WO2019210598A1 - 一种混凝土内外部水分迁移抑制剂 - Google Patents

一种混凝土内外部水分迁移抑制剂 Download PDF

Info

Publication number
WO2019210598A1
WO2019210598A1 PCT/CN2018/099072 CN2018099072W WO2019210598A1 WO 2019210598 A1 WO2019210598 A1 WO 2019210598A1 CN 2018099072 W CN2018099072 W CN 2018099072W WO 2019210598 A1 WO2019210598 A1 WO 2019210598A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
concrete
migration inhibitor
kaolin
mordenite
Prior art date
Application number
PCT/CN2018/099072
Other languages
English (en)
French (fr)
Inventor
张金良
苏茂林
尚宏琦
吴法辰
景来红
毛文然
杨林
陈学理
Original Assignee
黄河勘测规划设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄河勘测规划设计研究院有限公司 filed Critical 黄河勘测规划设计研究院有限公司
Priority to EP18917524.3A priority Critical patent/EP3789360A4/en
Publication of WO2019210598A1 publication Critical patent/WO2019210598A1/zh
Priority to US16/936,393 priority patent/US20200346978A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/40Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
    • C04B24/42Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/106Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/041Aluminium silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/042Magnesium silicates, e.g. talc, sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/045Alkali-metal containing silicates, e.g. petalite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0046Premixtures of ingredients characterised by their processing, e.g. sequence of mixing the ingredients when preparing the premixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0082Segregation-preventing agents; Sedimentation-preventing agents
    • C04B2103/0083Bleeding-preventing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/65Water proofers or repellants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00275Materials impermeable to vapours or gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials

Definitions

  • the invention relates to a concrete admixture, in particular to an inner and outer moisture migration inhibitor of concrete in a plastic phase, a hardening phase and a post-hardening phase.
  • the process of concrete from the start of adding water can be divided into three stages: plastic stage, hardening stage and post-hardening stage.
  • the concrete in the plastic stage should meet the requirements of workability.
  • the concrete in the middle stage of hardening should meet the requirements of continuous strength growth and crack resistance.
  • the concrete in the post-hardening stage must meet the requirements of strength and durability. Therefore, the improvement of concrete performance should be considered around the whole life of the concrete.
  • the internal moisture volatilizes into the air due to poor bleeding and humidity. If the moisture volatilization speed of the concrete surface exceeds the bleeding speed, the surface layer will produce water loss and dryness, which will lead to the termination of the surface hydration reaction and plastic shrinkage cracks.
  • the film coverage usually used begins when the concrete approaches the initial setting. Premature coverage adversely affects the flatness and aesthetics of the concrete surface, and the moisture evaporation of the concrete is large during the period from the completion of the pouring to the beginning of the curing. This is a problem that needs to be solved for moisture migration in the plastic phase of concrete.
  • Concrete is a hydrophilic material. Although the concrete has high strength and compactness after hardening, ordinary concrete structures are not dense with respect to water during the use of concrete structures for 50 years or even 100 years. Permeable. The results show that the porosity of concrete with a water-to-binder ratio of 0.5-0.7 is about 16% after hydration reaction. There are micro-cracks and porous concrete subjected to the thermal and thermal cycles, the erosion and dryness of the dry and wet cycles, and the micro-cracks and pores are connected. The aggressive substances such as O 2 , CO 2 , Cl - etc. invade the concrete with water. It causes alkali aggregate reaction, sulfate attack, steel corrosion, etc., which eventually leads to cracking, peeling and damage of concrete.
  • the object of the present invention is to provide a concrete internal and external moisture migration inhibitor for the problem of moisture migration of concrete in the plastic phase, the hardening phase and the post-hardening phase.
  • the present invention can adopt the following technical solutions:
  • the internal and external moisture migration inhibitor of the concrete according to the present invention is prepared from the raw material phlogopite powder/mucilite powder, clinoptilolite/mordenite and kaolin according to the following method:
  • the commercially available phlogopite powder / muscovite powder is ground to 300-400 mesh, and dried for later use; the commercially available clinoptilolite/mordenite is ground to 300 mesh for use; the commercially available kaolin is at 750 ° C. After calcination at -800 ° C, grinding to 500 mesh standby;
  • the treated phlogopite powder / muscovite powder, clinoptilolite / mordenite powder and kaolin powder are uniformly mixed in the mixing machine in a ratio of 50 to 70:0 to 30:0 to 50 parts by weight. Thereafter, a mixture of isopropanol and n-butanol (1:1 by volume) was added, sonicated for 10 min, and then magnetically stirred for 10 min, wherein the clinoptilolite/mordenite powder and the kaolin powder could not be zero at the same time;
  • the obtained slurry is dried in a blast drying oven at 150 to 200 ° C, and the dried powder is ground and sieved to obtain a finished product of the moisture migration inhibitor.
  • the clinoptilolite/mordenite powder has an ammonium absorption value of ⁇ 130 mmol/100 g.
  • the calcined treated kaolin powder has a specific surface area of ⁇ 15000 m 2 /kg, and its content is SiO 2 ⁇ 50%, and Al 2 O 3 ⁇ 40%.
  • the moisture migration inhibitor prepared by the invention When used, it is added to the concrete in a proportion of 3% to 6% of the mass of the cemented material in the concrete, and can be normally mixed and poured.
  • the invention has the advantages of low raw material cost, simple preparation method and outstanding water blocking effect. Specifically:
  • a substrate using mica powder, zeolite powder and kaolin as inhibitors Mica powder is a natural flaky mineral with a high aspect ratio structure. It is added to concrete and can form numerous water-blocking barriers like water retainers, which hinder water migration in multiple dimensions.
  • Zeolite powder is a porous grid-like structural mineral formed by grinding natural zeolite rock. It has a large internal surface area and a strong water storage function. It can effectively reduce the bleeding of large fluid concrete and hydrate in concrete. Slow release of moisture during the reaction promotes strength growth. As an ultrafine admixture, kaolin has a good micro-aggregate filling effect, which can reduce the pore size and quantity of concrete.
  • the surface energy of the material is greatly reduced.
  • the pore water in the concrete evaporates, causing the surface tension of the capillary to increase to form a negative pressure, causing the concrete to dry and shrink.
  • the addition of the moisture migration inhibitor prepared by the invention can reduce the surface energy of the capillary pores in the concrete, increase the contact angle of the capillary pores with the water, and thereby reduce the shrinkage.
  • Concrete is a porous and hydrophilic material. Studies have shown that when external moisture is in contact with concrete, capillary adsorption is the main reason why moisture enters the interior of concrete. After the adsorption occurs, the invasive substances invade the concrete with water, causing sulfate attack, steel corrosion, freeze-thaw damage, etc., eventually leading to cracking, spalling and destruction of the concrete.
  • the addition of the water migration inhibitor prepared by the invention can form a superhydrophobic effect on the surface and the interior of the concrete, and the adsorption of moisture is reduced, which effectively hinders the entry of external moisture.
  • the concrete internal and external moisture migration inhibitor of the present invention is prepared from the raw material muscovite powder, mordenite and kaolin according to the following method:
  • the commercially available muscovite powder is ground to 400 mesh, and dried after use; the commercially available natural mordenite is ground to 300 mesh, and the ammonium absorption value is not less than 130 mmol/100 g;
  • the kaolin is calcined at 750 ° C to 800 ° C and ground to a fineness of 500 mesh, wherein the SiO 2 content is not less than 50%, the Al 2 O 3 content is not less than 40%, and the specific surface area is not less than 15000 m 2 /kg.
  • 60 g of the mica powder subjected to the above treatment, 10 g of zeolite powder, and 30 g of kaolin powder were uniformly mixed in a high-speed powder mixer to prepare a substrate;
  • the finished product of the inhibitor is suitable for concrete construction with resistance to sulfate attack.
  • the concrete internal and external moisture migration inhibitor of the present invention is prepared from the raw material muscovite powder and mordenite by the following method:
  • Preparation of base material Commercially available muscovite powder is ground to 400 mesh, and dried after use; the commercially available natural mordenite is ground to 300 mesh, and the ammonium absorption value is not less than 130 mmol/100 g. 70 g of the treated mica powder and 30 g of zeolite powder were mixed and uniformly mixed in a high-speed powder mixer to prepare a substrate;
  • Drying and grinding treatment The obtained slurry is dried in a blast drying oven at 150 degrees Celsius, and the dried powder is ground and sieved to obtain a finished product of the moisture migration inhibitor.
  • the finished product of the inhibitor is suitable for concrete construction in difficult areas.
  • the concrete internal and external moisture migration inhibitor of the present invention is prepared from the raw material muscovite powder and the commercially available kaolin according to the following method:
  • substrate commercially available muscovite powder, ground to 1000 mesh, ready for use after drying; commercially available kaolin is calcined at 750 ° C to 800 ° C, ground to a fineness of 500 mesh, wherein SiO 2 content is not low At 50%, the Al 2 O 3 content is not less than 40%, and the specific surface area is not less than 15,000 m 2 /kg. 50 g of the mica powder and 50 g of kaolin powder after the above treatment were mixed and uniformly mixed in a high-speed powder mixer to prepare a substrate;
  • the finished product of the inhibitor is suitable for concrete with high impermeability and resistance to chloride ion attack.
  • the water-cement ratio is 0.40.
  • the cement is made of special cement for testing the admixture according to GB8076-2008.
  • the stainless steel test mode has a size of 300mm ⁇ 150mm ⁇ 30mm. In the blank group, no inhibitor was added, and the test group was added with inhibitors in accordance with 3.0% and 5.0% of the cement amount, respectively.
  • the test results are shown in Table 1 below.
  • the water-to-binder ratio of concrete is 0.40, the sanding rate is 40%, the natural medium sand, the slump is controlled within the range of 180 ⁇ 10mm, and the observation period is 3d ⁇ 28d, covering the two stages of concrete from hardening to hardening.
  • Table 2 The results are shown in Table 2 below.
  • the dosage of the inhibitor prepared in Example 3 was 3.0% and 5.0%, the dry shrinkage in the 3d age decreased by 63.3% and 73.3%, respectively, and the 7d age decreased by 28.6% and 59.1%, respectively, and the 14d age decreased by 19.9%. At 43.7%, the 28-day age decreased by 18.7% and 38.5%, respectively. It was proved that the inhibitor prepared by the present invention has a good water-locking function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种混凝土内外部水分迁移抑制剂,其制备方法为:首先将金云母粉/白云母粉、斜发沸石/丝光沸石粉及高岭土粉进行特殊处理;并按50~70:0~30:0~50之配比混合均匀,加入异丙醇和正丁醇混合液超声处理;在磁力搅拌下加入适量硅烷偶联剂,并在溶液液面下方缓慢加入适量蒸馏水,缓慢匀速加入甲基硅油改性剂,磁力搅拌1h;将浆料干燥研磨、过筛,即得水分迁移抑制剂成品。

Description

一种混凝土内外部水分迁移抑制剂 技术领域
本发明涉及混凝土外加剂,尤其是涉及一种在塑性阶段、硬化阶段和硬化后阶段混凝土内外部水分迁移抑制剂。
背景技术
施工过程中,混凝土从加水搅拌开始经历的过程分可为三个阶段:塑性阶段、硬化中阶段和硬化后阶段。塑性阶段的混凝土要满足工作性要求,硬化中阶段的混凝土要满足强度持续增长和抗裂等要求,硬化后阶段的混凝土则要满足强度和耐久性等要求。所以对混凝土性能的提升要围绕混凝土全寿命过程进行考虑。
混凝土在浇筑后,由于泌水和湿度差的原因,内部的水分向空气中挥发。若混凝土表层水分挥发速度超过泌水速度,表层将产生失水干燥,导致表层水化反应终止,出现塑性收缩裂缝。通常采用的薄膜覆盖需待混凝土接近初凝时才开始,过早覆盖对混凝土表面的平整度和美观度有不利影响,而在浇筑完毕到养护开始这一段时间内混凝土的水分挥发量很大。这是混凝土塑性阶段水分迁移需要解决的问题。
混凝土终凝拆模之后,在干燥环境下,混凝土中的毛细孔水蒸发,使毛细孔表面张力增大形成负压,导致混凝土干燥收缩。在早龄期,混凝土抗拉强度尚不能抵抗收缩应力时,即产生干燥收缩裂缝。裂缝不仅影响混凝土结构物的美观,也加快了混凝土的劣化过程。尤其对于处于恶劣环境的钢筋混凝土构筑物,如海洋、寒冷冰冻环境、硫酸盐或碳化等化学侵蚀严重地区,裂缝使空气、水、有害介质等更易侵入,更快地引起钢筋锈蚀或水泥基材料的劣化,降低混凝土材料的耐久性和构筑物的服役寿命。此外,水分的散失也不利于混凝土强度的持续增长。 此为混凝土硬化中阶段水分迁移需要解决的问题。
混凝土是一种亲水性材料,尽管硬化后混凝土具有很高的强度和致密性,但在混凝土结构设计50年甚至100年的使用时间内,普通混凝土结构相对于水并不是致密的,而是可渗透的。研究结果表明,水胶比为0.5~0.7的混凝土在水化反应后其孔隙率大约在16%左右。存在微裂缝和多孔的混凝土受冷热循环、干湿循环的侵蚀作用和荷载作用,其微裂缝和孔隙连通起来,侵蚀性物质如O 2、CO 2、Cl -等随着水分侵入混凝土内部,导致出现碱骨料反应、硫酸盐侵蚀、钢筋锈蚀等,最终导致混凝土开裂、剥落直至破坏。混凝土的腐蚀大多是在水及有害离子侵入的条件下发生的,腐蚀破坏过程与水密切相关,因此混凝土的抗水渗透性能被认为是评价混凝土耐久性能的最重要的指标之一。国际混凝土界的泰斗P.K.Metha教授在其著作《混凝土微观结构、性能和材料》中指,水既是许多天然材料的组分,又是使他们遭到破坏的介质,也是大多数混凝土耐久性问题的核心。此为混凝土在硬化后阶段水分迁移需要解决的问题。
发明内容
本发明的目的在于针对混凝土在塑性阶段、硬化阶段和硬化后阶段水分迁移的问题,提供一种混凝土内外部水分迁移抑制剂。
为实现上述目的,本发明可采取下述技术方案:
本发明所述的混凝土内外部水分迁移抑制剂,是由原料金云母粉/白云母粉、斜发沸石/丝光沸石、高岭土按下述方法制备而成:
第一步,将市售金云母粉/白云母粉粉磨至300~400目,干燥处理后备用;将市售斜发沸石/丝光沸石粉磨至300目备用;将市售高岭土在750℃~800℃煅烧处理后,粉磨至500目备用;
第二步,将处理后的金云母粉/白云母粉、斜发沸石/丝光沸石粉和高岭土粉按50~70:0~30:0~50之重量份配比在混料机中混合均匀后,加入异丙醇和正丁醇 (体积比1:1)的混合液中,超声处理10min,之后磁力搅拌10min,其中斜发沸石/丝光沸石粉和高岭土粉不能同时为零;
第三步,在磁力搅拌状态下用移液枪缓慢加入适量硅烷偶联剂,继续搅拌30min;适当增加磁力搅拌转速,在溶液液面下方缓慢加入适量蒸馏水,搅拌30min;缓慢匀速加入适量甲基硅油改性剂,磁力搅拌1h;
第四步,将得到的浆料在150~200℃的鼓风干燥箱中干燥,并将干的粉体研磨、过筛,得到水分迁移抑制剂成品。
所述斜发沸石/丝光沸石粉的吸铵值≥130mmol/100g。
经过煅烧处理的所述高岭土粉比表面积≥15000m 2/kg,其含量中SiO 2≥50%,Al 2O 3≥40%。
本发明制备的水分迁移抑制剂在使用时,将其按照混凝土中胶凝材料质量的3%~6%的比例加入到混凝土中,正常拌合、浇筑即可。
本发明的优点在于原料成本低,制备方法简单,阻水效果突出。具体为:
1、采用云母粉、沸石粉和高岭土作为抑制剂的基材。云母粉是一种天然片状矿物,具有高径厚比的结构,掺加到混凝土中,可形成无数类似挡水板一样的阻水屏障,在多维度上阻碍水分迁移。沸石粉是天然沸石岩磨细后形成的一种多孔格架状构造矿物,具有巨大的内表面积,有很强的蓄水功能,能有效降低大流动性混凝土的泌水,并且在混凝土水化反应过程中缓慢释放水分,促进强度增长。高岭土作为一种超细掺合料,具有很好的微集料填充作用,能降低混凝土的微孔尺寸和数量。将以上材料分别磨至不同细度,可形成对混凝土内部不同尺寸微孔的填充。通过云母粉的阻挡、沸石粉的吸收以及高岭土的填充,塑性阶段混凝土的水分迁移速度和迁移量大幅降低。由于本发明对所用基材的超疏水处理并不会改变基材的物理结构特征,故改性后基材的所有功能不会受到影响。
2、对以上材料进行超疏水改性处理后,大大降低了材料的表面能。正常情况下,混凝土中的毛细孔水蒸发,使毛细孔表面张力增大形成负压,导致混凝土干燥收缩。本发明制备的水分迁移抑制剂的加入,能降低混凝土内毛细孔的表面能, 增大毛细孔与水分的接触角,从而减小干缩。
3、混凝土是一种多孔亲水性材料,研究证明,外部水分与混凝土接触时,毛细吸附是水分进入混凝土内部的主要原因。吸附发生后,侵蚀性物质随着水分侵入混凝土内部,导致硫酸盐侵蚀、钢筋锈蚀、冻融破坏等,最终导致混凝土开裂、剥落直至破坏。本发明制备的水分迁移抑制剂的加入,可使混凝土表面与内部均形成超疏水效果,对水分的吸附降低,有效阻碍外部水分进入。
具体实施方式
为了更好的理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不局限于以下实施例。
实施例1
本发明的混凝土内外部水分迁移抑制剂,是由原料白云母粉、丝光沸石和高岭土按下述方法制备而成:
(1)基材制备:将市售的白云母粉粉磨至400目,干燥处理后备用;将市售的天然丝光沸石粉磨至300目,吸铵值不小于130mmol/100g;将市售的高岭土750℃~800℃煅烧处理,粉磨至细度500目,其中SiO 2含量不低于50%,Al 2O 3含量不低于40%,比表面积不低于15000m2/kg。取经过上述处理后的云母粉60g、沸石粉10g、高岭土粉30g,在高速粉体混合机内混合均匀,制备成基材;
(2)超声处理:取50g基材,加入异丙醇和正丁醇(体积比1:1)的混合液中,超声处理10min,之后磁力搅拌10min(转速1000rpm);
(3)改性处理:在磁力搅拌状态下用移液枪缓慢加入3ml KH-550硅烷偶联剂,继续搅拌30min;适当增加磁力搅拌转速(转速1100rpm),在溶液液面下方缓慢加入3ml蒸馏水,搅拌30min;缓慢匀速加入6.5ml甲基硅油改性剂,磁力 搅拌1h;
(4)烘干粉磨处理:将得到的浆料在200摄氏度的鼓风干燥箱中干燥,将干的粉体研磨,过筛,即得到水分迁移抑制剂成品。
实际工程运用时,可按此比例扩增。该抑制剂成品适用于有抗硫酸盐侵蚀要求的混凝土施工。
实施例2
本发明的混凝土内外部水分迁移抑制剂,是由原料白云母粉和丝光沸石按下述方法制备而成:
(1)基材制备:市售白云母粉粉磨至400目,干燥处理后备用;市售天然丝光沸石粉磨至300目,吸铵值不小于130mmol/100g。取经过处理后的云母粉70g、沸石粉30g,在高速粉体混合机内混合均匀,制备成基材;
(2)超声处理:取50g基材,加入异丙醇和正丁醇(体积比1:1)的混合液中,超声处理10min,之后磁力搅拌10min(转速1000rpm);
(3)改性处理:在磁力搅拌状态下用移液枪缓慢加入4ml KH-550硅烷偶联剂,继续搅拌30min;适当增加磁力搅拌转速(转速1100rpm),在溶液液面下方缓慢加入4ml蒸馏水,搅拌30min;缓慢匀速加入7.5ml甲基硅油改性剂,磁力搅拌1h;
(4)烘干粉磨处理:将得到的浆料在150摄氏度的鼓风干燥箱中干燥,将干的粉体研磨,过筛,即得到水分迁移抑制剂成品。
实际工程运用时,可按此比例扩增。该抑制剂成品适用于干燥地区养护难度大的混凝土施工。
实施例3
本发明的混凝土内外部水分迁移抑制剂,是由原料白云母粉和市售高岭土按下述方法制备而成:
(1)基材制备:市售白云母粉,粉磨至1000目,干燥处理后备用;市售高岭土经750℃~800℃煅烧处理,粉磨至细度500目,其中SiO 2含量不低于50%,Al 2O 3含量不低于40%,比表面积不低于15000m 2/kg。取以上处理后的云母粉50g、高岭土粉50g,在高速粉体混合机内混合均匀,制备成基材;
(2)超声处理:取50g基材,加入异丙醇和正丁醇(体积比1:1)的混合液中,超声处理10min,之后磁力搅拌10min(转速1000rpm);
(3)改性处理:在磁力搅拌状态下用移液枪缓慢加入5ml KH-550硅烷偶联剂,继续搅拌30min;适当增加磁力搅拌转速(转速1200rpm),在溶液液面下方缓慢加入5ml蒸馏水,搅拌30min;缓慢匀速加入8.5ml甲基硅油改性剂,磁力搅拌1h;
(4)烘干粉磨处理:将得到的浆料在200摄氏度的鼓风干燥箱中干燥,将干的粉体研磨,过筛,即得到水分迁移抑制剂成品。
实际工程运用时,可按此比例扩增。该抑制剂成品适用于高抗渗抗氯离子侵蚀的混凝土。
实施例4 水分蒸发抑制率试验
参考《混凝土塑性阶段水分蒸发抑制剂》(JG/T477-2015)规定的水分蒸发抑制率的试验方法,对实施例1~3制备的水分迁移抑制剂的水分蒸发抑制率进行检测。
水灰比为0.40,水泥采用符合GB8076-2008规定的外加剂检测专用水泥,不锈钢试模,尺寸为300mm×150mm×30mm。空白组不掺加抑制剂,试验组分别按照水泥用量的3.0%和5.0%掺加抑制剂。检测结果见下表1。
表1 水分蒸发抑制率试验成果表
Figure PCTCN2018099072-appb-000001
通过表1中数据可以看出,实施例1制备的抑制剂掺量为3.0%、5.0%时,1h水分蒸发抑制率分别为55%、67%,4h水分蒸发抑制率分别为30%、37%;实施例2制备的抑制剂掺量为3.0%、5.0%时,1h水分蒸发抑制率分别为44%、50%,4h水分蒸发抑制率分别为26%、33%;实施例3制备的抑制剂掺量为3.0%、5.0%时,1h水分蒸发抑制率分别为60%、73%,4h水分蒸发抑制率分别为28%、38%;。以上结果均满足行业标准《混凝土塑性阶段水分蒸发抑制剂》(JG/T477-2015)规定的4h水分蒸发抑制率≥25%的要求。
实施例5 混凝土干缩和吸水量比试验
按照《普通混凝土长期性能和耐久性能试验方法标准》(GB50082-2009)规定的方法进行空白组和试验组混凝土的干缩试验。
混凝土的水胶比为0.40,砂率40%,天然中砂,坍落度控制在180±10mm范围内,观测龄期为3d~28d,覆盖混凝土从硬化中到硬化后的两个阶段。结果见下表2。
表2 混凝土干缩和吸水量比试验成果表
Figure PCTCN2018099072-appb-000002
从表2中数据可以看出,与基准组相比,实施例1制备的抑制剂掺量为3.0%、5.0%时,3d龄期干缩量分别降低58.3%、66.7%,7d龄期分别降低29.2%、51.9%,14d龄期分别降低15.5%、32.5%,28d龄期分别降低7.3%、24.9%。实施例2制备的抑制剂掺量为3.0%、5.0%时,3d龄期干缩量分别降低18.3%、55.8%,7d龄期分别降低14.3%、44.2%,14d龄期分别降低12.6%、21.4%,28d龄期分别降低8.4%、18.3%。实施例3制备的抑制剂掺量为3.0%、5.0%时,3d龄期干缩量分别降低63.3%、73.3%,7d龄期分别降低28.6%、59.1%,14d龄期分别降低19.9%、43.7%,28d龄期分别降低18.7%、38.5%。证明本发明制备的抑制剂具有良好的锁水功能。
按照《砂浆、混凝土防水剂》(JC4754-2008)的规定进行空白组和试验组硬化后混凝土的吸水量比试验,检测结果见上表2。
从表2中数据可以看出,实施例1制备的抑制剂掺量为3.0%、5.0%时,吸水量比分别为62%、54%。实施例2制备的抑制剂掺量为3.0%、5.0%时,吸水量比分别为78%、60%。实施例3制备的抑制剂掺量为3.0%、5.0%时,吸水量比分别为60%、47%。可以看出,混凝土的吸水量降低非常明显,本发明制备的抑制剂明显的阻碍了外部水分的侵入。
需要指出的是,以上所述是本发明的优选实施方式,按照本发明的技术思路,在其公布的原料配比范围内进行调整,还可以做出其他的改进和变换,这些都属于本发明的保护范围。

Claims (3)

  1. 一种混凝土内外部水分迁移抑制剂,其特征在于:是由原料金云母粉/白云母粉、斜发沸石/丝光沸石、高岭土按下述方法制备而成:
    第一步,将市售金云母粉/白云母粉粉磨至300~400目,干燥处理后备用;将市售斜发沸石/丝光沸石粉磨至300目备用;将市售高岭土在750℃~800℃温度下煅烧处理后,粉磨至500目备用;
    第二步,将处理后的金云母粉/白云母粉、斜发沸石/丝光沸石粉和高岭土粉按50~70:0~30:0~50之重量份配比在混料机中混合均匀后,加入异丙醇和正丁醇的混合液中,超声处理10min,之后磁力搅拌10min;
    第三步,在磁力搅拌状态下用移液枪缓慢加入适量硅烷偶联剂,继续搅拌30min;适当增加磁力搅拌转速,在溶液液面下方缓慢加入适量蒸馏水,搅拌30min;缓慢匀速加入适量甲基硅油改性剂,磁力搅拌1h;
    第四步,将得到的浆料在150~200℃的鼓风干燥箱中干燥,并将粉体研磨、过筛,得到水分迁移抑制剂成品。
  2. 根据权利要求1所述的混凝土内外部水分迁移抑制剂,其特征在于:所述斜发沸石/丝光沸石粉的吸铵值≥130mmol/100g。
  3. 根据权利要求1所述的混凝土内外部水分迁移抑制剂,其特征在于:经过煅烧处理的所述高岭土粉比表面积≥15000m 2/kg,其含量中SiO 2≥50%,Al 2O 3≥40%。
PCT/CN2018/099072 2018-05-03 2018-08-07 一种混凝土内外部水分迁移抑制剂 WO2019210598A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18917524.3A EP3789360A4 (en) 2018-08-07 Migration inhibitor for internal and external moisture of concrete
US16/936,393 US20200346978A1 (en) 2018-05-03 2020-07-22 Composition of matter for inhibiting water migration between inside and outside of concrete

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810415559.9 2018-05-03
CN201810415559.9A CN108341619B (zh) 2018-05-03 2018-05-03 一种混凝土内外部水分迁移抑制剂

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/936,393 Continuation-In-Part US20200346978A1 (en) 2018-05-03 2020-07-22 Composition of matter for inhibiting water migration between inside and outside of concrete

Publications (1)

Publication Number Publication Date
WO2019210598A1 true WO2019210598A1 (zh) 2019-11-07

Family

ID=62955181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099072 WO2019210598A1 (zh) 2018-05-03 2018-08-07 一种混凝土内外部水分迁移抑制剂

Country Status (3)

Country Link
US (1) US20200346978A1 (zh)
CN (1) CN108341619B (zh)
WO (1) WO2019210598A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500098A (zh) * 2020-12-14 2021-03-16 重庆市能容建筑科技有限公司 一种建筑用的液态阻水渗透材料及其制备方法
CN113800856A (zh) * 2021-10-08 2021-12-17 厦门超荣建材有限公司 一种抗渗性能好的混凝土排水管及其生产工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108341619B (zh) * 2018-05-03 2020-07-07 黄河勘测规划设计研究院有限公司 一种混凝土内外部水分迁移抑制剂
CN113620666B (zh) * 2021-09-07 2022-09-06 郑州顿美生物科技有限公司 抗裂建筑材料及其制备方法
CN114315249B (zh) * 2021-12-30 2022-09-13 重庆交能建材有限责任公司 一种透水混凝土及其制备工艺
CN115611551B (zh) * 2022-12-16 2023-03-14 石家庄市长安育才建材有限公司 碱骨料复合抑制剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765207B2 (ja) * 1999-09-03 2006-04-12 王子製紙株式会社 塗液の製造方法および粘着シートの製造方法
CN101805145A (zh) * 2010-03-12 2010-08-18 江苏省建筑科学研究院有限公司 一种塑性混凝土水分蒸发抑制剂及其制备方法
CN102503541A (zh) * 2011-09-23 2012-06-20 江苏博特新材料有限公司 具有减缩功能的混凝土水分蒸发抑制剂及其制备方法
CN102731016A (zh) * 2012-06-29 2012-10-17 辛留成 混凝土水分蒸发抑制剂及制备方法
CN104261872A (zh) * 2014-09-19 2015-01-07 中建商品混凝土有限公司 一种复合型混凝土水分蒸发抑制剂及其应用方法
CN108341619A (zh) * 2018-05-03 2018-07-31 黄河勘测规划设计有限公司 一种混凝土内外部水分迁移抑制剂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248791B1 (de) * 1985-12-10 1990-09-12 Allgemeine Baugesellschaft - A. Porr Aktiengesellschaft Trockenmörtelgemisch
CN101143770B (zh) * 2007-08-24 2010-10-06 珠海国佳高分子新材料有限公司 混凝土内养护剂及其制备方法
KR101491589B1 (ko) * 2014-07-08 2015-02-09 대진건설(주) 해조류를 이용한 친환경 콘크리트 블록 조성물 및 이를 이용한 콘크리트 블록 제조방법
CN106830733A (zh) * 2017-03-13 2017-06-13 无锡金木土科技有限公司 免蒸压高强度高性能混凝土掺合料及其生产方法
CN106946500A (zh) * 2017-03-14 2017-07-14 温州金棕榈建设有限公司 一种室内装修用环保型涂层材料及其制备方法
CN107098615B (zh) * 2017-06-27 2019-06-21 黄河勘测规划设计研究院有限公司 混凝土抗冻抗裂剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765207B2 (ja) * 1999-09-03 2006-04-12 王子製紙株式会社 塗液の製造方法および粘着シートの製造方法
CN101805145A (zh) * 2010-03-12 2010-08-18 江苏省建筑科学研究院有限公司 一种塑性混凝土水分蒸发抑制剂及其制备方法
CN102503541A (zh) * 2011-09-23 2012-06-20 江苏博特新材料有限公司 具有减缩功能的混凝土水分蒸发抑制剂及其制备方法
CN102731016A (zh) * 2012-06-29 2012-10-17 辛留成 混凝土水分蒸发抑制剂及制备方法
CN104261872A (zh) * 2014-09-19 2015-01-07 中建商品混凝土有限公司 一种复合型混凝土水分蒸发抑制剂及其应用方法
CN108341619A (zh) * 2018-05-03 2018-07-31 黄河勘测规划设计有限公司 一种混凝土内外部水分迁移抑制剂

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500098A (zh) * 2020-12-14 2021-03-16 重庆市能容建筑科技有限公司 一种建筑用的液态阻水渗透材料及其制备方法
CN113800856A (zh) * 2021-10-08 2021-12-17 厦门超荣建材有限公司 一种抗渗性能好的混凝土排水管及其生产工艺

Also Published As

Publication number Publication date
CN108341619B (zh) 2020-07-07
CN108341619A (zh) 2018-07-31
US20200346978A1 (en) 2020-11-05
EP3789360A1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
WO2019210598A1 (zh) 一种混凝土内外部水分迁移抑制剂
Duran et al. Long-term mechanical resistance and durability of air lime mortars with large additions of nanosilica
Hornain et al. Diffusion of chloride ions in limestone filler blended cement pastes and mortars
Cerulli et al. Durability of traditional plasters with respect to blast furnace slag-based plaster
Maravelaki-Kalaitzaki Hydraulic lime mortars with siloxane for waterproofing historic masonry
Allahverdi et al. Effect of polyvinyl alcohol on flexural strength and some important physical properties of Portland cement paste
CA2937156C (en) Addition of colloidal silica to concrete
US8333837B2 (en) Jute fiber-reinforced composition for concrete repair
Ma et al. Effect of shrinkage reducing admixture on drying shrinkage and durability of alkali-activated coal gangue-slag material
Jun et al. Resistance to sulfate attack of magnesium phosphate cement-coated concrete
CN108640591B (zh) 一种有机硅整体防水混凝土
Zhang et al. Study on workability and durability of calcined ginger nuts-based grouts used in anchoring conservation of earthen sites
Ramachandran et al. Concrete science
KR100623423B1 (ko) 콘크리트의 표면 마감용으로서 방수와 내식성을 갖는폴리머 시멘트 모르터 조성물
Gonzalez-Sanchez et al. Improving lime-based rendering mortars with admixtures
CN107352861A (zh) 一种海工混凝土防护用地聚合物涂层材料的使用方法
Zhou et al. The waterproofing effect and mechanism of graphene oxide/silane composite emulsion on cement-based materials under compressive stress
Xu et al. Effects of Graphene Oxide Dispersion on Salt‐Freezing Resistance of Concrete
CN105481281A (zh) 能提高混凝土的防水抗渗性能的防水剂
Li et al. Influence of cationic asphalt emulsion on the water transportation behavior and durability of cement mortar
KR102338230B1 (ko) 수축저감형 폴리머개질 모르타르 조성물 및 이를 이용한 콘크리트 구조물의 단면 복구 및 보수방법
JP6130767B2 (ja) 高炉スラグ細骨材を用いて耐凍害性を向上したモルタルまたはコンクリート用組成物およびそれを成形してなる成形品ならびに成形品の製造方法
JP7076704B2 (ja) 遠心成形用のセメント組成物、管状成形体の製造方法
CN106186949A (zh) 一种耐高温阻燃型防水堵漏砂浆及其制作方法
Zhang et al. Preparation and performance study of active chemicals in cementitious capillary crystalline waterproofing materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018917524

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018917524

Country of ref document: EP

Effective date: 20201203