WO2019208826A1 - 強化繊維複合樹脂、コンポジットプリプレグおよび積層体 - Google Patents

強化繊維複合樹脂、コンポジットプリプレグおよび積層体 Download PDF

Info

Publication number
WO2019208826A1
WO2019208826A1 PCT/JP2019/018112 JP2019018112W WO2019208826A1 WO 2019208826 A1 WO2019208826 A1 WO 2019208826A1 JP 2019018112 W JP2019018112 W JP 2019018112W WO 2019208826 A1 WO2019208826 A1 WO 2019208826A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fibers
fiber composite
mass
prepreg
Prior art date
Application number
PCT/JP2019/018112
Other languages
English (en)
French (fr)
Inventor
泰典 樽谷
加賀 紀彦
雅俊 平田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020515634A priority Critical patent/JPWO2019208826A1/ja
Publication of WO2019208826A1 publication Critical patent/WO2019208826A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to a reinforced fiber composite resin, a composite prepreg, and a laminate.
  • fiber reinforced composite materials such as fiber reinforced plastic (FRP) have become widespread as materials having both lightness and rigidity.
  • This fiber-reinforced composite material is a material obtained by reinforcing a matrix resin made of polypropylene or nylon with a reinforcing fiber such as glass fiber, carbon fiber or aramid fiber, and many of the fiber-reinforced composite materials on the market are
  • the composite prepreg is manufactured by laminating a plurality of composite prepregs, or the composite prepreg itself.
  • composite prepreg refers to a sheet-like material in which a reinforcing fiber is impregnated with a resin.
  • Patent Document 1 aims to optimize the form of the fiber and improve the scratch resistance by squeezing the surface of the composite material.
  • the composite prepreg is required to have high energy absorption (including shock absorption and vibration absorption) in addition to rigidity.
  • a method in which the matrix is made of rubber, which is generally considered to have high energy absorption, together with a resin material such as polypropylene can be considered.
  • an object of the present invention is to provide a reinforced fiber composite resin that achieves both high rigidity and high energy absorption.
  • An object of the present invention is to provide a composite prepreg that achieves both high rigidity and high energy absorption.
  • Another object of the present invention is to provide a laminate that has both high rigidity and high energy absorption.
  • Reinforcing fiber composite resin In a reinforcing fiber composite resin including a matrix portion made of resin, The matrix portion is composed of two types of resins, a first resin and a second resin, and is composed of two phases that are incompatible with each other,
  • the first resin is a thermoplastic resin; Tan ⁇ of the second resin is 0.10 to 2.00,
  • the ratio of the volume of the reinforcing fibers to the total volume of the reinforcing fiber composite resin is 10% or more. It is a certain reinforced fiber composite resin. Thereby, high rigidity and high energy absorptivity can be made compatible.
  • a reinforced fiber composite resin that achieves both high rigidity and high energy absorption.
  • a composite prepreg having both high rigidity and high energy absorption can be provided.
  • a laminate having both high rigidity and high energy absorption it is possible to provide.
  • FIG. 1 is an AFM image of the sheet of Reference Example 1.
  • FIG. 2 is a schematic diagram of the AFM image of FIG.
  • FIG. 3 is a schematic diagram of the laminate of Example 1.
  • the matrix part is composed of two kinds of resins, the first resin and the second resin
  • the matrix part is formed of the first resin and the second resin.
  • the matrix portion is formed only from the first resin and the second resin.
  • the matrix portion is composed of two phases that are incompatible with each other” means that the matrix portion is formed of two phases that are incompatible with each other. It does not mean that it is formed only from phases.
  • Reinforcing fiber composite resin Reinforcing fiber composite resin according to the present invention, Reinforcing fibers, In a reinforcing fiber composite resin including a matrix portion made of resin, The matrix portion is composed of two types of resins, a first resin and a second resin, and is composed of two phases that are incompatible with each other,
  • the first resin is a thermoplastic resin; Tan ⁇ of the second resin is 0.10 to 2.00,
  • the ratio of the volume of the reinforcing fibers to the total volume of the reinforcing fiber composite resin is 10% or more. It is a certain reinforced fiber composite resin.
  • the reinforcing fiber composite resin according to the present invention includes reinforcing fibers and a matrix portion made of resin.
  • the reinforcing fiber, the matrix part, the compatibilizer as an optional component, and the like will be described as an example.
  • the reinforcing fiber has a function of imparting rigidity to the reinforcing fiber composite resin according to the present invention.
  • a continuous fiber and / or a reinforcing fiber which is a discontinuous fiber used in known FRP can be used.
  • the reinforcing fiber for example, glass fiber, glass milled fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone koji fiber, Metal fiber etc. are mentioned. These may be hollow.
  • the reinforcing fiber may be pretreated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound.
  • a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound.
  • the reinforcing fibers may be used alone or in combination of two or more.
  • the reinforcing fiber is preferably glass fiber and / or carbon fiber, more preferably carbon fiber, from the viewpoint of obtaining high rigidity while being lightweight.
  • the reinforcing fiber is preferably a carbon fiber.
  • high rigidity is obtained although being lightweight.
  • the continuous fiber refers to a fiber having a length of 5 cm or more, and includes fibers sewn into a sheet shape.
  • a discontinuous fiber refers to reinforcing fibers other than a continuous fiber.
  • fibers having a fiber length of 0.5 mm or more and less than 5 cm it is more preferable when a three-dimensional shape such as a hemispherical shape or a rib is formed by a stamping method or the like.
  • a fiber having a fiber length of less than 0.5 mm is preferably used particularly during molding by injection molding.
  • discontinuous fibers are also preferably used, and when creating a complicated shape, there are parts made of continuous fibers and parts made of discontinuous fibers. May be.
  • injection molding is also preferably selected.
  • the reinforcing fiber has an average diameter of a single fiber of 0.1 to 20 ⁇ m, preferably 5 to 10 ⁇ m, more preferably 6 to 8 ⁇ m.
  • the ratio of the volume of the reinforcing fiber to the total volume of the reinforcing fiber composite resin (Volume of fiber, hereinafter sometimes referred to as “Vf”) is 10% or more.
  • Vf is preferably 30% or more and more preferably 70% or less from the viewpoint of increasing the rigidity of the reinforcing fiber composite resin.
  • Vf is preferably 30% or more, more preferably 30% or more, and preferably 70% or less from the viewpoint of increasing the rigidity of the reinforcing fiber composite resin. % Or less is more preferable, 58% or less is more preferable, 53% or less is more preferable, and 50% or less is more preferable.
  • the arrangement of the reinforcing fibers in the reinforcing fiber composite resin is not particularly limited, and can be an arbitrary arrangement (UD, cross, pseudo isotropic, etc.), and can be arbitrarily selected.
  • a matrix part consists of two types of resin, 1st resin and 2nd resin, and consists of two phases which are mutually incompatible.
  • the incompatibility of the matrix portion is determined by kneading using a biaxial extruder, then preparing a sheet from the obtained pellets in a 15 cm ⁇ 15 cm ⁇ 2 mm mold, and forming the sheet as an ultrathin section by a microtome.
  • the phase separation structure is confirmed by observing with an atomic force microscope (AFM), the matrix parts are incompatible with each other.
  • the two phases that are incompatible with each other in the matrix part have a sea-island structure, that is, one phase (sea phase) that appears relatively continuous, and the other phase (island phase) is mixed discontinuously. It may be a structure or a co-continuous structure, that is, a structure in which one phase that appears relatively continuous and the other phase that appears relatively continuous are mixed.
  • the sea phase is the first resin and the island phase is the second resin.
  • two mutually incompatible phases of the matrix portion have a co-continuous structure, one phase is the first resin and the other phase is the second resin.
  • the matrix portion consists of only two phases that are incompatible with each other. In another embodiment, the matrix portion is composed of two or more phases (eg, three phases) that are incompatible with each other.
  • the first resin is a thermoplastic resin.
  • the first resin mainly functions as a matrix of the reinforcing fiber composite resin according to the present invention.
  • the thermoplastic resin of the first resin for example, polyamide, polyester, polyphenylene sulfide, polyphenylene oxide, polycarbonate, polylactic acid, polyacetal, polysulfone, polytetrafluoroethylene, polyetherimide, polyamideimide, polyimide, polyethersulfone, Polyetherketone, Polythioetherketone, Polyetheretherketone, Polyetherketoneketone, Polyvinyl chloride, Polyvinyl alcohol, Polyethylene, Polypropylene, Polystyrene, Acrylonitrile butadiene styrene (ABS), Ethylene / vinyl acetate copolymer (EVA), Polyurethane , Rubbery polymer, polyalkylene oxide and the like.
  • 1st resin may be used individually by 1 type, and may be used in combination of 2 or more type
  • polyamides examples include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polypentamethylene adipamide (nylon 56), polytetramethylene adipamide (nylon 46), polyhexamethylene Sebacamide (nylon 610), polypentamethylene sebacamide (nylon 510), polyhexamethylene dodecane (nylon 612), polyundecanamide (nylon 11), polydodecanamide (nylon 12), polycaproamide / poly Hexamethylene adipamide copolymer (nylon 6/66), polycaproamide / polyhexamethylene terephthalamide copolymer (nylon 6 / 6T), polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer (nylon 6) / 6T), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6I), polyhexamethylene adip
  • polyester examples include polybutylene terephthalate, polybutylene (terephthalate / isophthalate), polybutylene (terephthalate / adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene naphthalate, polyethylene terephthalate, Polyethylene (terephthalate / isophthalate), polyethylene (terephthalate / adipate), polyethylene (terephthalate / 5-sodium sulfoisophthalate), polybutylene (terephthalate / 5-sodium sulfoisophthalate), polyethylene naphthalate, polycyclohexanedimethylene terephthalate, etc. Can be mentioned.
  • polyphenylene oxide examples include poly (2,6-dimethyl-1,4-phenylene oxide), poly (2-methyl-6-ethyl-1,4-phenylene oxide), and poly (2,6-diphenyl-1). , 4-phenylene oxide), poly (2-methyl-6-phenyl-1,4-phenylene oxide), poly (2,6-dichloro-1,4-phenylene oxide) and the like.
  • a copolymer such as a copolymer of 2,6-dimethylphenol and other phenols (for example, 2,3,6-trimethylphenol) can also be used.
  • polypropylene examples include propylene homopolymer, ethylene / propylene copolymer, propylene / 1-butene copolymer, and ethylene / propylene / 1-butene copolymer.
  • polyamides examples include polyamide 6 UBE nylon (registered trademark) grades 1013B and 1022B manufactured by Ube Industries, Ltd. Further, for example, as a commercial product of polypropylene, Prime Polypro (registered trademark) J-700GP, which is a propylene homopolymer of Prime Polymer Co., Ltd., can be mentioned.
  • the ratio of the first resin in the matrix portion may be adjusted as appropriate. For example, with respect to the total mass of the resin in the matrix portion (including a compatibilizer when the compatibilizer described later is a resin) 50 to 95% by mass.
  • the ratio of the first resin is, for example, 50% by mass or more, 55% by mass or more, 60% by mass or more, 65% by mass or more, 70% by mass or more, and 75% by mass or more with respect to the total mass of the resin in the matrix portion. 80 mass% or more, 85 mass% or more, or 90 mass% or more.
  • the ratio of the first resin is, for example, 95% by mass or less, 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, and 70% by mass or less with respect to the total mass of the resin in the matrix part. 65 mass% or less, 60 mass% or less, or 55 mass% or less.
  • the second resin has a tan ⁇ of 0.10 to 2.00.
  • the second resin mainly has a function of imparting energy absorption to the prepreg according to the present invention.
  • a 2nd resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the value of the tan ⁇ peak measured with a viscoelasticity evaluation apparatus (ARES) under the conditions of a strain of 0.05%, a frequency of 10 Hz, and a heating rate of 4 ° C./min is used.
  • the second resin examples include olefin (TPO); amide (TPA); ester (TPC); styrene (TPS); urethane (TPU); and thermoplastic rubber cross-linked body (TPV).
  • TPO olefin
  • TPA amide
  • TPC ester
  • TPS styrene
  • TPU urethane
  • TV thermoplastic rubber cross-linked body
  • thermoplastic elastomer examples include blends of ethylene-propylene-diene terpolymer and polypropylene (TPO- (EPDM + PP)), ethylene-propylene-diene terpolymer and polyethylene. Examples thereof include blends (TPO- (EPDM + PE)).
  • thermoplastic elastomer examples include thermoplastic elastomers in which the hard segment is nylon 6, nylon 66, nylon 11, nylon 12, and the like, and the soft segment is polyether and / or polyester.
  • ester-based (TPC) thermoplastic elastomers examples include thermoplastic elastomers in which the hard segment is polybutylene terephthalate and the soft segment is polyether and / or polyester.
  • thermoplastic elastomer examples include styrene-butadiene-styrene (SBS), polystyrene-poly (ethylene-butylene) -polystyrene (SEBS), polystyrene-poly (ethylene-propylene) -polystyrene (SEPS), Examples include polystyrene-poly (ethylene-ethylene / propylene) -polystyrene (SEEPS), styrene-isoprene-styrene (SIS), and the like.
  • SBS styrene-butadiene-styrene
  • SEBS polystyrene-poly (ethylene-butylene) -polystyrene
  • SEPS polystyrene-poly (ethylene-propylene) -polystyrene
  • SEEPS polystyrene-poly (ethylene-ethylene / propylene) -polys
  • thermoplastic elastomers examples include thermoplastic elastomers in which the hard segment is aromatic or aliphatic and the soft segment is polyester, polyether, polyether and polyester, polycarbonate, polycaprolactone, or the like. Can be mentioned.
  • thermoplastic rubber cross-linked body for example, a composite of EPDM and PP, in which the phase is highly cross-linked and finely dispersed in the continuous phase of PP; And a composite of NBR and PP finely dispersed in the continuous phase.
  • the second resin is preferably an olefin-based thermoplastic elastomer.
  • the impact absorbability is increased.
  • DF series such as Tuffmer (registered trademark) DF640, DF610, and DF605, which are ethylene-based copolymers of Mitsui Chemicals, Inc.
  • XM series such as Tuffmer (registered trademark) XM7070, XM7080, and XM7090
  • Tough selenium (registered trademark) series such as Tufselen (registered trademark) T1712, H3002 which is a special propylene-based elastomer of Sumitomo Chemical Co., Ltd., and propylene homopolymer of Prime Polymer Co., Ltd.
  • Prime Polypro registered trademark
  • J-700GP Kuraray's polystyrene hard segment and vinyl-polydiene soft segment, such as Hybler (registered trademark) 5125 and 5127, unhydrogenated grade 5000 series HYBRAR (registered trademark) 7125,7311 hydrogenated grade 7000 series such as, a hard segment of polystyrene, such as 4000 series, such as a copolymer comprising soft segments of the polyolefin structure Septon (TM) 4033 and the like.
  • the ratio of the second resin in the matrix portion may be adjusted as appropriate. For example, with respect to the total mass of the resin in the matrix portion (including a compatibilizer when the compatibilizer described later is a resin) 5 to 50% by mass.
  • the ratio of the second resin is, for example, 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more with respect to the total mass of the resin in the matrix portion. , 35 mass% or more, 40 mass% or more, or 45 mass% or more.
  • the ratio of the second resin is, for example, 50% by mass or less, 45% by mass or less, 40% by mass or less, 35% by mass or less, 30% by mass or less, and 20% by mass or less with respect to the total mass of the resin in the matrix part. 15 mass% or less or 10 mass% or less.
  • the ratio of the volume of the second resin to the total volume of the matrix portion is, for example, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more or 50% or more.
  • the ratio of the volume of the second resin to the total volume of the matrix portion is, for example, 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less or 10% or less.
  • the first resin has a higher tensile elastic modulus than the second resin.
  • the resin forming the matrix portion may be a copolymer having a component of the first resin and a component of the second resin in the molecule, and the first resin and the second resin are separate resins. Also good.
  • the matrix portion may be composed of two types of resins, the first resin and the second resin, and may be composed of two phases that are incompatible with each other. In addition to the first resin and the second resin, the matrix portion may be arbitrarily selected.
  • a third resin may be included.
  • a thermoplastic resin and / or a thermosetting resin can be used as the third resin.
  • a 3rd resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermoplastic resin of the third resin examples include polyamide, polyester, polyphenylene sulfide, polyphenylene oxide, polycarbonate, polylactic acid, polyacetal, polysulfone, polytetrafluoroethylene, polyetherimide, polyamideimide, polyimide, polyethersulfone, Examples thereof include polyether ketone, polythioether ketone, polyether ether ketone, polyethylene, polypropylene, styrene resins such as polystyrene and ABS, rubbery polymers, and polyalkylene oxide resins.
  • thermosetting resin of the third resin examples include an epoxy resin, an unsaturated polyester resin, a phenol resin, a vinyl ester resin, and a benzoxazine resin.
  • the matrix portion consists of only two types of resins, a first resin and a second resin. In another embodiment, the matrix portion is made of three types of resins, a first resin, a second resin, and a third resin.
  • the compatibilizing agent has a function of increasing the affinity between the resin in the matrix portion and the reinforcing fibers.
  • the compatibilizer include an acid-modified, epoxy-modified, or urethane-modified second resin.
  • the compatibilizers may be used alone or in combination of two or more.
  • the reinforcing fiber composite resin according to the present invention preferably further contains a compatibilizer. Thereby, the impact absorbability is increased.
  • Examples of the acid used for modification include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, and angelic acid. Also, derivatives of these unsaturated carboxylic acids can be used.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, and angelic acid.
  • derivatives of these unsaturated carboxylic acids can be used.
  • the derivatives include, for example, acid anhydrides, esters, amides, imides, metal salts and the like, and specific examples include maleic anhydride, itaconic anhydride, methyl acrylate, methyl methacrylate, ethyl acrylate, acrylic Examples thereof include propyl acid, butyl acrylate, ethyl maleate, acrylamide, maleic acid amide, sodium acrylate, sodium methacrylate and the like.
  • the acid used for modification is one or more selected from the group consisting of maleic acid and maleic anhydride.
  • the acid-modified second resin examples include maleic anhydride-modified styrene-butadiene-styrene (SBS), maleic anhydride-modified polystyrene-poly (ethylene-butylene) -polystyrene (SEBS), and maleic anhydride-modified polystyrene-poly.
  • SBS maleic anhydride-modified styrene-butadiene-styrene
  • SEBS maleic anhydride-modified polystyrene-poly
  • SEBS maleic anhydride-modified polystyrene-poly.
  • maleic anhydride-modified thermoplastic elastomers such as (ethylene-propylene) -polystyrene (SEPS) and maleic anhydride-modified styrene-isoprene-styrene (SIS).
  • epoxy-modified second resin examples include epoxy-modified styrene-butadiene-styrene (SBS), epoxy-modified polystyrene-poly (ethylene-butylene) -polystyrene (SEBS), and epoxy-modified polystyrene-poly (ethylene-propylene)- Examples thereof include epoxy-modified thermoplastic elastomers such as polystyrene (SEPS) and epoxy-modified styrene-isoprene-styrene (SIS).
  • SBS epoxy-modified styrene-butadiene-styrene
  • SEBS epoxy-modified polystyrene-poly (ethylene-butylene) -polystyrene
  • SIS epoxy-modified polystyrene-propylene
  • the amount of the modifying agent with respect to the second resin is preferably 0.01 to 8% by mass, and more preferably 0.02%. ⁇ 5% by mass.
  • compatibilizer commercially available products may be used.
  • examples of commercially available products include Tuftec (registered trademark) M1913, which is a maleic anhydride-modified hydrogenated styrene thermoplastic elastomer manufactured by Asahi Kasei Co., Ltd.
  • Examples include M series such as Tuffmer (registered trademark) MH7010, which is a modified olefin elastomer.
  • the content of the compatibilizer may be appropriately adjusted.
  • the content of the compatibilizer is 10 to 90% by mass, more preferably 10 to 70% by mass, more preferably, based on the total mass of the second resin and the compatibilizer. Is 10 to 55 mass%, more preferably 10 to 43 mass%, more preferably 10 to 33 mass%, more preferably 10 to 23 mass%, more preferably 10 to 20 mass%.
  • the mass of the compatibilizer is preferably 10 to 90% by mass with respect to the total mass of the second resin and the compatibilizer. Thereby, the outstanding shock absorption property is obtained.
  • the reinforcing fiber composite resin or matrix portion according to the present invention may contain a crystal nucleating agent / release agent, lubricant, antioxidant, flame retardant, light fastener, weathering agent and the like in addition to the components described above. Good. These other components may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the thickness of the reinforcing fiber composite resin according to the present invention may be adjusted as appropriate, and is, for example, 0.5 to 10 mm, and more preferably 1 to 5 mm.
  • the use of the reinforced fiber composite resin according to the present invention is not particularly limited, and can be suitably used particularly for uses requiring rigidity and energy absorption.
  • Applications include, for example, composite prepregs, vehicle parts such as automobiles (for example, bodies), and trains; aircraft parts; vibration-proof parts; sound absorption and sound insulation materials; building materials; Parts, OA equipment parts; pressure vessels; hydrogen tanks and the like.
  • the manufacturing method of the reinforcing fiber composite resin according to the present invention may use the above-described reinforcing fiber, a resin containing at least the first and second resins, and the like, and known reinforcing fiber composite resins such as a film stack method and an extrusion molding method. It can manufacture with the manufacturing method of.
  • the reinforcing fiber composite resin according to the present invention includes, for example, a resin composition containing at least a first resin and a second resin, and optionally containing a compatibilizer, and the resin composition is formed into a sheet form using a T die or the like.
  • the sheet-shaped resin composition is impregnated with reinforcing fibers and subjected to cold and hot press applying temperature and / or pressure.
  • the temperature when the temperature is applied is, for example, 100 to 350 ° C.
  • the pressure when applying pressure is, for example, 0.5 to 50 MPa.
  • a composite prepreg according to the present invention (hereinafter sometimes simply referred to as “prepreg”) is a composite prepreg using the above-mentioned reinforcing fiber composite resin. Thereby, high rigidity and high energy absorptivity can be made compatible.
  • the prepreg production method according to the present invention may use the above-described reinforcing fiber composite resin, and can be produced by a known prepreg production method such as a film stack method or an extrusion molding method.
  • the laminate according to the present invention is a laminate in which a plurality of the composite prepregs described above are laminated. Thereby, high rigidity and high energy absorptivity can be made compatible.
  • a plurality of prepregs according to the present invention may be laminated such as 2 to 100 layers or 16 to 40 layers.
  • the orientation directions of the reinforcing fibers may be the same or different.
  • stress concentration can be avoided, which is preferable.
  • each prepreg which forms a laminated body may be the same, and may differ.
  • a laminated body in which only a plurality of prepregs according to the present invention are laminated has a higher volume ratio of reinforcing fibers in the laminated body having a constant volume and higher rigidity than a laminated body having a sandwich structure described later.
  • the arrangement of the reinforcing fibers between the adjacent prepreg layers is different in the range of 0 to 90 ° in the XY plane.
  • the arrangement of reinforcing fibers between adjacent prepreg layers may be alternately 0 ° and 90 °, or may be randomly or arbitrarily arranged in the range of 0 to 90 °.
  • the laminate according to the present invention may have a sandwich structure by laminating a prepreg according to the present invention through a resin layer made of a resin such as a second resin.
  • the number of layers of the prepreg on one side sandwiching the resin layer may be one layer or two or more layers.
  • the number of prepreg layers sandwiching the resin layer may be the same or different on one surface side and the other surface side of the resin layer.
  • the number of resin layers may be one or two or more.
  • the number of prepreg layers on one surface side sandwiching the resin layer when the number of prepreg layers on one surface side sandwiching the resin layer is two or more, the number of layers may be an odd number or an even number.
  • the arrangement of reinforcing fibers between adjacent prepreg layers may be the same as described above, or may be different in the range of 0 to 90 ° in the XY plane. It may be 0 ° and 90 ° alternately.
  • the application of the laminate according to the present invention is not particularly limited, and can be suitably used for applications requiring rigidity and energy absorption.
  • Applications include, for example, parts for vehicles such as automobiles (for example, bodies) and trains; parts for aircraft; anti-vibration parts; sound-absorbing and sound-insulating materials; building materials; power generation equipment parts for power generation such as wind power generation; Equipment parts; pressure vessels; hydrogen tanks.
  • the laminate manufacturing method according to the present invention may be laminated using the prepreg according to the present invention.
  • the laminate having only the prepreg according to the present invention or the one having the prepreg laminated through a resin layer is used.
  • it can be manufactured by performing a hot and cold press applying temperature and / or pressure.
  • Carbon fiber continuous fiber
  • Polyamide resin Trade name UBE nylon (registered trademark) grade 1013B manufactured by Ube Industries, Ltd. (indicated as PA6 1013B in Table 1)
  • Polyamide resin Trade name UBE nylon (registered trademark) grade 1022B manufactured by Ube Industries, Ltd.
  • Example 3 of Table 1 A resin composition was prepared according to the formulation shown in Example 3 of Table 1.
  • seat was produced on the conditions for the incompatibility of the matrix part mentioned above, and the obtained sheet
  • the AFM image is shown in FIG.
  • the first resin and the second resin formed an incompatible two-phase sea-island structure. Further, the sea phase in FIG. 1 was the first resin PA6 1022B, and the island phase was the second resin 7125.
  • FIG. 2 is a schematic diagram of the AFM image of FIG.
  • the major axis direction of the island phase is the MD direction
  • the perpendicular direction is the TD direction.
  • Example 1 A resin composition was prepared with the formulation shown in Table 1. The resin composition was extruded into a sheet shape by a T-die to obtain 16 sheet-shaped resin compositions. Each sheet-shaped resin composition was brought into contact with and impregnated with a carbon fiber T700SC spread UD sheet (50 g / m 2 ). At this time, as shown in FIG. 3, the fiber composition of the carbon fiber and the MD direction of the matrix part were arranged orthogonal to the resin composition positioned oddly from the bottom when the laminate was formed. On the other hand, the fiber direction of the carbon fiber and the MD direction of the matrix portion were arranged in parallel in the resin composition positioned evenly from the bottom when the laminate was formed. And the laminated body of area 900cm ⁇ 2 > and thickness 1.8mm was manufactured by applying the temperature of 250 degreeC and the pressure of 1 Mpa to this laminated sheet-like resin composition.
  • FIG. 3 is a schematic diagram of the laminate of Example 1. However, in order to simplify the description, in FIG. 3, the number of layers is not sixteen but six. As shown in FIG. 3, in the laminated body of Example 1, MD direction of each prepreg which comprises a laminated body is the same.
  • Example 2 ⁇ Examples 2 to 8>
  • a laminate (area 900 cm 2 , thickness 1.8 mm) was obtained in the same manner as in Example 1 except that the composition of the resin composition was changed to the composition shown in Table 1.
  • Example 7 it replaces with the mixing
  • Example 1 a laminate (area 900 cm 2 , thickness 1.8 mm) was obtained in the same manner as in Example 1 except that the composition of the resin composition was changed to the composition shown in Table 1. At this time, carbon fibers were arranged in parallel with one side of the sheet-shaped resin composition, and 16 layers of prepregs were laminated so that the fiber directions of the carbon fibers were alternately orthogonal between adjacent prepreg layers.
  • Example 3 a laminate (area 900 cm 2 , thickness 1.8 mm) was obtained in the same manner as in Example 1 except that the composition of the resin composition was changed to the composition shown in Table 1.
  • Example 9 Using the resin composition of Example 8, a prepreg in which the orientation direction of the carbon fibers and the MD direction of the island phase of the matrix portion were aligned was prepared and cut into a number of rectangular pieces. The size of the chop was 30 mm in the direction parallel to the carbon fiber, and 10 mm in the direction orthogonal to the carbon fiber. The small pieces are filled in a mold so that the carbon fibers are oriented in a random direction so as to have an average thickness of 16 layers, and hot pressing is performed at a pressing temperature of 280 ° C. and a pressure of 1 MPa to obtain a laminate. Manufactured.
  • a prepreg was prepared using the resin composition of Comparative Example 1, and cut into a large number of rectangular pieces.
  • the size of the chop was 30 mm in the direction parallel to the carbon fiber, and 10 mm in the direction orthogonal to the carbon fiber.
  • the small pieces are filled in a mold so that the carbon fibers are oriented in a random direction so as to have an average thickness of 16 layers, and hot pressing is performed at a pressing temperature of 280 ° C. and a pressure of 1 MPa to obtain a laminate.
  • Manufactured Manufactured.
  • ⁇ Rigidity evaluation MD direction bending rigidity>
  • the rigidity the bending rigidity in the MD direction of the laminate was evaluated. Specifically, the obtained laminate was cut into a size of 10 mm ⁇ 100 mm ⁇ 2 mm using a grindstone cutter to obtain a test piece for a bending stiffness test. This test piece was subjected to a bending stiffness test with Tensilon (manufactured by A & D) under the conditions of a distance between fulcrums of 64 mm and a speed of 2 mm / min, and evaluated according to the following criteria. A is the best evaluation.
  • Comparative Example 2 is a single prepreg of Comparative Example 1, and 8 layers of the prepreg are laminated. A laminate was formed with one layer in between.
  • PA6 1022B contains 65 parts by mass and 7125 contains 35 parts by mass.
  • Example 9 is a laminate obtained by hot-pressing 16 layers obtained by cutting the prepreg of Example 8 into rectangular small pieces and orienting the small pieces in a random direction.
  • Comparative Example 4 is a laminate obtained by hot-pressing 16 layers obtained by cutting the prepreg of Comparative Example 1 into rectangular pieces, and laminating the pieces in a random direction.
  • the reinforcing fiber composite resin, prepreg and laminate according to the present invention can achieve both high rigidity and high energy absorption.
  • Example 9 show that when the reinforcing fibers are arranged in a certain unit, a predetermined effect can be obtained even if the orientation of the reinforcing fibers in each layer is random, and it behaves as a long fiber substantially. This shows that a predetermined effect can be obtained even with reinforcing fibers.
  • a reinforced fiber composite resin that achieves both high rigidity and high energy absorption.
  • a composite prepreg having both high rigidity and high energy absorption can be provided.
  • a laminate having both high rigidity and high energy absorption it is possible to provide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

高い剛性と、高いエネルギー吸収性とを両立した強化繊維複合樹脂、コンポジットプリプレグおよび積層体を提供すること。強化繊維と、樹脂からなるマトリックス部と、を含む強化繊維複合樹脂において、マトリックス部が、第1の樹脂と第2の樹脂の2種の樹脂からなり、かつ、互いに非相溶の2相からなり、第1の樹脂は、熱可塑性樹脂であり、第2の樹脂のtanδが、0.10~2.00であり、強化繊維が連続繊維及び/又は不連続繊維であり、強化繊維が不連続繊維を含む場合は、強化繊維複合樹脂の総体積に対する、強化繊維の体積の割合が、10%以上である、強化繊維複合樹脂。当該強化繊維複合樹脂を用いた、コンポジットプリプレグ。当該コンポジットプリプレグが複数積層されている、積層体。

Description

強化繊維複合樹脂、コンポジットプリプレグおよび積層体 関連出願の相互参照
 本願は、2018年4月27日に出願の日本国特許出願第2018-087367号の優先権の利益を主張するものであり、その内容は、参照により本願に組み込まれる。
 本発明は、強化繊維複合樹脂、コンポジットプリプレグおよび積層体に関する。
 近年、軽量性と剛性とを兼ね備えた材料として、繊維強化プラスチック(FRP)をはじめとする繊維強化複合材料が広く普及している。この繊維強化複合材料は、ポリプロピレン又はナイロン等からなるマトリックス樹脂を、ガラス繊維、炭素繊維又はアラミド繊維等の強化繊維で強化させてなる材料であり、また、市場に出回る繊維強化複合材料の多くは、コンポジットプリプレグを複数積層させて製造されたものであるか、或いは、コンポジットプリプレグそのものである。
 なお、「コンポジットプリプレグ」とは、強化繊維に樹脂が含浸されたシート状の材料を指す。
 ここで、繊維強化複合材料の品質を向上させる技術として、例えば、特許文献1は、繊維の形態の適正化を図るとともに、複合材料の表面をしぼ加工することで、耐引っ掻き性を向上させることができることを開示している(特許文献1)。
実公平5-34919号公報
 ところで、特に防振部品、吸音・遮音材などの用途を考慮すると、コンポジットプリプレグには、剛性に加え、高いエネルギー吸収性(衝撃吸収性、振動吸収性を含む)が要求される。かかる要求への対処として、例えば、マトリックスを、ポリプロピレン等の樹脂材料とともに、一般にエネルギー吸収性が高いとされているゴムで構成する方法が考えられる。
 しかしながら、ゴムは、エネルギー吸収性の向上には一定程度寄与し得るものの、一方では軟らかさに起因して剛性を悪化させ得るため、トレードオフの問題を生じさせる。更に、ゴムをマトリックスに単に配合して繊維強化複合材料を作製した場合には、特に屈曲時の剛性を維持することができなかった。
 そこで、本発明は、高い剛性と、高いエネルギー吸収性とを両立した強化繊維複合樹脂を提供することを目的とする。本発明は、高い剛性と、高いエネルギー吸収性とを両立したコンポジットプリプレグを提供することを目的とする。また、本発明は、高い剛性と、高いエネルギー吸収性とを両立した積層体を提供することを目的とする。
 本発明に係る強化繊維複合樹脂は、
 強化繊維と、
 樹脂からなるマトリックス部と、を含む強化繊維複合樹脂において、
 前記マトリックス部が、第1の樹脂と第2の樹脂の2種の樹脂からなり、かつ、互いに非相溶の2相からなり、
 前記第1の樹脂は、熱可塑性樹脂であり、
 前記第2の樹脂のtanδが、0.10~2.00であり、
 前記強化繊維が連続繊維及び/又は不連続繊維であり、前記強化繊維が不連続繊維を含む場合は、前記強化繊維複合樹脂の総体積に対する、前記強化繊維の体積の割合が、10%以上である、強化繊維複合樹脂である。
 これにより、高い剛性と、高いエネルギー吸収性とを両立することができる。
 本発明によれば、高い剛性と、高いエネルギー吸収性とを両立した強化繊維複合樹脂を提供することができる。本発明によれば、高い剛性と、高いエネルギー吸収性とを両立したコンポジットプリプレグを提供することができる。本発明によれば、高い剛性と、高いエネルギー吸収性とを両立した積層体を提供することができる。
図1は、参考例1のシートのAFM画像である。 図2は、図1のAFM画像の模式図である。 図3は、実施例1の積層体の模式図である。
 以下、本発明の実施形態について説明する。これらの記載は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
 本発明において、「マトリックス部が、第1の樹脂と第2の樹脂の2種の樹脂からなり」とは、マトリックス部が第1の樹脂と第2の樹脂とから形成されていることを意味し、マトリックス部が第1の樹脂と第2の樹脂のみから形成されていることを意味するものではない。同様に、「マトリックス部が、互いに非相溶の2相からなり」とは、マトリックス部が互いに非相溶の2相から形成されていることを意味し、マトリックス部が互いに非相溶の2相のみから形成されていることを意味するものではない。
 (強化繊維複合樹脂)
 本発明に係る強化繊維複合樹脂は、
 強化繊維と、
 樹脂からなるマトリックス部と、を含む強化繊維複合樹脂において、
 前記マトリックス部が、第1の樹脂と第2の樹脂の2種の樹脂からなり、かつ、互いに非相溶の2相からなり、
 前記第1の樹脂は、熱可塑性樹脂であり、
 前記第2の樹脂のtanδが、0.10~2.00であり、
 前記強化繊維が連続繊維及び/又は不連続繊維であり、前記強化繊維が不連続繊維を含む場合は、前記強化繊維複合樹脂の総体積に対する、前記強化繊維の体積の割合が、10%以上である、強化繊維複合樹脂である。
 本発明に係る強化繊維複合樹脂は、強化繊維と、樹脂からなるマトリックス部とを含む。以下、強化繊維と、マトリックス部と、任意成分である相容化剤などを例示説明する。
 <強化繊維>
 強化繊維は、本発明に係る強化繊維複合樹脂に剛性を付与する働きを有する。強化繊維としては、公知のFRPに用いられている連続繊維及び/又は不連続繊維である強化繊維を用いることができる。強化繊維としては、例えば、ガラス繊維、ガラスミルドファイバー、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などが挙げられる。これらは中空であってもよい。また、強化繊維をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤などで予備処理したものであってもよい。強化繊維は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 強化繊維は、軽量ながらも高い剛性を得る観点から、ガラス繊維及び/又は炭素繊維であることが好ましく、炭素繊維であることがより好ましい。
 本発明に係る強化繊維複合樹脂は、前記強化繊維が、炭素繊維であることが好ましい。これにより、軽量ながら高い剛性が得られる。
 本明細書において、連続繊維とは、長さが5cm以上の繊維を指し、シート状に縫合された繊維を含むものとする。また、本明細書において、不連続繊維とは、連続繊維以外の強化繊維を指す。
 繊維長が0.5mm以上5cm未満の繊維については、スタンピング成形法等により、半球形状やリブ等の立体的な形状を成型する際により好ましい。繊維長が0.5mm未満の繊維については、特に射出成形による成形の際に好適に用いられる。
 耐衝撃強度の観点では連続繊維が最も好ましく、繊維長が短くなるほど耐衝撃強度の効果は小さくなるが、幅広い成形法に対応できる利点がある。
 また、前述のように立体的な形状を作成する際には不連続繊維も好適に用いられ、複雑な形状を作成する際には連続繊維で作製する部位と不連続繊維で作製する部位を有してもよい。不連続繊維を用いる場合は射出成形も好適に選択される。
 強化繊維は、例えば、単繊維の平均直径が、0.1~20μmであり、好ましくは、5~10μm、より好ましくは6~8μmである。
 強化繊維が不連続繊維を含む場合は、強化繊維複合樹脂の総体積に対する、強化繊維の体積の割合(Volume of fiber、以下、「Vf」ということがある)が、10%以上である。Vfは、強化繊維複合樹脂の剛性を高める観点から、30%以上であることが好ましく、70%以下であることが好ましい。
 強化繊維が連続繊維を含む場合は、Vfが、30%以上であることが好ましく、強化繊維複合樹脂の剛性を高める観点から、30%以上であることがより好ましく、70%以下が好ましく、63%以下がより好ましく、58%以下がより好ましく、53%以下がさらに好ましく、50%以下がさらに好ましい。
 本発明において、Vfは、以下の方法により求めることができる。まず、面積S、厚みtの強化繊維複合樹脂を準備する。次に、準備した強化繊維複合樹脂を、必要に応じて金属製メッシュで挟み、強化繊維以外の成分であるマトリックス部を焼失させるか、あるいは、当該マトリックス部を溶媒に浸漬して溶解させて除去し、その残渣(強化繊維)を得る。次いで、得られた残渣(強化繊維)の重量Wを測定する。そして、強化繊維の密度ρを用い、下記式により、強化繊維複合樹脂の総体積に対する強化繊維の体積の割合Vf(%)を算出することができる。
Vf(%)=(W/ρ)/(S×t)×100
 強化繊維複合樹脂における強化繊維の配置は特に限定されず、任意の配置(UD、クロス、疑似等方など)とすることができ、任意に選択することができる。
 <マトリックス部>
 マトリックス部は、第1の樹脂と第2の樹脂の2種の樹脂からなり、かつ、互いに非相溶の2相からなる。
 本発明において、マトリックス部の非相溶性は、二軸押し出し機を用いて混練後、得られたペレットから15cm×15cm×2mmのモールドにてシートを作製し、このシートをミクロトームにより超薄切片として、原子間力顕微鏡(AFM)を用いて観察することによって評価され、相分離構造が確認された場合、マトリックス部は互いに非相溶である。
 マトリックス部の互いに非相溶の2相は、海島構造、すなわち、比較的連続的に見える一方の相(海相)の中に、不連続的に他方の相(島相)が混在している構造でもよいし、共連続構造、すなわち、比較的連続的に見える一方の相と、比較的連続的に見える他方の相とが混在している構造でもよい。
 一実施形態では、マトリックス部の互いに非相溶の2相が、海島構造である場合、海相は第1の樹脂であり、島相が第2の樹脂である。別の実施形態では、マトリックス部の互いに非相溶の2相が、共連続構造である場合、一方の相は第1の樹脂であり、他方の相が第2の樹脂である。
 一実施形態では、マトリックス部は、互いに非相溶の2相のみからなる。別の実施形態では、マトリックス部は、互いに非相溶の2相以上(例えば、3相)の相からなる。
 [第1の樹脂]
 第1の樹脂は熱可塑性樹脂である。第1の樹脂は、主に本発明に係る強化繊維複合樹脂のマトリックスとしての働きを有する。第1の樹脂の熱可塑性樹脂としては、例えば、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリカーボネート、ポリ乳酸、ポリアセタール、ポリスルホン、四フッ化ポリエチレン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリエーテルケトン、ポリチオエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリ塩化ビニル、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリスチレン、アクリロニトリルブタジエンスチレン(ABS)、エチレン・酢酸ビニル共重合体(EVA)、ポリウレタン、ゴム質重合体、ポリアルキレンオキサイドなどが挙げられる。第1の樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ポリアミドとしては、例えば、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリペンタメチレンアジパミド(ナイロン56)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリペンタメチレンセバカミド(ナイロン510)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ナイロン66/6I/6)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ナイロン6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリキシリレンアジパミド(ナイロンXD6)、ポリヘキサメチレンテレフタルアミド/ポリ-2-メチルペンタメチレンテレフタルアミドコポリマー(ナイロン6T/M5T)、ポリヘキサメチレンテレフタルアミド/ポリペンタメチレンテレフタルアミドコポリマー(ナイロン6T/5T)、ポリノナメチレンテレフタルアミド(ナイロン9T)などが挙げられる。
 ポリエステルとしては、例えば、ポリブチレンテレフタレート、ポリブチレン(テレフタレート/イソフタレート)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート、ポリエチレンテレフタレート、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリブチレン(テレフタレート/5-ナトリウムスルホイソフタレート)、ポリエチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレートなどが挙げられる。
 ポリフェニレンオキシドとしては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンオキシド)、ポリ(2-メチル-6-エチル-1,4-フェニレンオキシド)、ポリ(2,6-ジフェニル-1,4-フェニレンオキシド)、ポリ(2-メチル-6-フェニル-1,4-フェニレンオキシド)、ポリ(2,6-ジクロロ-1,4-フェニレンオキシド)などが挙げられる。また、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール)との共重合体などの共重合体も用いることができる。
 ポリプロピレンとしては、例えば、プロピレン単独重合体、エチレン・プロピレン共重合体、プロピレン・1-ブテン共重合体、エチレン・プロピレン・1-ブテン共重合体などが挙げられる。
 第1の樹脂としては、市販品を用いてもよく、例えば、ポリアミドの市販品としては、宇部興産社のポリアミド6 UBE ナイロン(登録商標)グレード1013B、1022Bなどが挙げられる。また、例えば、ポリプロピレンの市販品としては、プライムポリマー社のプロピレン単独重合体であるプライムポリプロ(登録商標)J-700GPなどが挙げられる。
 マトリックス部における第1の樹脂の割合としては、適宜調節すればよいが、例えば、マトリックス部の樹脂(後述する相容化剤が樹脂の場合は相容化剤を含む)の総質量に対して、50~95質量%である。第1の樹脂の割合は、マトリックス部の樹脂の総質量に対して、例えば、50質量%以上、55質量%以上、60質量%以上、65質量%以上、70質量%以上、75質量%以上、80質量%以上、85質量%以上または90質量%以上である。第1の樹脂の割合は、マトリックス部の樹脂の総質量に対して、例えば、95質量%以下、90質量%以下、85質量%以下、80質量%以下、75質量%以下、70質量%以下、65質量%以下、60質量%以下または55質量%以下である。
 [第2の樹脂]
 第2の樹脂はそのtanδが、0.10~2.00である。第2の樹脂は、主に本発明に係るプリプレグにエネルギー吸収性を付与する働きを有する。第2の樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明において、第2の樹脂のtanδは、粘弾性評価装置(ARES)で歪0.05%、周波数10Hz、昇温速度4℃/minの条件で計測されるtanδピークの値を用いる。
 第2の樹脂としては、例えばオレフィン系(TPO);アミド系(TPA);エステル系(TPC);スチレン系(TPS);ウレタン系(TPU);熱可塑性ゴム架橋体(TPV)などの熱可塑性エラストマーが挙げられる。
 オレフィン系(TPO)熱可塑性エラストマーとしては、例えば、エチレン-プロピレン-ジエン三元共重合体とポリプロピレンとのブレンド(TPO-(EPDM+PP))、エチレン-プロピレン-ジエン三元共重合体とポリエチレンとのブレンド(TPO-(EPDM+PE))などが挙げられる。
 アミド系(TPA)熱可塑性エラストマーとしては、例えば、ハードセグメントがナイロン6、ナイロン66、ナイロン11、ナイロン12などであり、ソフトセグメントがポリエーテルおよび/またはポリエステルである熱可塑性エラストマーなどが挙げられる。
 エステル系(TPC)熱可塑性エラストマーとしては、例えば、ハードセグメントがポリブチレンテレフタレートなどであり、ソフトセグメントがポリエーテルおよび/またはポリエステルである熱可塑性エラストマーなどが挙げられる。
 スチレン系(TPS)熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン-スチレン(SBS)、ポリスチレン-ポリ(エチレン-ブチレン)-ポリスチレン(SEBS)、ポリスチレン-ポリ(エチレン-プロピレン)-ポリスチレン(SEPS)、ポリスチレン-ポリ(エチレン-エチレン/プロピレン)-ポリスチレン(SEEPS)、スチレン-イソプレン-スチレン(SIS)などが挙げられる。
 ウレタン系(TPU)熱可塑性エラストマーとしては、例えば、ハードセグメントが芳香族または脂肪族などであり、ソフトセグメントがポリエステル、ポリエーテル、ポリエーテルおよびポリエステル、ポリカーボネート、ポリカプロラクトンなどである熱可塑性エラストマーなどが挙げられる。
 熱可塑性ゴム架橋体(TPV)としては、例えば、相を高度に架橋してPPの連続相に細かく分散した、EPDMとPPとの複合体;アクリロニトリル-ブタジエンゴム相を高度に架橋してPPの連続相に細かく分散した、NBRとPPとの複合体などが挙げられる。
 本発明に係る強化繊維複合樹脂は、前記第2の樹脂が、オレフィン系熱可塑性エラストマーであることが好ましい。これにより、衝撃吸収性が高まる。
 第2の樹脂としては、市販品を用いてもよく、このような市販品としては、例えば、三井化学社のエチレン系共重合体であるタフマー(登録商標)DF640、DF610、DF605などのDFシリーズ、タフマー(登録商標)XM7070、XM7080、XM7090などのXMシリーズ、住友化学社の特殊プロピレン系エラストマーであるタフセレン(登録商標)T1712、H3002などのタフセレン(登録商標)シリーズ、プライムポリマー社のプロピレンホモポリマーであるプライムポリプロ(登録商標)J-700GP、クラレ社のポリスチレンのハードセグメントと、ビニル-ポリジエンのソフトセグメントからなる共重合体であるハイブラー(登録商標)5125、5127などの未水添グレード5000シリーズ、ハイブラー(登録商標)7125、7311などの水添グレード7000シリーズ、ポリスチレンのハードセグメントと、ポリオレフィン構造のソフトセグメントからなる共重合体であるセプトン(登録商標)4033などの4000シリーズなどが挙げられる。
 マトリックス部における第2の樹脂の割合としては、適宜調節すればよいが、例えば、マトリックス部の樹脂(後述する相容化剤が樹脂の場合は相容化剤を含む)の総質量に対して、5~50質量%である。第2の樹脂の割合は、マトリックス部の樹脂の総質量に対して、例えば、5質量%以上、10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、40質量%以上または45質量%以上である。第2の樹脂の割合は、マトリックス部の樹脂の総質量に対して、例えば、50質量%以下、45質量%以下、40質量%以下、35質量%以下、30質量%以下、20質量%以下、15質量%以下または10質量%以下である。
 マトリックス部の総体積に対する第2の樹脂の体積の割合は、例えば、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上、45%以上または50%以上である。マトリックス部の総体積に対する第2の樹脂の体積の割合は、例えば、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下または10%以下である。
 第1の樹脂は、前記第2の樹脂よりも、引張弾性率が高い。マトリックス部を形成する樹脂は、第1の樹脂の成分と第2の樹脂の成分とを分子内に有するコポリマーであってもよく、第1の樹脂と第2の樹脂は別々の樹脂であってもよい。
 [第3の樹脂]
 マトリックス部は、第1の樹脂と第2の樹脂の2種の樹脂からなり、かつ、互いに非相溶の2相からなればよく、第1の樹脂と第2の樹脂に加えて、任意に第3の樹脂を含んでいてもよい。第3の樹脂としては、熱可塑性樹脂および/または熱硬化性樹脂を用いることができる。第3の樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 第3の樹脂の熱可塑性樹脂としては、例えば、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリカーボネート、ポリ乳酸、ポリアセタール、ポリスルホン、四フッ化ポリエチレン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリエーテルケトン、ポリチオエーテルケトン、ポリエーテルエーテルケトン、ポリエチレン、ポリプロピレン、ポリスチレンやABSなどのスチレン系樹脂、ゴム質重合体、ポリアルキレンオキサイド樹脂などが挙げられる。
 第3の樹脂の熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、ベンゾオキサジン樹脂などが挙げられる。
 一実施形態では、マトリックス部は、第1の樹脂と第2の樹脂の2種の樹脂のみからなる。別の実施形態では、マトリックス部は、第1の樹脂と第2の樹脂と第3の樹脂の3種の樹脂からなる。
 <相容化剤>
 相容化剤は、マトリックス部の樹脂と強化繊維との親和性を高める働きを有する。相容化剤としては、例えば、酸変性、エポキシ変性またはウレタン変性した第2の樹脂などが挙げられる。相容化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明に係る強化繊維複合樹脂は、さらに、相容化剤を含むことが好ましい。これにより、衝撃吸収性が高まる。
 変性に用いる酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、ソルビン酸、メサコン酸、アンゲリカ酸などの不飽和カルボン酸が挙げられる。また、これら不飽和カルボン酸の誘導体も使用できる。その誘導体としては、例えば、酸無水物、エステル、アミド、イミド、金属塩などが挙げられ、具体例としては、無水マレイン酸、無水イタコン酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、マレイン酸エチル、アクリルアミド、マレイン酸アミド、アクリル酸ナトリウム、メタクリル酸ナトリウムなどが挙げられる。一実施形態では、変性に用いる酸は、マレイン酸および無水マレイン酸からなる群より選択される1種以上である。
 酸変性した第2の樹脂としては、例えば、無水マレイン酸変性スチレン-ブタジエン-スチレン(SBS)、無水マレイン酸変性ポリスチレン-ポリ(エチレン-ブチレン)-ポリスチレン(SEBS)、無水マレイン酸変性ポリスチレン-ポリ(エチレン-プロピレン)-ポリスチレン(SEPS)、無水マレイン酸変性スチレン-イソプレン-スチレン(SIS)などの無水マレイン酸変性熱可塑性エラストマーが挙げられる。
 エポキシ変性した第2の樹脂としては、例えば、エポキシ変性スチレン-ブタジエン-スチレン(SBS)、エポキシ変性ポリスチレン-ポリ(エチレン-ブチレン)-ポリスチレン(SEBS)、エポキシ変性ポリスチレン-ポリ(エチレン-プロピレン)-ポリスチレン(SEPS)、エポキシ変性スチレン-イソプレン-スチレン(SIS)などのエポキシ変性熱可塑性エラストマーが挙げられる。
 相容化剤が変性されている樹脂の場合の変性量としては、例えば、第2の樹脂に対する変性剤の量が0.01~8質量%であることが好ましく、より好ましくは、0.02~5質量%である。
 相容化剤としては、市販品を用いてもよく、市販品としては、例えば、旭化成社の無水マレイン酸変性水添スチレン系熱可塑性エラストマーであるタフテック(登録商標)M1913、三井化学社の酸変性オレフィンエラストマーであるタフマー(登録商標)MH7010などのMシリーズなどが挙げられる。
 相容化剤の含有量は、適宜調節すればよいが、例えば、第2の樹脂と相溶化剤の総質量に対して、10~90質量%、より好ましくは10~70質量%、より好ましくは10~55質量%、より好ましくは10~43質量%、より好ましくは10~33質量%、より好ましくは10~23質量%、より好ましくは10~20質量%である。
 本発明に係る強化繊維複合樹脂は、前記相容化剤の質量が、前記第2の樹脂と相容化剤の総質量に対して、10~90質量%であることが好ましい。これにより、優れた衝撃吸収性が得られる。
 本発明に係る強化繊維複合樹脂またはマトリックス部には、上述した成分のほかに、結晶核剤・離型剤、滑剤、酸化防止剤、難燃剤、耐光剤、耐候剤などが含まれていてもよい。これらのその他の成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明に係る強化繊維複合樹脂の厚みは、適宜調節すればよいが、例えば、0.5~10mmであり、より好ましくは、1~5mmである。
 本発明に係る強化繊維複合樹脂の用途は、特に限定されず、特に剛性とエネルギー吸収性の要求される用途に好適に用いることができる。用途としては、例えば、コンポジットプリプレグ、自動車(例えば、ボディ)、電車などの車両用部品;航空機用部品;防振部品;吸音・遮音材;建築材料;風力発電などの発電における発電装置部品;家電部品、OA機器部品;圧力容器;水素タンクなどが挙げられる。
 (強化繊維複合樹脂の製造方法)
 本発明に係る強化繊維複合樹脂の製造方法は、上述した強化繊維、少なくとも第1および第2の樹脂を含む樹脂などを用いればよく、フィルムスタック法、押出成形法などの公知の強化繊維複合樹脂の製造方法により製造することができる。
 本発明に係る強化繊維複合樹脂は、例えば、少なくとも第1および第2の樹脂を含み、任意に相容化剤などを含む樹脂組成物を調製し、当該樹脂組成物をTダイ等によりシート状に押出して、そのシート状の樹脂組成物に強化繊維を含浸し、温度および/または圧力をかける冷熱プレスを行うことにより、製造することができる。温度をかける場合の温度は、例えば、100~350℃である。圧力をかける場合の圧力は、例えば、0.5~50MPaである。
 (コンポジットプリプレグ)
 本発明に係るコンポジットプリプレグ(以下、単に「プリプレグ」ということがある)は、上記強化繊維複合樹脂を用いた、コンポジットプリプレグである。これにより、高い剛性と、高いエネルギー吸収性とを両立することができる。
 (コンポジットプリプレグの製造方法)
 本発明に係るプリプレグの製造方法は、上述した強化繊維複合樹脂を用いればよく、フィルムスタック法、押出成形法などの公知のプリプレグの製造方法により製造することができる。
 (積層体)
 本発明に係る積層体は、上記いずれかに記載のコンポジットプリプレグが複数積層されている、積層体である。これにより、高い剛性と、高いエネルギー吸収性とを両立することができる。
 本発明に係る積層体は、本発明に係るプリプレグのみが2~100層または16~40層など複数積層されていてもよい。この場合、隣接するプリプレグの層では、強化繊維の配向方向は、同じでもよいし、異なっていてもよい。隣接するプリプレグの層間で強化繊維の配向方向が同方向である場合、応力集中を回避することができるため好ましい。また、積層体を形成する各プリプレグは、同じでもよいし、異なっていてもよい。本発明に係るプリプレグのみが複数積層されている積層体は、後述するサンドイッチ構造の積層体に比べて、一定の体積の積層体中の強化繊維の占める体積割合が高く、高い剛性が得られる。
 隣接するプリプレグ層間で強化繊維の配向方向が異なる場合、例えば、プリプレグの平面をXY平面とすると、隣接するプリプレグ層間の強化繊維の配置は、XY平面内で0~90°の範囲で異なっていてもよく、隣接するプリプレグ層間の強化繊維の配置が交互に0°と90°になっていてもよいし、0~90°の範囲でランダムまたは任意に配置されていてもよい。
 本発明に係る積層体は、本発明に係るプリプレグの間に第2の樹脂などの樹脂からなる樹脂層を介して積層してサンドイッチ構造としてもよい。このようなサンドイッチ構造の場合、樹脂層を挟む一方の面側のプリプレグの層数は、1層でもよいし、2層以上でもよい。樹脂層を挟むプリプレグの層数は、樹脂層の一方の面側と他方の面側で、同じでもよいし、異なっていてもよい。樹脂層の数は、1層でもよいし、2層以上でもよい。
 サンドイッチ構造において、樹脂層を挟む一方の面側のプリプレグの層数が2層以上の場合、当該層数は、奇数でもよいし、偶数でもよい。プリプレグの層数が2層以上の場合、上述したように隣接するプリプレグ層間の強化繊維の配置は、同じでもよいし、XY平面内で0~90°の範囲で異なっていてもよく、XY平面内で交互に0°と90°になっていてもよい。
 本発明に係る積層体の用途は、特に限定されず、特に剛性とエネルギー吸収性の要求される用途に好適に用いることができる。用途としては、例えば、自動車(例えば、ボディ)、電車などの車両用部品;航空機用部品;防振部品;吸音・遮音材;建築材料;風力発電などの発電における発電装置部品;家電部品、OA機器部品;圧力容器;水素タンクなどが挙げられる。
 (積層体の製造方法)
 本発明に係る積層体の製造方法は、本発明に係るプリプレグを用いて積層すればよく、例えば、本発明に係るプリプレグのみを積層したもの、あるいは、樹脂層を介してプリプレグを積層したものに対して、温度および/または圧力をかける冷熱プレスを行うことにより、製造することができる。
 以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。表中、別段の記載のない限り、配合量の単位は、質量部である。
 実施例で使用した材料の詳細は以下のとおりである。
炭素繊維(連続繊維):東レ社の商品名T700SC
ポリアミド樹脂:宇部興産社製の商品名UBE ナイロン(登録商標)グレード1013B(表1中、PA6 1013Bと表記)
ポリアミド樹脂:宇部興産社製の商品名UBE ナイロン(登録商標)グレード1022B(表1中、PA6 1022Bと表記)
エチレン系エラストマー:三井化学社製の商品名タフマー(登録商標)DF640(表1中、DF640と表記)、tanδ=0.49
特殊プロピレン系エラストマー:住友化学社製の商品名タフセレン(登録商標)H3002(表1中、H3002と表記)、tanδ=1.70
特殊プロピレン系エラストマー:住友化学社製の商品名タフセレン(登録商標)T1712(表1中、T1712と表記)、tanδ=1.40
プロピレン系エラストマー:三井化学社製の商品名タフマー(登録商標)XM7070(表1中、XM7070と表記)、tanδ=0.25
プロピレン単独重合体:プライムポリマー社の商品名プライムポリプロ(登録商標)J-700GP(表1中、J-700GPと表記)、tanδ=0.12
ビニルSEPS:クラレ社の商品名ハイブラー(登録商標)7125(水添グレード、表1中、7125と表記)、tanδ=1.70
高密度ポリエチレン:東ソー社の商品名ニポロンハード(登録商標)2500(表1中、2500と表記)、tanδ=0.05
無水マレイン酸変性水添スチレン系熱可塑性エラストマー:旭化成社の商品名タフテック(登録商標)M1913
酸変性オレフィンエラストマー:三井化学社の商品名タフマー(登録商標)MH7010
<参考例1:マトリックス部の非相溶の確認>
 表1の実施例3に示す配合で樹脂組成物を調製した。上述したマトリックス部の非相溶性の確認のための条件でシートを作製し、得られたシートをミクロトームにより超薄切片として、AFMを用いて観察した。そのAFM画像を図1に示す。図1から分かるように、第1の樹脂と第2の樹脂は、非相溶の2相の海島構造を形成していた。また、図1中の海相は、第1の樹脂PA6 1022Bであり、島相は、第2の樹脂7125であった。
 図2は、図1のAFM画像の模式図である。島相の長軸方向をMD方向とし、その直角方向をTD方向とする。
<実施例1>
 表1に示す配合で樹脂組成物を調製した。その樹脂組成物をTダイによりシート状に押出して、16枚のシート状の樹脂組成物を得た。炭素繊維T700SC開繊UDシート(50g/m)に各々のシート状の樹脂組成物を接触させ、含浸させた。このとき、図3に示すように、積層体としたときに下から奇数番目に位置する樹脂組成物には、炭素繊維の繊維方向と、マトリックス部のMD方向とを直交させて配置した。一方、積層体としたときに下から偶数番目に位置する樹脂組成物には、炭素繊維の繊維方向と、マトリックス部のMD方向とを平行に配置した。そして、この積層したシート状の樹脂組成物に温度250℃、圧力1MPaをかけて熱プレスを行うことにより、面積900cm、厚み1.8mmの積層体を製造した。
 図3は、実施例1の積層体の模式図である。ただし、説明の簡略化のために、図3中、積層数は、16層ではなく、6層としている。図3に示すように、実施例1の積層体では、積層体を構成する各プリプレグのMD方向が同一である。
<実施例2~8>
 実施例1において、樹脂組成物の配合を表1に示す配合に代えたこと以外は、実施例1と同様に積層体(面積900cm、厚み1.8mm)を得た。実施例7については、樹脂組成物の配合を表1に示す配合に代え、実施例と同様に積層体(面積900cm、厚み1.8mm)を得る。
<比較例1>
 実施例1において、樹脂組成物の配合を表1に示す配合に代えたこと以外は、実施例1と同様に積層体(面積900cm、厚み1.8mm)を得た。このとき、炭素繊維をシート状の樹脂組成物の1辺と平行に配置し、隣接するプリプレグの層間で炭素繊維の繊維方向が交互に直交するように16層のプリプレグを積層した。
<比較例2>
 まず、樹脂7125のみの樹脂層を形成した。そして、比較例1と同様にして得たプリプレグを1層とし、そのプリプレグ8層を積層したもので、樹脂層を挟み、熱プレスを行い、プリプレグ8層/樹脂層1層/プリプレグ8層のサンドイッチ構造の積層体(面積900cm、厚み2.4mm)を得た。比較例2の積層体全体として、PA6 1022Bを65質量部、7125を35質量部含む。
<比較例3>
 実施例1において、樹脂組成物の配合を表1に示す配合に代えたこと以外は、実施例1と同様に積層体(面積900cm、厚み1.8mm)を得た。
<実施例9>
 実施例8の樹脂組成物を用いて、炭素繊維の配向方向とマトリックス部の島相のMD方向とを揃えたプリプレグを作成し、多数の長方形の小片に裁断した。チョップのサイズは炭素繊維と平行方向では30mm、炭素繊維と直交方向では10mmとした。この小片を炭素繊維がランダムな方向に配向するように、平均16層の厚みとなるように金型に充填して、プレス温度280℃、圧力1MPaをかけて熱プレスを行って、積層体を製造した。
<比較例4>
 比較例1の樹脂組成物を用いてプリプレグを作成し、多数の長方形の小片に裁断した。チョップのサイズは炭素繊維と平行方向では30mm、炭素繊維と直交方向では10mmとした。この小片を炭素繊維がランダムな方向に配向するように、平均16層の厚みとなるように金型に充填して、プレス温度280℃、圧力1MPaをかけて熱プレスを行って、積層体を製造した。
<物性評価>
 各実施例および比較例で得た積層体について、以下のように、剛性とエネルギー吸収性を評価した。各評価結果を表1に合わせて示す。実施例7については評価する。
<剛性評価:MD方向曲げ剛性>
 剛性として、積層体のMD方向の曲げ剛性を評価した。具体的には、得られた積層体から、砥石カッターを用い、10mm×100mm×2mmのサイズに切り出し、曲げ剛性試験用の試験片を得た。この試験片をテンシロン(A&D社製)により、支点間距離64mm、速度2mm/minの条件にて曲げ剛性試験を行い、以下の基準で評価した。Aが最もよい評価である。
A:曲げ弾性率が40GPa以上
B:曲げ弾性率が30GPa以上40GPa未満
C:曲げ弾性率が10GPa以上30GPa未満
D:曲げ弾性率が10GPa未満
<エネルギー吸収性:落錘耐衝撃性>
 エネルギー吸収性として、落錘耐衝撃性を評価した。具体的には、得られた積層体から、砥石カッターを用い、80mm×80mm×2mmのサイズに切り出し、落錘耐衝撃試験用の試験片を得た。この試験片を計装化衝撃試験器(IMATEK社製)により、落錘質量19.67kg、衝撃速度4.4m/sの条件にて落錘耐衝撃性試験を行い、以下の基準で評価した。Aが最もよい評価である。
A:吸収エネルギーが150J以上
B:吸収エネルギーが100J以上150J未満
C:吸収エネルギーが65J以上100J未満
D:吸収エネルギーが65J未満
<エネルギー吸収性:振動吸収性>
 エネルギー吸収性として、中央加振法による振動吸収性を評価した。具体的には、得られた積層体から、砥石カッターを用い、10mm×250mm×2mmのサイズに切り出し、中央加振法試験用の試験片を得た。この試験片を加振器(計測システムズ社製)により、JIS K 7391「非拘束型制振複合はり振動減衰特性試験方法」の「中央加振法」により測定した。サンプルに定常波を加振したのち、共振周波数での周波数応答関数を半値幅法にて解析し損失係数を算出し、以下の基準で評価した。Aが最もよい評価である。
A:二次の損失係数が0.012以上
B:二次の損失係数が0.009以上0.012未満
C:二次の損失係数が0.006以上0.009未満
D:二次の損失係数が0.006未満
<総合評価>
 上記剛性とエネルギー吸収性について総合評価した。評価A~Cのみの場合は合格とし、評価Dがある場合は、不合格とした。
Figure JPOXMLDOC01-appb-T000001
*1:マトリックス部の総体積に対する第2の樹脂の体積の割合
*2:比較例2は、比較例1のプリプレグを1層とし、そのプリプレグ8層を積層したもので、7125のみの樹脂層1層を挟んで積層体とした。比較例2の積層体全体として、PA6 1022Bを65質量部、7125を35質量部含む。
*3:実施例9は、実施例8のプリプレグを長方形の小片に裁断し、その小片をランダムな方向に配向させて積層した16層を熱プレスした積層体である。
*4:比較例4は、比較例1のプリプレグを長方形の小片に裁断し、その小片をランダムな方向に配向させて積層した16層を熱プレスした積層体である。
 表1に示すように、本発明に係る強化繊維複合樹脂、プリプレグおよび積層体によって、高い剛性と、高いエネルギー吸収性とを両立することができた。
 また、実施例9の結果は、強化繊維がある一定の単位で揃っている場合、各層の強化繊維の配向がランダムであっても所定の効果が得られること、および実質的に長繊維としてふるまう強化繊維でも所定の効果が得られることを示している。
 本発明によれば、高い剛性と、高いエネルギー吸収性とを両立した強化繊維複合樹脂を提供することができる。本発明によれば、高い剛性と、高いエネルギー吸収性とを両立したコンポジットプリプレグを提供することができる。本発明によれば、高い剛性と、高いエネルギー吸収性とを両立した積層体を提供することができる。

Claims (7)

  1.  強化繊維と、
     樹脂からなるマトリックス部と、を含む強化繊維複合樹脂において、
     前記マトリックス部が、第1の樹脂と第2の樹脂の2種の樹脂からなり、かつ、互いに非相溶の2相からなり、
     前記第1の樹脂は、熱可塑性樹脂であり、
     前記第2の樹脂のtanδが、0.10~2.00であり、
     前記強化繊維が連続繊維及び/又は不連続繊維であり、前記強化繊維が不連続繊維を含む場合は、前記強化繊維複合樹脂の総体積に対する、前記強化繊維の体積の割合が、10%以上である、強化繊維複合樹脂。
  2.  前記第2の樹脂が、オレフィン系熱可塑性エラストマーである、請求項1に記載の強化繊維複合樹脂。
  3.  さらに、相容化剤を含む、請求項1または2に記載の強化繊維複合樹脂。
  4.  前記相容化剤の質量が、前記第2の樹脂と相容化剤の総質量に対して、10~90質量%である、請求項3に記載の強化繊維複合樹脂。
  5.  前記強化繊維が、炭素繊維である、請求項1~4のいずれか一項に記載の強化繊維複合樹脂。
  6.  請求項1~5のいずれか一項に記載の強化繊維複合樹脂を用いた、コンポジットプリプレグ。
  7.  請求項6に記載のコンポジットプリプレグが複数積層されている、積層体。
PCT/JP2019/018112 2018-04-27 2019-04-26 強化繊維複合樹脂、コンポジットプリプレグおよび積層体 WO2019208826A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515634A JPWO2019208826A1 (ja) 2018-04-27 2019-04-26 強化繊維複合樹脂、コンポジットプリプレグおよび積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-087367 2018-04-27
JP2018087367 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208826A1 true WO2019208826A1 (ja) 2019-10-31

Family

ID=68294566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018112 WO2019208826A1 (ja) 2018-04-27 2019-04-26 強化繊維複合樹脂、コンポジットプリプレグおよび積層体

Country Status (2)

Country Link
JP (1) JPWO2019208826A1 (ja)
WO (1) WO2019208826A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100916A1 (ja) * 2018-11-14 2020-05-22 株式会社ブリヂストン 強化繊維複合樹脂の製造方法
WO2022130728A1 (ja) * 2020-12-18 2022-06-23 株式会社ブリヂストン 炭素繊維複合体、及び炭素繊維複合体の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132573A (ja) * 1991-11-13 1993-05-28 Bridgestone Corp 圧縮成形用制振性繊維強化樹脂組成物
JPH11279297A (ja) * 1998-03-30 1999-10-12 Toray Ind Inc プリプレグ
JP2007253549A (ja) * 2006-03-24 2007-10-04 Mazda Motor Corp 繊維強化樹脂成形品の製造方法
JP2012506298A (ja) * 2008-10-22 2012-03-15 スリーエム イノベイティブ プロパティズ カンパニー 医療用接着テープ及びそれから作製される医療用物品
WO2012140793A1 (ja) * 2011-04-14 2012-10-18 帝人株式会社 強化繊維複合材料
WO2014088035A1 (ja) * 2012-12-07 2014-06-12 日本ポリプロ株式会社 繊維強化ポリプロピレン系樹脂組成物及びその成形体
US20150027631A1 (en) * 2007-05-23 2015-01-29 The Boeing Company Hybrid composite structure having damped metallic fibers and method for making the same
WO2015076288A1 (ja) * 2013-11-20 2015-05-28 旭化成イーマテリアルズ株式会社 ポリフェニレンエーテルを含む樹脂組成物の硬化物
JP2015172185A (ja) * 2014-02-20 2015-10-01 三菱レイヨン株式会社 グラフト共重合体、樹脂組成物及び成形体
WO2016013577A1 (ja) * 2014-07-22 2016-01-28 シーアイ化成株式会社 伸縮フィルム
JP2016084372A (ja) * 2014-10-22 2016-05-19 旭化成イーマテリアルズ株式会社 プリプレグ及び繊維強化プラスチック
JP2016525586A (ja) * 2013-06-21 2016-08-25 コリア インスティチュート オブ インダストリアル テクノロジー ポリプロピレン系樹脂及び炭素長繊維を含む輸送手段用複合材料

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132573A (ja) * 1991-11-13 1993-05-28 Bridgestone Corp 圧縮成形用制振性繊維強化樹脂組成物
JPH11279297A (ja) * 1998-03-30 1999-10-12 Toray Ind Inc プリプレグ
JP2007253549A (ja) * 2006-03-24 2007-10-04 Mazda Motor Corp 繊維強化樹脂成形品の製造方法
US20150027631A1 (en) * 2007-05-23 2015-01-29 The Boeing Company Hybrid composite structure having damped metallic fibers and method for making the same
JP2012506298A (ja) * 2008-10-22 2012-03-15 スリーエム イノベイティブ プロパティズ カンパニー 医療用接着テープ及びそれから作製される医療用物品
WO2012140793A1 (ja) * 2011-04-14 2012-10-18 帝人株式会社 強化繊維複合材料
WO2014088035A1 (ja) * 2012-12-07 2014-06-12 日本ポリプロ株式会社 繊維強化ポリプロピレン系樹脂組成物及びその成形体
JP2016525586A (ja) * 2013-06-21 2016-08-25 コリア インスティチュート オブ インダストリアル テクノロジー ポリプロピレン系樹脂及び炭素長繊維を含む輸送手段用複合材料
WO2015076288A1 (ja) * 2013-11-20 2015-05-28 旭化成イーマテリアルズ株式会社 ポリフェニレンエーテルを含む樹脂組成物の硬化物
JP2015172185A (ja) * 2014-02-20 2015-10-01 三菱レイヨン株式会社 グラフト共重合体、樹脂組成物及び成形体
WO2016013577A1 (ja) * 2014-07-22 2016-01-28 シーアイ化成株式会社 伸縮フィルム
JP2016084372A (ja) * 2014-10-22 2016-05-19 旭化成イーマテリアルズ株式会社 プリプレグ及び繊維強化プラスチック

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100916A1 (ja) * 2018-11-14 2020-05-22 株式会社ブリヂストン 強化繊維複合樹脂の製造方法
WO2022130728A1 (ja) * 2020-12-18 2022-06-23 株式会社ブリヂストン 炭素繊維複合体、及び炭素繊維複合体の製造方法

Also Published As

Publication number Publication date
JPWO2019208826A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
TWI426097B (zh) 成形品及其製法
Sorrentino et al. Mechanical performance optimization through interface strength gradation in PP/glass fibre reinforced composites
KR101654389B1 (ko) 섬유강화 수지조성물, 성형재료 및 섬유강화 수지조성물의 제조방법
KR101330949B1 (ko) 수지 조성물, 합성 수지 시트, 합성 수지 성형품 및 합성 수지 적층체
JP6525122B2 (ja) 熱可塑性樹脂シート、積層シート及び成形体
WO2019208826A1 (ja) 強化繊維複合樹脂、コンポジットプリプレグおよび積層体
WO2019208823A1 (ja) 強化繊維複合樹脂、コンポジットプリプレグおよび積層体
JP6699986B2 (ja) プリフォーム、および一体化シート材料の製造方法
JP6161563B2 (ja) 繊維強化複合体
JP2012211255A (ja) 樹脂組成物、硬化物、プリプレグ、および繊維強化複合材料
WO2019208810A1 (ja) コンポジットプリプレグ及びコンポジット積層体
WO2019208825A1 (ja) コンポジットプリプレグ、及び、積層体
JP6395896B2 (ja) 型内発泡成形用発泡粒子、型内発泡成形体及び繊維強化複合体
EP3578592A1 (en) Fiber-reinforced material and structure
JP2002167456A (ja) 発泡体
WO2020100916A1 (ja) 強化繊維複合樹脂の製造方法
JP2023028116A (ja) 強化繊維複合樹脂およびこれを用いた積層体
JP4670234B2 (ja) ポリエステル系フィルム
JP4232085B2 (ja) ポリエステル系フィルム
JP2005131859A (ja) 多層ポリエステル系フィルム
JP2017008237A (ja) 繊維強化繊維強化熱可塑性樹脂材料及びその製造方法
JP4582385B2 (ja) ポリエステル系フィルム
JP2004216814A (ja) ポリエステル系フィルム
JP2023069928A (ja) 樹脂組成物
JP2004189834A (ja) ポリエステル系フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793137

Country of ref document: EP

Kind code of ref document: A1