WO2019210825A1 - 液晶天线及其制备方法和电子设备 - Google Patents

液晶天线及其制备方法和电子设备 Download PDF

Info

Publication number
WO2019210825A1
WO2019210825A1 PCT/CN2019/084954 CN2019084954W WO2019210825A1 WO 2019210825 A1 WO2019210825 A1 WO 2019210825A1 CN 2019084954 W CN2019084954 W CN 2019084954W WO 2019210825 A1 WO2019210825 A1 WO 2019210825A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
disposed
ground electrode
transmission line
Prior art date
Application number
PCT/CN2019/084954
Other languages
English (en)
French (fr)
Inventor
方家
李延钊
王熙元
刘宗民
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/754,316 priority Critical patent/US11336010B2/en
Publication of WO2019210825A1 publication Critical patent/WO2019210825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present disclosure relates to the field of antenna technology, and in particular to a liquid crystal antenna and a method of fabricating the same, and to an electronic device including such a liquid crystal antenna.
  • the development of communication technologies requires antennas with desirable performance.
  • the liquid crystal antenna has the advantages of small size, light weight, low power consumption, and easy conformality, and utilizes the anisotropy of the liquid crystal to realize the function of beam scanning, and thus is considered to have broad prospects and is also increasingly widely used. application. It is known that liquid crystal antennas can usually be fabricated using a semiconductor process. In order to prepare a liquid crystal antenna with high alignment accuracy, it is desirable to be able to fabricate a liquid crystal antenna based entirely on a semiconductor process without requiring other production processes other than a semiconductor process.
  • a liquid crystal antenna includes: a first substrate; a second substrate, the second substrate is disposed opposite to the first substrate; a third substrate, the third substrate, and the The second substrate is oppositely disposed such that the second substrate is located between the first substrate and the third substrate; a liquid crystal layer disposed between the first substrate and the second substrate; a transmission line The transmission line is disposed on a surface of the first substrate adjacent to the liquid crystal layer; a ground electrode disposed on a surface of the second substrate adjacent to the liquid crystal layer; a feed line and a radiation a patch, the feed line and the radiation patch are disposed on one surface of the third substrate; wherein the transmission line forms a signal transmission line with the ground electrode, and the transmission line forms a shift with the liquid crystal layer Phase device.
  • the ground electrode has an opening to form a radiation groove.
  • an orthogonal projection of the transmission line, the feed line, and the radiation patch on the ground electrode at least partially overlaps the radiation slot.
  • the shape of the radiation groove is one of an H shape, a dumbbell shape, and a rectangle or any combination thereof.
  • the feed line and the radiation patch are disposed on a surface of the third substrate opposite to the second substrate. In an embodiment of the present disclosure, the feed line and the radiation patch are disposed on a surface of the third substrate that faces away from the second substrate.
  • the first substrate, the second substrate, and the third substrate are respectively made of a material selected from the group consisting of: a polytetrafluoroethylene glass fiber press plate, a phenolic resin Paper laminates, phenolic glass cloth laminates, quartz plates and glass plates.
  • the first substrate, the second substrate, and the third substrate are made of the same material.
  • the first substrate, the second substrate, and the third substrate each have a thickness in a range of 100 micrometers to 10 millimeters. In an embodiment of the present disclosure, the first substrate, the second substrate, and the third substrate have the same thickness.
  • the ground electrode, the transmission line, and the radiation patch are each made of a material selected from the group consisting of copper, gold, and silver. In an embodiment of the present disclosure, the ground electrode, the transmission line, and the radiation patch are made of the same material.
  • a method for preparing a liquid crystal antenna as described above comprising the steps of:
  • step b) further includes: providing an opening in the ground electrode to form a radiation groove.
  • the first pair of cartridges in step d) and the second pair of cartridges in step f) are implemented using a vacuum alignment system.
  • the liquid crystal is dripped in step e) using a liquid crystal dropping process.
  • preparing the ground electrode and the radiation patch comprises: forming a conductive layer on a surface of a corresponding substrate by magnetron sputtering, thermal evaporation, or electroplating; patterning the conductive layer .
  • the patterning process is etching.
  • the step d) further includes: disposing the surface of the third substrate on which the radiation patch and the feed line are disposed away from the second substrate, or set to The second substrate is opposite.
  • an electronic device including a liquid crystal antenna as described above.
  • Figure 1 schematically shows a microstrip antenna of the prior art
  • Figure 2 is a cross-sectional view schematically showing a liquid crystal antenna of the prior art
  • FIG. 3 is a cross-sectional view schematically showing a liquid crystal antenna according to an embodiment of the present disclosure
  • FIG. 4 is a cross-sectional view schematically showing a liquid crystal antenna according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic flow chart of a method of fabricating a liquid crystal antenna according to an embodiment of the present disclosure.
  • Fig. 1 schematically shows a microstrip antenna 10 of the prior art.
  • the microstrip antenna 10 has a thin dielectric substrate 13 on which a patterned thin metal layer is deposited on both surfaces of the dielectric substrate 13, a thin metal layer serving as the ground electrode 14, and a thin metal layer forming the patch as radiation.
  • the antenna unit that is, the feed line 11 and the radiation patch 12.
  • a ground electrode, a feed line, and a radiation patch are typically formed on opposite side surfaces of a substrate. Therefore, the preparation of the microstrip antenna involves double-sided exposure, and the preparation process is complicated and costly.
  • Fig. 2 schematically shows a liquid crystal antenna 20 of the prior art in the form of a sectional view.
  • a liquid crystal antenna generally comprises two parts: a microstrip antenna unit and a phase shifting unit, and the two units share a ground electrode.
  • the phase shifting unit includes a liquid crystal layer, and beam scanning can be realized by utilizing the anisotropy of the liquid crystal.
  • the radiation patch 21, the first substrate 24, and the ground electrode 25 including the radiation groove 22 constitute a microstrip antenna unit of the liquid crystal antenna 20, the transmission line 23, the second substrate 27, and the liquid crystal layer. 28 constitutes a phase shifting unit of the liquid crystal antenna 20, and the feed line 26 is located in the phase shifting unit.
  • liquid crystal antennas known in the prior art have the following problems:
  • the feeding line is located in the phase shifting unit portion. Since the thickness of the liquid crystal layer is only on the order of micrometers, the external excitation cannot be directly connected, and the method of applying the dielectric substrate is usually adopted in the liquid crystal cell. Inserting a dielectric substrate close to the thickness of the case to connect an external excitation source, but thereby causing loss and impedance mismatch in physical contact of the metal;
  • the external excitation source can be directly connected, and no additional dielectric substrate is needed, but the problem is that the first substrate needs to be double-sided exposed, but double-sided exposure
  • the cost is high, and when one side is exposed, the other side of the first substrate requires a protective layer, and in addition, the precision of double-sided exposure cannot be ensured;
  • the radiation unit and the feeder portion are fabricated on the additional dielectric substrate by introducing an additional dielectric substrate in the manner of a printed circuit board (ie, a PCB board), but the PCB board is additionally processed, and thus cannot be combined with the semiconductor process.
  • a printed circuit board ie, a PCB board
  • the prepared liquid crystal cell achieves very precise alignment.
  • a liquid crystal antenna 30 according to an embodiment of the present disclosure is schematically illustrated in a cross-sectional view.
  • the liquid crystal antenna 30 includes, from bottom to top, a first substrate 100, a second substrate 200, and a third substrate 300 which are sequentially stacked in this order, as shown by an arrow in FIG.
  • the transmission line 110 forms a signal transmission line with the ground electrode 210, and the transmission line 110, the ground electrode 210, and the liquid crystal layer 400 form a phase shifter.
  • the ground electrode 210 is further provided with an opening to form the radiation groove 220.
  • the shape of the radiation groove 220 may be one of H-type, dumbbell type, rectangular type, or any combination thereof, the size of which depends on the designed frequency and the substrate used, so as to enable The alignment is more precise.
  • the grounding electrode 210 may also be provided with no radiation slots.
  • a liquid crystal antenna 40 in accordance with another embodiment of the present disclosure is schematically illustrated in cross-section.
  • the liquid crystal antenna 40 is substantially identical in structure to the liquid crystal antenna 30 except that the feed line 310 and the radiation patch 320 are disposed on the surface of the third substrate 300 opposite to the second substrate 200 in the liquid crystal antenna 40.
  • the first substrate 100, the second substrate 200, and the third substrate 300 may be selected to have lower microwave loss.
  • the hard material, such as but not limited to, the first substrate 100, the second substrate 200, and the third substrate 300 may each be made of a material selected from the group consisting of: a polytetrafluoroethylene glass fiber press plate, a phenolic paper Laminates, phenolic glass cloth laminates, quartz plates and glass plates. Therefore, the materials for preparing the first substrate 100, the second substrate 200, and the third substrate 300 are widely used, have good hardness, good stability, good insulation effect, low microwave loss, and hardly affect the transmission of radio signals or electromagnetic waves.
  • the use performance of the liquid crystal antennas 30, 40 is made better.
  • the first substrate 100, the second substrate 200, and the third substrate 300 may be made of the same material; in some embodiments of the present disclosure, the first substrate 100, the second substrate 200, and One or both of the third substrates 300 may be made of different materials, or the first substrate 100, the second substrate 200, and the third substrate 300 may be made of materials different from each other.
  • the thicknesses of the first substrate 100, the second substrate 200, and the third substrate 300 are all in the range of 100 micrometers to 10 millimeters.
  • the thickness of the first substrate 100, the second substrate 200, and the third substrate 300 may be 100 micrometers, 300 micrometers, 500 micrometers, 700 micrometers, 900 micrometers, 1 millimeter, 2 millimeters, 4 millimeters, 6 millimeters, respectively. , 8 mm, 10 mm, etc.
  • the finally obtained liquid crystal antennas 30, 40 are made smaller in size, light in weight, and easy to carry.
  • the thickness of the first substrate 100, the second substrate 200 or the third substrate 300 should be appropriately selected, and when the thickness is too thin, the transmission line 110 is narrowed, so that the loss in the metal during the microwave transmission is greatly reduced. Increasing, the overall performance of the liquid crystal antennas 30, 40 is deteriorated, but when the thickness is too thick, the loss of radiation to the space during signal transmission is increased, and the overall performance of the liquid crystal antennas 30, 40 is also deteriorated.
  • the material forming the radiation patch 320 is selected from at least one of copper, gold, and silver.
  • the radiation patch 320 has a lower resistance, a higher sensitivity of the transmitted signal, less metal loss, and a longer life.
  • the transmission line 110, the ground electrode 210, and the liquid crystal layer 400 together form a phase shifter, which operates on a delay line phase shift. Therefore, the loss during microwave signal transmission is especially critical for antenna performance, and low loss metal is required to form transmission line 110 or ground electrode.
  • the material forming the transmission line 110 or the ground electrode 210 may include at least one of copper, gold, and silver.
  • the material forming the feed line 310 may also be at least one of copper, gold, and silver, whereby loss in signal transmission can be reduced.
  • the liquid crystal antennas 30, 40 have a simple structure and are easy to implement.
  • the ground electrode 210, the transmission line 110, the feed line 310, and the radiation patch 320 are placed on the single-sided surfaces of different substrates, respectively.
  • a complicated and complicated double-sided exposure process is not required.
  • the distance between the feed line and the ground electrode is increased in a coupled manner, which facilitates the application of the excitation source without causing physical contact of the metal to form a loss.
  • the liquid crystal antennas 30, 40 according to the embodiments of the present disclosure can be completely fabricated by a semiconductor manufacturing process, and the steps and operations of the preparation are relatively simple, the alignment is more precise, the product yield is higher, the cost is lower, and the method is suitable for mass production. In addition, since the alignment is more precise, the liquid crystal antennas 30, 40 according to the embodiments of the present disclosure have higher sensitivity for receiving or transmitting signals, and are more usable.
  • a method 50 of fabricating a liquid crystal antenna in accordance with one embodiment of the present disclosure is illustrated in the form of a schematic flow diagram that includes the following steps:
  • a transmission line 110 is formed on one surface of the first substrate 100.
  • the first substrate 100 is consistent with the foregoing description, and details are not described herein again.
  • the step of forming the transmission line 110 may include forming a full-surface conductive layer by magnetron sputtering, thermal evaporation, plating, or the like, and then patterning the conductive layer to form the transmission line 110.
  • the patterning process is, for example, but not limited to, etching or the like.
  • the second substrate 200 and the ground electrode 210 are identical to the previous description, and are not described herein again.
  • the step of forming the ground electrode 210 may include a method such as magnetron sputtering, thermal evaporation, and electroplating, so that the operation is simple and convenient, easy to implement, low in cost, and suitable for mass production.
  • an opening may also be formed in the ground electrode 210 in step S200 to form the radiation trench 220.
  • the manner of forming the radiation groove 220 is not particularly limited, and those skilled in the art can flexibly select according to actual needs as long as the requirements can be met.
  • the manner in which the radiation trench 220 is formed may be, for example but not limited to, etching, cutting, or the like.
  • a conductive layer of the entire surface may be formed on one surface of the second substrate 200 by magnetron sputtering, thermal evaporation, plating, or the like, and then the conductive layer is patterned to form the radiation trench 220 in the ground electrode 210.
  • the patterning process is, for example, but not limited to, etching or the like.
  • a feed line 310 and a radiation patch 320 are formed on one surface of the third substrate 300.
  • the third substrate 300, the radiation patch 320, and the feed line 310 are identical to the previous description, and are not described herein again.
  • the manner in which the radiation patch 320 is formed may be magnetron sputtering, thermal evaporation, electroplating, or the like.
  • the operation is simple and convenient, easy to implement, and low in cost, and is suitable for mass production.
  • the manner of forming the feeder line 310 is a normal operation, and details are not described herein again.
  • S400 The surface of the second substrate 200 on which the ground electrode 210 is disposed is disposed to face away from the third substrate 300, and the second substrate 200 and the third substrate 300 are subjected to the first pair of cassettes.
  • the surface of the third substrate 300 on which the radiation patch 320 and the feed line 310 are disposed may be disposed away from the second substrate 200 or disposed opposite to the second substrate 200 in step S400.
  • the first pair of cartridges are implemented by, but not limited to, a Vacuum Alignment System (hereinafter abbreviated as VAS).
  • VAS Vacuum Alignment System
  • the specific operation of the box by using the VAS is: applying UV glue on at least a portion of the upper surface of the second substrate 200, placing the second substrate 200 coated with the UV glue on the lower substrate of the VAS, and coating
  • the surface of the UV-coated glue is placed away from the lower substrate of the VAS, and the third substrate 300 is placed on the upper substrate of the VAS, and is aligned by vacuuming and charge-coupled element (CCD) capture marks (graphics are obtained by light changes, and saved by the device)
  • CCD charge-coupled element
  • the graphics are compared to determine the position of the mark, the position of the mark depends on the requirements of the device, generally located at the edge region of the substrate, and then the second substrate 200 and the third substrate 300 are accurately aligned with the box by gravity, and finally the ultraviolet light is irradiated.
  • the precise alignment of the second substrate 200 and the third substrate 300 is achieved by curing and thermal drying.
  • S500 Applying an encapsulant on a surface of the first substrate 100 on which the transmission line 110 is disposed or a peripheral surface of the second substrate 200 on which the ground electrode 210 is disposed, and liquid crystal is dropped in a region defined by the encapsulant.
  • the above-mentioned encapsulant and liquid crystal are all conventional materials, and details are not described herein again.
  • the specific operation of the step may further include: coating a surface of the first substrate 100 on which the transmission line 110 is disposed or a peripheral region of the surface of the second substrate 200 on which the ground electrode 210 is disposed
  • the encapsulant has a certain thickness in a direction perpendicular to the surface of the first substrate 100 (or the surface of the second substrate 200), and passes through a liquid drop dropping process (hereinafter referred to as ODF).
  • ODF liquid drop dropping process
  • the liquid crystal is dripped in the area defined by the above-mentioned encapsulant so that the liquid crystal can just fill the area.
  • the second pair of cartridges are implemented by VAS, including but not limited to.
  • the specific operation of the second substrate 200 and the first substrate 100 by using the VAS is performed by: adsorbing the first substrate 100 on the lower substrate of the VAS, and accurately positioning the second substrate 200 and the third substrate. 300 is adsorbed on the upper substrate of the VAS, so that the surface of the first substrate 100 provided with the transmission line 110 and the surface of the second substrate 200 provided with the ground electrode 210 are disposed opposite to each other, and then the VAS is used to accurately align the two, and then
  • the liquid crystal cell is prepared by an ultraviolet curing process and a hot baking method.
  • an encapsulant is required to perform the second pair of cartridges to maintain the filled liquid crystal on the surface of the first substrate 100 on which the transmission line 110 is disposed, and the surface of the second substrate 200 on which the ground electrode 210 is disposed. And the space formed by the encapsulant.
  • the order of the first pair of boxes in step S400 and the second pair of boxes in step S600 are not particularly limited, as long as the requirements for preparing the liquid crystal antenna can be satisfied, those skilled in the art can flexibly according to actual needs. select. It should also be understood that the pair of substrates between the substrates can be realized by any other suitable means known, as well as the dripping of the liquid crystal.
  • a transmission line, a ground electrode, a radiation patch, and a feed line may be respectively disposed on one side surfaces of three different substrates using a single-sided exposure semiconductor process, so that The liquid crystal antenna is prepared, so that the semiconductor process can be completely prepared, and the obtained liquid crystal antenna can achieve precise alignment, and a liquid crystal cell which is completely consistent with the design can be prepared, and the liquid crystal antenna has higher yield and lower cost. It can further expand the product coverage of the semiconductor process line.
  • an embodiment of the present disclosure further provides an electronic device including the liquid crystal antenna according to an embodiment of the present disclosure described above.
  • the electronic device has all the features and advantages of the liquid crystal antenna according to the embodiment of the present disclosure described above, and will not be further described herein.
  • the specific kind of the electronic device is not particularly limited, and may be any electronic device that needs to receive and/or transmit signals, such as, but not limited to, a mobile phone, a tablet, a television, a wearable device, a game machine, and the like.
  • the electronic device further includes the structure and components necessary for the conventional electronic device.
  • the mobile phone may further include a casing, a middle frame, and a CPU. , display screens, touch screens, sound systems, fingerprint recognition modules, and more.
  • under and under can encompass both the ⁇ RTIgt;
  • the device can be oriented in other ways (rotated 90 degrees or in other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • a layer is referred to as “between two layers,” it may be a single layer between the two layers, or one or more intermediate layers may be present.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and / or parts, Regions, layers and/or portions should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer Thus, a first element, component, region, layer, or section, which is discussed below, may be referred to as a second element, component, region, layer or section without departing from the teachings of the disclosure.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)

Abstract

本公开提供了一种液晶天线,包括:第一基板;第二基板,所述第二基板与所述第一基板相对设置;第三基板,所述第三基板与所述第二基板相对设置,使得所述第二基板位于所述第一基板和所述第三基板之间;液晶层,其设置在所述第一基板与所述第二基板之间;传输线,所述传输线设置在所述第一基板的与所述液晶层相邻的表面上;接地电极,所述接地电极设置在所述第二基板的与所述液晶层相邻的表面上;馈线和辐射贴片,所述馈线和所述辐射贴片设置在所述第三基板的一个表面上;其中,所述传输线与所述接地电极形成信号传输线路,并且所述传输线与所述液晶层形成移相器。此外,本公开还涉及用于制备所述液晶天线的方法和包括所述液晶天线的电子设备。

Description

液晶天线及其制备方法和电子设备
相关文件
本申请要求申请日为2018年5月3日、申请号为201810416360.8的中国专利申请的优先权,该中国专利申请的整体内容通过引用的方式并入本文。
技术领域
本公开涉及天线技术领域,并且具体而言,涉及一种液晶天线及其制备方法,以及还涉及包括这种液晶天线的电子设备。
背景技术
通信技术的发展要求具有期望性能的天线。液晶天线具有体积小、重量轻、功耗低以及易共形的优点,而且利用液晶的各向异性,还能够实现波束扫描的功能,因此被认为具有广阔的前景,并且也得到了日益广泛的应用。已知的是,液晶天线通常可采用半导体工艺进行制备。为了制备高对位精度的液晶天线,期望能完全基于半导体工艺来制备液晶天线,而不需要非半导体工艺外的其他生产工艺。
发明内容
根据本公开的一个方面,提供了一种液晶天线,包括:第一基板;第二基板,所述第二基板与所述第一基板相对设置;第三基板,所述第三基板与所述第二基板相对设置,使得所述第二基板位于所述第一基板和所述第三基板之间;液晶层,其设置在所述第一基板与所述第二基板之间;传输线,所述传输线设置在所述第一基板的与所述液晶层相邻的表面上;接地电极,所述接地电极设置在所述第二基板的与所述液晶层相邻的表面上;馈线和辐射贴片,所述馈线和所述辐射贴片设置在所述第三基板的一个表面上;其中,所述传输线与所述接地电极形成信号传输线路,并且所述传输线与所述液晶层形成移相器。
在本公开的实施例中,所述接地电极具有开口,以形成辐射槽。在本公开的实施例中,所述传输线、所述馈线和所述辐射贴片在所述接地电极上的正投影与所述辐射槽至少部分重叠。在本公开的实施例 中,所述辐射槽的形状为H形、哑铃形和矩形之一或者为它们的任意组合。
在本公开的实施例中,所述馈线和所述辐射贴片设置在所述第三基板的与所述第二基板相对的表面上。在本公开的实施例中,所述馈线和所述辐射贴片设置在所述第三基板的背离所述第二基板的表面上。
在本公开的实施例中,所述第一基板、所述第二基板和所述第三基板分别由选自以下组的材料制成,所述组包括:聚四氟乙烯玻璃纤维压板、酚醛纸层压板、酚醛玻璃布层压板、石英板和玻璃板。在本公开的实施例中,所述第一基板、所述第二基板和所述第三基板由相同的材料制成。在本公开的实施例中,所述第一基板、所述第二基板和所述第三基板的厚度均在100微米至10毫米的范围内。在本公开的实施例中,所述第一基板、所述第二基板和所述第三基板具有相同的厚度。在本公开的实施例中,所述接地电极、所述传输线和所述辐射贴片分别由选自以下组的材料制成,所述组包括:铜、金和银。在本公开的实施例中,所述接地电极、所述传输线和所述辐射贴片由相同的材料制成。
根据本公开的另一个方面,提供了一种用于制备如上所述的液晶天线的方法,所述方法包括以下步骤:
a)在所述第一基板的一个表面上形成所述传输线;
b)在所述第二基板的一个表面上形成所述接地电极;
c)在所述第三基板的一个表面上形成所述馈线和所述辐射贴片;
d)将所述第二基板的设置有所述接地电极的表面设置成背离所述第三基板,并且将所述第二基板和所述第三基板进行第一对盒;
e)在所述第一基板的设置有所述传输线的表面或者所述第二基板的设置有所述接地电极的表面的周边区域涂覆封装胶,并在所述封装胶所限定的区域内滴加液晶;以及
f)将所述第一基板的设置有所述传输线的表面和所述第二基板的设置有所述接地电极的表面设置成彼此相对,然后将所述第二基板和所述第一基板进行第二对盒。
在本公开的实施例中,步骤b)还包括:在所述接地电极中设置开口,以形成辐射槽。在本公开的实施例中,利用真空对准***来实现 步骤d)中的第一对盒和步骤f)中的第二对盒。在本公开的实施例中,在步骤e)中利用液晶滴下工艺来滴加液晶。在本公开的实施例中,制备所述接地电极和所述辐射贴片包括:通过磁控溅射、热蒸发或电镀在相应基板的表面上形成导电层;对所述导电层进行图案化处理。在本公开的实施例中,所述图案化处理是蚀刻。在本公开的实施例中,在步骤d)还包括:将所述第三基板的设置有所述辐射贴片和所述馈线的表面设置成背离所述第二基板,或者设置成与所述第二基板相对。
根据本公开的又一个方面,提供了一种电子设备,所述电子设备包括如上所述的液晶天线。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本公开的上述和/或其它特征、目的和优点将会变得更明显:
图1示意性地示出了现有技术中的一种微带天线;
图2以截面图的形式示意性地示出了现有技术中的一种液晶天线;
图3以截面图的形式示意性示出了根据本公开一个实施例的液晶天线;
图4以截面图的形式示意性示出了根据本公开另一个实施例的液晶天线;以及
图5是根据本公开一个实施例的制备液晶天线的方法的示意性流程图。
应当理解,附图仅仅用于对本公开的实施例进行示例性描述,其不必按比例绘制。此外,遍及全部附图,其中相同的附图标记指示相同的部件、元件、装置和/或步骤。
具体实施方式
下面将结合附图和实施例对本公开进行详细说明。所描述的实施例是示例性的,仅用于解释本公开,而不应理解为对本公开的限制。所描述的实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
图1示意性地示出了现有技术中的一种微带天线10。微带天线10 具有一层薄的介质基板13,在介质基板13的两个表面上均沉积图案化的金属薄层,一个金属薄层作为接地电极14,另一金属薄层形成贴片作为辐射天线单元,即馈线11和辐射贴片12。在一般的微带天线中,通常在一个基板的对立的两侧表面上形成接地电极、馈线和辐射贴片。因此,这种微带天线的制备涉及到双面曝光,制备工艺较为复杂,成本较高。
图2以截面图的形式示意性地示出了现有技术中的一种液晶天线20。已知的,液晶天线通常包括两部分:微带天线单元和移相单元,两个单元共用一个接地电极。移相单元包括液晶层,利用液晶的各向异性,能够实现波束扫描。在图2所示的液晶天线20中,辐射贴片21、第一基板24、包括辐射槽22的接地电极25构成了液晶天线20的微带天线单元,传输线23、第二基板27和液晶层28则构成了液晶天线20的移相单元,馈线26位于移相单元中。
然而,现有技术中已知的液晶天线存在以下问题:
第一,若采用传统的信号馈入方式,则馈线位于移相单元部分,因为液晶层厚度仅为微米量级,所以无法直接连接外接激励,通常采用外加介质基板的方法,通过在液晶盒中***与盒厚接近的介质基板,以便连接外接激励源,但由此会造成金属物理接触时的损耗及阻抗不匹配;
第二,若将馈线和辐射贴片放置在一面,则可以直接连接外接激励源,不需要额外的介质基板,但是由此造成的问题是需要对第一基板进行双面曝光,然而双面曝光成本很高,且当曝光一面时,第一基板的另一面需要保护层,此外,双面曝光的精度也无法得到保证;
第三,以印刷电路板(即,PCB板)的方式通过引入附加的介质基板,将辐射单元及馈线部分制作于该附加的介质基板上,但由于PCB板为额外加工,因此无法与半导体工艺制备的液晶盒实现非常精准的对位。
因此,期望提供一种改进的液晶天线。
参照图3,其以截面图的形式示意性示出了根据本公开一个实施例的液晶天线30。如图3中箭头(即,示出了上下方向的双向箭头)所示的方向,液晶天线30从下至上包括:依次层叠设置的第一基板100、第二基板200和第三基板300;液晶层400,其设置在第一基板100和 第二基板200之间;传输线110,其设置在第一基板100的与液晶层400相邻的表面上;接地电极210,其设置在第二基板200的与液晶层400相邻的表面上;馈线310和辐射贴片320,它们都被设置在第三基板300的与第二基板200相背离的表面上。传输线110与接地电极210形成信号传输线路,并且传输线110、接地电极210和液晶层400形成移相器。在图3所示的实施例中,接地电极210上还设置有开口,以形成辐射槽220。馈线310、辐射贴片320和传输线110在接地电极210上的正投影与辐射槽220至少部分重叠。此外,根据本公开的一些实施例,辐射槽220的形状可以为H型、哑铃型、矩形型之一或者它们的任意组合,其尺寸取决于所设计的频率及所采用的基板,以便能够使得对位更加精准。然而应当理解,在一些实施例中,接地电极210上也可以不设置辐射槽。
现在参照图4,其以截面图的形式示意性示出了根据本公开的另一实施例的液晶天线40。液晶天线40在结构上与液晶天线30基本上相同,其差异仅仅在于液晶天线40中将馈线310和辐射贴片320设置在第三基板300的与第二基板200相对的表面上。
根据本公开的实施例,为了使信号可以顺利的进入液晶天线30、40或者从液晶天线30、40进行发射,第一基板100、第二基板200和第三基板300可以选用具有较低微波损耗的硬性材质,例如但不限于,第一基板100、第二基板200和第三基板300可以分别由选自以下组的材料制成,所述组包括:聚四氟乙烯玻璃纤维压板、酚醛纸层压板、酚醛玻璃布层压板、石英板和玻璃板。因此,用于制备第一基板100、第二基板200和第三基板300的材料来源广泛、硬度较佳、稳定性佳、绝缘效果佳、微波损耗低,几乎不会影响无线电信号或者电磁波的传输,由此使得液晶天线30、40的使用性能更佳。在本公开的一些实施例中,第一基板100、第二基板200和第三基板300可以由相同的材料制成;在本公开的一些实施例中,第一基板100、第二基板200和第三基板300中的一者或两者可以由不同材料制成,或者第一基板100、第二基板200和第三基板300三者可以由彼此不同的材料制成。
根据本公开的实施例,为了满足液晶天线30、40的体积需求,第一基板100、第二基板200和第三基板300的厚度均处在100微米至10毫米的范围内。例如但不限于,第一基板100、第二基板200和第 三基板300的厚度可以分别为100微米、300微米、500微米、700微米、900微米、1毫米、2毫米、4毫米、6毫米、8毫米、10毫米等。由此,使得最终获得的液晶天线30、40的体积较小,重量较轻,便于携带。应当理解,第一基板100、第二基板200或第三基板300的厚度应当被合适地加以选择,其厚度过薄时会导致传输线110较窄,从而使得微波传输过程中在金属中的损耗大大增加,恶化液晶天线30、40的整体性能,但是其厚度过厚时则信号传输过程中向空间辐射的损耗增大,同样会恶化液晶天线30、40的整体性能。
根据本公开的实施例,为了提高信号传输的灵敏度,形成辐射贴片320的材料选自铜、金、银中的至少一种。由此,辐射贴片320的电阻较低,传输信号的灵敏度较高,金属损耗较少,寿命较长。
根据本公开的实施例,传输线110、接地电极210与液晶层400共同形成移相器,其工作原理为延时线移相。因此,微波信号传输过程中的损耗对于天线性能尤为关键,需采用低损耗的金属来形成传输线110或者接地电极。例如,形成传输线110或者接地电极210的材料可以包括铜、金、银中的至少一种。此外,形成馈线310的材料也可以为铜、金、银中的至少一种,由此可以减少信号传输过程中的损耗。
根据本公开实施例的液晶天线30、40的结构简单,易于实现。通过将接地电极210、传输线110、馈线310和辐射贴片320分别设置在不同基板的单侧表面上,从而不需要复杂繁琐的双面曝光工艺。通过将辐射贴片和馈线置于第三基板上,以耦合的方式实现馈线和接地电极之间距离的增加,便于外加激励源,且不会造成金属的物理接触而形成损耗。根据本公开实施例的液晶天线30、40可以完全通过半导体制造工艺进行制备,制备的步骤和操作较为简便,对位更加精准,产品良率更高,成本更低,适于大规模生产。此外,由于对位更为精准,根据本公开实施例的液晶天线30、40接收或者发射信号的灵敏度更高,使用性能更佳。
参照图5,其以示意性流程图的形式示出了根据本公开一个实施例的制备液晶天线的方法50,方法50包括以下步骤:
S100:在第一基板100的一个表面上形成传输线110。
根据本公开的实施例,第一基板100与前面的描述一致,在此不再赘述。此外,根据本公开的实施例,形成传输线110的步骤可以包 括:通过磁控溅射、热蒸发和电镀等方法形成整面的导电层,然后对导电层进行图案化处理,以形成传输线110。所述图案化处理例如但不限于蚀刻等。
S200:在第二基板200的一个表面上形成接地电极210。
根据本公开的实施例,第二基板200和接地电极210与前面的描述一致,在此不再赘述。根据本公开的实施例,形成接地电极210的步骤可以包括通过磁控溅射、热蒸发和电镀等方法,因此操作简单方便,易于实现,成本较低,适合大规模生产。根据本公开的一些实施例,在步骤S200中还可以在接地电极210中形成开口,从而形成辐射槽220。形成辐射槽220的方式没有特别限制,只要能够满足要求,本领域技术人员可以根据实际需要灵活选择。形成辐射槽220的方式可以例如但不限于刻蚀、切割等。例如,可以在第二基板200的一个表面上通过磁控溅射、热蒸发和电镀等方法形成整面的导电层,然后对导电层进行图案化处理,以在接地电极210中形成辐射槽220。所述图案化处理例如但不限于蚀刻等。
S300:在第三基板300的一个表面上形成馈线310和辐射贴片320。
根据本公开的实施例,第三基板300、辐射贴片320和馈线310与前面的描述一致,在此不再赘述。根据本公开的实施例,形成辐射贴片320的方式可以为磁控溅射、热蒸发和电镀等。由此,操作简单方便,易于实现,成本较低,适合大规模生产。根据本公开的实施例,形成馈线310的方式为常规操作,在此不再过多赘述。
S400:将第二基板200的设置有接地电极210的表面设置成背离第三基板300,并且将第二基板200和第三基板300进行第一对盒。
应当理解,步骤S400中还可以将第三基板300的设置有辐射贴片320和馈线310的表面设置成背离第二基板200,或者设置成与第二基板200相对。此外,根据本公开的实施例,包括但不限于,通过真空对准***(Vacuum Alignment System,下文中简称为VAS)来实现所述第一对盒。例如,利用VAS进行对盒的具体操作为:在第二基板200的上表面的至少一部分上涂覆UV胶,将涂覆完UV胶的第二基板200置于VAS的下基板上,且涂覆UV胶的表面远离VAS的下基板放置,第三基板300被置于VAS的上基板上,通过抽真空及电荷耦合元件(CCD)捕捉标记进行对位(通过光线变化获得图形,与设备保存的 图形进行对比,确定标记的位置,标记的位置取决于设备的要求,一般位于基板的边缘区域),然后依靠下压重力将第二基板200和第三基板300精准对盒,最后通过紫外照射固化及热烘实现第二基板200与第三基板300的精准对位。
S500:在第一基板100的设置有传输线110的表面或者第二基板200的设置有接地电极210的表面的周边区域涂覆封装胶,并在所述封装胶所限定的区域内滴加液晶。
根据本公开的实施例,上述封装胶、液晶均为常规材料,在此不再赘述。根据本公开的实施例,例如但不限于,该步骤的具体操作还可包括:在第一基板100的设置有传输线110的表面或者第二基板200的设置有接地电极210的表面的周边区域涂覆封装胶,该封装胶在垂直于第一基板100的所述表面(或者第二基板200的所述表面)的方向具有一定的厚度,通过液晶滴下工艺(One Drop Filling,下文中简称为ODF)在上述封装胶所限定的区域内滴注液晶,使得液晶恰好可以填充该区域。
S600:将第一基板100的设置有传输线110的表面和第二基板200的设置有接地电极210的表面设置成彼此相对,然后将第二基板200和第一基板100进行第二对盒。
根据本公开的实施例,包括但不限于,通过VAS来实现所述第二对盒。例如,利用VAS将第二基板200和第一基板100进行第二对盒的具体操作为:将第一基板100吸附于VAS的下基板,将已精准对位的第二基板200和第三基板300吸附于VAS的上基板,使第一基板100的设置有传输线110的表面和第二基板200的设置有接地电极210的表面设置成彼此相对,然后通过VAS对两者进行精准对位,随后通过紫外固化工艺及热烘方式制备出液晶盒。根据本公开的实施例,在进行第二对盒时需要使用封装胶,以将填充的液晶保持在第一基板100的设置有传输线110的表面、第二基板200的设置有接地电极210的表面和封装胶所形成的空间中。
此外,需要说明的是,步骤S400中的第一对盒和步骤S600中的第二对盒的先后顺序没有特别限制,只要能够满足制备液晶天线的要求,本领域技术人员可以根据实际需要进行灵活选择。还应当理解的是,也可以利用已知的任何其他合适的方式来实现各基板之间的对盒, 以及实现液晶的滴注。
在根据本公开实施例的用于制备液晶天线的方法中,可以利用单面曝光的半导体工艺将传输线、接地电极、辐射贴片和馈线分别设置在三个不同的基板的单侧表面上,以便制备得到液晶天线,从而使得能够完全采用半导体工艺制备,且获得的液晶天线能够实现精准对位,能够制备出与设计完全一致的液晶盒,液晶天线的良率更高,成本较低,由此可进一步扩大半导体工艺产线的产品覆盖范围。
此外,基于同一发明构思,本公开的实施例还提供了一种电子设备,该电子设备包括前面所述的根据本公开实施例的液晶天线。该电子设备具备前面所述的根据本公开实施例的液晶天线的所有特征和优点,在此不再一一赘述。应当理解,该电子设备的具体种类没有特别限制,可以为任何需要接收和/发射信号的电子设备,例如包括但不限于手机、平板电脑、电视机、可穿戴设备、游戏机等等。还应当理解的是,除了前面所述的根据本公开实施例的液晶天线,该电子设备还包括常规电子设备所必要的结构和部件,以手机为例,还可以包括壳体、中框、CPU、显示屏、触控屏、声音***、指纹识别模组等等。
在本公开的描述中,应当理解的是,诸如“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”、“在...下面”、“在...之下”、“较下”、“在...下方”、“在...之上”、“较上”等指示的方位或位置关系的空间相对术语均基于附图所示的方位或位置关系,并且其仅仅是为了便于描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系,而不是指示或暗示所指的元件或特征必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。应当理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”或“在其他元件或特征下面”或“在其他元件或特征下方”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在...之下”和“在...下方”可以涵盖在...之上和在...之下的取向两者。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是, 当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。
将理解的是,尽管术语“第一”、“第二”、“第三”等等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个区、层或部分相区分。因此,下面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。
本文中使用的术语仅出于描述特定实施例的目的,并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述及特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
此外,应当理解的是,当元件或层被称为“在另一个元件或层上”、“连接到另一个元件或层”、“耦合到另一个元件或层”或“邻近另一个元件或层”时,其可以直接在另一个元件或层上、直接连接到另一个元件或层、直接耦合到另一个元件或层或者直接邻近另一个元件或层,或者可以存在中间元件或层。相反,当元件被称为“直接在另一个元件或层上”、“直接连接到另一个元件或层”、“直接耦合到另一个元件或层”、“直接邻近另一个元件或层”时,没有中间元件或层存在。然而,在任何情况下“在...上”或“直接在...上”都不应当被解释为要求一个层完全覆盖下面的层。
在本说明书的描述中,参考表述“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。因此,在本文中,针对上述表述的示意性描述不必仅针对相同的实施例或示例。而是,所描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
应当理解,除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。还应当理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
以上描述仅为对本公开的实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的范围不局限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离本申请构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。此外,本领域的普通技术人员可以在不脱离本公开的精神的前提下对所描述的本公开的实施例进行各种改动和变型,这些改动和变型也应视为落在本公开的范围之内。

Claims (20)

  1. 一种液晶天线,包括:
    第一基板;
    第二基板,所述第二基板与所述第一基板相对设置;
    第三基板,所述第三基板与所述第二基板相对设置,使得所述第二基板位于所述第一基板和所述第三基板之间;
    液晶层,其设置在所述第一基板与所述第二基板之间;
    传输线,所述传输线设置在所述第一基板的与所述液晶层相邻的表面上;
    接地电极,所述接地电极设置在所述第二基板的与所述液晶层相邻的表面上;
    馈线和辐射贴片,所述馈线和所述辐射贴片设置在所述第三基板的一个表面上;
    其中,所述传输线与所述接地电极形成信号传输线路,并且所述传输线与所述液晶层形成移相器。
  2. 根据权利要求1所述的液晶天线,其中,所述接地电极具有开口,以形成辐射槽。
  3. 根据权利要求2所述的液晶天线,其中,所述传输线、所述馈线和所述辐射贴片在所述接地电极上的正投影与所述辐射槽至少部分重叠。
  4. 根据权利要求2所述的液晶天线,其中,所述辐射槽的形状为H形、哑铃形和矩形之一或者为它们的任意组合。
  5. 根据权利要求1所述的液晶天线,其中,所述馈线和所述辐射贴片设置在所述第三基板的与所述第二基板相对的表面上。
  6. 根据权利要求1所述的液晶天线,其中,所述馈线和所述辐射贴片设置在所述第三基板的背离所述第二基板的表面上。
  7. 根据权利要求1所述的液晶天线,其中,所述第一基板、所述第二基板和所述第三基板分别由选自以下组的材料制成,所述组包括:聚四氟乙烯玻璃纤维压板、酚醛纸层压板、酚醛玻璃布层压板、石英板和玻璃板。
  8. 根据权利要求1所述的液晶天线,其中,所述第一基板、所述 第二基板和所述第三基板由相同的材料制成。
  9. 根据权利要求1所述的液晶天线,其中,所述第一基板、所述第二基板和所述第三基板的厚度均在100微米至10毫米的范围内。
  10. 根据权利要求1所述的液晶天线,其中,所述第一基板、所述第二基板和所述第三基板具有相同的厚度。
  11. 根据权利要求1所述的液晶天线,其中,所述接地电极、所述传输线和所述辐射贴片分别由选自以下组的材料制成,所述组包括:铜、金和银。
  12. 根据权利要求1所述的液晶天线,其中,所述接地电极、所述传输线和所述辐射贴片由相同的材料制成。
  13. 一种用于制备根据权利要求1至12中任一项所述的液晶天线的方法,所述方法包括以下步骤:
    a)在所述第一基板的一个表面上形成所述传输线;
    b)在所述第二基板的一个表面上形成所述接地电极;
    c)在所述第三基板的一个表面上形成所述馈线和所述辐射贴片;
    d)将所述第二基板的设置有所述接地电极的表面设置成背离所述第三基板,并且将所述第二基板和所述第三基板进行第一对盒;
    e)在所述第一基板的设置有所述传输线的表面或者所述第二基板的设置有所述接地电极的表面的周边区域涂覆封装胶,并在所述封装胶所限定的区域内滴加液晶;以及
    f)将所述第一基板的设置有所述传输线的表面和所述第二基板的设置有所述接地电极的表面设置成彼此相对,然后将所述第二基板和所述第一基板进行第二对盒。
  14. 根据权利要求13所述的方法,其中,步骤b)还包括:在所述接地电极中设置开口,以形成辐射槽。
  15. 根据权利要求13所述的方法,其中,利用真空对准***来实现步骤d)中的第一对盒和步骤f)中的第二对盒。
  16. 根据权利要求13所述的方法,其中,在步骤e)中利用液晶滴下工艺来滴加液晶。
  17. 根据权利要求13所述的方法,其中,制备所述接地电极和所述辐射贴片包括:
    通过磁控溅射、热蒸发或电镀在相应基板的表面上形成导电层;
    对所述导电层进行图案化处理。
  18. 根据权利要求17所述的方法,其中,所述图案化处理是蚀刻。
  19. 根据权利要求13所述的方法,其中,在步骤d)还包括:将所述第三基板的设置有所述辐射贴片和所述馈线的表面设置成背离所述第二基板,或者设置成与所述第二基板相对。
  20. 一种电子设备,所述电子设备包括根据权利要求1至12中任一项所述的液晶天线。
PCT/CN2019/084954 2018-05-03 2019-04-29 液晶天线及其制备方法和电子设备 WO2019210825A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/754,316 US11336010B2 (en) 2018-05-03 2019-04-29 Liquid crystal antenna, method for manufacturing the same, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810416360.8A CN108493592B (zh) 2018-05-03 2018-05-03 微带天线及其制备方法和电子设备
CN201810416360.8 2018-05-03

Publications (1)

Publication Number Publication Date
WO2019210825A1 true WO2019210825A1 (zh) 2019-11-07

Family

ID=63352984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084954 WO2019210825A1 (zh) 2018-05-03 2019-04-29 液晶天线及其制备方法和电子设备

Country Status (3)

Country Link
US (1) US11336010B2 (zh)
CN (1) CN108493592B (zh)
WO (1) WO2019210825A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614245A (zh) * 2020-12-04 2022-06-10 上海中航光电子有限公司 一种天线及其制作方法
WO2024000289A1 (zh) * 2022-06-29 2024-01-04 京东方科技集团股份有限公司 一种移相器单元及移相器

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493592B (zh) 2018-05-03 2019-12-20 京东方科技集团股份有限公司 微带天线及其制备方法和电子设备
CN110034358B (zh) * 2019-04-04 2024-02-23 信利半导体有限公司 一种液晶移相器、液晶天线及液晶移相器的制作方法
CN110197939B (zh) * 2019-06-03 2024-04-19 北京华镁钛科技有限公司 一种超材料可调电容器结构
KR102670834B1 (ko) * 2019-07-25 2024-05-29 엘지디스플레이 주식회사 액정을 포함하는 평판 안테나
CN112448175A (zh) 2019-09-05 2021-03-05 群创光电股份有限公司 电子装置
CN112505971A (zh) 2019-09-16 2021-03-16 群创光电股份有限公司 电子装置及其制造方法
CN113140878B (zh) * 2020-01-19 2022-07-05 京东方科技集团股份有限公司 一种移相器及天线
CN116315588A (zh) * 2020-02-05 2023-06-23 群创光电股份有限公司 电子装置
US11646489B2 (en) * 2020-03-27 2023-05-09 Boe Technology Group Co., Ltd. Liquid crystal phase shifter having a delay line with a plurality of bias lines on two sides thereof and an antenna formed therefrom
CN113540767B (zh) * 2020-04-15 2022-12-16 上海天马微电子有限公司 相控阵天线及其控制方法
CN113540766B (zh) * 2020-04-15 2022-12-16 上海天马微电子有限公司 相控阵天线及其控制方法
CN113594686B (zh) * 2020-04-30 2023-08-04 上海天马微电子有限公司 天线及其制作方法
CN111525264B (zh) * 2020-05-21 2022-01-18 信利(仁寿)高端显示科技有限公司 一种液晶天线
CN113972490B (zh) * 2020-07-22 2024-05-24 上海天马微电子有限公司 天线及其制作方法
CN114253015B (zh) * 2020-09-22 2024-04-19 成都天马微电子有限公司 一种液晶天线及其制作方法、通信设备
CN112164875B (zh) * 2020-09-27 2023-07-04 京东方科技集团股份有限公司 微带天线、通信设备
CN114284707A (zh) * 2020-09-27 2022-04-05 上海天马微电子有限公司 一种液晶天线的制作方法与液晶天线
US11996610B2 (en) * 2020-11-10 2024-05-28 Boe Technology Group Co., Ltd. Antenna and manufacturing method thereof
CN114614244B (zh) * 2020-12-04 2023-09-08 上海中航光电子有限公司 一种液晶天线及其制作方法
TWI749987B (zh) * 2021-01-05 2021-12-11 友達光電股份有限公司 天線結構及陣列天線模組
JP2024501905A (ja) * 2021-01-08 2024-01-17 京東方科技集團股▲ふん▼有限公司 位相シフター及びアンテナ
CN112909560B (zh) * 2021-01-15 2022-08-02 成都天马微电子有限公司 液晶天线及其制作方法
TWI750005B (zh) * 2021-01-15 2021-12-11 友達光電股份有限公司 天線裝置
US20230361466A1 (en) * 2021-02-09 2023-11-09 Beijing Boe Sensor Technology Co., Ltd. Array Antenna Module, Manufacturing Method Thereof, and Phased Array Antenna System
CN115117609B (zh) 2021-03-23 2024-07-05 京东方科技集团股份有限公司 天线单元及其制备方法、电子设备
CN115189136B (zh) * 2021-04-01 2024-07-09 上海天马微电子有限公司 液晶天线
US20240047878A1 (en) * 2021-04-29 2024-02-08 Beijing Boe Technology Development Co., Ltd. Antenna and method for manufacturing the same, and antenna system
CN113437495B (zh) * 2021-06-30 2022-11-29 上海天马微电子有限公司 一种天线
CN113594669A (zh) * 2021-07-30 2021-11-02 上海天马微电子有限公司 一种天线及其制备方法
CN114284714B (zh) * 2021-12-31 2023-12-15 成都天马微电子有限公司 液晶天线及其制备方法
WO2023173407A1 (zh) * 2022-03-18 2023-09-21 京东方科技集团股份有限公司 可调谐移相器及其制作方法和可调谐移相装置
WO2023206310A1 (zh) * 2022-04-29 2023-11-02 京东方科技集团股份有限公司 天线及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213423A (ja) * 2004-01-30 2005-08-11 Dainippon Ink & Chem Inc 液晶組成物
WO2012080532A1 (es) * 2010-12-16 2012-06-21 Universidad Politécnica de Madrid Antena reflectarray de haz reconfigurable para frecuencias en los rangos de terahercios y de ondas milimétricas
CN105308789A (zh) * 2013-02-15 2016-02-03 达姆施塔特工业大学 相移器件
CN106684551A (zh) * 2017-01-24 2017-05-17 京东方科技集团股份有限公司 一种移相单元、天线阵、显示面板和显示装置
CN108493592A (zh) * 2018-05-03 2018-09-04 京东方科技集团股份有限公司 微带天线及其制备方法和电子设备
CN108761862A (zh) * 2018-05-23 2018-11-06 成都天马微电子有限公司 一种液晶移相单元及其制作方法、液晶移相器、天线

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225122B (en) * 1988-11-09 1992-12-23 Emi Plc Thorn An apparatus for producing a phase shift in a beam of electromagnetic radiation
JP2005244458A (ja) * 2004-02-25 2005-09-08 Nippon Hoso Kyokai <Nhk> 電波レンズ
US20090278744A1 (en) * 2005-10-11 2009-11-12 Panasonic Corporation Phased array antenna
CN101308266B (zh) * 2008-07-11 2010-06-02 昆山龙腾光电有限公司 液晶显示面板、液晶显示装置和电子设备
US8766855B2 (en) * 2010-07-09 2014-07-01 Semiconductor Components Industries, Llc Microstrip-fed slot antenna
JP6517629B2 (ja) * 2015-08-20 2019-05-22 株式会社東芝 平面型アンテナ装置
WO2017061526A1 (ja) * 2015-10-09 2017-04-13 シャープ株式会社 走査アンテナおよびその駆動方法
CN106299627B (zh) * 2016-10-18 2023-06-02 京东方科技集团股份有限公司 一种液晶天线及通信设备
WO2018159389A1 (ja) * 2017-02-28 2018-09-07 シャープ株式会社 Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
CN107528121B (zh) * 2017-08-29 2020-02-18 京东方科技集团股份有限公司 天线结构及其操作方法、天线设备
WO2019079774A1 (en) * 2017-10-19 2019-04-25 Wafer, Llc DISPERSED STATE ALIGNMENT PHASE MODULATOR DEVICE / POLYMER SHEAR
CN108398816B (zh) * 2018-03-26 2020-12-29 北京京东方专用显示科技有限公司 一种液晶移相器及其制作方法、移相方法
US10511096B2 (en) * 2018-05-01 2019-12-17 Wafer Llc Low cost dielectric for electrical transmission and antenna using same
CN110137636B (zh) * 2019-05-23 2021-08-06 京东方科技集团股份有限公司 移相器和液晶天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213423A (ja) * 2004-01-30 2005-08-11 Dainippon Ink & Chem Inc 液晶組成物
WO2012080532A1 (es) * 2010-12-16 2012-06-21 Universidad Politécnica de Madrid Antena reflectarray de haz reconfigurable para frecuencias en los rangos de terahercios y de ondas milimétricas
CN105308789A (zh) * 2013-02-15 2016-02-03 达姆施塔特工业大学 相移器件
CN106684551A (zh) * 2017-01-24 2017-05-17 京东方科技集团股份有限公司 一种移相单元、天线阵、显示面板和显示装置
CN108493592A (zh) * 2018-05-03 2018-09-04 京东方科技集团股份有限公司 微带天线及其制备方法和电子设备
CN108761862A (zh) * 2018-05-23 2018-11-06 成都天马微电子有限公司 一种液晶移相单元及其制作方法、液晶移相器、天线

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614245A (zh) * 2020-12-04 2022-06-10 上海中航光电子有限公司 一种天线及其制作方法
CN114614245B (zh) * 2020-12-04 2023-10-13 上海中航光电子有限公司 一种天线及其制作方法
WO2024000289A1 (zh) * 2022-06-29 2024-01-04 京东方科技集团股份有限公司 一种移相器单元及移相器

Also Published As

Publication number Publication date
US11336010B2 (en) 2022-05-17
US20200243969A1 (en) 2020-07-30
CN108493592A (zh) 2018-09-04
CN108493592B (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2019210825A1 (zh) 液晶天线及其制备方法和电子设备
TWI730700B (zh) 液晶移相器的製作方法
JP6814293B2 (ja) 空洞領域の垂直アンテナパッチ
KR100951197B1 (ko) 적층형 패치 안테나
TWI308410B (en) Glass antenna and manufacturing method for the same
JP7047084B2 (ja) キャビティに対応したパッチアンテナ
CN104752841B (zh) 一种双极化集成平面透镜天线
CN108963402A (zh) 一种用于制作射频微波器件及天线的传输结构及制作方法
JP2014535176A (ja) 高インピーダンス表面
Bhutani et al. 122 GHz aperture-coupled stacked patch microstrip antenna in LTCC technology
US20220094038A1 (en) Antenna Unit, Preparation Method, and Electronic Device
US20150318597A1 (en) Multi-layer substrate and method of manufacturing multi-layer substrate
US10840578B2 (en) Antenna array module and manufacturing method thereof
US20110019335A1 (en) Capacitor structure
JP2020501460A (ja) 低損失電送機構及びそれを使用するアンテナ
WO2020030128A1 (zh) 波导馈电基板及其制备方法、天线***及其制备方法
CN108631034A (zh) 模块基板
TWI683474B (zh) 立體式天線元件
US20200083594A1 (en) Antenna assembly
CN217507639U (zh) 一种介质谐振器天线
WO2022198460A1 (zh) 天线单元及其制备方法、电子设备
TWI817662B (zh) 天線模組
CN114128037B (zh) 耦合部件、微波器件及电子设备
WO2022115600A1 (en) Angle-of-arrival antenna system
KR101257891B1 (ko) 커플링 소자를 갖는 패치 안테나 장치, 안테나 모듈 및 통신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19795899

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19795899

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19795899

Country of ref document: EP

Kind code of ref document: A1