WO2019208716A1 - Concentrator solar cell module - Google Patents

Concentrator solar cell module Download PDF

Info

Publication number
WO2019208716A1
WO2019208716A1 PCT/JP2019/017731 JP2019017731W WO2019208716A1 WO 2019208716 A1 WO2019208716 A1 WO 2019208716A1 JP 2019017731 W JP2019017731 W JP 2019017731W WO 2019208716 A1 WO2019208716 A1 WO 2019208716A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
solar cell
concentrating solar
cell module
Prior art date
Application number
PCT/JP2019/017731
Other languages
French (fr)
Japanese (ja)
Inventor
林 伸彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2019208716A1 publication Critical patent/WO2019208716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • This disclosure relates to a concentrating solar cell module.
  • a solar power generation device that converts solar energy into electric power has been put into practical use.
  • a solar cell module has been proposed in which sunlight is condensed by a condensing means such as a prism or a lens onto a solar cell (power generation element) smaller than the solar cell module.
  • the solar battery cell Since the concentrating solar power generation device condenses sunlight with a condensing unit, the solar battery cell only needs to have a small light receiving area capable of receiving sunlight condensed by the optical system. That is, since the solar battery cell having a size smaller than the light receiving area of the light collecting means may be used, the size of the solar battery cell can be reduced. Moreover, since the concentrating solar power generation device can reduce the amount of solar cells that are expensive components in the solar power generation device, it leads to resource saving and cost reduction.
  • Patent Document 1 discloses a concentrating solar cell (condensing solar cell module) in which solar cells are arranged on one surface of a glass plate and a condensing lens is arranged on the other surface of the glass plate. Yes.
  • the above conventional concentrating solar cell has a problem that it is heavy because glass must be used in a portion with high light density from the viewpoint of ensuring light resistance.
  • the present disclosure provides a light-weight concentrating solar cell module.
  • a concentrating solar cell module is made of a resin, and a primary optical system that collects sunlight and a secondary that is made of a resin and further collects light collected by the primary optical system.
  • An optical system the primary optical system includes an ultraviolet absorber that cuts light of a first wavelength or less, and the secondary optical system cuts light of a second wavelength or less that is different from the first wavelength. Contains UV absorber.
  • a light-weight concentrating solar cell module is provided.
  • FIG. 1 is a perspective view showing an example of a concentrating solar cell device including the concentrating solar cell module according to the embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating an example of the structure of the concentrating solar cell module according to the embodiment.
  • FIG. 3 is a diagram showing a spectrum of sunlight.
  • FIG. 4 is a schematic cross-sectional view illustrating an example of the structure of a concentrating solar cell module according to a modification.
  • FIG. 5 is a schematic cross-sectional view of the concentrating solar cell module according to Example 1 and Comparative Example 1.
  • FIG. 6 is a graph showing the light transmittance of the absorbent used in Example 1 and Comparative Example 1.
  • FIG. 7 is a schematic diagram illustrating the configuration of the light resistance accelerated test apparatus.
  • FIG. 1 is a perspective view showing an example of a concentrating solar cell device including the concentrating solar cell module according to the embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating an example of the structure of the concentrating
  • FIG. 8 is a diagram illustrating a result of a light fastness test and a result of a simulation of power generation efficiency depending on a wavelength region of light used for power generation.
  • FIG. 9 is a schematic cross-sectional view of the concentrating solar cell module according to Example 2 and Comparative Example 2.
  • FIG. 10 is a diagram illustrating a spectrum of sunlight transmitted through the primary lens in Example 2 and Comparative Example 2.
  • a concentrating solar cell module is made of a resin, and a primary optical system that collects sunlight and a secondary that is made of a resin and further collects light collected by the primary optical system.
  • An optical system wherein the primary optical system includes an absorbent that absorbs light of a first wavelength or less, and the secondary optical system absorbs light of a second wavelength or less that is different from the first wavelength. Contains agents.
  • the concentrating solar cell module As a result, two types of ultraviolet absorbers having different wavelength bands to be absorbed are blended in the primary optical system and the secondary optical system, respectively. Degradation due to is reduced. For this reason, in the conventional concentrating solar cell module, a member made of glass can be made of resin. Therefore, the concentrating solar cell module according to one aspect of the present disclosure is reduced in weight.
  • the first wavelength may be longer than the second wavelength.
  • the ultraviolet absorber included in the primary optical system also absorbs light having a longer wavelength than the wavelength absorbed by the ultraviolet absorber included in the secondary optical system. That is, since the ultraviolet absorber contained in the primary optical system can reduce the amount of ultraviolet rays contained in the light transmitted through the primary optical system, the amount of short wavelength light having high energy that reaches the secondary optical system. Can be reduced. Therefore, the concentrating solar cell module according to one embodiment of the present disclosure has the above-described configuration, thereby reducing light degradation of the secondary optical system and the members below it.
  • the concentrating solar cell module further includes a circuit board between the secondary optical system and the power generation element, and the circuit board absorbs light having a second wavelength or less. May be included.
  • the concentrating solar cell module according to one aspect of the present disclosure, light degradation between the secondary optical system and the power generation element at a portion where the light density is high is reduced.
  • the first wavelength may be 420 nm
  • the second wavelength may be 400 nm
  • the primary optical system includes an ultraviolet absorber that cuts light having a wavelength of 420 nm or less
  • light having a wavelength of 420 nm or less is slightly transmitted through the primary optical system. Therefore, by including an ultraviolet absorber that cuts light having a wavelength of 400 nm or less in the secondary optical system, light having a wavelength greater than 400 nm among light having a wavelength of 420 nm or less transmitted through the primary optical system is used for power generation. be able to.
  • the secondary optical system includes an ultraviolet absorber that emits light having a wavelength of 400 nm or less, light having a wavelength of 400 nm or less is efficiently cut from light having a wavelength of 420 nm or less that is slightly transmitted through the primary optical system. Can do. Therefore, the power generation efficiency of the concentrating solar cell module according to one embodiment of the present disclosure is hardly reduced, and a sufficient service life is obtained.
  • the focal point of the light having the first wavelength may be located in the circuit board.
  • the light having a wavelength longer than the first wavelength has a focal position positioned below the light having the first wavelength. Therefore, light having a longer wavelength band than the first wavelength can be collected on the power generation element. Therefore, in the concentrating solar cell module according to one embodiment of the present disclosure, the wavelength range of light collected on the power generation element is widened, so that power generation efficiency is improved.
  • the transmitted light reaching the power generating element near the first wavelength is focused on the position of the light of the first wavelength in the power generating element. Since the light receiving surface of the power generation element is irradiated more widely than the above, the resistance loss of the power generation element is reduced and the conversion efficiency is improved.
  • the Z-axis minus side represents the solar cell module installation surface side
  • the Z-axis plus side represents the sunlight incident surface side.
  • the X axis and the Y axis are axes that are orthogonal to each other on a plane perpendicular to the X axis.
  • “plan view” means viewing from the light incident surface side (viewing from the Z-axis direction).
  • “cross-sectional view” means that a solar cell module cut along a plane including a cross-sectional line is viewed from a direction perpendicular to the cut plane.
  • the cross-sectional view means that the cross-section is viewed from the X-axis direction.
  • FIG. 1 is a perspective view showing an example of a concentrating solar cell device 100 including the concentrating solar cell module 10 according to the present embodiment.
  • the concentrating solar cell device 100 includes a plurality of concentrating solar cell modules 10 arranged in an array on a plane parallel to the XY plane.
  • the concentrating solar cell device 100 is composed of 25 concentrating solar cell modules 10.
  • the planar view shape of the concentrating solar cell device 100 is, for example, a rectangular shape.
  • the shape of the concentrating solar cell device 100 in plan view is a square shape having a horizontal (X-axis direction) length of about 112 mm and a vertical (Y-axis direction) length of about 112 mm.
  • the length from the light incident surface of the primary lens array 11 to the light emitting surface of the support substrate (not shown) of the secondary lens array 21 is about 30 mm.
  • the power generation element 4 is arranged corresponding to the secondary lens 2.
  • the shape of the power generation element 4 in plan view is, for example, a square shape, and the size thereof is approximately 1 mm 2 .
  • the shape of the concentrating solar cell device 100 is not limited to a rectangular shape.
  • the concentrating solar cell device 100 may be formed in a desired shape according to the installation location.
  • the concentrating solar cell module 10 will be described later.
  • the concentrating solar cell device 100 includes, in order from the light receiving surface side, a primary lens array 11, a secondary lens array 21, a power generation module (not shown), and a heat sink (not shown).
  • the concentrating solar cell device 100 is lightweight because the primary lens array 11 and the secondary lens array 21 are made of resin. Further, as in the above example, by reducing the size of the primary lens array 11, the secondary lens array 21, and the power generation element 4, the thickness of the concentrating solar cell device 100 is reduced, so that the conventional concentrating solar cell device is reduced. Smaller than that. Therefore, in the concentrating solar cell device 100, the intensity required for the tracking device that tracks sunlight can be reduced. Thereby, the cost of incidental facilities, such as a tracking apparatus, can be reduced.
  • the tracking device sunlight is substantially perpendicular to the light receiving surface of the concentrating solar cell device 100 with less energy than when the primary lens array and the secondary lens array are formed of glass or the like. Can be moved toward the direction of incidence. Therefore, the power generation efficiency of the concentrating solar cell device 100 can be improved with less energy. Further, since the concentrating solar cell device 100 is lightweight and small, it can be easily transported and installed. Therefore, the concentrating solar cell device 100 can be installed in a place such as the rooftop of a building that could not be installed with a conventional concentrating solar cell device.
  • the primary lens array 11 is a primary condensing lens array configured by arranging a plurality of primary optical systems 1 (hereinafter referred to as primary lenses 1) having a positive refractive index in an array.
  • the primary lens array 11 condenses sunlight on a secondary lens array 21 described later.
  • the primary lens array 11 is configured by arranging 25 primary lenses 1 in an array, but the number of primary lenses 1 constituting the primary lens array 11 is not particularly limited.
  • the planar view shape of the primary lens 1 is a square shape, but may be a rectangular shape or a hexagonal shape.
  • the primary lens array 11 is composed of resin as a main component, and further includes an ultraviolet absorber that cuts off light of the first wavelength or less.
  • the first wavelength is longer than the second wavelength described later.
  • the primary lens array 11 is made of resin, the concentrating solar cell device 100 is reduced in weight.
  • the primary lens array 11 is manufactured by extrusion molding or injection molding. The details of the resin, the ultraviolet absorber, and the first wavelength will be described later in the section “2. Concentrating solar cell module”.
  • the secondary lens array 21 is configured by a plurality of secondary optical systems 2 (hereinafter referred to as secondary lenses 2) having a protruding shape protruding from the power generation element 4 side to the primary lens array side and arranged in an array. It is a condensing lens array, and is disposed on the light exit direction side of the primary lens array.
  • the secondary lens array 21 has a support substrate (not shown) extending in the XY plane of FIG. 1 and a plurality of secondary lenses 2 formed on the light incident surface side (Z-axis plus side) of the support substrate. .
  • the optical axis of the secondary lens 2 coincides with the optical axis of the primary lens 1.
  • “matching” is not limited to a case where they completely match, and includes substantially matching. For example, even if there is an error of several percent between the two values, they can be considered coincident.
  • the support substrate has a plate shape, and the secondary lenses 2 are arranged in an array on the surface of the support substrate in a one-to-one correspondence with the primary lenses 1 of the primary lens array 11. Further, the secondary lens 2 and the support substrate are integrally formed.
  • the secondary lens array 21 is composed of resin as a main component, and further includes an ultraviolet absorber that cuts light having a second wavelength or less.
  • the second wavelength is shorter than the first wavelength. Since the secondary lens array 21 is made of resin, the concentrating solar cell device 100 is reduced in weight.
  • the secondary lens array 21 is produced by extrusion molding or injection molding.
  • the resin constituting the secondary lens array 21 may have the same composition as the resin constituting the primary lens array 11 or a different composition. The details of the resin, the ultraviolet absorber, and the second wavelength will be described later in the section “2. Concentrating solar cell module”.
  • the power generation module (not shown) includes a power generation element 4 that performs photoelectric conversion, and a circuit board that holds the power generation element 4 and peripheral circuits.
  • the circuit board is fixed to the support substrate with, for example, a silicone adhesive.
  • the power generation element 4 is disposed so as to match the focal position of the secondary lens 2.
  • the distance between the primary lens array 11 and the power generation element 4 is determined by the condensing characteristics of the primary lens array 11 and the secondary lens array 21. As an example, the distance from the light receiving surface of the primary lens array 11 to the light receiving surface of the power generation element 4 is about 33 mm.
  • the power generating element 4 has a function of converting the light energy of the irradiated sunlight into electric energy.
  • the power generating element 4 is formed from a thin film of InGaP-based material, GaAs-based material, InGaAs-based material, Ge-based material, GaAsP-based material, InP-based material, GaN-based material, and Si-based material.
  • a power generation element composed of multiple junctions of thin films. More specifically, the solar power is used in the order of power generation material having a large band gap from the incident side of sunlight, crystal growth, or by stacking mechanically.
  • an electrode for taking out the photocurrent generated in the power generation element 4 to the external circuit is formed on the light emitting surface side (Z-axis minus side) of the secondary lens array 21.
  • the electrode may be formed of a metal such as Cu (copper), Al (aluminum), Ni (nickel), Ag (silver), or the like, or formed of a transparent conductive material such as ITO (Indium Tin Oxide) or silver paste. May be.
  • a heat sink is comprised from the metal which is excellent in heat conductivity, such as aluminum and copper.
  • the heat radiating plate may have a plate-like base and a fin portion, a bead, or a convex portion that protrudes in a direction away from the base along the thickness direction of the base.
  • the bead refers to a portion formed in a bowl shape
  • the convex portion refers to a protruding portion such as a columnar shape or a hemispherical shape that protrudes in a direction away from the base body along the thickness direction of the base body.
  • An outer frame 62 and a support member 61 are arranged between the primary lens array 11 and the secondary lens array 21.
  • the support member 61 is a member that supports the primary lens array 11 with respect to the secondary lens array 21 and maintains the distance between the primary lens array 11 and the secondary lens array 21.
  • the outer frame 62 and the support member 61 are each formed integrally with the secondary lens array 21. Note that the thickness of the support member 61 (the length in the X-axis direction and the Y-axis direction) is small (thin) on the primary lens array 11 side so as not to interfere with sunlight emitted from the primary lens 1. A taper shape may be sufficient.
  • FIG. 2 is a schematic sectional view showing an example of the structure of the concentrating solar cell module 10 according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the concentrating solar cell module 10 shown in FIG. 1 taken along the YZ plane and viewed from the X-axis direction.
  • the concentrating solar cell module 10 is made of a resin, a primary lens 1 that collects sunlight, and a secondary that is made of resin and further collects the light collected by the primary lens 1.
  • the primary lens 1 includes an ultraviolet absorber that cuts light of the first wavelength or less, and the secondary lens 2 cuts light of the second wavelength or less different from the first wavelength. Contains UV absorber.
  • two kinds of ultraviolet absorbers having different wavelength bands to be absorbed are blended in the primary lens 1 and the secondary lens 2 respectively, so that deterioration of the resin constituting the primary lens 1 and the secondary lens 2 due to ultraviolet rays is reduced. Is done.
  • the concentrating solar cell module 10 has the above-described configuration, so that the optical system member that is made of glass in the conventional concentrating solar cell module can be made of resin. Therefore, the concentrating solar cell module 10 is lighter than the conventional concentrating solar cell module. Further, the concentrating solar cell module 10 further includes a circuit board 3 made of resin between the secondary lens 2 and the power generation element 4.
  • the transparent substrate 3 includes an ultraviolet absorber that cuts light having a second wavelength or less. Thereby, the light deterioration of the part where the light density becomes high between the secondary lens 2 and the power generation element 4 is reduced.
  • the first wavelength may be 420 nm and the second wavelength may be 400 nm.
  • the focal point of the light having the first wavelength may be located in the circuit board 3.
  • the focal position of light having a longer wavelength than the first wavelength is positioned below the light having the first wavelength. Therefore, light having a longer wavelength band than the first wavelength can be collected on the power generation element 4. Therefore, the concentrating solar cell module 10 has a wider wavelength range of light condensed on the power generating element 4, and thus power generation efficiency is improved.
  • the transmitted light reaching the power generation element near the first wavelength causes the light of the first wavelength to be focused in the power generation element. Since the light receiving surface of the power generation element is irradiated more broadly than the position of, the resistance loss of the power generation element is reduced and the conversion efficiency is improved.
  • the focal position of the light of the first wavelength is set in the circuit board, the light having a wavelength shorter than the first wavelength is focused on the region from the secondary lens to the focal position of the light of the first wavelength. Will have a position. Therefore, if an ultraviolet absorber that cuts the first wavelength or less is not added to the primary lens, the light density becomes high, and there is a possibility that the vicinity of the focal position of light shorter than the first wavelength is deteriorated. However, since an ultraviolet absorber that cuts the first wavelength or less is added to the primary lens, it is possible to suppress light deterioration near the focal position of light shorter than the first wavelength.
  • the concentrating solar cell module 10 which concerns on this Embodiment is reduced in weight, and is substantially equivalent to the conventional concentrating solar cell module which utilizes the light of wavelength 400nm or more for electric power generation. Demonstrate power generation efficiency and light resistance.
  • the concentrating solar cell module 10 condenses light on the power generation element 4 by the primary lens 1 and the secondary lens 2. At this time, the light density increases in a portion (a region surrounded by a broken line in FIG. 2) that is directly above the power generation element 4.
  • the region where the light density is high is referred to as a high density region 30.
  • glass is usually used as the base material from the viewpoint of light resistance. If a resin is used as the base material, the progress of deterioration is accelerated as compared with glass. In particular, light in the ultraviolet region with a wavelength of 400 nm or less, so-called ultraviolet rays, significantly accelerates the deterioration of the resin.
  • FIG. 3 is a diagram showing a spectrum of sunlight.
  • Light in the ultraviolet light region (wavelength 200 nm to 400 nm) that tends to cause deterioration of the substrate has a low energy intensity and a small contribution to power generation.
  • the energy intensity rapidly increases from a wavelength of 400 nm to 500 nm.
  • the energy intensity of light with a wavelength of 400 nm is about 30 ⁇ W / cm 2 ⁇ nm and the energy intensity is small, but the energy intensity of light with a wavelength of 500 nm is about 140 ⁇ W / cm 2 ⁇ nm and is high in the sunlight spectrum.
  • Energy intensity is shown. Therefore, in the wavelength region in the range larger than the wavelength 400 nm and smaller than the wavelength 500 nm, the power generation efficiency of the concentrating solar cell module is greatly lowered due to a slight difference in the cut wavelength.
  • the damage to the resin can be reduced as the wavelength to be cut becomes larger than the wavelength of 400 nm.
  • the wavelength to be cut becomes larger than the wavelength of 400 nm, the energy intensity increases, so that the energy loss increases and the power generation efficiency decreases.
  • the wavelength of the sunlight spectrum is longer than the wavelength indicated by the line W (about 420 nm). It is preferable to cut light in a small wavelength region.
  • the concentrating solar cell module 10 includes a primary lens 1, a secondary lens 2, a circuit board 3, a power generation element 4, and a radiator plate 5 in order from the light receiving surface side (Z-axis plus side). Is provided.
  • the shape of the concentrating solar cell module 10 in plan view is, for example, a rectangular shape.
  • the shape of the concentrating solar cell module 10 in plan view is such that the horizontal length (the length in the Y-axis direction) is about 22 mm and the vertical length (the length in the X-axis direction) is about 22 mm. Square shape.
  • the length from the light incident surface of the primary lens 1 to the light emitting surface of the support substrate 20 of the secondary lens 2 is about 30 mm.
  • the planar view shape of the concentrating solar cell module 10 is not limited to a rectangular shape, and may be a hexagonal shape.
  • the primary lens 1 is made of resin and collects sunlight on the secondary lens 2.
  • the primary lens 1 is composed mainly of a resin.
  • the material of the primary lens 1 is, for example, an acrylic resin such as PMMA (polymethyl methacrylate resin), an alicyclic acrylic resin such as a polytricyclodecyl methacrylate resin, a polyamide resin, or a polyester from the viewpoint of light transmittance and light resistance. Examples thereof include resins, polycarbonate resins, polyolefin resins, and silicone resins.
  • the primary lens 1 includes an ultraviolet absorber that cuts light of the first wavelength or less.
  • the ultraviolet absorber is a compound having an absorption wavelength at least in the ultraviolet light region.
  • the term “cut” is not limited to a case where light in the wavelength region to be absorbed is 100% absorbed and the light is not transmitted, and includes that the light is not substantially transmitted. For example, even if several percent of light in the wavelength region to be absorbed is transmitted, it can be regarded as not transmitted, that is, cut.
  • a skeleton that exhibits ultraviolet absorbing ability for example, a skeleton having a conjugated double bond such as a benzotriazole skeleton, a triazine skeleton, or a styrene skeleton may be used.
  • the benzotriazole compound is not particularly limited.
  • the benzotriazole skeleton may have a substituent.
  • the substituent may be an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof, and may have an unsaturated bond.
  • the hydrocarbon group may be a linear or branched alkyl group.
  • benzotriazole compounds examples include 2- (2-hydroxy-5-tert-butylphenyl) -2H-benzotriazole (trade name: Tinuvin (registered trademark) PS (BASF)), 2- (2-hydroxy- 3,5-di-tert-amylphenyl) -2H-benzotriazole (trade name: Tinuvin (registered trademark) 328 (BASF)) may be used.
  • the ultraviolet absorber is a compound having a triazine skeleton (hereinafter referred to as a triazine compound)
  • the triazine compound is not particularly limited.
  • the triazine skeleton may have a substituent.
  • the substituent is the same as that described above for the benzotriazole-based compound, description thereof is omitted.
  • the triazine-based compound may be a compound having a triazine ring and a hydroxyphenyl group and bonded by a single bond (hereinafter, hydroxyphenyl triazine-based compound).
  • the hydroxyphenyl group may further have a substituent.
  • hydroxyphenyl triazine-based compound examples include 2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3,5-triazine (trade name: Tinuvin ( Registered trademark) 460 (BASF) and trade name Tinuvin (registered trademark) 477 (BASF).
  • an ultraviolet absorber is not restricted to the said illustration, The compound which has an absorption wavelength in an ultraviolet region at least and can be utilized as an ultraviolet absorber is also contained. Moreover, you may use together 2 or more types of ultraviolet absorbers which have a different structure as an ultraviolet absorber. Thereby, the light of a wider wavelength range can be absorbed rather than the case where one type of ultraviolet absorber is used.
  • the compounding quantity of an ultraviolet absorber should just be an quantity which does not inhibit heat resistance, heat-and-moisture resistance, heat stability, and moldability, and exhibits the effect of this indication, and is mix
  • the first wavelength is longer than the second wavelength.
  • the first wavelength is preferably a wavelength in the blue-violet light region from the viewpoint of reducing the deterioration of the resin. Furthermore, from the viewpoint of the balance between the power generation efficiency of the concentrating solar cell module and the reduction in damage to the base material (resin), the first wavelength is preferably 420 nm.
  • the primary lens 1 is a light incident surface (a surface on the Z axis plus side) on which sunlight is incident and a surface opposite to the light incident surface, and a light emitting surface from which the sunlight is emitted. (Z-axis negative side surface).
  • the primary lens 1 may be, for example, a convex lens in which a convex portion that protrudes toward the secondary lens 2 is formed on the light emitting surface side.
  • the primary lens 1 has a plurality of irregularities on the surface of the convex lens.
  • the primary lens 1 is produced by injection molding, for example. Further, it may be a plano-convex lens having a convex portion on the light incident surface or a plano-convex lens having a convex portion on the light exit surface.
  • the secondary lens 2 is made of resin, and further condenses the light collected by the primary lens 1 on the power generation element 4.
  • the secondary lens 2 has a convex shape protruding from the power generation element 4 side to the primary lens side.
  • the secondary lens 2 is disposed on the surface of the support substrate 20. Further, the secondary lens 2 and the support substrate 20 are integrally formed.
  • the base substrate 20 is made of the same material as the secondary lens 2.
  • the secondary lens 2 is composed mainly of resin.
  • the material of the secondary lens 2 is, for example, an acrylic resin such as PMMA (polymethyl methacrylate resin), an alicyclic acrylic resin such as a polytricyclodecyl methacrylate resin, or a polycarbonate resin from the viewpoint of light transmittance and light resistance. , Polyolefin resin, silicone resin and the like.
  • the resin constituting the secondary lens 2 may have the same composition as the primary lens 1 or a different composition.
  • the secondary lens 2 includes an ultraviolet absorber that cuts light having a second wavelength or less different from the first wavelength.
  • the ultraviolet absorber is a compound having a skeleton having a conjugated double bond such as a benzotriazole skeleton, a triazine skeleton, or a styrene skeleton, similarly to the ultraviolet absorber used for the primary lens 1.
  • the ultraviolet absorber to be used and the combination thereof are appropriately selected according to the desired cut wavelength and the light transmittance in the wavelength region used for power generation.
  • the compounding quantity of a ultraviolet absorber should just be a quantity which does not inhibit heat resistance, heat-and-moisture resistance, heat stability, and moldability, and exhibits the effect of this indication, and is mix
  • the second wavelength is shorter than the first wavelength.
  • the second wavelength may be a wavelength in a blue-violet light region or a wavelength in the near-ultraviolet light region, but the primary lens 1 is light in a wavelength region having a wavelength of 420 nm or less (hereinafter, a wavelength of 420 nm or less). Even if an ultraviolet absorber that cuts light) is included, light having a wavelength of 420 nm or less is slightly transmitted through the primary lens 1. Therefore, by making the secondary lens 2 contain an ultraviolet absorber that cuts light having a wavelength of 420 nm or less, light having a wavelength greater than 400 nm out of light having a wavelength of 420 nm or less transmitted through the primary lens 1 is used for power generation.
  • the second wavelength is preferably 400 nm.
  • an optical system for irradiating the power generation element 4 with light having a uniform light intensity distribution is made of a resin containing an ultraviolet absorber that cuts light of the second wavelength or less. , May be provided.
  • the concentrating solar cell module 10 further includes a circuit board 3 between the secondary lens 2 and the power generation element 4.
  • the circuit board 3 has a light incident side (Z axis plus side) surface fixed to the support substrate 20 with a silicone-based adhesive, and the power generation element 4 and peripheral circuits are placed on the light emission side (Z axis minus side) surface. keeping.
  • the circuit board 3 is composed mainly of a transparent resin. As described above with reference to FIG. 3, the circuit board 3 has the high-density region 30 immediately above the power generation element 4, and therefore may be a resin that can withstand high-density light energy.
  • the resin include acrylic resins such as PMMA (polymethyl methacrylate resin), alicyclic acrylic resins such as polytricyclodecyl methacrylate resin, polycarbonate resins, polyolefin resins, and silicone resins.
  • the resin constituting the circuit board 3 may have the same composition as the primary lens 1 and the secondary lens 2 or may have a different composition.
  • the circuit board 3 includes an ultraviolet absorber that cuts light having a second wavelength or less.
  • the second wavelength is shorter than the first wavelength.
  • the ultraviolet absorber is a compound having a skeleton having a conjugated double bond such as a benzotriazole skeleton, a triazine skeleton, or a styrene skeleton.
  • the ultraviolet absorber to be used and the combination thereof are appropriately selected according to the desired cut wavelength and the light transmittance in the wavelength region used for power generation.
  • the power generating element 4 has a function of converting the light energy of the irradiated sunlight into electric energy.
  • one or more kinds of materials are selected from thin films of InGaP-based material, GaAs-based material, InGaAs-based material, Ge-based material, GaAsP-based material, InP-based material, GaN-based material, and Si-based material, It is formed.
  • these thin films are irradiated with light, a photocurrent is generated, so that electric energy can be supplied to an external circuit (not shown).
  • the light receiving area of the power generation element 4 is, for example, approximately 1 mm 2 .
  • an electrode for taking out the photocurrent generated in the power generation element 4 to an external circuit is formed on the light exit surface side (Z-axis minus side) of the secondary lens 2.
  • the electrode may be formed from a metal such as Cu, Al, Ni, or Ag, or may be formed from a transparent conductive material such as ITO, or a silver paste.
  • the circuit board 3 is fixed to the support substrate 20, the power generation element 4 is disposed so as to match the focal position of the secondary lens 2.
  • the distance between the primary lens 1 and the power generation element 4 is determined by the condensing characteristics of the primary lens 1 and the secondary lens 2.
  • the distance from the light receiving surface of the primary lens 1 to the light receiving surface of the power generation element 4 is about 33 mm.
  • a support member 6 is disposed between the primary lens 1 and the secondary lens 2.
  • the support member 6 is a member that maintains the distance between the primary lens 1 and the secondary lens 2.
  • the support member 6 is formed integrally with the secondary lens 2.
  • the thickness of the support member 6 (the length in the X-axis direction and the Y-axis direction) is a so-called taper that is small (thin) on the primary lens 1 side so as not to interfere with sunlight emitted from the primary lens 1. It may be a shape.
  • the support member 6 is made of resin, and may further contain an ultraviolet absorber from the viewpoint of light resistance.
  • the ultraviolet absorber may be appropriately selected depending on the design and is not particularly limited.
  • the ultraviolet absorber may be the same as the ultraviolet absorber contained in the secondary lens 2 or may be a different ultraviolet absorber.
  • FIG. 4 is a schematic cross-sectional view illustrating an example of the structure of the concentrating solar cell module 110 according to a modification.
  • a description will be given focusing on differences from the concentrating solar cell module 10 according to the embodiment.
  • the concentrating solar cell module 110 according to the modification is a plano-convex lens having a convex portion on the light incident surface of the primary lens 101 that condenses sunlight, and thus the concentrating solar cell module 10 according to the embodiment. And different.
  • the concentrating solar cell module 110 includes a primary lens 101, a secondary lens 102, a circuit board 103, a power generation element 104, and a heat dissipation plate 105 in order from the light incident side.
  • the concentrating solar cell module 110 has a plan view shape, for example, a square shape with a horizontal length ⁇ vertical length of about 22 mm ⁇ about 22 mm.
  • the length from the boundary surface between the flat plate portion and the convex portion of the primary lens 101 (plano-convex lens) to the light exit surface of the support substrate 120 of the secondary lens 102 is, for example, about 28 mm.
  • the planar view shape of the concentrating solar cell module 110 is not limited to a rectangular shape, and may be a hexagonal shape.
  • the secondary lens 102, the circuit board 103, the power generation element 104, and the heat radiating plate 105 are also the secondary lens 2, the circuit board 3, the power generation element 4, and the heat radiating plate of the concentrating solar cell module 10, respectively. Since this is the same as 5, the description here is omitted.
  • FIG. 5 is a schematic cross-sectional view of the concentrating solar cell module according to Example 1 and Comparative Example 1.
  • 6 is a graph showing the light transmittance of the ultraviolet absorber used in Example 1 and Comparative Example 1.
  • FIG. 7 is a schematic diagram illustrating the configuration of the light resistance accelerated test apparatus.
  • FIG. 8 is a diagram illustrating a result of a light fastness test and a result of a simulation of power generation efficiency depending on a wavelength region of light used for power generation.
  • Example 1 In Example 1, a light resistance acceleration test was performed in the high-density region 30 (see FIG. 2) of a concentrating solar cell module having the following configuration.
  • the concentrating solar cell module 10a of Example 1 is provided with the primary lens 1a, the secondary lens 2a, the support substrate 20a, the circuit board 3a, the electric power generation element 4, and the heat sink 5.
  • FIG. . The distance from the light receiving surface of the primary lens 1a to the surface on the secondary lens 2a side of the circuit board 3a is 30 mm, and the thickness of the circuit board 3a is 3 mm.
  • Comparative Example 1 only the configuration different from that of Comparative Example 1 will be described.
  • Both the primary lens 1a and the secondary lens 2a are made of acrylic resin.
  • the primary lens 1a includes an ultraviolet absorber B (see FIG. 6) that cuts light having a wavelength of 420 nm or less.
  • the secondary lens 2a, the support substrate 20a, and the circuit board 3a include an ultraviolet absorber A (see FIG. 6) that cuts light having a wavelength of 400 nm or less.
  • the light resistance acceleration test was performed with the light resistance acceleration test apparatus shown in FIG.
  • an acrylic plate having a thickness of 3 mm is placed in a high-temperature and high-humidity tank having a temperature of 65 ° C. and a humidity of 85%, and the acrylic plate is irradiated with laser light using the optical fiber A from outside the high-temperature and high-humidity tank.
  • the laser beam that passed through the acrylic plate was drawn out of the high-temperature and high-humidity tank using the optical fiber B, and the transmitted light was detected by a photodiode.
  • Laser light having a wavelength of 420 nm was used as light transmitted through the primary lens 1a.
  • laser light (wavelength 420 nm) is applied to the surface of the acrylic plate using an optical fiber (quartz) having a core diameter of 200 ⁇ m. Irradiated.
  • the laser beam that passed through the acrylic plate was detected by a photodiode (PD), and the time when the photodiode signal decreased by 10% from the initial value was defined as the degradation time (H: Hour). The results are shown in FIG.
  • the concentrating solar cell module 10a of Example 1 had a deterioration time of about 3300 hours.
  • Comparative Example 1 In the comparative example 1, the acceleration test of the photodegradation in the high density area
  • the concentrating solar cell module 10b of Comparative Example 1 includes a primary lens 1b, a secondary lens 2b, a support substrate 20b, a circuit board 3b, a power generation element 4, and a heat sink 5. .
  • the distance from the light receiving surface of the primary lens 1b to the surface on the secondary lens 2b side of the circuit board 3b is 30 mm, and the thickness of the circuit board 3b is 3 mm.
  • Both the primary lens 1b and the secondary lens 2b are made of acrylic resin.
  • the primary lens 1b includes an ultraviolet absorber A (see FIG. 6) that cuts light having a wavelength of 400 nm or less.
  • the secondary lens 2b, the support substrate 20b, and the circuit board 3b are made of acrylic resin and include an ultraviolet absorber. As described above in Example 1, it was found from the graph shown in FIG. 6 that the ultraviolet absorber A slightly transmits light having a wavelength of 400 nm or less. Therefore, in the concentrating solar cell module 10b of Example 1, since the ultraviolet absorber A is used for the primary lens 1a, the light having a wavelength of 400 nm or less transmitted through the primary lens 1b is reflected in the secondary lens 2b and the secondary lens.
  • Sunlight having a wavelength of 400 nm to 420 nm is irradiated to members below the 2b (the support substrate 20b and the circuit board 3b).
  • the light resistance acceleration test and the power generation efficiency simulation were performed, and the light resistance and power generation efficiency of the concentrating solar cell module 10b of Comparative Example 1 were verified.
  • the concentrating solar cell module 10b of Comparative Example 1 had a deterioration time of about 200 hours.
  • Conventional concentrating solar cell modules use light having a wavelength of 400 nm or more for power generation.
  • the power generation efficiency decreases by 10%.
  • the power generation efficiency is reduced by 25%. Therefore, it has been found that as the wavelength to be cut becomes larger than the wavelength of 400 nm, the damage to the resin can be reduced, but the energy loss is large and the power generation efficiency is lowered.
  • Example 1 light having a wavelength of 420 nm or less is cut by the primary lens 1a. As shown in FIG. 8, it was found that the power generation efficiency when light having a wavelength of 420 nm or more is used for power generation is reduced by 3.5% compared to the case where light having a wavelength of 400 nm or more is used.
  • Example 1 As a result of the accelerated light resistance test, the deterioration time of Example 1 was about 3300 hours, and the deterioration time of Comparative Example 1 was about 200 hours. From this result, since the concentrating solar cell module 10a of Example 1 contains the ultraviolet absorber B that cuts light with a wavelength of 420 nm or less in the primary lens 1a, the conventional member that cannot be made of resin is made of resin. It was found that sufficient light resistance can be obtained even with Moreover, from the result of the simulation of the power generation efficiency, the power generation efficiency of the concentrating solar cell module 10a of Example 1 is only 3.5% lower than that of the conventional concentrating solar cell module, and the power generation efficiency is high. It turns out that it is obtained.
  • the primary lens 1a contains an ultraviolet absorber B that cuts light of a wavelength of 420 nm
  • the secondary lens 1a, the support substrate 20a, and the circuit board 3a contain an ultraviolet absorber A that cuts light of a wavelength of 400 nm or less.
  • the concentrating solar cell module 10b of Comparative Example 1 has a remarkable deterioration of the resin even if the primary lens 1b contains the ultraviolet absorber A that cuts light having a wavelength of 400 nm or less. It was confirmed that the required light resistance could not be obtained.
  • the deterioration of the resin is promoted by oxygen radicals generated in the atmosphere by light exceeding a wavelength of 400 nm (wavelength 405 nm), and the wavelength of the secondary lens 2b and the member below the secondary lens 2b is increased from 400 nm to 400 nm. It is thought that the resin deterioration due to irradiation with 420 nm sunlight progressed.
  • the secondary lens 2b, the support substrate 20b, and the circuit board 3b are in view of ensuring light resistance.
  • the resin could not be constructed.
  • FIG. 9 is a schematic cross-sectional view of the concentrating solar cell module according to Example 2 and Comparative Example 2.
  • FIG. 10 is a diagram showing the spectrum of sunlight that has passed through the primary lens in Example 2 and Comparative Example 2.
  • Example 2 In Example 2, the spectrum of sunlight transmitted through a primary lens of a concentrating solar cell module having the following configuration was measured.
  • the concentrating solar cell module 110a includes a primary lens 101a, a secondary lens 102a, a support substrate 120a, a circuit substrate 103a, a power generation element 104, and a heat dissipation plate 105.
  • the distance from the boundary surface between the flat plate portion and the convex portion of the primary lens 101a to the surface on the secondary lens 102a side of the circuit board 103a is 30 mm, and the thickness of the circuit board 103a is 3 mm.
  • Comparative Example 2 only the configuration different from that of Comparative Example 2 will be described.
  • Both the primary lens 101a and the secondary lens 102a are made of acrylic resin. Similar to the primary lens 1a in the first embodiment, the primary lens 101a includes an ultraviolet absorber B that cuts light having a wavelength of 420 nm or less (see FIG. 6 for transmittance). The secondary lens 102a, the support substrate 120a, and the circuit board 103a include an ultraviolet absorber A (see FIG. 6) that cuts light having a wavelength of 400 nm or less.
  • the short-circuit current was measured and found to be 38.7 mA.
  • the concentrating solar cell module 110b of Comparative Example 2 includes a primary lens 101b, a secondary lens 102b, a support substrate 120b, a circuit board 103b, a power generation element 104, and a heat dissipation plate 105.
  • the distance from the boundary surface between the flat plate portion and the convex portion of the primary lens 101b to the surface on the secondary lens 102b side of the circuit board 103b is 30 mm, and the thickness of the circuit board 103b is 3 mm.
  • the configuration different from the second embodiment will be described.
  • Both the primary lens 101b and the secondary lens 102b are made of acrylic resin. Similar to the primary lens 1b in the first comparative example, the primary lens 101b includes an ultraviolet absorber A that cuts light having a wavelength of 400 nm or less (see FIG. 6 for transmittance).
  • the secondary lens 102b, the support substrate 20b, and the circuit board 103b are made of an acrylic resin and include an ultraviolet absorber.
  • the short-circuit current was measured and found to be 39.3 mA.
  • the short-circuit current was 38.7 mA
  • the short-circuit current was 39.3 mA
  • the short-circuit current value of Example 2 is 98.5% of the short-circuit current value of Comparative Example 2. That is, in the concentrating solar cell module 110a according to Example 2, it was found that the power generation efficiency was slightly reduced as compared with Comparative Example 2, and thus high power generation efficiency was obtained. Therefore, it was found that power generation efficiency equivalent to that of a conventional concentrating solar cell module using light having a wavelength of 400 nm or more for power generation can be obtained.
  • the concentrating solar cell module 110a can obtain a sufficient service life even if the primary lens, the secondary lens, the support substrate, the circuit substrate, and the like are made of resin. It is considered that the light resistance is exhibited.
  • the concentrating solar cell module according to the present disclosure is lighter than the conventional concentrating solar cell module by configuring the primary lens, the secondary lens, the support substrate, the circuit substrate, and the like with resin. can do.
  • the primary lens includes an ultraviolet absorber that cuts light having a wavelength of 420 nm or less
  • the secondary lens, the support substrate, and the circuit board include an ultraviolet absorber that cuts light having a wavelength of 400 nm or less.
  • the concentrating solar cell module according to the present disclosure has been described based on the embodiments and examples, the present disclosure is not limited to the embodiments and examples.
  • the concentrating solar cell module according to the present disclosure is thin and lightweight, it can be easily transported and no foundation work is required, so that it can be easily installed in various places. It is applicable to a type of solar power generation device. More specifically, the concentrating solar cell module can be disposed in various places such as farmland, urban areas, mountainous areas, uncultivated areas, and rooftops of buildings such as buildings.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A concentrator solar cell module (10) includes a first optical system (1) that comprises a resin and concentrates sun light, and a second optical system (2) that comprises a resin and further concentrates the light concentrated by the first optical system (1). The first optical system (1) includes an absorbent that blocks light of a first wavelength or less, and the second optical system (2) includes an absorbent that blocks light of a second wavelength or less that is different from the first wavelength.

Description

集光型太陽電池モジュールConcentrating solar cell module
 本開示は、集光型太陽電池モジュールに関する。 This disclosure relates to a concentrating solar cell module.
 太陽エネルギーを電力に変換する太陽光発電装置が実用化されている。また、プリズムやレンズなどの集光手段で太陽光を太陽電池モジュールよりも小さい太陽電池セル(発電素子)に集光して発電する太陽電池モジュールが提案されている。 A solar power generation device that converts solar energy into electric power has been put into practical use. In addition, a solar cell module has been proposed in which sunlight is condensed by a condensing means such as a prism or a lens onto a solar cell (power generation element) smaller than the solar cell module.
 集光型太陽光発電装置は、太陽光を集光手段で集光することから、太陽電池セルは、光学系で集光された太陽光を受光できる小さい受光面積を備えていればよい。つまり、集光手段の受光面積より小さいサイズの太陽電池セルでよいため、太陽電池セルのサイズを縮小することができる。また、集光型太陽光発電装置は、太陽光発電装置において高価な構成物である太陽電池セルの使用量を減らすことができるため、省資源化、低コスト化につながる。 Since the concentrating solar power generation device condenses sunlight with a condensing unit, the solar battery cell only needs to have a small light receiving area capable of receiving sunlight condensed by the optical system. That is, since the solar battery cell having a size smaller than the light receiving area of the light collecting means may be used, the size of the solar battery cell can be reduced. Moreover, since the concentrating solar power generation device can reduce the amount of solar cells that are expensive components in the solar power generation device, it leads to resource saving and cost reduction.
 特許文献1では、ガラス板の一方の面に太陽電池セルが配置され、ガラス板の他方の面に集光レンズが配置された集光型太陽電池(集光型太陽電池モジュール)が開示されている。 Patent Document 1 discloses a concentrating solar cell (condensing solar cell module) in which solar cells are arranged on one surface of a glass plate and a condensing lens is arranged on the other surface of the glass plate. Yes.
国際公開第2013/179564号International Publication No. 2013/179564
 上記従来の集光型太陽電池では、耐光性の保証の観点から光密度の高い部分にガラスを使用しなければならないため、重量が重いという問題がある。 The above conventional concentrating solar cell has a problem that it is heavy because glass must be used in a portion with high light density from the viewpoint of ensuring light resistance.
 そこで、本開示では、軽量化された集光型太陽電池モジュールを提供する。 Therefore, the present disclosure provides a light-weight concentrating solar cell module.
 本開示の一態様に係る集光型太陽電池モジュールは、樹脂からなり、太陽光を集光する一次光学系と、樹脂からなり、一次光学系によって集光された光をさらに集光する二次光学系と、を備え、一次光学系は、第1の波長以下の光をカットする紫外線吸収剤を含み、二次光学系は、第1の波長と異なる第2の波長以下の光をカットする紫外線吸収剤を含む。 A concentrating solar cell module according to an aspect of the present disclosure is made of a resin, and a primary optical system that collects sunlight and a secondary that is made of a resin and further collects light collected by the primary optical system. An optical system, the primary optical system includes an ultraviolet absorber that cuts light of a first wavelength or less, and the secondary optical system cuts light of a second wavelength or less that is different from the first wavelength. Contains UV absorber.
 本開示によれば、軽量化された集光型太陽電池モジュールが提供される。 According to the present disclosure, a light-weight concentrating solar cell module is provided.
図1は、実施の形態に係る集光型太陽電池モジュールを備える集光型太陽電池装置の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a concentrating solar cell device including the concentrating solar cell module according to the embodiment. 図2は、実施の形態に係る集光型太陽電池モジュールの構造の一例を説明する概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating an example of the structure of the concentrating solar cell module according to the embodiment. 図3は、太陽光のスペクトルを示す図である。FIG. 3 is a diagram showing a spectrum of sunlight. 図4は、変形例に係る集光型太陽電池モジュールの構造の一例を説明する概略断面図である。FIG. 4 is a schematic cross-sectional view illustrating an example of the structure of a concentrating solar cell module according to a modification. 図5は、実施例1および比較例1に係る集光型太陽電池モジュールの概略断面図である。FIG. 5 is a schematic cross-sectional view of the concentrating solar cell module according to Example 1 and Comparative Example 1. 図6は、実施例1および比較例1で使用した吸収剤の光透過率を示すグラフである。FIG. 6 is a graph showing the light transmittance of the absorbent used in Example 1 and Comparative Example 1. 図7は、耐光性加速試験装置の構成を説明する模式図である。FIG. 7 is a schematic diagram illustrating the configuration of the light resistance accelerated test apparatus. 図8は、耐光性加速試験の結果、および、発電に利用される光の波長領域による発電効率のシミュレーションの結果を示す図である。FIG. 8 is a diagram illustrating a result of a light fastness test and a result of a simulation of power generation efficiency depending on a wavelength region of light used for power generation. 図9は、実施例2および比較例2に係る集光型太陽電池モジュールの概略断面図である。FIG. 9 is a schematic cross-sectional view of the concentrating solar cell module according to Example 2 and Comparative Example 2. 図10は、実施例2および比較例2における一次レンズを透過した太陽光のスペクトルを示す図である。FIG. 10 is a diagram illustrating a spectrum of sunlight transmitted through the primary lens in Example 2 and Comparative Example 2.
 本開示の一態様の概要は以下のとおりである。 The outline of one aspect of the present disclosure is as follows.
 本開示の一態様に係る集光型太陽電池モジュールは、樹脂からなり、太陽光を集光する一次光学系と、樹脂からなり、一次光学系によって集光された光をさらに集光する二次光学系と、を備え、一次光学系は、第1の波長以下の光を吸収する吸収剤を含み、二次光学系は、第1の波長と異なる第2の波長以下の光を吸収する吸収剤を含む。 A concentrating solar cell module according to an aspect of the present disclosure is made of a resin, and a primary optical system that collects sunlight and a secondary that is made of a resin and further collects light collected by the primary optical system. An optical system, wherein the primary optical system includes an absorbent that absorbs light of a first wavelength or less, and the secondary optical system absorbs light of a second wavelength or less that is different from the first wavelength. Contains agents.
 これにより、吸収する波長帯域の異なる2種類の紫外線吸収剤がそれぞれ一次光学系と二次光学系とに配合されるため、樹脂で構成される一次光学系および二次光学系に対し、特に紫外線による劣化が低減される。そのため、従来の集光型太陽電池モジュールではガラスで構成されていた部材を樹脂で構成することが可能となる。したがって、本開示の一態様に係る集光型太陽電池モジュールは、軽量化される。 As a result, two types of ultraviolet absorbers having different wavelength bands to be absorbed are blended in the primary optical system and the secondary optical system, respectively. Degradation due to is reduced. For this reason, in the conventional concentrating solar cell module, a member made of glass can be made of resin. Therefore, the concentrating solar cell module according to one aspect of the present disclosure is reduced in weight.
 例えば、本開示の一態様に係る集光型太陽電池モジュールでは、第1の波長は、第2の波長よりも長波長であってもよい。 For example, in the concentrating solar cell module according to one aspect of the present disclosure, the first wavelength may be longer than the second wavelength.
 この場合、一次光学系に含まれる紫外線吸収剤は、二次光学系に含まれる紫外線吸収剤が吸収する波長よりも長波長の光も吸収する。すなわち、一次光学系に含まれる紫外線吸収剤は、一次光学系を透過した光に含まれる紫外線量を低減させることができるため、高エネルギーを有する短波長の光が二次光学系に到達する量を低減させることができる。したがって、本開示の一態様に係る集光型太陽電池モジュールは、上記構成を有することにより、二次光学系およびその下層の部材の光劣化が低減される。 In this case, the ultraviolet absorber included in the primary optical system also absorbs light having a longer wavelength than the wavelength absorbed by the ultraviolet absorber included in the secondary optical system. That is, since the ultraviolet absorber contained in the primary optical system can reduce the amount of ultraviolet rays contained in the light transmitted through the primary optical system, the amount of short wavelength light having high energy that reaches the secondary optical system. Can be reduced. Therefore, the concentrating solar cell module according to one embodiment of the present disclosure has the above-described configuration, thereby reducing light degradation of the secondary optical system and the members below it.
 例えば、本開示の一態様に係る集光型太陽電池モジュールは、二次光学系と発電素子との間に回路基板をさらに備え、回路基板は、第2の波長以下の光を吸収する吸収剤を含んでもよい。 For example, the concentrating solar cell module according to one aspect of the present disclosure further includes a circuit board between the secondary optical system and the power generation element, and the circuit board absorbs light having a second wavelength or less. May be included.
 これにより、二次光学系を透過した光に第2波長以下の光が僅かに含まれていても、回路基板に含まれる紫外線吸収剤により第2波長以下の光が吸収される。したがって、本開示の一態様に係る集光型太陽電池モジュールは、二次光学系と発電素子との間の、光密度が高くなる部分の光劣化が低減される。 Thus, even if the light transmitted through the secondary optical system contains a small amount of light of the second wavelength or less, the light of the second wavelength or less is absorbed by the ultraviolet absorber included in the circuit board. Therefore, in the concentrating solar cell module according to one aspect of the present disclosure, light degradation between the secondary optical system and the power generation element at a portion where the light density is high is reduced.
 例えば、本開示の一態様に係る集光型太陽電池モジュールでは、第1の波長は、420nmであり、第2の波長は、400nmであってもよい。 For example, in the concentrating solar cell module according to one aspect of the present disclosure, the first wavelength may be 420 nm, and the second wavelength may be 400 nm.
 これにより、一次光学系が波長420nm以下の光をカットする紫外線吸収剤を含んでいても、波長420nm以下の光が一次光学系を僅かに透過する。そのため、二次光学系に波長400nm以下の光をカットする紫外線吸収剤を含有させることにより、一次光学系を透過した波長420nm以下の光のうち、波長400nmより大きい波長の光を発電に利用することができる。また、二次光学系が波長400nm以下の光をする紫外線吸収剤を含んでいるため、一次光学系を僅かに透過した波長420nm以下の光からは波長400nm以下の光を効率的にカットすることができる。したがって、本開示の一態様に係る集光型太陽電池モジュールは、発電効率が殆ど低減されず、十分な耐用年数が得られる。 Thereby, even if the primary optical system includes an ultraviolet absorber that cuts light having a wavelength of 420 nm or less, light having a wavelength of 420 nm or less is slightly transmitted through the primary optical system. Therefore, by including an ultraviolet absorber that cuts light having a wavelength of 400 nm or less in the secondary optical system, light having a wavelength greater than 400 nm among light having a wavelength of 420 nm or less transmitted through the primary optical system is used for power generation. be able to. Moreover, since the secondary optical system includes an ultraviolet absorber that emits light having a wavelength of 400 nm or less, light having a wavelength of 400 nm or less is efficiently cut from light having a wavelength of 420 nm or less that is slightly transmitted through the primary optical system. Can do. Therefore, the power generation efficiency of the concentrating solar cell module according to one embodiment of the present disclosure is hardly reduced, and a sufficient service life is obtained.
 例えば、本開示の一態様に係る集光型太陽電池モジュールでは、第1の波長の光の焦点は、回路基板内に位置してもよい。 For example, in the concentrating solar cell module according to one aspect of the present disclosure, the focal point of the light having the first wavelength may be located in the circuit board.
 これにより、第1の波長よりも長波長の光は、その焦点位置が第1の波長の光よりも下方に位置する。そのため、第1の波長よりも長波長帯域の光を発電素子に集光することができる。したがって、本開示の一態様に係る集光型太陽電池モジュールは、発電素子に集光される光の波長範囲が広くなるため、発電効率が向上される。 Thereby, the light having a wavelength longer than the first wavelength has a focal position positioned below the light having the first wavelength. Therefore, light having a longer wavelength band than the first wavelength can be collected on the power generation element. Therefore, in the concentrating solar cell module according to one embodiment of the present disclosure, the wavelength range of light collected on the power generation element is widened, so that power generation efficiency is improved.
 具体的には、第1の波長の光の焦点を基板内にすることで、第一の波長近傍の発電素子に到達する透過光は、第一の波長の光の焦点を発電素子内の位置にするよりも広く発電素子の受光面に照射されるため、発電素子の抵抗損失が低減され、変換効率が向上される。 Specifically, by setting the focal point of the light of the first wavelength in the substrate, the transmitted light reaching the power generating element near the first wavelength is focused on the position of the light of the first wavelength in the power generating element. Since the light receiving surface of the power generation element is irradiated more widely than the above, the resistance loss of the power generation element is reduced and the conversion efficiency is improved.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventor provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is not intended to limit the claimed subject matter. .
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, and the overlapping description may be abbreviate | omitted or simplified.
 また、以下の実施の形態で説明に用いられる図面においては、座標軸が示される場合がある。Z軸マイナス側が太陽電池モジュールの設置面側、Z軸プラス側が太陽光の光入射面側を表している。また、X軸およびY軸は、X軸に垂直な平面上において互いに直交する軸である。例えば、以下の実施の形態において、「平面視」とは、光入射面側から見る(Z軸方向から見る)ことを意味する。また、例えば、以下の実施の形態において、「断面視」とは、断面線を含む面で切断された太陽電池モジュールを、切断された面に対して垂直方向から見ることを意味する。例えば、Y軸とZ軸とで規定された平面(切断線で切断された面の一例)で切断された場合、断面視とは、当該断面をX軸方向から見ることを意味する。 In the drawings used for explanation in the following embodiments, coordinate axes may be shown. The Z-axis minus side represents the solar cell module installation surface side, and the Z-axis plus side represents the sunlight incident surface side. The X axis and the Y axis are axes that are orthogonal to each other on a plane perpendicular to the X axis. For example, in the following embodiments, “plan view” means viewing from the light incident surface side (viewing from the Z-axis direction). For example, in the following embodiments, “cross-sectional view” means that a solar cell module cut along a plane including a cross-sectional line is viewed from a direction perpendicular to the cut plane. For example, when cut along a plane defined by the Y-axis and the Z-axis (an example of a surface cut by a cutting line), the cross-sectional view means that the cross-section is viewed from the X-axis direction.
 (実施の形態)
 [1.集光型太陽電池装置]
 図1は、本実施の形態に係る集光型太陽電池モジュール10を備える集光型太陽電池装置100の一例を示す斜視図である。
(Embodiment)
[1. Concentrating solar cell device]
FIG. 1 is a perspective view showing an example of a concentrating solar cell device 100 including the concentrating solar cell module 10 according to the present embodiment.
 集光型太陽電池装置100は、複数の集光型太陽電池モジュール10がX-Y平面に平行な面にアレイ状に配列されて構成される。例えば、図1に示すように、集光型太陽電池装置100は、25個の集光型太陽電池モジュール10から構成されている。集光型太陽電池装置100の平面視形状は、例えば、矩形状である。一例として、集光型太陽電池装置100の平面視形状は、横(X軸方向)の長さが約112mmで、縦(Y軸方向)の長さが約112mmの正方形状である。一次レンズアレイ11の光入射面から二次レンズアレイ21の支持基板(不図示)の光出射面までの長さは約30mmである。支持基板の光出射面には、二次レンズ2に対応して発電素子4が配置されている。発電素子4の平面視形状は、例えば、正方形状であり、その大きさは略1mmである。なお、集光型太陽電池装置100の形状は、矩形状に限られない。集光型太陽電池装置100は、設置場所などに応じて所望の形状に形成されてもよい。なお、集光型太陽電池モジュール10については後述する。 The concentrating solar cell device 100 includes a plurality of concentrating solar cell modules 10 arranged in an array on a plane parallel to the XY plane. For example, as shown in FIG. 1, the concentrating solar cell device 100 is composed of 25 concentrating solar cell modules 10. The planar view shape of the concentrating solar cell device 100 is, for example, a rectangular shape. As an example, the shape of the concentrating solar cell device 100 in plan view is a square shape having a horizontal (X-axis direction) length of about 112 mm and a vertical (Y-axis direction) length of about 112 mm. The length from the light incident surface of the primary lens array 11 to the light emitting surface of the support substrate (not shown) of the secondary lens array 21 is about 30 mm. On the light emitting surface of the support substrate, the power generation element 4 is arranged corresponding to the secondary lens 2. The shape of the power generation element 4 in plan view is, for example, a square shape, and the size thereof is approximately 1 mm 2 . Note that the shape of the concentrating solar cell device 100 is not limited to a rectangular shape. The concentrating solar cell device 100 may be formed in a desired shape according to the installation location. The concentrating solar cell module 10 will be described later.
 集光型太陽電池装置100は、受光面側から順に、一次レンズアレイ11、二次レンズアレイ21、発電モジュール(不図示)、放熱板(不図示)を備える。集光型太陽電池装置100は、一次レンズアレイ11、および、二次レンズアレイ21が樹脂により構成されるため、軽量である。また、上記一例のように、一次レンズアレイ11、二次レンズアレイ21、発電素子4を小さくすることにより、集光型太陽電池装置100の厚みが薄くなり、従来の集光型太陽電池装置に比べて小型である。そのため、集光型太陽電池装置100では、太陽光を追尾する追尾装置に必要とされる強度を下げることができる。これにより、追尾装置などの付帯設備のコストを低減することができる。さらに、追尾装置は、一次レンズアレイおよび二次レンズアレイがガラスなどで形成される場合に比べ、より少ないエネルギーで集光型太陽電池装置100の受光面を太陽光が受光面に対して略垂直に入射する方向に向けて動かすことができる。そのため、より少ないエネルギーで、集光型太陽電池装置100の発電効率を向上させることができる。また、集光型太陽電池装置100は、軽量かつ小型であるため、輸送および設置が容易になる。そのため、集光型太陽電池装置100は、ビルの屋上などの、従来の集光型太陽電池装置では設置できなかった場所にも設置が可能となる。 The concentrating solar cell device 100 includes, in order from the light receiving surface side, a primary lens array 11, a secondary lens array 21, a power generation module (not shown), and a heat sink (not shown). The concentrating solar cell device 100 is lightweight because the primary lens array 11 and the secondary lens array 21 are made of resin. Further, as in the above example, by reducing the size of the primary lens array 11, the secondary lens array 21, and the power generation element 4, the thickness of the concentrating solar cell device 100 is reduced, so that the conventional concentrating solar cell device is reduced. Smaller than that. Therefore, in the concentrating solar cell device 100, the intensity required for the tracking device that tracks sunlight can be reduced. Thereby, the cost of incidental facilities, such as a tracking apparatus, can be reduced. Further, in the tracking device, sunlight is substantially perpendicular to the light receiving surface of the concentrating solar cell device 100 with less energy than when the primary lens array and the secondary lens array are formed of glass or the like. Can be moved toward the direction of incidence. Therefore, the power generation efficiency of the concentrating solar cell device 100 can be improved with less energy. Further, since the concentrating solar cell device 100 is lightweight and small, it can be easily transported and installed. Therefore, the concentrating solar cell device 100 can be installed in a place such as the rooftop of a building that could not be installed with a conventional concentrating solar cell device.
 以下、集光型太陽電池装置100の各構成について説明する。 Hereinafter, each configuration of the concentrating solar cell device 100 will be described.
 [一次レンズアレイ]
 一次レンズアレイ11は、正の屈折率を有する複数の一次光学系1(以下、一次レンズ1)がアレイ状に配置されて構成された一次集光レンズアレイである。一次レンズアレイ11は、後述する二次レンズアレイ21に太陽光を集光する。本実施の形態では、一次レンズアレイ11は、25個の一次レンズ1がアレイ状に配置されて構成されるが、一次レンズアレイ11を構成する一次レンズ1の個数は特に限定されない。図1では、一次レンズ1の平面視形状は、正方形状である例を示しているが、長方形状、または、六角形状であってもよい。
[Primary lens array]
The primary lens array 11 is a primary condensing lens array configured by arranging a plurality of primary optical systems 1 (hereinafter referred to as primary lenses 1) having a positive refractive index in an array. The primary lens array 11 condenses sunlight on a secondary lens array 21 described later. In the present embodiment, the primary lens array 11 is configured by arranging 25 primary lenses 1 in an array, but the number of primary lenses 1 constituting the primary lens array 11 is not particularly limited. In FIG. 1, the planar view shape of the primary lens 1 is a square shape, but may be a rectangular shape or a hexagonal shape.
 一次レンズアレイ11は、樹脂を主成分として構成され、さらに、第1の波長以下の光をカットする紫外線吸収剤を含む。第1の波長は、後述する第2の波長よりも長波長である。一次レンズアレイ11が樹脂で構成されることにより、集光型太陽電池装置100は軽量化される。また、一次レンズアレイ11は、押出成形または射出成形により作製される。なお、上記の樹脂、紫外線吸収剤、および第1の波長の詳細については、「2.集光型太陽電池モジュール」の項で後述する。 The primary lens array 11 is composed of resin as a main component, and further includes an ultraviolet absorber that cuts off light of the first wavelength or less. The first wavelength is longer than the second wavelength described later. When the primary lens array 11 is made of resin, the concentrating solar cell device 100 is reduced in weight. The primary lens array 11 is manufactured by extrusion molding or injection molding. The details of the resin, the ultraviolet absorber, and the first wavelength will be described later in the section “2. Concentrating solar cell module”.
 [二次レンズアレイ]
 二次レンズアレイ21は、発電素子4側から一次レンズアレイ側に突出した突形状を有する複数の二次光学系2(以下、二次レンズ2)がアレイ状に配置されて構成された二次集光レンズアレイであり、一次レンズアレイの光出射方向側に配置される。二次レンズアレイ21は、図1のX-Y平面に広がる支持基板(不図示)と、支持基板の光入射面側(Z軸プラス側)に形成された複数の二次レンズ2とを有する。二次レンズ2の光軸は、一次レンズ1の光軸と一致する。なお、「一致する」とは、完全に一致する場合に限定されず、実質的に一致することも含まれる。例えば、二つの値に数%の誤差があったとしても、これらは一致するとみなされ得る。
[Secondary lens array]
The secondary lens array 21 is configured by a plurality of secondary optical systems 2 (hereinafter referred to as secondary lenses 2) having a protruding shape protruding from the power generation element 4 side to the primary lens array side and arranged in an array. It is a condensing lens array, and is disposed on the light exit direction side of the primary lens array. The secondary lens array 21 has a support substrate (not shown) extending in the XY plane of FIG. 1 and a plurality of secondary lenses 2 formed on the light incident surface side (Z-axis plus side) of the support substrate. . The optical axis of the secondary lens 2 coincides with the optical axis of the primary lens 1. It should be noted that “matching” is not limited to a case where they completely match, and includes substantially matching. For example, even if there is an error of several percent between the two values, they can be considered coincident.
 支持基板は、板状であり、一次レンズアレイ11の一次レンズ1に1対1に対応して二次レンズ2が支持基板の表面にアレイ状に配置されている。また、二次レンズ2と支持基板とは、一体に形成される。 The support substrate has a plate shape, and the secondary lenses 2 are arranged in an array on the surface of the support substrate in a one-to-one correspondence with the primary lenses 1 of the primary lens array 11. Further, the secondary lens 2 and the support substrate are integrally formed.
 二次レンズアレイ21は、樹脂を主成分として構成され、さらに、第2の波長以下の光をカットする紫外線吸収剤を含む。第2の波長は、第1の波長よりも短波長である。二次レンズアレイ21は、樹脂で構成されることにより、集光型太陽電池装置100は軽量化される。また、二次レンズアレイ21は、押出成形または射出成形により作製される。二次レンズアレイ21を構成する樹脂は、一次レンズアレイ11を構成する樹脂と同じ組成であってもよく、異なる組成であってもよい。なお、上記の樹脂、紫外線吸収剤、および第2の波長の詳細については、「2.集光型太陽電池モジュール」の項で後述する。 The secondary lens array 21 is composed of resin as a main component, and further includes an ultraviolet absorber that cuts light having a second wavelength or less. The second wavelength is shorter than the first wavelength. Since the secondary lens array 21 is made of resin, the concentrating solar cell device 100 is reduced in weight. The secondary lens array 21 is produced by extrusion molding or injection molding. The resin constituting the secondary lens array 21 may have the same composition as the resin constituting the primary lens array 11 or a different composition. The details of the resin, the ultraviolet absorber, and the second wavelength will be described later in the section “2. Concentrating solar cell module”.
 [発電モジュール]
 発電モジュール(不図示)は、光電変換を行う発電素子4と、発電素子4および周辺回路を保持する回路基板とから構成される。回路基板は、例えばシリコーン系接着剤で支持基板に固定されている。回路基板が支持基板に固定されたときに、発電素子4は、二次レンズ2の焦点位置に合うように配置される。なお、一次レンズアレイ11と発電素子4との距離は、一次レンズアレイ11および二次レンズアレイ21の集光特性により決定される。一例として、一次レンズアレイ11の受光面から発電素子4の受光面までの距離は、33mm程度である。
[Power generation module]
The power generation module (not shown) includes a power generation element 4 that performs photoelectric conversion, and a circuit board that holds the power generation element 4 and peripheral circuits. The circuit board is fixed to the support substrate with, for example, a silicone adhesive. When the circuit board is fixed to the support substrate, the power generation element 4 is disposed so as to match the focal position of the secondary lens 2. Note that the distance between the primary lens array 11 and the power generation element 4 is determined by the condensing characteristics of the primary lens array 11 and the secondary lens array 21. As an example, the distance from the light receiving surface of the primary lens array 11 to the light receiving surface of the power generation element 4 is about 33 mm.
 発電素子4は、照射された太陽光の光エネルギーを電気エネルギーに変換する機能を有する。発電素子4は、InGaP系材料、GaAs系材料、InGaAs系材料、Ge系材料、GaAsP系材料、InP系材料、GaN系材料、Si系材料の薄膜から形成される。特に、集光型太陽電池においては、各薄膜の多接合からなる発電素子が使用されることが一般的である。具体的には、太陽光の入射側から、バンドギャップの大きい発電材料順に、結晶成長、または機械的に重ね合わすことにより積層したものが使用される。これらの薄膜に光を照射すると光電流が発生するため、外部回路(図示せず)に電気エネルギーを供給することが可能となる。なお、発電素子4の受光面積は、例えば、略1mmである。また、二次レンズアレイ21の光出射面側(Z軸マイナス側)には、発電素子4に発生した光電流を外部回路へ取り出すための電極(不図示)が形成されている。電極は、例えば、Cu(銅)、Al(アルミニウム)、Ni(ニッケル)、Ag(銀)などの金属から形成されてもよく、ITO(Indium Tin Oxide)、銀ペーストなどの透明導電材料から形成されてもよい。 The power generating element 4 has a function of converting the light energy of the irradiated sunlight into electric energy. The power generating element 4 is formed from a thin film of InGaP-based material, GaAs-based material, InGaAs-based material, Ge-based material, GaAsP-based material, InP-based material, GaN-based material, and Si-based material. In particular, in a concentrating solar cell, it is common to use a power generation element composed of multiple junctions of thin films. More specifically, the solar power is used in the order of power generation material having a large band gap from the incident side of sunlight, crystal growth, or by stacking mechanically. When these thin films are irradiated with light, a photocurrent is generated, so that electric energy can be supplied to an external circuit (not shown). Note that the light receiving area of the power generation element 4 is, for example, approximately 1 mm 2 . Further, an electrode (not shown) for taking out the photocurrent generated in the power generation element 4 to the external circuit is formed on the light emitting surface side (Z-axis minus side) of the secondary lens array 21. The electrode may be formed of a metal such as Cu (copper), Al (aluminum), Ni (nickel), Ag (silver), or the like, or formed of a transparent conductive material such as ITO (Indium Tin Oxide) or silver paste. May be.
 [放熱板]
 放熱板は、アルミニウム、銅などの熱伝導性に優れる金属から構成される。放熱板は、板状の基体と、基体の厚み方向に沿って基体から離間する方向に突出するフィン部、ビードまたは凸部を有してもよい。ビードは、畝状に形成された部位を指し、凸部は、基体の厚み方向に沿って基体から離間する方向に突出する、柱状、半球状などの突起部をいう。
[Heatsink]
A heat sink is comprised from the metal which is excellent in heat conductivity, such as aluminum and copper. The heat radiating plate may have a plate-like base and a fin portion, a bead, or a convex portion that protrudes in a direction away from the base along the thickness direction of the base. The bead refers to a portion formed in a bowl shape, and the convex portion refers to a protruding portion such as a columnar shape or a hemispherical shape that protrudes in a direction away from the base body along the thickness direction of the base body.
 [その他の部材]
 一次レンズアレイ11と二次レンズアレイ21との間には、外枠62と支持部材61とが配置されている。支持部材61は、二次レンズアレイ21に対し一次レンズアレイ11を支え持ち、一次レンズアレイ11と二次レンズアレイ21との間隔を維持する部材である。本実施の形態の場合、外枠62と支持部材61とはそれぞれ、二次レンズアレイ21と一体で形成されている。なお、支持部材61の厚さ(X軸方向およびY軸方向の長さ)は、一次レンズ1から出射する太陽光に干渉しないように、一次レンズアレイ11側では小さく(薄く)なる、いわゆる、テーパー形状であってもよい。
[Other parts]
An outer frame 62 and a support member 61 are arranged between the primary lens array 11 and the secondary lens array 21. The support member 61 is a member that supports the primary lens array 11 with respect to the secondary lens array 21 and maintains the distance between the primary lens array 11 and the secondary lens array 21. In the case of the present embodiment, the outer frame 62 and the support member 61 are each formed integrally with the secondary lens array 21. Note that the thickness of the support member 61 (the length in the X-axis direction and the Y-axis direction) is small (thin) on the primary lens array 11 side so as not to interfere with sunlight emitted from the primary lens 1. A taper shape may be sufficient.
 [2.集光型太陽電池モジュール]
 続いて、集光型太陽電池モジュール10について説明する。図2は、本実施の形態に係る集光型太陽電池モジュール10の構造の一例を示す概略断面図である。図2は、図1に示す集光型太陽電池モジュール10をYZ平面で切断し、X軸方向から見た断面図である。
[2. Concentrated solar cell module]
Next, the concentrating solar cell module 10 will be described. FIG. 2 is a schematic sectional view showing an example of the structure of the concentrating solar cell module 10 according to the present embodiment. FIG. 2 is a cross-sectional view of the concentrating solar cell module 10 shown in FIG. 1 taken along the YZ plane and viewed from the X-axis direction.
 本実施の形態に係る集光型太陽電池モジュール10は、樹脂からなり、太陽光を集光する一次レンズ1と、樹脂からなり、一次レンズ1によって集光された光をさらに集光する二次レンズ2と、を備え、一次レンズ1は、第1の波長以下の光をカットする紫外線吸収剤を含み、二次レンズ2は、第1の波長と異なる第2の波長以下の光をカットする紫外線吸収剤を含む。これにより、吸収する波長帯域の異なる2種類の紫外線吸収剤がそれぞれ一次レンズ1と二次レンズ2とに配合されるため、一次レンズ1および二次レンズ2を構成する樹脂の紫外線による劣化が低減される。つまり、集光型太陽電池モジュール10は、上記構成を有することにより、従来の集光型太陽電池モジュールではガラスで構成されていた光学系部材を樹脂で構成することが可能となる。したがって、集光型太陽電池モジュール10は、従来の集光型太陽電池モジュールに比べて、軽量化される。さらに、集光型太陽電池モジュール10は、二次レンズ2と発電素子4との間に樹脂からなる回路基板3をさらに備える。透明基板3は、第2の波長以下の光をカットする紫外線吸収剤を含む。これにより、二次レンズ2と発電素子4との間の、光密度が高くなる部分の光劣化が低減される。集光型太陽電池モジュール10では、第1の波長は、420nmであり、第2の波長は、400nmであってもよい。これにより、発電効率の低減を抑えつつ、十分な耐用年数を得る耐光性を保証することができる。また、集光型太陽電池モジュール10では、第1の波長の光の焦点は、回路基板3内に位置してもよい。第1の波長よりも長波長の光は、その焦点位置が第1の波長の光よりも下方に位置する。そのため、第1の波長よりも長波長帯域の光を発電素子4に集光することができる。したがって、集光型太陽電池モジュール10は、発電素子4に集光される光の波長範囲が広くなるため、発電効率が向上される。 The concentrating solar cell module 10 according to the present embodiment is made of a resin, a primary lens 1 that collects sunlight, and a secondary that is made of resin and further collects the light collected by the primary lens 1. The primary lens 1 includes an ultraviolet absorber that cuts light of the first wavelength or less, and the secondary lens 2 cuts light of the second wavelength or less different from the first wavelength. Contains UV absorber. As a result, two kinds of ultraviolet absorbers having different wavelength bands to be absorbed are blended in the primary lens 1 and the secondary lens 2 respectively, so that deterioration of the resin constituting the primary lens 1 and the secondary lens 2 due to ultraviolet rays is reduced. Is done. That is, the concentrating solar cell module 10 has the above-described configuration, so that the optical system member that is made of glass in the conventional concentrating solar cell module can be made of resin. Therefore, the concentrating solar cell module 10 is lighter than the conventional concentrating solar cell module. Further, the concentrating solar cell module 10 further includes a circuit board 3 made of resin between the secondary lens 2 and the power generation element 4. The transparent substrate 3 includes an ultraviolet absorber that cuts light having a second wavelength or less. Thereby, the light deterioration of the part where the light density becomes high between the secondary lens 2 and the power generation element 4 is reduced. In the concentrating solar cell module 10, the first wavelength may be 420 nm and the second wavelength may be 400 nm. Thereby, it is possible to guarantee the light resistance to obtain a sufficient service life while suppressing the reduction in power generation efficiency. In the concentrating solar cell module 10, the focal point of the light having the first wavelength may be located in the circuit board 3. The focal position of light having a longer wavelength than the first wavelength is positioned below the light having the first wavelength. Therefore, light having a longer wavelength band than the first wavelength can be collected on the power generation element 4. Therefore, the concentrating solar cell module 10 has a wider wavelength range of light condensed on the power generating element 4, and thus power generation efficiency is improved.
 具体的には、第1の波長の光の焦点位置を回路基板内にすることで、第1の波長近傍の発電素子に到達する透過光は、第一の波長の光の焦点を発電素子内の位置にするよりも広く発電素子の受光面に照射されるため、発電素子の抵抗損失が低減され、変換効率が向上される。 Specifically, by setting the focal position of the light of the first wavelength within the circuit board, the transmitted light reaching the power generation element near the first wavelength causes the light of the first wavelength to be focused in the power generation element. Since the light receiving surface of the power generation element is irradiated more broadly than the position of, the resistance loss of the power generation element is reduced and the conversion efficiency is improved.
 また、第1の波長の光の焦点位置を回路基板内にした際、第1の波長よりも短い波長の光においては、二次レンズから第1の波長の光の焦点位置にかけての領域に焦点位置を有することになる。そのため、一次レンズに第1の波長以下をカットする紫外線吸収剤を添加しなければ高い光密度となり、第1の波長よりも短い光の焦点位置近傍を光劣化させるおそれがある。しかしながら、一次レンズに第1の波長以下をカットする紫外線吸収剤を添加しているため、第1の波長よりも短い光の焦点位置近傍の光劣化を抑制することができる。 Further, when the focal position of the light of the first wavelength is set in the circuit board, the light having a wavelength shorter than the first wavelength is focused on the region from the secondary lens to the focal position of the light of the first wavelength. Will have a position. Therefore, if an ultraviolet absorber that cuts the first wavelength or less is not added to the primary lens, the light density becomes high, and there is a possibility that the vicinity of the focal position of light shorter than the first wavelength is deteriorated. However, since an ultraviolet absorber that cuts the first wavelength or less is added to the primary lens, it is possible to suppress light deterioration near the focal position of light shorter than the first wavelength.
 上記構成を有することにより、本実施の形態に係る集光型太陽電池モジュール10は、軽量化され、かつ、波長400nm以上の光を発電に利用する従来の集光型太陽電池モジュールとほぼ同等の発電効率および耐光性を発揮する。 By having the said structure, the concentrating solar cell module 10 which concerns on this Embodiment is reduced in weight, and is substantially equivalent to the conventional concentrating solar cell module which utilizes the light of wavelength 400nm or more for electric power generation. Demonstrate power generation efficiency and light resistance.
 図2の破線で示すように、集光型太陽電池モジュール10は、一次レンズ1および二次レンズ2により発電素子4に光を集光する。このとき、発電素子4の直上に当たる部分(図2の破線で囲まれた領域)において、光密度が高くなる。この光密度が高くなる領域を高密度領域30と称する。高密度領域30では、基材の劣化が進行しやすいため、耐光性の観点から、通常、基材としてガラスが用いられる。仮に、上記基材として樹脂が用いられると、ガラスよりも劣化の進行が加速される。特に、波長400nm以下の紫外光領域の光、いわゆる、紫外線は、樹脂の劣化を著しく加速する。そのため、一次レンズ1により集光される太陽光から波長400nm以下の光を除去する必要がある。しかしながら、一次レンズ1に波長400nm以下の光をカットする紫外線吸収剤が配合されても、波長400nm以下の光を完全に(100%)除去することは難しい。また、大気中では、大気中の酸素や水分から発生した酸素ラジカルによって、樹脂の劣化が加速されるため、波長400nm以上の太陽光であっても、波長400nmに近い太陽光は樹脂を劣化させる。そのため、上記基材として樹脂が用いられた場合は、一次レンズを透過した僅かな紫外線~青紫色の光が集光されても、ガラス基材の場合に比べて、樹脂が劣化し、十分な耐用年数が得られない。仮に、上記基材として樹脂を用いた場合、発電効率と樹脂へのダメージ低減とのバランスを考慮してカット波長を選定する必要がある。 2, the concentrating solar cell module 10 condenses light on the power generation element 4 by the primary lens 1 and the secondary lens 2. At this time, the light density increases in a portion (a region surrounded by a broken line in FIG. 2) that is directly above the power generation element 4. The region where the light density is high is referred to as a high density region 30. In the high density region 30, since the base material is likely to deteriorate, glass is usually used as the base material from the viewpoint of light resistance. If a resin is used as the base material, the progress of deterioration is accelerated as compared with glass. In particular, light in the ultraviolet region with a wavelength of 400 nm or less, so-called ultraviolet rays, significantly accelerates the deterioration of the resin. Therefore, it is necessary to remove light having a wavelength of 400 nm or less from the sunlight collected by the primary lens 1. However, even if the primary lens 1 is blended with an ultraviolet absorber that cuts light with a wavelength of 400 nm or less, it is difficult to completely remove (100%) light with a wavelength of 400 nm or less. Also, in the air, the deterioration of the resin is accelerated by oxygen radicals generated from oxygen and moisture in the air. Therefore, even if the sunlight has a wavelength of 400 nm or more, the sunlight close to the wavelength of 400 nm deteriorates the resin. . For this reason, when a resin is used as the base material, even if a slight amount of ultraviolet to blue-violet light transmitted through the primary lens is collected, the resin is deteriorated compared to the case of a glass base material, and sufficient The service life cannot be obtained. If a resin is used as the base material, it is necessary to select a cut wavelength in consideration of the balance between power generation efficiency and reduction in damage to the resin.
 図3は、太陽光のスペクトルを示す図である。基材の劣化を進行させやすい紫外光領域(波長200nm~400nm)の光は、エネルギー強度が小さく、発電への寄与が小さい。図3に示すように、波長400nmから500nmにかけて、エネルギー強度が急激に上昇している。例えば、波長400nmの光のエネルギー強度は、約30μW/cm・nmでありエネルギー強度は小さいが、波長500nmの光のエネルギー強度は、約140μW/cm・nmであり太陽光スペクトルの中でも高いエネルギー強度を示している。そのため、波長400nmより大きく波長500nmよりも小さい範囲の波長領域では、僅かなカット波長の違いにより、集光型太陽電池モジュールの発電効率が大きく低下する。 FIG. 3 is a diagram showing a spectrum of sunlight. Light in the ultraviolet light region (wavelength 200 nm to 400 nm) that tends to cause deterioration of the substrate has a low energy intensity and a small contribution to power generation. As shown in FIG. 3, the energy intensity rapidly increases from a wavelength of 400 nm to 500 nm. For example, the energy intensity of light with a wavelength of 400 nm is about 30 μW / cm 2 · nm and the energy intensity is small, but the energy intensity of light with a wavelength of 500 nm is about 140 μW / cm 2 · nm and is high in the sunlight spectrum. Energy intensity is shown. Therefore, in the wavelength region in the range larger than the wavelength 400 nm and smaller than the wavelength 500 nm, the power generation efficiency of the concentrating solar cell module is greatly lowered due to a slight difference in the cut wavelength.
 また、樹脂の劣化能力は波長が長くなるほど弱くなるので、カットする波長が波長400nmよりも大きくなるほど、樹脂へのダメージを低減できると考えられる。しかしながら、図3に示すとおり、カットする波長が波長400nmよりも大きくなるほど、エネルギー強度が高くなるため、エネルギー損失が大きく、発電効率が低下すると考えられる。 Also, since the deterioration ability of the resin becomes weaker as the wavelength becomes longer, it is considered that the damage to the resin can be reduced as the wavelength to be cut becomes larger than the wavelength of 400 nm. However, as shown in FIG. 3, as the wavelength to be cut becomes larger than the wavelength of 400 nm, the energy intensity increases, so that the energy loss increases and the power generation efficiency decreases.
 したがって、集光型太陽電池モジュールの発電効率と基材(ここでは、樹脂)へのダメージ低減とのバランスを考慮すると、太陽光のスペクトルのうち、線Wで示す波長(約420nm)よりも波長の小さい波長領域の光をカットするとよい。 Therefore, in consideration of the balance between the power generation efficiency of the concentrating solar cell module and the reduction in damage to the base material (in this case, resin), the wavelength of the sunlight spectrum is longer than the wavelength indicated by the line W (about 420 nm). It is preferable to cut light in a small wavelength region.
 以下、集光型太陽電池モジュール10の構成について詳細に説明する。 Hereinafter, the configuration of the concentrating solar cell module 10 will be described in detail.
 図2に示すように、集光型太陽電池モジュール10は、受光面側(Z軸プラス側)から順に、一次レンズ1、二次レンズ2、回路基板3、発電素子4、および、放熱板5を備える。 As shown in FIG. 2, the concentrating solar cell module 10 includes a primary lens 1, a secondary lens 2, a circuit board 3, a power generation element 4, and a radiator plate 5 in order from the light receiving surface side (Z-axis plus side). Is provided.
 図1および図2に示すように、集光型太陽電池モジュール10の平面視形状は、例えば、矩形状である。一例として、集光型太陽電池モジュール10の平面視形状は、横の長さ(Y軸方向の長さ)が約22mm、および、縦の長さ(X軸方向の長さ)が約22mmの正方形状である。また、一次レンズ1の光入射面から二次レンズ2の支持基板20の光出射面までの長さは、約30mmである。なお、集光型太陽電池モジュール10の平面視形状は、矩形状に限られず、六角形状であってもよい。 As shown in FIGS. 1 and 2, the shape of the concentrating solar cell module 10 in plan view is, for example, a rectangular shape. As an example, the shape of the concentrating solar cell module 10 in plan view is such that the horizontal length (the length in the Y-axis direction) is about 22 mm and the vertical length (the length in the X-axis direction) is about 22 mm. Square shape. The length from the light incident surface of the primary lens 1 to the light emitting surface of the support substrate 20 of the secondary lens 2 is about 30 mm. In addition, the planar view shape of the concentrating solar cell module 10 is not limited to a rectangular shape, and may be a hexagonal shape.
 以下、集光型太陽電池モジュール10の各構成について説明する。なお、放熱板5については、「1.集光型太陽電池装置」の項で上述した内容と同様であるため、ここでの説明を省略する。 Hereinafter, each configuration of the concentrating solar cell module 10 will be described. In addition, about the heat sink 5, since it is the same as that of the content mentioned above in the section of "1. Concentrating solar cell apparatus", description here is abbreviate | omitted.
 [一次レンズ]
 一次レンズ1は、樹脂からなり、太陽光を二次レンズ2に集光する。一次レンズ1は、樹脂を主成分として構成される。一次レンズ1の材料は、光透過性および耐光性の観点から、例えば、PMMA(ポリメチルメタクリレート樹脂)などのアクリル樹脂、ポリトリシクロデシルメタクリレート系樹脂などの脂環式アクリル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、シリコーン樹脂などが挙げられる。
[Primary lens]
The primary lens 1 is made of resin and collects sunlight on the secondary lens 2. The primary lens 1 is composed mainly of a resin. The material of the primary lens 1 is, for example, an acrylic resin such as PMMA (polymethyl methacrylate resin), an alicyclic acrylic resin such as a polytricyclodecyl methacrylate resin, a polyamide resin, or a polyester from the viewpoint of light transmittance and light resistance. Examples thereof include resins, polycarbonate resins, polyolefin resins, and silicone resins.
 さらに、一次レンズ1は、第1の波長以下の光をカットする紫外線吸収剤を含む。ここで、紫外線吸収剤とは、少なくとも紫外光領域に吸収波長を有する化合物である。また、カットするとは、吸収対象の波長領域の光を100%吸収して当該光を透過させない場合に限定されず、実質的に透過させないことも含まれる。例えば、吸収対象の波長領域の光を数%透過させたとしても、透過させない、つまり、カットするとみなされ得る。紫外線吸収能を発現する骨格として、例えば、ベンゾトリアゾール骨格、トリアジン骨格、またはスチレン骨格など共役二重結合を有している骨格を有しているとよい。紫外線吸収剤がベンゾトリアゾール骨格を有する化合物(以下、ベンゾトリアゾール系化合物)である場合、ベンゾトリアゾール系化合物は特に限定されない。例えば、ベンゾトリアゾール骨格は、置換基を有してもよい。置換基は、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、またはこれらの組み合わせであってもよく、不飽和結合を有してもよい。炭化水素基としては、直鎖状または分岐状のアルキル基であってもよい。ベンゾトリアゾール系化合物は、例えば、2-(2-ヒドロキシ-5-tert-ブチルフェニル)-2H-ベンゾトリアゾール(商品名:Tinuvin(登録商標)PS(BASF社))、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)-2H-ベンゾトリアゾール(商品名:Tinuvin(登録商標)328(BASF社))等であってもよい。紫外線吸収剤がトリアジン骨格を有する化合物(以下、トリアジン系化合物)である場合、トリアジン系化合物は特に限定されない。例えば、トリアジン骨格は、置換基を有してもよい。置換基は、ベンゾトリアゾール系化合物で上述した内容と同様であるため、説明を省略する。例えば、置換基がヒドロキシフェニル基である場合、トリアジン系化合物は、トリアジン環とヒドロキシフェニル基とを有し、これらが単結合で結合された化合物(以下、ヒドロキシフェニルトリアジン系化合物)であってもよく、特に限定されない。また、ヒドロキシフェニル基がさらに置換基を有してもよい。ヒドロキシフェニルトリアジン系化合物は、例えば、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン(商品名:Tinuvin(登録商標)460(BASF社))、商品名Tinuvin(登録商標)477(BASF社)等が挙げられる。なお、紫外線吸収剤は、上記例示に限られず、少なくとも紫外光領域に吸収波長を有し、紫外線吸収剤として利用可能な化合物も含まれる。また、紫外線吸収剤は、異なる構造を有する2種類以上の紫外線吸収剤を併用してもよい。これにより、1種類の紫外線吸収剤を使用する場合よりも、より広い波長領域の光を吸収することができる。なお、紫外線吸収剤の配合量は、耐熱性、耐湿熱性、熱安定性および成形加工性を阻害せず、本開示の効果を発揮する量であればよく、設計に応じて適宜配合される。 Furthermore, the primary lens 1 includes an ultraviolet absorber that cuts light of the first wavelength or less. Here, the ultraviolet absorber is a compound having an absorption wavelength at least in the ultraviolet light region. Further, the term “cut” is not limited to a case where light in the wavelength region to be absorbed is 100% absorbed and the light is not transmitted, and includes that the light is not substantially transmitted. For example, even if several percent of light in the wavelength region to be absorbed is transmitted, it can be regarded as not transmitted, that is, cut. As a skeleton that exhibits ultraviolet absorbing ability, for example, a skeleton having a conjugated double bond such as a benzotriazole skeleton, a triazine skeleton, or a styrene skeleton may be used. When the ultraviolet absorber is a compound having a benzotriazole skeleton (hereinafter referred to as a benzotriazole compound), the benzotriazole compound is not particularly limited. For example, the benzotriazole skeleton may have a substituent. The substituent may be an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof, and may have an unsaturated bond. The hydrocarbon group may be a linear or branched alkyl group. Examples of the benzotriazole compounds include 2- (2-hydroxy-5-tert-butylphenyl) -2H-benzotriazole (trade name: Tinuvin (registered trademark) PS (BASF)), 2- (2-hydroxy- 3,5-di-tert-amylphenyl) -2H-benzotriazole (trade name: Tinuvin (registered trademark) 328 (BASF)) may be used. When the ultraviolet absorber is a compound having a triazine skeleton (hereinafter referred to as a triazine compound), the triazine compound is not particularly limited. For example, the triazine skeleton may have a substituent. Since the substituent is the same as that described above for the benzotriazole-based compound, description thereof is omitted. For example, when the substituent is a hydroxyphenyl group, the triazine-based compound may be a compound having a triazine ring and a hydroxyphenyl group and bonded by a single bond (hereinafter, hydroxyphenyl triazine-based compound). Well, not particularly limited. Further, the hydroxyphenyl group may further have a substituent. Examples of the hydroxyphenyl triazine-based compound include 2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3,5-triazine (trade name: Tinuvin ( Registered trademark) 460 (BASF) and trade name Tinuvin (registered trademark) 477 (BASF). In addition, an ultraviolet absorber is not restricted to the said illustration, The compound which has an absorption wavelength in an ultraviolet region at least and can be utilized as an ultraviolet absorber is also contained. Moreover, you may use together 2 or more types of ultraviolet absorbers which have a different structure as an ultraviolet absorber. Thereby, the light of a wider wavelength range can be absorbed rather than the case where one type of ultraviolet absorber is used. In addition, the compounding quantity of an ultraviolet absorber should just be an quantity which does not inhibit heat resistance, heat-and-moisture resistance, heat stability, and moldability, and exhibits the effect of this indication, and is mix | blended suitably according to a design.
 本実施の形態では、第1の波長は、第2の波長よりも長波長である。第1の波長は、樹脂の劣化を低減する観点から、青紫色光領域の波長であるとよい。さらに、集光型太陽電池モジュールの発電効率と基材(樹脂)へのダメージ低減とのバランスの観点から、第1の波長は、420nmであるとよい。 In the present embodiment, the first wavelength is longer than the second wavelength. The first wavelength is preferably a wavelength in the blue-violet light region from the viewpoint of reducing the deterioration of the resin. Furthermore, from the viewpoint of the balance between the power generation efficiency of the concentrating solar cell module and the reduction in damage to the base material (resin), the first wavelength is preferably 420 nm.
 図2に示すように、一次レンズ1は、太陽光が入射する光入射面(Z軸プラス側の面)と、光入射面と反対側の面であり、当該太陽光が出射する光出射面(Z軸マイナス側の面)と、を有する。一次レンズ1は、例えば、光出射面側に二次レンズ2に向けて突出した凸部が形成された凸レンズであってもよい。図2に示すように、本実施の形態では、一次レンズ1は、凸レンズの表面に複数の凹凸を有する。一次レンズ1は、例えば、射出成形により作製される。また、光入射面に凸部がある平凸レンズ、または、光出射面に凸部がある平凸レンズであってもよい。 As shown in FIG. 2, the primary lens 1 is a light incident surface (a surface on the Z axis plus side) on which sunlight is incident and a surface opposite to the light incident surface, and a light emitting surface from which the sunlight is emitted. (Z-axis negative side surface). The primary lens 1 may be, for example, a convex lens in which a convex portion that protrudes toward the secondary lens 2 is formed on the light emitting surface side. As shown in FIG. 2, in the present embodiment, the primary lens 1 has a plurality of irregularities on the surface of the convex lens. The primary lens 1 is produced by injection molding, for example. Further, it may be a plano-convex lens having a convex portion on the light incident surface or a plano-convex lens having a convex portion on the light exit surface.
 [二次レンズ]
 二次レンズ2は、樹脂からなり、一次レンズ1によって集光された光をさらに発電素子4に集光する。二次レンズ2は、発電素子4側から一次レンズ側に突出した凸形状を有する。二次レンズ2は、支持基板20の表面に配置されている。また、二次レンズ2と支持基板20とは、一体に形成される。ベース基材20は、二次レンズ2と同じ材料から構成される。
[Secondary lens]
The secondary lens 2 is made of resin, and further condenses the light collected by the primary lens 1 on the power generation element 4. The secondary lens 2 has a convex shape protruding from the power generation element 4 side to the primary lens side. The secondary lens 2 is disposed on the surface of the support substrate 20. Further, the secondary lens 2 and the support substrate 20 are integrally formed. The base substrate 20 is made of the same material as the secondary lens 2.
 二次レンズ2は、樹脂を主成分として構成される。二次レンズ2の材料は、光透過性および耐光性の観点から、例えば、PMMA(ポリメタクリル酸メチル樹脂)などのアクリル樹脂、ポリトリシクロデシルメタクリレート系樹脂などの脂環式アクリル樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、シリコーン樹脂などが挙げられる。二次レンズ2を構成する樹脂は、一次レンズ1と同じ組成であってもよく、異なる組成であってもよい。さらに、二次レンズ2は、第1の波長と異なる第2の波長以下の光をカットする紫外線吸収剤を含む。紫外線吸収剤については、一次レンズ1に使用される紫外線吸収剤と同様、ベンゾトリアゾール骨格、トリアジン骨格、またはスチレン骨格など共役二重結合を有している骨格を有する化合物である。なお、使用する紫外線吸収剤およびその組み合わせは、所望のカット波長および発電に利用する波長領域の光透過率などに応じて、適宜選択される。また、紫外線吸収剤の配合量は、耐熱性、耐湿熱性、熱安定性および成形加工性を阻害せず、本開示の効果を発揮する量であればよく、設計に応じて適宜配合される。 The secondary lens 2 is composed mainly of resin. The material of the secondary lens 2 is, for example, an acrylic resin such as PMMA (polymethyl methacrylate resin), an alicyclic acrylic resin such as a polytricyclodecyl methacrylate resin, or a polycarbonate resin from the viewpoint of light transmittance and light resistance. , Polyolefin resin, silicone resin and the like. The resin constituting the secondary lens 2 may have the same composition as the primary lens 1 or a different composition. Further, the secondary lens 2 includes an ultraviolet absorber that cuts light having a second wavelength or less different from the first wavelength. The ultraviolet absorber is a compound having a skeleton having a conjugated double bond such as a benzotriazole skeleton, a triazine skeleton, or a styrene skeleton, similarly to the ultraviolet absorber used for the primary lens 1. In addition, the ultraviolet absorber to be used and the combination thereof are appropriately selected according to the desired cut wavelength and the light transmittance in the wavelength region used for power generation. Moreover, the compounding quantity of a ultraviolet absorber should just be a quantity which does not inhibit heat resistance, heat-and-moisture resistance, heat stability, and moldability, and exhibits the effect of this indication, and is mix | blended suitably according to a design.
 本実施の形態では、第2の波長は、第1の波長よりも短波長である。第2の波長は、青紫色光領域の波長であってもよく、近紫外光領域の波長であってもよいが、一次レンズ1が波長420nm以下の波長領域の光(以下、波長420nm以下の光)をカットする紫外線吸収剤を含んでいても、波長420nm以下の光が一次レンズ1を僅かに透過する。そのため、二次レンズ2に波長420nm以下の光をカットする紫外線吸収剤を含有させることにより、一次レンズ1を透過した波長420nm以下の光のうち、波長400nmより大きい波長の光を発電に利用することができる。これにより、集光型太陽電池モジュールの発電効率の損失を低減することができる。また、波長400nm以下の光(紫外光)は樹脂を著しく劣化させる。そのため、一次レンズ1を透過した紫外光が僅かな量であったとしても、樹脂の劣化を低減させるために、一次レンズを透過した僅かな紫外光を二次レンズ2で除去するとよい。また、一次レンズを通過しない光であっても、建物や地面で反射した太陽光が二次レンズ2、支持基板20およびこれらの下層に位置する回路基板3に照射され、長期使用により黄変などの劣化が発生する。したがって、集光型太陽電池モジュールの発電効率と樹脂へのダメージ低減とのバランスの観点から、第2の波長は400nmであるとよい。 In the present embodiment, the second wavelength is shorter than the first wavelength. The second wavelength may be a wavelength in a blue-violet light region or a wavelength in the near-ultraviolet light region, but the primary lens 1 is light in a wavelength region having a wavelength of 420 nm or less (hereinafter, a wavelength of 420 nm or less). Even if an ultraviolet absorber that cuts light) is included, light having a wavelength of 420 nm or less is slightly transmitted through the primary lens 1. Therefore, by making the secondary lens 2 contain an ultraviolet absorber that cuts light having a wavelength of 420 nm or less, light having a wavelength greater than 400 nm out of light having a wavelength of 420 nm or less transmitted through the primary lens 1 is used for power generation. be able to. Thereby, the loss of the power generation efficiency of a concentrating solar cell module can be reduced. Moreover, light (ultraviolet light) having a wavelength of 400 nm or less significantly deteriorates the resin. Therefore, even if the amount of ultraviolet light transmitted through the primary lens 1 is a small amount, the secondary lens 2 may be used to remove the slight ultraviolet light transmitted through the primary lens in order to reduce the deterioration of the resin. Further, even if the light does not pass through the primary lens, the sunlight reflected by the building or the ground is irradiated to the secondary lens 2, the support substrate 20 and the circuit board 3 positioned below these, and yellowing occurs due to long-term use. Degradation occurs. Therefore, from the viewpoint of the balance between the power generation efficiency of the concentrating solar cell module and the reduction of damage to the resin, the second wavelength is preferably 400 nm.
 また、二次レンズ2の代わりに、ホモジナイザなど発電素子4に均一な光強度分布の光を照射するための光学系を第2の波長以下の光をカットする紫外線吸収剤を含む樹脂で作製し、設けても良い。 Further, instead of the secondary lens 2, an optical system for irradiating the power generation element 4 with light having a uniform light intensity distribution, such as a homogenizer, is made of a resin containing an ultraviolet absorber that cuts light of the second wavelength or less. , May be provided.
 [回路基板]
 さらに、集光型太陽電池モジュール10は、二次レンズ2と発電素子4との間に回路基板3をさらに備える。回路基板3は、光入射側(Z軸プラス側)の表面がシリコーン系接着剤で支持基板20に固定されており、光出射側(Z軸マイナス側)の表面に発電素子4および周辺回路を保持している。
[Circuit board]
Further, the concentrating solar cell module 10 further includes a circuit board 3 between the secondary lens 2 and the power generation element 4. The circuit board 3 has a light incident side (Z axis plus side) surface fixed to the support substrate 20 with a silicone-based adhesive, and the power generation element 4 and peripheral circuits are placed on the light emission side (Z axis minus side) surface. keeping.
 回路基板3は、透明な樹脂を主成分として構成される。回路基板3は、図3にて上述したとおり、発電素子4の直上に高密度領域30を有するため、高密度の光エネルギーに耐えうる樹脂であってもよい。当該樹脂は、例えば、PMMA(ポリメタクリル酸メチル樹脂)などのアクリル樹脂、ポリトリシクロデシルメタクリレート系樹脂などの脂環式アクリル樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、シリコーン樹脂などが挙げられる。回路基板3を構成する樹脂は、一次レンズ1および二次レンズ2と同じ組成であってもよく、異なる組成であってもよい。さらに、回路基板3は、第2の波長以下の光をカットする紫外線吸収剤を含む。第2の波長は、二次レンズ2にて上述したとおり、第1の波長よりも短波長であり、集光型太陽電池モジュールの発電効率と樹脂へのダメージ低減とのバランスの観点から、例えば、400nmである。また、紫外線吸収剤は、上述したとおり、ベンゾトリアゾール骨格、トリアジン骨格、またはスチレン骨格など共役二重結合を有している骨格を有する化合物である。なお、使用する紫外線吸収剤およびその組み合わせは、所望のカット波長および発電に利用する波長領域の光透過率などに応じて、適宜選択される。 The circuit board 3 is composed mainly of a transparent resin. As described above with reference to FIG. 3, the circuit board 3 has the high-density region 30 immediately above the power generation element 4, and therefore may be a resin that can withstand high-density light energy. Examples of the resin include acrylic resins such as PMMA (polymethyl methacrylate resin), alicyclic acrylic resins such as polytricyclodecyl methacrylate resin, polycarbonate resins, polyolefin resins, and silicone resins. The resin constituting the circuit board 3 may have the same composition as the primary lens 1 and the secondary lens 2 or may have a different composition. Furthermore, the circuit board 3 includes an ultraviolet absorber that cuts light having a second wavelength or less. As described above in the secondary lens 2, the second wavelength is shorter than the first wavelength. From the viewpoint of the balance between the power generation efficiency of the concentrating solar cell module and the reduction in damage to the resin, for example, 400 nm. In addition, as described above, the ultraviolet absorber is a compound having a skeleton having a conjugated double bond such as a benzotriazole skeleton, a triazine skeleton, or a styrene skeleton. In addition, the ultraviolet absorber to be used and the combination thereof are appropriately selected according to the desired cut wavelength and the light transmittance in the wavelength region used for power generation.
 [発電素子]
 発電素子4は、照射された太陽光の光エネルギーを電気エネルギーに変換する機能を有する。発電素子4は、InGaP系材料、GaAs系材料、InGaAs系材料、Ge系材料、GaAsP系材料、InP系材料、GaN系材料、Si系材料の薄膜から一種類もしくは複数種類の材料が選択され、形成される。これらの薄膜に光を照射すると光電流が発生するため、外部回路(図示せず)に電気エネルギーを供給することが可能となる。なお、発電素子4の受光面積は、例えば、略1mmである。また、二次レンズ2の光出射面側(Z軸マイナス側)には、発電素子4に発生した光電流を外部回路へ取り出すための電極(不図示)が形成されている。電極は、例えば、Cu、Al、Ni、Agなどの金属から形成されてもよく、ITOなどの透明導電材料、銀ペーストから形成されてもよい。発電素子4は、回路基板3が支持基板20に固定されたときに、発電素子4は、二次レンズ2の焦点位置に合うように配置される。なお、一次レンズ1と発電素子4との距離は、一次レンズ1および二次レンズ2の集光特性により決定される。一例として、一次レンズ1の受光面から発電素子4の受光面までの距離は、33mm程度である。
[Power generation element]
The power generating element 4 has a function of converting the light energy of the irradiated sunlight into electric energy. For the power generation element 4, one or more kinds of materials are selected from thin films of InGaP-based material, GaAs-based material, InGaAs-based material, Ge-based material, GaAsP-based material, InP-based material, GaN-based material, and Si-based material, It is formed. When these thin films are irradiated with light, a photocurrent is generated, so that electric energy can be supplied to an external circuit (not shown). Note that the light receiving area of the power generation element 4 is, for example, approximately 1 mm 2 . Further, an electrode (not shown) for taking out the photocurrent generated in the power generation element 4 to an external circuit is formed on the light exit surface side (Z-axis minus side) of the secondary lens 2. For example, the electrode may be formed from a metal such as Cu, Al, Ni, or Ag, or may be formed from a transparent conductive material such as ITO, or a silver paste. When the circuit board 3 is fixed to the support substrate 20, the power generation element 4 is disposed so as to match the focal position of the secondary lens 2. Note that the distance between the primary lens 1 and the power generation element 4 is determined by the condensing characteristics of the primary lens 1 and the secondary lens 2. As an example, the distance from the light receiving surface of the primary lens 1 to the light receiving surface of the power generation element 4 is about 33 mm.
 [その他の部材]
 一次レンズ1と二次レンズ2との間には、支持部材6が配置されている。支持部材6は、一次レンズ1と二次レンズ2との間隔を維持する部材である。本実施の形態の場合、支持部材6は二次レンズ2と一体で形成されている。なお、支持部材6の厚さ(X軸方向およびY軸方向の長さ)は、一次レンズ1から出射する太陽光に干渉しないように、一次レンズ1側では小さく(薄く)なる、いわゆる、テーパー形状であってもよい。
[Other parts]
A support member 6 is disposed between the primary lens 1 and the secondary lens 2. The support member 6 is a member that maintains the distance between the primary lens 1 and the secondary lens 2. In the case of the present embodiment, the support member 6 is formed integrally with the secondary lens 2. The thickness of the support member 6 (the length in the X-axis direction and the Y-axis direction) is a so-called taper that is small (thin) on the primary lens 1 side so as not to interfere with sunlight emitted from the primary lens 1. It may be a shape.
 また、支持部材6は、樹脂により構成され、さらに、耐光性の観点から、紫外線吸収剤を含んでもよい。紫外線吸収剤は、設計によって適宜選択されればよく、特に限定されない。例えば、紫外線吸収剤は、二次レンズ2に含有される紫外線吸収剤と同じであってもよく、異なる紫外線吸収剤であってもよい。 Further, the support member 6 is made of resin, and may further contain an ultraviolet absorber from the viewpoint of light resistance. The ultraviolet absorber may be appropriately selected depending on the design and is not particularly limited. For example, the ultraviolet absorber may be the same as the ultraviolet absorber contained in the secondary lens 2 or may be a different ultraviolet absorber.
 (変形例)
 続いて、実施の形態の変形例に係る集光型太陽電池モジュールについて説明する。図4は、変形例に係る集光型太陽電池モジュール110の構造の一例を説明する概略断面図である。以下、実施の形態に係る集光型太陽電池モジュール10と異なる点を中心に説明する。
(Modification)
Subsequently, a concentrating solar cell module according to a modification of the embodiment will be described. FIG. 4 is a schematic cross-sectional view illustrating an example of the structure of the concentrating solar cell module 110 according to a modification. Hereinafter, a description will be given focusing on differences from the concentrating solar cell module 10 according to the embodiment.
 変形例に係る集光型太陽電池モジュール110は、太陽光を集光する一次レンズ101の光入射面に凸部がある平凸レンズである点で、実施の形態に係る集光型太陽電池モジュール10と異なる。 The concentrating solar cell module 110 according to the modification is a plano-convex lens having a convex portion on the light incident surface of the primary lens 101 that condenses sunlight, and thus the concentrating solar cell module 10 according to the embodiment. And different.
 図4に示すように、集光型太陽電池モジュール110は、光入射側から順に、一次レンズ101、二次レンズ102、回路基板103、発電素子104、および、放熱板105を備える。また、集光型太陽電池モジュール10と同様に、集光型太陽電池モジュール110の平面視形状は、例えば、横の長さ×縦の長さが約22mm×約22mmの正方形状である。また、一次レンズ101(平凸レンズ)の平板部分と凸部との境界面から二次レンズ102の支持基板120の光出射面までの長さは、例えば、約28mmである。なお、集光型太陽電池モジュール110の平面視形状は、矩形状に限られず、六角形状であってもよい。 As shown in FIG. 4, the concentrating solar cell module 110 includes a primary lens 101, a secondary lens 102, a circuit board 103, a power generation element 104, and a heat dissipation plate 105 in order from the light incident side. Similarly to the concentrating solar cell module 10, the concentrating solar cell module 110 has a plan view shape, for example, a square shape with a horizontal length × vertical length of about 22 mm × about 22 mm. Further, the length from the boundary surface between the flat plate portion and the convex portion of the primary lens 101 (plano-convex lens) to the light exit surface of the support substrate 120 of the secondary lens 102 is, for example, about 28 mm. In addition, the planar view shape of the concentrating solar cell module 110 is not limited to a rectangular shape, and may be a hexagonal shape.
 一次レンズ101の形状以外の事項についての説明は、一次レンズ1について上述した内容と同様であるため、ここでの記載を省略する。また、二次レンズ102、回路基板103、発電素子104、および、放熱板105についても、それぞれ、集光型太陽電池モジュール10の二次レンズ2、回路基板3、発電素子4、および、放熱板5と同様であるため、ここでの記載を省略する。 Description of matters other than the shape of the primary lens 101 is the same as that described above with respect to the primary lens 1, so description thereof is omitted here. The secondary lens 102, the circuit board 103, the power generation element 104, and the heat radiating plate 105 are also the secondary lens 2, the circuit board 3, the power generation element 4, and the heat radiating plate of the concentrating solar cell module 10, respectively. Since this is the same as 5, the description here is omitted.
 以下、実施例にて本開示の集光型太陽電池モジュールを具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。 Hereinafter, although the concentrating solar cell module of the present disclosure will be specifically described with reference to examples, the present disclosure is not limited to the following examples.
 図5は、実施例1および比較例1に係る集光型太陽電池モジュールの概略断面図である。図6は、実施例1および比較例1で使用した紫外線吸収剤の光透過率を示すグラフである。図7は、耐光性加速試験装置の構成を説明する模式図である。図8は、耐光性加速試験の結果、および、発電に利用される光の波長領域による発電効率のシミュレーションの結果を示す図である。 FIG. 5 is a schematic cross-sectional view of the concentrating solar cell module according to Example 1 and Comparative Example 1. 6 is a graph showing the light transmittance of the ultraviolet absorber used in Example 1 and Comparative Example 1. FIG. FIG. 7 is a schematic diagram illustrating the configuration of the light resistance accelerated test apparatus. FIG. 8 is a diagram illustrating a result of a light fastness test and a result of a simulation of power generation efficiency depending on a wavelength region of light used for power generation.
 (実施例1)
 実施例1では、以下の構成を備える集光型太陽電池モジュールの高密度領域30(図2参照)における耐光性加速試験を行った。
Example 1
In Example 1, a light resistance acceleration test was performed in the high-density region 30 (see FIG. 2) of a concentrating solar cell module having the following configuration.
 図5の(a)に示すように、実施例1の集光型太陽電池モジュール10aは、一次レンズ1a、二次レンズ2a、支持基板20a、回路基板3a、発電素子4および放熱板5を備える。一次レンズ1aの受光面から回路基板3aの二次レンズ2a側の面までの距離は30mmであり、回路基板3aの厚みは3mmである。ここでは、比較例1と異なる構成についてのみ説明する。 As shown to (a) of FIG. 5, the concentrating solar cell module 10a of Example 1 is provided with the primary lens 1a, the secondary lens 2a, the support substrate 20a, the circuit board 3a, the electric power generation element 4, and the heat sink 5. FIG. . The distance from the light receiving surface of the primary lens 1a to the surface on the secondary lens 2a side of the circuit board 3a is 30 mm, and the thickness of the circuit board 3a is 3 mm. Here, only the configuration different from that of Comparative Example 1 will be described.
 一次レンズ1aおよび二次レンズ2aはともに、アクリル樹脂から構成される。一次レンズ1aは、波長420nm以下の光をカットする紫外線吸収剤B(図6参照)を含む。二次レンズ2a、支持基板20aおよび回路基板3aは、波長400nm以下の光をカットする紫外線吸収剤A(図6参照)を含む。 Both the primary lens 1a and the secondary lens 2a are made of acrylic resin. The primary lens 1a includes an ultraviolet absorber B (see FIG. 6) that cuts light having a wavelength of 420 nm or less. The secondary lens 2a, the support substrate 20a, and the circuit board 3a include an ultraviolet absorber A (see FIG. 6) that cuts light having a wavelength of 400 nm or less.
 耐光性加速試験は、図7に示す耐光性加速試験装置で行った。加速試験は、厚さ3mmのアクリル板を温度65℃、湿度85%の高温高湿槽内に配置し、高温高湿槽の外から光ファイバAを用いてアクリル板にレーザ光を照射し、アクリル板を透過したレーザ光を、光ファイバBを用いて高温高湿槽の外に引き出し、フォトダイオードにて透過光を検出した。 The light resistance acceleration test was performed with the light resistance acceleration test apparatus shown in FIG. In the acceleration test, an acrylic plate having a thickness of 3 mm is placed in a high-temperature and high-humidity tank having a temperature of 65 ° C. and a humidity of 85%, and the acrylic plate is irradiated with laser light using the optical fiber A from outside the high-temperature and high-humidity tank. The laser beam that passed through the acrylic plate was drawn out of the high-temperature and high-humidity tank using the optical fiber B, and the transmitted light was detected by a photodiode.
 一次レンズ1aを透過した光として、波長420nmのレーザ光を用いた。回路基板3aとして、紫外線吸収剤Aを含むアクリル板(厚さt=3mm)を使用した。二次レンズ2aにより集光され、高密度領域30(図2参照)に照射された光として、コア径φ200μmの光ファイバ(石英)を用いてレーザ光(波長420nm)を上記のアクリル板の表面に照射した。アクリル板を透過したレーザ光をフォトダイオード(PD)で検出し、フォトダイオードの信号が初期値から10%低下した時点の時間を劣化時間(H:Hour)とした。結果を図8に示す。 Laser light having a wavelength of 420 nm was used as light transmitted through the primary lens 1a. As the circuit board 3a, an acrylic plate (thickness t = 3 mm) containing the ultraviolet absorber A was used. As light collected by the secondary lens 2a and irradiated onto the high-density region 30 (see FIG. 2), laser light (wavelength 420 nm) is applied to the surface of the acrylic plate using an optical fiber (quartz) having a core diameter of 200 μm. Irradiated. The laser beam that passed through the acrylic plate was detected by a photodiode (PD), and the time when the photodiode signal decreased by 10% from the initial value was defined as the degradation time (H: Hour). The results are shown in FIG.
 図8の(a)に示すように、実施例1の集光型太陽電池モジュール10aは、劣化時間が約3300時間であった。 As shown in FIG. 8 (a), the concentrating solar cell module 10a of Example 1 had a deterioration time of about 3300 hours.
 (比較例1)
 比較例1では、以下の構成を備える集光型太陽電池モジュールの高密度領域30(図2参照)における光劣化の加速試験を行った。
(Comparative Example 1)
In the comparative example 1, the acceleration test of the photodegradation in the high density area | region 30 (refer FIG. 2) of a concentrating solar cell module provided with the following structures was done.
 図5の(b)に示すように、比較例1の集光型太陽電池モジュール10bは、一次レンズ1b、二次レンズ2b、支持基板20b、回路基板3b、発電素子4および放熱板5を備える。一次レンズ1bの受光面から回路基板3bの二次レンズ2b側の面までの距離は30mmであり、回路基板3bの厚みは3mmである。ここでは、実施例1と異なる構成についてのみ説明する。 As shown in FIG. 5B, the concentrating solar cell module 10b of Comparative Example 1 includes a primary lens 1b, a secondary lens 2b, a support substrate 20b, a circuit board 3b, a power generation element 4, and a heat sink 5. . The distance from the light receiving surface of the primary lens 1b to the surface on the secondary lens 2b side of the circuit board 3b is 30 mm, and the thickness of the circuit board 3b is 3 mm. Here, only the configuration different from the first embodiment will be described.
 一次レンズ1bおよび二次レンズ2bはともに、アクリル樹脂から構成される。一次レンズ1bは、波長400nm以下の光をカットする紫外線吸収剤A(図6参照)を含む。二次レンズ2b、支持基板20bおよび回路基板3bは、アクリル樹脂から構成され、紫外線吸収剤を含む。実施例1で上述したように、図6に示すグラフから、紫外線吸収剤Aは、波長400nm以下の光を僅かに透過することが分かった。したがって、実施例1の集光型太陽電池モジュール10bでは、一次レンズ1aに紫外線吸収剤Aを使用しているため、一次レンズ1bを透過した波長400nm以下の光が二次レンズ2bおよび二次レンズ2bより下方の部材(支持基板20bおよび回路基板3b)に対して波長400nm~420nmの太陽光が照射される。以下、耐光性加速試験および発電効率のシミュレーションを行い、比較例1の集光型太陽電池モジュール10bの耐光性および発電効率を検証した。 Both the primary lens 1b and the secondary lens 2b are made of acrylic resin. The primary lens 1b includes an ultraviolet absorber A (see FIG. 6) that cuts light having a wavelength of 400 nm or less. The secondary lens 2b, the support substrate 20b, and the circuit board 3b are made of acrylic resin and include an ultraviolet absorber. As described above in Example 1, it was found from the graph shown in FIG. 6 that the ultraviolet absorber A slightly transmits light having a wavelength of 400 nm or less. Therefore, in the concentrating solar cell module 10b of Example 1, since the ultraviolet absorber A is used for the primary lens 1a, the light having a wavelength of 400 nm or less transmitted through the primary lens 1b is reflected in the secondary lens 2b and the secondary lens. Sunlight having a wavelength of 400 nm to 420 nm is irradiated to members below the 2b (the support substrate 20b and the circuit board 3b). Hereinafter, the light resistance acceleration test and the power generation efficiency simulation were performed, and the light resistance and power generation efficiency of the concentrating solar cell module 10b of Comparative Example 1 were verified.
 光劣化の加速試験は、図7に示す耐光性加速試験装置で行った。一次レンズ1bを透過した光として、波長405nmのレーザ光を用い、回路基板3bとして、アクリル板(厚さt=3mm)を使用したこと以外は、実施例1と同様に行った。結果を図8に示す。 Acceleration test for light degradation was performed with a light resistance acceleration test apparatus shown in FIG. A laser beam having a wavelength of 405 nm was used as the light transmitted through the primary lens 1b, and an acrylic plate (thickness t = 3 mm) was used as the circuit board 3b. The results are shown in FIG.
 図8の(b)に示すように、比較例1の集光型太陽電池モジュール10bは、劣化時間が約200時間であった。 As shown in FIG. 8 (b), the concentrating solar cell module 10b of Comparative Example 1 had a deterioration time of about 200 hours.
 上記の条件とは別に、以下の条件でも光劣化の加速試験を実施した。その結果、一次レンズ1aを透過した光として、波長420nmのレーザ光を用い、回路基板3aとして、紫外線吸収剤Bを含むアクリル板(厚さt=3mm)を使用した場合、アクリル板は急速に劣化した。これは、一次レンズ1aを透過した一部の波長420nmのレーザ光がアクリル基板上で、紫外線吸収剤Bで吸収されることにより発生した熱により劣化が促進された結果と考えられる。これは、二次レンズのカット波長は一次レンズのカット波長よりも短くなければならないことを示している。 In addition to the above conditions, an accelerated test for photodegradation was also performed under the following conditions. As a result, when a laser beam having a wavelength of 420 nm is used as the light transmitted through the primary lens 1a and an acrylic plate (thickness t = 3 mm) containing the ultraviolet absorber B is used as the circuit board 3a, the acrylic plate rapidly Deteriorated. This is considered to be a result of the deterioration being promoted by heat generated by absorbing a part of the laser light having a wavelength of 420 nm transmitted through the primary lens 1a on the acrylic substrate by the ultraviolet absorbent B. This indicates that the cut wavelength of the secondary lens must be shorter than the cut wavelength of the primary lens.
 (発電効率のシミュレーション)
 発電に利用される光の波長領域による発電効率のシミュレーションを行った。結果を図8に示す。
(Simulation of power generation efficiency)
We simulated the power generation efficiency by the wavelength range of light used for power generation. The results are shown in FIG.
 図8に示すIsc(短絡電流)のグラフは、従来の集光型太陽電池モジュールの発電効率を1(Isc=1)とした場合の、カット波長による発電効率の変化を示している。従来の集光型太陽電池モジュールは、波長400nm以上の光を発電に利用している。 The graph of Isc (short circuit current) shown in FIG. 8 shows the change in power generation efficiency depending on the cut wavelength when the power generation efficiency of the conventional concentrating solar cell module is 1 (Isc = 1). Conventional concentrating solar cell modules use light having a wavelength of 400 nm or more for power generation.
 例えば、波長400nm~500nmの波長領域の光について発電効率の減少を見ると、波長450nm以下の光をカットすると、発電効率は10%減少する。波長500nm以下の光をカットすると、発電効率は25%減少する。したがって、カットする波長が波長400nmよりも大きくなるほど、樹脂へのダメージを低減できるが、エネルギー損失が大きく、発電効率が低下することが分かった。 For example, looking at the decrease in power generation efficiency for light in the wavelength range of 400 nm to 500 nm, when light with a wavelength of 450 nm or less is cut, the power generation efficiency decreases by 10%. When light having a wavelength of 500 nm or less is cut, the power generation efficiency is reduced by 25%. Therefore, it has been found that as the wavelength to be cut becomes larger than the wavelength of 400 nm, the damage to the resin can be reduced, but the energy loss is large and the power generation efficiency is lowered.
 実施例1では、一次レンズ1aで波長420nm以下の光をカットする。図8に示すように、波長420nm以上の光を発電に利用した場合の発電効率は、波長400nm以上の光を利用した場合に比べて、3.5%減少することが分かった。 In Example 1, light having a wavelength of 420 nm or less is cut by the primary lens 1a. As shown in FIG. 8, it was found that the power generation efficiency when light having a wavelength of 420 nm or more is used for power generation is reduced by 3.5% compared to the case where light having a wavelength of 400 nm or more is used.
 (まとめ)
 耐光性加速試験の結果、実施例1の劣化時間は約3300時間であり、比較例1の劣化時間は約200時間であった。この結果から、実施例1の集光型太陽電池モジュール10aは、一次レンズ1aに波長420nm以下の光をカットする紫外線吸収剤Bが含有されるため、従来、樹脂で構成できなかった部材を樹脂で構成しても、十分な耐光性が得られることが分かった。また、発電効率のシミュレーションの結果から、実施例1の集光型太陽電池モジュール10aは、従来の集光型太陽電池モジュールに比べて発電効率が3.5%しか減少せず、高い発電効率が得られることが分かった。したがって、一次レンズ1aに波長420nmの光をカットする紫外線吸収剤Bを含有させ、二次レンズ1a、支持基板20aおよび回路基板3aに波長400nm以下の光をカットする紫外線吸収剤Aを含有させることにより、高い発電効率と十分な耐光性とを両立することができることが確認できた。
(Summary)
As a result of the accelerated light resistance test, the deterioration time of Example 1 was about 3300 hours, and the deterioration time of Comparative Example 1 was about 200 hours. From this result, since the concentrating solar cell module 10a of Example 1 contains the ultraviolet absorber B that cuts light with a wavelength of 420 nm or less in the primary lens 1a, the conventional member that cannot be made of resin is made of resin. It was found that sufficient light resistance can be obtained even with Moreover, from the result of the simulation of the power generation efficiency, the power generation efficiency of the concentrating solar cell module 10a of Example 1 is only 3.5% lower than that of the conventional concentrating solar cell module, and the power generation efficiency is high. It turns out that it is obtained. Accordingly, the primary lens 1a contains an ultraviolet absorber B that cuts light of a wavelength of 420 nm, and the secondary lens 1a, the support substrate 20a, and the circuit board 3a contain an ultraviolet absorber A that cuts light of a wavelength of 400 nm or less. Thus, it was confirmed that both high power generation efficiency and sufficient light resistance can be achieved.
 一方、耐光性加速試験の結果から、比較例1の集光型太陽電池モジュール10bは、一次レンズ1bに波長400nm以下の光をカットする紫外線吸収剤Aを含有させても、樹脂の劣化が著しく、必要な耐光性が得られないことが確認できた。樹脂の劣化は、大気中で発生した酸素ラジカルによって、波長400nmを超える光(波長405nm)によっても樹脂の劣化が促進され、二次レンズ2bおよび二次レンズ2b下方の部材に対して波長400nm~420nmの太陽光が照射されたことによる樹脂劣化が進んだためと考えられる。そのため、比較例1の集光型太陽電池モジュール10bの構成では、二次レンズ2b、支持基板20b、および回路基板3b、特に、高密度領域30(図2参照)は、耐光性の保証の観点から、樹脂で構成不可能であることが確認できた。 On the other hand, from the results of the light fastness test, the concentrating solar cell module 10b of Comparative Example 1 has a remarkable deterioration of the resin even if the primary lens 1b contains the ultraviolet absorber A that cuts light having a wavelength of 400 nm or less. It was confirmed that the required light resistance could not be obtained. The deterioration of the resin is promoted by oxygen radicals generated in the atmosphere by light exceeding a wavelength of 400 nm (wavelength 405 nm), and the wavelength of the secondary lens 2b and the member below the secondary lens 2b is increased from 400 nm to 400 nm. It is thought that the resin deterioration due to irradiation with 420 nm sunlight progressed. Therefore, in the configuration of the concentrating solar cell module 10b of Comparative Example 1, the secondary lens 2b, the support substrate 20b, and the circuit board 3b, in particular, the high-density region 30 (see FIG. 2) are in view of ensuring light resistance. Thus, it was confirmed that the resin could not be constructed.
 続いて、一次レンズが平凸レンズである集光型太陽電池モジュールについて、実施例2および比較例2を用いてより具体的に説明する。 Subsequently, the concentrating solar cell module in which the primary lens is a plano-convex lens will be described more specifically with reference to Example 2 and Comparative Example 2.
 図9は、実施例2および比較例2に係る集光型太陽電池モジュールの概略断面図である。図10は、実施例2および比較例2における一次レンズを通過した太陽光のスペクトルを示す図である。 FIG. 9 is a schematic cross-sectional view of the concentrating solar cell module according to Example 2 and Comparative Example 2. FIG. 10 is a diagram showing the spectrum of sunlight that has passed through the primary lens in Example 2 and Comparative Example 2.
 (実施例2)
 実施例2では、以下の構成を備える集光型太陽電池モジュールの一次レンズを透過した太陽光のスペクトルを測定した。
(Example 2)
In Example 2, the spectrum of sunlight transmitted through a primary lens of a concentrating solar cell module having the following configuration was measured.
 図9の(a)に示すように、実施例2の集光型太陽電池モジュール110aは、一次レンズ101a、二次レンズ102a、支持基板120a、回路基板103a、発電素子104および放熱板105を備える。一次レンズ101aの平板部分と凸部との境界面から回路基板103aの二次レンズ102a側の面までの距離は、30mmであり、回路基板103aの厚みは3mmである。ここでは、比較例2と異なる構成についてのみ説明する。 As shown in FIG. 9A, the concentrating solar cell module 110a according to the second embodiment includes a primary lens 101a, a secondary lens 102a, a support substrate 120a, a circuit substrate 103a, a power generation element 104, and a heat dissipation plate 105. . The distance from the boundary surface between the flat plate portion and the convex portion of the primary lens 101a to the surface on the secondary lens 102a side of the circuit board 103a is 30 mm, and the thickness of the circuit board 103a is 3 mm. Here, only the configuration different from that of Comparative Example 2 will be described.
 一次レンズ101aおよび二次レンズ102aはともに、アクリル樹脂から構成される。一次レンズ101aは、実施例1における一次レンズ1aと同様に、波長420nm以下の光をカットする紫外線吸収剤B(透過率は、図6を参照のこと)を含む。二次レンズ102a、支持基板120a、および、回路基板103aは、波長400nm以下の光をカットする紫外線吸収剤A(図6参照)を含む。 Both the primary lens 101a and the secondary lens 102a are made of acrylic resin. Similar to the primary lens 1a in the first embodiment, the primary lens 101a includes an ultraviolet absorber B that cuts light having a wavelength of 420 nm or less (see FIG. 6 for transmittance). The secondary lens 102a, the support substrate 120a, and the circuit board 103a include an ultraviolet absorber A (see FIG. 6) that cuts light having a wavelength of 400 nm or less.
 ソーラーシミュレータを用いて、一次レンズ101aを透過した疑似太陽光のスペクトルを測定した。結果を図10に示す。図10の破線で示すグラフから、一次レンズ101aを透過した太陽光のスペクトルは、420nm以下において光強度が大きく減衰していくことが分かった。 Using a solar simulator, the spectrum of pseudo sunlight transmitted through the primary lens 101a was measured. The results are shown in FIG. From the graph shown by the broken line in FIG. 10, it was found that the light intensity of the spectrum of sunlight transmitted through the primary lens 101a was greatly attenuated at 420 nm or less.
 また、短絡電流を測定したところ、38.7mAであった。 The short-circuit current was measured and found to be 38.7 mA.
 (比較例2)
 比較例2では、以下の構成を備える集光型太陽電池モジュールの一次レンズを透過した太陽光のスペクトルを測定した。
(Comparative Example 2)
In the comparative example 2, the spectrum of the sunlight which permeate | transmitted the primary lens of the concentrating solar cell module provided with the following structures was measured.
 図9の(b)に示すように、比較例2の集光型太陽電池モジュール110bは、一次レンズ101b、二次レンズ102b、支持基板120b、回路基板103b、発電素子104および放熱板105を備える。一次レンズ101bの平板部分と凸部との境界面から回路基板103bの二次レンズ102b側の面までの距離は、30mmであり、回路基板103bの厚みは3mmである。ここでは、実施例2と異なる構成についてのみ説明する。 As shown in FIG. 9B, the concentrating solar cell module 110b of Comparative Example 2 includes a primary lens 101b, a secondary lens 102b, a support substrate 120b, a circuit board 103b, a power generation element 104, and a heat dissipation plate 105. . The distance from the boundary surface between the flat plate portion and the convex portion of the primary lens 101b to the surface on the secondary lens 102b side of the circuit board 103b is 30 mm, and the thickness of the circuit board 103b is 3 mm. Here, only the configuration different from the second embodiment will be described.
 一次レンズ101bおよび二次レンズ102bはともに、アクリル樹脂から構成される。一次レンズ101bは、比較例1における一次レンズ1bと同様に、波長400nm以下の光をカットする紫外線吸収剤A(透過率は、図6を参照のこと)を含む。二次レンズ102b、支持基板20bおよび回路基板103bは、アクリル樹脂から構成され、紫外線吸収剤を含む。 Both the primary lens 101b and the secondary lens 102b are made of acrylic resin. Similar to the primary lens 1b in the first comparative example, the primary lens 101b includes an ultraviolet absorber A that cuts light having a wavelength of 400 nm or less (see FIG. 6 for transmittance). The secondary lens 102b, the support substrate 20b, and the circuit board 103b are made of an acrylic resin and include an ultraviolet absorber.
 ソーラーシミュレータを用いて、一次レンズ101bを透過した疑似太陽光のスペクトルを測定した。結果を図10に示す。図10の実線で示すグラフから、一次レンズ101bを透過した太陽光のスペクトルは、比較例1における一次レンズ1bと同様に、400nm以下において光強度が大きく減衰していくことが分かった。 Using a solar simulator, the spectrum of pseudo sunlight transmitted through the primary lens 101b was measured. The results are shown in FIG. From the graph shown by the solid line in FIG. 10, it was found that the sunlight intensity transmitted through the primary lens 101b was attenuated greatly at 400 nm or less, like the primary lens 1b in Comparative Example 1.
 また、短絡電流を測定したところ、39.3mAであった。 The short-circuit current was measured and found to be 39.3 mA.
 (まとめ)
 実施例2に係る集光型太陽電池モジュール110aでは、短絡電流は38.7mAであり、比較例2に係る集光型太陽電池モジュール110bでは、短絡電流は39.3mAであった。実施例2の短絡電流値は、比較例2の短絡電流値の98.5%の値である。つまり、実施例2に係る集光型太陽電池モジュール110aでは、比較例2に比べて発電効率が僅かしか減少していないため、高い発電効率が得られることが分かった。そのため、波長400nm以上の光を発電に利用する従来の集光型太陽電池モジュールと比べて同等の発電効率が得られることが分かった。
(Summary)
In the concentrating solar cell module 110a according to Example 2, the short-circuit current was 38.7 mA, and in the concentrating solar cell module 110b according to Comparative Example 2, the short-circuit current was 39.3 mA. The short-circuit current value of Example 2 is 98.5% of the short-circuit current value of Comparative Example 2. That is, in the concentrating solar cell module 110a according to Example 2, it was found that the power generation efficiency was slightly reduced as compared with Comparative Example 2, and thus high power generation efficiency was obtained. Therefore, it was found that power generation efficiency equivalent to that of a conventional concentrating solar cell module using light having a wavelength of 400 nm or more for power generation can be obtained.
 また、疑似太陽光のスペクトルの測定結果から、集光型太陽電池モジュール110aは、一次レンズ、二次レンズ、支持基板、および、回路基板などを樹脂で構成しても、十分な耐用年数が得られる耐光性を発揮すると考えられる。 In addition, from the measurement result of the spectrum of pseudo-sunlight, the concentrating solar cell module 110a can obtain a sufficient service life even if the primary lens, the secondary lens, the support substrate, the circuit substrate, and the like are made of resin. It is considered that the light resistance is exhibited.
 以上により、本開示に係る集光型太陽電池モジュールは、一次レンズ、二次レンズ、支持基板、および、回路基板などを樹脂で構成することにより、従来の集光型太陽電池モジュールよりも軽量化することができる。また、一次レンズが波長420nm以下の光をカットする紫外線吸収剤を含み、二次レンズ、支持基板および回路基板が波長400nm以下の光をカットする紫外線吸収剤を含むことにより、一次レンズの形状に関わらず、従来の集光型太陽電池モジュールと同等の発電効率と、十分な耐用年数が得られる耐光性とを両立させることができる。 As described above, the concentrating solar cell module according to the present disclosure is lighter than the conventional concentrating solar cell module by configuring the primary lens, the secondary lens, the support substrate, the circuit substrate, and the like with resin. can do. In addition, the primary lens includes an ultraviolet absorber that cuts light having a wavelength of 420 nm or less, and the secondary lens, the support substrate, and the circuit board include an ultraviolet absorber that cuts light having a wavelength of 400 nm or less. Regardless, it is possible to achieve both the power generation efficiency equivalent to that of the conventional concentrating solar cell module and the light resistance capable of obtaining a sufficient service life.
 以上、本開示に係る集光型太陽電池モジュールについて、実施の形態および実施例に基づいて説明したが、本開示は、この実施の形態および実施例に限定されるものではない。 Although the concentrating solar cell module according to the present disclosure has been described based on the embodiments and examples, the present disclosure is not limited to the embodiments and examples.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須でない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をすべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の主旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, the present invention can be realized by various modifications conceived by those skilled in the art with respect to the embodiments, or by arbitrarily combining the components and functions in the embodiments without departing from the gist of the present disclosure. Forms are also included in the present disclosure.
 本開示に係る集光型太陽電池モジュールは、薄型化され軽量化されることにより、運搬が容易になり、また、基礎工事が不要となるため、様々な場所に容易に設置することができる据置型の太陽光発電装置に適用可能である。より具体的には、当該集光型太陽電池モジュールは、農地、市街地、山間部、未開拓地、ビルなどの建物の屋上など様々な場所に配置され得る。 Since the concentrating solar cell module according to the present disclosure is thin and lightweight, it can be easily transported and no foundation work is required, so that it can be easily installed in various places. It is applicable to a type of solar power generation device. More specifically, the concentrating solar cell module can be disposed in various places such as farmland, urban areas, mountainous areas, uncultivated areas, and rooftops of buildings such as buildings.
 1、1a、1b、101、101a、101b 一次光学系(一次レンズ)
 2、2a、2b、102、102a、102b 二次光学系(二次レンズ)
 3、3a、3b、103、103a、103b 回路基板
 4、104 発電素子
 5、105 放熱板
 6、61、106 支持部材
 10、10a、10b、110、110a、110b 集光型太陽電池モジュール
 11 一次レンズアレイ
 20、20a、20b、120、120a、120b 支持基板
 21 二次レンズアレイ
 30、130 高密度領域
 62 外枠
 100 集光型太陽電池装置
1, 1a, 1b, 101, 101a, 101b Primary optical system (primary lens)
2, 2a, 2b, 102, 102a, 102b Secondary optical system (secondary lens)
3, 3a, 3b, 103, 103a, 103b Circuit board 4, 104 Power generation element 5, 105 Heat sink 6, 61, 106 Support member 10, 10a, 10b, 110, 110a, 110b Condensing solar cell module 11 Primary lens Array 20, 20a, 20b, 120, 120a, 120b Support substrate 21 Secondary lens array 30, 130 High-density region 62 Outer frame 100 Concentrating solar cell device

Claims (5)

  1.  樹脂からなり、太陽光を集光する一次光学系と、
     樹脂からなり、前記一次光学系によって集光された光をさらに集光する二次光学系と、
     を備え、
     前記一次光学系は、第1の波長以下の光をカットする吸収剤を含み、
     前記二次光学系は、前記第1の波長と異なる第2の波長以下の光をカットする吸収剤を含む、
     集光型太陽電池モジュール。
    A primary optical system made of resin and collecting sunlight;
    A secondary optical system made of resin and further condensing the light collected by the primary optical system;
    With
    The primary optical system includes an absorbent that cuts light of a first wavelength or less,
    The secondary optical system includes an absorber that cuts light having a second wavelength or less different from the first wavelength.
    Concentrating solar cell module.
  2.  前記第1の波長は、前記第2の波長よりも長波長である、
     請求項1に記載の集光型太陽電池モジュール。
    The first wavelength is longer than the second wavelength.
    The concentrating solar cell module according to claim 1.
  3.  前記二次光学系と発電素子との間に基板をさらに備え、
     前記基板は、
     前記第2の波長以下の光をカットする吸収剤を含む、
     請求項1または2に記載の集光型太陽電池モジュール。
    Further comprising a substrate between the secondary optical system and the power generation element,
    The substrate is
    Including an absorbent that cuts light below the second wavelength;
    The concentrating solar cell module according to claim 1 or 2.
  4.  前記第1の波長は、420nmであり、
     前記第2の波長は、400nmである、
     請求項1~3のいずれか一項に記載の集光型太陽電池モジュール。
    The first wavelength is 420 nm;
    The second wavelength is 400 nm;
    The concentrating solar cell module according to any one of claims 1 to 3.
  5.  前記第1の波長の光の焦点は、前記基板内に位置する、
     請求項1~4のいずれか一項に記載の集光型太陽電池モジュール。
    The focal point of the light of the first wavelength is located in the substrate;
    The concentrating solar cell module according to any one of claims 1 to 4.
PCT/JP2019/017731 2018-04-27 2019-04-25 Concentrator solar cell module WO2019208716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-086364 2018-04-27
JP2018086364 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208716A1 true WO2019208716A1 (en) 2019-10-31

Family

ID=68294054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017731 WO2019208716A1 (en) 2018-04-27 2019-04-25 Concentrator solar cell module

Country Status (1)

Country Link
WO (1) WO2019208716A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255125A (en) * 2002-03-04 2003-09-10 Toyota Central Res & Dev Lab Inc Optical member and photoelectrode, dye-sensitized solar cell, photoelectric converter and electrooptic converter
JP2006332113A (en) * 2005-05-23 2006-12-07 Sharp Corp Concentrating solar power generation module and solar power generator
CN101867318A (en) * 2009-04-16 2010-10-20 亿芳能源科技股份有限公司 Easily maintained focus solar power module
JP2011119686A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
JP2014160781A (en) * 2013-02-20 2014-09-04 Dainippon Printing Co Ltd Concentration-type photovoltaic power generator, solar battery condenser lens member, and manufacturing method of solar battery condenser lens member
JP2016029883A (en) * 2014-07-16 2016-03-03 タレス Photovoltaic module including concentration optic with subwavelength patterns, and solar power generator for satellite including the same module
JP2016178281A (en) * 2015-03-19 2016-10-06 パナソニックIpマネジメント株式会社 Solar battery and manufacturing method for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255125A (en) * 2002-03-04 2003-09-10 Toyota Central Res & Dev Lab Inc Optical member and photoelectrode, dye-sensitized solar cell, photoelectric converter and electrooptic converter
JP2006332113A (en) * 2005-05-23 2006-12-07 Sharp Corp Concentrating solar power generation module and solar power generator
CN101867318A (en) * 2009-04-16 2010-10-20 亿芳能源科技股份有限公司 Easily maintained focus solar power module
JP2011119686A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
JP2014160781A (en) * 2013-02-20 2014-09-04 Dainippon Printing Co Ltd Concentration-type photovoltaic power generator, solar battery condenser lens member, and manufacturing method of solar battery condenser lens member
JP2016029883A (en) * 2014-07-16 2016-03-03 タレス Photovoltaic module including concentration optic with subwavelength patterns, and solar power generator for satellite including the same module
JP2016178281A (en) * 2015-03-19 2016-10-06 パナソニックIpマネジメント株式会社 Solar battery and manufacturing method for the same

Similar Documents

Publication Publication Date Title
Luque et al. Photovoltaic concentration at the onset of its commercial deployment
AU2006227140B2 (en) Multi-junction solar cells with an aplanatic imaging system
Yamada et al. Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture
KR101791130B1 (en) Solar cell module
US20110030765A1 (en) Concentrating optical member and concentrating solar power generation module
JP2006313810A (en) Light condensing solar power generator
WO2008050392A1 (en) Concentrating photovoltaic apparatus
JP2002289896A (en) Concentrating solar cell module and concentrating photovoltaic power generation system
JP2009545184A (en) High-efficiency solar cell with surrounding silicon scavenger cell
JP2013211487A (en) Secondary lens, solar battery mounting body, condensing type photovoltaic power generation unit, and condensing type photovoltaic power generation module
US20080041444A1 (en) Solar CPV cell module and method of safely assembling, installing, and/or maintaining the same
US8383928B2 (en) Concentration solar battery protected against heating
WO2012160994A1 (en) Concentrator solar cell and method for manufacturing same
JP2014022471A (en) Solar cell module and solar cell module assembly
WO2019208716A1 (en) Concentrator solar cell module
TWI409967B (en) A solar cell module and the fabrication method of the same
US11456396B2 (en) Photoelectric conversion device for solar photovoltaic generation
KR101105247B1 (en) Solar cell exposing side surface to sunlight
US20110259421A1 (en) Photovoltaic module having concentrator
KR101898593B1 (en) Solar cell module
JP6670991B2 (en) Solar cell
RU2475888C1 (en) Photovoltaic module design
US20160284912A1 (en) Photovoltaic cell
RU2436193C1 (en) Photovoltaic concentrator module
KR101603163B1 (en) Lightweight photovoltaic modules with improved efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP