has been described. However, although the reaction time shortening effect by the above methods can be expected to some extent, in the production of vinyl chloride polymer, vinyl chloride monomer is a substance having useful properties, and in the initial stage of polymerization, vinyl chloride monomer and deionized water, which is polymerized water, Since most of the unreacted vinyl chloride monomer which is present in the phase separated state and then the polymerization reaction proceeds and the polymerization conversion rate of 60% or more is not converted into the polymer is dissolved in the aqueous phase, the water-soluble initiator used together with the oil-soluble initiator at the beginning of the reaction. In addition, the effect of shortening the reaction time is not large, and there remains a problem in which the whiskey is generated by the fine particles generated by the initial water-soluble initiator in the polymerization reaction.
이와 같이, 상기의 방법들은 중합 생산성을 개선하고자 하는 측면에서 제안된 방법들이나, 제조되는 중합체의 휘시아이나 초기착색성 등과 같은 품질이 떨어지는 문제가 발생할 수 있고, 나아가 제조된 중합체의 가공성을 담보할 수 없는 문제가 있다.As described above, the above methods may cause problems inferior in quality, such as the proposed methods in terms of improving the polymerization productivity, such as the fiscia or initial colorability of the polymer to be produced, and furthermore cannot guarantee the processability of the produced polymer. there is a problem.
따라서, 중합 생산성을 향상시키면서도 중합체의 휘시아이, 초기착색성과 같은 품질이 함께 개선되고, 중합체의 가공성 향상시킬 수 있는 염화비닐 중합체의 제조방법과 염화비닐 중합체에 대한 연구가 필요한 실정이다.Accordingly, there is a need for a method for preparing a vinyl chloride polymer and a vinyl chloride polymer that can improve the quality of the polymer such as whiskey and initial coloring property while improving the polymerization productivity.
(선행기술문헌)(Prior art document)
(특허문헌 1) US 2005-008027A(Patent Document 1) US 2005-008027A
(특허문헌 2) US 2005-0054795A(Patent Document 2) US 2005-0054795A
(특허문헌 3) JP 1998-338701A(Patent Document 3) JP 1998-338701A
본 발명의 목적은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 염화비닐 중합체 제조 시 중합 생산성이 낮다는 문제를 해결하면서,반응물의 미용해 입자로 인한 휘시아이와 초기 착색성이 저하되는 문제를 해결하고, 우수한 가공성을 가지는 염화비닐 중합체를 제조하는 방법을 제공하는 것이며, 구체적으로 예비 중합 반응기에서 5 내지 20%의 전환율을 갖는 염화비닐 중합 시드를 제조하고, 상기 염화비닐 중합 시드를 본 중합 반응기로 이송한 후 예비중합과 본 중합의 중합 온도 차이를 조절하여 염화비닐 중합체를 중합하는 제조방법을 제공하는 것이다.An object of the present invention was devised to solve the problems of the prior art, while solving the problem of low polymerization productivity during the production of vinyl chloride polymer, solving the problem of lowering the whiskey and initial colorability due to undissolved particles of the reactants To provide a method for producing a vinyl chloride polymer having excellent processability, specifically to prepare a vinyl chloride polymerization seed having a conversion rate of 5 to 20% in a prepolymerization reactor, the vinyl chloride polymerization seed to the present polymerization reactor It is to provide a production method for polymerizing vinyl chloride polymer by controlling the difference in the polymerization temperature of the pre-polymerization and the main polymerization after the transfer.
본 발명의 다른 목적은 다분산도가 2.0 내지 2.3이고, 기공률이 60 %이상이며, 평균 기공 직경이 300 nm 이상인 염화비닐 중합체로써 휘시아이 및 초기 착색성과 같은 중합체의 품질이 개선되고 가공성이 우수한 염화비닐 중합체를 제공하는 것이다.Another object of the present invention is a vinyl chloride polymer having a polydispersity of 2.0 to 2.3, a porosity of 60% or more, and an average pore diameter of 300 nm or more. To provide a vinyl polymer.
상기의 과제를 해결하기 위하여, 본 발명은 다분산도(PDI)가 2.0 내지 2.3 이고, 기공률(porosity)이 60 % 이상이며, 평균 기공 직경이 300 nm 이상인 염화비닐 중합체를 제공한다.In order to solve the above problems, the present invention provides a vinyl chloride polymer having a polydispersity (PDI) of 2.0 to 2.3, a porosity of 60% or more, and an average pore diameter of 300 nm or more.
또한, 본 발명은 예비 중합 반응기에서 제1염화비닐 단량체를 중합 전환율이 5 내지 20 %가 되도록 중합하여 염화비닐 중합 시드를 제조하는 단계(단계 1); 및 상기 염화비닐 중합 시드를 본 중합 반응기로 이송하고, 상기 본 중합 반응기에 투입되는 제2염화비닐 단량체와 중합하여 염화비닐 중합체를 제조하는 단계 (단계 2);를 포함하며, 상기 단계 1 및 단계 2의 중합온도의 차이는 5 내지 15 ℃이며, 상기 염화비닐 중합체는 염화비닐 단독 중합체인 것인 염화비닐 중합체 제조방법을 제공한다.In addition, the present invention comprises the steps of polymerizing the first vinyl chloride monomer in a prepolymerization reactor so that the polymerization conversion rate is 5 to 20% to prepare a vinyl chloride polymerization seed (step 1); And transferring the vinyl chloride polymerization seed to the present polymerization reactor and polymerizing with the second vinyl chloride monomer introduced into the present polymerization reactor to prepare a vinyl chloride polymer (step 2). The difference in the polymerization temperature of 2 is 5 to 15 ℃, the vinyl chloride polymer provides a vinyl chloride polymer manufacturing method is a vinyl chloride homopolymer.
본 발명의 일 실시예에 따른 염화비닐 중합체는 다분산도가 2.0 내지 2.3을 만족하고, 기공률이 60 % 이상인 것을 만족함으로써 가소제 등과 배합 시 용융점도가 낮아 가공성이 우수하고, 가소제 흡수율이 뛰어나 휘시아이 품질 및 초기 착색성 품질이 개선되는 효과가 있다.The vinyl chloride polymer according to an embodiment of the present invention satisfies the polydispersity of 2.0 to 2.3 and satisfies the porosity of 60% or more, thereby lowering the melt viscosity when blended with a plasticizer and the like, and having excellent workability and excellent plasticizer absorption rate. There is an effect that the quality and initial coloring quality are improved.
또한, 본 발명의 일 실시예에 따른 염화비닐 중합체의 제조방법은 본 중합 전 예비 중합을 통해 중합 전환율이 5 내지 20 %가 되도록 중합하여 염화비닐 중합 시드를 제조하고, 상기 중합 시드를 이용하여 본 중합을 진행하며, 이 때 상기 중합 시드의 전환율 및 예비 중합과 본 중합의 중합 온도 차이를 조절함으로써 중합 반응 시간을 단축하여 중합 생산성을 현저하게 개선시키는 것과 동시에 제조되는 중합체의 가공성, 휘시아이, 초기 착색성 품질이 우수한 효과가 있다.In addition, the method for producing a vinyl chloride polymer according to an embodiment of the present invention is to polymerize such that the polymerization conversion rate is 5 to 20% through prepolymerization before the present polymerization to prepare a vinyl chloride polymerization seed, using the polymerization seed The polymerization is carried out, and at this time, by controlling the conversion rate of the polymerization seed and the difference in the polymerization temperature between the preliminary polymerization and the main polymerization, the polymerization reaction time is shortened to significantly improve the polymerization productivity, and at the same time, the workability of the polymer to be prepared The coloring property is excellent in effect.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명의 일 실시예에 따르면 다분산도(Polydispersity index, PDI)가 2.0 내지 2.3 이며, 중합체의 기공률(porosity)이 60 % 이상인 염화비닐 중합체를 제공한다.According to an embodiment of the present invention, a polydispersity index (PDI) of 2.0 to 2.3 and a porosity of the polymer (porosity) to provide a vinyl chloride polymer.
또한, 본 발명의 일 실시예에 따른 염화비닐 중합체의 평균 기공 직경(average pore diameter, 4V/A)은 300 nm 이상인 것일 수 있다.In addition, the average pore diameter (4 V / A) of the vinyl chloride polymer according to an embodiment of the present invention may be 300 nm or more.
본 발명에서 "염화비닐 중합체"는 염화비닐 단량체를 중합하여 생성된 화합물을 나타내는 것으로 염화비닐 단량체로부터 유도된 중합체 사슬을 의미하는 것일 수 있다.In the present invention, "vinyl chloride polymer" refers to a compound produced by polymerizing a vinyl chloride monomer, and may mean a polymer chain derived from a vinyl chloride monomer.
또한 본 발명에서 "다분산도(Polydispersity index, PDI)"는 분자랑 분포의 넓이를 나타내는 기준이 되는 지표로써, 수평균분자량(Mn)에 대한 중량평균분자량(Mw)의 비(Mw/Mn)을 나타내는 값이다. 즉, 상기 다분산도는 중량평균분자량과 수평균분자량을 측정한 후 중량평균분자량을 수평균분자량으로 나누어 구한 값이다. 이 때 본 발명에서 수평균 분자량 및 중량평균 분자량은 염화비닐 중합체 시료 0.02g을 테트라하이드로푸란(THF) 20ml에 넣고 24시간동안 녹여 0.45um 필터로 거른 후 GPC 기기(Waters 2414 Refractive Index Detector, Waters 1525 Binary HPLC Pump 및 Waters 717 Autosampler, Waters 社) 를 사용하여 25 ℃, 상압(1atm)의 조건에서 측정한 후 표준시료(Styrene 표준분자량(g/mol) 1320, 2750, 6760, 19700, 50600, 124000, 279000, 768000, 1540000, 2350000)를 사용하여 검량선을 그린 후 환산하여 나타낸 것이다.In addition, in the present invention, the "polydispersity index (PDI)" is an index indicating the width of the molecular weight distribution, and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) The value representing. That is, the polydispersity is obtained by dividing the weight average molecular weight by the number average molecular weight after measuring the weight average molecular weight and the number average molecular weight. In the present invention, the number average molecular weight and the weight average molecular weight are 0.02 g of a vinyl chloride polymer sample in 20 ml of tetrahydrofuran (THF), dissolved for 24 hours, and filtered with a 0.45 um filter, followed by a GPC device (Waters 2414 Refractive Index Detector, Waters 1525). Standard sample (Styrene standard molecular weight (g / mol) 1320, 2750, 6760, 19700, 50600, 124000, measured using Binary HPLC Pump and Waters 717 Autosampler, Waters Co., Ltd.) at 25 ° C and atmospheric pressure (1atm). 279000, 768000, 1540000, 2350000) are used to draw the calibration curve and convert it.
또한, 본 발명의 평균 기공 직경(average pore diameter, 4V/A) 및 기공률(porosity)은 상온(23±2 ℃), 상압(1atm)의 조건에서 수은 기공률 분석기, 구체적으로는 Auto Pore IV 9520 (Micromeritics 社)를 사용하여 염화비닐 중합체 입자 내로 침입한 수은의 양으로부터 표면기공(Pinter), 개기공(accessible intravoid, Pacc) 및 폐기공(inaccessible intravoid, Pinacc)을 각각 측정하고, 그 측정 결과로부터 도출된 값이다. 이 때, 기공률(%)은 부피 기준 백분율을 나타낸 것이다.In addition, the average pore diameter (4V / A) and porosity (porosity) of the present invention is a mercury porosity analyzer at room temperature (23 ± 2 ℃), atmospheric pressure (1 atm), specifically Auto Pore IV 9520 ( Using micromeritics, surface pore, accessible intravoid (Pacc) and inaccessible intravoid (Pinacc) were respectively measured from the amount of mercury invaded into the vinyl chloride polymer particles and derived from the measurement results. Value. At this time, the porosity (%) represents the percentage by volume.
본 발명에서와 같이 다분산도가 2.0 내지 2.3 이면서, 기공률이 60 % 이상이고, 평균 기공 직경이 300 nm 이상인 염화비닐 중합체는 가공성이 우수하고, 휘시아이 품질 및 초기 착색성 저하 문제가 개선될 수 있다.Polyvinyl chloride polymer having a polydispersity of 2.0 to 2.3 and a porosity of 60% or more and an average pore diameter of 300 nm or more, as in the present invention, is excellent in processability, and problems of deterioration in quality and initial colorability of the fish oil may be improved. .
구체적으로, 상기 다분산도가 2.0 내지 2.3인 염화비닐 중합체는 가공성이 우수하면서도 기계적 강도가 양호하다. 이와 달리, 상기 다분산도가 2.0 미만인 경우에는 분자량 분포가 좁기 때문에 가공 시 가공성이 악화되는 문제가 발생할 수 있고, 상기 다분산도가 2.3을 초과하는 경우에는 분자량 분포가 너무 넓어 가소제 및 가공 부원료 등과 배합시 기계적 물성이 저하될 수 있다.Specifically, the vinyl chloride polymer having a polydispersity of 2.0 to 2.3 has excellent workability and good mechanical strength. On the other hand, if the polydispersity is less than 2.0, there is a problem that the machinability deteriorates during processing because the molecular weight distribution is narrow, and if the polydispersity exceeds 2.3, the molecular weight distribution is too wide, such as plasticizers and processed raw materials, etc. When blending, mechanical properties may be reduced.
또한, 기공률이 60 % 미만인 경우에는 기공률이 너무 낮아 가소제 및 가공 시 첨가되는 부원료의 흡수율이 떨어지는 문제가 발생할 수 있으며, 이에 따라 가공 시 배합물의 균일한 분산이 이루어지지 않아 휘시아이 품질 및 초기 착색성 품질이 악화되는 문제가 발생할 수 있다. 또한, 평균 기공 직경 역시 300 nm 미만으로 직경이 너무 작은 경우에는 가소제 및 가공 부원료의 흡수율이 떨어질 수 있기 때문에 상기와 동일한 문제가 발생할 수 있다.In addition, when the porosity is less than 60%, the porosity may be too low, so that the absorption rate of the plasticizer and the subsidiary materials added during processing may be lowered. As a result, uniform dispersion of the formulation may not be achieved during processing. This worsening problem may occur. In addition, when the average pore diameter is also less than 300 nm, the same problem may occur because the absorption rate of the plasticizer and the processing sub-material may be reduced when the diameter is too small.
여기서 휘시아이(Fish-eye)는 반응물의 미용해 입자로 발생하는 백색 투명한 입자를 말하는 것으로, 중합체의 돌기 품질을 확인할 수 있는 지표이다. 휘시아이가 많을수록 중합체의 품질이 떨어지는 것을 의미한다.Here, fish-eye refers to white transparent particles generated as undissolved particles of a reactant, and is an index for confirming protrusion quality of a polymer. More whiskey means less polymer quality.
구체적으로, 본 발명의 일 실시예에 따르면, 염화비닐 중합체는 상기 다분산도를 만족하면서 기공률은 60 내지 75 % 일 수 있으며, 보다 바람직하게는 기공률이 60 내지 70 %일 수 있다. 또한, 평균 기공 직경은 300 내지 600 nm 일 수 있으며, 보다 바람직하게는 평균 기공 직경이 300 내지 500 nm일 수 있다. 상기 수치범위를 충족하는 경우 전술한 배합 물성이 더욱 극대화될 수 있다. Specifically, according to an embodiment of the present invention, the vinyl chloride polymer may satisfy the polydispersity, and the porosity may be 60 to 75%, and more preferably, the porosity may be 60 to 70%. In addition, the average pore diameter may be 300 to 600 nm, more preferably the average pore diameter may be 300 to 500 nm. When the numerical range is satisfied, the above-described compounding properties may be further maximized.
또한, 본 발명의 일 실시예에 따른 염화비닐 중합체는 중합도가 700 내지 1300, 바람직하게는 1000 내지 1200일 수 있다. 본 발명에서 "중합도(degree of polymerization)"는 중합체를 구성하는 반복된 단위(단위체 또는 단량체)의 수를 나타내는 것으로, ASTM D1243-79에 의거하여 측정한 값일 수 있다.In addition, the vinyl chloride polymer according to an embodiment of the present invention may have a degree of polymerization of 700 to 1300, preferably 1000 to 1200. In the present invention, "degree of polymerization" indicates the number of repeated units (units or monomers) constituting the polymer and may be a value measured according to ASTM D1243-79.
또한, 본 발명의 일 실시예에 따른 염화비닐 중합체는 단독 중합체(homopolymer)일 수 있다. 단독 중합체는 한 종류의 단량체로 형성된 중합체로 본 발명의 염화비닐 중합체는 염화비닐 단량체만을 사용하여 중합한 중합체일 수 있다.In addition, the vinyl chloride polymer according to an embodiment of the present invention may be a homopolymer. The homopolymer is a polymer formed of one type of monomer, and the vinyl chloride polymer of the present invention may be a polymer polymerized using only vinyl chloride monomer.
상기한 바와 같은 물성을 발현하는 본 발명의 일 실시예에 따른 염화비닐 중합체는 시드 중합 방법을 적용하여 제조할 수 있다. 이 때, 예비 중합 반응기에서 중합 전환율이 5 내지 20 %가 되도록 중합하여 염화비닐 중합 시드를 제조할 수 있고, 시드를 중합하는 예비 중합과 시드를 이용하여 최종 염화비닐 중합체를 중합하는 본 중합의 중합온도의 차이는 5 내지 15 ℃일 수 있다. 이에 따라, 본 발명의 다른 일 실시예에 따르면 상기 염화비닐 중합체의 제조방법이 제공된다.Vinyl chloride polymer according to an embodiment of the present invention expressing the physical properties as described above may be prepared by applying a seed polymerization method. At this time, the vinyl chloride polymerization seed may be prepared by polymerization so as to have a polymerization conversion ratio of 5 to 20% in a prepolymerization reactor, and the polymerization of the main polymerization which polymerizes the final vinyl chloride polymer using the prepolymerization and the seed polymerization. The difference in temperature may be 5 to 15 ° C. Accordingly, according to another embodiment of the present invention, a method for preparing the vinyl chloride polymer is provided.
즉, 본 발명의 일 실시예에 따른 염화비닐 중합체의 제조방법은, 예비 중합 반응기에서 제1염화비닐 단량체를 중합 전환율이 5 내지 20 %가 되도록 염화비닐 중합 시드를 제조하는 단계(단계 1); 및 상기 염화비닐 중합 시드를 본 중합 반응기로 이송하고, 상기 본 중합 반응기에 투입되는 제2염화비닐 단량체와 중합하여 염화비닐 중합체를 제조하는 단계 (단계 2);를 포함할 수 있으며, 이 때, 상기 단계 1 및 단계 2의 중합온도의 차이는 5 내지 15 ℃이며, 상기 염화비닐 중합체는 염화비닐 단독 중합체인 것일 수 있다.That is, the method for producing a vinyl chloride polymer according to an embodiment of the present invention comprises the steps of preparing a vinyl chloride polymerization seed in a prepolymerization reactor so that the polymerization conversion rate is 5 to 20% (step 1); And transferring the vinyl chloride polymerization seed to the present polymerization reactor and polymerizing with the second vinyl chloride monomer introduced into the present polymerization reactor to prepare a vinyl chloride polymer (step 2). The difference in the polymerization temperature of the step 1 and step 2 is 5 to 15 ℃, the vinyl chloride polymer may be a vinyl chloride homopolymer.
또한, 본 발명의 일 실시예에 따른 상기의 염화비닐 중합체의 제조방법은 전술한 염화비닐 중합체, 구체적으로 다분산도가 2.0 내지 2.3이고, 기공률이 60 % 이상인 염화비닐 중합체를 제조하는 방법일 수 있다. 또는, 다분산도가 2.0 내지 2.3이고, 기공률이 60 % 이상이면서 평균 기공 직경이 300 nm 이상인 염화비닐 중합체를 제조하는 방법일 수 있다.In addition, the method of manufacturing the vinyl chloride polymer according to an embodiment of the present invention may be a method of preparing the vinyl chloride polymer, specifically, a polyvinyl chloride polymer having a polydispersity of 2.0 to 2.3 and a porosity of 60% or more. have. Alternatively, the polydispersity may be a method of preparing a vinyl chloride polymer having a polydispersity of 2.0 to 2.3, a porosity of 60% or more, and an average pore diameter of 300 nm or more.
또한, 상기 단계 1 및 단계 2의 중합은 현탁 중합으로 진행될 수 있으며, 상기 현탁 중합은 보호콜로이드 조제 및 중합 개시제의 존재 하에 이루어지는 것을 의미할 수 있다. 즉, 본 발명의 일 실시예에 따른 염화비닐 중합체의 제조방법은 현탁 시드 중합으로 중합체를 제조하는 것일 수 있다.In addition, the polymerization of the steps 1 and 2 may be carried out by a suspension polymerization, the suspension polymerization may mean that is carried out in the presence of a protective colloid preparation and a polymerization initiator. That is, the manufacturing method of the vinyl chloride polymer according to an embodiment of the present invention may be to prepare the polymer by suspension seed polymerization.
상기와 같이 현탁 중합 시드를 이용한 염화비닐 중합체 제조방법은 본 중합에 앞서 예비 중합 반응기에서 염화비닐 중합 시드를 중합하고, 상기 염화비닐 중합 시드를 본 중합 반응기에 이송한 후 본 중합 반응기에 투입되는 염화비닐 단량체와 현탁 중합 반응을 진행하므로 중합 반응 시간을 단축하여 중합 생산성을 획기적으로 향상시키고, 반응물의 미용해 입자로 인해 발생하는 휘시아이를 차단하고 초기 착색성을 개선할 수 있다. 또한, 본 발명에서 특정한 중합 전환율 및 예비 중합과 본 중합의 온도 차이를 만족하는 경우 상기 개선 효과뿐 아니라 제조되는 중합체의 다분산도가 향상되어 가공성이 개선되는 효과가 있다.As described above, in the vinyl chloride polymer production method using the suspension polymerization seed, the vinyl chloride polymerization seed is polymerized in the preliminary polymerization reactor prior to the main polymerization, the vinyl chloride polymerization seed is transferred to the polymerization reactor, and the chloride is introduced into the polymerization reactor. Since the suspension polymerization reaction with the vinyl monomer proceeds, it is possible to shorten the polymerization reaction time to significantly improve the polymerization productivity, to block the whiskey generated by the undissolved particles of the reactants and to improve the initial coloring property. In addition, when the specific polymerization conversion rate and the temperature difference between the prepolymerization and the main polymerization are satisfied in the present invention, not only the improvement effect but also the polydispersity of the polymer to be produced is improved, thereby improving workability.
이하, 각 단계 별로 상세히 설명한다.Hereinafter, each step will be described in detail.
단계 1Step 1
본 발명의 일 실시예에 따른 단계 1은 예비 중합 반응기를 사용하여 염화비닐 중합 시드를 제조하는 단계이며, 구체적으로 예비 중합 반응기에서 제1염화비닐 단량체를 중합 전환율이 5 내지 20 %가 되도록 중합하여 염화비닐 중합 시드를 제조하는 것이다. 상기 단계 1은 예비 중합 단계를 의미하는 것일 수 있다.Step 1 according to an embodiment of the present invention is to prepare a vinyl chloride polymerization seed using a prepolymerization reactor, specifically, by polymerizing the first vinyl chloride monomer in a prepolymerization reactor so that the polymerization conversion rate is 5 to 20%. A vinyl chloride polymerized seed is prepared. Step 1 may mean a prepolymerization step.
상기 단계 1의 염화비닐 중합 시드는 중합 개시제 및 보호콜로이드 조제의 존재 하에 이루어지는 현탁 중합 방법으로 제조되는 것일 수 있다. 또한, 상기 염화비닐 중합 시드는 염화비닐 단량체(vinyl chloride monomer;VCM)에 녹지 않으며, 시드 입자의 크기는 100 내지 120 ㎛이다.The vinyl chloride polymerization seed of step 1 may be prepared by a suspension polymerization method made in the presence of a polymerization initiator and a protective colloid preparation. In addition, the vinyl chloride polymerization seed is not dissolved in the vinyl chloride monomer (VCM), the size of the seed particles is 100 to 120 ㎛.
예비 중합 반응기를 사용하여 중합전환율이 5 내지 20%이 되도록 중합하여 염화비닐 중합 시드를 제조하는 것이 바람직하나, 더욱 바람직하게는 중합 전환율이 5 내지 15%, 보다 더 바람직하게는 중합 전환율이 10 내지 15%이 되도록 중합하여 염화비닐 중합 시드를 제조하는 것이 바람직하다. It is preferable to prepare a vinyl chloride polymerization seed by polymerizing the polymerization conversion rate to 5 to 20% using a prepolymerization reactor, but more preferably 5 to 15%, even more preferably, the polymerization conversion rate is 10 to It is preferred to polymerize to 15% to produce a vinyl chloride polymerized seed.
본 발명에서 중합 전환율은 가스 크로마토그래피를 장착한 부탄 트레이서(Butane tracer)를 이용하여 측정한 값일 수 있다. 구체적으로 일정 중합 조건에서 시간에 따른 염화비닐 단량체와 부탄과의 비율에 따른 중합전환율 곡선을 중합 조건 때마다 작성해 두고, 이를 근거로 하여 중합 조건에 따른 중합 전환율을 측정한 값일 수 있다.In the present invention, the polymerization conversion rate may be a value measured using a butane tracer equipped with gas chromatography. Specifically, the polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions is prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions may be measured based on this.
단계 1)에서 상기 범위 미만의 중합 전환율이 되도록 염화비닐 중합시드를 제조하는 경우에는, 중합 시드의 중합이 충분히 이루어지지 못해 본 중합 반응기로 투입되는 중합 시드의 양이 너무 적기 때문에 중합 생산성 증대 효과가 미미하며, 상기 범위를 초과하는 중합 전환율이 되도록 염화비닐 중합시드를 제조하는 경우에는 중합 시드의 성장이 어느 정도 이루어지고 안정성이 커져있기 때문에 본 중합 반응기에서 투입되는 염화비닐 단량체와 합일/재분산이 일어나기 힘들어 중합체 입자의 내부 형태 조절 및 중합체의 분자량의 조절이 어려워질 수 있고, 이로 인해 다분산도, 기공률, 평균 기공 직경 등을 조절하기 어려워 휘시아이 및 초기 착색성 등의 품질이 안정적인 고품질의 염화비닐 중합체 제조가 어려울 수 있다. 또한, 가공성 역시 떨어지는 문제가 발생할 수 있다.In the case of preparing the vinyl chloride polymerized seed so as to have a polymerization conversion ratio of less than the above range in step 1), the polymerization productivity can be increased because the polymerization of the polymerized seed is not sufficiently performed and the amount of polymerized seed introduced into the polymerization reactor is too small. In the case of producing a vinyl chloride polymerization seed so as to have a polymerization conversion ratio exceeding the above range, since the growth of the polymerization seed is made to some extent and the stability is increased, the unity / redispersion of the vinyl chloride monomer introduced in the polymerization reactor It is hard to occur, which makes it difficult to control the internal shape of the polymer particles and the molecular weight of the polymer, which makes it difficult to control polydispersity, porosity, average pore diameter, etc. Polymer production can be difficult. In addition, workability may also be degraded.
상기 단계 1)의 중합은 통상적인 현탁 중합에 의한 염화비닐 중합체의 중합 온도에서 이루어질 수 있으며, 구체적으로는, 상기 현탁 중합은 30 내지 80 ℃의 온도, 바람직하게는 45 내지 75 ℃의 온도에서 이루어질 수 있다. 상기 현탁중합 시의 온도는 상기 범위 내에서 목적하는 중합도 및 중합시간(생산성)에 따라 적절히 조절할 수 있다. 예컨대, 중합도 측면에서는 목적하는 중합도가 높을수록 상기 온도는 낮아질 수 있으며, 목적하는 중합도가 낮을수록 상기 온도는 높아질 수 있다.The polymerization of step 1) may be carried out at a polymerization temperature of the vinyl chloride polymer by a conventional suspension polymerization, specifically, the suspension polymerization is carried out at a temperature of 30 to 80 ℃, preferably at a temperature of 45 to 75 ℃ Can be. The temperature at the time of suspension polymerization can be suitably adjusted according to the desired degree of polymerization and polymerization time (productivity) within the said range. For example, in view of the degree of polymerization, the higher the degree of polymerization, the lower the temperature, and the lower the degree of polymerization, the higher the temperature.
또한, 상기 현탁 중합 중 교반속도는 염화비닐 중합체를 제조하기 위해 통상적으로 이용되는 속도일 수 있으며, 목적하는 염화비닐 중합체의 물성이나, 반응기의 크기, 교반기의 모양 및 종류에 따라 조절 가능하다. 따라서 특별히 제한되지 않지만, 예컨대 본 발명의 일례에 있어서, 1m3의 반응기에서 상기 교반 속도는 180 내지 250 rpm 미만일 수 있다. In addition, the stirring speed during the suspension polymerization may be a speed generally used to prepare the vinyl chloride polymer, and may be adjusted according to the properties of the desired vinyl chloride polymer, the size of the reactor, and the shape and type of the stirrer. Therefore, although not particularly limited, for example, in one example of the present invention, the stirring speed in the reactor of 1m 3 may be less than 180 to 250 rpm.
본 발명의 일 실시예에 따른 상기 단계 1)은 구체적으로 중합수에 보호콜로이드 조제, 제1염화비닐 단량체 및 중합 개시제를 혼합하여 반응 혼합물을 제조하는 것을 포함한다. 여기에서 제1염화비닐 단량체는 염화비닐 단량체를 의미하는 것으로, 후술하는 제2염화비닐 단량체와 동일한 것일 수 있고, 투입순서를 구분하기 위해 번호를 특정한 것일 수 있다. Step 1) according to an embodiment of the present invention specifically includes preparing a reaction mixture by mixing a protective colloid preparation, a first vinyl chloride monomer and a polymerization initiator in the polymerization water. Herein, the first vinyl chloride monomer refers to a vinyl chloride monomer, and may be the same as the second vinyl chloride monomer, which will be described later, or a number may be specified to distinguish the order of input.
이 때, 상기 중합수는 중합 용매로서, 증류수 또는 탈이온수 등 다양한 종류의 중합수가 사용될 수 있으며, 바람직하게는 탈이온수를 사용할 수 있다. 상기 중합수의 온도는 현탁 중합이 이루어지는 온도를 고려하여 적절히 선택될 수 있고, 상기 중합수의 양도 중합 조건에 따라 적절히 사용할 수 있으며, 예컨대 상기 단계 1) 및 단계 2)의 중합수의 전체 함량은 상기 제1 및 제2염화비닐 단량체 총 100 중량부에 대하여 70 중량부 이상으로 사용할 수 있다.In this case, as the polymerization solvent, various kinds of polymerization water, such as distilled water or deionized water, may be used as the polymerization solvent, and deionized water may be preferably used. The temperature of the polymerization water may be appropriately selected in consideration of the temperature at which the suspension polymerization is performed, and the amount of the polymerization water may be appropriately used according to the polymerization conditions, for example, the total content of the polymerization water of steps 1) and 2) is 70 parts by weight or more may be used based on 100 parts by weight of the total of the first and second vinyl chloride monomers.
상기 보호콜로이드 조제는 염화비닐 중합체의 제조 공정에 있어서 염화비닐 단량체의 안정성을 유지시켜 주고, 목표하는 정도의 염화비닐 중합체의 평균입경, 겉보기 비중(B.D.), 입경분포, 및 가소제 흡수율(CPA) 등의 물성을 얻기 위한 목적으로 사용될 수 있으며, 상기 보호콜로이드 조제로는, 예컨대 수화도가 30 내지 90 %이고, 상온에서 4% 수용액의 점도가 5 내지 100 cps인 비닐알코올계 수지, 메톡시기가 15 내지 40 중량%이고 수산화프로필기가 3 내지 20 중량%이며, 23±5℃에서 측정한 2% 수용액의 점도가 10 내지 20,000 cps인 셀룰로오스 및 불포화 유기산으로 이루어진 군으로부터 선택된 1종 이상을 들 수 있고, 바람직하게는 수화도가 30 내지 90 %이고, 상온에서 4% 수용액의 점도가 5 내지 100 cps인 비닐알코올계 수지, 메톡시기가 15 내지 40 중량%이고 수산화프로필기가 3 내지 20 중량%이며 상온(20±5℃)에서 측정한 2% 수용액의 점도가 10 내지 20,000 cps인 셀룰로오스, 또는 이들의 혼합물일 수 있다. 이 때, 수화도의 단위 %는 중량%로 해석될 수 있다.The protective colloid preparation maintains the stability of the vinyl chloride monomer in the manufacturing process of the vinyl chloride polymer, and the average particle diameter, apparent specific gravity (BD), particle size distribution, plasticizer absorption rate (CPA), etc. of the desired degree. It may be used for the purpose of obtaining the physical properties of the, as the protective colloid preparation, for example, a vinyl alcohol-based resin having a hydration degree of 30 to 90%, a viscosity of 4% aqueous solution at room temperature of 5 to 100 cps, methoxy group 15 And at least one selected from the group consisting of cellulose and an unsaturated organic acid having a viscosity of 2 to 40% by weight, 3 to 20% by weight of propyl group, and a viscosity of 2 to 20,000 cps measured at 23 ± 5 ° C., Preferably, the degree of hydration is 30 to 90%, the vinyl alcohol resin having a viscosity of 5 to 100 cps of 4% aqueous solution at room temperature, 15 to 40% by weight of methoxy group and hydroxide It may be a cellulose of 3 to 20% by weight and a viscosity of 10% to 20,000 cps of a 2% aqueous solution measured at room temperature (20 ± 5 ° C.), or a mixture thereof. At this time, the unit% of the degree of hydration can be interpreted as the weight%.
또한, 상기 단계 1) 및 단계 2)의 보호콜로이드 조제 총 함량은 제1 및 제2염화비닐 단량체 총 100 중량부 기준으로 0.03 내지 5.0 중량부일 수 있고, 바람직하게는 0.05 내지 2.5 중량부일 수 있다. 상기 보호콜로이드 조제의 총 사용량이 0.03 중량부 미만이면, 액적 안정성이 떨어지고, 중합 시드 및 최종 중합되는 염화비닐 중합체의 입자 크기가 지나치게 증가하여 휘시아이가 발생할 우려가 있고, 5.0 중량부를 초과하면 미세입자들의 증가로 인해 초기 착색성 저하의 우려가 있다.In addition, the total content of the protective colloid preparation of step 1) and step 2) may be 0.03 to 5.0 parts by weight, preferably 0.05 to 2.5 parts by weight, based on 100 parts by weight of the first and second vinyl chloride monomers in total. When the total amount of the protective colloid preparation is less than 0.03 parts by weight, droplet stability is lowered, and the particle size of the polymerized seed and the final polymerized vinyl chloride polymer may be excessively increased to cause whiskey, and when it exceeds 5.0 parts by weight, the fine particles There is a fear of lowering the initial colorability due to the increase of these.
한편, 본 발명의 일례에 있어서, 상기 보호콜로이드 조제는 수화도가 다른 2 이상의 비닐알코올계 수지의 혼합물을 포함할 수 있고, 예컨대 수화도가 50 % 초과 90 % 이하인 비닐알코올계 수지(고수화도 수지) 및 수화도가 30 % 내지 50 %인 비닐알코올계 수지(저 수화도 수지)의 혼합물을 포함할 수 있다.Meanwhile, in one example of the present invention, the protective colloid preparation may include a mixture of two or more vinyl alcohol resins having different degrees of hydration, and for example, vinyl alcohol resins having a degree of hydration of more than 50% and 90% or less (high degree of water resin). ) And a mixture of vinyl alcohol-based resin (low degree of hydration resin) having a degree of hydration of 30% to 50%.
또한, 상기 보호콜로이드 조제는 상기 비닐알코올계 수지 외에 상기 셀룰로오스를 함께 포함하는 것일 수 있고, 이 때 상기 셀룰로오스의 총 함량은 제1및 제2염화비닐 단량체 총 100 중량부 기준으로 0.001 내지 0.5 중량부의 양으로 포함될 수 있으며, 상기 셀룰로오스로는 메틸셀룰로오스, 하이드록시에틸셀룰로오스, 또는 하이드록시프로필메틸셀룰로오스 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 하이드록시프로필메틸셀룰로오스일 수 있으며, 상기 셀룰로오스는 보다 구체적으로 메톡시기가 15 내지 40 중량%이고 수산화프로필기가 3 내지 20 중량%이며, 20±5℃에서 측정한 2% 수용액의 점도가 10 내지 20,000 cps인 것일 수 있다.In addition, the protective colloid preparation may be one containing the cellulose in addition to the vinyl alcohol-based resin, wherein the total content of the cellulose is 0.001 to 0.5 parts by weight based on a total of 100 parts by weight of the first and second vinyl chloride monomer It may be included in an amount, the cellulose may be methyl cellulose, hydroxyethyl cellulose, or hydroxypropyl methyl cellulose, and the like, any one or a mixture of two or more thereof may be used. Among these, hydroxypropyl methyl cellulose may be used. More specifically, the cellulose may have a methoxy group of 15 to 40 wt%, a propyl hydroxide group of 3 to 20 wt%, and a viscosity of 2% aqueous solution measured at 20 ± 5 ° C. To 20,000 cps.
또한, 상기 불포화 유기산 중합체로는 아크릴산 중합체, 메타아크릴산 중합체, 이타콘산 중합체, 푸마르산 중합체, 말레인산 중합체, 또는 숙신산 중합체 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.The unsaturated organic acid polymer may include an acrylic acid polymer, a methacrylic acid polymer, an itaconic acid polymer, a fumaric acid polymer, a maleic acid polymer, or a succinic acid polymer, and any one or a mixture of two or more thereof may be used.
또한, 본 발명의 일 실시예에 따른 단계 1) 및 단계 2)의 중합 개시제의 총 함량은 중합에 사용되는 제1 및 제2염화비닐 단량체 총 100중량부에 대하여 0.02 중량부 내지 0.2 중량부로 사용될 수 있다. 구체적으로는, 상기 중합 개시제는 제1 및 제2염화비닐 단량체 총 100 중량부에 대하여 0.03 중량부 내지 0.12 중량부로 사용되는 것일 수 있다. 만약, 중합 개시제의 총 함량이 0.02 중량부 미만이면 중합 반응시간이 길어지고, 염화비닐 중합체로의 전환율이 낮아져 생산성이 저하될 우려가 있고, 0.2 중량부를 초과하면 중합 과정 중에서 중합 개시제가 완전히 소모되지 못하고 최종 제조된 염화비닐 중합체 내에 잔류하여 상기 중합체의 열안정성 및 색상 품질 등을 저하시킬 우려가 있다. In addition, the total content of the polymerization initiator of step 1) and step 2) according to an embodiment of the present invention is used from 0.02 to 0.2 parts by weight based on 100 parts by weight of the total of the first and second vinyl chloride monomer used in the polymerization. Can be. Specifically, the polymerization initiator may be used at 0.03 parts by weight to 0.12 parts by weight based on 100 parts by weight of the total of the first and second vinyl chloride monomers. If the total content of the polymerization initiator is less than 0.02 parts by weight, the polymerization reaction time is long, the conversion rate to the vinyl chloride polymer is lowered, and the productivity may be lowered. If the content is more than 0.2 parts by weight, the polymerization initiator is not completely consumed during the polymerization process. However, it may remain in the finally prepared vinyl chloride polymer, thereby degrading thermal stability and color quality of the polymer.
상기 중합 개시제로는 특별히 제한되는 것은 아니나, 예컨대, 디큐밀 퍼옥사이드, 디펜틸 퍼옥사이드, 디-3,5,5-트리메틸헥사노일퍼옥사이드, 디라우로일퍼옥사이드 등의 디아실퍼옥사이드계 개시제, 디이소프로필퍼옥시디카보네이트, 디-sec-부틸퍼옥시디카보네이트, 디-2-에틸헥실퍼옥시디카보네이트, 큐밀퍼옥시디카보네이트 등의 퍼옥시디카보네이트계 개시제, t-부틸퍼옥시 네오데카노에이트, t-부틸퍼옥시 네오헵타노에이트, t-아밀퍼옥시 네오데카노에이트, 큐밀 퍼옥시네오데카노에이트, 큐밀 퍼옥시네오헵타노에이트, 1,1,3,3-테트라메틸부틸 퍼옥시네오데카노에이트, 하이드록시-디메틸부틸 퍼옥시 에스테르 등의 퍼옥시 에스테르계 개시제, 아조비스-2,4-디메틸발레로니트릴 등의 아조 화합물, 포타슘 퍼설페이트, 암모늄퍼설페이트 등의 설페이트계 개시제 등을 들 수 있고, 이들의 단독 또는 2종 이상의 조합에 의해 사용될 수 있다.The polymerization initiator is not particularly limited, but for example, diacyl peroxide initiators such as dicumyl peroxide, dipentyl peroxide, di-3,5,5-trimethylhexanoyl peroxide, dilauroyl peroxide, Peroxydicarbonate initiators such as diisopropyl peroxydicarbonate, di-sec-butylperoxydicarbonate, di-2-ethylhexyl peroxydicarbonate, cumyl peroxydicarbonate, t-butylperoxy neodecanoate, t- Butyl peroxy neoheptanoate, t-amyl peroxy neodecanoate, cumyl peroxy neodecanoate, cumyl peroxy neoheptanoate, 1,1,3,3-tetramethylbutyl peroxy neodecano Peroxy ester-based initiators such as ate and hydroxy-dimethylbutyl peroxy ester, azo compounds such as azobis-2,4-dimethylvaleronitrile, sulfes such as potassium persulfate and ammonium persulfate There may be mentioned teugye initiator, etc., it may be used by these alone or in combination of two or more.
본 발명의 일 실시예에 따른 염화비닐 중합체의 제조방법은 상기에서 제조된 반응 혼합물을 교반하는 것을 포함할 수 있으며 상기 교반을 통하여 현탁 중합이 이루어질 수 있다.Method for producing a vinyl chloride polymer according to an embodiment of the present invention may include stirring the reaction mixture prepared above may be suspended polymerization through the stirring.
또한, 본 발명의 일 실시예에 따른 염화비닐 중합체 제조방법은 필요에 따라 수소 이온 농도 조절제로서 중탄산나트륨(NaHCO3), 붕산나트륨(Na2B4O7), 제2인산나트륨(Na2HPO4), 탄산나트륨(Na2CO3), 인산이수소칼륨(KH2PO4), 수산화암모늄(NH4OH), 타르타르산칼륨(KHC4H4O6), 프탈산수소칼륨(KHC8H4O4) 또는 수산화칼슘(Ca(OH)2) 중 어느 하나이거나 이들 중 둘 이상의 혼합물을 더 포함할 수 있다.In addition, the vinyl chloride polymer production method according to an embodiment of the present invention, if necessary, sodium bicarbonate (NaHCO 3 ), sodium borate (Na 2 B 4 O 7 ), dibasic sodium phosphate (Na 2 HPO) as a hydrogen ion concentration regulator. 4 ), sodium carbonate (Na 2 CO 3 ), potassium dihydrogen phosphate (KH 2 PO 4 ), ammonium hydroxide (NH 4 OH), potassium tartarate (KHC 4 H 4 O 6 ), potassium hydrogen phthalate (KHC 8 H 4 O 4 ) or calcium hydroxide (Ca (OH) 2 ) or a mixture of two or more thereof.
또한, 본 발명의 일 실시예에 따른 염화비닐 중합체 제조방법은 필요에 따라 가교제로서 다이아릴 말레이트(DAM, DiAllyl Maleate), 다이아릴 프탈레이트(DAP, DiAllyl Phthalate), 에틸 글라이콜 다이 메틸 아크릴레이트 (EGDMA, Ethyl Glycol DiMethyl Acrylate) 또는 트리아릴 이소시아누레이트(TAIC, TriAllyl Isocyanurate) 중 어느 하나이거나 이들 중 둘 이상의 혼합물을 더 포함할 수 있다.In addition, the vinyl chloride polymer production method according to an embodiment of the present invention is a diaryl maleate (DAM, DiAllyl Maleate), diaryl phthalate (DAP, DiAllyl Phthalate), ethyl glycol dimethyl acrylate as necessary (EGDMA, Ethyl Glycol DiMethyl Acrylate) or triaryl isocyanurate (TAIC, TriAllyl Isocyanurate), or may further include a mixture of two or more thereof.
또한, 상기 단계 1)에서 특정한 중합 전환율 범위 중 어느 한 시점에서, 제조된 염화비닐 중합시드 및 미반응 단량체를 모두 본 중합 반응기로 이송하여 본 중합을 진행할 수 있다.In addition, at any point in the specific polymerization conversion range in step 1), all of the produced vinyl chloride polymerized seed and unreacted monomer may be transferred to the present polymerization reactor to proceed with the main polymerization.
단계 2Step 2
본 발명의 일 실시예에 따른 단계 2)는 단계 1)에서 제조된 염화비닐 중합 시드를 이용하여 본 중합을 통해 염화비닐 중합체를 제조하는 단계로, 구체적으로는 상기 단계 1)의 상기 염화비닐 중합 시드를 본 중합 반응기로 이송하고, 상기 본 중합 반응기에 투입되는 제2염화비닐 단량체와 중합하여 염화비닐 중합체를 제조하는 단계일 수 있다. 또한, 상기 단계 2)는 본 중합 단계를 의미하는 것일 수 있다. 또한, 상기 단계 2) 수행 후 제조된 염화비닐 중합체는 단독 중합체인 것일 수 있다.Step 2) according to an embodiment of the present invention is a step of preparing a vinyl chloride polymer through the present polymerization using the vinyl chloride polymerization seed prepared in step 1), specifically, the vinyl chloride polymerization of step 1) The seed may be transferred to the present polymerization reactor, and polymerized with a second vinyl chloride monomer introduced into the present polymerization reactor to prepare a vinyl chloride polymer. In addition, step 2) may mean the present polymerization step. In addition, the vinyl chloride polymer prepared after the step 2) may be a homopolymer.
즉, 상기 단계 2)는 상기 단계 1)의 상기 염화비닐 중합 시드를 본 중합 반응기로 이송하여, 상기 본 중합 반응기에 투입된 제2염화비닐 단량체와 상기 이송된 염화비닐 중합 시드를 중합하여 염화비닐 중합체를 제조하는 것일 수 있다.That is, in step 2), the vinyl chloride polymerization seed of step 1) is transferred to the polymerization reactor, and the vinyl chloride polymer is polymerized by polymerizing the second vinyl chloride monomer and the transferred vinyl chloride polymerization seed introduced into the polymerization reactor. It may be to prepare.
본 발명의 일 실시예에 따른 염화비닐 중합체의 제조방법은 염화비닐 단독 중합체를 제조함에 따라 공중합체를 제조하는 공정에 비해 단량체 간 상용성이 우수하기 때문에 중합 생산성이 월등하게 향상될 수 있다.According to an embodiment of the present invention, a method for preparing a vinyl chloride polymer may improve polymerization productivity due to excellent compatibility between monomers compared to a process for preparing a copolymer as a vinyl chloride homopolymer is produced.
또한, 공중합체의 경우 염화비닐 단량체와 공중합하는 공단량체의 종류, 함량비에 따라 전체 중합체의 구조 및 특성이 달라질 수 있기 때문에 중합도를 조절하는 것이 용이하지 않고, 공단량체의 영향으로 본 발명에서 측정하는 방법으로는 중합도 측정 값의 신뢰도도 확보하기 어려워 정확한 중합도 값을 측정할 수 없는 문제점이 있다. 또한, 수지 조성물로 배합하는 경우에도 상기와 같이 공단량체의 종류, 함량비에 따라 물성이 크게 달라져서 단독 중합체 대비 배합 물성의 예측이 어려운 바 성형품의 품질 등을 제어하는 것이 용이하지 않다. 이에, 본 발명의 염화비닐 중합체는 염화비닐 단독 중합체로 특정함으로써 상기 공중합체의 문제점을 모두 해소하면서, 우수한 중합 생산성과 배합물성을 확보하는 것을 특징으로 한다.In addition, in the case of the copolymer, it is not easy to control the degree of polymerization because the structure and properties of the entire polymer may vary depending on the type and content ratio of the comonomer copolymerized with the vinyl chloride monomer. In this method, there is a problem in that it is difficult to ensure the reliability of the polymerization degree measured, and thus the exact degree of polymerization cannot be measured. In addition, when blending with a resin composition, the physical properties vary greatly depending on the type and content ratio of the comonomer as described above, and thus, it is difficult to control the quality of the molded article and the like because it is difficult to predict the blending properties compared to the homopolymer. Accordingly, the vinyl chloride polymer of the present invention is characterized by ensuring excellent polymerization productivity and blendability while alleviating all the problems of the copolymer by specifying the vinyl chloride homopolymer.
본 발명의 일 실시예에 따르면, 상기 단계 1)에서 제조된 염화비닐 중합 시드를 이송시키는 시점과 본 중합 반응기에 제2염화비닐 단량체를 투입하는 시점의 순서는 특별히 한정되지 않으며, 예컨대, 상기 본 중합 반응기에 제2염화비닐 단량체가 충진된 상태에서 상기 염화비닐 중합 시드를 본 중합 반응기로 이송할 수 있고, 또는 상기 염화비닐 중합 시드를 본 중합 반응기로 이송한 후에 상기 본 중합 반응기에 제2염화비닐 단량체를 투입할 수도 있다. 또 다른 예로 상기 염화비닐 중합 시드의 이송과 본 중합 반응기에의 제2염화비닐 단량체의 투입이 동시에 진행될 수도 있다.According to one embodiment of the present invention, the order of the time of transferring the vinyl chloride polymerization seed prepared in step 1) and the time of adding the second vinyl chloride monomer to the polymerization reactor is not particularly limited. The vinyl chloride polymerization seed may be transferred to the polymerization reactor with the second vinyl chloride monomer filled in the polymerization reactor, or the second chloride may be transferred to the polymerization reactor after transferring the vinyl chloride polymerization seed to the polymerization reactor. Vinyl monomers can also be added. As another example, the transfer of the vinyl chloride polymerization seed and the introduction of the second vinyl chloride monomer into the polymerization reactor may be simultaneously performed.
상기 단계 2)는 단계 1)에서 전술한 현탁 중합 방법이 동일하게 적용될 수 있으며, 구체적으로, 상기 단계 1)에서 이송된 염화비닐 중합시드 이외에 보호콜로이드 조제 및 중합 개시제의 존재 하에 현탁 중합이 이루어질 수 있다. 이 때, 보호콜로이드 조제 및 중합 개시제는 제2염화비닐 단량체와 동시에 본 중합 반응기에 투입되거나, 제2염화비닐 단량체 투입 이전에 본 중합 반응기에 투입되는 것일 수 있다. 또한, 상기 보호콜로이드 조제 및 중합 개시제는 상기 단계 1)에서 전술한 종류의 보호콜로이드 조제 및 중합 개시제 중 선택될 수 있으며, 상기 단계 2)에서 적용하는 보호콜로이드 조제 및 중합개시제는 상기 단계 1)에서의 보호콜로이드 조제 및 중합 개시제와 동일하거나 상이한 것일 수 있다. 이외에도, 상기 단계 2)에서는 단계 1)에서 전술한 중합수가 반응 혼합물에 더 포함될 수 있으며, 필요에 따라 수소이온 농도 조절제, 가교제가 더 투입될 수 있다. 이 때 단계 2)에서 적용되는 중합수, 수소이온 농도 조절제 및 가교제는 상기 단계 1)에서의 중합수, 수소이온 농도 조절제 및 가교제와 동일하거나 상이한 것일 수 있다.In step 2), the suspension polymerization method described above in step 1) may be applied in the same manner. Specifically, in addition to the vinyl chloride polymerization seed transferred in step 1), suspension polymerization may be performed in the presence of a protective colloid preparation and a polymerization initiator. have. At this time, the protective colloid preparation and the polymerization initiator may be introduced into the polymerization reactor at the same time as the second vinyl chloride monomer, or introduced into the polymerization reactor before the second vinyl chloride monomer. In addition, the protective colloid preparation and the polymerization initiator may be selected from the protective colloid preparation and the polymerization initiator of the kind described above in step 1), the protective colloid preparation and polymerization initiator applied in the step 2) in the step 1) It may be the same as or different from the protective colloid preparation and the polymerization initiator. In addition, in step 2), the polymerization water described above in step 1) may be further included in the reaction mixture, and a hydrogen ion concentration regulator and a crosslinking agent may be further added as necessary. In this case, the polymerization water, the hydrogen ion concentration regulator and the crosslinking agent applied in step 2) may be the same as or different from the polymerization water, the hydrogen ion concentration regulator and the crosslinking agent in step 1).
또한, 단계 2)의 중합온도는 단계 1)의 중합온도와 5 내지 15 ℃의 차이를 가지는 온도일 수 있으며, 바람직하게는 상기 단계 1) 및 단계 2)의 중합 온도의 차이가 10 내지 15 ℃일 수 있다. 단계 1) 및 단계 2)의 중합온도의 차이가 5 내지 15 ℃를 만족하는 경우, 다분산도가 2.0 내지 2.3인 염화비닐 중합체가 제조될 수 있으며, 염화비닐 중합체는 상기 다분산도를 가짐으로써 가공성이 개선되는 효과가 있다. In addition, the polymerization temperature of step 2) may be a temperature having a difference of 5 to 15 ℃ from the polymerization temperature of step 1), preferably the difference between the polymerization temperature of step 1) and step 2) is 10 to 15 ℃ Can be. When the difference in polymerization temperature of steps 1) and 2) satisfies 5 to 15 ° C., a vinyl chloride polymer having a polydispersity of 2.0 to 2.3 can be prepared, and the vinyl chloride polymer has the polydispersity. The workability is improved.
또한, 상기 단계 1) 및 단계 2)의 중합온도는 전술한 범위의 온도 차이가 나는 것이라면 단계 2)에 비해 단계 1)이 높거나 낮은 것을 특별히 한정하지는 않으며, 제조되는 염화비닐 중합체의 물성 개선 측면에서는 단계 2)의 중합온도를 단계 1)의 중합온도에 비해 높게 조절할 수도 있으나, 중합 생산성 및 중합 시간 단축 측면을 고려하였을 때, 단계 2)에 비해 단계 1)의 중합온도가 더 높은 것이 바람직하다.또한, 전술한 제1염화비닐 단량체 및 제2염화비닐 단량체는 투입 순서를 구분하기 위한 용어로써, 염화비닐 단독 중합체를 제조하기 위해서는 제1염화비닐 단량체 및 제2염화비닐 단량체가 동일한 염화비닐 단량체인 것이 바람직하다.In addition, the polymerization temperature of the step 1) and step 2) is not particularly limited to the step 1) is higher or lower than the step 2), if the temperature difference of the above-described range, the aspect of improving the physical properties of the produced vinyl chloride polymer In step 2), the polymerization temperature of step 2) may be adjusted higher than the polymerization temperature of step 1), but considering the polymerization productivity and shortening of the polymerization time, it is preferable that the polymerization temperature of step 1) is higher than that of step 2). In addition, the above-mentioned first vinyl chloride monomer and second vinyl chloride monomer are terms used to distinguish the order of input, and in order to prepare a vinyl chloride homopolymer, the first vinyl chloride monomer and the second vinyl chloride monomer have the same vinyl chloride monomer. Is preferably.
또한, 상기 단계 2)의 제2염화비닐 단량체는 상기 단계 1)의 제1염화비닐 단량체보다 투입함량이 더 많을 수 있으며, 제1염화비닐 단량체 및 제2염화비닐 단량체의 중량비는 일례로 1:1.2 내지 1:10, 바람직하게는 1:2 내지 1:8일 수 있다.In addition, the second vinyl chloride monomer of step 2) may have a higher content than the first vinyl chloride monomer of step 1), and the weight ratio of the first vinyl chloride monomer and the second vinyl chloride monomer may be 1: 1.2 to 1:10, preferably 1: 2 to 1: 8.
나아가, 본 발명의 일 실시예에 따른 염화비닐 중합체의 제조방법의 단계 2)는 상기 중합을 종료하고 생성물(염화비닐 중합체)을 회수하는 것을 더 포함할 수 있다.Furthermore, step 2) of the method for preparing a vinyl chloride polymer according to an embodiment of the present invention may further include terminating the polymerization and recovering a product (vinyl chloride polymer).
이 때, 상기 현탁 중합은 반응종결제를 투입하여 중합을 종결할 수 있으며, 상기 종결 시점은 반응기 내의 압력이 6 kgf/cm2 내지 8 kgf/cm2(또는 중합 전환율이 85%를 초과하는 시점)인 시점일 수 있다.In this case, the suspension polymerization may terminate the polymerization by the addition of a reaction terminator, the termination point is the time when the pressure in the reactor is 6 kgf / cm 2 to 8 kgf / cm 2 (or polymerization conversion exceeds 85%) ).
상기 반응종결제는 특별히 제한되는 것은 아니나, 예컨대 페놀 화합물, 아민 화합물, 니트릴 화합물, 유황 화합물 등일 수 있다. 구체적으로는, 상기 반응종결제는 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트, 하이드로퀴논, p-메톡시페놀, t-부틸하이드록시아니솔, n-옥타데실-3-(4-하이드록시-3,5-디-t-부틸페닐)프로피오네이트, 2,5-디-t-부틸 하이드로퀴논, 4,4'-부틸리덴비스(3-메틸-6-t-부틸 페놀), t-부틸 카테콜, 4,4'-티오비스(6-t-부틸-m-크레졸), 토코페놀 등의 페놀 화합물, N,N'-디페닐-p-페닐렌디아민, 4,4'-비스(디메틸벤질)디페닐 아민 등의 아민 화합물, 2-페닐 나이트로닐나이트록사이드(2-phenyl nitronylnitroxide), 3-이미다졸린 나이트록사이드(3-imidazoline nitroxide), 4-하이드록시-2,2',6,6'-테트라메틸-피페리딘-1-옥실(4-hydroxy-2,2',6,6'-tetramethyl-piperidine-1-oxyl) 등의 니트릴 화합물, 도데실 메르캅탄, 1,2-디페닐-2-티올 등의 유황화합물, 트리페닐포스파이트, 디페닐데실 포스파이트, 페닐이소데실 포스파이트, 트리(노닐페닐) 포스파이트 및 트리라우릴 트리티오포스파이트 등의 인산계 화합물 중에서 선택된 1종 이상인 것일 수 있으며, 바람직하게는 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트를 포함할 수 있다.The reaction terminator is not particularly limited, but may be, for example, a phenol compound, an amine compound, a nitrile compound, a sulfur compound, or the like. Specifically, the reaction terminator is triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate, hydroquinone, p-methoxyphenol, t-butylhydro Roxyanisole, n-octadecyl-3- (4-hydroxy-3,5-di-t-butylphenyl) propionate, 2,5-di-t-butyl hydroquinone, 4,4'-part Phenolic compounds such as thilidenebis (3-methyl-6-t-butyl phenol), t-butyl catechol, 4,4'-thiobis (6-t-butyl-m-cresol), tocophenol, N, Amine compounds such as N'-diphenyl-p-phenylenediamine, 4,4'-bis (dimethylbenzyl) diphenyl amine, 2-phenyl nitronylnitroxide, 3-imida 3-imidazoline nitroxide, 4-hydroxy-2,2 ', 6,6'-tetramethyl-piperidine-1-oxyl (4-hydroxy-2,2', 6,6 ' nitrile compounds such as -tetramethyl-piperidine-1-oxyl), sulfur compounds such as dodecyl mercaptan and 1,2-diphenyl-2-thiol, triphenylphosphite, diphenylde It may be one or more selected from phosphoric acid compounds such as sil phosphite, phenylisodecyl phosphite, tri (nonylphenyl) phosphite, and trilauryl trithiophosphite, preferably triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate.
상기 중합 정지에 따라 제조된 염화비닐 중합체는 슬러리 형태일 수 있으며, 상기 슬러리는 통상의 반응 조건에서 유동층 건조기로 수분이 제거되어, 최종 염화비닐 중합체 형태로 제조될 수 있다.The vinyl chloride polymer prepared according to the polymerization stop may be in the form of a slurry, and the slurry may be prepared in the form of the final vinyl chloride polymer by removing moisture with a fluidized bed dryer under ordinary reaction conditions.
아울러, 상기 단계 1) 및 단계 2)의 중합은 상기 기재한 유효성분 이외에 필요에 따라 중합 조절제, 연쇄 이동제, pH 조절제, 산화방지제, 가교제, 대전방지제, 스케일방지제, 계면활성제 등의 첨가제를 추가로 첨가할 수 있으며, 상기 첨가제의 종류 및 함량은 특별히 제한되지 않고 당업계 공지된 통상의 종류 및 함량으로 사용할 수 있다. 상기 첨가제는 현탁중합 초, 중합 중 또는 중합 후 중 어느 시점에라도 첨가할 수 있으며, 일괄적으로 첨가하거나 연속적으로 첨가할 수도 있다. In addition, the polymerization of the steps 1) and 2) may further include additives such as polymerization regulators, chain transfer agents, pH regulators, antioxidants, crosslinking agents, antistatic agents, antiscalants, surfactants, etc. It may be added, the type and content of the additive is not particularly limited and may be used in conventional types and contents known in the art. The additive may be added at any time during suspension polymerization, during polymerization or after polymerization, or may be added in batches or continuously.
본 발명에 사용된 반응기로는 교반기 및 배플 등의 교반 장치의 형상이 특별히 한정되는 것은 아니며, 염화비닐 중합체의 현탁중합에 일반적으로 사용되고 있는 교반 장치를 사용할 수 있다. 구체적인 예로 교반기로는 교반 날개가 패들(paddle)마리, 피치드(pitched) 패들마리, 블루머 진(bloomers gin)마리, 파우도라마리, 터빈(turbine)마리, 프로펠러(propeller)마리 등을 단독 또는 2종 이상의 교반 날개와 조합된 교반기를 사용할 수 있으며, 배플로는 판형, 원통형, D형, 루프형 또는 핑거형 등을 사용할 수 있다.The reactor used in the present invention is not particularly limited in the shape of the stirring device such as a stirrer and baffle, and a stirring device generally used for suspension polymerization of a vinyl chloride polymer can be used. Specific examples of the stirrer include stirring paddles, paddle paddles, pitched paddle pads, bloomers gin pads, pudora rams, turbine pads, propeller pads, or the like. Stirrers combined with more than one stirring blade may be used, and baffles may be plate-shaped, cylindrical, D-shaped, looped, or finger-type.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들만으로 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are provided to illustrate the present invention and the scope of the present invention is not limited thereto.
실시예 1Example 1
내부 용적 0.2㎥의 반응기(예비 중합 반응기)에 탈이온수 90kg, 하이드록시-디메틸부틸 퍼옥시 에스테르 45g, 수화도가 80%이며 상온에서의 4% 수용액의 점도가 30cps인 폴리비닐알콜 60g, 수화도가 40%이며 상온에서의 4% 수용액의 점도가 20cps인 폴리비닐알코올 40g을 반응기에 투입하고 진공을 가한 후 염화비닐 단량체 75kg을 투입하고 중합 반응 온도를 62℃로 승온하여 중합 반응을 진행시키고, 중합 전환율 13%(13±2%)인 시점에 제조된 염화비닐 중합 시드 및 미반응 단량체를 모두 본 중합 반응기로 이송시킨다. 이 때 중합 전환율은 가스 크로마토그래피를 장착한 부탄 트레이서(Butane tracer)를 이용하여 측정하였다. 일정 중합 조건에서 시간에 따른 염화비닐 단량체와 부탄과의 비율에 따른 중합 전환율 곡선을 중합조건 때마다 작성해 두고, 이를 근거로 하여 중합조건에 따른 중합전환율을 측정할 수 있다.60 g of polyvinyl alcohol having a viscosity of 30 cps in a 4% aqueous solution at room temperature of 90 kg of deionized water, 45 g of hydroxy-dimethylbutyl peroxy ester, 80% of hydration in a reactor having a internal volume of 0.2 m3 (preliminary polymerization reactor) 40 g of polyvinyl alcohol having a viscosity of 20 cps in a 4% aqueous solution at room temperature was charged into a reactor, and vacuum was applied. Then, 75 kg of vinyl chloride monomer was added and the polymerization temperature was raised to 62 ° C. to proceed with the polymerization reaction. The vinyl chloride polymerized seed and the unreacted monomer produced at the time of 13% (13 ± 2%) polymerization conversion are transferred to the present polymerization reactor. At this time, the polymerization conversion was measured using a butane tracer equipped with gas chromatography. The polymerization conversion curve according to the ratio of vinyl chloride monomer and butane over time under constant polymerization conditions is prepared for each polymerization condition, and the polymerization conversion rate according to the polymerization conditions can be measured based on this.
환류 응축기를 가지는 내부 용적 1 ㎥의 반응기(본 중합 반응기)에 탈이온수 360kg, 큐밀퍼옥시디카보네이트 60g, t-부틸퍼옥시 네오데카노네이트 120g을 투입하고, 수화도가 80%이며 상온에서의 4% 수용액의 점도가 30cps인 폴리비닐알콜 150g, 수화도가 40%이며 상온에서의 4% 수용액의 점도가 20cps인 폴리비닐알콜 120g, 그리고 수산화프로필기가 10중량%이며 상온에서 측정한 2% 수용액의 점도가 100pcs인 하이드록시프로필메틸 셀룰로오스 30g을 투입하고, 진공을 가한 후 염화비닐 단량체 300kg을 투입한다.Into a reactor having a reflux condenser of 1 m 3 (main polymerization reactor), 360 kg of deionized water, 60 g of cumylperoxydicarbonate and 120 g of t-butylperoxy neodecanoate were added, and the degree of hydration was 80%. 150 g of polyvinyl alcohol having a viscosity of 30% cps, 40% hydration, 120 g of polyvinyl alcohol having a viscosity of 4 cps at room temperature, and 120 g of polyvinyl alcohol having a viscosity of 20 cps, and a 2% aqueous solution measured at room temperature 30 g of hydroxypropylmethyl cellulose having a viscosity of 100 pcs was added, followed by vacuum, and then 300 kg of vinyl chloride monomer was added thereto.
예비 중합 반응기로부터 염화비닐 중합 시드 및 미반응 단량체 이송이 완료되면, 중합 반응 온도를 57℃로 조절하여 중합 반응 전과정 동안 유지하면서 반응을 진행시키고, 중합 반응기 압력이 6.5 kgf/㎠ 도달 시점에 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트(산화 방지제)를 60g 첨가한 뒤, 미반응 단량체를 회수하고 중합체 슬러리를 중합 반응기에서 회수하였다. 중합 종료시 중합 전환율은 84%(84±2%)였다. 상기 얻어진 슬러리를 통상의 방법으로 유동층 건조기에서 건조하여 염화비닐 중합체를 얻었다.After the completion of the transfer of the vinyl chloride polymerization seed and the unreacted monomer from the prepolymerization reactor, the polymerization reaction temperature was adjusted to 57 ° C. to maintain the reaction during the entire polymerization process, and triethylene was reached when the polymerization reactor pressure reached 6.5 kgf / cm 2. After adding 60 g of glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate (antioxidant), unreacted monomer was recovered and the polymer slurry was recovered in the polymerization reactor. At the end of the polymerization, the polymerization conversion was 84% (84 ± 2%). The slurry thus obtained was dried in a fluidized bed dryer in a conventional manner to obtain a vinyl chloride polymer.
실시예 2Example 2
예비 중합 반응기의 중합 반응 온도를 67 ℃로 승온하여 중합 반응을 진행하고, 본 중합 반응기의 중합 반응 온도를 56 ℃로 조절하여 중합 반응을 진행한 다음, 중합 반응기 압력이 6.3 kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 중합 반응을 종료한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 수득하였다.The polymerization reaction was carried out by raising the polymerization reaction temperature of the prepolymerization reactor to 67 ° C., and the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the present polymerization reactor to 56 ° C., and then the polymerization reactor pressure reached 6.3 kgf / cm 2 ( Polymerization conversion was carried out in the same manner as in Example 1 except that the polymerization reaction was terminated at 84% (84 ± 2%)) to obtain a vinyl chloride polymer.
실시예 3Example 3
예비 중합 반응기의 중합 반응 온도를 70 ℃로 승온하여 중합 반응을 진행하고, 본 중합 반응기의 중합 반응 온도를 55.5 ℃로 조절하여 중합 반응을 진행한 다음, 중합 반응기 압력이 6.2 kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 중합 반응을 종료한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 수득하였다.The polymerization reaction was carried out by raising the polymerization reaction temperature of the prepolymerization reactor to 70 ° C., and the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the present polymerization reactor to 55.5 ° C., and then the polymerization reactor pressure reached 6.2 kgf / cm 2 ( Polymerization conversion was carried out in the same manner as in Example 1 except that the polymerization reaction was terminated at 84% (84 ± 2%)) to obtain a vinyl chloride polymer.
실시예 4Example 4
예비 중합 반응기의 중합 반응 온도를 67 ℃로 승온하여 중합 반응을 진행하고, 중합 전환율이 7%(7±2%)인 시점에 제조된 염화비닐 중합 시드 및 미반응 단량체를 모두 본 중합 반응기로 이송시키고, 본 중합 반응기의 중합 반응 온도를 57 ℃로 조절하여 중합 반응을 진행한 다음, 중합 반응기 압력이 6.5 kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 중합 반응을 종료한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 수득하였다.The polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 67 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at the time when the polymerization conversion was 7% (7 ± 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 57 ° C., the polymerization reaction was carried out when the polymerization reactor pressure reached 6.5 kgf / cm 2 (the polymerization conversion rate was 84% (84 ± 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
실시예 5Example 5
예비 중합 반응기의 중합 반응 온도를 68 ℃로 승온하여 중합 반응을 진행하고, 중합 전환율이 18%(18±2%)인 시점에 제조된 염화비닐 중합 시드 및 미반응 단량체를 모두 본 중합 반응기로 이송시키고, 본 중합 반응기의 중합 반응 온도를 54.5 ℃로 조절하여 중합 반응을 진행한 다음, 중합 반응기 압력이 6.0 kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 중합 반응을 종료한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 수득하였다.The polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 68 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at a polymerization conversion rate of 18% (18 ± 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 54.5 ° C., the polymerization reaction was performed at the time when the polymerization reactor pressure reached 6.0 kgf / cm 2 (the polymerization conversion rate was 84% (84 ± 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
실시예 6Example 6
예비 중합 반응기의 중합 반응 온도를 54.5 ℃로 승온하여 중합 반응을 진행하고, 중합 전환율이 13%(13±2%)인 시점에 제조된 염화비닐 중합 시드 및 미반응 단량체를 모두 본 중합 반응기로 이송시키고, 본 중합 반응기의 중합 반응 온도를 60 ℃로 조절하여 중합 반응을 진행한 다음, 중합 반응기 압력이 7.0 kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 중합 반응을 종료한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 수득하였다.The polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 54.5 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at a polymerization conversion rate of 13% (13 ± 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 60 ° C., the polymerization reaction was carried out when the polymerization reactor pressure reached 7.0 kgf / cm 2 (the polymerization conversion rate was 84% (84 ± 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
비교예 1Comparative Example 1
환류 응축기를 가지는 내 용적 1㎥ 의 반응기에 탈이온수 360kg, 큐밀퍼옥시디카보네이트 60g, t-부틸퍼옥시 네오데카노네이트 120g를 투입하고, 수화도가 80%이며 상온에서의 4% 수용액의 점도가 30cps인 폴리비닐알콜 150g, 수화도가 40%이며 상온에서의 4% 수용액의 점도가 20cps인 폴리비닐알코올 120g, 수산화프로필기가 10중량%이며 상온에서 측정한 2% 수용액의 점도가 100pcs인 하이드록시프로필메틸 셀룰로오스 30g을 반응기에 투입하고, 진공을 가한 후 염화비닐 단량체 300kg을 투입한다. 중합 반응 온도를 57℃로 승온하여 중합 반응 전과정 동안 유지하면서 중합 반응을 진행시킨다. 중합 반응기 압력이 6.5kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 반응 종결제로서 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실 15g, 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트를 60g 첨가한 다음 미반응 단량체를 회수하고 중합체 슬러리를 중합 반응기에서 회수하였다. 이렇게 얻어진 슬러리를 통상의 방법으로 유동층 건조기에서 건조하여 염화비닐 중합체를 수득하였다.Deionized water 360kg, cumylperoxydicarbonate 60g, t-butylperoxy neodecanoate 120g were added to a reactor having a reflux condenser with a volume of 1m 3, the degree of hydration was 80% and the viscosity of a 4% aqueous solution at room temperature 150 g of polyvinyl alcohol of 30 cps, 40% of hydration, 120 g of polyvinyl alcohol of 20 cps with a viscosity of 4% aqueous solution at room temperature, hydroxy group having a viscosity of 100 pcs of 2% aqueous solution measured at room temperature with 10% by weight of propyl hydroxide. 30 g of propylmethyl cellulose was added to the reactor, and vacuum was added, followed by 300 kg of vinyl chloride monomer. The polymerization reaction is carried out while maintaining the temperature of the polymerization reaction at 57 ° C. for the entire polymerization process. 4-hydroxy-2,2,6,6-tetramethyl-piperidine- as a reaction terminator when the polymerization reactor pressure reached 6.5 kgf / cm 2 (polymerization conversion rate was 84% (84 ± 2%)). 15 g of 1-oxyl and 60 g of triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate were added, then unreacted monomers were recovered and the polymer slurry was recovered in the polymerization reactor. It was. The slurry thus obtained was dried in a fluidized bed dryer in a conventional manner to obtain a vinyl chloride polymer.
비교예 2Comparative Example 2
환류 응축기를 가지는 내 용적 1㎥ 의 반응기에 탈이온수 450kg, 큐밀퍼옥시디카보네이트 75g, t-부틸퍼옥시 네오데카노네이트 150g를 투입하고, 수화도가 80%이며 상온에서의 4% 수용액의 점도가 30cps인 폴리비닐알콜 188g, 수화도가 40%이며 상온에서의 4% 수용액의 점도가 20cps인 폴리비닐알코올 150g, 수산화프로필기가 10%이며 상온에서 측정한 2% 수용액의 점도가 100pcs인 하이드록시프로필메틸 셀룰로오스 37g을 반응기에 투입하고, 진공을 가한 후 염화비닐 단량체 375kg을 투입한다. 중합 반응 온도를 57℃로 승온하여 중합 반응 전과정동안 유지하면서 중합 반응을 진행시킨다. 중합 반응기 압력이 6.5kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 반응 종결제로서 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실 15g, 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트를 75g 첨가한 다음 미반응 단량체를 회수하고 중합체 슬러리를 중합 반응기에서 회수하였다. 이렇게 얻어진 슬러리를 통상의 방법으로 유동층 건조기에서 건조하여 염화비닐 중합체를 수득하였다.Into a reactor with a reflux condenser, 450 kg of deionized water, 75 g of cumylperoxy dicarbonate and 150 g of t-butylperoxy neodecanoate were added to the reactor having a reflux condenser, the degree of hydration was 80%, and the viscosity of the 4% aqueous solution at room temperature 188 g of polyvinyl alcohol with 30 cps, 40% hydration, 150 g of polyvinyl alcohol with a viscosity of 4 cps at room temperature and 150 g of polyvinyl alcohol with 20 cps, hydroxypropyl with a viscosity of 100 pcs of 2% aqueous solution measured at room temperature 37 g of methyl cellulose was added to the reactor, and vacuum was added, followed by 375 kg of vinyl chloride monomer. The polymerization reaction was carried out while maintaining the temperature of the polymerization reaction at 57 DEG C while maintaining the whole polymerization reaction. 4-hydroxy-2,2,6,6-tetramethyl-piperidine- as a reaction terminator when the polymerization reactor pressure reached 6.5 kgf / cm 2 (polymerization conversion rate was 84% (84 ± 2%)). 15 g of 1-oxyl and 75 g of triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate were added, and then the unreacted monomers were recovered and the polymer slurry was recovered in the polymerization reactor. It was. The slurry thus obtained was dried in a fluidized bed dryer in a conventional manner to obtain a vinyl chloride polymer.
비교예 3Comparative Example 3
예비 중합 반응기의 중합 반응 온도를 60 ℃로 승온하여 중합 반응을 진행하고, 중합 전환율이 3%(3±1%)인 시점에 제조된 염화비닐 중합 시드 및 미반응 단량체를 모두 본 중합 반응기로 이송시키고, 본 중합 반응기의 중합 반응 온도를 57 ℃로 조절하여 중합 반응을 진행한 다음, 중합 반응기 압력이 6.5 kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 중합 반응을 종료한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 수득하였다.The polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 60 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at the time when the polymerization conversion was 3% (3 ± 1%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 57 ° C., the polymerization reaction was carried out when the polymerization reactor pressure reached 6.5 kgf / cm 2 (the polymerization conversion rate was 84% (84 ± 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
비교예 4Comparative Example 4
예비 중합 반응기의 중합 반응 온도를 65 ℃로 승온하여 중합 반응을 진행하고, 중합 전환율이 25%(25±2%)인 시점에 제조된 염화비닐 중합 시드 및 미반응 단량체를 모두 본 중합 반응기로 이송시키고, 본 중합 반응기의 중합 반응 온도를 56 ℃로 조절하여 중합 반응을 진행한 다음, 중합 반응기 압력이 6.3 kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 중합 반응을 종료한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 수득하였다.The polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 65 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at the time when the polymerization conversion was 25% (25 ± 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 56 ° C., the polymerization reaction was carried out at the time when the polymerization reactor pressure reached 6.3 kgf / cm 2 (the polymerization conversion rate was 84% (84 ± 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
비교예 5Comparative Example 5
예비 중합 반응기의 중합 반응 온도를 69 ℃로 승온하여 중합 반응을 진행하고, 중합 전환율이 18%(18±2%)인 시점에 제조된 염화비닐 중합 시드 및 미반응 단량체를 모두 본 중합 반응기로 이송시키고, 본 중합 반응기의 중합 반응 온도를 52 ℃로 조절하여 중합 반응을 진행한 다음, 중합 반응기 압력이 5.7 kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 중합 반응을 종료한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 수득하였다.The polymerization reaction was carried out by raising the polymerization reaction temperature of the preliminary polymerization reactor to 69 ° C., and both the vinyl chloride polymer seed and the unreacted monomer prepared at the time when the polymerization conversion was 18% (18 ± 2%) were transferred to the polymerization reactor. After the polymerization reaction was carried out by adjusting the polymerization reaction temperature of the polymerization reactor to 52 ° C., the polymerization reaction was carried out at the time when the polymerization reactor pressure reached 5.7 kgf / cm 2 (the polymerization conversion rate was 84% (84 ± 2%)). Except that was terminated in the same manner as in Example 1 to give a vinyl chloride polymer.
비교예 6Comparative Example 6
예비 중합 반응기에서 중합 온도를 57 ℃로 승온하고, 본 중합에서 6.5 kgf/㎠ 도달 시점(중합 전환율은 84%(84±2%)인 시점)에 중합 반응을 종료한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 염화비닐 중합체를 수득하였다.Example 1 except that the polymerization temperature was raised to 57 ° C. in the prepolymerization reactor, and the polymerization reaction was terminated at the time of reaching 6.5 kgf / cm 2 (polymerization conversion rate of 84% (84 ± 2%)) in the present polymerization. The vinyl chloride polymer was obtained by the same method as described above.
비교예 7Comparative Example 7
환류 응축기가 구비된 내부용적 0.2m3의 반응기에 탈이온수 80kg을 투입하고, 수화도가 80%인 폴리비닐알코올 25g, 수화도가 42%인 폴리비닐알코올 20g, 및 하이드록시프로필메틸 셀룰로오스 5g을 상기 반응기에 투입하고, 염화비닐 단량체 50kg과 함께 디(2-에틸헥실) 말레이트와 디(2-에틸헥실) 푸말레이트의 혼합물(중량비=95:5) 34kg을 투입한 후, 디-2-에틸헥실퍼옥시 디카보네이트 30g을 투입하여 반응을 개시하였다. 중합 반응 전 과정 동안 57℃로 반응을 유지하며 반응을 진행시키고, 중합전환율 15%(15±2%)인 시점에서 제조된 반응 생성물과 미반응 단량체를 모두 2차 중합 반응기로 이송하였다. 80 kg of deionized water was added to a 0.2 m 3 reactor equipped with a reflux condenser, 25 g of polyvinyl alcohol with 80% hydration, 20 g of polyvinyl alcohol with 42% hydration, and 5 g of hydroxypropylmethyl cellulose. Into the reactor, 34 kg of a mixture of di (2-ethylhexyl) maleate and di (2-ethylhexyl) fumarate (weight ratio = 95: 5) together with 50 kg of vinyl chloride monomer was added, followed by di-2-. 30 g of ethylhexyl peroxy dicarbonate was added to initiate the reaction. The reaction was carried out while maintaining the reaction at 57 ° C. during the entire polymerization process, and the reaction product and the unreacted monomer were both transferred to the secondary polymerization reactor at a polymerization conversion rate of 15% (15 ± 2%).
환류 응축기를 가지는 내부 용적 1m3의 반응기에 탈이온수 360kg을 투입하고 수화도가 80%인 폴리비닐알코올 150g, 수화도가 42%인 폴리비닐알코올 120g, 및 하이드록시프로필메틸 셀룰로오스 30g을 상기 반응기에 투입하고, 염화비닐 단량체 300kg을 투입한 후, 디큐밀 퍼옥사이드 60g, t-부틸 퍼옥시 네오데카노에이트 120g을 투입하여 반응을 개시하였다.In the de-ionized water 360kg to the interior volume reactor of 1m 3 having a reflux condenser and a moisture content of 80% polyvinyl alcohol 150g, polyvinyl alcohol moisture content is 42% 120g, and hydroxypropyl methyl cellulose 30g to the reactor After adding the vinyl chloride monomer 300 kg, 60 g of dicumyl peroxide and 120 g of t-butyl peroxy neodecanoate were added to initiate the reaction.
중합 반응 전 과정 동안 50℃로 유지하면서 반응을 진행시키고, 중합 반응기 압력이 6.0kgf/cm2에 도달한 시점(중합 전환율은 84%(84±2%)인 시점)에 반응 종결제로서 4-하이드록시-2,2,6,6-테트라메틸-피페리딘-1-옥실 5g, 트리에틸렌 글리콜-비스-3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트를 35g 첨가한 후, 미반응 단량체를 분리, 회수하고, 제조된 공중합체를 중합반응기로부터 회수한 후, 유동층 건조기에서 건조하여 공중합체를 수득하였다.The reaction was carried out while maintaining the temperature at 50 ° C. during the entire polymerization reaction, and when the polymerization reactor pressure reached 6.0 kgf / cm 2 (the polymerization conversion rate was 84% (84 ± 2%)), 4- 5 g of hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl, triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate After the addition of 35g of unreacted monomer was isolated and recovered, the produced copolymer was recovered from the polymerization reactor, and then dried in a fluidized bed dryer to obtain a copolymer.
상기 실시예 1 내지 6 및 비교예 1 내지 7의 예비 중합 및 본 중합의 중합 조건을 정리하면 하기 표 1과 같다.The polymerization conditions of the preliminary polymerization and the main polymerization of Examples 1 to 6 and Comparative Examples 1 to 7 are summarized in Table 1 below.
단량체 (중합체)Monomer (polymer) 예비중합 전환율(%)Prepolymerization Conversion Rate (%) 예비중합 온도(℃)Prepolymerization Temperature (℃) 본 중합 온도 (℃)Main polymerization temperature (℃)
실시예Example 1One 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 13(13±2)13 (13 ± 2) 6262 5757
22 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 13(13±2)13 (13 ± 2) 6767 5656
33 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 13(13±2)13 (13 ± 2) 7070 55.555.5
44 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 7(7±2)7 (7 ± 2) 6767 5757
55 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 18(18±2)18 (18 ± 2) 6868 54.554.5
66 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 13(13±2)13 (13 ± 2) 54.554.5 6060
비교예Comparative example 1One 염화비닐 (단독중합체)Vinyl chloride (homopolymer) - (단일반응)-(Single reaction) -- 5757
22 염화비닐 (단독중합체)Vinyl chloride (homopolymer) - (단일반응)-(Single reaction) -- 5757
33 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 3(3±1)3 (3 ± 1) 6060 5757
44 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 25(25±2)25 (25 ± 2) 6565 5656
55 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 18(18±2)18 (18 ± 2) 6969 5252
66 염화비닐 (단독중합체)Vinyl chloride (homopolymer) 13(13±2)13 (13 ± 2) 5757 5757
77 염화비닐, 디(2-에틸헥실) 말레이트 및 디(2-에틸헥실) 푸말레이트 (공중합체)Vinyl chloride, di (2-ethylhexyl) maleate and di (2-ethylhexyl) fumalate (copolymer) 15(15±2)15 (15 ± 2) 5757 5050
여기에서 예비중합 전환율(%)은 본 중합 반응기로 이송하기 직전 예비중합 반응에서의 중합 전환율을 의미하는 것이다.Here, the prepolymerization conversion rate (%) means the polymerization conversion rate in the prepolymerization reaction immediately before transferring to the present polymerization reactor.
실험예 1: 중합생산성 및 중합체 물성 평가Experimental Example 1 Evaluation of Polymerization Productivity and Polymer Properties
1) 중합생산성 평가1) Evaluation of Polymerization Productivity
실시예 1 내지 6 및 비교예 1 내지 7의 염화비닐 중합체의 중합생산성 평가를 위하여 배치(batch)당 생산량 단위로 시간당 생산되는 PVC 중합체 산출량을 측정했으며, 그 결과는 하기 표 1에 나타내었다. In order to evaluate the polymerization productivity of the vinyl chloride polymers of Examples 1 to 6 and Comparative Examples 1 to 7, the output of the PVC polymer produced per hour in batches was measured, and the results are shown in Table 1 below.
2) 중합도 측정2) Determination of polymerization degree
ASTM D1243-79에 의해 측정하였다.It was measured by ASTM D1243-79.
3) 분자량 측정3) Molecular weight measurement
상기 실시예 1 내지 6 및 비교예 1 내지 7에서 제조한 염화비닐 중합체에 대해 중량평균 분자량(Mw), 수평균 분자량(Mn) 및 다분산도(polydispersity)를 각각 측정하였다. 구체적으로는 염화비닐 중합체 시료 0.02g을 테트라하이드로푸란(THF) 20ml에 넣고 24시간동안 녹여 0.45um 필터로 거른 후 GPC 기기(Waters 2414 Refractive Index Detector, Waters 1525 Binary HPLC Pump 및 Waters 717 Autosampler, Waters 社) 를 사용하여 25 ℃, 상압(1 atm) 조건에서 측정한 후 표준시료(Styrene 표준분자량(g/mol) 1320, 2750, 6760, 19700, 50600, 124000, 279000, 768000, 1540000, 2350000)를 사용하여 검량선을 그린 후 환산하여 Mw 및 Mn을 각각 결정하고, Mw/Mn의 비로부터 다분산도를 결정하였다. 그 결과를 하기 표 2에 나타내었다.The weight average molecular weight (Mw), the number average molecular weight (Mn), and the polydispersity were measured for the vinyl chloride polymers prepared in Examples 1 to 6 and Comparative Examples 1 to 7, respectively. Specifically, 0.02 g of a vinyl chloride polymer sample was added to 20 ml of tetrahydrofuran (THF), dissolved for 24 hours, and filtered through a 0.45 um filter, followed by a GPC device (Waters 2414 Refractive Index Detector, Waters 1525 Binary HPLC Pump, and Waters 717 Autosampler, Waters, Inc.). After measurement at 25 ℃ and normal pressure (1 atm), use standard sample (Styrene standard molecular weight (g / mol) 1320, 2750, 6760, 19700, 50600, 124000, 279000, 768000, 1540000, 2350000) After drawing the calibration curve, Mw and Mn were determined, respectively, and polydispersity was determined from the ratio of Mw / Mn. The results are shown in Table 2 below.
4) 기공특성 측정4) Pore property measurement
상기 실시예 1 내지 6 및 비교예 1 내지 7에서 제조한 염화비닐 중합체에 대해 수은 침투를 이용한 방법(mercury porosimetry)으로 기공물성을 측정하였다. 구체적으로, 상온(23±2 ℃), 상압(1atm)의 조건에서 수은 기공률 분석기(Auto Pore IV 9520, Micromeritics 사제)을 사용하여 염화비닐 중합체 입자 내로 침입한 수은의 양으로부터 표면기공(Pinter), 개기공 (accessible intravoid, Pacc) 및 폐기공(inaccessible intravoid, Pinacc)을 각각 측정하고, 그 결과로부터 평균 기공직경(4V/A) 및 기공률(porosity)을 각각 산출하였고, 그 결과를 하기 표 2에 나타내었다. 이 때 기공률은 부피에 대한 백분율을 나타낸다.The pore physical properties of the vinyl chloride polymers prepared in Examples 1 to 6 and Comparative Examples 1 to 7 were measured by mercury porosimetry. Specifically, the surface pores (Pinter) from the amount of mercury infiltrated into the vinyl chloride polymer particles using a mercury porosity analyzer (Auto Pore IV 9520, manufactured by Micromeritics) under normal temperature (23 ± 2 ° C) and atmospheric pressure (1atm) conditions Accessible intravoid (Pacc) and inaccessible intravoid (Pinacc) were measured, respectively, and the average pore diameter (4V / A) and porosity were calculated from the results, and the results are shown in Table 2 below. Indicated. In this case, the porosity represents a percentage with respect to the volume.
중합시간(min)Polymerization time (min) 단위시간 당 중합생산량Polymerization output per unit time 중합도Degree of polymerization 분자량 (Mn, Mw: g/mol)Molecular Weight (Mn, Mw: g / mol) 평균 기공직경 (nm)Average pore diameter (nm) 기공률(%)Porosity (%)
kg/daykg / day MT/yearMT / year MnMn MwMw PDIPDI
실시예Example 1One 220220 20482048 748748 10281028 7401474014 153648153648 2.082.08 324.3324.3 61.1161.11
22 215215 20962096 765765 10321032 7323373233 155914155914 2.132.13 345.4345.4 67.8067.80
33 212212 21252125 776776 10301030 7208272082 161535161535 2.242.24 415.3415.3 65.2965.29
44 220220 20422042 746746 10331033 7375573755 158190158190 2.152.15 308.3308.3 63.2863.28
55 205205 22022202 804804 10351035 7312673126 160684160684 2.202.20 363.6363.6 60.5460.54
66 235235 19171917 700700 10241024 7331573315 151127151127 2.062.06 312.6312.6 61.9461.94
비교예Comparative example 1One 270270 13281328 485485 10321032 7501975019 135296135296 1.801.80 248.6248.6 55.5955.59
22 280280 16011601 584584 10301030 7486874868 139081139081 1.861.86 255.4255.4 56.0756.07
33 262262 17131713 625625 10281028 7279372793 141528141528 1.941.94 288.9288.9 58.5958.59
44 220220 20582058 751751 10341034 7225172251 152657152657 2.112.11 334.4334.4 51.6351.63
55 210210 21502150 785785 10321032 7022070220 167411167411 2.382.38 310.4310.4 56.0756.07
66 240240 18781878 685685 10301030 7426374263 137355137355 1.851.85 251.3251.3 56.0256.02
77 360360 12291229 449449 -- 8438684386 163038163038 1.931.93 27.627.6 17.4317.43
상기 표 2에 나타난 바와 같이, 염화비닐 중합 시드를 이용한 시드 현탁 중합 방법을 적용하고, 중합 시드 제조 시 중합 전환율 및 각 중합 반응 온도의 차이를 특정 범위 내로 조절한 실시예 1 내지 6은 비교예 1 내지 7에 비해 동일 전환율에서 반응 시간이 단축되고, 단위시간 당 중합생산량이 개선되었으며, 제조되는 중합체의 평균 기공 직경 및 기공률이 더 큰 값을 가지는 것을 확인할 수 있으며, 특히 60% 이상의 기공률을 확보할 수 있는 것을 확인할 수 있다. 또한, 다분산도(PDI)가 2.0 내지 2.3의 범위에 포함되는 것을 확인할 수 있다.As shown in Table 2, Examples 1 to 6 by applying a seed suspension polymerization method using a vinyl chloride polymerization seed and controlling the difference in polymerization conversion rate and each polymerization reaction temperature in preparing a polymerization seed within a specific range are Comparative Example 1 Compared to 7 to 7, the reaction time is shortened at the same conversion rate, and the polymerization yield per unit time is improved, and the average pore diameter and porosity of the polymer to be produced have a larger value, in particular, a porosity of 60% or more can be obtained. We can confirm that we can. In addition, it can be confirmed that the polydispersity (PDI) is in the range of 2.0 to 2.3.
구체적으로, 시드 중합을 적용하지 않은 비교예 1 및 2와 본 발명의 수치범위를 벗어나는 중합 전환율을 가지는 중합 시드를 제조하고, 예비 중합과 본 중합의 중합 온도 역시 본 발명에서 특정한 수치범위를 벗어나는 비교예 3은 모두 실시예 1 내지 6에 비해 중합 생산량이 현저하게 떨어지고, 다분산도가 2.0 미만으로 본 발명에서 특정한 중합체의 물성을 벗어나는 것을 확인할 수 있다. 또한, 중합체 내 기공특성을 살펴보면, 평균 기공 직경 역시 실시예 1 내지 6에 비해 작은 값을 가지고, 기공률이 60 % 미만으로 낮은 값을 가지는 것을 확인할 수 있다.Specifically, Comparative Examples 1 and 2, which do not apply seed polymerization, and a polymerization seed having a polymerization conversion ratio outside the numerical range of the present invention are prepared, and the polymerization temperature of the prepolymerization and the main polymerization is also outside the specific numerical range in the present invention. In Example 3, it can be seen that the polymerization yield is significantly lower than that of Examples 1 to 6, and the polydispersity is less than 2.0, thereby deviating from the physical properties of a specific polymer in the present invention. In addition, looking at the pore characteristics in the polymer, it can be seen that the average pore diameter also has a small value compared to Examples 1 to 6, the porosity has a low value of less than 60%.
또한, 본 발명과 동일하게 시드 중합을 적용하였으나, 시드의 중합 전환율이 본 발명의 수치범위를 벗어나는 비교예 4는 중합 생산량, 다분산도 및 평균 기공 직경은 본 발명과 유사한 수준을 유지하고 있으나, 중합체의 기공률이 60 % 미만으로 낮은 값을 가지는 것을 확인할 수 있으며, 예비 중합과 본 중합의 온도 차이가 본 발명의 수치범위를 벗어나는 비교예 5는 중합 생산량, 평균 기공 직경은 본 발명과 유사한 수준을 유지하고 있으나, 다분산도가 2.0을 초과하여 본 발명의 범위를 벗어나며, 기공률 역시 60 % 미만으로 낮은 값을 가지는 것을 확인할 수 있다.In addition, the seed polymerization was applied in the same manner as in the present invention, but in Comparative Example 4 in which the polymerization conversion rate of the seeds was outside the numerical range of the present invention, the polymerization yield, the polydispersity, and the average pore diameter were maintained at a similar level to the present invention. It can be seen that the porosity of the polymer has a low value of less than 60%, Comparative Example 5 in which the temperature difference between the preliminary polymerization and the main polymerization is outside the numerical range of the present invention is the polymerization yield, the average pore diameter is similar to the present invention It is maintained, but the polydispersity exceeds 2.0 and out of the scope of the present invention, it can be confirmed that the porosity also has a low value of less than 60%.
또한, 시드중합율이 실시예와 동일한 수치범위이나, 예비 중합과 본 중합의 중합온도를 동일하게 유지한 비교예 6은 생산성 향상 효과가 실시예 1 내지 6에 비해 미미하며, 기공률이 60 % 미만이고, 다분산도 역시 2.0 미만의 값을 가져 원하는 수준에 도달하지 못하는 것을 확인할 수 있으며, 중합전환율 및 예비 중합과 본 중합의 중합온도 차이가 실시예와 동일한 수준이나, 단독 중합체가 아닌 공중합체를 제조한 비교예 7은 공단량체의 영향으로 평균 기공직경 및 기공률이 본 발명의 일 실시예에 따른 물성을 충족할 수 없는 것을 확인할 수 있으며, 다분산도 역시 2.0 미만으로 낮은 값을 가지는 것을 확인할 수 있다. 특히, 비교예 7은 실시예 1 내지 6에 비해 중합시간이 많고, 단위시간당 중합 생산량이 현저하게 떨어지는 것을 확인할 수 있다. 또한, 비교예 7은 2종의 단량체를 사용한 공중합체임에 따라 신뢰도 있는 중합도 값의 측정이 어려운 문제가 있다.In addition, although the seed polymerization rate was the same numerical range as in Example, Comparative Example 6 in which the prepolymerization and the polymerization temperature of the main polymerization were kept the same, the productivity improvement effect was insignificant compared to Examples 1 to 6, and the porosity was less than 60%. And, polydispersity also has a value of less than 2.0 it can be confirmed that the desired level is not reached, the difference in polymerization conversion and pre-polymerization and polymerization temperature of the present polymerization is the same level as in Example, but the copolymer is not homopolymer The prepared Comparative Example 7 can be confirmed that the average pore diameter and porosity can not meet the physical properties according to an embodiment of the present invention under the influence of the comonomer, polydispersity is also confirmed to have a low value of less than 2.0. have. In particular, Comparative Example 7 has a higher polymerization time compared to Examples 1 to 6, it can be confirmed that the polymerization yield per unit time is significantly lower. In addition, Comparative Example 7 has a problem that it is difficult to measure the degree of polymerization degree of reliability as it is a copolymer using two kinds of monomers.
실험예 2: 중합체의 배합 물성 평가Experimental Example 2: Evaluation of Blending Properties of Polymer
1) 초기 착색성 평가1) Initial colorability evaluation
실시예 1 내지 6 및 비교예 1 내지 6의 염화비닐 중합체의 초기 착색성을 평가를 위하여 각 실시예 및 비교예의 염화비닐 중합체 100 중량부에 대하여 주석계 안정제 1 중량부, 납계 안정제 0.5 중량부, 안정제 1.5 중량부, 가소제(DOP) 45 중량부를 배합하고, 롤(roll)을 이용하여 150 ℃로 5분간 혼련한 뒤, 시트(sheet)를 얻었다. 이 시트를 절단하고 겹치고, 프레스 성형을 통해 압축 시트를 얻었다. 또한, 비교예 7은 가소제 45 중량부를 첨가하는 것을 제외하고는 상기와 동일한 방법으로 배합, 혼련 및 압축하여 압축 시트를 얻었다. 이것을 육안으로 관찰하여 평가하였고, 그 결과를 하기 표 2에 나타내었다.To evaluate the initial coloring properties of the vinyl chloride polymers of Examples 1 to 6 and Comparative Examples 1 to 6, 1 part by weight of a tin stabilizer, 0.5 part by weight of a lead stabilizer, and a stabilizer based on 100 parts by weight of the vinyl chloride polymer of each Example and Comparative Example. 1.5 weight part and 45 weight part of plasticizers (DOP) were mix | blended, and it knead | mixed for 5 minutes at 150 degreeC using the roll, and the sheet was obtained. This sheet was cut and stacked, and a press sheet was obtained by press molding. In Comparative Example 7, a compressed sheet was obtained by blending, kneading and compressing in the same manner as described above except that 45 parts by weight of a plasticizer was added. This was visually observed and evaluated, and the results are shown in Table 2 below.
◎: 비교예 1과 비교하여 이것과 동일한 정도의 착색 정도이고, 실용상 문제없는 수준.(Double-circle): It is the level of coloring similar to this compared with the comparative example 1, and a level which is satisfactory practically.
○: 비교예 1과 비교하여 약간 뒤떨어지지만 이상이 없는 정도의 착색 정도이고, 실용상 문제없는 수준.(Circle): It is a color degree of the grade which is slightly inferior compared with the comparative example 1, and there is no abnormality, and is a level which is satisfactory practically.
X: 비교예 1과 비교하여 분명히 착색 정도가 차이가 나며, 실용상 문제가 있는 수준.X: The level of coloring differs clearly compared with the comparative example 1, and the level which has a problem practically.
2) 휘시아이(Fish-eye) 양2) Fish-eye sheep
실시예 1 내지 6 및 비교예 1 내지 6의 염화비닐 중합체 100중량부에, 가소제(DOP) 45중량부, 스테아린산바륨 0.1 중량부, 주석계 안정제 0.2 중량부, 카본 블랙 0.1 중량부를 140℃의 6인치 롤을 이용하여 6분간 혼합 혼련 후, 두께 0.3㎜의 시트를 만들고, 이 시트의 100㎠ 중의 백색 투명 입자수로 나타내었고, 그 결과를 하기 표 2에 나타내었다. 또한, 비교예 7의 염화비닐 공중합체는 가소제(DOP) 45 중량부를 첨가하는 것을 제외하고는 상기와 동일한 방법으로 시트를 만들고 휘시아이의 양을 측정하였다.To 100 parts by weight of the vinyl chloride polymer of Examples 1 to 6 and Comparative Examples 1 to 6, 45 parts by weight of a plasticizer (DOP), 0.1 part by weight of barium stearate, 0.2 part by weight of a tin stabilizer, and 0.1 part by weight of carbon black at 140 ° C. After mixing and kneading for 6 minutes using an inch roll, a sheet having a thickness of 0.3 mm was made and represented by the number of white transparent particles in 100 cm 2 of this sheet, and the results are shown in Table 2 below. In addition, the vinyl chloride copolymer of Comparative Example 7 was prepared in the same manner as described above except that 45 parts by weight of a plasticizer (DOP) was added to measure the amount of whiskey.
3) 용융점도 측정 (가공성 평가)3) Melt viscosity measurement (processability evaluation)
실시예 1 내지 6 및 비교예 1 내지 6의 염화비닐 중합체 각 100 중량부에 대하여 가소제(DOP) 45 중량부를 배합하고, 모세관 점도계(capillary rheometer, RHEO-TESTER 2000, GOTTFERT 社)를 이용하여 용융점도를 측정하였고, 그 결과를 하기 표 3에 나타내었다. 또한, 비교예 7은 염화비닐 공중합체에 가소제를 배합하지 않고 용융점도를 측정하였다.45 parts by weight of a plasticizer (DOP) was added to 100 parts by weight of each of the vinyl chloride polymers of Examples 1 to 6 and Comparative Examples 1 to 6, and a melt viscosity was obtained using a capillary rheometer (RHEO-TESTER 2000, GOTTFERT Co., Ltd.). Was measured, and the results are shown in Table 3 below. In Comparative Example 7, the melt viscosity was measured without blending the plasticizer with the vinyl chloride copolymer.
휘시아이 수Fusisia 초기 착색성Initial coloring 용융점도 (Pa·s)Melt Viscosity (Pas)
shear rate (1/s)shear rate (1 / s)
100 100 200200 300300 400400 500500 600600 700700 800800 10001000
실시예Example 1One 33 775.31775.31 606.63606.63 511.2511.2 382.55382.55 331.23331.23 268.28268.28 246.72246.72 224.68224.68 188.85188.85
22 44 706.34706.34 512.51512.51 437.67437.67 342.25342.25 309.07309.07 266.78266.78 226.45226.45 221.54221.54 162.83162.83
33 22 648.25648.25 502.65502.65 381.9381.9 303.24303.24 231.48231.48 206.44206.44 164.17164.17 142.69142.69 122.11122.11
44 33 740.35740.35 576.47576.47 453.21453.21 350.83350.83 300.55300.55 251.23251.23 512.54512.54 176.64176.64 154.72154.72
55 44 681.22681.22 520.81520.81 431.33431.33 326.72326.72 280.13280.13 230.24230.24 193.77193.77 156.29156.29 138.32138.32
66 44 742.64742.64 596.38596.38 493.45493.45 372.59372.59 321.87321.87 264.58264.58 240.32240.32 220.06220.06 177.73177.73
비교예Comparative example 1One 55 916.38916.38 655.36655.36 571.78571.78 441.18441.18 367.59367.59 314.93314.93 283.62283.62 257.65257.65 218.62218.62
22 66 938.41938.41 659.14659.14 576.09576.09 450.92450.92 375.62375.62 330.68330.68 295.08295.08 273.96273.96 245.72245.72
33 55 865.72865.72 632.14632.14 544.92544.92 414.56414.56 337.35337.35 282.15282.15 248.64248.64 233.6233.6 203.42203.42
44 2020 XX 757.57757.57 592.41592.41 491.74491.74 393.39393.39 301.34301.34 268.21268.21 214.71214.71 188.64188.64 161.02161.02
55 1616 XX 723.03723.03 568.45568.45 451.23451.23 360.87360.87 283.99283.99 248.35248.35 189.95189.95 159.53159.53 143.17143.17
66 22 875.43875.43 649.66649.66 518.72518.72 432.51432.51 356.84356.84 290.37290.37 247.65247.65 231.14231.14 205.08205.08
77 22 718.25718.25 612.51612.51 537.67537.67 442.25442.25 409.07409.07 366.78366.78 326.45326.45 321.54321.54 262.83262.83
상기 표 3에 나타난 바와 같이, 염화비닐 중합 시드를 이용한 시드 현탁 중합 방법을 적용하고, 중합 시드 제조 시 중합 전환율 및 각 중합 반응 온도의 차이를 특정 범위 내로 조절한 실시예 1 내지 6은 비교예 1 내지 7에 비해 휘시아이 수가 현저하게 작은 값을 가지므로, 휘시아이 품질(돌기 품질)이 개선되는 것을 확인할 수 있고, 초기 착색성 역시 우수한 수준으로 발현되는 것을 확인할 수 있다. 또한, 실시예 1 내지 6은 비교예 1 내지 3, 6 및 7에 비해 용융점도가 낮은 것을 확인할 수 있는데, 용융점도가 낮은 것은 흐름성이 좋은 것을 의미하는 바, 우수한 가공성을 가질 수 있는 것을 나타내는 지표이다. 따라서, 실시예 1 내지 6은 비교예 1 내지 3, 6 및 7에 비해 가공성이 개선된 것을 확인할 수 있다.As shown in Table 3, Examples 1 to 6 by applying a seed suspension polymerization method using a vinyl chloride polymerization seed, and controlling the difference in polymerization conversion rate and each polymerization reaction temperature in the preparation of the polymerization seed within a specific range is Comparative Example 1 Since the number of Fuchsia has a significantly smaller value than to 7, it can be seen that the quality of the Fuchsia (protrusion quality) is improved, it can be seen that the initial colorability is also expressed at an excellent level. In addition, Examples 1 to 6 can confirm that the melt viscosity is lower than Comparative Examples 1 to 3, 6 and 7, but a low melt viscosity means that the flowability is good, indicating that it can have excellent workability It is an indicator. Therefore, Examples 1 to 6 it can be confirmed that the workability is improved compared to Comparative Examples 1 to 3, 6 and 7.
한편, 비교예 4 및 5는 용융점도가 본 발명과 유사한 수준이나, 휘시아이 수가 현저하게 많고, 초기 착색성 역시 실용상 문제가 있는 수준으로 품질이 악화된 것을 확인할 수 있다. On the other hand, Comparative Examples 4 and 5, but the melt viscosity is similar to the present invention, the number of whiskeys is remarkably large, it can be confirmed that the quality is deteriorated to a level that is also problematic in practical use.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (11)

  1. 다분산도(PDI)가 2.0 내지 2.3 이고, 기공률(porosity)이 60 % 이상인 염화비닐 중합체.Vinyl chloride polymer having a polydispersity (PDI) of 2.0 to 2.3 and a porosity of at least 60%.
  2. 제1항에 있어서,The method of claim 1,
    상기 염화비닐 중합체는 평균 기공 직경(Average pore diameter, 4V/A)이 300 nm 이상인 것인 염화비닐 중합체.The vinyl chloride polymer is an average pore diameter (Average pore diameter, 4V / A) is a vinyl chloride polymer of 300 nm or more.
  3. 제1항에 있어서,The method of claim 1,
    상기 염화비닐 중합체의 기공률은 60 내지 75 %인 것인 염화비닐 중합체.The porosity of the vinyl chloride polymer is 60 to 75% of the vinyl chloride polymer.
  4. 제1항에 있어서,The method of claim 1,
    상기 염화비닐 중합체의 평균 기공 직경은 300 내지 600 nm인 것인 염화비닐 중합체.The average pore diameter of the vinyl chloride polymer is 300 to 600 nm.
  5. 제1항에 있어서,The method of claim 1,
    상기 염화비닐 중합체는 염화비닐 단독 중합체(homopolymer)인 것인 염화비닐 중합체.The vinyl chloride polymer is a vinyl chloride polymer homopolymer (homopolymer).
  6. 예비 중합 반응기에서 제1염화비닐 단량체를 중합 전환율이 5 내지 20 %가 되도록 중합하여 염화비닐 중합 시드를 제조하는 단계(단계 1); 및Preparing a vinyl chloride polymerization seed by polymerizing the first vinyl chloride monomer in a prepolymerization reactor such that the polymerization conversion rate is 5 to 20% (step 1); And
    상기 염화비닐 중합 시드를 본 중합 반응기로 이송하고, 상기 본 중합 반응기에 투입되는 제2염화비닐 단량체와 중합하여 염화비닐 중합체를 제조하는 단계 (단계 2);를 포함하며,And transferring the vinyl chloride polymerization seed to the polymerization reactor and polymerizing with the second vinyl chloride monomer introduced into the polymerization reactor to prepare a vinyl chloride polymer (step 2).
    상기 단계 1 및 단계 2의 중합온도의 차이는 5 내지 15 ℃이며,The difference between the polymerization temperature of step 1 and step 2 is 5 to 15 ℃,
    상기 염화비닐 중합체는 염화비닐 단독 중합체인 것인 염화비닐 중합체의 제조방법.Wherein said vinyl chloride polymer is a vinyl chloride homopolymer.
  7. 제6항에 있어서,The method of claim 6,
    상기 단계 1 및 단계 2의 중합은 현탁 중합이며,The polymerization of step 1 and step 2 is a suspension polymerization,
    상기 현탁 중합은 보호콜로이드 조제 및 중합 개시제의 존재 하에 실시되는 것인 염화비닐 중합체의 제조방법.The suspension polymerization is carried out in the presence of a protective colloid preparation and a polymerization initiator.
  8. 제6항에 있어서,The method of claim 6,
    상기 단계 1 및 단계 2의 중합온도의 차이는 10 내지 15 ℃인 것인 염화비닐 중합체의 제조방법.The difference in the polymerization temperature of step 1 and step 2 is a method of producing a vinyl chloride polymer that is 10 to 15 ℃.
  9. 제6항에 있어서,The method of claim 6,
    상기 염화비닐 중합 시드는 중합 전환율이 5 내지 15 %가 되도록 중합하여 제조되는 것인 염화비닐 중합체의 제조방법.The vinyl chloride polymerization seed is a method for producing a vinyl chloride polymer that is prepared by polymerization so that the polymerization conversion is 5 to 15%.
  10. 제6항에 있어서,The method of claim 6,
    상기 단계 1의 중합온도가 상기 단계 2의 중합온도에 비해 높은 온도인 것인 염화비닐 중합체의 제조방법.Method for producing a vinyl chloride polymer of the polymerization temperature of the step 1 is a higher temperature than the polymerization temperature of the step 2.
  11. 제6항에 있어서,The method of claim 6,
    상기 제1염화비닐 단량체 및 제2염화비닐 단량체는 동일한 염화비닐 단량체인 것인 염화비닐 중합체의 제조방법.Wherein the first vinyl chloride monomer and the second vinyl chloride monomer are the same vinyl chloride monomers.
PCT/KR2019/005160 2018-04-30 2019-04-29 Vinyl chloride polymer and method for preparing same WO2019212217A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980009628.9A CN111630073B (en) 2018-04-30 2019-04-29 Vinyl chloride polymer and process for producing the same
US16/962,747 US11505629B2 (en) 2018-04-30 2019-04-29 Vinyl chloride polymer and production method thereof
EP19795973.7A EP3789410B1 (en) 2018-04-30 2019-04-29 Vinyl chloride polymer and production method thereof
JP2020540404A JP6964196B2 (en) 2018-04-30 2019-04-29 Vinyl chloride polymer and its production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180049563 2018-04-30
KR10-2018-0049563 2018-04-30
KR10-2019-0048264 2019-04-25
KR1020190048264A KR102251268B1 (en) 2018-04-30 2019-04-25 Vinyl chloride polymer and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2019212217A1 true WO2019212217A1 (en) 2019-11-07

Family

ID=68386422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005160 WO2019212217A1 (en) 2018-04-30 2019-04-29 Vinyl chloride polymer and method for preparing same

Country Status (1)

Country Link
WO (1) WO2019212217A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338701A (en) 1997-04-08 1998-12-22 Shin Etsu Chem Co Ltd Production of vinyl chloride-based polymer
KR0160332B1 (en) * 1994-11-14 1999-01-15 박원배 Processing method of high porous vinyl chloride resin
US20050008027A1 (en) 1998-11-12 2005-01-13 Broadcom Corporation System and method for multiplexing data from multiple sources
US6861488B2 (en) 2002-08-19 2005-03-01 Shin-Etsu Chemical Co., Ltd. Process for producing a vinyl chloride-based polymer
US20050054795A1 (en) 2001-12-21 2005-03-10 Akzo Nobel N. V. Continuous dosing of extremely fast initiators during polymerization reactions
KR20080018082A (en) * 2006-08-22 2008-02-27 주식회사 엘지화학 Methods of preparing a vinyl chloride polymer having superior workability
KR20110008882A (en) * 2009-07-21 2011-01-27 주식회사 엘지화학 Manufacturing method of pvc polymer and pvc copolymer using suspension polymerization seed
JP2014224176A (en) * 2013-05-15 2014-12-04 積水化学工業株式会社 Heat-chlorinated polyvinyl chloride resin composition and molded article
KR20160143566A (en) * 2015-06-05 2016-12-14 주식회사 엘지화학 Method for preparing vinyl chloride copolymer and vinyl chloride copolymer produced by the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0160332B1 (en) * 1994-11-14 1999-01-15 박원배 Processing method of high porous vinyl chloride resin
JPH10338701A (en) 1997-04-08 1998-12-22 Shin Etsu Chem Co Ltd Production of vinyl chloride-based polymer
US20050008027A1 (en) 1998-11-12 2005-01-13 Broadcom Corporation System and method for multiplexing data from multiple sources
US20050054795A1 (en) 2001-12-21 2005-03-10 Akzo Nobel N. V. Continuous dosing of extremely fast initiators during polymerization reactions
US6861488B2 (en) 2002-08-19 2005-03-01 Shin-Etsu Chemical Co., Ltd. Process for producing a vinyl chloride-based polymer
KR20080018082A (en) * 2006-08-22 2008-02-27 주식회사 엘지화학 Methods of preparing a vinyl chloride polymer having superior workability
KR20110008882A (en) * 2009-07-21 2011-01-27 주식회사 엘지화학 Manufacturing method of pvc polymer and pvc copolymer using suspension polymerization seed
JP2014224176A (en) * 2013-05-15 2014-12-04 積水化学工業株式会社 Heat-chlorinated polyvinyl chloride resin composition and molded article
KR20160143566A (en) * 2015-06-05 2016-12-14 주식회사 엘지화학 Method for preparing vinyl chloride copolymer and vinyl chloride copolymer produced by the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3789410A4 *

Similar Documents

Publication Publication Date Title
KR101199094B1 (en) Manufacturing Method of PVC Polymer and PVC Copolymer Using Suspension Polymerization Seed
WO2016195434A1 (en) Method for preparing vinyl chloride-based copolymer and vinyl chloride-based copolymer prepared therefrom
US7253236B2 (en) Grafted fluoroelastomers
WO2016195436A1 (en) Vinyl chloride-based polymer, preparation method therefor, and thermoplastic resin composition containing same
WO2019225827A1 (en) Method for preparing copolymer
WO2016195435A1 (en) Vinyl-based polymer and preparation method therefor
WO2017069425A1 (en) Vinyl chloride-based polymer having high viscosity in low shear range, preparation method therefor, and plastisol comprising same
WO2016182338A1 (en) Acryl-based processing aid and vinylchloride-based resin composition containing same
WO2011055867A1 (en) Vinyl chloride-based polymer
WO2019212217A1 (en) Vinyl chloride polymer and method for preparing same
WO2021101101A1 (en) Method for preparing copolymer, copolymer prepared thereby, and thermoplastic resin composition comprising same
WO2023158109A1 (en) Vinylchloride-based copolymer and preparation method of same
WO2020101182A1 (en) Core-shell copolymer, preparation method therefor, and thermoplastic resin composition comprising same
WO2018044017A1 (en) Method for preparing vinyl chloride-based polymer, and device for preparing vinyl chloride-based polymer
WO2017191899A1 (en) Method for preparing vinyl chloride-based polymer and vinyl chloride-based polymer prepared thereby
US11505629B2 (en) Vinyl chloride polymer and production method thereof
WO2021049836A1 (en) Method for preparing vinyl chloride-based polymer
WO2023277530A1 (en) Method for preparing vinyl chloride-based polymer and vinyl chloride-based polymer prepared thereby
WO2020060028A1 (en) Vinyl chloride-based polymer and method for producing same
WO2017188594A1 (en) Method for preparing vinyl chloride-based polymer and vinyl chloride-based polymer prepared thereby
WO2017061829A1 (en) Vinyl chloride-based polymer and preparation method therefor
WO2024096433A1 (en) Method for preparing copolymer, copolymer prepared thereby, and thermoplastic resin composition comprising same
WO2017099373A1 (en) Vinyl chloride-based copolymer, process for producing same, and thermoplastic resin composition comprising same
WO2021225394A1 (en) Method for preparing vinyl chloride polymer composite, vinyl chloride polymer composite, and vinyl chloride polymer composite composition comprising same
WO2014098360A1 (en) Method for preparing vinyl chloride-based resin by using suspension polymerization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019795973

Country of ref document: EP

Effective date: 20201130