WO2019210470A1 - 呼吸机和呼吸机的通气控制方法 - Google Patents

呼吸机和呼吸机的通气控制方法 Download PDF

Info

Publication number
WO2019210470A1
WO2019210470A1 PCT/CN2018/085390 CN2018085390W WO2019210470A1 WO 2019210470 A1 WO2019210470 A1 WO 2019210470A1 CN 2018085390 W CN2018085390 W CN 2018085390W WO 2019210470 A1 WO2019210470 A1 WO 2019210470A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
patient
expiratory
pressure change
triggering moment
Prior art date
Application number
PCT/CN2018/085390
Other languages
English (en)
French (fr)
Inventor
刘玲
刘京雷
杨毅
周小勇
潘纯
颜永生
谢剑锋
刘松桥
邱海波
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
东南大学附属中大医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 东南大学附属中大医院 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880006528.6A priority Critical patent/CN110753564B/zh
Priority to EP18917420.4A priority patent/EP3789067B1/en
Priority to PCT/CN2018/085390 priority patent/WO2019210470A1/zh
Publication of WO2019210470A1 publication Critical patent/WO2019210470A1/zh
Priority to US17/086,544 priority patent/US20210093816A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • A61M16/026Control means therefor including calculation means, e.g. using a processor specially adapted for predicting, e.g. for determining an information representative of a flow limitation during a ventilation cycle by using a root square technique or a regression analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • A61B5/7292Prospective gating, i.e. predicting the occurrence of a physiological event for use as a synchronisation signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0803Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0841Joints or connectors for sampling
    • A61M16/0858Pressure sampling ports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1042Alimentary tract
    • A61M2210/105Oesophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics

Definitions

  • the present disclosure generally relates to the field of medical device technology, and in particular to a ventilation control method for a ventilator and a ventilator.
  • ventilator as an effective means of artificially replacing autonomous ventilation function has been widely used in respiratory failure caused by various causes, anesthesia and respiratory management during major surgery, respiratory support treatment and first aid resuscitation. It occupies a very important position in the field of modern medicine. Among them, human-computer synchronization, which is one of the key performance indicators of ventilators, has received more attention.
  • Synchronization of the human machine means that the breathing cycle of the ventilator is synchronized with the breathing cycle of the patient.
  • the breathing cycle usually includes four stages, which are inhalation trigger, inhalation process, exhalation switching and exhalation process.
  • Whether the ventilator's breathing cycle is synchronized with the patient's breathing cycle is typically compared with whether the ventilator's inspiratory trigger is synchronized with the patient's inspiratory trigger and whether the ventilator's expiratory switch is synchronized with the patient's expiratory switch. If the human-machine is out of sync, the patient's breathing may be unstable, and the human-machine confrontation may be unfavorable to the patient's condition.
  • ventilators basically use externally measured airway pressure or airway flow rate to determine the patient's inspiratory trigger or expiratory switch. For example, when the inhalation trigger is judged, it is determined that the patient triggers inspiration when the airway pressure is lower than the PEEP-pressure trigger sensitivity, or the patient is triggered to inhale when the measured patient's airway flow rate is greater than the set flow rate trigger sensitivity.
  • the percentage of the inspiratory peak flow rate is generally used as the switching condition, for example, when the inspiratory flow rate is lower than 25% of the inspiratory peak flow rate, it is judged as exhalation switching.
  • the current method of judging the inspiratory trigger or expiratory switching has the following problems: First, since the patient's breathing effort is first reflected in the contraction of the respiratory muscles and then reflected in the airway, the existing measured airway pressure or airway velocity To determine the patient's inspiratory trigger or exhalation switch, so that the signal measured by the external sensor has a delay compared to the actual triggering effort of the patient, which requires the patient to do additional work to trigger inspiration or exhalation, or the patient's spontaneous breathing intensity cannot be triggered.
  • the threshold is used to generate an invalid trigger;
  • the system can cause the in vitro monitoring signal to be inaccurate due to leakage, resulting in false triggering or triggering delay of the ventilator.
  • water in the pipeline and vibration of the pipeline can cause false triggering or trigger delay of the ventilator.
  • the present disclosure has been made in view of the above circumstances, and the ventilation mode of the ventilator is controlled by a pressure change.
  • the present disclosure can reduce the delay, avoid invalid triggering, and can avoid the problem of false triggering or triggering delay caused by the piping system between the sensor in the ventilator and the patient's airway.
  • a first aspect of the present disclosure provides a ventilator, comprising: a venting device that provides a ventilating airflow to a patient; a first monitoring module that monitors a pressure and/or a flow rate at which the venting device vents a patient a second monitoring module that measures a change in pressure that reflects the patient's spontaneous breathing effort; and a processor that identifies the patient's inspiratory triggering moment or expiratory triggering moment based on the measured pressure change that reflects the patient's spontaneous breathing effort.
  • the venting device provides a ventilating airflow to the patient, the pressure and/or flow rate of the venting being monitored by the first monitoring module, the second monitoring module reflecting the pressure change of the patient's spontaneous breathing effort, the processor identifying the pressure change based on the pressure The patient's inspiratory triggering moment or expiratory triggering moment.
  • the processor identifies the inhalation triggering moment or the call according to one or more of a speed, a trend, and a magnitude of a pressure change of the spontaneous breathing effort Gas trigger moment. In this case, the patient's inspiratory triggering moment or expiratory triggering moment is accurately identified.
  • the pressure change includes a pressure change of one or more of a patient's esophageal pressure, intrapulmonary pressure, bulging pressure, intragastric pressure, or cannula end pressure.
  • the patient's inspiratory triggering moment or expiratory triggering moment can be identified based on pressure changes in one or more of esophageal pressure, intrapulmonary pressure, bulging pressure, intragastric pressure, or cannula end pressure.
  • the ventilation device after the inhalation trigger is recognized, the ventilation device is controlled to switch from the expiratory phase to the inspiratory phase, and after the exhalation trigger is recognized, the ventilation device is controlled to be sucked.
  • the gas phase is switched to the expiratory phase. In this case, it can help the patient exhale or inhale.
  • the inhalation trigger timing and the exhalation trigger timing are output.
  • the inhalation triggering time and the expiratory triggering time of the patient can be read.
  • the human-machine synchronization information is calculated. In this case, the man-machine synchronization of the ventilator can be judged.
  • the second monitoring module obtains a magnitude of the pressure change and a trend of the pressure change
  • the processor exhibits a downward trend in the pressure change and the
  • the magnitude of the pressure change is a difference between a pressure measured by the second monitoring module and an end-expiratory pressure.
  • the inhalation triggering time or the expiratory switching time of the patient can be identified based on the magnitude of the pressure change.
  • the first threshold and the second threshold are both fixed thresholds or variable thresholds.
  • the threshold can be set or adjusted based on the experience of the healthcare provider.
  • the ventilator can also automatically adjust the threshold based on historical data such as machine learning.
  • the second monitoring module obtains a speed of the pressure change
  • the processor identifies that the patient is inhaling when the speed of the pressure change decreases from near zero
  • the patient is identified as being at the expiratory switching time. In this case, the patient's inspiratory triggering time or expiratory switching time can be accurately identified.
  • the magnitude of the pressure change is a magnitude of change between the measured pressure and the predicted pressure, and the first threshold and the second threshold are both greater than zero.
  • the patient's inhalation triggering time or expiratory switching time can be identified based on the magnitude of the pressure change.
  • the predicted pressure is obtained by fitting prediction of the measured pressure.
  • the predicted pressure can be obtained.
  • the second monitoring module obtains a pressure waveform reflecting a patient's spontaneous breathing effort
  • the processor extracting an envelope from the pressure waveform and identifying the envelope according to the envelope
  • the patient's inspiratory triggering moment or expiratory triggering moment In this case, the inspiratory triggering time or the expiratory switching time of the patient can be accurately identified based on the envelope.
  • the inhalation triggering time or the expiratory triggering time of the patient according to the envelope is specifically: identifying the patient's inhalation according to the peaks and troughs of the envelope Trigger time and exhalation trigger time.
  • the inhalation triggering time and the expiratory triggering time of the patient can be identified based on the peaks and troughs of the envelope.
  • a second aspect of the present disclosure provides a ventilation control method for a ventilator, comprising: providing a ventilation airflow to a patient through a ventilation device; monitoring a pressure and/or a flow rate of ventilation provided to the patient by the ventilation device; measuring The pressure change of the patient's spontaneous breathing effort is reflected; and the patient's inspiratory triggering moment or expiratory triggering moment is identified based on the measured pressure change that reflects the patient's spontaneous breathing effort.
  • a ventilating airflow is provided to a patient through a venting device, the pressure and/or flow rate of the venting is monitored, a pressure change reflecting a patient's spontaneous breathing effort is measured, and a patient's inspiratory triggering time or call is identified based on the pressure change Gas trigger moment.
  • the inhalation trigger timing or the call is identified according to one or more of a speed, a trend, and a magnitude of a pressure change of the spontaneous breathing effort Gas trigger moment.
  • the patient's inspiratory triggering moment or expiratory triggering moment is accurately identified.
  • the pressure change includes one or more of a patient's esophageal pressure, intrapulmonary pressure, bulging pressure, intragastric pressure, or cannula end pressure.
  • the patient's inspiratory triggering moment or expiratory triggering moment can be identified based on changes in pressure of one or more of esophageal pressure, intrapulmonary pressure, bulging pressure, intragastric pressure, or cannula end pressure.
  • the ventilation device is controlled to switch from the expiratory phase to the inspiratory phase, and after the expiratory triggering moment is recognized, the control is performed.
  • the venting device is switched from the inspiratory phase to the expiratory phase. In this case, it can help the patient exhale or inhale.
  • the ventilation control method further includes: outputting the inhalation triggering time and the call Gas trigger moment.
  • the inspiratory triggering moment and the expiratory triggering moment of the patient can be identified.
  • the ventilation control method further includes: calculating the human-machine synchronization information. In this case, the man-machine synchronization of the ventilator can be judged.
  • the pressure change reflecting the patient's spontaneous breathing effort is the magnitude and trend of the pressure change; and the measured according to the measured patient's spontaneous breathing effort
  • the pressure change identifying the inhalation triggering moment or the expiratory triggering moment of the patient is specifically: when the pressure change is in a downward trend and the magnitude of the pressure change reaches a first threshold, identifying that the patient is in the inhalation triggering moment, When the pressure change is in an upward trend and the magnitude of the pressure change reaches a second threshold, the patient is identified as being at the expiratory switching time. In this case, the patient's inspiratory triggering time or expiratory switching time can be accurately identified.
  • the magnitude of the pressure change is a magnitude of change between the measured pressure and the end-expiratory pressure.
  • the inhalation triggering time or the expiratory switching time of the patient can be identified based on the magnitude of the pressure change.
  • the first threshold and the second threshold are both fixed thresholds or variable thresholds.
  • the threshold can be set or adjusted based on the experience of the healthcare provider.
  • the pressure change reflecting the patient's spontaneous breathing effort is the speed of the pressure change; the according to the measured reflection of the patient's spontaneous breathing effort
  • the pressure change identifies the inspiratory triggering moment or the expiratory triggering moment of the patient, specifically: when the speed of the pressure change decreases from near zero, the patient is identified as being in the inhalation triggering moment, and the speed of the pressure change is reduced to near zero.
  • the patient is identified as being at the moment of expiration switching. In this case, the patient's inspiratory triggering time or expiratory switching time can be accurately identified.
  • the magnitude of the pressure change is a magnitude of change between the measured pressure and the predicted pressure, and the first threshold and the second threshold are both greater than zero.
  • the inhalation triggering time or the expiratory switching time of the patient can be identified based on the magnitude of the pressure change.
  • the predicted pressure is obtained by fitting prediction of the measured pressure.
  • the predicted pressure can be obtained.
  • the measurement reflects a pressure change of the patient's spontaneous breathing effort, specifically: obtaining a pressure waveform reflecting the patient's spontaneous breathing effort, and extracting an envelope of the pressure waveform
  • the inhalation triggering moment or the expiratory triggering moment identifying the patient according to the measured pressure change reflecting the patient's spontaneous breathing effort is specifically: identifying the inhalation triggering moment or the expiratory triggering moment of the patient according to the envelope.
  • the inspiratory triggering time or the expiratory switching time of the patient can be accurately identified based on the envelope.
  • the inhalation triggering time or the expiratory triggering time of the patient according to the envelope is specifically: identifying a peak and a trough according to the envelope The patient's inspiratory triggering moment and expiratory triggering moment.
  • the inhalation triggering time and the expiratory triggering time of the patient can be identified based on the peaks and troughs of the envelope.
  • the breathing ventilation synchronization can be improved, the inhalation and exhalation trigger delay can be reduced, the invalid trigger can be avoided, and the false alarm or trigger delay caused by leakage, water accumulation and vibration of the breathing pipeline system can be avoided.
  • FIG. 1 is a schematic structural view of a ventilator according to the present disclosure.
  • FIG. 2 is a schematic flow chart of a ventilation control method of a ventilator according to the present disclosure.
  • FIG. 3 is a waveform diagram of the esophageal pressure according to the present disclosure.
  • FIG. 4 is a waveform diagram showing predicted pressure of esophageal pressure according to the present disclosure.
  • Fig. 5 is a schematic view showing a slope curve of the esophageal pressure referred to in Fig. 4;
  • Fig. 6 is a schematic view showing the waveform of the esophageal pressure according to the present disclosure.
  • FIG. 7 is a schematic flow chart of another method for controlling ventilation of a ventilator according to the present disclosure.
  • FIG. 8 is a schematic flow chart of a method for judging human-machine synchronization of a ventilator according to an embodiment of the present disclosure.
  • Fig. 9a is a waveform diagram of airway pressure according to the present disclosure.
  • Fig. 9b is a waveform diagram of the airway flow rate according to the present disclosure.
  • the present disclosure provides a ventilator 1.
  • 1 is a schematic structural view of a ventilator according to the present disclosure.
  • the ventilator 1 can include a venting device 10, a first monitoring module 20, a second monitoring module 30, and a processor 40.
  • the venting device 10 can provide a venting airflow to the patient. That is, the venting device 10 assists the patient in breathing by venting the patient.
  • the venting device 10 can have an inspiratory phase that provides inhaled gas to the patient and an expiratory phase that assists the patient in exhaling. That is, the venting device 10 can help the patient inhale or help the patient to exhale.
  • the inspiratory gas provided by the venting device 10 to the patient may be oxygen or a mixture of air and oxygen.
  • the suction gas may also be a helium-oxygen mixed gas.
  • the inhaled gas may be, for example, a compressed gas supplied by a central gas supply system of a hospital, or may be derived from a gas in the environment.
  • the venting device 10 can also include a flow regulating device.
  • the flow regulating device can control the pressure and/or flow rate of the venting airflow.
  • the ventilator 1 may also include a first monitoring module 20 .
  • the first monitoring module 20 can monitor the pressure and/or flow rate at which the venting device 10 vents the patient.
  • the first monitoring module 20 can measure at least one of a patient's airway pressure or airway flow rate.
  • the first monitoring module 20 can include at least one of a pressure sensor and a flow sensor.
  • the pressure sensor in the first monitoring module 20 can monitor the pressure at which the ventilator 10 vents the patient or the patient's airway pressure, and the flow sensor can monitor the flow rate or airway flow rate at which the ventilator 10 vents the patient.
  • the ventilator 1 can also include a second monitoring module 30.
  • the second monitoring module 30 can measure pressure changes that reflect the patient's spontaneous breathing effort.
  • the processor 40 can identify the inspiratory triggering moment or the expiratory triggering moment of the patient based on the measured pressure changes that reflect the patient's spontaneous breathing effort.
  • the pressure change can include a change in pressure of one or more of the patient's esophageal pressure, thoracic pressure, intrapulmonary pressure, bulge pressure, intragastric pressure, or cannula end pressure.
  • the second monitoring module 30 can select to measure at least one of the patient's esophageal pressure, thoracic pressure, intrapulmonary pressure, bulge pressure, intragastric pressure, or cannula end pressure.
  • the second monitoring module 30 can include a pressure sampling tube.
  • the pressure sampling tube may be at least one of an esophageal pressure sampling tube, a thoracic pressure sampling tube, and a bulging pressure sampling tube.
  • the esophageal pressure can be obtained by inserting the esophageal pressure sampling tube into the patient's esophagus.
  • Pleural pressure can be obtained by inserting a chest pressure sampling tube into the patient's pleural cavity.
  • the bulge pressure can be obtained by inserting the bulge pressure sampling tube into the patient's bulge.
  • the processor 40 is capable of identifying a patient's inspiratory triggering moment or expiratory triggering moment based on pressure changes in one or more of esophageal pressure, thoracic pressure, intrapulmonary pressure, bulging pressure, intragastric pressure, or cannula end pressure.
  • processor 40 may identify an inspiratory triggering moment or an expiratory triggering moment based on one or more of a speed, a trend, an amplitude of a pressure change of the spontaneous breathing effort. In this case, the patient's inspiratory triggering moment or expiratory triggering moment is accurately identified.
  • the speed of the pressure change can refer to the speed of the increase or decrease of the pressure change value.
  • the trend of pressure change can refer to the trend of pressure change.
  • the magnitude of the pressure change can be the magnitude of the pressure change value.
  • the pressure change value can sometimes also be referred to as the difference in pressure.
  • processor 40 may obtain a magnitude of pressure change and a trend in pressure change.
  • the magnitude of the pressure change can be the difference between the pressure measured by the second monitoring module 30 and the end-expiratory pressure.
  • the end-expiratory pressure used to calculate the magnitude of the pressure change may be the end-expiratory pressure of the previous respiratory cycle, or the mean value of the end-expiratory pressure of the pre-set breathing cycle, or may be set by the medical staff based on experience and stored in Experience value in the ventilator.
  • the rate of pressure change may refer to the slope of the pressure measured by the second monitoring module 30, and may also be referred to as a pressure gradient value.
  • the pressure measured by the second monitoring module 30 can be a discrete signal.
  • the processor 40 can perform a differential operation on the pressure obtained by the second monitoring module 30 to obtain the speed of the pressure change.
  • the speed of the pressure change can also be obtained by straight-line fitting the short-time pressure obtained by the second monitoring module 30 in the preset time to calculate the slope thereof, and the preset time period can be 200 ms to 600 ms.
  • processor 40 may obtain a magnitude of pressure change and a trend in pressure change.
  • the magnitude of the pressure change may be the magnitude of the change between the measured pressure and the predicted pressure measured by the second monitoring module 30. That is, the difference between the measured pressure and the predicted pressure.
  • the predicted pressure can be predicted by fitting the measured pressure to obtain a predicted pressure.
  • the fit prediction is a process of building a model to approximate an actual data sequence based on no less than two sample points.
  • the processor 40 identifies that the patient is at the inhalation triggering time and is measured by the second monitoring module 30.
  • the pressure change is on the upward trend and the magnitude of the pressure change reaches the second threshold, the patient is identified as being at the expiratory switching time.
  • the amplitude and trend based on the pressure change can accurately identify the patient's inspiratory triggering time or expiratory switching time.
  • the first threshold and the second threshold are both fixed thresholds or variable thresholds.
  • the threshold can be set or adjusted based on the experience of the healthcare provider.
  • the fixed threshold is an unchangeable threshold set internally by the ventilator.
  • the variable threshold is a threshold that can be artificially changed by the ventilator settings.
  • the first threshold and the second threshold may be set or adjusted according to the experience of the medical staff.
  • the first threshold and the second threshold may also be learned by the machine through historical data.
  • the processor 40 identifies that the patient is at the inspiratory triggering moment, and when the measured velocity change velocity decreases to near zero, Identify the patient at the moment of expiration switching. That is, when the pressure gradient value crosses zero and gradually decreases, the patient is identified as being in the inhalation triggering moment, and when the pressure gradient value is decreased to zero, the patient is identified as being in the expiratory switching moment. In this case, the patient's inspiratory triggering time or expiratory switching time can be accurately identified.
  • the processor 40 identifies the inspiratory triggering moment and the expiratory switching moment based on the magnitude of the pressure change and the trend of the pressure change obtained by the second monitoring module 30. Specifically, when the pressure change measured by the second monitoring module 30 is in a downward trend and the magnitude of the pressure change reaches the first threshold, the processor 40 identifies that the patient is in the inhalation triggering moment, and the measured pressure changes in an upward trend and pressure. When the magnitude of the change reaches the second threshold, the patient is identified as being at the moment of expiration switching. In this case, the amplitude and trend based on the pressure change can accurately identify the patient's inspiratory triggering time or expiratory switching time.
  • processor 40 extracts an envelope of the pressure waveform measured by second monitoring module 30 and identifies the patient's inspiratory triggering moment or expiratory triggering moment based on the envelope. In this case, the inspiratory triggering time or the expiratory switching time of the patient can be accurately identified based on the envelope.
  • the pressure waveform may include an interference signal such as a heartbeat that causes a pressure fluctuation.
  • the processor 40 can filter the pressure waveform to filter out interference signals such as heartbeats.
  • identifying the inspiratory triggering moment or the expiratory triggering moment of the patient according to the envelope is specifically: identifying the inhalation triggering moment and the expiratory triggering moment of the patient according to the peaks and troughs of the envelope.
  • the inhalation triggering time and the expiratory triggering time of the patient can be identified based on the peaks and troughs of the envelope.
  • processor 40 identifies the patient's inspiratory triggering moment when the pressure waveform is at a peak, and processor 40 identifies the patient's expiratory switching moment when the pressure waveform is in a trough.
  • the inspiratory triggering moment does not necessarily correspond to the peak of the pressure waveform. It can be considered that the inspiratory triggering moment is when the pressure waveform rises or falls to the first set ratio of the peak, or the peak corresponding time can be considered as delayed.
  • the first set time is the inspiratory trigger time.
  • the exhalation switching time does not necessarily correspond to the peak of the pressure waveform, and it may be considered that the pressure waveform is decreased or the second set ratio of the rising trough is the exhalation switching time, or the trough corresponding time may be considered to be delayed by the second setting.
  • the fixed time is the inhalation trigger time.
  • the processor 40 may also control the ventilation device 10 to switch from the expiratory phase to the inspiratory phase, or control the ventilation device 10 to inhale after the expiratory triggering moment is recognized.
  • the phase switches to the expiratory phase. In this case, it can help the patient exhale or inhale.
  • processor 40 may calculate the human-machine synchronization information.
  • the man-machine synchronization of the ventilator can be judged. The judging method of man-machine synchronization is described in detail later.
  • ventilator 1 may also include a display module (not shown). After identifying the inhalation triggering moment and the expiratory triggering moment, the processor 40 outputs the inhalation triggering moment and the expiratory triggering moment, and displays the inhalation triggering moment and the expiratory triggering moment in the display module. In this case, the inhalation triggering time and the expiratory triggering time of the patient can be read.
  • the venting device 10 provides a ventilating airflow to the patient
  • the pressure and/or flow rate of the ventilating is monitored by the first monitoring module 20
  • the second monitoring module 30 reflects the pressure change of the patient's spontaneous breathing effort
  • the processor 40 can vary according to pressure
  • the patient's inspiratory triggering moment or expiratory triggering moment is identified.
  • ventilator 1 may also measure airway pressure and/or airway flow rate.
  • the processor 40 recognizes that the patient is at the inhalation triggering moment, and when the airway pressure is in an upward trend and/or the airway velocity is in a downward trend, the processor 40 recognizes The patient is at the moment of expiration switching.
  • processor 40 can control the gas pressure and/or flow rate of the inspiratory and expiratory gases based on airway pressure and/or airway flow rate targets.
  • the airway pressure and/or airway flow rate target may be a preset pressure or flow rate value.
  • the ventilator 1 can also measure airway pressure and/or airway flow rate simultaneously. And changes in stress that reflect the patient's spontaneous breathing efforts. Based on the above-described discrimination of the airway pressure and/or the airway flow rate and the above-described discrimination reflecting the pressure change of the patient's spontaneous breathing effort, the patient's inhalation triggering time or expiratory triggering time is identified to make the ventilation switching of the ventilator 1 more accurate.
  • the ventilatory control method of the existing ventilator is usually to measure the ventilation pressure of the ventilator by measuring the airway pressure or airway flow rate of the patient.
  • the present disclosure relates to a ventilatory control method for a ventilator that primarily detects pressure changes that reflect a patient's spontaneous breathing effort, and identifies a patient's inspiratory triggering moment or expiratory triggering moment based on the measured pressure changes that reflect the patient's spontaneous breathing effort.
  • the measured pressure sampling position reflecting the patient's spontaneous breathing effort is in the patient's body and can avoid the effects of the pipeline leakage problem.
  • the present disclosure provides a ventilation control method for a ventilator.
  • 2 is a schematic flow chart of a ventilation control method of a ventilator according to the present disclosure.
  • the ventilation control method of the ventilator includes providing a ventilation airflow to the patient through the ventilation device (step S100); monitoring the pressure and/or flow rate of the ventilation provided by the ventilation device to the patient (step S200); The pressure change reflecting the patient's spontaneous breathing effort is measured (step S300); and the patient's inhalation triggering time or expiratory triggering time is identified based on the measured pressure change reflecting the patient's spontaneous breathing effort (step S400).
  • step S100 ventilation is provided to the patient by the ventilation device.
  • the venting device 10 can have an inspiratory phase that provides inhaled gas to the patient and an expiratory phase that assists the patient in exhaling.
  • the venting device 10 can be referred to the description in the ventilator 1 described above.
  • the gas provided by the inspiratory phase may be oxygen or a mixture of air and oxygen.
  • the suction gas may also be a helium-oxygen mixed gas.
  • the inhaled gas may be, for example, a compressed gas supplied by a central gas supply system of a hospital, or may be derived from a gas in the environment.
  • the ventilation control method of the ventilator can include monitoring the pressure and/or flow rate of ventilation provided to the patient by the ventilation device (step S200).
  • step S200 may also measure at least one of a patient's airway pressure or airway flow rate.
  • step S200 the pressure of ventilation or the airway pressure of the patient can be measured by a pressure sensor.
  • the flow rate of ventilation provided or the patient airway flow rate can be measured by a flow sensor.
  • the ventilation control method of the ventilator may further include measuring a pressure change reflecting the patient's spontaneous breathing effort (step S300).
  • the pressure change may include a change in pressure of one or more of the patient's esophageal pressure, thoracic pressure, intrapulmonary pressure, bulge pressure, intragastric pressure, or cannula end pressure.
  • the above several pressure changes can represent changes in the pressure at the muscles of the patient during their own breathing efforts.
  • the inhalation command (or exhalation command) due to human breathing is usually performed by the muscles first and then reflected to the airway.
  • the muscles to the airway take the longest time, therefore, compared to the measurement of airway pressure or airway flow rate, measuring the above pressure changes can save the longest period of time in the above-mentioned passages, can be a certain degree Solve the delay problem caused by measuring airway pressure or airway flow rate.
  • step S300 can measure a change in pressure that reflects the patient's spontaneous breathing effort through a pressure sampling tube.
  • the pressure sampling tube may be at least one of an esophageal pressure sampling tube, a thoracic pressure sampling tube, and a bulging pressure sampling tube.
  • a pressure sensor can be included in the pressure sampling tube.
  • the pressure sensor can be used to obtain pressure that reflects the patient's spontaneous breathing effort.
  • one or more of the speed, trend, and magnitude of the pressure change of the spontaneous breathing effort in step S300 are selected from the speed, trend, and magnitude of the pressure change of the spontaneous breathing effort in step S300.
  • step S300 may obtain a magnitude of the pressure change and a trend of the pressure change.
  • the magnitude of the pressure change can be the difference between the measured pressure and the end-tidal pressure.
  • the measured pressure is the end-expiratory pressure.
  • the end-expiratory pressure can be the last end-expiratory pressure, or the mean end-tidal pressure of the previous preset breathing cycle.
  • the last end-expiratory pressure refers to the end-expiratory pressure of the previous cycle of the measured pressure.
  • the magnitude and trend of changes in esophageal pressure can be obtained, reflecting the patient's spontaneous breathing effort. Specifically, when the patient inhales spontaneously, the volume of the thoracic cavity increases due to contraction of the respiratory muscles, and the pleural pressure (esophageal pressure) is reduced. When the patient is in the inspiratory end, the patient's spontaneous inhalation approaches the end, the respiratory muscles gradually relax, and the patient's chest pressure (esophageal pressure) gradually increases.
  • 3 is a waveform diagram of the esophageal pressure according to the present disclosure. Figure 3 can reflect the trend of esophageal pressure changes.
  • the magnitude of the change in esophageal pressure can be the difference between the measured esophageal pressure and the end-tidal esophageal pressure.
  • step S300 may obtain a magnitude of the pressure change and a trend of the pressure change.
  • the magnitude of the pressure change can be the magnitude of the change between the measured pressure and the predicted pressure. That is, the difference between the measured pressure and the predicted pressure.
  • the predicted pressure can be obtained by fitting prediction of the measured pressure. Fitting prediction is based on the process of building a model with no less than two sampling points to approximate the actual data sequence.
  • the magnitude and trend of changes in esophageal pressure can be obtained.
  • 4 is a waveform diagram showing predicted pressure of esophageal pressure according to the present disclosure.
  • Figure 4 can reflect the relationship between the measured pressure and the predicted pressure, as well as the trend of the measured pressure.
  • waveform A is the measured esophageal pressure
  • waveform B is the predicted esophageal pressure.
  • step S300 can obtain the speed of the pressure change.
  • the rate of pressure change can be the slope of the measured pressure, sometimes referred to as the pressure gradient value.
  • the measured pressure can be a discrete signal.
  • the speed of the pressure change can be obtained by differentially calculating the obtained pressure.
  • the speed of the pressure change can also be obtained by straight-line fitting the short-time pressure within the preset time to calculate the slope thereof, and the preset time period can be 200ms to 600ms.
  • the rate of change in esophageal pressure can be obtained, i.e., the esophageal pressure gradient value can be obtained.
  • Fig. 5 is a schematic view showing a slope curve of the esophageal pressure referred to in Fig. 4; Figure 5 can reflect the rate of change in esophageal pressure.
  • step S300 after step S300 obtains a pressure waveform reflecting the patient's spontaneous breathing effort, the envelope may be further extracted from the pressure waveform.
  • a short time rms calculation is performed on the pressure waveform to obtain an envelope of the pressure waveform.
  • an esophageal pressure waveform can be obtained.
  • Fig. 6 is a schematic view showing the waveform of the esophageal pressure according to the present disclosure.
  • Curve A in Fig. 6 is an esophageal pressure waveform. Since the collection position of the esophageal pressure is close to the heart of the patient, there are many interference signals in the curve A due to the disturbance of the heartbeat vibration.
  • the ventilation control method of the ventilator may further include identifying an inspiratory triggering moment or an expiratory triggering moment of the patient based on the measured pressure change reflecting the patient's spontaneous breathing effort (step S400).
  • the measured pressure change may include a change in pressure of one or more of the patient's esophageal pressure, thoracic pressure, intrapulmonary pressure, bulge pressure, intragastric pressure, or cannula end pressure.
  • the inspiratory triggering moment or the expiratory triggering moment of the patient can be identified based on the pressure change of one or more of esophageal pressure, thoracic pressure, intrapulmonary pressure, bulging pressure, intragastric pressure or cannula end pressure.
  • step S400 can identify an inspiratory triggering moment or an expiratory triggering moment based on one or more of a speed, a trend, an amplitude of a pressure change of the spontaneous breathing effort. In this case, the patient's inspiratory triggering moment or expiratory triggering moment is accurately identified.
  • step S400 when the pressure change reflecting the patient's spontaneous breathing effort is the magnitude and trend of the pressure change, the specific method of step S400 is: when the pressure change shows a downward trend and the magnitude of the pressure change reaches the first threshold, the patient is identified At the time of inhalation triggering, when the pressure change is rising and the magnitude of the pressure change reaches the second threshold, the patient is identified as being at the expiratory switching time. In this case, the patient's inspiratory triggering time or expiratory switching time can be accurately identified.
  • the magnitude of the pressure change is the magnitude of change between the measured pressure and the end-expiratory pressure.
  • step S400 identifies the inspiratory triggering moment or the expiratory switching moment of the patient based on the magnitude of the change in the measured pressure and the end-tidal pressure, in conjunction with the trend of the measured pressure.
  • step S400 can obtain a first difference between the measured pressure and the end-expiratory pressure value.
  • the magnitude of the first difference can reflect the magnitude of the measured pressure change. Therefore, in step S400, when the measured pressure change shows a downward trend and the first difference reaches the first threshold, the patient is identified as being in the inhalation triggering time, and when the measured pressure change is increasing and the first difference reaches the second threshold , identifying the patient at the moment of expiration switching.
  • the first threshold and the second threshold are both fixed thresholds or variable thresholds.
  • the threshold can be set or adjusted based on the experience of the healthcare provider.
  • the fixed threshold is an unalterable threshold set inside the ventilator.
  • the variable threshold is a threshold that can be artificially changed by the ventilator settings.
  • the first threshold and the second threshold may be set or adjusted according to the experience of the medical staff.
  • the first threshold and the second threshold may also be learned by the machine through historical data.
  • the measured pressure can be esophageal pressure. That is, the magnitude and trend of changes in esophageal pressure can be obtained. As shown in FIG. 3, for example, the intersection of the straight line L1 and the esophageal pressure waveform diagram satisfies the condition that the first difference reaches the first threshold, and the intersection of the straight line L2 and the esophageal pressure waveform map satisfies the first difference reaching the second threshold. condition.
  • the patient when the esophageal pressure is decreasing and the esophageal pressure is reduced to the intersection of the line L1 and the esophageal pressure waveform, the patient is at the inspiratory triggering moment.
  • the a1, a2, and a3 in the figure respectively represent the inspiratory triggering timings at different periods.
  • the inhalation trigger timing is not limited to a1, a2, and a3 in FIG.
  • the use of am can represent the inspiratory triggering moment of the ventilator under different breathing cycles. Where m can take 1, 2, 3, 4, 5, 6, and so on.
  • the esophageal pressure is on an upward trend and when the esophageal pressure increases to the intersection of the line L2 and the esophageal pressure waveform, the patient is at an expiratory switching time.
  • the b1, b2, and b3 in the figure respectively represent the exhalation switching timings in different periods. Similar to am, bm can represent the expiratory triggering moment of the ventilator under different breathing cycles, where m can take 1, 2, 3, 4, 5, 6, and so on.
  • the magnitude of the pressure change is the magnitude of the change between the measured pressure and the predicted pressure
  • the magnitude of the change between the measured pressure and the predicted pressure is the difference between the predicted pressure and the measured pressure.
  • the first threshold and the second threshold are both greater than zero.
  • the first threshold and the second threshold may be different from the first threshold and the second threshold value in the first embodiment.
  • the first threshold and the second threshold are both greater than zero, which may be understood as the measured pressure being less than the predicted pressure.
  • the difference between the predicted pressure and the measured pressure satisfies the first threshold or the second threshold, the difference between the predicted pressure and the measured pressure is greater than zero, that is, the predicted pressure is greater than the measured pressure.
  • step S400 can obtain a second difference between the predicted pressure and the measured pressure.
  • the magnitude of the second difference can reflect the magnitude of the change between the measured pressure and the predicted pressure at the same time. Therefore, in step S400, when the measured pressure change is in a downward trend and the second difference reaches the first threshold, the patient is identified as the inhalation triggering moment, and when the measured pressure change is in an upward trend and the second difference reaches the second threshold, Identify the patient at the moment of expiration switching.
  • the measured pressure when the measured pressure is in a downward trend, the measured pressure is less than the predicted pressure, and the second difference reaches the first threshold, the patient is identified as being in the inspiratory triggering moment.
  • the measured pressure shape is in an upward trend, the predicted pressure is greater than the measured pressure, and the second difference reaches the second threshold, the patient is identified as being at the expiratory switching time.
  • the relationship between the threshold and zero is not limited for the first threshold and the second threshold.
  • the first threshold and the second threshold are both fixed thresholds and variable thresholds. Of course, the first threshold and the second threshold may also be learned by the machine through historical data.
  • the measured pressure can be esophageal pressure. That is, the measured pressure and the predicted pressure of the esophageal pressure can be obtained, and the magnitude and tendency of the changes in the esophageal pressure are obtained.
  • waveform B is the measured pressure of the esophageal pressure
  • waveform B is the predicted pressure of the esophageal pressure.
  • the identification is The patient is at the inspiratory trigger moment.
  • the measured pressure of the esophageal pressure is increasing, the predicted pressure is greater than the measured pressure of the esophageal pressure, and the second difference reaches the second threshold, the patient is identified as being at the expiratory switching time.
  • the above is two embodiments of the step S400 based on the magnitude and trend of the pressure change.
  • the specific method of step S400 is: when the speed of the pressure change decreases from near zero, the patient is identified as being in the inhalation triggering moment, and the pressure is changing. When the speed is reduced to near zero, the patient is identified as being at the moment of expiration switching.
  • the speed of the pressure change can also be referred to as the pressure gradient value. Therefore, when the pressure gradient value crosses zero and gradually decreases, the patient is identified as being in the inhalation triggering moment. When the pressure gradient value is reduced to zero, the patient is identified as the expiratory switching moment. . In this case, the patient's inspiratory triggering time or expiratory switching time can be accurately identified.
  • the rate of pressure change may refer to the slope of the measured pressure.
  • the measured pressure can be a discrete signal.
  • the speed of the pressure change can be obtained by differentially calculating the obtained pressure.
  • the measured pressure may be a continuous pressure signal and the continuous pressure signal is derived to obtain the slope of the continuous pressure signal.
  • the slope of the continuous pressure signal is equivalent to the speed of the pressure change.
  • the measured pressure can be esophageal pressure. That is, the speed at which the esophageal pressure changes can be obtained. As shown in Fig. 5, Fig. 5 shows a graph of the velocity of the esophageal pressure change (also referred to as the esophageal pressure gradient value).
  • step S23 by comparing the relationship between the speed of the esophageal pressure change and the zero point, and the change trend of the speed of the esophageal pressure change, that is, comparing the relationship between the esophageal pressure gradient value and the zero point, and the change trend of the esophageal pressure gradient value, Accurately identify the patient's inspiratory trigger time or expiratory switch time.
  • the vertical axis of Figure 5 represents the slope of the esophageal pressure, that is, the vertical axis represents the rate of change in esophageal pressure.
  • the esophageal pressure gradient value decreases from near zero
  • the patient is identified as being at the inspiratory triggering moment.
  • the esophageal pressure gradient value decreases to near zero
  • the patient is identified as being at the time of expiratory switching.
  • the am can represent the inspiratory triggering moment of the ventilator under different breathing cycles. Where m can take 1, 2, 3, 4, 5, 6, and so on.
  • the bm can represent the expiratory triggering moment of the ventilator under different breathing cycles, wherein m can take 1, 2, 3, 4, 5, 6, and the like.
  • the specific method of step S400 is to identify the patient's inspiratory triggering moment or expiratory triggering moment according to the envelope. In this case, the inspiratory triggering time or the expiratory switching time of the patient can be accurately identified based on the envelope.
  • the specific method of identifying the inspiratory triggering moment or the expiratory triggering moment of the patient according to the envelope is: identifying the inhalation triggering moment and the expiratory triggering moment of the patient according to the peaks and troughs of the envelope.
  • the inhalation triggering time and the expiratory triggering time of the patient can be identified based on the peaks and troughs of the envelope.
  • the patient's inspiratory triggering instant is identified when the pressure waveform is at a peak
  • the patient's expiratory switching moment is identified when the pressure waveform is in a trough.
  • the inspiratory triggering moment does not necessarily correspond to the peak of the pressure waveform. It can be considered that the inspiratory triggering moment is when the pressure waveform rises or falls to the first set ratio of the peak, or the peak corresponding time can be considered as delayed.
  • the first set time is the inspiratory trigger time.
  • the exhalation switching time does not necessarily correspond to the peak of the pressure waveform, and it may be considered that the pressure waveform is decreased or the second set ratio of the rising trough is the exhalation switching time, or the trough corresponding time may be considered to be delayed by the second setting.
  • the fixed time is the inhalation trigger time.
  • the pressure waveform may include an interfering signal such as a heartbeat signal.
  • the pressure waveform can be filtered to filter out interference signals such as heartbeat signals.
  • the heartbeat signal frequency in the interference signal is higher than the respiratory frequency
  • the heartbeat signal is a high frequency interference signal for the esophageal pressure, in which case the initial waveform can be low-pass filtered to remove High-frequency interference signals such as heartbeat signals in the initial waveform.
  • the pressure waveform can be an initial waveform of the esophageal pressure.
  • waveform A is the initial waveform of the esophageal pressure
  • waveform B is the esophageal pressure target waveform.
  • the target waveform is obtained by the envelope extraction of the initial waveform.
  • the patient when the target waveform of the esophageal pressure (waveform B) is at the peak, the patient is identified as being in the inspiratory triggering moment, and when the target waveform is in the trough, the patient is identified as being in the expiratory triggering moment.
  • a venting device is provided to provide a ventilating airflow to a patient, monitor the pressure and/or flow rate of the ventilator, measure a change in pressure that reflects the patient's spontaneous breathing effort, and identify a patient's inspiratory triggering moment or expiratory triggering moment based on the pressure change.
  • FIG. 7 is a schematic flow chart of another method for controlling ventilation of a ventilator according to the present disclosure.
  • the ventilating control method of the ventilator may further include: after the inhalation triggering time is recognized, the control ventilating device is switched from the expiratory phase to the inspiratory phase, and after the expiratory triggering moment is recognized, the control is performed.
  • the ventilator is switched from the inspiratory phase to the expiratory phase (step S500). In this case, it can help the patient exhale or inhale.
  • the ventilation control method of the ventilator may further include outputting the inhalation triggering moment and the expiratory triggering moment.
  • the inspiratory triggering moment and the expiratory triggering moment of the patient can be identified.
  • the ventilation control method of the ventilator may further include calculating the human-machine synchronization information. In this case, the man-machine synchronization of the ventilator can be judged.
  • FIG. 8 is a schematic flow chart of a method for judging human-machine synchronization of a ventilator according to an embodiment of the present disclosure.
  • the method of judging human-machine synchronization of the ventilator includes acquiring a plurality of inhalation triggering times and a plurality of expiratory switching timings (step S601).
  • step S601 the ventilator acquires a corresponding time when the switching is performed by performing the above-described ventilation control method.
  • These moments include the inspiratory triggering moment (see a1 of Fig. 3) and the expiratory switching moment (see b1 of Fig. 3).
  • FIG. 3 illustrates a limited number, but the intake trigger timing am and the exhalation switching timing bm of the present disclosure are not limited to the number shown in FIG.
  • the method for judging the human-machine synchronization of the ventilator may further include calculating a difference between the adjacent inhalation triggering moment and the expiratory switching timing, acquiring the patient inhaling time, and calling the patient to exhale.
  • step S602 since the inhalation triggering time and the expiratory switching time in step S601 alternately occur, and the patient is in the inhalation phase or the breathing phase between the inhalation triggering time and the expiratory switching time, the adjacent ones are calculated.
  • the difference between the inspiratory triggering moment and the expiratory switching timing can obtain the patient inhalation time and the patient exhalation time.
  • step S602 the inhalation triggering time and the expiratory switching time for calculating the difference are compared. If the inhalation triggering time is earlier than the expiratory switching time, the representative patient enters the inhalation phase at the inhalation triggering moment and exhales. Inhale at the end of the switching time. Therefore, the difference is obtained for the patient's inhalation time. If the exhalation switching time is earlier than the inhalation triggering time, the representative patient enters the exhalation phase at the exhalation switching timing, and ends the inhalation at the inhalation triggering moment. Therefore, the difference is the patient's exhalation time.
  • the method of judging the human-machine synchronization of the ventilator may further include calculating a mechanical inhalation time and a mechanical exhalation time of the ventilator (step S603).
  • step S603 when the mechanical inhalation and mechanical exhalation of the ventilator are performed, the air pressure or the gas flow rate in the ventilation device 10 is different, and the mechanical inhalation time and the mechanical exhalation time of the ventilation machine are recorded according to the change of the air pressure or the gas flow rate. .
  • the method for judging the human-machine synchronization of the ventilator may further include calculating an inhalation time difference between the patient inhalation time and the mechanical inspiratory time, and exhaling the patient's exhalation time and mechanical exhalation time. Time difference (step S604).
  • the method for judging the human-machine synchronization of the ventilator may further include: if the inhalation time difference and the expiratory time difference are both less than or equal to the third threshold, the ventilator is synchronized, if the inhalation time difference is If the exhalation time difference is greater than the third threshold, the ventilator man and machine are not synchronized (step S605).
  • the third threshold may be a threshold set by a medical professional according to experience. Usually the time of the third threshold represents the maximum tolerable error time of the patient without human-machine confrontation. If the inspiratory time difference and the expiratory time difference are both less than or equal to the third threshold, the ventilator and the patient's breathing cycle are substantially synchronized, that is, the ventilator is synchronized. If at least one of the inspiratory time difference and the expiratory time difference is greater than the third threshold, the ventilator man and machine are not synchronized.
  • the ventilator inspiratory start time and the expiratory start time are recorded.
  • the advance time or delay time of the ventilator relative to the patient entering the inspiratory phase is obtained by comparing the patient's inspiratory triggering moment with the inspiratory insufficiency of the ventilator. It is also possible to compare the patient's expiratory switching time and the expiratory starting time to obtain an advance time or delay time of the ventilator relative to the patient entering the expiratory phase.
  • the synchronization information obtained by the above-described judging method of human-machine synchronization may be a time difference between the inhalation triggering time (or exhalation departure time) of the patient and the inhalation triggering time (or exhalation departure time) of the ventilator. .
  • the synchronization information obtained by the above-described judging method of human-machine synchronization may also be a time difference between the inhalation time (or exhalation time) of the patient and the mechanical inhalation time (mechanical exhalation time) of the ventilator.
  • the present embodiment is not limited thereto, and the synchronization information obtained by the above-described judging method of human-machine synchronization may be a ratio of a time difference to a breathing cycle or the like.
  • the breathing cycle can also be replaced by an inspiratory cycle or an expiratory cycle.
  • the pressure change can also be used to confirm the position of the sampling tube that measures the pressure.
  • the pressure waveform obtained by the second monitoring module 30 is observed on the display module. Since the waveform can reflect the respiratory rhythm of the patient, if the observed respiratory rhythm is unstable, the position of the sampling tube is incorrectly placed or the patient cannot breathe normally. In this case, the alarm device will work to alert the health care provider.
  • the respiratory rhythm instability can be embodied in a variety of ways, for example, the wave peaks and valley values of the waveform are irregular, the frequency of the waveform is unstable, and the difference between the peak value and the valley value is less than a predetermined threshold.
  • the preset threshold may be the difference between the peak value and the trough value of the measured pressure waveform when the patient is breathing normally.
  • Fig. 9a is a waveform diagram of airway pressure according to the present disclosure.
  • Fig. 9b is a waveform diagram of the airway flow rate according to the present disclosure.
  • the ventilatory control method of the ventilator can also include measuring airway pressure and/or airway flow rate. As shown in Figure 9a or Figure 9b, when the airway pressure is decreasing and/or the airway velocity is increasing, the patient is identified as inspiratory triggering moment, when the airway pressure is increasing and/or the airway velocity is decreasing. At the time of the trend, the patient is identified as being at the moment of expiration switching.
  • the ventilator's ventilation control method may also control the air pressure and/or flow rate of the inspiratory and expiratory gases.
  • the airway pressure and/or airway flow rate target may be a preset pressure or flow rate value.
  • the ventilator's ventilation control method may also simultaneously measure airway pressure and/or airway flow rate and pressure changes that reflect the patient's spontaneous breathing effort. Based on the above-described discrimination of the airway pressure and/or the airway flow rate and the above-described discrimination reflecting the pressure change of the patient's spontaneous breathing effort, the patient's inhalation triggering time or expiratory triggering time is identified to make the ventilation switching of the ventilator 1 more accurate.
  • the above-described ventilation control method according to the change in esophageal pressure may represent a ventilation control method based on pressure change.
  • the waveforms of the pleural pressure and the esophageal pressure are substantially the same, and thus, the ventilatory control method based on the chest pressure can be analogized to the ventilatory control method based on the esophageal pressure.
  • the bulge pressure waveform and the esophageal pressure are different, in terms of method, the ventilatory control method based on the bulge pressure is similar to the ventilatory control method based on the esophageal pressure.
  • the ventilatory control method based on the bulge pressure can be analogized to the ventilatory control method based on the esophageal pressure.
  • the airway pressure-based ventilation control method in each of the following embodiments may be used as the ventilation control method based on the measured pressure.
  • intrapulmonary pressure, intragastric pressure, or end cannula pressure can also be compared to ventilatory control methods based on esophageal pressure.
  • the numerical parameters set forth in the written description and the appended claims are approximations, which may vary depending upon the desired properties that the particular embodiments are intended to achieve. In some embodiments, the numerical parameters should be interpreted in accordance with the number of significant digits reported and by applying ordinary rounding techniques. Although a wide range of numerical ranges and parameters that set forth some embodiments of the present disclosure are approximations, the values set forth in the specific examples are reported as accurately as possible. Numerical values presented in some embodiments of the present disclosure may include certain errors necessarily resulting from standard deviations found in their respective test measurements. Aspects of the subject matter described herein can be used alone or in combination with any one or more of the other aspects described in this disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼吸机(1),包括:通气装置(10),用于向患者提供通气气流;第一监测模块(20),用于监测通气装置给患者通气的压力和/或流速;第二监测模块(30),用于测量反映患者自主呼吸努力的压力变化;以及处理器(40),根据测得的反映患者自主呼吸努力的压力变化识别患者的吸气触发时刻或呼气触发时刻。

Description

呼吸机和呼吸机的通气控制方法 技术领域
本公开大体涉及医疗器械技术领域,具体地涉及一种呼吸机和呼吸机的通气控制方法。
背景技术
在现代临床医学中,呼吸机作为一项能人工替代自主通气功能的有效手段,已普遍用于各种原因所致的呼吸衰竭、大手术期间的麻醉呼吸管理、呼吸支持治疗和急救复苏中,在现代医学领域内占有十分重要的位置。其中,作为呼吸机的关键性能指标之一的人机同步性更得到人们的重点关注。
人机同步是指呼吸机的呼吸周期与患者的呼吸周期同步。其中,呼吸周期通常包括四个阶段,分别是吸气触发、吸气过程、呼气切换和呼气过程。呼吸机的呼吸周期与患者的呼吸周期是否同步,通常是比较呼吸机的吸气触发与患者的吸气触发是否同步以及比较呼吸机的呼气切换与患者的呼气切换是否同步。如果人机不同步会导致患者呼吸不平稳,人机对抗等问题,可能会对患者病情不利。
目前,呼吸机基本上都是采用外部测量的气道压或气道流速来判断患者的吸气触发或呼气切换。比如判断吸气触发时,当气道压低于PEEP-压力触发灵敏度时判断为患者触发吸气,或者当测量的患者的气道流速大于设置的流速触发灵敏度时判断为患者触发吸气。判断呼气切换时,一般采用吸气峰值流速的百分比作为切换条件,比如当吸气流速低于吸气峰值流速的25%时判断为呼气切换。
然而,当前吸气触发或呼气切换的判断方式存在如下问题:第一,由于患者的呼吸努力先体现在呼吸肌收缩,然后反映到气道处,现有的测量气道压或气道流速来判断患者的吸气触发或呼气切换,使得体外传感器测量的信号相较于患者实际触发努力存在延时,这样需要患者额外做功来触发吸气或呼气,或者患者自主呼吸强度无法达到触发 阈值而产生无效触发;第二,在管路***中负责气密性的气囊处不可避免的存在泄漏,使得呼吸机内的传感器与患者气道间的管路***不可避免的存在泄漏,管路***会导致体外监测信号由于泄漏而不准确,从而导致呼吸机发生误触发或触发延迟的情况,另外管路积水和管路震动也会导致呼吸机发生误触发或触发延迟的情况。
发明内容
本公开是鉴于上述情况而作出的,通过压力变化来控制呼吸机的通气模式。本公开能够减小延时,避免无效触发,并能够避免呼吸机内的传感器与患者气道间的管路***带来的误触发或触发延迟的问题。
为此,本公开的第一方面提供了一种呼吸机,其特征在于,包括:通气装置,向患者提供通气气流;第一监测模块,监测所述通气装置给患者通气的压力和/或流速;第二监测模块,测量反映患者自主呼吸努力的压力变化;以及处理器,根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻。
在本公开中,通气装置向患者提供通气气流,所述通气的压力和/或流速被第一监测模块监测,第二监测模块反映患者自主呼吸努力的压力变化,处理器根据所述压力变化识别患者的吸气触发时刻或呼气触发时刻。由此,能够解决根据气道压或气道流速判定患者的吸气触发时刻或呼气切换时刻所带来的延迟问题,另外,反映患者自主呼吸努力的压力变化能够避免泄露问题。
在本公开的第一方面所涉及的呼吸机中,所述处理器根据所述自主呼吸努力的压力变化的速度、趋势、幅度中的一个或多个识别所述吸气触发时刻或所述呼气触发时刻。在这种情况下,准确识别患者的吸气触发时刻或呼气触发时刻。
在本公开的第一方面所涉及的呼吸机中,所述压力变化包括患者的食道压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化。在这种情况下,能够根据食道压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化识别患者的吸气触发时刻或呼气触发时刻。
在本公开的第一方面所涉及的呼吸机中,识别到吸气触发后,控制所述通气装置由呼气相切换到吸气相,识别到呼气触发后,控制所述通气装置由吸气相切换到呼气相。在这种情况下,能够帮助患者呼气或吸气。
在本公开的第一方面所涉及的呼吸机中,识别到吸气触发和呼气触发后,输出所述吸气触发时刻和所述呼气触发时刻。在这种情况下,能够读出患者的吸气触发时刻和呼气触发时刻。
在本公开的第一方面所涉及的呼吸机中,识别到吸气触发和呼气触发后,计算人机同步信息。在这种情况下,能够判断呼吸机的人机同步性。
在本公开的第一方面所涉及的呼吸机中,所述第二监测模块获得所述压力变化的幅度和所述压力变化的趋势,所述处理器在所述压力变化呈下降趋势且所述压力变化的幅度达到第一阈值时,识别患者处于吸气触发时刻,在所述压力变化呈上升趋势且所述压力变化的幅度达到第二阈值时,识别患者处于呼气切换时刻。在这种情况下,能够准确识别患者的吸气触发时刻或呼气切换时刻。
在本公开的第一方面所涉及的呼吸机中,所述压力变化的幅度为所述第二监测模块测得的压力与呼气末压力的差值。在这种情况下,能够基于压力变化的幅度识别患者的吸气触发时刻或呼气切换时刻。
在本公开的第一方面所涉及的呼吸机中,所述第一阈值和所述第二阈值均为固定阈值或可变阈值。在这种情况下,可以根据医护人员的经验设置或调整阈值。呼吸机也可以根据历史数据(如机器学习)自动调整阈值。
在本公开的第一方面所涉及的呼吸机中,所述第二监测模块获得所述压力变化的速度,所述处理器在所述压力变化的速度从零附近减小时,识别患者处于吸气触发时刻,在所述压力变化的速度减小至零附近时,识别患者处于呼气切换时刻。在这种情况下,能够准确识别患者的吸气触发时刻或呼气切换时刻。
在本公开的第一方面所涉及的呼吸机中,所述压力变化的幅度为实测压力与预测压力的变化幅度,且所述第一阈值和所述第二阈值均大于零。在这种情况下,能够基于压力变化的幅度识别患者的吸气触 发时刻或呼气切换时刻。
在本公开的第一方面所涉及的呼吸机中,所述预测压力通过对所述实测压力进行拟合预测获得。在这种情况下,能够获得预测压力。
在本公开的第一方面所涉及的呼吸机中,所述第二监测模块获得反映患者自主呼吸努力的压力波形,所述处理器对所述压力波形提取包络,并根据所述包络识别患者的吸气触发时刻或呼气触发时刻。在这种情况下,基于包络能够准确识别患者的吸气触发时刻或呼气切换时刻。
在本公开的第一方面所涉及的呼吸机中,所述根据所述包络识别患者的吸气触发时刻或呼气触发时刻具体为:根据所述包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。在这种情况下,能够基于包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。
本公开的第二方面提供了一种呼吸机的通气控制方法,其特征在于,包括:通过通气装置向患者提供通气气流;监测所述通气装置给患者提供的通气的压力和/或流速;测量反映患者自主呼吸努力的压力变化;并且根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻。
在本公开中,通过通气装置向患者提供通气气流,监测所述通气的压力和/或流速,测量反映患者自主呼吸努力的压力变化,并根据所述压力变化识别患者的吸气触发时刻或呼气触发时刻。由此,能够解决根据气道压或气道流速判定患者的吸气触发时刻或呼气切换时刻所带来的延迟问题,另外,反映患者自主呼吸努力的压力变化能够避免泄露问题。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,根据所述自主呼吸努力的压力变化的速度、趋势、幅度中的一个或多个识别所述吸气触发时刻或所述呼气触发时刻。在这种情况下,准确识别患者的吸气触发时刻或呼气触发时刻。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,所述压力变化包括患者的食道压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化。在这种情况下,能够根据食道压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化识别 患者的吸气触发时刻或呼气触发时刻。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,识别到吸气触发时刻后,控制所述通气装置由呼气相切换到吸气相,识别到呼气触发时刻后,控制所述通气装置由吸气相切换到呼气相。在这种情况下,能够帮助患者呼气或吸气。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,识别到吸气触发时刻和呼气触发时刻后,所述通气控制方法还包括:输出所述吸气触发时刻和所述呼气触发时刻。在这种情况下,能够识别患者的吸气触发时刻和呼气触发时刻。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,识别到吸气触发时刻和呼气触发时刻后,所述通气控制方法还包括:计算人机同步信息。在这种情况下,能够判断呼吸机的人机同步性。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,所述反映患者自主呼吸努力的压力变化为所述压力变化的幅度和趋势;所述根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻具体为:在所述压力变化呈下降趋势且所述压力变化的幅度达到第一阈值时,识别患者处于吸气触发时刻,在所述压力变化呈上升趋势且所述压力变化的幅度达到第二阈值时,识别患者处于呼气切换时刻。在这种情况下,能够准确识别患者的吸气触发时刻或呼气切换时刻。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,所述压力变化的幅度为实测压力与呼气末压力的变化幅度。在这种情况下,能够基于压力变化的幅度识别患者的吸气触发时刻或呼气切换时刻。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,所述第一阈值和所述第二阈值均为固定阈值或可变阈值。在这种情况下,可以根据医护人员的经验设置或调整阈值。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,所述反映患者自主呼吸努力的压力变化为所述压力变化的速度;所述根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻具体为:在所述压力变化的速度从零附近减小时,识别患者处于吸气触发时刻,在所述压力变化的速度减小至零附近时, 识别患者处于呼气切换时刻。在这种情况下,能够准确识别患者的吸气触发时刻或呼气切换时刻。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,所述压力变化的幅度为实测压力与预测压力的变化幅度,且所述第一阈值和所述第二阈值均大于零。在这种情况下,能够基于压力变化的幅度识别患者的吸气触发时刻或呼气切换时刻。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,所述预测压力通过对所述实测压力进行拟合预测获得。在这种情况下,能够获得预测压力。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,所述测量反映患者自主呼吸努力的压力变化具体为:获得反映患者自主呼吸努力的压力波形,对所述压力波形提取包络;所述根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻具体为:根据所述包络识别患者的吸气触发时刻或呼气触发时刻。在这种情况下,基于包络能够准确识别患者的吸气触发时刻或呼气切换时刻。
在本公开的第二方面所涉及的呼吸机的通气控制方法中,所述根据所述包络识别患者的吸气触发时刻或呼气触发时刻具体为:根据所述包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。在这种情况下,能够基于包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。
通过本发明提供的呼吸机,可以提高呼吸气通气同步,减少吸气和呼气触发延迟,避免无效触发,避免由于呼吸管路***泄漏、积水及振动等导致的呼吸误触发或触发延迟。
附图说明
现在将仅通过参考附图的例子进一步详细地解释本公开的实施例,其中:
图1是本公开所涉及的呼吸机的结构示意图。
图2是本公开所涉及的一种呼吸机的通气控制方法流程示意图。
图3是本公开所涉及的食道压力的波形示意图。
图4是本公开所涉及的食道压的预测压力的波形示意图。
图5是图4所涉及的食道压的斜率曲线示意图。
图6是本公开所涉及的食道压力波形示意图。
图7是本公开所涉及的另一种呼吸机的通气控制方法流程示意图。
图8是本公开实施例所涉及的呼吸机的人机同步的判断方法流程示意图。
图9a是本公开所涉及的气道压的波形示意图。
图9b是本公开所涉及的气道流速的波形示意图。
具体实施方式
以下,参考附图,详细地说明本公开的优选实施例。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。
需要说明的是,本公开中的术语“包括”和“具有”以及它们的任何变形,例如所包括或所具有的一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括或具有没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。本领域技术人员将认识到可以用于本公开的实践中的与本公开所描述的那些相似或等同的许多方法和材料。实际上,本公开决不限于所描述的方法和材料。
另外,在本公开的下面描述中涉及的小标题等并不是为了限制本发明的内容或范围,其仅仅是作为阅读的提示作用。这样的小标题既不能理解为用于分割文章的内容,也不应将小标题下的内容仅仅限制在小标题的范围内。除非另有定义,本公开所使用的技术和科学术语具有与本公开所属领域的普通技术人员通常理解相同的含义。
本公开提供一种呼吸机1。图1是本公开所涉及的呼吸机的结构示意图。
在一些示例中,如图1所示,呼吸机1可以包括通气装置10,第一监测模块20,第二监测模块30和处理器40。
在一些示例中,通气装置10可以向患者提供通气气流。也即通气装置10通过向患者通气以帮助患者呼吸。
在一些示例中,通气装置10可以具有为患者提供吸入气体的吸气相和帮助患者呼气的呼气相。也即,通气装置10可以帮助患者吸气或帮助患者呼气。
在一些示例中,通气装置10向患者提供的吸入气体可以是氧气,还可以是空气与氧气的混合气体。但本公开的示例不限于此,吸入气体还可以是氦氧混合气体。吸入气体可以是例如医院的中央供气***提供的压缩气体,也可以来源于环境中的气体。
在一些示例中,通气装置10还可以包括流量调节装置。流量调节装置可以实现控制通气气流的气压和/或流速。
在一些示例中,如图1所示,呼吸机1还可以包括第一监测模块20。第一监测模块20可以监测通气装置10给患者通气的压力和/或流速。
在另一些示例中,第一监测模块20可以测量患者气道压或气道流速中的至少一种。
在一些示例中,第一监测模块20可以包括压力传感器和流量传感器中的至少一种。第一监测模块20中的压力传感器可以监测通气装置10给患者通气的压力或患者气道压,流量传感器可以监测通气装置10给患者通气的流速或气道流速。
在一些示例中,如图1所示,呼吸机1还可以包括第二监测模块30。第二监测模块30可以测量反映患者自主呼吸努力的压力变化。处理器40可以根据测得的反映患者自主呼吸努力的压力变化识别患者的吸气触发时刻或呼气触发时刻。
在一些示例中,压力变化可以包括患者的食道压、胸腔压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化。具体而言,第二监测模块30可以选择测量患者的食道压、胸腔压、肺内压、隆突压、胃内压或插管末端压力中的至少一种压力。在一些示例中,第二监测模块30可以包括压力采样管。压力采样管可以是食道压力采样管、胸腔压力采样管和隆突压采样管中的至少一种。将食道压力采样管***患者食道可以获取食道压。将胸腔压力采样管***患者 胸膜腔可以获取胸腔压。将隆突压力采样管***患者隆突处可以获取隆突压。处理器40能够根据食道压、胸腔压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化识别患者的吸气触发时刻或呼气触发时刻。
在一些示例中,处理器40可以根据自主呼吸努力的压力变化的速度、趋势、幅度中的一个或多个识别吸气触发时刻或呼气触发时刻。在这种情况下,准确识别患者的吸气触发时刻或呼气触发时刻。
其中,压力变化的速度可以是指压力变化值增减的快慢。压力变化的趋势可以是指压力的变化趋势。压力变化的幅度可以是指压力变化值的大小。压力变化值有时也可以称为压力的差值。
在一些示例中,处理器40可以获得压力变化的幅度和压力变化的趋势。压力变化的幅度可以为第二监测模块30测得的压力与呼气末压力的差值。用于计算压力变化幅度的呼气末压力可以为前一呼吸周期的呼气末压力,也可以为前设定呼吸周期的呼气末压力的均值,还可以是医护人员根据经验设置并存储在呼吸机中的经验值。
压力变化的速度可以是指第二监测模块30测得的压力的斜率,有时也可以称为压力梯度值。
第二监测模块30测得的压力可以是离散信号。处理器40可以通过对第二监测模块30获得的压力进行差分运算,以获取压力变化的速度。当然,压力变化的速度还可以通过对预设时间内第二监测模块30获得的短时压力进行直线拟合以计算其斜率得到,预设时间段可以是200ms至600ms。
在另一些示例中,处理器40可以获得压力变化的幅度和压力变化的趋势。压力变化的幅度可以为第二监测模块30测得的实测压力与预测压力的变化幅度。也即实测压力与预测压力的差值的大小。
在一些示例中,预测压力可以通过对实测压力进行拟合预测,得到预测压力。
在一些示例中,拟合预测是基于不少于两个采样点建立一个模型去逼近实际数据序列的过程。
在一些示例中,处理器40在第二监测模块30测得的压力变化呈下降趋势且压力变化的幅度达到第一阈值时,识别患者处于吸气触发时刻,在第二监测模块30测得的压力变化呈上升趋势且压力变化的幅度达到第二阈值时,识别患者处于呼气切换时刻。在这种情况下,基于压力变化的幅度和趋势能够准确识别患者的吸气触发时刻或呼气切换时刻。
在一些示例中,第一阈值和第二阈值均为固定阈值或可变阈值。在这种情况下,可以根据医护人员的经验设置或调整阈值。其中,固定阈值是呼吸机内部设定的不可变更的阈值。可变阈值是呼吸机设置的可以人为更改的阈值。在这种情况下,第一阈值和第二阈值可以根据医护人员的经验设置或调整。当然,第一阈值和第二阈值还可以是由机器通过历史数据学习得到。
在一些示例中,处理器40在第二监测模块30测得的压力变化的速度从零附近减小时,识别患者处于吸气触发时刻,在测得的压力变化的速度减小至零附近时,识别患者处于呼气切换时刻。也即,当压力梯度值过零点且逐渐减小时,识别患者处于吸气触发时刻,当压力梯度值减小至零点时,识别患者处于呼气切换时刻。在这种情况下,能够准确识别患者的吸气触发时刻或呼气切换时刻。
在一些示例中,处理器40根据第二监测模块30获得压力变化的幅度和压力变化的趋势识别吸气触发时刻和呼气切换时刻。具体地,处理器40在第二监测模块30测得的压力变化呈下降趋势且压力变化的幅度达到第一阈值时,识别患者处于吸气触发时刻,在测得的压力变化呈上升趋势且压力变化的幅度达到第二阈值时,识别患者处于呼气切换时刻。在这种情况下,基于压力变化的幅度和趋势能够准确识别患者的吸气触发时刻或呼气切换时刻。
在另一些示例中,处理器40对第二监测模块30测得的压力波形提取包络,并根据包络识别患者的吸气触发时刻或呼气触发时刻。在这种情况下,基于包络能够准确识别患者的吸气触发时刻或呼气切换时刻。
在一些示例中,压力波形可能包括心跳导致压力波动等干扰信号。处理器40可以对压力波形进行滤波处理,以滤除心跳等干扰信号。
在一些示例中,根据包络识别患者的吸气触发时刻或呼气触发时刻具体为:根据包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。在这种情况下,能够基于包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。
在一些示例中,当压力波形处于波峰时,处理器40识别患者的吸气触发时刻,当压力波形处于波谷时,处理器40识别患者的呼气切换时刻。
在一些示例中,吸气触发时刻也不一定对应压力波形的波峰,可以认为压力波形上升或下降到波峰的第一设定比例时即为吸气触发时刻,或者可以认为波峰对应时刻往后延迟第一设定时间为吸气触发时刻。同样,呼气切换时刻也不一定对应压力波形的波峰,可以认为压力波形下降或到上升波谷的第二设定比例时即为呼气切换时刻,或者可以认为波谷对应时刻往后延迟第二设定时间为吸气触发时刻。
在一些示例中,处理器40在识别到吸气触发时刻后,还可以控制通气装置10由呼气相切换到吸气相,或在识别到呼气触发时刻后,控制通气装置10由吸气相切换到呼气相。在这种情况下,能够帮助患者呼气或吸气。
在一些示例中,识别到吸气触发时刻和呼气触发时刻后,处理器40可以计算人机同步信息。在这种情况下,能够判断呼吸机的人机同步性。人机同步的判断方法后续进行详细描述。
在一些示例中,呼吸机1还可以包括显示模块(图未示)。处理器40在识别到吸气触发时刻和呼气触发时刻后,输出吸气触发时刻和呼气触发时刻,并在显示模块显示吸气触发时刻和呼气触发时刻。在这种情况下,能够读出患者的吸气触发时刻和呼气触发时刻。
在本公开中,通气装置10向患者提供通气气流,通气的压力和/或流速被第一监测模块20监测,第二监测模块30反映患者自主呼吸努力的压力变化,处理器40可以根据压力变化识别患者的吸气触发时刻或呼气触发时刻。由此,能够解决根据气道压或气道流速判定患者的吸气触发时刻或呼气切换时刻所带来的延迟问题,另外,反映患者自主呼吸努力的压力变化能够避免泄露问题。
在一些示例中,呼吸机1还可以测量气道压和/或气道流速。当气 道压呈下降趋势和/或气道流速呈上升趋势时处理器40识别患者处于吸气触发时刻,当气道压呈上升趋势和/或气道流速呈下降趋势时,处理器40识别患者处于呼气切换时刻。另外,处理器40可以根据气道压和/或气道流速目标,控制吸气相和呼气相的气压和/或流速。气道压和/或气道流速目标可以是预设的压力值或流速值。
在一些示例中,呼吸机1还可以同时测量气道压和/或气道流速。和反映患者自主呼吸努力的压力变化。基于上述气道压和/或气道流速的判别和上述反映患者自主呼吸努力的压力变化的判别,识别患者的吸气触发时刻或呼气触发时刻,以使呼吸机1的通气切换更加准确。
上述是本公开涉及的呼吸机,下面结合流程图和波形图详细描述本公开涉及的通气控制方法。上述的压力变化与下述的压力变化是一个概念。
现有的呼吸机的通气控制方法通常是通过测量患者的气道压或气道流速,以实现呼吸机的通气控制。然而本公开涉及的呼吸机的通气控制方法,主要通过测量反映患者自主呼吸努力的压力变化,并且根据测得的反映患者自主呼吸努力的压力变化识别患者的吸气触发时刻或呼气触发时刻。所测得的反映患者自主呼吸努力的压力采样位置在病人体内,能够避免管路泄漏问题带来的影响。
本公开提供一种呼吸机的通气控制方法。图2是本公开所涉及的一种呼吸机的通气控制方法流程示意图。
在一些示例中,如图1所示,呼吸机的通气控制方法包括通过通气装置向患者提供通气气流(步骤S100);监测通气装置给患者提供的通气的压力和/或流速(步骤S200);测量反映患者自主呼吸努力的压力变化(步骤S300);并且根据测得的反映患者自主呼吸努力的压力变化识别患者的吸气触发时刻或呼气触发时刻(步骤S400)。
在一些示例中,步骤S100中,通过通气装置向患者提供通气。通气装置10可以具有为患者提供吸入气体的吸气相和帮助患者呼气的呼气相。通气装置10可以参见上述呼吸机1中的描述。
在一些示例中,吸气相提供的气体可以是是氧气,还可以是空气与氧气的混合气体。但本公开的示例不限于此,吸入气体还可以是氦氧混合气体。吸入气体可以是例如医院的中央供气***提供的压缩气 体,也可以来源于环境中的气体。
在一些示例中,呼吸机的通气控制方法可以包括监测通气装置给患者提供的通气的压力和/或流速(步骤S200)。
但本公开的示例不限于此,步骤S200还可以测量患者气道压或气道流速中的至少一种。
在步骤S200中,通气的压力或患者气道压可以通过压力传感器测量。提供的通气的流速或患者气道流速可以通过流量传感器测量。
在一些示例中,如图2所示,呼吸机的通气控制方法还可以包括测量反映患者自主呼吸努力的压力变化(步骤S300)。
在步骤S300中,压力变化可以包括患者的食道压、胸腔压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化。由此,由于上述测量的压力(如食道压和胸腔压)部位不存在气流,能够避免泄露导致的误触发等问题。
上述的几种压力变化可以代表患者自主呼吸努力时肌肉处的压力变化。由于人体呼吸的吸气指令(或呼气指令)通常先由肌肉执行,然后反映到气道。其中,肌肉到气道之间耗时最长,因此,相比于测量气道压或气道流速,测量上述的压力变化可以省去上述通路中耗时最长的一段时间,能够在一定程度上解决测量气道压或气道流速时带来的延时问题。
在一些示例中,步骤S300可以通过压力采样管测量反映患者自主呼吸努力的压力变化。压力采样管可以是食道压力采样管、胸腔压力采样管和隆突压采样管中的至少一种。
在一些示例中,压力采样管中可以包括压力传感器。压力传感器可以用于获取反映患者自主呼吸努力的压力。
在一些示例中,步骤S300中自主呼吸努力的压力变化的速度、趋势、幅度中的一个或多个。
在一些示例中,步骤S300可以获得压力变化的幅度和压力变化的趋势。压力变化的幅度可以为测得的压力与呼气末压力的差值。呼吸机在呼气相时,当患者处于呼气末时,测得的压力为呼气末压力。呼气末压力可以是上次呼气末压力,还可以是前面预设次呼吸周期的呼 气末压力均值。其中上次呼气末压力是指测得的压力的前一个周期的呼气末压力。
在一些示例中,可以获得食道压变化的幅度和趋势,反映患者自主呼吸努力。具体而言,当患者自主吸气时,由于呼吸肌的收缩,导致胸腔容积增大,进而使的胸腔压(食道压)减小。在患者处于吸气末段时,由于患者自主吸气趋近结束,呼吸肌逐渐舒张,患者的胸腔压(食道压)逐渐升高。图3是本公开所涉及的食道压力的波形示意图。图3可以反映食道压变化趋势。食道压变化的幅度可以为测得的食道压与呼气末食道压的差值。
在一些示例中,步骤S300可以获得压力变化的幅度和压力变化的趋势。压力变化的幅度可以为得的实测压力与预测压力的变化幅度。也即实测压力与预测压力的差值的大小。预测压力可以通过对实测压力进行拟合预测获得。拟合预测是基于不少于两个采样点建立一个模型去逼近实际数据序列的过程。
在一些示例中,可以获得食道压变化的幅度和趋势。图4是本公开所涉及的食道压的预测压力的波形示意图。图4可以反映实测压力和预测压力关系,以及实测压力的趋势。如图4所示,波形A为实测食道压力,波形B为预测食道压力。
在另一些示例中,步骤S300可以获得压力变化的速度。压力变化的速度可以是指测得的压力的斜率,有时也可以称为压力梯度值。
在一些示例中,测得的压力可以是离散信号。压力变化的速度可以通过对获得的压力进行差分运算获取。当然,压力变化的速度还可以通过对预设时间内的短时压力进行直线拟合以计算其斜率得到,预设时间段可以是200ms至600ms。
在一些示例中,可以获得食道压变化的速度,也即可以获得食道压梯度值。图5是图4所涉及的食道压的斜率曲线示意图。图5可以反映食道压变化的速度。
在一些示例中,步骤S300获得反映患者自主呼吸努力的压力波形后,可以进一步对压力波形提取包络。
在一些示例中,对压力波形进行短时均方根计算,获得压力波形的包络。
在一些示例中,可以获得食道压波形。图6是本公开所涉及的食道压力波形示意图。图6中的曲线A是食道压波形。由于食道压的采集位置靠近患者的心脏,故受心跳振动的干扰,曲线A中存在许多干扰信号。
在一些示例中,呼吸机的通气控制方法还可以包括根据测得的反映患者自主呼吸努力的压力变化识别患者的吸气触发时刻或呼气触发时刻(步骤S400)。
在步骤S400中,由于测得的压力变化可以包括患者的食道压、胸腔压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化。由此,能够根据食道压、胸腔压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化识别患者的吸气触发时刻或呼气触发时刻。
在一些示例中,步骤S400可以根据自主呼吸努力的压力变化的速度、趋势、幅度中的一个或多个识别吸气触发时刻或呼气触发时刻。在这种情况下,准确识别患者的吸气触发时刻或呼气触发时刻。
在步骤S400中,当反映患者自主呼吸努力的压力变化为压力变化的幅度和趋势时,步骤S400的具体方法为:在压力变化呈下降趋势且压力变化的幅度达到第一阈值时,识别患者处于吸气触发时刻,在压力变化呈上升趋势且压力变化的幅度达到第二阈值时,识别患者处于呼气切换时刻。在这种情况下,能够准确识别患者的吸气触发时刻或呼气切换时刻。
在本实施方式中,压力变化的幅度为实测压力与呼气末压力的变化幅度。由此,步骤S400根据实测压力与呼气末压力的变化幅度,并结合实测压力的趋势识别患者的的吸气触发时刻或呼气切换时刻。
具体而言,步骤S400可以获得实测压力与呼气末压力值的第一差值。第一差值的大小可以反映实测压力变化的幅度。由此,在步骤S400中,实测压力变化呈下降趋势且第一差值达到第一阈值时,识别患者处于吸气触发时刻,在实测压力变化呈上升趋势且第一差值达到第二阈值时,识别患者处于呼气切换时刻。
在一些示例中,第一阈值和第二阈值均为固定阈值或可变阈值。在这种情况下,可以根据医护人员的经验设置或调整阈值。其中,固 定阈值是呼吸机内部设定的不可变更的阈值。可变阈值是呼吸机设置的可以人为更改的阈值。在这种情况下,第一阈值和第二阈值可以根据医护人员的经验设置或调整。当然,第一阈值和第二阈值还可以是由机器通过历史数据学习得到。
在一些示例中,实测压力可以为食道压。也即,可以获得食道压变化的幅度和趋势。如图3所示,例如,规定直线L1与食道压波形图的交点满足第一差值达到第一阈值的条件,且直线L2与食道压波形图的交点满足第一差值达到第二阈值的条件。
在一些示例中,如图3所示,食道压呈下降趋势且食道压减小至直线L1与食道压波形图的交点时,患者处于吸气触发时刻。图中的a1、a2、a3处分别代表不同周期下的吸气触发时刻。吸气触发时刻不限于图3中的a1、a2、a3。用am处可以代表呼吸机不同呼吸周期下的吸气触发时刻。其中m可以取1、2、3、4、5、6等。
在一些示例中,如图3所示,食道压呈上升趋势且当食道压增大至直线L2与食道压波形图的交点时,患者处于呼气切换时刻。图中的b1、b2、b3处分别代表不同周期下的呼气切换时刻。同am类似,bm处可以代表呼吸机不同呼吸周期下的呼气触发时刻,其中m可以取1、2、3、4、5、6等。
在另一实施方式中,压力变化的幅度为实测压力与预测压力的变化幅度,实测压力与预测压力的变化幅度即为预测压力与实测压力的差值。由此,步骤S400根据实测压力与预测压力的变化幅度,并结合实测压力的趋势识别患者的的吸气触发时刻或呼气切换时刻。
在本实施方式中,第一阈值和第二阈值均大于零。第一阈值和第二阈值可以与第一实施方式中的第一阈值和第二阈值数值不同。
在本实施方式中,第一阈值和第二阈值均大于零可以理解为实测压力小于预测压力。由于当预测压力与实测压力的差值满足第一阈值或第二阈值时,代表预测压力与实测压力的差值大于零,也即预测压力大于实测压力。
具体而言,步骤S400可以获得预测压力与实测压力的第二差值。第二差值的大小可以反映同一时刻实测压力与预测压力的变化幅度。由此,在步骤S400中,实测压力变化呈下降趋势且第二差值达到第一 阈值时识别患者处于吸气触发时刻,在实测压力变化呈上升趋势且第二差值达到第二阈值时,识别患者处于呼气切换时刻。
在一些示例中,当实测压力呈下降趋势,实测压力小于预测压力,且第二差值达到第一阈值时,识别患者处于吸气触发时刻。当实测压力形呈上升趋势,预测压力大于实测压力,且第二差值达到第二阈值时,识别患者处于呼气切换时刻。在这种情况下,对第一阈值和第二阈值不限定阈值与零的关系。
其中,第一阈值和第二阈值均为固定阈值或可变阈值。当然,第一阈值和第二阈值还可以是由机器通过历史数据学习得到。
在一些示例中,实测压力可以为食道压。也即,可以获得食道压的实测压力和预测压力,获得食道压变化的幅度和趋势。如图4所示,波形B为食道压的实测压力,波形B为食道压的预测压力。
在一些示例中,如图4所示,当食道压的实测压力(波形A)呈下降趋势,食道压的实测压力小于预测压力(波形B),且第二差值达到第一阈值时,识别患者处于吸气触发时刻。当食道压的实测压力呈上升趋势,预测压力大于食道压的实测压力,且第二差值达到第二阈值时,识别患者处于呼气切换时刻。
上述为基于压力变化的幅度和趋势的步骤S400的两种实施方式。
在一些示例中,当反映患者自主呼吸努力的压力变化为压力变化的速度时,步骤S400的具体方法为:在压力变化的速度从零附近减小时,识别患者处于吸气触发时刻,在压力变化的速度减小至零附近时,识别患者处于呼气切换时刻。压力变化的速度也可以称为当压力梯度值,故当压力梯度值过零点且逐渐减小时,识别患者处于吸气触发时刻,当压力梯度值减小至零点时,识别患者处于呼气切换时刻。在这种情况下,能够准确识别患者的吸气触发时刻或呼气切换时刻。
在一些示例中,压力变化的速度可以是指测得的压力的斜率。
在一些示例中,测得的压力可以是离散信号。压力变化的速度可以通过对获得的压力进行差分运算获取。
在一些示例中,测得的压力可以是连续压力信号,并对连续压力信号进行求导获得连续压力信号的斜率。连续压力信号的斜率相当于压力变化的速度。
在一些示例中,实测压力可以为食道压。也即,可以获得食道压变化的速度。如图5所示,图5示出了食道压变化的速度(也称食道压梯度值)的曲线图。
在步骤S23中,通过比较食道压变化的速度与零点的关系,以及食道压变化的速度的变化趋势,也即,比较食道压梯度值与零点的关系,以及食道压梯度值的变化趋势,能够准确识别患者的吸气触发时刻或呼气切换时刻。
在一些示例中,图5的纵轴代表食道压的斜率,也即,纵轴代表食道压变化的速度。如图5所示,当食道压梯度值从零附近减小时,识别患者处于吸气触发时刻。当食道压梯度值减小至零附近时,识别患者处于呼气切换时刻。am处可以代表呼吸机不同呼吸周期下的吸气触发时刻。其中m可以取1、2、3、4、5、6等。bm处可以代表呼吸机不同呼吸周期下的呼气触发时刻,其中m可以取1、2、3、4、5、6等。
在一些示例中,当压力变化为获得反映患者自主呼吸努力的压力波形并对压力波形提取包络时,步骤S400的具体方法为:根据包络识别患者的吸气触发时刻或呼气触发时刻。在这种情况下,基于包络能够准确识别患者的吸气触发时刻或呼气切换时刻。
在一些示例中,根据包络识别患者的吸气触发时刻或呼气触发时刻具体方法为:根据包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。在这种情况下,能够基于包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。
在一些示例中,当压力波形处于波峰时,识别患者的吸气触发时刻,当压力波形处于波谷时,识别患者的呼气切换时刻。
在一些示例中,吸气触发时刻也不一定对应压力波形的波峰,可以认为压力波形上升或下降到波峰的第一设定比例时即为吸气触发时刻,或者可以认为波峰对应时刻往后延迟第一设定时间为吸气触发时刻。同样,呼气切换时刻也不一定对应压力波形的波峰,可以认为压力波形下降或到上升波谷的第二设定比例时即为呼气切换时刻,或者可以认为波谷对应时刻往后延迟第二设定时间为吸气触发时刻。
在一些示例中,压力波形可能包括心跳信号等干扰信号。可以对 压力波形进行滤波处理,以滤除心跳信号等干扰信号。
在一些示例中,由于干扰信号中的心跳信号频率比呼吸频率高,故对于食道压来说,心跳信号是高频干扰信号,在这种情况下,可以对初始波形进行低通滤波,以去除初始波形中的心跳信号等高频干扰信号。
在一些示例中,压力波形可以为食道压的初始波形。如图6所示,波形A为食道压的初始波形,波形B为食道压目标波形。目标波形为初始波形进过包络提取得到的。
在一些示例中,如图6所示,当食道压的目标波形(波形B)处于波峰时,识别患者处于吸气触发时刻,当目标波形处于波谷时,识别患者处于呼气触发时刻。
在本公开中,提供通气装置向患者提供通气气流,监测通气的压力和/或流速,测量反映患者自主呼吸努力的压力变化,并根据压力变化识别患者的吸气触发时刻或呼气触发时刻。由此,能够解决根据气道压或气道流速判定患者的吸气触发时刻或呼气切换时刻所带来的延迟问题,另外,反映患者自主呼吸努力的压力变化能够避免泄露问题。
图7是本公开所涉及的另一种呼吸机的通气控制方法流程示意图。
在一些示例中,如图7所示,呼吸机的通气控制方法还可以包括识别到吸气触发时刻后,控制通气装置由呼气相切换到吸气相,识别到呼气触发时刻后,控制通气装置由吸气相切换到呼气相(步骤S500)。在这种情况下,能够帮助患者呼气或吸气。
在一些示例中,识别到吸气触发时刻和呼气触发时刻后,呼吸机的通气控制方法还可以包括输出吸气触发时刻和呼气触发时刻。在这种情况下,能够识别患者的吸气触发时刻和呼气触发时刻。
在一些示例中,识别到吸气触发时刻和呼气触发时刻后,呼吸机的通气控制方法还可以包括计算人机同步信息。在这种情况下,能够判断呼吸机的人机同步性。
图8是本公开实施例所涉及的呼吸机的人机同步的判断方法流程示意图。
在一些示例中,如图8所示,呼吸机的人机同步的判断方法包括获取多个吸气触发时刻和多个呼气切换时刻(步骤S601)。
在步骤S601中,呼吸机在通过进行上述的通气控制方法获取切换时相应的时刻。这些时刻中包括吸气触发时刻(见图3的a1)和呼气切换时刻(见图3的b1)。
由于患者在不间断的进行呼吸,故呼吸机在吸气相和呼气相间不断地进行切换,由此,吸气触发时刻am(例如a1)和呼气切换时刻bm(例如b1)交替出现且分别有多个。其中,图3示意出了有限个,但本公开的吸气触发时刻am和呼气切换时刻bm不限于图3中所示的个数。
在一些示例中,如图8所示,呼吸机的人机同步的判断方法还可以包括计算相邻的吸气触发时刻与呼气切换时刻的差值,获取患者吸气时间和呼患者呼气时间,呼气切换时刻迟于吸气触发时刻时,得到的差值为患者吸气时间,吸气触发时刻迟于呼气切换时刻时,得到的差值为患者呼气时间(步骤S602)。
在步骤S602中,由于步骤S601中的吸气触发时刻与呼气切换时刻是交替出现的,且吸气触发时刻与呼气切换时刻之间患者处于吸气阶段或呼吸阶段,故计算相邻的吸气触发时刻与呼气切换时刻的差值,能够获取患者吸气时间和患者呼气时间。
在步骤S602中,比较用于计算差值的吸气触发时刻和呼气切换时刻,若吸气触发时刻早于呼气切换时刻,代表患者在吸气触发时刻进入吸气阶段,并于呼气切换时刻结束吸气。故获得差值为患者吸气时间。若呼气切换时刻早于吸气触发时刻,代表患者在呼气切换时刻进入呼气阶段,并于吸气触发时刻结束吸气。故获得差值为患者呼气时间。
在一些示例中,如图8所示,呼吸机的人机同步的判断方法还可以包括计算呼吸机的机械吸气时间和机械呼气时间(步骤S603)。
在步骤S603中,呼吸机的机械吸气和机械呼气时,通气装置10内的气压或气体流速不同,根据气压或气体流速的变化情况,记录呼吸机的机械吸气时间和机械呼气时间。
在一些示例中,如图8所示,呼吸机的人机同步的判断方法还可以包括计算患者吸气时间与机械吸气时间的吸气时间差与患者呼气时间与机械呼气时间的呼气时间差(步骤S604)。
在一些示例中,如图8所示,呼吸机的人机同步的判断方法还可以包括若吸气时间差和呼气时间差都小于等于第三阈值,则呼吸机人机同步,若吸气时间差和/或呼气时间差大于第三阈值,则呼吸机人机不同步(步骤S605)。
在步骤S605,第三阈值可以是医护人员根据经验设置的阈值。通常第三阈值的时间代表着在不发生人机对抗的前提下,患者最大可容忍的误差时间。若吸气时间差和呼气时间差都小于等于第三阈值,呼吸机和患者的呼吸周期基本同步,即呼吸机人机同步。若吸气时间差和呼气时间差中至少一个大于第三阈值,则呼吸机人机不同步。
另外,在一些示例中,记录呼吸机吸气相起始时刻和呼气相起始时刻。通过比较患者的吸气触发时刻和呼吸机的吸气起始时刻,获得呼吸机相对于患者进入吸气相的提前时间或延迟时间。还可以比较患者的呼气切换时刻和呼气相起始时刻,获得呼吸机相对于患者进入呼气相的提前时间或延迟时间。
在实施方式中,通过上述的人机同步的判断方法获得的同步信息可以是患者的吸气触发时刻(或呼气出发时刻)与呼吸机的吸气触发时刻(或呼气出发时刻)的时间差。
在实施方式中,通过上述的人机同步的判断方法获得的同步信息还可以是患者的吸气时间(或呼气时间)与呼吸机的机械吸气时间(机械呼气时间)的时间差。
本实施方式不限于此,通过上述的人机同步的判断方法获得的同步信息可以是时间差与呼吸周期的比例等。其中,呼吸周期还可以用吸气周期或呼气周期替换。
另外,在一些示例中,压力变化还可以用以确认测量压力的采样管的位置。例如,在显示模块上观察第二监测模块30获得的压力波形,由于波形可以反映患者的呼吸节律,若观察到的波形呼吸节律不稳定时,说明采样管的位置放置错误或者患者不能正常呼吸,在这种情况下,报警装置就会工作,以提醒医护人员。
在一些实施例中,呼吸节律不稳定可以有多种体现方式,例如,波形的波峰值和波谷值没有规律,波形的频率不稳定并且波峰值和波 谷值的差值小于预设阈值。预设阈值可以是患者正常呼吸时,所测压力波形的波峰值和波谷值的差值。
图9a是本公开所涉及的气道压的波形示意图。图9b是本公开所涉及的气道流速的波形示意图。
在一些示例中,呼吸机的通气控制方法还可以包括测量气道压和/或气道流速。如图9a或图9b所示,当气道压呈下降趋势和/或气道流速呈上升趋势时,识别患者处于吸气触发时刻,当气道压呈上升趋势和/或气道流速呈下降趋势时,识别患者处于呼气切换时刻。另外,可以根据气道压和/或气道流速目标,呼吸机的通气控制方法还可以控制吸气相和呼气相的气压和/或流速。气道压和/或气道流速目标可以是预设的压力值或流速值。
在一些示例中,呼吸机的通气控制方法还可以同时测量气道压和/或气道流速和反映患者自主呼吸努力的压力变化。基于上述气道压和/或气道流速的判别和上述反映患者自主呼吸努力的压力变化的判别,识别患者的吸气触发时刻或呼气触发时刻,以使呼吸机1的通气切换更加准确。
另外,上述涉及到的根据食道压力变化的通气控制方法,可以代表基于压力变化的通气控制方法。例如,胸腔压和食道压的波形基本相同,由此,基于胸腔压的通气控制方法可以类比基于食道压的通气控制方法。另外,隆突压波形与食道压虽有差别,但是在方法上,基于隆突压的通气控制方法与基于食道压的通气控制方法是相似的。由此,基于隆突压的通气控制方法可以类比基于食道压的通气控制方法。在这种情况下,下述各个实施方式中涉及到基于食道压的通气控制方法可以作为基于所测压力的通气控制方法。当然,肺内压、胃内压或插管末端压力也可以类比基于食道压的通气控制方法。
以上在具体实施方式中描述了本公开的各种实施例。尽管这些描述直接描述了上述实施例,但是应该理解的是,本领域技术人员可以想到对这里示出和描述的特定实施例的修改和/或变形。落入本说明书范围内的任何这样的修改或变形也意图包括在其中。除非特别指出,否则发明人的意图是说明书和权利要求书中的词语和短语被赋予普通技术人员的普通和习惯的含义。
另外,在一些实施例中,书面描述和所附权利要求书中阐述的数字参数是近似值,其可以根据特定实施例试图获得的期望性质而变化。在一些实施例中,数字参数应该根据所报告的有效数字的数量并通过应用普通凑整技术来解释。尽管阐述本公开的一些实施例的宽泛范围的数值范围和参数是近似值,但是在具体示例中阐述的数值是尽可能精确地报告的。在本公开的一些实施例中呈现的数值可能包含必然由其相应测试测量中发现的标准偏差导致的某些误差。这里描述的主题的各方面可以单独使用或与本公开描述的其他方面中的任何一个或多个组合使用。

Claims (28)

  1. 一种呼吸机,其特征在于,
    包括:
    通气装置,向患者提供通气气流;
    第一监测模块,监测所述通气装置给患者通气的压力和/或流速;
    第二监测模块,测量反映患者自主呼吸努力的压力变化;以及
    处理器,根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻。
  2. 根据权利要求1所述的呼吸机,其特征在于:
    所述处理器根据所述自主呼吸努力的压力变化的速度、趋势、幅度中的一个或多个识别所述吸气触发时刻或所述呼气触发时刻。
  3. 根据权利要求1所述的呼吸机,其特征在于:
    所述压力变化包括患者的食道压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化。
  4. 根据权利要求1所述的呼吸机,其特征在于:
    识别到吸气触发时刻后,控制所述通气装置由呼气相切换到吸气相,识别到呼气触发时刻后,控制所述通气装置由吸气相切换到呼气相。
  5. 根据权利要求1所述的呼吸机,其特征在于:
    识别到吸气触发时刻和呼气触发时刻后,输出所述吸气触发时刻和所述呼气触发时刻。
  6. 根据权利要求1所述的呼吸机,其特征在于:
    识别到吸气触发时刻和呼气触发时刻后,计算人机同步信息。
  7. 根据权利要求2所述的呼吸机,其特征在于:
    所述第二监测模块获得所述压力变化的幅度和所述压力变化的趋势,
    所述处理器在所述压力变化呈下降趋势且所述压力变化的幅度达到第一 阈值时,识别患者处于吸气触发时刻,在所述压力变化呈上升趋势且所述压力变化的幅度达到第二阈值时,识别患者处于呼气切换时刻。
  8. 根据权利要求7所述的呼吸机,其特征在于:
    所述压力变化的幅度为所述第二监测模块测得的压力与呼气末压力的差值。
  9. 根据权利要求7所述的呼吸机,其特征在于:
    所述第一阈值和所述第二阈值均为固定阈值或可变阈值。
  10. 根据权利要求2所述的呼吸机,其特征在于:
    所述第二监测模块获得所述压力变化的速度,
    所述处理器在所述压力变化的速度从零附近减小时,识别患者处于吸气触发时刻,在所述压力变化的速度减小至零附近时,识别患者处于呼气切换时刻。
  11. 根据权利要求7所述的呼吸机,其特征在于:
    所述压力变化的幅度为实测压力与预测压力的变化幅度,且所述第一阈值和所述第二阈值均大于零。
  12. 根据权利要求11所述的呼吸机,其特征在于:
    所述预测压力通过对所述实测压力进行拟合预测获得。
  13. 根据权利要求1所述的呼吸机,其特征在于:
    所述第二监测模块获得反映患者自主呼吸努力的压力波形,
    所述处理器对所述压力波形提取包络,并根据所述包络识别患者的吸气触发时刻或呼气触发时刻。
  14. 根据权利要求13所述的呼吸机,其特征在于:
    所述根据所述包络识别患者的吸气触发时刻或呼气触发时刻具体为:
    根据所述包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。
  15. 一种呼吸机的通气控制方法,其特征在于,
    包括:
    通过通气装置向患者提供通气气流;
    监测所述通气装置给患者提供的通气的压力和/或流速;
    测量反映患者自主呼吸努力的压力变化;并且
    根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻。
  16. 根据权利要求15所述的通气控制方法,其特征在于:
    根据所述自主呼吸努力的压力变化的速度、趋势、幅度中的一个或多个识别所述吸气触发时刻或所述呼气触发时刻。
  17. 根据权利要求15所述的通气控制方法,其特征在于:
    所述压力变化包括患者的食道压、肺内压、隆突压、胃内压或插管末端压力中的一个或多个的压力变化。
  18. 根据权利要求15所述的通气控制方法,其特征在于:
    识别到吸气触发时刻后,控制所述通气装置由呼气相切换到吸气相,识别到呼气触发时刻后,控制所述通气装置由吸气相切换到呼气相。
  19. 根据权利要求15所述的通气控制方法,其特征在于:识别到吸气触发时刻和呼气触发时刻后,所述通气控制方法还包括:
    输出所述吸气触发时刻和所述呼气触发时刻。
  20. 根据权利要求15所述的通气控制方法,其特征在于:识别到吸气触发时刻和呼气触发时刻后,所述通气控制方法还包括:
    计算人机同步信息。
  21. 根据权利要求16所述的通气控制方法,其特征在于:
    所述反映患者自主呼吸努力的压力变化为所述压力变化的幅度和趋势;
    所述根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻具体为:
    在所述压力变化呈下降趋势且所述压力变化的幅度达到第一阈值时,识别 患者处于吸气触发时刻,在所述压力变化呈上升趋势且所述压力变化的幅度达到第二阈值时,识别患者处于呼气切换时刻。
  22. 根据权利要求21所述的通气控制方法,其特征在于:
    所述压力变化的幅度为实测压力与呼气末压力的变化幅度。
  23. 根据权利要求21所述的通气控制方法,其特征在于:
    所述第一阈值和所述第二阈值均为固定阈值或可变阈值。
  24. 根据权利要求16所述的通气控制方法,其特征在于:所述反映患者自主呼吸努力的压力变化为所述压力变化的速度;
    所述根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻具体为:
    在所述压力变化的速度从零附近减小时,识别患者处于吸气触发时刻,在所述压力变化的速度减小至零附近时,识别患者处于呼气切换时刻。
  25. 根据权利要求21所述的通气控制方法,其特征在于:
    所述压力变化的幅度为实测压力与预测压力的变化幅度,且所述第一阈值和所述第二阈值均大于零。
  26. 根据权利要求25所述的通气控制方法,其特征在于:
    所述预测压力通过对所述实测压力进行拟合预测获得。
  27. 根据权利要求15所述的通气控制方法,其特征在于,所述测量反映患者自主呼吸努力的压力变化具体为:
    获得反映患者自主呼吸努力的压力波形,
    对所述压力波形提取包络;
    所述根据测得的反映患者自主呼吸努力的所述压力变化识别患者的吸气触发时刻或呼气触发时刻具体为:
    根据所述包络识别患者的吸气触发时刻或呼气触发时刻。
  28. 根据权利要求27所述的通气控制方法,其特征在于:所述根据所述包 络识别患者的吸气触发时刻或呼气触发时刻具体为:
    根据所述包络的波峰、波谷识别患者的吸气触发时刻和呼气触发时刻。
PCT/CN2018/085390 2018-05-02 2018-05-02 呼吸机和呼吸机的通气控制方法 WO2019210470A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880006528.6A CN110753564B (zh) 2018-05-02 2018-05-02 呼吸机和呼吸机的通气控制方法
EP18917420.4A EP3789067B1 (en) 2018-05-02 2018-05-02 Respirator
PCT/CN2018/085390 WO2019210470A1 (zh) 2018-05-02 2018-05-02 呼吸机和呼吸机的通气控制方法
US17/086,544 US20210093816A1 (en) 2018-05-02 2020-11-02 Respirator and ventilation control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085390 WO2019210470A1 (zh) 2018-05-02 2018-05-02 呼吸机和呼吸机的通气控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/086,544 Continuation US20210093816A1 (en) 2018-05-02 2020-11-02 Respirator and ventilation control method therefor

Publications (1)

Publication Number Publication Date
WO2019210470A1 true WO2019210470A1 (zh) 2019-11-07

Family

ID=68386896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085390 WO2019210470A1 (zh) 2018-05-02 2018-05-02 呼吸机和呼吸机的通气控制方法

Country Status (4)

Country Link
US (1) US20210093816A1 (zh)
EP (1) EP3789067B1 (zh)
CN (1) CN110753564B (zh)
WO (1) WO2019210470A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111840721A (zh) * 2020-06-22 2020-10-30 东北大学 呼吸机的控制方法及装置、电子设备和存储介质
EP4268721A4 (en) * 2020-12-25 2024-02-28 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. MEDICAL DEVICE AND POSITION PROMPTING METHOD FOR ESOPHAGUS MANOMETRY DEVICE THEREOF

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021189197A1 (zh) * 2020-03-23 2021-09-30 深圳迈瑞生物医疗电子股份有限公司 一种呼吸监测装置及方法
CN116438609A (zh) * 2020-12-24 2023-07-14 深圳迈瑞生物医疗电子股份有限公司 医疗通气设备及通气监测方法
CN113181490B (zh) * 2021-04-14 2022-03-01 北京航空航天大学 一种基于二次规划的机械通气中呼吸***特征估算的方法
CN113951868B (zh) * 2021-10-29 2024-04-09 北京富通东方科技有限公司 机械通气患者人机不同步检测方法及装置
CN114099883B (zh) * 2022-01-29 2022-06-10 深圳摩尔雾化健康医疗科技有限公司 雾化器控制方法、设备、介质和***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030000526A1 (en) * 2001-03-30 2003-01-02 Fred Gobel Method for controlling a ventilator, and system therefor
CN1733330A (zh) * 2004-08-10 2006-02-15 郑则广 利用食道电极膈肌肌电图触发呼吸机送气的方法
US20140012150A1 (en) * 2012-07-09 2014-01-09 Nellcor Puritan Bennett Llc Systems and methods for missed breath detection and indication
CN104042439A (zh) * 2013-06-23 2014-09-17 曲艳文 作用于胸膜腔的呼吸机和其通气的方法
CN104135925A (zh) * 2012-02-20 2014-11-05 佛罗里达大学研究基金会有限公司 用于预测呼吸功的方法及设备
US9027552B2 (en) 2012-07-31 2015-05-12 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
US20160114115A1 (en) * 2014-10-27 2016-04-28 Covidien Lp Ventilation triggering
US20190231202A1 (en) 2018-01-31 2019-08-01 Loewenstein Medical Technology S.A. System for recording the breathing efforts of a patient

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9727367D0 (en) * 1997-12-24 1998-02-25 Brain Archibald Ian Jeremy Improvements in laryngeal mask airway devices
WO2000045881A1 (en) * 1999-02-03 2000-08-10 University Of Florida Method and apparatus for nullifying the imposed work of breathing
US6626175B2 (en) * 2000-10-06 2003-09-30 Respironics, Inc. Medical ventilator triggering and cycling method and mechanism
DE102004006396B4 (de) * 2004-02-10 2021-11-04 Löwenstein Medical Technology S.A. Vorrichtung zur Beatmung sowie Verfahren zur Steuerung eines Beatmungsgerätes
US7422015B2 (en) * 2005-11-22 2008-09-09 The General Electric Company Arrangement and method for detecting spontaneous respiratory effort of a patient
CA2651034C (en) * 2006-05-12 2014-05-06 Yrt Limited Method and device for generating a signal that reflects respiratory efforts in patients on ventilatory support
US20090078255A1 (en) * 2007-09-21 2009-03-26 Bowman Bruce R Methods for pressure regulation in positive pressure respiratory therapy
SG10201502886VA (en) * 2009-08-13 2015-05-28 Hidetsugu Asanoi Device For Calculating Respiratory Waveform Information And Medical Device Using Respiratory Waveform Information
US8638200B2 (en) * 2010-05-07 2014-01-28 Covidien Lp Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient
DE102010055253B4 (de) * 2010-12-20 2016-11-10 Drägerwerk AG & Co. KGaA Automatisch gesteuertes Beatmungsgerät
CN103608062B (zh) * 2011-03-18 2016-04-13 马奎特紧急护理公司 支持换气的呼吸设备和方法
US9993604B2 (en) * 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
CA2897883A1 (en) * 2013-01-14 2014-07-17 University Health Network Mask and method for breathing disorder identification, characterization and/or diagnosis
CN103340630B (zh) * 2013-06-18 2015-04-15 东南大学 一种双水平呼吸机的呼吸状态识别装置及其识别方法
US20150090258A1 (en) * 2013-10-01 2015-04-02 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
US20160310730A1 (en) * 2014-03-28 2016-10-27 Antonio Garcia Martins Stimulation system for exercising diaphragm and method of operation thereof
DE102015009056A1 (de) * 2014-08-28 2016-03-03 Weinmann Geräte für Medizin GmbH + Co. KG Beatmungsgerät und Verfahren für ein Beatmungsgerät
CN105664313B (zh) * 2014-11-21 2019-11-19 中国医学科学院北京协和医院 一种呼吸机及其通气控制装置和方法
DE102015015296A1 (de) * 2015-11-30 2017-06-01 Drägerwerk AG & Co. KGaA Vorrichtung und Verfahren zum Bereitstellen von Datensignalen indizierend Muskelaktivitäten, welche für inspiratorische sowie exspiratorische Atemanstrengungen eines Patienten relevant sind

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030000526A1 (en) * 2001-03-30 2003-01-02 Fred Gobel Method for controlling a ventilator, and system therefor
CN1733330A (zh) * 2004-08-10 2006-02-15 郑则广 利用食道电极膈肌肌电图触发呼吸机送气的方法
CN104135925A (zh) * 2012-02-20 2014-11-05 佛罗里达大学研究基金会有限公司 用于预测呼吸功的方法及设备
US20140012150A1 (en) * 2012-07-09 2014-01-09 Nellcor Puritan Bennett Llc Systems and methods for missed breath detection and indication
US9027552B2 (en) 2012-07-31 2015-05-12 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
CN104042439A (zh) * 2013-06-23 2014-09-17 曲艳文 作用于胸膜腔的呼吸机和其通气的方法
US20160114115A1 (en) * 2014-10-27 2016-04-28 Covidien Lp Ventilation triggering
US20190231202A1 (en) 2018-01-31 2019-08-01 Loewenstein Medical Technology S.A. System for recording the breathing efforts of a patient

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3789067A4
YOUNES ET AL.: "A method for monitoring and improving patient: ventilator interaction", INTENSIVE CARE MEDICINE, vol. 33, 2007, pages 1337 - 1346, XP019536326

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111840721A (zh) * 2020-06-22 2020-10-30 东北大学 呼吸机的控制方法及装置、电子设备和存储介质
CN111840721B (zh) * 2020-06-22 2022-11-22 东北大学 呼吸机的控制方法及装置、电子设备和存储介质
EP4268721A4 (en) * 2020-12-25 2024-02-28 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. MEDICAL DEVICE AND POSITION PROMPTING METHOD FOR ESOPHAGUS MANOMETRY DEVICE THEREOF

Also Published As

Publication number Publication date
CN110753564B (zh) 2023-04-11
CN110753564A (zh) 2020-02-04
EP3789067A1 (en) 2021-03-10
EP3789067A4 (en) 2021-05-12
US20210093816A1 (en) 2021-04-01
EP3789067B1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2019210470A1 (zh) 呼吸机和呼吸机的通气控制方法
US11666716B2 (en) System for automated adjustment of a pressure set by a ventilation device
JP7004748B2 (ja) 機械的人工換気のための自動的なpeepの選択
US8783250B2 (en) Methods and systems for transitory ventilation support
TWI658816B (zh) 週期性呼吸的即時檢測之方法與器件
CA3046571C (en) Methods and systems for drive pressure spontaneous ventilation
EP2726127B1 (en) Apparatus for assisting airway clearance
JPS5948106B2 (ja) 呼吸監視装置
AU2866500A (en) Method and apparatus for controlling a medical ventilator
JP2014524326A (ja) 人工呼吸療法装置を制御するための方法及び機器
JP2014506163A (ja) 被検体に強制吸気呼気を提供するシステム及び方法
US11752287B2 (en) Systems and methods for automatic cycling or cycling detection
CN112118884A (zh) 用于利用信号失真的呼吸努力检测的***和方法
WO2020037519A1 (zh) 通气触发检测方法、装置、通气设备及存储介质
WO2019096714A1 (en) Cough detection in a respiratory support system
JP2020519375A (ja) 呼吸障害の治療のための方法および装置
CN112839696A (zh) 一种呼吸识别方法及装置、通气设备、存储介质
EP3383464B1 (en) Method of co2 measurement during non-invasive ventilation
AU2020321288B2 (en) Device for supportive ventilation of a living being and computer program
US11925757B2 (en) Ventilator
CN107362427B (zh) 一种心肺复苏期间的通气方法及呼吸机
US20230201502A1 (en) Ventilator and Method for Determining at Least the Tissue-Related Resistance in the Respiratory Tract
CN116370769B (zh) 一种通气设备、方法及存储介质
WO2023094966A1 (en) End tidal carbon dioxide measurement during high flow oxygen therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018917420

Country of ref document: EP

Effective date: 20201202