WO2019210807A1 - 中央空调***的冷水主机控制方法、装置及*** - Google Patents

中央空调***的冷水主机控制方法、装置及*** Download PDF

Info

Publication number
WO2019210807A1
WO2019210807A1 PCT/CN2019/084333 CN2019084333W WO2019210807A1 WO 2019210807 A1 WO2019210807 A1 WO 2019210807A1 CN 2019084333 W CN2019084333 W CN 2019084333W WO 2019210807 A1 WO2019210807 A1 WO 2019210807A1
Authority
WO
WIPO (PCT)
Prior art keywords
chiller
target
air conditioning
central air
conditioning system
Prior art date
Application number
PCT/CN2019/084333
Other languages
English (en)
French (fr)
Inventor
李元阳
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2019210807A1 publication Critical patent/WO2019210807A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present disclosure relates to the technical field of air conditioners, and in particular, to a method, device and system for controlling a chiller of a central air conditioning system.
  • the cooling room of the central air-conditioning system usually has multiple chillers to provide cooling capacity, which can adapt to the changes of cooling capacity of different loads throughout the year.
  • the control mechanism of the central air conditioning system in the related art cannot collect or predict the load cooling capacity of the building requiring cooling in advance, and cannot directly open the combination of the cold water host to the optimal combination of the actual load cooling capacity of the building when the unit is started. Not only does it take more time to reach a steady state, but there are multiple groups of units that provide the same amount of cooling.
  • the present disclosure aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present disclosure is to provide a chiller control method for a central air conditioning system, which can directly open a combination of a chilled water host to an optimal combination of a building's actual load cooling capacity when the unit is started, and improve the central air conditioner.
  • the intelligent control effect of the system optimization control and the stability of the system maximize the efficiency utilization of the central air conditioning system.
  • Another object of the present disclosure is to provide a chiller control device for a central air conditioning system.
  • Another object of the present disclosure is to provide a chiller control system for a central air conditioning system.
  • a chiller control method for a central air conditioning system includes: obtaining a total load cooling capacity of a central air conditioning system; determining a target chiller combination according to the total load cooling capacity, and The total load cooling capacity determines operating parameters corresponding to each target chiller in the target chiller combination; and each target chiller in the target chiller combination is controlled to perform cooling with respective operating parameters.
  • the chiller control method of the central air conditioning system proposed by the first aspect of the present disclosure because the target chiller combination determined according to the total load cooling capacity is a chiller combination capable of achieving a performance optimal state of the central air conditioning system, It can realize the intelligent control effect and system stability of the central air-conditioning system optimization control by directly opening the combination of the cold water main unit to the optimal combination of the actual load cooling capacity of the building when the unit is started, so that the efficiency of the central air-conditioning system can be utilized. maximize.
  • a chiller control device for a central air conditioning system includes: a first acquisition module for acquiring a total load cooling capacity of the central air conditioning system; and a first determining module for The total load cooling capacity determines a target chiller combination, and determines operating parameters corresponding to each target chiller in the target chiller combination according to the total load cooling capacity; and a control module configured to control the target chiller combination Each target chiller performs cooling with its corresponding operating parameters.
  • the chiller host control device of the central air conditioning system is a combination of a target chiller host determined according to the total load cooling capacity, and a chiller host capable of achieving a performance optimal state of the central air conditioning system. It can realize the intelligent control effect and system stability of the central air-conditioning system optimization control by directly opening the combination of the cold water main unit to the optimal combination of the actual load cooling capacity of the building when the unit is started, so that the efficiency of the central air-conditioning system can be utilized. maximize.
  • a chiller control system for a central air conditioning system includes: a chiller control device for a central air conditioning system according to the second aspect of the present disclosure.
  • the chiller host control system of the central air conditioning system proposed by the third embodiment of the present disclosure is a chiller host combination capable of achieving a state of optimal performance of the central air conditioning system due to the target chiller combination determined according to the total load cooling capacity. It can realize the intelligent control effect and system stability of the central air-conditioning system optimization control by directly opening the combination of the cold water main unit to the optimal combination of the actual load cooling capacity of the building when the unit is started, so that the efficiency of the central air-conditioning system can be utilized. maximize.
  • FIG. 1 is a schematic flow chart of a method for controlling a chiller of a central air conditioning system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a performance curve of a preset chiller in the embodiment of the present disclosure
  • FIG. 3 is a schematic flow chart of a method for controlling a chiller of a central air conditioning system according to another embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a first performance curve in an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a performance curve of various cold water host combinations in an embodiment of the present disclosure
  • FIG. 6 is another schematic diagram of performance curves of various cold water host combinations in an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another preset chiller performance curve in the embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a chiller control device of a central air conditioning system according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a chiller control device of a central air conditioning system according to another embodiment of the present disclosure.
  • FIG. 1 is a schematic flow chart of a method for controlling a chiller of a central air conditioning system according to an embodiment of the present disclosure.
  • This embodiment is exemplified by the chiller control method of the central air conditioning system being configured as the chiller control device of the central air conditioning system.
  • the chiller control method of the central air conditioning system may be configured in a chiller control device of the central air conditioning system, and the chiller control device of the central air conditioning system may be disposed in the server, or may be disposed in the electronic device, This is not a limitation.
  • This embodiment is exemplified in the electronic device by the chiller control method of the central air conditioning system.
  • electronic devices such as smart phones, tablet computers, personal digital assistants, e-books, and the like have hardware devices of various operating systems.
  • execution body of the embodiment of the present disclosure may be, for example, a central processing unit (CPU) of an electronic device in hardware, and may be, for example, a home appliance control service in an electronic device. No restrictions.
  • the cooling room of the central air-conditioning system usually has multiple chillers to provide cooling capacity, which can adapt to the changes of cooling capacity of different loads throughout the year.
  • the control mechanism of the central air conditioning system in the related art cannot collect or predict the load cooling capacity of the building requiring cooling in advance, and cannot directly open the combination of the cold water host to the optimal combination of the actual load cooling capacity of the building when the unit is started. Not only does it take more time to reach a steady state, but there are multiple sets of units that provide the same amount of cooling. In this way, the optimal combination of multiple cold water host combinations is difficult to determine.
  • the embodiment of the present disclosure determines the target chiller combination according to the total load cooling capacity, and determines the operating parameters corresponding to each target chiller in the target chiller combination according to the total load cooling capacity, and controls each of the target chiller combinations.
  • the target chiller performs cooling with its corresponding operating parameters. Because the target chiller combination determined according to the total load cooling capacity is a chiller combination that enables the central air conditioning system to achieve optimal performance, it can be started at the unit. When the combination of the cold water main unit is directly turned on to the optimal combination of the actual load cooling capacity of the building, the intelligent control effect and system stability of the central air conditioning system optimization control are improved, and the efficiency utilization of the central air conditioning system is maximized.
  • the method includes:
  • the total load cooling capacity is, for example, the actual amount of cooling or the predicted cooling amount required for a building or the like that is currently required to be cooled.
  • the cooling capacity estimation model in the related art can be used to determine the total load cooling capacity of the central air conditioning system in combination with equipment power consumption, ventilation volume, and parameters such as airflow, real-time temperature, and real-time humidity.
  • S102 Determine a target chiller combination according to the total load cooling capacity, and determine an operation parameter corresponding to each target chiller in the target chiller combination according to the total load cooling capacity.
  • the corresponding chiller combination can be determined from the preset chiller performance curve as the target chiller combination according to the total load cooling capacity, wherein the preset chiller performance curve is pre-generated during the test operation phase.
  • the preset chiller performance curve is pre-generated during the test operation phase.
  • FIG. 2 is a schematic diagram of a preset chiller performance curve according to an embodiment of the present disclosure.
  • the preset chiller performance curve 21 shown in FIG. 2 is a power curve based on a two-dimensional coordinate system, and further includes a mark 22, Mark 22 is a coordinate point on the preset chiller performance curve, which can be any coordinate point on the preset chiller performance curve, and the abscissa axis of the two-dimensional coordinate system identifies the total load cooling capacity, two-dimensional coordinates The ordinate axis of the system identifies the total power of the central air conditioning system.
  • the preset chiller performance curve is a COP energy efficiency curve based on a two-dimensional coordinate system, and an abscissa axis identifier of the two-dimensional coordinate system.
  • the total load cooling capacity, the ordinate axis of the two-dimensional coordinate system identifies the COP energy efficiency of the central air conditioning system.
  • each chiller may be the same or different, that is, it may be a fixed-frequency unit or a variable-frequency unit, different types of chillers have different load characteristics, under the same total load cooling capacity.
  • the cooling capacity corresponding to each chiller is different when the minimum power combination is reached, that is, the central air conditioning system produces a certain amount of cooling capacity, and each chiller under each combination does not necessarily produce the same wattage of cold. Therefore, in order to further maximize the optimization control performance, it is also possible to determine the cooling capacity corresponding to each target chiller in the target chiller combination under the target chiller combination and the total operating cooling capacity; The cooling capacity corresponding to the host generates operating parameters to obtain corresponding operating parameters.
  • each chiller corresponding to each combination corresponds to The cooling capacity is stored, and the corresponding cooling capacity is stored. Then, in S102, the cooling capacity corresponding to each target chiller can be directly read, and according to the performance characteristics of each type of chiller, the output corresponding cooling capacity is analyzed. The required operating parameters.
  • each of the target chillers and the corresponding operating parameters may be generated separately.
  • the present disclosure may also dynamically acquire the current total load cooling capacity of the central air conditioning system during the cooling process of each target chiller in the target chiller combination; determine the current total load cooling capacity and total load cooling The amount of change between the quantities; if the amount of change meets the preset condition, the current total load cooling capacity is used to update the total load cooling capacity; and the target cold water host combination is re-determined based on the updated total load cooling capacity.
  • the difference between the current total load cooling capacity and the total load cooling capacity may be directly calculated, and the obtained difference value is used as the variation amount, and then it is determined whether the variation amount satisfies the preset condition.
  • the preset condition may be, for example, whether the amount of change is greater than or equal to a threshold of a cooling amount, which may be set by the user according to actual usage requirements, or may be preset by a central air conditioning factory program, which is not limited thereto.
  • the target cold water host combination can be triggered to re-determine the cooling performance of the central air conditioning system. Stay optimal.
  • a first preset time may also be set, in which the total load cooling capacity is in the total load of the target chiller combination. Within the threshold range of positive and negative changes in the cooling capacity, it is confirmed that the current target chiller combination is updated.
  • a second preset time may be set, and each time the target chiller combination is updated, the distance is determined. If the time is greater than or equal to the second preset time, and the determination condition of the first preset time is met, the update of the current target chiller combination may be triggered, and the step of further improving the central air conditioning system Operational stability.
  • the target chiller combination determined according to the total load cooling capacity is a chiller combination capable of achieving the optimal performance of the central air conditioning system, it is possible to directly open the chiller combination to the unit startup. It is suitable for the optimal combination of the actual load cooling capacity of the building, and improves the intelligent control effect and system stability of the central air-conditioning system optimization control, so that the efficiency utilization of the central air-conditioning system is maximized.
  • FIG. 3 is a schematic flow chart of a method for controlling a chiller of a central air conditioning system according to another embodiment of the present disclosure.
  • the method may further include:
  • S301 Obtain a first performance curve of each chiller in the central air conditioning system, and obtain a plurality of first performance curves.
  • FIG. 4 is a schematic diagram of a first performance curve according to an embodiment of the present disclosure, which includes a plurality of first performance curves 41.
  • the first performance curve 41 is a COP energy efficiency curve based on a two-dimensional coordinate system, and two-dimensional coordinates.
  • the horizontal axis of the system identifies the cooling capacity, and the ordinate axis of the two-dimensional coordinate system identifies the COP energy efficiency of each chiller.
  • the performance data of each cold water host of the central air conditioning system can be collected and learned for a period of time, and a complete targeted performance data is formed, and the performance data is statistically analyzed to form a first performance curve.
  • S302 forming performance curves of various cold water host combinations according to the plurality of first performance curves, and obtaining a second performance curve corresponding to each combination, wherein each second performance curve identifies a central air conditioning system under a combination of cold water hosts Refrigeration performance.
  • FIG. 5 is a schematic diagram of a performance curve of various cold water host combinations according to an embodiment of the present disclosure, which includes a plurality of second performance curves 51, and the second performance curve 51 is a power curve based on a two-dimensional coordinate system.
  • the abscissa axis of the two-dimensional coordinate system identifies the cooling capacity
  • the ordinate axis of the two-dimensional coordinate system identifies the total power of the various chiller combinations
  • each of the second performance curves identifies a central air conditioner under the combination of a chiller The cooling performance of the system.
  • FIG. 6 is a schematic diagram of another performance curve of various cold water host combinations according to an embodiment of the present disclosure, which includes a plurality of second performance curves 61, and the second performance curve 61 is a COP based on a two-dimensional coordinate system.
  • the energy efficiency curve, the abscissa axis of the two-dimensional coordinate system identifies the cooling capacity, and the ordinate axis of the two-dimensional coordinate system identifies the COP energy efficiency under various cold water host combinations, wherein each second performance curve identifies a combination of a cold water host
  • the cooling performance of the central air conditioning system The cooling performance of the central air conditioning system.
  • S303 Generate a preset chiller performance curve according to the second performance curve corresponding to each combination.
  • the preset chiller performance curve identifies the total cooling capacity for the total total load, which minimizes the total power of the central air conditioning system, or the combination of chillers with the highest COP energy efficiency.
  • the preset embodiment may also determine a preset number of possible total load cooling capacity prediction values; for each predicted value, determine a second performance curve corresponding to each combination, The parameter values corresponding to the predicted values are obtained, and a plurality of parameter values corresponding to each predicted value are obtained; and among the plurality of parameter values, the parameter values satisfying the preset target are used as the target parameter values, and the target parameters corresponding to each predicted value are obtained. a value; generating a preset chiller performance curve based on the plurality of predicted values and corresponding target parameter values.
  • the preset number can be set by the user according to actual usage requirements, or can be preset by the central air conditioning factory program, which is not limited.
  • the preset number may be taken as many as possible, for example, 50.
  • FIG. 5 a plurality of second performance curves 51 are included, and then 50 predicted values may be determined first, and the predicted values may be, for example, any 50 cooling capacity on the abscissa axis shown in FIG. 5. Then, for each predicted value, the following operation is performed: determining the parameter value corresponding to the predicted value on each second performance curve, then, since the second performance curve in FIG. 5 is the power based on the two-dimensional coordinate system For the curve, the corresponding parameter value is the total power. Since there are multiple second performance curves, each predicted value has multiple corresponding total powers, and then multiple total powers corresponding to each predicted value can be used. In the middle, the total value of the minimum value is used as the target parameter value.
  • each predicted value has a corresponding target parameter value.
  • a predicted value and its corresponding target parameter value it can be mapped to the above-mentioned FIG. For a coordinate point, see the mark 22 in Fig. 2.
  • the preset chiller performance curve as shown in Fig. 2 can be formed.
  • a plurality of second performance curves 61 are included in FIG. 6, and then 50 predicted values may be determined first, and the predicted values may be, for example, any 50 on the abscissa axis shown in FIG. 6. The amount of cooling, and then, for each predicted value, the following operation is performed: determining the parameter value corresponding to the predicted value on each second performance curve, then, since the second performance curve in FIG.
  • FIG. 7 is a schematic diagram of another preset chiller performance curve in the embodiment of the present disclosure, and the preset chiller performance curve 71 shown in FIG. 7 is a COP energy efficiency curve based on a two-dimensional coordinate system.
  • the mark 72 is a coordinate point on the preset chiller performance curve
  • the coordinate point may be any coordinate point on the preset chiller performance curve
  • the abscissa axis of the two-dimensional coordinate system identifies the cooling capacity
  • the ordinate axis of the dimensional coordinate system identifies the COP energy efficiency of the central air conditioning system.
  • the preset chiller performance curve as shown in Fig. 7 can be formed from a plurality of predicted values and corresponding target parameter values.
  • each of the second performance curves identifies the cooling performance of the central air conditioning system under a chiller combination.
  • the optimal combination of multiple cold water host units in a complex machine room can be found in advance, that is, to find the lowest power (highest COP energy efficiency) chiller combination state point, and then support the subsequent start of the chiller according to the control parameters in this state,
  • the operation under the parameters that can reach the optimal state can quickly determine the optimal combination of the chiller and improve the intelligent control efficiency of the optimization control.
  • FIG. 8 is a schematic structural diagram of a chiller control device of a central air conditioning system according to an embodiment of the present disclosure.
  • the apparatus 800 includes:
  • the first obtaining module 801 is configured to acquire a total load cooling capacity of the central air conditioning system.
  • the first determining module 802 is configured to determine a target chiller combination according to the total load cooling capacity, and determine an operating parameter corresponding to each target chiller in the target chiller combination according to the total load cooling capacity.
  • the control module 803 is configured to control each target chiller in the target chiller combination to perform cooling with respective operating parameters.
  • the first determining module 802 includes:
  • the first determining sub-module 8021 is configured to determine, according to the total load cooling capacity, a corresponding chiller combination from the preset chiller performance curve as the target chiller combination.
  • the first determining module 802 further includes:
  • the second determining sub-module 8022 is configured to determine a cooling capacity corresponding to each target chiller in the target chiller combination when the target chiller combination is met and the total running cooling capacity is met.
  • the generating sub-module 8023 is configured to generate an operating parameter according to the cooling capacity corresponding to each target chiller to obtain a corresponding operating parameter.
  • FIG. 9 wherein
  • the first obtaining module 801 is further configured to dynamically acquire the current total load cooling capacity of the central air conditioning system during the cooling process of each target chiller in the target chiller combination.
  • Apparatus 800 also includes:
  • the second determining module 804 is configured to determine a change amount between the current total load cooling capacity and the total load cooling capacity.
  • the update module 805 is configured to update the total load cooling capacity by using the current total load cooling capacity when the variation meets the preset condition.
  • the first determining module 802 is further configured to re-determine the target chiller combination according to the updated total load cooling capacity.
  • the method further includes:
  • the second obtaining module 806 is configured to obtain a first performance curve of each chiller in the central air conditioning system, and obtain a plurality of first performance curves.
  • the processing module 807 is configured to form performance curves of various cold water host combinations according to the plurality of first performance curves, and obtain a second performance curve corresponding to each combination, wherein each second performance curve identifies a combination of a cold water host Refrigeration performance of the central air conditioning system;
  • the generating module 808 is configured to generate a preset chiller performance curve according to the second performance curve corresponding to each combination.
  • the generating module 808 is specifically configured to:
  • the preset chiller performance curve is generated according to the plurality of predicted values and the corresponding target parameter values.
  • the preset chiller performance curve is a power curve based on a two-dimensional coordinate system
  • the abscissa axis of the two-dimensional coordinate system identifies the total load cooling capacity
  • the ordinate axis of the two-dimensional coordinate system identifies the central air conditioner. The total power of the system.
  • the parameter value is the total power
  • the generating module 808 is specifically configured to:
  • the total power with the smallest value among the plurality of total powers is taken as the target parameter value.
  • the preset chiller performance curve is a COP energy efficiency curve based on a two-dimensional coordinate system, and an abscissa axis identifier of the two-dimensional coordinate system.
  • the total load cooling capacity, the ordinate axis of the two-dimensional coordinate system identifies the COP energy efficiency of the central air conditioning system.
  • the parameter value is COP energy efficiency
  • the generating module 808 is specifically configured to:
  • the COP energy efficiency with the largest value is taken as the target parameter value.
  • each module in the chiller control device 800 of the central air conditioning system is for illustrative purposes only. In other embodiments, the chiller control device of the central air conditioning system may be divided into different modules as needed to complete the central air conditioning. All or part of the functionality of the system's chiller control unit.
  • the target chiller combination determined according to the total load cooling capacity is a chiller combination capable of achieving the optimal performance of the central air conditioning system, it is possible to directly open the chiller combination to the unit startup. It is suitable for the optimal combination of the actual load cooling capacity of the building, and improves the intelligent control effect and system stability of the central air-conditioning system optimization control, so that the efficiency utilization of the central air-conditioning system is maximized.
  • portions of the present disclosure can be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开提出一种中央空调***的冷水主机控制方法、装置及***,该方法包括获取中央空调***的总负荷制冷量;根据总负荷制冷量确定目标冷水主机组合,以及根据总负荷制冷量确定目标冷水主机组合中各目标冷水主机对应的运行参数;控制目标冷水主机组合中各目标冷水主机,以各自对应的运行参数进行制冷。通过本公开能够实现在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的最优组合下,提升中央空调***寻优控制的智能化控制效果以及***稳定性,使得中央空调***的效能利用最大化。

Description

中央空调***的冷水主机控制方法、装置及***
相关申请的交叉引用
本公开要求广东美的暖通设备有限公司、美的集团股份有限公司于2018年5月3日提交中国专利局、申请号为201810415354.0、发明名称为“中央空调***的冷水主机控制方法、装置及***”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及空调技术领域,尤其涉及一种中央空调***的冷水主机控制方法、装置及***。
背景技术
中央空调***的制冷机房通常有多台冷水主机提供冷量,可以适应全年不同负荷制冷量的变化情况。
相关技术中的中央空调***的控制机制无法提前采集或预测需要制冷的建筑物的负荷制冷量,无法在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的最优组合下,不但需要花费较多的时间达到稳定状态,而且提供同样制冷量的机组组合是有多组的。
这种方式下,多冷水主机组合的最优组合难以确定。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的一个目的在于提出一种中央空调***的冷水主机控制方法,能够实现在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的最优组合下,提升中央空调***寻优控制的智能化控制效果以及***稳定性,使得中央空调***的效能利用最大化。
本公开的另一个目的在于提出一种中央空调***的冷水主机控制装置。
本公开的另一个目的在于提出一种中央空调***的冷水主机控制***。
为达到上述目的,本公开第一方面实施例提出的中央空调***的冷水主机控制方法,包括:获取中央空调***的总负荷制冷量;根据所述总负荷制冷量确定目标冷水主机组合,以 及根据所述总负荷制冷量确定所述目标冷水主机组合中各目标冷水主机对应的运行参数;控制所述目标冷水主机组合中各目标冷水主机,以各自对应的运行参数进行制冷。
本公开第一方面实施例提出的中央空调***的冷水主机控制方法,由于根据总负荷制冷量所确定的目标冷水主机组合,为能够使中央空调***达到性能最优状态的冷水主机组合,因此,能够实现在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的最优组合下,提升中央空调***寻优控制的智能化控制效果以及***稳定性,使得中央空调***的效能利用最大化。
为达到上述目的,本公开第二方面实施例提出的中央空调***的冷水主机控制装置,包括:第一获取模块,用于获取中央空调***的总负荷制冷量;第一确定模块,用于根据所述总负荷制冷量确定目标冷水主机组合,以及根据所述总负荷制冷量确定所述目标冷水主机组合中各目标冷水主机对应的运行参数;控制模块,用于控制所述目标冷水主机组合中各目标冷水主机,以各自对应的运行参数进行制冷。
本公开第二方面实施例提出的中央空调***的冷水主机控制装置,由于根据总负荷制冷量所确定的目标冷水主机组合,为能够使中央空调***达到性能最优状态的冷水主机组合,因此,能够实现在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的最优组合下,提升中央空调***寻优控制的智能化控制效果以及***稳定性,使得中央空调***的效能利用最大化。
为达到上述目的,本公开第三方面实施例提出的中央空调***的冷水主机控制***,包括:本公开第二方面实施例提出的中央空调***的冷水主机控制装置。
本公开第三方面实施例提出的中央空调***的冷水主机控制***,由于根据总负荷制冷量所确定的目标冷水主机组合,为能够使中央空调***达到性能最优状态的冷水主机组合,因此,能够实现在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的最优组合下,提升中央空调***寻优控制的智能化控制效果以及***稳定性,使得中央空调***的效能利用最大化。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一实施例提出的中央空调***的冷水主机控制方法的流程示意图;
图2为本公开实施例中一种预设冷水主机性能曲线示意图;
图3是本公开另一实施例提出的中央空调***的冷水主机控制方法的流程示意图;
图4为本公开实施例中一种第一性能曲线示意图;
图5为本公开实施例中各种冷水主机组合下的一种性能曲线示意图;
图6为本公开实施例中各种冷水主机组合下的另一种性能曲线示意图;
图7为本公开实施例中另一种预设冷水主机性能曲线示意图;
图8是本公开一实施例提出的中央空调***的冷水主机控制装置的结构示意图;
图9是本公开另一实施例提出的中央空调***的冷水主机控制装置的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。相反,本公开的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1是本公开一实施例提出的中央空调***的冷水主机控制方法的流程示意图。
本实施例以该中央空调***的冷水主机控制方法被配置为中央空调***的冷水主机控制装置中来举例说明。
本实施例中中央空调***的冷水主机控制方法可以被配置在中央空调***的冷水主机控制装置中,中央空调***的冷水主机控制装置可以设置在服务器中,或者也可以设置在电子设备中,对此不作限制。
本实施例以中央空调***的冷水主机控制方法被配置在电子设备中为例。
其中,电子设备例如智能手机、平板电脑、个人数字助理、电子书等具有各种操作***的硬件设备。
需要说明的是,本公开实施例的执行主体,在硬件上可以例如为电子设备的中央处理器(Central Processing Unit,CPU),在软件上可以例如为电子设备中的家电控制类服务,对此不作限制。
中央空调***的制冷机房通常有多台冷水主机提供冷量,可以适应全年不同负荷制冷量的变化情况。相关技术中的中央空调***的控制机制无法提前采集或预测需要制冷的建筑物的负荷制冷量,无法在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的 最优组合下,不但需要花费较多的时间达到稳定状态,而且提供同样制冷量的机组组合是有多组的,这种方式下,多冷水主机组合的最优组合难以确定。
为了解决上述技术问题,本公开实施例通过根据总负荷制冷量确定目标冷水主机组合,以及根据总负荷制冷量确定目标冷水主机组合中各目标冷水主机对应的运行参数,控制目标冷水主机组合中各目标冷水主机,以各自对应的运行参数进行制冷,由于根据总负荷制冷量所确定的目标冷水主机组合,为能够使中央空调***达到性能最优状态的冷水主机组合,因此,能够实现在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的最优组合下,提升中央空调***寻优控制的智能化控制效果以及***稳定性,使得中央空调***的效能利用最大化。
参见图1,该方法包括:
S101:获取中央空调***的总负荷制冷量。
总负荷制冷量例如为当前需要进行制冷的建筑物等,所需要的实际冷量或者预测冷量。
例如,可以采用相关技术中的冷量预估模型,结合建筑物内的设备功耗、通风量、以及气流、实时温度和实时湿度等参数,确定中央空调***的总负荷制冷量。
S102:根据总负荷制冷量确定目标冷水主机组合,以及根据总负荷制冷量确定目标冷水主机组合中各目标冷水主机对应的运行参数。
本公开实施例中,可以根据总负荷制冷量,从预设冷水主机性能曲线中确定出对应的冷水主机组合作为目标冷水主机组合,其中的预设冷水主机性能曲线是在测试运行阶段预先生成并存储在数据库中的,通过直接获取预设冷水主机性能曲线,并根据预设冷水主机性能曲线中确定出对应的冷水主机组合作为目标冷水主机组合,能够实现快速确定最优的冷水主机组合,提升寻优控制的智能化控制效率。
参见图2,图2为本公开实施例中一种预设冷水主机性能曲线示意图,图2中所示的预设冷水主机性能曲线21为基于二维坐标系的功率曲线,还包括标记22,标记22为预设冷水主机性能曲线上的一个坐标点,该坐标点可以为预设冷水主机性能曲线上的任一个坐标点,二维坐标系的横坐标轴标识总负荷制冷量,二维坐标系的纵坐标轴标识中央空调***的总功率。
在本公开的一个实施例中,在冷水主机的出水口配置有流量计及温度传感器时,预设冷水主机性能曲线为基于二维坐标系的COP能效曲线,二维坐标系的横坐标轴标识总负荷制冷量,二维坐标系的纵坐标轴标识中央空调***的COP能效。
通过从总功率和COP能效两个角度确定目标冷水主机组合,找到最低功率(最高COP能 效)冷水主机组合,根据此组合下的运行参数控制各冷水主机启动并运行,从多因素考量实现提升中央空调***的性能。
可以理解的是,由于每台冷水主机的类型可能相同或者不相同,即,可能为定频机组或者变频机组,不同类型的冷水主机具备不同的负荷特性,在某一相同的总负荷制冷量下达到最低功率组合状态下各冷水主机对应的制冷量也是不同的,即,使中央空调***产能出一定的制冷量,其中各组合下的每台冷水主机,并不会必然产生同样瓦数的冷量,因此,为了进一步使寻优控制效能最大化,还可以确定在目标冷水主机组合下,且满足总运行制冷量时,目标冷水主机组合中各目标冷水主机对应的制冷量;根据各目标冷水主机对应的制冷量生成运行参数,以得到对应的运行参数。
在本公开的一个实施例中,可以在测试运行阶段,在生成预设冷水主机性能曲线的同时,确定出基于该曲线下,对应于不同的总负荷制冷量,每种组合下各冷水主机对应的制冷量,并对该对应的制冷量进行存储,而后,S102中即可以直接读取各目标冷水主机对应的制冷量,根据每种类型冷水主机自身的性能特征,分析出产出对应制冷量所需的运行参数。
S103:控制目标冷水主机组合中各目标冷水主机,以各自对应的运行参数进行制冷。
本公开实施例在具体执行的过程中,在上述步骤中确定出目标冷水主机组合,以及各目标冷水主机对应的运行参数之后,可以根据各目标冷水主机的标识,以及对应的运行参数分别生成每台目标冷水主机的控制指令,以分别控制各目标冷水主机,以各自对应的运行参数进行制冷。
在本公开的一个实施例中,本公开还可以在目标冷水主机组合中各目标冷水主机进行制冷过程中,动态获取中央空调***的当前总负荷制冷量;确定当前总负荷制冷量和总负荷制冷量之间的变化量;若变化量满足预设条件,则采用当前总负荷制冷量对总负荷制冷量进行更新;根据所更新得到的总负荷制冷量重新确定目标冷水主机组合。
其中,可以直接将当前总负荷制冷量和总负荷制冷量进行差值运算,将得到的差值作为变化量,而后,判断该变化量是否满足预设条件。
预设条件可以例如为变化量是否大于或者等于一个冷量阈值,该冷量阈值可以由用户根据实际使用需求进行设定,或者也可以由中央空调出厂程序预先设定,对此不作限制。
在变化量大于或者等于一个冷量阈值时,即表示中央空调***当前总负荷制冷量有较大的变化幅度,此时,可以触发重新确定目标冷水主机组合,以使中央空调***的制冷性能持续保持最优。
本公开实施例在具体执行的过程中,在确定出目标冷水主机组合之后,还可以设置第一 预设时间,在该第一预设时间内总负荷制冷量均在目标冷水主机组合的总负荷制冷量的正负变化阈值范围内,则确认对当前目标冷水主机组合进行更新,另外,还可以设置第二预设时间,在每次对目标冷水主机组合进行更新时,确定距离上一次切换的时间大于或者等于该第二预设时间,且满足上述的第一预设时间的判定条件,才可以触发对对当前目标冷水主机组合进行更新,通过该步骤,则可以进一步有效保障中央空调***的运行稳定性。
本实施例中,由于根据总负荷制冷量所确定的目标冷水主机组合,为能够使中央空调***达到性能最优状态的冷水主机组合,因此,能够实现在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的最优组合下,提升中央空调***寻优控制的智能化控制效果以及***稳定性,使得中央空调***的效能利用最大化。
图3是本公开另一实施例提出的中央空调***的冷水主机控制方法的流程示意图。
参见图3,在上述S101之前,该方法还可以包括:
S301:获取中央空调***中各冷水主机的第一性能曲线,得到多条第一性能曲线。
参见图4,图4为本公开实施例中一种第一性能曲线示意图,其中包括了多条第一性能曲线41,第一性能曲线41为基于二维坐标系的COP能效曲线,二维坐标系的横坐标轴标识制冷量,二维坐标系的纵坐标轴标识各冷水主机的COP能效。
其中,可以在测试运行阶段,对中央空调***的各冷水主机性能数据进行一段时间的采集学习,形成完善的针对性性能数据,并对该性能数据进行统计分析,形成第一性能曲线。
S302:根据多条第一性能曲线形成各种冷水主机组合下的性能曲线,得到与各组合对应的第二性能曲线,其中的每条第二性能曲线标识一种冷水主机组合下的中央空调***的制冷性能。
参见图5,图5为本公开实施例中各种冷水主机组合下的一种性能曲线示意图,其中包括了多条第二性能曲线51,第二性能曲线51为基于二维坐标系的功率曲线,二维坐标系的横坐标轴标识制冷量,二维坐标系的纵坐标轴标识各种冷水主机组合下的总功率,其中的每条第二性能曲线标识一种冷水主机组合下的中央空调***的制冷性能。
参见图6,图6为本公开实施例中各种冷水主机组合下的另一种性能曲线示意图,其中包括了多条第二性能曲线61,第二性能曲线61为基于二维坐标系的COP能效曲线,二维坐标系的横坐标轴标识制冷量,二维坐标系的纵坐标轴标识各种冷水主机组合下的COP能效,其中的每条第二性能曲线标识一种冷水主机组合下的中央空调***的制冷性能。
S303:根据各组合对应的第二性能曲线生成预设冷水主机性能曲线。
其中的预设冷水主机性能曲线标识针对不同的总负荷制冷量,能够使得中央空调***的 总功率最小,或者COP能效最大的冷水主机组合。
本公开实施例为了形成预设冷水主机性能曲线,还可以确定预设个数的可能的总负荷制冷量的预测值;针对每个预测值,确定在各组合对应的第二性能曲线上,每个预测值对应的参数值,得到与每个预测值对应的多个参数值;确定多个参数值中,满足预设目标的参数值作为目标参数值,得到与每个预测值对应的目标参数值;根据多个预测值及对应的目标参数值生成预设冷水主机性能曲线。
其中的预设个数可以由用户根据实际使用需求进行设定,或者也可以由中央空调出厂程序预先设定,对此不作限制。
本公开实施例中,为了使得所形成的预设冷水主机性能曲线的预估效果更为精准,预设个数可以取尽可能多的个数,例如为50个。
针对上述图5进行示例,图5中包括了多条第二性能曲线51,则可以首先确定50个预测值,该预测值可以例如为图5中所示横坐标轴上的任意50个制冷量,而后,针对每个预测值,均作下述操作:确定预测值在每条第二性能曲线上对应的参数值,那么,由于图5中的第二性能曲线为基于二维坐标系的功率曲线,则其对应的参数值为总功率,由于存在多条第二性能曲线,因此,每个预测值会有多个对应的总功率,而后,可以将每个预测值对应的多个总功率中,值最小的总功率作为目标参数值,那么,每个预测值均会有一个对应的目标参数值,通过一个预测值及与其对应的目标参数值,可以将其映射为上述图2中的一个坐标点,参见图2中标记22,最后,由多个预测值及对应的目标参数值,即可形成如图2中所示的预设冷水主机性能曲线。
另外,针对上述图6进行示例,图6中包括了多条第二性能曲线61,则可以首先确定50个预测值,该预测值可以例如为图6中所示横坐标轴上的任意50个制冷量,而后,针对每个预测值,均作下述操作:确定预测值在每条第二性能曲线上对应的参数值,那么,由于图6中的第二性能曲线为基于二维坐标系的COP能效曲线,则其对应的参数值为COP能效,由于存在多条第二性能曲线,因此,每个预测值会有多个对应的COP能效,而后,可以将每个预测值对应的多个COP能效中,值最大的COP能效作为目标参数值,那么,每个预测值均会有一个对应的目标参数值,通过一个预测值及与其对应的目标参数值,可以将其映射为图7中的一个坐标点,图7为本公开实施例中另一种预设冷水主机性能曲线示意图,图7中所示的预设冷水主机性能曲线71为基于二维坐标系的COP能效曲线,还包括标记72,标记72为预设冷水主机性能曲线上的一个坐标点,该坐标点可以为预设冷水主机性能曲线上的任一个坐标点,二维坐标系的横坐标轴标识制冷量,二维坐标系的纵坐标轴标识中央空调***的 COP能效。参见图7中标记72,最后,由多个预测值及对应的目标参数值,即可形成如图7中所示的预设冷水主机性能曲线。
本实施例中,由于是预先根据各组合对应的第二性能曲线拟合生成预设冷水主机性能曲线,其中的每条第二性能曲线标识一种冷水主机组合下的中央空调***的制冷性能,可以预先针对复杂机房中多冷水主机机组找寻最优的组合,即,找寻最低功率(最高COP能效)冷水主机组合状态点,而后支撑后续根据此状态下的控制参数使冷水机组的启动,以在能达到最佳状态的参数下运行,能够实现快速确定最优的冷水主机组合,提升寻优控制的智能化控制效率。
图8是本公开一实施例提出的中央空调***的冷水主机控制装置的结构示意图。
参见图8,该装置800包括:
第一获取模块801,用于获取中央空调***的总负荷制冷量。
第一确定模块802,用于根据总负荷制冷量确定目标冷水主机组合,以及根据总负荷制冷量确定目标冷水主机组合中各目标冷水主机对应的运行参数。
控制模块803,用于控制目标冷水主机组合中各目标冷水主机,以各自对应的运行参数进行制冷。
在本公开的一个实施例中,参见图9,第一确定模块802,包括:
第一确定子模块8021,用于根据总负荷制冷量,从预设冷水主机性能曲线中确定出对应的冷水主机组合作为目标冷水主机组合。
在本公开的一个实施例中,参见图9,第一确定模块802,还包括:
第二确定子模块8022,用于确定在目标冷水主机组合下,且满足总运行制冷量时,目标冷水主机组合中各目标冷水主机对应的制冷量。
生成子模块8023,用于根据各目标冷水主机对应的制冷量生成运行参数,以得到对应的运行参数。
在本公开的一个实施例中,参见图9,其中,
第一获取模块801,还用于在目标冷水主机组合中各目标冷水主机进行制冷过程中,动态获取中央空调***的当前总负荷制冷量。
装置800还包括:
第二确定模块804,用于确定当前总负荷制冷量和总负荷制冷量之间的变化量。
更新模块805,用于在变化量满足预设条件时,采用当前总负荷制冷量对总负荷制冷量进行更新。
第一确定模块802,还用于根据所更新得到的总负荷制冷量重新确定目标冷水主机组合。
在本公开的一个实施例中,参见图9,还包括:
第二获取模块806,用于获取中央空调***中各冷水主机的第一性能曲线,得到多条第一性能曲线。
处理模块807,用于根据多条第一性能曲线形成各种冷水主机组合下的性能曲线,得到与各组合对应的第二性能曲线,其中的每条第二性能曲线标识一种冷水主机组合下的中央空调***的制冷性能;
生成模块808,用于根据各组合对应的第二性能曲线生成预设冷水主机性能曲线。
在本公开的一个实施例中,生成模块808,具体用于:
确定预设个数的可能的总负荷制冷量的预测值;
针对每个预测值,确定在各组合对应的第二性能曲线上,每个预测值对应的参数值,得到与每个预测值对应的多个参数值;
确定多个参数值中,满足预设目标的参数值作为目标参数值,得到与每个预测值对应的目标参数值;
根据多个预测值及对应的目标参数值生成预设冷水主机性能曲线。
在本公开的一个实施例中,预设冷水主机性能曲线为基于二维坐标系的功率曲线,二维坐标系的横坐标轴标识总负荷制冷量,二维坐标系的纵坐标轴标识中央空调***的总功率。
在本公开的一个实施例中,在预设冷水主机性能曲线为基于二维坐标系的功率曲线时,参数值为总功率,生成模块808,具体用于:
将多个总功率中,值最小的总功率作为目标参数值。
在本公开的一个实施例中,在冷水主机的出水口配置有流量计及温度传感器时,预设冷水主机性能曲线为基于二维坐标系的COP能效曲线,二维坐标系的横坐标轴标识总负荷制冷量,二维坐标系的纵坐标轴标识中央空调***的COP能效。
在本公开的一个实施例中,在预设冷水主机性能曲线为基于二维坐标系的COP能效曲线时,参数值为COP能效,生成模块808,具体用于:
将多个COP能效中,值最大的COP能效作为目标参数值。
需要说明的是,前述图1-图7实施例中对中央空调***的冷水主机控制方法实施例的解释说明也适用于该实施例的中央空调***的冷水主机控制装置800,其实现原理类似,此处不再赘述。
上述中央空调***的冷水主机控制装置800中各个模块的划分仅用于举例说明,在其它 实施例中,可将中央空调***的冷水主机控制装置按照需要划分为不同的模块,以完成上述中央空调***的冷水主机控制装置的全部或部分功能。
本实施例中,由于根据总负荷制冷量所确定的目标冷水主机组合,为能够使中央空调***达到性能最优状态的冷水主机组合,因此,能够实现在机组启动时直接将冷水主机组合开启到适合建筑物实际负荷制冷量的最优组合下,提升中央空调***寻优控制的智能化控制效果以及***稳定性,使得中央空调***的效能利用最大化。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、 或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (21)

  1. 一种中央空调***的冷水主机控制方法,其特征在于,包括以下步骤:
    获取中央空调***的总负荷制冷量;
    根据所述总负荷制冷量确定目标冷水主机组合,以及根据所述总负荷制冷量确定所述目标冷水主机组合中各目标冷水主机对应的运行参数;
    控制所述目标冷水主机组合中各目标冷水主机,以各自对应的运行参数进行制冷。
  2. 如权利要求1所述的中央空调***的冷水主机控制方法,其特征在于,所述根据所述总负荷制冷量确定目标冷水主机组合,包括:
    根据所述总负荷制冷量,从预设冷水主机性能曲线中确定出对应的冷水主机组合作为所述目标冷水主机组合。
  3. 如权利要求2所述的中央空调***的冷水主机控制方法,其特征在于,所述根据所述总负荷制冷量确定所述目标冷水主机组合中各目标冷水主机对应的运行参数,包括:
    确定在所述目标冷水主机组合下,且满足所述总运行制冷量时,所述目标冷水主机组合中各目标冷水主机对应的制冷量;
    根据所述各目标冷水主机对应的制冷量生成运行参数,以得到所述对应的运行参数。
  4. 如权利要求1所述的中央空调***的冷水主机控制方法,其特征在于,还包括:
    在所述目标冷水主机组合中各目标冷水主机进行制冷过程中,动态获取所述中央空调***的当前总负荷制冷量;
    确定所述当前总负荷制冷量和所述总负荷制冷量之间的变化量;
    若所述变化量满足预设条件,则采用所述当前总负荷制冷量对所述总负荷制冷量进行更新;
    根据所更新得到的总负荷制冷量重新确定目标冷水主机组合。
  5. 如权利要求2-3任一项所述的中央空调***的冷水主机控制方法,其特征在于,在所述获取中央空调***的总负荷制冷量之前,还包括:
    获取所述中央空调***中各冷水主机的第一性能曲线,得到多条第一性能曲线;
    根据所述多条第一性能曲线形成各种冷水主机组合下的性能曲线,得到与各组合对应的第二性能曲线,其中的每条第二性能曲线标识一种冷水主机组合下的中央空调***的制冷性能;
    根据所述各组合对应的第二性能曲线生成所述预设冷水主机性能曲线。
  6. 如权利要求5所述的中央空调***的冷水主机控制方法,其特征在于,所述根据所述各组合对应的第二性能曲线生成所述预设冷水主机性能曲线,包括:
    确定预设个数的可能的总负荷制冷量的预测值;
    针对每个预测值,确定在所述各组合对应的第二性能曲线上,每个预测值对应的参数值,得到与所述每个预测值对应的多个参数值;
    确定所述多个参数值中,满足预设目标的参数值作为目标参数值,得到与所述每个预测值对应的目标参数值;
    根据所述多个预测值及所述对应的目标参数值生成所述预设冷水主机性能曲线。
  7. 如权利要求6所述的中央空调***的冷水主机控制方法,其特征在于,所述预设冷水主机性能曲线为基于二维坐标系的功率曲线,所述二维坐标系的横坐标轴标识总负荷制冷量,所述二维坐标系的纵坐标轴标识所述中央空调***的总功率。
  8. 如权利要求7所述的中央空调***的冷水主机控制方法,其特征在于,在所述预设冷水主机性能曲线为基于二维坐标系的功率曲线时,所述参数值为总功率,所述确定所述多个参数值中,满足预设目标的参数值作为目标参数值,包括:
    将所述多个总功率中,值最小的总功率作为所述目标参数值。
  9. 如权利要求6-8任一项所述的中央空调***的冷水主机控制方法,其特征在于,在所述冷水主机的出水口配置有流量计及温度传感器时,所述预设冷水主机性能曲线为基于二维坐标系的Coefficient Of Performance能效曲线,所述二维坐标系的横坐标轴标识总负荷制冷量,所述二维坐标系的纵坐标轴标识所述中央空调***的COP能效。
  10. 如权利要求9所述的中央空调***的冷水主机控制方法,其特征在于,在所述预设冷水主机性能曲线为基于二维坐标系的COP能效曲线时,所述参数值为COP能效,所述确定所述多个参数值中,满足预设目标的参数值作为目标参数值,包括:
    将所述多个COP能效中,值最大的COP能效作为所述目标参数值。
  11. 一种中央空调***的冷水主机控制装置,其特征在于,包括:
    第一获取模块,用于获取中央空调***的总负荷制冷量;
    第一确定模块,用于根据所述总负荷制冷量确定目标冷水主机组合,以及根据所述总负荷制冷量确定所述目标冷水主机组合中各目标冷水主机对应的运行参数;
    控制模块,用于控制所述目标冷水主机组合中各目标冷水主机,以各自对应的运行参数进行制冷。
  12. 如权利要求11所述的中央空调***的冷水主机控制装置,其特征在于,所述第一 确定模块,包括:
    第一确定子模块,用于根据所述总负荷制冷量,从预设冷水主机性能曲线中确定出对应的冷水主机组合作为所述目标冷水主机组合。
  13. 如权利要求12所述的中央空调***的冷水主机控制装置,其特征在于,所述第一确定模块,还包括:
    第二确定子模块,用于确定在所述目标冷水主机组合下,且满足所述总运行制冷量时,所述目标冷水主机组合中各目标冷水主机对应的制冷量;
    生成子模块,用于根据所述各目标冷水主机对应的制冷量生成运行参数,以得到所述对应的运行参数。
  14. 如权利要求11所述的中央空调***的冷水主机控制装置,其特征在于,其中,
    所述第一获取模块,还用于在所述目标冷水主机组合中各目标冷水主机进行制冷过程中,动态获取所述中央空调***的当前总负荷制冷量;
    所述装置还包括:
    第二确定模块,用于确定所述当前总负荷制冷量和所述总负荷制冷量之间的变化量;
    更新模块,用于在所述变化量满足预设条件时,采用所述当前总负荷制冷量对所述总负荷制冷量进行更新;
    所述第一确定模块,还用于根据所更新得到的总负荷制冷量重新确定目标冷水主机组合。
  15. 如权利要求12-13任一项所述的中央空调***的冷水主机控制装置,其特征在于,还包括:
    第二获取模块,用于获取所述中央空调***中各冷水主机的第一性能曲线,得到多条第一性能曲线;
    处理模块,用于根据所述多条第一性能曲线形成各种冷水主机组合下的性能曲线,得到与各组合对应的第二性能曲线,其中的每条第二性能曲线标识一种冷水主机组合下的中央空调***的制冷性能;
    生成模块,用于根据所述各组合对应的第二性能曲线生成所述预设冷水主机性能曲线。
  16. 如权利要求15所述的中央空调***的冷水主机控制装置,其特征在于,所述生成模块,具体用于:
    确定预设个数的可能的总负荷制冷量的预测值;
    针对每个预测值,确定在所述各组合对应的第二性能曲线上,每个预测值对应的参数值, 得到与所述每个预测值对应的多个参数值;
    确定所述多个参数值中,满足预设目标的参数值作为目标参数值,得到与所述每个预测值对应的目标参数值;
    根据所述多个预测值及所述对应的目标参数值生成所述预设冷水主机性能曲线。
  17. 如权利要求16所述的中央空调***的冷水主机控制装置,其特征在于,所述预设冷水主机性能曲线为基于二维坐标系的功率曲线,所述二维坐标系的横坐标轴标识总负荷制冷量,所述二维坐标系的纵坐标轴标识所述中央空调***的总功率。
  18. 如权利要求17所述的中央空调***的冷水主机控制装置,其特征在于,在所述预设冷水主机性能曲线为基于二维坐标系的功率曲线时,所述参数值为总功率,所述生成模块,具体用于:
    将所述多个总功率中,值最小的总功率作为所述目标参数值。
  19. 如权利要求16-18任一项所述的中央空调***的冷水主机控制装置,其特征在于,在所述冷水主机的出水口配置有流量计及温度传感器时,所述预设冷水主机性能曲线为基于二维坐标系的COP能效曲线,所述二维坐标系的横坐标轴标识总负荷制冷量,所述二维坐标系的纵坐标轴标识所述中央空调***的COP能效。
  20. 如权利要求19所述的中央空调***的冷水主机控制装置,其特征在于,在所述预设冷水主机性能曲线为基于二维坐标系的COP能效曲线时,所述参数值为COP能效,所述生成模块,具体用于:
    将所述多个COP能效中,值最大的COP能效作为所述目标参数值。
  21. 一种中央空调***的冷水主机控制***,其特征在于,包括:
    如权利要求11-20任一项所述的中央空调***的冷水主机控制装置。
PCT/CN2019/084333 2018-05-03 2019-04-25 中央空调***的冷水主机控制方法、装置及*** WO2019210807A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810415354.0A CN108917103B (zh) 2018-05-03 2018-05-03 中央空调***的冷水主机控制方法、装置及***
CN201810415354.0 2018-05-03

Publications (1)

Publication Number Publication Date
WO2019210807A1 true WO2019210807A1 (zh) 2019-11-07

Family

ID=64403247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084333 WO2019210807A1 (zh) 2018-05-03 2019-04-25 中央空调***的冷水主机控制方法、装置及***

Country Status (2)

Country Link
CN (1) CN108917103B (zh)
WO (1) WO2019210807A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847711A (zh) * 2021-09-13 2021-12-28 悉地(北京)国际建筑设计顾问有限公司 空调控制方法、装置及空调***

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917103B (zh) * 2018-05-03 2020-06-05 广东美的暖通设备有限公司 中央空调***的冷水主机控制方法、装置及***
CN110686366B (zh) * 2019-10-16 2021-02-09 广东美的暖通设备有限公司 空调控制方法、装置及计算机可读存储介质
CN110686382B (zh) * 2019-10-16 2021-02-09 广东美的暖通设备有限公司 空调控制方法、装置及计算机可读存储介质
CN110953686A (zh) * 2019-12-23 2020-04-03 珠海格力电器股份有限公司 空调***的控制方法及空调
CN111237995B (zh) * 2020-01-16 2022-04-15 济中节能技术(苏州)有限公司 一种空调冷机的控制方法
CN111442480A (zh) * 2020-04-08 2020-07-24 广东美的暖通设备有限公司 空调设备的运行控制方法和***、空调设备和存储介质
CN111928450A (zh) * 2020-07-21 2020-11-13 国网电力科学研究院武汉能效测评有限公司 一种楼宇用能优化控制方法
CN112283890A (zh) * 2020-10-26 2021-01-29 济中节能技术(苏州)有限公司 适应建筑暖通设备监控***的冷热量控制方法及装置
CN112665145B (zh) * 2020-12-16 2022-03-11 珠海格力电器股份有限公司 双级***协同控制方法、装置、控制器和空气处理机组
CN115127197B (zh) * 2022-05-26 2023-03-24 博锐尚格科技股份有限公司 冷机运行策略确定方法、装置、电子设备及存储介质
CN115654786B (zh) * 2022-12-28 2023-04-11 北京绿建软件股份有限公司 自动确定冷水机组运行策略的方法和装置
CN117346295B (zh) * 2023-12-05 2024-03-08 珠海格力电器股份有限公司 多机组的耦合控制方法、装置、设备及计算机可读介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170089601A1 (en) * 2015-09-30 2017-03-30 Nec Laboratories America, Inc. Mixed integer optimization based sequencing of a system of chillers
CN106969465A (zh) * 2017-03-21 2017-07-21 深圳达实智能股份有限公司 写字楼中央空调***磁悬浮冷水主机控制方法及装置
CN107202398A (zh) * 2017-05-16 2017-09-26 珠海格力电器股份有限公司 中央空调水***控制方法、装置及可存储介质
CN107940679A (zh) * 2017-12-14 2018-04-20 江苏省邮电规划设计院有限责任公司 一种基于数据中心冷水机组性能曲线的群控方法
CN107940705A (zh) * 2017-11-20 2018-04-20 广东美的暖通设备有限公司 主机负荷分配的控制方法、控制***和空调器
CN108917103A (zh) * 2018-05-03 2018-11-30 广东美的暖通设备有限公司 中央空调***的冷水主机控制方法、装置及***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1226586C (zh) * 2003-08-22 2005-11-09 烟台荏原空调设备有限公司 联结式冷温水机运转台数控制方法
CN101363653A (zh) * 2008-08-22 2009-02-11 日滔贸易(上海)有限公司 中央空调制冷***的能耗控制方法及装置
JP2013170715A (ja) * 2012-02-19 2013-09-02 Axis:Kk 空調機群の運転指示装置
CN104654525B (zh) * 2015-02-02 2018-01-16 珠海格力电器股份有限公司 空调主机增减机控制方法、装置和空调***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170089601A1 (en) * 2015-09-30 2017-03-30 Nec Laboratories America, Inc. Mixed integer optimization based sequencing of a system of chillers
CN106969465A (zh) * 2017-03-21 2017-07-21 深圳达实智能股份有限公司 写字楼中央空调***磁悬浮冷水主机控制方法及装置
CN107202398A (zh) * 2017-05-16 2017-09-26 珠海格力电器股份有限公司 中央空调水***控制方法、装置及可存储介质
CN107940705A (zh) * 2017-11-20 2018-04-20 广东美的暖通设备有限公司 主机负荷分配的控制方法、控制***和空调器
CN107940679A (zh) * 2017-12-14 2018-04-20 江苏省邮电规划设计院有限责任公司 一种基于数据中心冷水机组性能曲线的群控方法
CN108917103A (zh) * 2018-05-03 2018-11-30 广东美的暖通设备有限公司 中央空调***的冷水主机控制方法、装置及***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847711A (zh) * 2021-09-13 2021-12-28 悉地(北京)国际建筑设计顾问有限公司 空调控制方法、装置及空调***

Also Published As

Publication number Publication date
CN108917103B (zh) 2020-06-05
CN108917103A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2019210807A1 (zh) 中央空调***的冷水主机控制方法、装置及***
CN108151250B (zh) 变频空调控制方法和装置
US20140229146A1 (en) In-situ optimization of chilled water plants
CN104456824B (zh) 空调器的控制方法和空调器
CN104061664A (zh) 通信机房的空调监控***、方法及装置
WO2020038023A1 (zh) 空调***及其控制方法和调控主机
CN110608476A (zh) 压缩机的控制方法、装置、设备和水多联空调***
CN106196441B (zh) 实现空调制冷控制的方法及装置
JP2013200115A (ja) 蒸気圧縮システムを動作させるための方法、蒸気圧縮システムの動作を制御するための方法、および蒸気圧縮システムの性能を最適化するための最適化コントローラ
JP2013125544A (ja) エネルギー消費を削減するようにシステムを制御する方法
CN104236020A (zh) 一种空调***的控制方法及装置
CN112229043A (zh) 一种空调运行方法、装置、电子设备和计算机可读介质
US11585552B2 (en) HVAC control during demand response event
JP2021177122A (ja) 空調システムの制御装置、制御方法、制御プログラムおよび空調システム
WO2023246906A1 (zh) 空调控制方法及空调
JP6849345B2 (ja) 空調システムの制御装置、制御方法および制御プログラム
CN109341012A (zh) 空调器及其控制方法和装置
CN105423492A (zh) 机房监测***及方法
CN108131806A (zh) 温度控制方法和线控器
JP2014134353A (ja) モータ用省電力制御装置
CN103322649B (zh) 一种控制方法及装置
CN110351987B (zh) 散热器、控制器、光伏用电设备和散热方法
Teo et al. Energy management controls for chiller system: A review
JP6279242B2 (ja) 空調システム及び空調システムの制御方法
JP2018071805A (ja) 空調制御装置、空調システム、空調制御方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796885

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19796885

Country of ref document: EP

Kind code of ref document: A1