WO2019210596A1 - 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途 - Google Patents

一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途 Download PDF

Info

Publication number
WO2019210596A1
WO2019210596A1 PCT/CN2018/098091 CN2018098091W WO2019210596A1 WO 2019210596 A1 WO2019210596 A1 WO 2019210596A1 CN 2018098091 W CN2018098091 W CN 2018098091W WO 2019210596 A1 WO2019210596 A1 WO 2019210596A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
layer
modified current
conductive substrate
insulating material
Prior art date
Application number
PCT/CN2018/098091
Other languages
English (en)
French (fr)
Inventor
程鑫
卢周广
李志强
张腾飞
黄兴隆
张雨
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2019210596A1 publication Critical patent/WO2019210596A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of battery technology, for example, to a modified current collector that effectively inhibits the uncontrolled growth of dendrites of a lithium metal battery, a preparation method thereof, and use thereof.
  • lithium metal is a very promising high energy density anode material in lithium batteries because of its theoretical capacity of up to 3860 mA ⁇ h/g and a very low redox potential (relative to standard hydrogen electrodes).
  • -3.04V redox potential
  • lithium metal plays a key role in meeting the demand for high energy density batteries for electric vehicles and advanced electronic equipment for new and growing applications.
  • the formation of lithium dendrites with low coulombic efficiency hinders the practical application of lithium metal anodes for rechargeable lithium batteries.
  • the generation of lithium dendrites and the dead lithium it produces may cause safety problems such as thermal runaway or even burning, or explosion.
  • the biomimetic method can be improved by using a 3D collector to bond the polymer electrolyte.
  • the uncontrollable lithium dendrite problem is an urgent problem to be solved in the development of rechargeable lithium batteries based on lithium metal anodes.
  • the present disclosure provides a modified current collector that effectively inhibits the uncontrolled growth of dendrites of a lithium metal battery, a preparation method thereof, and use thereof.
  • a modified current collector that effectively inhibits the uncontrolled growth of dendrites of a lithium metal battery, a preparation method thereof, and use thereof.
  • the present disclosure provides a modified current collector comprising a conductive substrate and an insulating material layer on a surface of the conductive substrate, the insulating material layer having a recessed structure, and the recessed structure is worn A layer of insulating material is exposed to expose the conductive substrate.
  • the purpose of penetrating the insulating material layer at the recessed structure is to expose the conductive substrate to prepare for subsequent deposition of the lithium layer.
  • the conductive substrate comprises any one of a copper sheet, a stainless steel sheet, a nickel sheet or a graphitized carbon fiber, but is not limited to the above-exemplified conductive substrate, and other conductive materials commonly used in the art to achieve the same effect. Substrates can also be used in the scheme of the present disclosure.
  • the conductive substrate is a copper sheet.
  • the insulating material layer is any one or a combination of two of a polymer layer or an oxide layer.
  • the insulating material layer is a polymer layer.
  • the polymer layer is any one of a polymethyl methacrylate layer, a polycarbonate layer, or a photoresist layer.
  • the polymer layer is a photoresist layer.
  • the type of the photoresist is not particularly limited, and may be a positive gel or a negative gel, and may be, for example, Ruihong RJ-304 or G-8 negative rubber.
  • the oxide layer is any one of an aluminum oxide layer or a silicon oxide layer.
  • the recessed structure includes a pit structure and/or a groove structure.
  • the "pit and/or groove” means that it may be a pit structure, a groove structure, or a combination of a pit structure and a groove structure.
  • the recessed structure of the present disclosure includes, but is not limited to, a pit structure and/or a groove structure, and other regular or irregular recess structures are also suitable for the present disclosure, and the groove may be a straight groove or a curved groove.
  • the pit may be a pit having a square cross section (referred to as a square pit for short), a pit having a circular cross section (referred to as a circular pit for short), or a pit having an elliptical horizontal cross section (abbreviated as an ellipse) Pit) and so on.
  • the pit structure and/or the groove structure is a micro/nano structure pattern.
  • micro/nano structure as used in the present disclosure means that the structure is on a two-dimensional plane perpendicular to the depth of the pit and/or the groove, and the dimension of at least one dimension is on the order of micrometers or nanometers, the micrometer level or nanometer.
  • the level may be, for example, 50 nm to 900 ⁇ m, for example, 50 nm, 60 nm, 80 nm, 100 nm, 150 nm, 200 nm, 300 nm, 350 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m. 70 ⁇ m, 150 ⁇ m, 200 ⁇ m, 300 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m or 900 ⁇ m, and the like.
  • the "at least one dimension" may be one dimension of a two-dimensional plane or two dimensions of a two-dimensional plane.
  • micro/nano structure pattern refers to a pattern formed by a plurality of micro/nano structures in a two-dimensional plane perpendicular to the depth of the pits and/or grooves, the plurality of which may be, for example, two per square centimeter.
  • 10 3 to 10 8 in the dimensional plane, for example, 10 3 , 3 ⁇ 10 3 , 5 ⁇ 10 3 , 8 ⁇ 10 3 , 10 4 , 2 ⁇ 10 4 , 5 ⁇ 10 4 , 7.5 ⁇ 10 4 , 10 5 , 1.5 ⁇ 10 5 , 3 ⁇ 10 5 , 6.5 ⁇ 10 5 , 8 ⁇ 10 5 , 10 6 , 2 ⁇ 10 6 , 4 ⁇ 10 6 , 6 ⁇ 10 6 , 8 ⁇ 10 6 , 10 7 , 2.5 ⁇ 10 7 , 3.5 ⁇ 10 7 , 6.5 ⁇ 10 7 , 8.5 ⁇ 10 7 or 10 8 , etc.
  • the micro-nano structure pattern is a regular periodic pattern.
  • the conductive substrate has a thickness of 10 ⁇ m to 100 ⁇ m, such as 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, or 100 ⁇ m.
  • the insulating material layer has a thickness of 3 ⁇ m to 15 ⁇ m, for example, 3 ⁇ m, 5 ⁇ m, 7 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 12.5 ⁇ m, 13 ⁇ m, 14 ⁇ m, or 15 ⁇ m.
  • lithium is preferentially deposited in depressions, such as pits and/or grooves, especially in micro-nano structure pits and/or grooves, which provides space for the growth of lithium dendrites, thereby effectively
  • the growth of lithium dendrites in the lithium metal battery is suppressed, the phenomenon of piercing the battery separator is avoided, and the performance of the lithium battery is improved.
  • the present disclosure provides a method for preparing the modified current collector, the method comprising:
  • a layer of insulating material is first formed on the conductive substrate, and then a recessed structure penetrating the layer of insulating material is formed on the layer of insulating material to obtain a modified current collector.
  • the method of forming a layer of insulating material on the conductive substrate is a method of first coating and then drying, or a method of chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the method of first coating and drying is more suitable for forming a photoresist layer or the like; and the method of CVD and PVD is more suitable for forming an oxide layer.
  • the method utilizes conventional photolithography or roll-to-roll nanoimprint lithography to form a polymeric layer having a recessed structure on a conductive substrate.
  • the conventional lithography technique comprises: coating a photoresist on a conductive substrate, then performing exposure using a pattern on the mask, and finally developing a micro/nano pattern to obtain a modified current collector, the modification
  • the current collector includes a conductive substrate and a photoresist layer on a surface of the conductive substrate, the photoresist layer having a penetrating recess of a micro-nano structure pattern.
  • the "penetrating recess” means that the recess structure penetrates the photoresist layer to expose the conductive substrate.
  • the conductive substrate in a conventional lithography process is a clean substrate.
  • the method of coating in conventional lithography is spin coating.
  • the roll-to-roll nanoimprint lithography technique specifically includes transferring the micro/nano structure on the flexible nanoimprint template to the embossing adhesive formed on the conductive substrate by roll-to-roll embossing.
  • the electrically conductive substrate in a roll-to-roll nanoimprint lithography process is a clean substrate.
  • an embossing paste is formed on a conductive substrate by spraying.
  • the method includes first forming an oxide layer on a conductive substrate by chemical vapor deposition or physical vapor deposition, then coating a layer of photoresist, and then etching to form an oxide Etching the pattern on the layer, and finally removing the photoresist, thereby obtaining a modified current collector, the modified current collector comprising a conductive substrate and an oxide layer on the surface of the conductive substrate, the oxide layer having a micro-nano structure pattern Penetrating depression.
  • the method of coating is spin coating.
  • the present disclosure provides a negative electrode including the modified current collector, and a lithium layer formed on the modified current collector, the lithium layer having a thickness equal to or less than a thickness of the insulating material layer.
  • the thickness of the lithium layer is 1/2 to 1 times the thickness of the insulating material layer, such as 1/2, 2/3, 4/5 or 1 time.
  • the thickness of the lithium layer is equal to the thickness of the insulating material layer.
  • the method of forming a lithium layer on the modified current collector is a method of electrodeposition.
  • the formed negative electrode when lithium is deposited, only the conductive portion exposing the conductive substrate deposits lithium, and the portion of the insulating material layer does not deposit lithium.
  • the formed negative electrode still has a concave structure; when the thickness of the lithium layer is equal to the thickness of the insulating material layer, the lithium formed at the recess just fills the recess, and the formed negative electrode no longer has
  • the recessed structure which is just filling the recessed structure, is more conducive to avoiding dendrite growth and improving the performance of the lithium battery.
  • the present disclosure provides a lithium metal battery comprising the negative electrode.
  • the present disclosure provides a lithium metal battery
  • the negative electrode of the lithium metal battery is the negative electrode
  • the lithium metal battery further includes a positive electrode, a separator, an electrolyte, and a battery case.
  • Embodiments of the present disclosure form a recessed structure (such as a pit structure and/or a groove structure, particularly a pit and/or a groove of a micro/nano structure) on a surface of a conductive substrate such as a copper sheet, as compared with the related art.
  • a layer of insulating material penetrates the layer of insulating material to expose the copper sheet to obtain a modified current collector, and further deposits a lithium layer equal to or less than the thickness of the insulating material layer on the modified current collector to obtain a negative electrode, which can effectively control lithium The problem of free growth of metal battery dendrites.
  • micro-nano processing technology adopted in an embodiment of the present disclosure is mature and stable, and can realize precise control of the graphic size, and can be produced from nanometer to micrometer-level patterns.
  • FIG. 1 is a process flow diagram of preparing a modified current collector having a micro/nano structure according to an embodiment of the present disclosure.
  • 2 is a schematic view of the finished product of a modified current collector having a micro/nano structure according to an embodiment of the present disclosure, wherein 1 represents a copper sheet, and 2 represents a photoresist layer having a micro-nano structure recess.
  • FIG. 3 is a process flow diagram of preparing a modified current collector having a micro/nano structure according to an embodiment of the present disclosure.
  • the embodiment provides a method for preparing a modified current collector having a micro/nano structure, comprising: forming a photoresist having a micro-nano structure recess on a copper sheet by using a photolithography technique.
  • a method of preparing a modified current collector having a micro/nano structure includes (see Figure 1 for a process flow):
  • a layer of photoresist (model RJ-304 positive gel produced by Suzhou Ruihong Electronic Chemical Co., Ltd.) is spin-coated on the clean copper sheet, and then the pattern on the mask is exposed by a lithography machine, and finally developed.
  • a micro-nano pattern (See Figure 2 for the effect of the modified current collector product, including copper sheet, and a photoresist layer on the copper sheet with micro-nano structure pits);
  • the thickness of the copper sheet was 100 ⁇ m, and the thickness of the photoresist layer having micro-nano structure pits, which are through-type pits, was 3 ⁇ m.
  • the photolithography step was similar to that of Example 1, except that the photoresist used was a negative paste, model number SU8-2015.
  • the thickness of the copper sheet was 100 ⁇ m
  • the thickness of the SU8 layer having micro-nano structure pits was 15 ⁇ m.
  • the photolithography step was replaced by the following operation: firstly coating a 1 ⁇ m thick PMMA on a copper sheet, followed by using a silicon template having a micro/nano pattern (the pattern on the silicon wafer was a square pillar having a side length of 20 ⁇ m, and the height of the square pillar was 2 ⁇ m.
  • the pillars are spaced from the pillars by 20 ⁇ m to be thermally embossed to extrude square pits on the PMMA layer.
  • the copper sheet with PMMA was then placed in a plasma cleaner to clean the surface of the PMMA with a layer of approximately 50 nm using O2-plasma to ensure that the pit penetrated the PMMA.
  • the thickness of the copper sheet was 100 ⁇ m, and the thickness of the PMMA layer having micro-nano structure pits was 1.9 ⁇ m.
  • the embodiment provides a method for preparing a modified current collector having a micro/nano structure, comprising: forming a patterned insulating film on a stainless steel sheet.
  • a method of preparing a modified current collector having a micro/nano structure includes (see Figure 3 for a process flow):
  • the thickness of the stainless steel sheet is 100 ⁇ m
  • the film thickness is 3 ⁇ m
  • the photoresist is removed from the degumming solution to obtain a current collector having a patterned structure, that is, a modified current collector having a micro/nano structure.
  • the present embodiment provides a negative electrode comprising the modified current collector described in Embodiment 1, and a lithium layer formed on the modified current collector, the lithium layer having a thickness of 2 ⁇ m.
  • the present embodiment provides a negative electrode comprising the modified current collector described in Embodiment 2, and a lithium layer formed on the modified current collector, the lithium layer having a thickness of 10 ⁇ m.
  • the present embodiment provides a negative electrode comprising the modified current collector described in Embodiment 3, and a lithium layer formed on the modified current collector, the lithium layer having a thickness of 1.5 ⁇ m.
  • the present embodiment provides a negative electrode comprising the modified current collector described in Embodiment 4, and a lithium layer formed on the modified current collector, the lithium layer having a thickness of 2.2 ⁇ m.
  • Embodiments 5-8 of the present disclosure are prepared by using a modified current collector of a specific structure to obtain a negative electrode having a concave structure, which can effectively control the free growth of dendrites of a lithium metal battery.
  • lithium is preferentially deposited in the recess of the negative electrode, such as pits (such as micro-nano structure pits) and/or grooves, which provides space for the growth of lithium dendrites, thereby effectively inhibiting lithium
  • pits such as micro-nano structure pits
  • grooves which provides space for the growth of lithium dendrites, thereby effectively inhibiting lithium
  • the growth of lithium dendrites in metal batteries avoids the phenomenon of piercing the battery separator and improves the performance of the lithium battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途。该改性集流体包括导电基底及位于导电基底表面的绝缘材料层,该绝缘材料层具有凹陷结构且凹陷结构处穿透绝缘材料层以暴露导电基底,通过采用该特定结构的改性集流体制备的负极,可以有效抑制锂金属电池枝晶不可控生长,避免了刺穿电池隔膜的现象,提高了锂电池的性能。

Description

一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途 技术领域
本公开涉及电池技术领域,例如涉及一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途。
背景技术
相关技术中,提高锂离子电池能量密度是商业化锂电池行业长期发展的一个重要追求方向,然而,由于商业化的石墨负极它的理论容量只有372mA·h/g,限制了电池的应用,还有许多负极材料如硅、锡、过度金属氧化物等都可以用于取代目前商业化的石墨负极。
除了上述这些材料外,锂金属是基于锂电池中一个非常有前途的高能量密度负极材料,因为它的理论容量高达3860mA·h/g,而且有一个很低的氧化还原电位(相对标准氢电极为-3.04V),因此,锂金属在满足针对日益增长新型应用的电动汽车和先进的电子设备对高能量密度电池的需求中起着关键作用。然而,锂金属电池在充放电循环过程中,锂枝晶的形成伴随着低的库伦效率阻碍了锂金属负极用于可充放电锂电池的实际应用。尤其是,锂枝晶的产生和它产生的死锂可能会导致出现诸如热失控甚至燃烧、或***等安全问题。
相关技术中,通过在锂金属上面涂一层LiF,或者在电解液中加聚硫化物、LiNO 3、Cs +、离子液体等,使用3D收集器结合高分子电解液,生物仿生的方法可以改善锂金属表面的SEI(solid electrolyte interphase)膜等。
以上技术,对不可控锂枝晶生长的改善程度是很有限的,它们不能大规模的应用于高通量的工业化生产。
总之,不可控的锂枝晶问题是发展基于锂金属负极的可充电锂电池急需解决的问题。
发明内容
本公开提供一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途。通过采用所述改性集流体并在其表面形成合适厚度的锂形成负极,能够有效抑制锂金属电池枝晶不可控生长。
本公开在一实施例中提供一种改性集流体,所述改性集流体包括导电基底以及位于所述导电基底表面的绝缘材料层,所述绝缘材料层具有凹陷结构,且凹陷结构处穿透绝缘材料层以暴露导电基底。
本公开的改性集流体中,凹陷结构处穿透绝缘材料层的目的是暴露导电基底,从而为后续沉积锂层做准备。
在一实施例中,所述导电基底包括铜片、不锈钢片、镍片或石墨化碳纤维中的任意一种,但并不限于上述列举的导电基底,其他本领域常用的可达到相同效果的导电基底也可用于本公开的方案。
在一实施例中,所述导电基底为铜片。
在一实施例中,所述绝缘材料层为高分子层或氧化物层中的任意一种或两种的组合。
在一实施例中,所述绝缘材料层为高分子层。
在一实施例中,所述高分子层为聚甲基丙烯酸甲酯层、聚碳酸酯层或光刻胶层中的任意一种。
在一实施例中,所述高分子层为光刻胶层。
本公开中,对光刻胶的种类不作具体限定,可以是正胶,也可以是负胶,例如可以是瑞红RJ-304正胶或SU-8负胶等。
在一实施例中,所述氧化物层为氧化铝层或氧化硅层中的任意一种。
在一示例性实施例中,所述凹陷结构包括凹坑结构和/或凹槽结构。所述“凹坑和/或凹槽”指:可以是凹坑结构,也可以是凹槽结构,还可以是凹坑结构和凹槽结构的组合。
本公开的凹陷结构包括但不限于凹坑结构和/或凹槽结构,其他规则的或不规则的凹陷结构也适用于本公开,所述凹槽可以是直槽也可以是弯曲状的槽,所述凹坑可以是水平截面为方形的凹坑(简称方形凹坑)、水平截面为圆形的凹坑(简称为圆形凹坑)或水平截面为椭圆形的凹坑(简称为椭圆形凹坑)等。
在一实施例中,所述凹坑结构和/或凹槽结构为微纳结构图形。
本公开所述“微纳结构”指:该结构在与凹坑和/或凹槽的深度垂直方向所在二维平面上,至少一个维度的尺寸为微米级别或纳米级别,所述微米级别或纳米级别例如可以是50nm~900μm,例如50nm、60nm、80nm、100nm、150nm、200nm、300nm、350nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、150μm、200μm、300μm、400μm、500μm、600μm、700μm、800μm或900μm等。所述“至少一个维度” 可以是二维平面的一个维度,也可以是二维平面的两个维度。
本公开所述“微纳结构图形”指:多个微纳结构在与凹坑和/或凹槽的深度垂直方向所在二维平面内形成的图形,所述多个例如可以是每平方厘米二维平面内有10 3~10 8个,例如10 3个、3×10 3个、5×10 3个、8×10 3个、10 4个、2×10 4个、5×10 4个、7.5×10 4个、10 5个、1.5×10 5个、3×10 5个、6.5×10 5个、8×10 5个、10 6个、2×10 6个、4×10 6个、6×10 6个、8×10 6个、10 7个、2.5×10 7个、3.5×10 7个、6.5×10 7个、8.5×10 7个或10 8个等。
在一实施例中,所述微纳结构图形为规则的周期性图形。
在一实施例中,所述导电基底的厚度为10μm~100μm,例如10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm或100μm等。
在一实施例中,所述绝缘材料层的厚度为3μm~15μm,例如3μm、5μm、7μm、8μm、10μm、12μm、12.5μm、13μm、14μm或15μm等。
在电池充放电过程中,锂优先沉积在凹陷处,比如凹坑和/或凹槽,尤其是微纳结构凹坑和/或凹槽处,这为锂枝晶的生长提供了空间,从而有效抑制了锂金属电池中锂枝晶的生长、避免了刺穿电池隔膜的现象,提高了锂电池的性能。
本公开在一实施例中提供一种所述的改性集流体的制备方法,所述方法包括:
先在导电基底上形成绝缘材料层,然后再绝缘材料层上形成穿透绝缘材料层的凹陷结构,得到改性集流体。
在一实施例中,在导电基底上形成绝缘材料层的方法为先涂覆再干燥的方法,或者采用化学气相沉积(CVD)或物理气相沉积(PVD)的方法。其中,先涂覆再干燥的方法更适用于形成光刻胶层等;而CVD和PVD的方法更适用于形成氧化物层。
在一实施例中,所述方法利用传统光刻技术或卷对卷纳米压印光刻技术在导电基底上形成具有凹陷结构的高分子层。
在一实施例中,传统光刻技术包括:在导电基底上涂覆光刻胶,然后利用掩膜板上的图形进行曝光,最后显影出微纳图案,得到改性集流体,所述改性集流体包括导电基底以及位于导电基底表面的光刻胶层,所述光刻胶层具有微纳结构图案的穿透型凹陷。
所述“穿透型凹陷”指:该凹陷结构处穿透光刻胶层以暴露导电基底。
在一实施例中,传统光刻技术中所述导电基底为清洗干净的基底。
在一实施例中,传统光刻技术中所述涂覆的方法为旋涂。
在一实施例中,卷对卷纳米压印光刻技术具体包括:将柔性纳米压印模板上的微纳结构通过卷对卷压印而转移到形成于导电基底的压印胶上。
在一实施例中,卷对卷纳米压印光刻技术中所述导电基底为清洗干净的基底。
在一实施例中,卷对卷纳米压印光刻技术中,通过喷涂的方式在导电基底上形成压印胶。
在一示例性实施例中,所述方法包括:首先利用化学气相沉积或物理气相沉积的方法在导电基底上形成氧化物层,然后涂覆一层光刻胶,再进行刻蚀从而在氧化物层上刻蚀除图案,最后去掉光刻胶,从而得到改性集流体,所述改性集流体包括导电基底以及位于导电基底表面的氧化物层,所述氧化物层具有微纳结构图案的穿透型凹陷。
在一实施例中,所述涂覆的方法为旋涂。
本公开在一实施例中提供一种负极,包括所述的改性集流体,及形成于所述改性集流体上的锂层,所述锂层的厚度小于等于绝缘材料层厚度。
在一实施例中,所述锂层的厚度为绝缘材料层厚度的1/2~1倍,例如1/2、2/3、4/5或1倍。
在一实施例中,所述锂层的厚度等于绝缘材料层厚度。
在一实施例中,在改性集流体上形成锂层的方法为电沉积的方法。
本公开中,沉积锂时只有暴露导电基底的导电部位会沉积上锂,而绝缘材料层部分不会沉积上锂。当锂层的厚度小于绝缘材料层厚度时,形成的负极仍然具有凹陷结构;当锂层的厚度等于绝缘材料层厚度时,形成于凹陷处的锂刚好将凹陷填满,形成的负极不再具有凹陷结构,这种恰好填满凹陷的结构更有利于避免枝晶生长,提高锂电池的性能。
本公开在一实施例中提供一种锂金属电池,所述锂金属电池包含所述的负极。
本公开在一实施例中提供了一种锂金属电池,所述锂金属电池的负极为所述的负极,所述锂金属电池还包括正极、隔膜、电解液和电池壳等部件。
与相关技术相比,本公开实施例通过在导电基底(比如铜片)表面形成具有凹陷结构(比如凹坑结构和/或凹槽结构,尤其是微纳结构的凹坑和/或凹槽)的绝缘材料层,且凹陷结构处穿透绝缘材料层以暴露铜片,得到改性集流体,进一步在改性集流体上沉积小于等于绝缘材料层厚度的锂层而得到负极,可以有效控制锂金属电池枝晶的自由生长问题。
本公开在一实施例中采用的微纳加工技术,工艺成熟稳定,可实现图形尺寸的精确控制,从纳米级到微米级别的图案均可制作。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是本公开一实施例提供的制备具有微纳结构的改性集流体的工艺流程图。
图2是本公开一实施例提供的具有微纳结构的改性集流体的成品效果图,其中,1代表铜片,2代表具有微纳结构凹陷的光刻胶层。
图3是本公开一实施例提供的制备具有微纳结构的改性集流体的工艺流程图。
具体实施方式
实施例1
本实施例提供一种具有微纳结构的改性集流体的制备方法,包括:利用光刻技术在铜片上形成具有微纳结构凹陷的光刻胶。
在一个实施例中,制备具有微纳结构的改性集流体的方法包括(工艺流程参见图1):
首先在洁净的铜片上旋涂一层光刻胶(型号为苏州瑞红电子化学品有限公司产的RJ-304正胶),然后通过光刻机将掩膜板上的图形进行曝光,最后显影出微纳图案。(改性集流体成品效果图参见图2,包括铜片,以及位于铜片上的具有微纳结构凹坑的光刻胶层);
改性集流体中,铜片的厚度为100μm,具有微纳结构凹坑(其为穿透型凹坑)的光刻胶胶层的厚度为3μm。
实施例2
光刻步骤与实施例1类似,但所用光刻胶为负胶,型号为SU8-2015。改性集流体中,铜片的厚度为100μm,具有微纳结构凹坑的SU8层的厚度为15μm。
实施例3
将光刻步骤替换为如下操作:先在铜片上旋涂一层1μm厚PMMA,接着使用具有微纳图案的硅模板(硅片上图案为边长为20μm的方形柱子,方形柱子的高度为2μm,柱子与柱子之间间隔20μm)对其进行热压印,从而在PMMA层上压出方形凹坑。接着将带有PMMA的铜片放入等离子体清洗机中利用O2-plasma将表面一层大约50nm的PMMA清洗掉,确保凹坑穿透了PMMA。
改性集流体中,铜片的厚度为100μm,具有微纳结构凹坑的PMMA层的厚度为1.9μm。
实施例4
本实施例提供一种具有微纳结构的改性集流体的制备方法,包括:在不锈钢片上形成图形化绝缘薄膜。
在一实施例中,制备具有微纳结构的改性集流体的方法包括(工艺流程参见图3):
(1)将光滑平整的不锈钢片清洗,不锈钢片厚度为100μm;
(2)选用PECVD在不锈钢片上镀一层氧化铝薄膜,膜厚为3μm;
(3)在具有氧化铝薄膜的不锈钢片上旋涂一层光刻胶;
(4)接着使用ICP干法刻蚀,在氧化铝薄膜上刻蚀出图案;
(5)在去胶液中去掉光刻胶,得到具有图形化结构的集流体,也即具有微纳结构的改性集流体。
实施例5
本实施例提供一种负极,所述负极包括实施例1所述的改性集流体,及形成于所述改性集流体上的锂层,锂层的厚度为2μm。
实施例6
本实施例提供一种负极,所述负极包括实施例2所述的改性集流体,及形成于所述改性集流体上的锂层,锂层的厚度为10μm。
实施例7
本实施例提供一种负极,所述负极包括实施例3所述的改性集流体,及形成于所述改性集流体上的锂层,锂层的厚度为1.5μm。
实施例8
本实施例提供一种负极,所述负极包括实施例4所述的改性集流体,及形成于所述改性集流体上的锂层,锂层的厚度为2.2μm。
本公开实施例5-8采用特定结构的改性集流体制备得到具有凹陷结构的负极,可以有效控制锂金属电池枝晶的自由生长问题。
在电池充放电过程中,锂优先沉积在负极的凹陷处,比如凹坑(比如微纳结构凹坑)和/或凹槽处,这为锂枝晶的生长提供了空间,从而有效抑制了锂金属电池中锂枝晶的生长、避免了刺穿电池隔膜的现象,提高了锂电池的性能。
申请人声明,本公开通过上述实施例来说明本公开的详细方法,但本公开并不局限于上述详细方法,即不意味着本公开必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本公开的任何改进,对本公开产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本公开的保护范围和公开范围之内。

Claims (29)

  1. 一种改性集流体,所述改性集流体包括导电基底以及位于所述导电基底表面的绝缘材料层;
    其中,所述绝缘材料层具有凹陷结构,且凹陷结构处穿透绝缘材料层以暴露导电基底。
  2. 根据权利要求1所述改性集流体,其中,所述导电基底包括铜片、不锈钢片、镍片或石墨化碳纤维中的任意一种。
  3. 根据权利要求2所述的改性集流体,其中,所述导电基底为铜片。
  4. 根据权利要求1所述的改性集流体,其中,所述绝缘材料层为高分子层或氧化物层中的任意一种或两种的组合。
  5. 根据权利要求4所述的改性集流体,其中,所述绝缘材料层为高分子层。
  6. 根据权利要求4或5所述的改性集流体,其中,所述高分子层为聚甲基丙烯酸甲酯层、聚碳酸酯层或光刻胶层中的任意一种。
  7. 根据权利要求6所述的改性集流体,其中,所述高分子层为光刻胶层。
  8. 根据权利要求4所述的改性集流体,其中,所述氧化物层为氧化铝层或氧化硅层中的任意一种。
  9. 根据权利要求1-8任一项所述的改性集流体,其中,所述凹陷结构包括凹坑结构和/或凹槽结构。
  10. 根据权利要求9所述的改性集流体,其中,所述凹坑结构和/或凹槽结构为微纳结构图形。
  11. 根据权利要求10所述的改性集流体,其中,所述微纳结构图形为规则的周期性图形。
  12. 根据权利要求1-11任一项所述的改性集流体,其中,所述导电基底的 厚度为10μm~100μm。
  13. 根据权利要求1-12任一项所述的改性集流体,其中,所述绝缘材料层的厚度为3μm~15μm。
  14. 如权利要求1-13任一项所述的改性集流体的制备方法,所述方法包括:先在导电基底上形成绝缘材料层,然后再绝缘材料层上形成穿透绝缘材料层的凹陷结构,得到改性集流体。
  15. 根据权利要求14所述的方法,在导电基底上形成绝缘材料层的方法为先涂覆再干燥的方法,或者采用化学气相沉积或物理气相沉积的方法。
  16. 根据权利要求14或15所述的方法,所述方法利用传统光刻技术或卷对卷纳米压印光刻技术在导电基底上形成具有凹陷结构的高分子层。
  17. 根据权利要求16所述的方法,其中,传统光刻技术包括:在导电基底上涂覆光刻胶,然后利用掩膜板上的图形进行曝光,最后显影出微纳图案,得到改性集流体,所述改性集流体包括导电基底以及位于导电基底表面的光刻胶层,所述光刻胶层具有微纳结构图案的穿透型凹陷。
  18. 根据权利要求17所述的方法,传统光刻技术中,所述导电基底为清洗干净的基底。
  19. 根据权利要求17或18所述的方法,传统光刻技术中,所述涂覆的方法为旋涂。
  20. 根据权利要求16所述的方法,卷对卷纳米压印光刻技术包括:将柔性纳米压印模板上的微纳结构通过卷对卷压印而转移到形成于导电基底的压印胶上。
  21. 根据权利要求20所述的方法,卷对卷纳米压印光刻技术中,所述导电 基底为清洗干净的基底。
  22. 根据权利要求20或21所述的方法,卷对卷纳米压印光刻技术中,通过喷涂的方式在导电基底上形成压印胶。
  23. 根据权利要求14-22任一项所述的方法,所述方法包括:首先利用化学气相沉积或物理气相沉积的方法在导电基底上形成氧化物层,然后涂覆一层光刻胶,再进行刻蚀从而在氧化物层上刻蚀除图案,最后去掉光刻胶,从而得到改性集流体,所述改性集流体包括导电基底以及位于导电基底表面的氧化物层,所述氧化物层具有微纳结构图案的穿透型凹陷。
  24. 根据权利要求23所述的方法,其中,所述涂覆的方法为旋涂。
  25. 一种负极,所述负极包括权利要求1-13任一项所述的改性集流体,及形成于所述改性集流体上的锂层,所述锂层的厚度小于等于绝缘材料层厚度。
  26. 根据权利要求25所述的负极,其中,所述锂层的厚度为绝缘材料层厚度的1/2~1倍。
  27. 根据权利要求26所述的负极,其中,所述锂层的厚度等于绝缘材料层厚度。
  28. 根据权利要求25-27任一项所述的负极,其中,在改性集流体上形成锂层的方法为电沉积的方法。
  29. 一种锂金属电池,所述锂金属电池包含权利要求25-28任一项所述的负极。
PCT/CN2018/098091 2018-05-02 2018-08-01 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途 WO2019210596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810409972.4 2018-05-02
CN201810409972.4A CN108615892B (zh) 2018-05-02 2018-05-02 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途

Publications (1)

Publication Number Publication Date
WO2019210596A1 true WO2019210596A1 (zh) 2019-11-07

Family

ID=63661717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098091 WO2019210596A1 (zh) 2018-05-02 2018-08-01 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途

Country Status (2)

Country Link
CN (1) CN108615892B (zh)
WO (1) WO2019210596A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210159502A1 (en) * 2019-11-27 2021-05-27 GM Global Technology Operations LLC Electrode components with laser induced surface modified current collectors and methods of making the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950547B (zh) * 2019-03-27 2022-06-10 华中农业大学 一种修饰有非贵金属涂层的三维集流体
CN112599780A (zh) * 2020-12-14 2021-04-02 中国科学院过程工程研究所 一种锂浆料电池集流体表面改性处理的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066633A (ja) * 2005-08-30 2007-03-15 Sony Corp 集電体,負極および電池
US20070228751A1 (en) * 2006-03-30 2007-10-04 Viavattine Joseph J Apparatus and method for positioning current collectors in an electrochemical cell
CN106848328A (zh) * 2017-04-06 2017-06-13 清华大学深圳研究生院 一种负极集流体、电池负极、电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066633A (ja) * 2005-08-30 2007-03-15 Sony Corp 集電体,負極および電池
US20070228751A1 (en) * 2006-03-30 2007-10-04 Viavattine Joseph J Apparatus and method for positioning current collectors in an electrochemical cell
CN106848328A (zh) * 2017-04-06 2017-06-13 清华大学深圳研究生院 一种负极集流体、电池负极、电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210159502A1 (en) * 2019-11-27 2021-05-27 GM Global Technology Operations LLC Electrode components with laser induced surface modified current collectors and methods of making the same
US11984599B2 (en) * 2019-11-27 2024-05-14 GM Global Technology Operations LLC Electrode components with laser induced surface modified current collectors and methods of making the same

Also Published As

Publication number Publication date
CN108615892B (zh) 2022-01-04
CN108615892A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
US10256500B2 (en) Three-dimensional batteries and methods of manufacturing the same
CN110997988B (zh) 阀金属层转变为包括多个间隔(纳米)通道并在其中形成间隔结构的模板
WO2019210673A1 (zh) 一种有效抑制锂金属电池枝晶不可控生长的集流体、其制备方法及用途
US8865345B1 (en) Electrodes for three-dimensional lithium batteries and methods of manufacturing thereof
WO2019210596A1 (zh) 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途
CN107887572B (zh) 一种锂离子电池负极极片及其制备方法和锂离子二次电池
CN106848328B (zh) 一种负极集流体、电池负极、电池及其制备方法
US10014517B2 (en) Three dimensional batteries and methods of manufacturing the same
BR112013029242B1 (pt) Célula de bateria de lítio metálico
CN108847474A (zh) 一种预补锂的微织构化负极片及其制备方法
CN109478636A (zh) 制造锂电池的方法
CN108886150A (zh) 包含具有精细图案的锂金属层及其保护层的二次电池用负极、以及所述负极的制造方法
Yang et al. Structurally tailored hierarchical Cu current collector with selective inward growth of lithium for high‐performance lithium metal batteries
US9196897B2 (en) Secondary battery porous electrode
CN104701020B (zh) 基于su‑8光刻胶的三维微电极制备方法
WO2019210595A1 (zh) 一种有效抑制锂金属电池枝晶不可控生长的锂片、其制备方法及用途
US9972827B2 (en) Method for producing 3D-structured thin films
JP7319114B2 (ja) 薄膜型全固体電池、電子機器、および薄膜型全固体電池の製造方法
CN110034311B (zh) 一种双极板的制备方法以及双极板
JP4887684B2 (ja) 電極の製造方法
CN114050272A (zh) 石墨烯基底以及具有其的薄膜锂电池
CN109713311A (zh) 集流体及其制备方法、电池电极极片及制备方法和锂电池
CN109659146A (zh) 基于管状金属氧化物的三维微柱阵列活性电极及制备方法
KR102523639B1 (ko) 서브-마이크론 크기의 상호 연결된 기공 네트워크를 포함하는 촉매 필름을 갖는 다공성 전극, 이의 제조 방법 및 이를 포함하는 금속-공기 전지
Guo et al. A review of the preparation process and anode stabilization strategies of Zn microbatteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917169

Country of ref document: EP

Kind code of ref document: A1