WO2019208428A1 - エジェクタ式冷凍サイクル - Google Patents

エジェクタ式冷凍サイクル Download PDF

Info

Publication number
WO2019208428A1
WO2019208428A1 PCT/JP2019/016802 JP2019016802W WO2019208428A1 WO 2019208428 A1 WO2019208428 A1 WO 2019208428A1 JP 2019016802 W JP2019016802 W JP 2019016802W WO 2019208428 A1 WO2019208428 A1 WO 2019208428A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
stage
gas
outlet
ejector
Prior art date
Application number
PCT/JP2019/016802
Other languages
English (en)
French (fr)
Inventor
康太 武市
尾形 豪太
押谷 洋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019208428A1 publication Critical patent/WO2019208428A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present disclosure relates to an ejector-type refrigeration cycle including a plurality of evaporators that evaporate a refrigerant in different temperature zones.
  • an ejector-type refrigeration cycle which is a vapor compression refrigeration cycle apparatus including an ejector, is known.
  • the refrigerant flowing out of the evaporator is sucked from the refrigerant suction port of the ejector due to the suction action of the high-speed jet refrigerant injected from the nozzle portion of the ejector. Then, the pressure of the mixed refrigerant of the injected refrigerant and the suction refrigerant is increased by the diffuser portion (pressure increasing portion) of the ejector, and the pressure-increased mixed refrigerant is sucked into the compressor.
  • the power consumption of the compressor is reduced and the coefficient of performance (COP) of the cycle is reduced compared to a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the suction refrigerant pressure in the compressor are substantially equal. ) Can be improved.
  • Patent Document 1 discloses an ejector-type refrigeration cycle including a plurality of evaporators that evaporate refrigerant in different temperature zones.
  • the ejector-type refrigeration cycle of Patent Document 1 includes a branch portion that branches the flow of the refrigerant flowing out of the condenser. And one refrigerant
  • coolant branched in the branch part is pressure-reduced in a high stage side pressure reduction part, and flows in into a high stage side evaporator. Further, the refrigerant that has flowed out of the high-stage evaporator is caused to flow into the nozzle portion of the ejector. Further, the other refrigerant branched at the branching section is depressurized by the low stage decompression section and flows into the low stage evaporator. Furthermore, it has a cycle configuration in which the refrigerant flowing out of the low-stage evaporator is sucked from the refrigerant suction port of the ejector.
  • the refrigerant evaporation temperature in the high stage evaporator and the refrigerant evaporation temperature in the low stage evaporator are set to different temperature zones.
  • the flow rate ratio G_le / G_he is set to Adjust it.
  • the flow ratio G_le / G_he is a ratio of the low-stage refrigerant flow rate G_le that is the flow rate of the refrigerant that flows into the low-stage evaporator to the high-stage refrigerant flow rate G_he that is the flow rate of the refrigerant that flows into the high-stage evaporator.
  • the cooling capacity exhibited by the evaporator is an integration of the enthalpy difference ⁇ h obtained by subtracting the enthalpy of the refrigerant on the inlet side of the evaporator from the enthalpy of the refrigerant on the outlet side of the evaporator and the flow rate G of the refrigerant flowing through the evaporator. It can be defined by the value ⁇ h ⁇ G. Note that the flow rate of the refrigerant flowing through the evaporator is equal to the flow rate of the refrigerant flowing into the evaporator.
  • the loss of velocity energy when the refrigerant is decompressed in the nozzle part is recovered by sucking the refrigerant by the suction action of the jet refrigerant injected from the nozzle part. Then, the mixed refrigerant is pressurized by converting the velocity energy of the mixed refrigerant of the injected refrigerant and the suction refrigerant into pressure energy in the diffuser section.
  • the flow rate of the injected refrigerant can be increased by increasing the flow rate of the refrigerant flowing into the nozzle portion.
  • the velocity energy of the mixed refrigerant can be increased, and the pressure increase amount ⁇ P in the diffuser portion can be increased.
  • the COP improvement effect of the ejector refrigeration cycle is easily obtained as the flow rate ratio Ge / Gn is reduced.
  • the high stage side refrigerant flow rate G_he is equal to the nozzle part side flow rate Gn
  • the low stage side refrigerant flow rate G_le is equal to the suction side flow rate Ge.
  • This indication aims at providing the ejector type refrigerating cycle which can improve a coefficient of performance, without causing the reduction of the cooling capacity exhibited with a low stage side evaporator in view of the above-mentioned point.
  • An ejector refrigeration cycle includes a compressor, a radiator, a high-stage decompression unit, a high-stage evaporator, a low-stage decompression unit, a low-stage evaporator, A branch part and an ejector are provided.
  • Compressor compresses and discharges refrigerant.
  • the radiator dissipates heat from the refrigerant discharged from the compressor.
  • the high-stage decompression unit decompresses the refrigerant that has flowed out of the radiator.
  • the high stage side evaporator evaporates the refrigerant decompressed by the high stage side decompression unit.
  • the low-stage decompression unit decompresses the refrigerant that has flowed out of the radiator.
  • the low stage side evaporator evaporates the refrigerant decompressed by the low stage side decompression unit.
  • the branch section branches the flow of the refrigerant downstream of the radiator, causes one of the branched refrigerant to flow out to the refrigerant inlet side of the high-stage evaporator, and evaporates the other branched refrigerant to the low-stage side evaporation.
  • the ejector sucks the refrigerant that has flowed out of the low-stage evaporator from the refrigerant suction port by the suction action of the high-speed jet refrigerant that is jetted from the nozzle portion.
  • the ejector has a boosting unit that boosts the pressure of the mixed refrigerant of the injected refrigerant and the suctioned refrigerant sucked from the refrigerant suction port and flows out to the suction port side of the compressor.
  • the ejector refrigeration cycle includes an enthalpy adjustment unit.
  • the enthalpy adjustment unit reduces the enthalpy of the refrigerant flowing into the low stage side evaporator.
  • the enthalpy adjustment unit since the enthalpy adjustment unit is provided, the low stage side enthalpy difference ⁇ h_le obtained by subtracting the enthalpy of the inlet side refrigerant from the enthalpy of the outlet side refrigerant of the low stage side evaporator can be increased.
  • the high-stage refrigerant flow rate G_he is a flow rate of the refrigerant that flows into the high-stage evaporator from the branch portion.
  • the low stage side refrigerant flow rate G_le is a flow rate of the refrigerant that flows into the low stage side evaporator from the branch portion.
  • the ejector refrigeration cycle of the first aspect of the present disclosure it is possible to provide an ejector refrigeration cycle that can improve the coefficient of performance without causing a decrease in the low stage side cooling capacity ⁇ h_le ⁇ G_le. it can.
  • a first embodiment of the present disclosure will be described with reference to FIGS.
  • the ejector refrigeration cycle 10 of this embodiment is applied to a vehicle refrigeration cycle apparatus mounted on a refrigerated vehicle.
  • a vehicle refrigeration cycle apparatus air-conditions a passenger compartment and cools the inside of a refrigerator disposed on a loading platform of the vehicle.
  • Ejector refrigeration cycle 10 cools indoor blast air blown into the passenger compartment and cools blast air circulated into the refrigerator in the vehicle refrigeration cycle apparatus.
  • both the vehicle interior space and the refrigerator internal space are cooling target spaces of the ejector refrigeration cycle 10. Furthermore, in this embodiment, the volume in a vehicle interior and a refrigerator is substantially equivalent, and the cooling capacity required in order to cool each cooling object space is also equivalent.
  • the cooling capacity in the present embodiment includes the enthalpy difference ⁇ h obtained by subtracting the enthalpy of the refrigerant on the inlet side of the evaporator from the enthalpy of the refrigerant on the outlet side of the evaporator provided in the ejector refrigeration cycle 10 and the flow rate of the refrigerant flowing through the evaporator. It is defined by an integrated value ⁇ h ⁇ G with G.
  • the ejector refrigeration cycle 10 employs a natural refrigerant (specifically, R600a) as a refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the refrigerant pressure on the high pressure side does not exceed the critical pressure of the refrigerant. Yes. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • a natural refrigerant specifically, R600a
  • refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks in refrigerant, compresses it, and discharges it.
  • the compressor 11 is an electric compressor configured by housing a fixed capacity type compression mechanism and an electric motor for rotationally driving the compression mechanism in a housing. The operation of the compressor 11 is controlled by a control signal output from the control device 50 described later.
  • the refrigerant inlet side of the radiator 12 is connected to the discharge port of the compressor 11.
  • the heat radiator 12 exchanges heat between the high-temperature and high-pressure discharged refrigerant discharged from the compressor 11 and the vehicle exterior air (outside air) blown by the cooling fan 12a to dissipate the high-pressure refrigerant and condense it. It is an exchanger.
  • the cooling blower 12 a is an electric blower in which the rotation speed (that is, the amount of blown air) is controlled by a control voltage output from the control device 50.
  • the refrigerant outlet of the radiator 12 is connected to the refrigerant inlet side of the branch portion 13a.
  • the branch part 13a branches the refrigerant flow on the downstream side of the radiator 12.
  • the branch part 13a has a three-way joint structure having three refrigerant inlets and outlets communicating with each other, and one of the three refrigerant inlets and outlets is a refrigerant inlet and the remaining two are refrigerant outlets.
  • the inlet side of the high stage side expansion valve 14a is connected to one refrigerant outlet of the branch part 13a.
  • the inlet side of the separator-side expansion valve 14b is connected to the other refrigerant outlet of the branch part 13a.
  • the high stage side expansion valve 14a is a high stage side decompression part that decompresses one refrigerant branched by the branch part 13a among the refrigerants radiated by the radiator 12. Furthermore, the high stage side expansion valve 14a is a high stage side flow rate adjusting unit that adjusts the flow rate of the refrigerant flowing out to the downstream side.
  • the high stage side expansion valve 14a includes a valve body configured to be able to change the throttle opening degree and an electric actuator (specifically, a stepping motor) that changes the opening degree of the valve body.
  • an electric actuator specifically, a stepping motor
  • This is an electric variable aperture mechanism configured to have. The operation of the high stage side expansion valve 14 a is controlled by a control signal output from the control device 50.
  • the separator-side expansion valve 14b is a separator-side decompression unit that decompresses the other refrigerant branched by the branching unit 13a so as to be in a gas-liquid two-phase state.
  • the separator-side expansion valve 14b is a separator-side flow rate adjusting unit that adjusts the flow rate of the refrigerant that flows out to the downstream side.
  • the basic configuration of the separator side expansion valve 14b is the same as that of the high stage side expansion valve 14a.
  • the refrigerant inlet side of the high stage side evaporator 15 is connected to the outlet of the high stage side expansion valve 14a.
  • the high stage side evaporator 15 heat-exchanges the low pressure refrigerant decompressed by the high stage side expansion valve 14a and the indoor blown air blown into the vehicle interior from the indoor blower 15a to evaporate the low pressure refrigerant.
  • An endothermic heat exchanger that exhibits an endothermic effect.
  • the indoor blower 15a is an electric blower in which the rotation speed (amount of blown air) is controlled by a control voltage output from the control device 50.
  • the refrigerant outlet of the higher stage evaporator 15 is connected to one refrigerant inlet side of the merging portion 13b.
  • Junction part 13b merges the flow of the refrigerant that has flowed out of high-stage evaporator 15 and the flow of the gas-phase refrigerant that has flowed out of gas-liquid separator 17 described later.
  • the basic configuration of the merging portion 13b is the same as that of the branching portion 13a.
  • the merging section 13b uses two of the three refrigerant inflow / outflow ports as refrigerant inflow ports and the remaining one as a refrigerant outflow port.
  • the inlet side of the nozzle portion 16a of the ejector 16 is connected to the refrigerant outlet of the junction portion 13b.
  • the ejector 16 has a nozzle portion 16a that injects the refrigerant that has flowed out of the high-stage evaporator 15 while further reducing the pressure. Therefore, the ejector 16 is a refrigerant decompression unit. Further, the ejector 16 is a refrigerant circulation unit that sucks and circulates the refrigerant from the outside by a suction action of the refrigerant injected from the refrigerant injection port of the nozzle portion 16a.
  • the ejector 16 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle portion 16a and the refrigerant sucked from the refrigerant suction port 16c into pressure energy, and increases the pressure of the mixed refrigerant. Part.
  • the ejector 16 has a nozzle portion 16a and a body portion 16b.
  • the nozzle portion 16a is formed of a substantially cylindrical metal (in this embodiment, a stainless alloy) that gradually tapers in the refrigerant flow direction.
  • the nozzle portion 16a decompresses the refrigerant in an isentropic manner in the refrigerant passage formed inside.
  • the refrigerant passage formed in the nozzle portion 16a includes a throat portion where the passage cross-sectional area is most reduced, and a divergent portion where the passage cross-sectional area gradually increases from the throat toward the refrigerant injection port for injecting the refrigerant. Is formed. That is, the nozzle portion 16a of the present embodiment is configured as a Laval nozzle.
  • the nozzle portion 16a is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port is equal to or higher than the sonic speed during normal operation of the ejector refrigeration cycle 10.
  • the body portion 16b is made of a substantially cylindrical metal (in this embodiment, aluminum).
  • the body portion 16b functions as a fixing member that supports and fixes the nozzle portion 16a therein, and forms a refrigerant passage through which the refrigerant flows. More specifically, the nozzle portion 16a is fixed by press-fitting so as to be housed inside the longitudinal end of the body portion 16b.
  • the body part 16b may be formed of resin.
  • a portion corresponding to the outer peripheral side of the nozzle portion 16a is formed with a refrigerant suction port 16c provided so as to penetrate the inner and outer sides and communicate with the refrigerant injection port of the nozzle portion 16a.
  • the refrigerant suction port 16c is a through hole that sucks the refrigerant that has flowed out from the low-stage evaporator 18 (described later) into the ejector 16 by the suction action of the jet refrigerant injected from the nozzle portion 16a.
  • a suction passage 16e and a diffuser portion 16d are formed inside the body portion 16b.
  • the suction passage 16e is a refrigerant passage that guides the suction refrigerant sucked from the refrigerant suction port 16c to the refrigerant injection port side of the nozzle portion 16a.
  • the diffuser portion 16d is a refrigerant passage that functions as a pressure increasing portion that increases the pressure by mixing the suction refrigerant and the injection refrigerant.
  • the suction passage 16e is formed by a space with an annular cross section between the outer peripheral side around the tapered tip of the nozzle portion 16a and the inner peripheral side of the body portion 16b.
  • the passage cross-sectional area of the suction passage 16e is reduced as the refrigerant flows toward the downstream side.
  • the flow rate of the suction refrigerant flowing through the suction passage 16e is increased, and energy loss (so-called mixing loss) when the suction refrigerant and the injection refrigerant are mixed in the diffuser portion 16d is reduced.
  • the diffuser portion 16d is a refrigerant passage that extends in a truncated cone shape so as to be continuous with the outlet of the suction passage 16e.
  • the passage cross-sectional area increases as the refrigerant flows toward the downstream side.
  • the diffuser portion 16d converts the kinetic energy of the mixed refrigerant into pressure energy by such a passage shape.
  • the axial cross-sectional shape of the inner peripheral wall surface of the body portion 16b forming the diffuser portion 16d is formed into a shape combining a plurality of curves. And since the degree of spread of the passage cross-sectional area of the diffuser portion 16d becomes larger as it goes in the refrigerant flow direction and then becomes smaller again, the pressure of the refrigerant can be increased isentropically.
  • the inlet of the compressor 11 is connected to the outlet of the diffuser portion 16d.
  • the inlet side of the gas-liquid separator 17 is connected to the outlet of the separator-side expansion valve 14b.
  • the gas-liquid separator 17 is a gas-liquid separator that separates the gas-liquid of the refrigerant decompressed by the separator-side expansion valve 14b.
  • a centrifugal separation type that separates the gas-liquid refrigerant by the action of centrifugal force, or the gas-liquid of the refrigerant whose flow velocity is lowered by colliding with the collision plate is caused by the action of gravity.
  • separate can be employ
  • the gas-phase refrigerant outlet of the gas-liquid separator 17 is connected to the other refrigerant inlet side of the merging portion 13b.
  • the gas-phase refrigerant outlet of the gas-liquid separator 17 is connected to the inlet side of the nozzle portion 16 a of the ejector 16.
  • the liquid-phase refrigerant outlet of the gas-liquid separator 17 is connected to the inlet side of the low stage side expansion valve 14c.
  • the low-stage expansion valve 14c is a low-stage decompression unit that decompresses the liquid-phase refrigerant separated by the gas-liquid separator 17 among the refrigerant radiated by the radiator 12. Furthermore, the low-stage side expansion valve 14c is a low-stage side flow rate adjusting unit that adjusts the flow rate of the refrigerant that flows out to the downstream side.
  • the basic configuration of the low stage side expansion valve 14c is the same as that of the high stage side expansion valve 14a and the separator side expansion valve 14b.
  • the refrigerant inlet side of the low stage side evaporator 18 is connected to the outlet of the low stage side expansion valve 14c.
  • the low-stage evaporator 18 exchanges heat between the low-pressure refrigerant decompressed by the low-stage side expansion valve 14c and the internal blown air circulated through the refrigerator from the internal blower 18a. This is an endothermic heat exchanger that evaporates to exert an endothermic effect.
  • the internal blower 18a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device 50.
  • the refrigerant suction port 16 c side of the ejector 16 is connected to the refrigerant outlet of the low-stage evaporator 18.
  • the branching portion 13a branches the refrigerant flow on the downstream side of the radiator 12. Then, one of the refrigerants branched at the branch part 13a is caused to flow out to the refrigerant inlet side of the high stage side evaporator 15 via the high stage side expansion valve 14a. Further, the other refrigerant branched at the branching portion 13a is caused to flow out to the refrigerant inlet side of the low stage side evaporator 18 through at least the low stage side expansion valve 14c.
  • the separator-side expansion valve 14b depressurizes the other refrigerant branched at the branching portion 13a so as to become a gas-liquid two-phase refrigerant. Therefore, the gas-liquid separator 17 can reliably separate the gas-liquid refrigerant. Then, the enthalpy of the refrigerant flowing out from the liquid-phase refrigerant outlet of the gas-liquid separator 17 can be surely lowered than the enthalpy of the refrigerant flowing into the gas-liquid separator 17.
  • the enthalpy of the refrigerant that flows out from the liquid-phase refrigerant outlet of the gas-liquid separator 17 and flows into the low-stage evaporator 18 through the low-stage expansion valve 14c is branched at the branching section 13a.
  • the enthalpy can be lowered. Therefore, the separator-side expansion valve 14b and the gas-liquid separator 17 of this embodiment constitute an enthalpy adjusting unit that reduces the enthalpy of the refrigerant flowing into the low-stage evaporator 18.
  • the flow rate of the refrigerant discharged from the compressor 11 is defined as the discharge flow rate Ga.
  • the flow rate of the refrigerant flowing into the high stage side evaporator 15 is defined as the high stage side refrigerant flow rate G_he.
  • the flow rate of the refrigerant flowing into the low stage side evaporator 18 is defined as the low stage side refrigerant flow rate G_le.
  • the flow rate of the refrigerant flowing into the nozzle portion 16a of the ejector 16 is defined as the nozzle side flow rate Gn.
  • the flow rate of the refrigerant sucked into the refrigerant suction port 16c of the ejector 16 is defined as a suction side flow rate Ge.
  • the flow rate of the refrigerant flowing out from the gas-phase refrigerant outlet of the gas-liquid separator 17 is defined as a gas-phase refrigerant flow rate G_gas.
  • the flow rate of the refrigerant flowing out from the liquid phase refrigerant outlet of the gas-liquid separator 17 is defined as a liquid phase refrigerant flow rate G_lq.
  • the flow rates of these refrigerants are all mass flow rates.
  • the discharge flow rate G is equal to the sum of the high-stage refrigerant flow rate G_he, the gas-phase refrigerant flow rate G_gas, and the liquid-phase refrigerant flow rate G_lq.
  • the nozzle side flow rate Gn is equal to the total value of the high stage side refrigerant flow rate G_he and the gas phase refrigerant flow rate G_gas.
  • the suction side flow rate Ge is equal to the liquid phase refrigerant flow rate G_lq. Further, the suction side flow rate Ge is equal to the low stage side refrigerant flow rate G_le.
  • the control device 50 is composed of a known microcomputer including a CPU, ROM, RAM, and its peripheral circuits.
  • the control device 50 performs various calculations and processes based on the control program stored in the ROM, and controls the operations of the various control target devices 11, 12a, 14a to 14c, 15a, 18a, etc. connected to the output side. To do.
  • a control sensor group 51 such as an inside air temperature sensor, an outside air temperature sensor, a solar radiation sensor, a high stage evaporator temperature sensor, and a low stage evaporator temperature sensor is connected to the input side of the control device 50. Then, the detection signal of the control sensor group 51 is input to the control device 50.
  • the inside air temperature sensor is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam.
  • a solar radiation sensor is a solar radiation amount detection part which detects the solar radiation amount As irradiated to a vehicle interior.
  • the high stage evaporator temperature sensor is an evaporator temperature detector that detects the refrigerant evaporation temperature (high stage evaporator temperature) Te_he in the high stage evaporator 15.
  • the low-stage evaporator temperature sensor is a low-stage evaporator temperature detector that detects a high-stage evaporator temperature (low-stage evaporator temperature) Te_le in the low-stage evaporator 18.
  • an operation panel 52 disposed near the instrument panel in the front part of the passenger compartment is connected. Then, operation signals from various operation switches provided on the operation panel 52 are input to the control device 50.
  • various operation switches provided on the operation panel 52 an operation switch for requesting operation or stop of the vehicle refrigeration cycle apparatus, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and an interior temperature setting for setting the interior temperature. A switch or the like is provided.
  • control device 50 of the present embodiment is a device in which a control unit that controls the operation of various devices to be controlled connected to the output side is integrally configured. And the structure (hardware and software) which controls the action
  • the configuration for controlling the operation of the compressor 11 constitutes a compressor control unit.
  • the configuration for controlling the operation of the high stage side expansion valve 14a and the low stage side expansion valve 14c is a flow ratio between the high stage side refrigerant flow rate G_he and the low stage side refrigerant flow rate G_le, or the nozzle side flow rate Gn and the suction side.
  • a flow rate control unit that controls the flow rate ratio with the flow rate Ge is configured.
  • the control device 50 operates various devices to be controlled. Thereby, the compressor 11 sucks the refrigerant, compresses it, and discharges it.
  • the refrigerant flowing into the radiator 12 exchanges heat with the outside air blown from the cooling fan 12a, dissipates heat and condenses (point a2 ⁇ b2 in FIG. 2).
  • the flow of the refrigerant flowing out of the radiator 12 is branched at the branching portion 13a.
  • One of the refrigerants branched at the branching portion 13a flows into the high stage expansion valve 14a and is decompressed in an enthalpy manner (b2 point ⁇ c2 point in FIG. 2).
  • the throttle opening degree of the high stage side expansion valve 14a is adjusted so that the degree of superheat of the high stage side evaporator 15 outlet side refrigerant (point d2 in FIG. 2) falls within a predetermined range.
  • the low-pressure refrigerant decompressed by the high-stage expansion valve 14 a flows into the high-stage evaporator 15.
  • the low-pressure refrigerant flowing into the high-stage evaporator 15 absorbs heat from the indoor air blown from the indoor fan 15a and evaporates (point c2 ⁇ d2 in FIG. 2). Thereby, the indoor blowing air is cooled.
  • the enthalpy difference between the point d2 and the point c2 in FIG. 2 is a high stage side enthalpy difference ⁇ h_he obtained by subtracting the enthalpy of the inlet side refrigerant from the enthalpy of the outlet side refrigerant of the high stage side evaporator 15.
  • j2 point (d2 point ⁇ e2 point, j2 point ⁇ e2 point in FIG. 2).
  • the gas-phase refrigerant (point e2 in FIG. 2) that has flowed out from the merging portion 13b flows into the nozzle portion 16a of the ejector 16.
  • the refrigerant that has flowed into the nozzle portion 16a of the ejector 16 is isentropically decompressed and injected (point e2 ⁇ point f2 in FIG. 2).
  • the refrigerant (n2 point in FIG. 2) flowing out from the low-stage evaporator 18 is sucked from the refrigerant suction port 16c of the ejector 16 by the suction action of the jet refrigerant.
  • the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant of the injected refrigerant and the suction refrigerant increases (g2 point ⁇ h2 point in FIG. 2).
  • the refrigerant flowing out of the diffuser portion 16d is sucked into the compressor 11 and compressed again (point h2 ⁇ point a2 in FIG. 2).
  • the other refrigerant branched at the branching portion 13a flows into the separator-side expansion valve 14b and is decompressed in an enthalpy manner (b2 point ⁇ i2 point in FIG. 2).
  • the opening degree of the separator-side expansion valve 14b is such that the refrigerant pressure in the gas-liquid separator 17 is higher than the refrigerant pressure on the refrigerant outlet side of the high-stage evaporator 15, and the high-stage evaporator 15 is. It is adjusted to approach the refrigerant pressure on the refrigerant outlet side.
  • the pressure reduction amount of the refrigerant in the separator side expansion valve 14b of the present embodiment is reduced by the pressure reduction amount of the refrigerant in the high stage side expansion valve 14a and the pressure loss generated when the refrigerant flows through the high stage side evaporator 15. Approach the total value with the amount.
  • the refrigerant decompressed by the separator-side expansion valve 14b becomes a gas-liquid two-phase refrigerant and flows into the gas-liquid separator 17.
  • the refrigerant flowing into the gas-liquid separator 17 is separated into a gas-phase refrigerant and a liquid-phase refrigerant (i2 point ⁇ j2 point, i2 point ⁇ k2 point in FIG. 2).
  • the gas-phase refrigerant (point j2 in FIG. 2) separated by the gas-liquid separator 17 flows into the junction 13b and has a superheat degree that has flowed out of the high-stage evaporator 15 as described above. (Point d2 in FIG. 2).
  • the liquid-phase refrigerant separated by the gas-liquid separator 17 flows into the low-stage side expansion valve 14c and is decompressed in an enthalpy manner (point k2 ⁇ point m2 in FIG. 2).
  • the throttle opening degree of the low stage side expansion valve 14c is adjusted so that the refrigerant evaporation temperature in the low stage side evaporator 18 approaches the target internal temperature set by the internal temperature setting switch.
  • the low-pressure refrigerant decompressed by the low-stage expansion valve 14 c flows into the low-stage evaporator 18.
  • the low-pressure refrigerant that has flowed into the low-stage evaporator 18 absorbs heat from the blown air for the inside of the cabinet circulated from the blower 18a for the inside of the cabinet and evaporates (point m2 ⁇ n2 in FIG. 2). As a result, the internal blown air is cooled.
  • the enthalpy difference between the n2 point and the m2 point in FIG. 2 is a low stage side enthalpy difference ⁇ h_le obtained by subtracting the enthalpy of the inlet side refrigerant from the enthalpy of the outlet side refrigerant of the low stage side evaporator 18.
  • the refrigerant that has flowed out of the low-stage evaporator 18 is sucked from the refrigerant suction port 16c of the ejector 16 (point n2 ⁇ point o2 ⁇ point g2 in FIG. 2).
  • the ejector refrigeration cycle 10 of the present embodiment operates as described above, it is possible to cool the indoor blast air blown into the vehicle interior and the internal blast air circulated into the refrigerator. At this time, the refrigerant evaporation pressure (that is, the refrigerant evaporation temperature) of the low-stage evaporator 18 is lower than the refrigerant evaporation pressure (that is, the refrigerant evaporation temperature) of the high-stage evaporator 15, so Can be cooled in different temperature zones.
  • the refrigerant (h2 point in FIG. 2) pressurized by the diffuser portion 16d of the ejector 16 is sucked into the compressor 11. Therefore, the power consumption of the compressor 11 can be reduced and the coefficient of performance (COP) of the cycle can be improved.
  • the flow rate ratio Ge / Gn of the suction side flow rate Ge to the nozzle portion side flow rate Gn may be reduced. This is because the flow rate of the injected refrigerant can be increased by increasing the flow rate of the refrigerant flowing into the nozzle portion 16a as the flow rate ratio Ge / Gn is reduced. Therefore, in the ejector refrigeration cycle 10, it is easy to improve COP as the flow rate ratio Ge / Gn is reduced.
  • the low-stage refrigerant flow rate G_le of the refrigerant flowing into the low-stage evaporator 18 tends to decrease. That is, if the flow rate ratio Ge / Gn is reduced, the low-stage cooling capacity ⁇ h_le ⁇ G_le exhibited by the low-stage evaporator may be reduced.
  • the cooling capacity necessary for cooling the passenger compartment is equal to the cooling capacity required for cooling the refrigerator. Therefore, it is necessary to bring the low stage side cooling capacity ⁇ h_le ⁇ G_le close to the high stage side cooling capacity ⁇ h_he ⁇ G_he exhibited by the high stage evaporator.
  • the enthalpy adjustment unit including the separator-side expansion valve 14b and the gas-liquid separator 17 is provided. Therefore, the low stage enthalpy difference ⁇ h_le obtained by subtracting the enthalpy of the inlet side refrigerant from the enthalpy of the outlet side refrigerant of the low stage evaporator 18 can be increased.
  • the low-stage side cooling capacity ⁇ h_le ⁇ G_le is prevented from decreasing. be able to.
  • the low-stage cooling capacity ⁇ h_le ⁇ G_le can be brought close to the high-stage cooling capacity ⁇ h_he ⁇ G_he without bringing the flow ratio Ge / Gn close to 1.
  • the flow rate ratio in the comparative cycle is As in the case where Ge / Gn is set to 1, it has been confirmed that the low stage side cooling capacity ⁇ h_le ⁇ G_le and the high stage side cooling capacity ⁇ h_he ⁇ G_he can be brought close to each other.
  • the nozzle portion side flow rate Gn is a total value of the high stage side refrigerant flow rate G_he and the gas phase refrigerant flow rate G_gas. Therefore, in the ejector-type refrigeration cycle 10 of the present embodiment, the nozzle unit side flow rate Gn can be increased by the gas phase refrigerant flow rate G_gas rather than the nozzle unit side flow rate of the comparison cycle.
  • the flow rate ratio G_le / (G_he + G_gas) can be reduced, and the pressure increase amount ⁇ P in the diffuser portion 16d can be further increased to improve the COP.
  • the flow rate ratio Ge / Gn is 1, and the ejector efficiency ⁇ e is 0.5. It has been confirmed that the COP can be improved by about 3% compared to the comparative cycle when the ejector 16 is adopted.
  • the ejector efficiency ⁇ e is the energy conversion efficiency of the ejector, and is a value determined by the operating conditions of the ejector refrigeration cycle 10, the dimensions of the ejector 16, and the like.
  • COP can be improved without causing a decrease in the cooling capacity exhibited by the low-stage evaporator 18.
  • the separator-side expansion valve 14b and the gas-liquid separator 17 constitute an enthalpy adjustment unit.
  • the inlet side of the high stage side expansion valve 14 a is connected to one refrigerant outlet of the branch part 13 a, and the inlet side of the nozzle part 16 a is connected to the refrigerant outlet of the high stage side evaporator 15.
  • the inlet side of the separator side expansion valve 14b is connected to the other refrigerant outlet of the branch part 13a.
  • the inlet side of the nozzle portion 16 a is connected to the gas phase refrigerant outlet of the gas-liquid separator 17.
  • the inlet side of the low stage side expansion valve 14 c is connected to the liquid phase refrigerant outlet of the gas-liquid separator 17. Therefore, the above-described COP improvement effect can be obtained with a simple cycle configuration.
  • the throttle opening degree of the separator side expansion valve 14b of the present embodiment is adjusted so that the refrigerant pressure in the gas-liquid separator 17 approaches the refrigerant pressure on the refrigerant outlet side of the high stage evaporator 15.
  • the flow of the gas-phase refrigerant flowing out from the gas-phase refrigerant outlet of the gas-liquid separator 17 can be appropriately mixed and supplied to the nozzle portion 16a.
  • the inlet side of the high stage side expansion valve 14a is connected to the refrigerant outlet of the radiator 12 of the ejector refrigeration cycle 10 of the present embodiment.
  • the refrigerant inlet side of the branch part 13a is connected to the outlet of the high stage side expansion valve 14a.
  • the refrigerant inlet side of the high-stage evaporator 15 is connected to one refrigerant outlet of the branch part 13a.
  • Other configurations are the same as those of the first embodiment.
  • the throttle opening degree of the high stage side expansion valve 14a is adjusted such that the degree of superheat of the high stage side evaporator 15 outlet side refrigerant (point d6 in FIG. 6) is within a predetermined range.
  • the flow of the low-pressure refrigerant that has flowed out of the high stage side expansion valve 14a is branched at the branching portion 13a.
  • One of the refrigerants branched at the branching portion 13a flows into the high-stage evaporator 15 and evaporates by absorbing heat from the indoor blast air as in the first embodiment (point c6 ⁇ d6 in FIG. 6). point). Thereby, indoor ventilation air is cooled.
  • the other refrigerant branched at the branching portion 13a flows into the separator-side expansion valve 14b and is decompressed isoenthalpiically (point c6 ⁇ point i6 in FIG. 6).
  • the throttle opening of the separator-side expansion valve 14b is within a range in which the refrigerant pressure in the gas-liquid separator 17 is higher than the refrigerant pressure on the refrigerant outlet side of the high-stage evaporator 15 as in the first embodiment.
  • the refrigerant pressure is adjusted so as to approach the refrigerant pressure on the refrigerant outlet side of the high-stage evaporator 15. Subsequent operations are the same as those in the first embodiment.
  • the same effect as that of the first embodiment can be obtained. That is, the COP of the ejector refrigeration cycle 10 can be improved without causing a decrease in the cooling capacity exhibited by the low-stage evaporator 18.
  • the inlet side of the nozzle portion 16a of the ejector 16 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 17 of the ejector refrigeration cycle 10a.
  • the other refrigerant inlet side of the merging portion 13b is connected to the outlet of the diffuser portion 16d of the ejector 16.
  • the suction port side of the compressor 11 is connected to the refrigerant outlet of the junction 13b.
  • Other configurations are the same as those of the first embodiment.
  • the flow of the refrigerant flowing out of the radiator 12 is branched at the branching portion 13a, and one of the branched refrigerants is connected to the high-stage evaporator via the high-stage side expansion valve 14a as in the first embodiment. 15 and evaporates (b8 point ⁇ c8 point ⁇ d8 point in FIG. 8). Thereby, indoor ventilation air is cooled.
  • the refrigerant that has flowed out of the high-stage evaporator 15 flows into the merging portion 13b and merges the refrigerant that has flowed out of the diffuser portion 16d of the ejector 16 (d8 point ⁇ e8 point, h8 point ⁇ e8 point in FIG. 8).
  • the refrigerant flowing out from the junction 13b is sucked into the compressor 11 and compressed again (point e8 ⁇ point a8 in FIG. 8).
  • the other branched refrigerant is decompressed by the separator-side expansion valve 14b and gas-liquid separated by the gas-liquid separator 17 as in the first embodiment (b8 point ⁇ i8 point in FIG. 8).
  • the throttle opening of the separator-side expansion valve 14b is adjusted so that the COP approaches the maximum value (peak value).
  • the refrigerant that flows into the gas-liquid separator 17 is the refrigerant that has been reduced in an enthalpy manner by the separator-side expansion valve 14b, the degree of dryness increases as the pressure decreases. For this reason, the gas-phase refrigerant flow rate G_gas increases and the liquid-phase refrigerant flow rate G_lq decreases as the pressure of the refrigerant flowing into the gas-liquid separator 17 decreases. Furthermore, the inlet side of the nozzle portion 16 a of the ejector 16 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 17 instead of the ejector refrigeration cycle 10 a.
  • the gas-phase refrigerant flow rate G_gas (that is, the nozzle-side flow rate Gn) is increased to increase the pressure increase amount ⁇ P in the diffuser portion 16d of the ejector 16.
  • the liquid-phase refrigerant flow rate G_lq (that is, the low-stage refrigerant flow rate G_le) decreases, so the low-stage cooling capacity ⁇ h_le ⁇ G_le is It tends to decrease.
  • the COP changes to have a maximum value (peak value) with respect to the change in the pressure of the refrigerant flowing into the gas-liquid separator 17. Therefore, in this embodiment, the throttle opening degree of the separator-side expansion valve 14b is adjusted so that the COP approaches the maximum value (peak value).
  • the refrigerant (n8 point in FIG. 8) flowing out from the low-stage evaporator 18 is sucked from the refrigerant suction port 16c of the ejector 16 (n8 point ⁇ o8 point in FIG. 8).
  • the injected refrigerant and the suction refrigerant are boosted by the diffuser portion 16d and flow into the other refrigerant inlet of the merging portion 13b (f8 point ⁇ g8 point ⁇ h8 point in FIG. 8).
  • point o8 ⁇ g8 ⁇ h8) point o8 ⁇ g8 ⁇ h8.
  • the COP of the ejector refrigeration cycle 10a is reduced without reducing the cooling capacity exhibited by the low-stage evaporator 18 as in the first embodiment. Can be improved.
  • the pressure of the refrigerant depressurized by the separator side expansion valve 14b is the pressure of the refrigerant depressurized by the high stage side expansion valve 14a (point c8 in FIG. 8).
  • the relationship between the two is not limited to this.
  • the pressure of the refrigerant decompressed by the separator-side expansion valve 14b may be equal to or higher than the pressure of the refrigerant decompressed by the high stage side expansion valve 14a (point c8 in FIG. 8).
  • the inlet side of the high stage side expansion valve 14a is connected to the refrigerant outlet of the radiator 12 of the ejector refrigeration cycle 10 of the present embodiment.
  • the refrigerant inlet side of the branch part 13a is connected to the outlet of the high stage side expansion valve 14a.
  • the refrigerant inlet side of the high-stage evaporator 15 is connected to one refrigerant outlet of the branch part 13a.
  • Other configurations are the same as those of the third embodiment.
  • the high-temperature and high-pressure discharged refrigerant (point a10 in FIG. 10) discharged from the compressor 11 is condensed by the radiator 12 (point a10 ⁇ b10 in FIG. 10), as in the third embodiment.
  • the refrigerant flowing out of the radiator 12 flows into the high stage side expansion valve 14a and is decompressed in an enthalpy manner (b10 point ⁇ c10 point in FIG. 10).
  • the throttle opening degree of the high stage side expansion valve 14a is adjusted so that the degree of superheat of the high stage side evaporator 1 outlet side refrigerant (point d10 in FIG. 10) falls within a predetermined range.
  • the flow of the low-pressure refrigerant that has flowed out of the high stage side expansion valve 14a is branched at the branching portion 13a.
  • One refrigerant branched by the branching portion 13a flows into the high-stage evaporator 15, and, as in the third embodiment, absorbs heat from the indoor blast air and evaporates (point c10 ⁇ d10 in FIG. 10). point). Thereby, indoor ventilation air is cooled.
  • the other refrigerant branched at the branching portion 13a flows into the separator-side expansion valve 14b and is decompressed in an enthalpy manner (point c10 ⁇ point i10 in FIG. 10).
  • the throttle opening degree of the separator-side expansion valve 14b is adjusted so that the COP approaches the maximum value (peak value) as in the third embodiment. Subsequent operations are the same as those in the first embodiment.
  • the COP of the ejector refrigeration cycle 10a is reduced without reducing the cooling capacity exhibited by the low-stage evaporator 18 as in the third embodiment. Can be improved.
  • the enthalpy adjustment unit is not limited thereto.
  • the enthalpy adjustment unit may be an internal heat exchanger that reduces the enthalpy of the refrigerant flowing into the low-stage evaporator 18 by exchanging heat between the refrigerant flowing into the low-stage evaporator 18 and a refrigerant having a temperature lower than that. May be adopted.
  • the ejector refrigeration cycle 10 when applied to a vehicle, may be applied to a so-called dual air conditioner system.
  • the dual air conditioner system the front-seat blown air that is blown to the front seat side of the vehicle by the high-stage evaporator 15 is cooled, and the rear-seat blower that is blown to the rear side of the vehicle by the low-stage evaporator 18. Cool the air.
  • the present invention is not limited to vehicles, and may be applied to stationary refrigeration / freezers, showcases, air conditioners, and the like.
  • the low-temperature side cooling target space whose temperature is desired to be lowered is cooled by the low-stage evaporator 18 and cooled in a higher temperature zone than the low-temperature side cooling target space.
  • the target space may be cooled by the high-stage evaporator 15.
  • the components constituting the ejector refrigeration cycle 10 are not limited to those disclosed in the above embodiment.
  • an engine-driven compressor driven by a rotational driving force transmitted from an engine (internal combustion engine) via a pulley, a belt, or the like may be employed.
  • This type of engine-driven compressor includes a variable displacement compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, and a fixed type that adjusts the refrigerant discharge capacity by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch.
  • a capacity type compressor or the like can be employed.
  • the subcool type condenser has a condensing part, a modulator part, and a supercooling part.
  • the condensing unit is a heat exchanging unit that condenses the discharged refrigerant by exchanging heat between the discharged refrigerant discharged from the compressor 11 and the outside air.
  • a modulator part is a gas-liquid separation part which isolate
  • the supercooling unit is a heat exchange unit that supercools the liquid phase refrigerant by exchanging heat between the liquid phase refrigerant flowing out of the modulator unit and the outside air.
  • a temperature type expansion valve may be adopted as the high stage side expansion valve 14a.
  • the temperature type expansion valve has a temperature sensing part and a mechanical mechanism part.
  • the temperature sensing unit has a deformable member (specifically, a diaphragm) that deforms according to the temperature and pressure of the refrigerant on the outlet side of the high-stage evaporator 15.
  • the mechanical mechanism unit changes the throttle opening in conjunction with the deformation of the deformation member of the temperature sensing unit.
  • An expansion valve may be employed.
  • a fixed throttle specifically, an orifice or a capillary tube with a fixed throttle opening may be employed for the other.
  • variable throttle mechanism may be adopted for any one of the high stage side expansion valve 14a, the separator side expansion valve 14b, and the low stage side expansion valve 14c. Further, a fixed throttle may be employed as the remaining expansion valve.
  • the example in which the fixed ejector having the fixed nozzle portion in which the passage cross-sectional area of the throat portion (minimum passage area portion) of the nozzle portion 16a does not change is employed as the ejector 16 has been described.
  • a variable ejector having a variable nozzle part capable of adjusting the passage sectional area of the throat may be used as the ejector 16.
  • the ejector-type refrigeration cycle 10 or 10a including the high-stage evaporator 15 and the low-stage evaporator 18 has been described.
  • an evaporator may be further included.
  • an auxiliary branch portion that further branches the other refrigerant branched by the branch portion 13a, and a bypass passage that connects the auxiliary branch portion and the suction port of the compressor 11 Is provided. And you may arrange
  • the first auxiliary branch portion that branches the flow of the refrigerant depressurized by the high-stage expansion valve 14a, and the first auxiliary branch portion and the suction port of the compressor 11
  • a first bypass passage is provided.
  • An auxiliary high-stage evaporator and an auxiliary ejector are arranged in the first bypass passage.
  • a second auxiliary branch portion for branching the refrigerant flow depressurized by the low-stage side expansion valve 14c and a second bypass passage for connecting the second auxiliary branch portion and the refrigerant suction port of the auxiliary ejector are provided.
  • An auxiliary low-stage evaporator may be disposed in the second bypass passage.
  • R600a is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R1234yf, R410A, R404A, R32, R1234yfxf, R407C, etc. can be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

エジェクタ式冷凍サイクル(10)は、圧縮機(11)と、放熱器(12)と、高段側減圧部(14a)と、高段側蒸発器(15)と、低段側減圧部(14c)と、低段側蒸発器(18)と、分岐部(13a)と、エジェクタ(16)と、を備える。分岐部(13a)は、放熱器(12)の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を高段側減圧部(14a)側へ流出させるとともに、分岐された他方の冷媒を低段側減圧部(14c)側へ流出させる。エジェクタ(16)は、低段側蒸発器(18)から流出した冷媒を冷媒吸引口(16c)から吸引し、噴射冷媒と吸引冷媒との混合冷媒を昇圧させて圧縮機(11)の吸入口側へ流出させる昇圧部(16a)を有する。さらに、エジェクタ式冷凍サイクル(10)は、低段側蒸発器(18)へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備える。

Description

エジェクタ式冷凍サイクル 関連出願の相互参照
 本出願は、2018年4月27日に出願された日本特許出願番号2018-87044号に基づくもので、ここにその記載内容を援用する。
 本開示は、異なる温度帯で冷媒を蒸発させる複数の蒸発器を備えるエジェクタ式冷凍サイクルに関する。
 従来、エジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。
 この種のエジェクタ式冷凍サイクルでは、エジェクタのノズル部から噴射された高速度の噴射冷媒の吸引作用によって蒸発器から流出した冷媒をエジェクタの冷媒吸引口から吸引する。そして、エジェクタのディフューザ部(昇圧部)にて噴射冷媒と吸引冷媒との混合冷媒を昇圧させて、昇圧された混合冷媒を圧縮機へ吸入させる。
 これにより、エジェクタ式冷凍サイクルでは、蒸発器における冷媒蒸発圧力と圧縮機の吸入冷媒圧力が略同等となる通常の冷凍サイクル装置よりも、圧縮機の消費動力を低減させてサイクルの成績係数(COP)を向上させることができる。
 さらに、特許文献1には、異なる温度帯で冷媒を蒸発させる複数の蒸発器を備えるエジェクタ式冷凍サイクルが開示されている。
 より具体的には、特許文献1のエジェクタ式冷凍サイクルは、凝縮器から流出した冷媒の流れを分岐する分岐部を備えている。そして、分岐部にて分岐された一方の冷媒を高段側減圧部にて減圧させて高段側蒸発器へ流入させる。さらに、高段側蒸発器から流出した冷媒をエジェクタのノズル部へ流入させる。また、分岐部にて分岐された他方の冷媒を低段側減圧部にて減圧させて低段側蒸発器へ流入させる。さらに、低段側蒸発器から流出した冷媒をエジェクタの冷媒吸引口から吸引させるサイクル構成になっている。
 これにより、特許文献1のエジェクタ式冷凍サイクルでは、高段側蒸発器における冷媒蒸発温度と低段側蒸発器における冷媒蒸発温度とを異なる温度帯としている。
特開2012-149790号公報
 ところで、特許文献1のエジェクタ式冷凍サイクルにおいて、高段側蒸発器にて発揮される冷却能力および低段側蒸発器にて発揮される冷却能力を調整するためには、流量比G_le/G_heを調整すればよい。流量比G_le/G_heは、高段側蒸発器へ流入させる冷媒の流量である高段側冷媒流量G_heに対する低段側蒸発器へ流入させる冷媒の流量である低段側冷媒流量G_leの比である。
 ここで、これらの冷媒の流量は、いずれも質量流量である。このことは、他の冷媒の流量についても同様である。また、蒸発器にて発揮される冷却能力とは、蒸発器の出口側冷媒のエンタルピから蒸発器の入口側冷媒のエンタルピを減算したエンタルピ差Δhと蒸発器を流通する冷媒の流量Gとの積算値Δh×Gによって定義することができる。なお、蒸発器を流通する冷媒の流量は、蒸発器へ流入させる冷媒の流量と等しい。
 つまり、特許文献1のエジェクタ式冷凍サイクルでは、流量比G_le/G_heを大きくするに伴って、高段側蒸発器にて発揮される冷却能力を減少させることができるとともに、低段側蒸発器にて発揮される冷却能力を増加させることができる。
 逆に、特許文献1のエジェクタ式冷凍サイクルでは、流量比G_le/G_heを小さくするに伴って、高段側蒸発器にて発揮される冷却能力を増加させることができるとともに、低段側蒸発器にて発揮される冷却能力を減少させることができる。
 また、一般的なエジェクタでは、ノズル部から噴射された噴射冷媒の吸引作用によって冷媒を吸引することで、ノズル部にて冷媒が減圧される際の速度エネルギの損失を回収している。そして、ディフューザ部にて噴射冷媒と吸引冷媒との混合冷媒の速度エネルギを圧力エネルギに変換することによって、混合冷媒を昇圧させている。
 従って、特許文献1のエジェクタ式冷凍サイクルでは、エジェクタのノズル部へ流入させる冷媒の流量であるノズル部側流量Gnに対するエジェクタの冷媒吸引口へ吸引させる冷媒の流量である吸引側流量Geの流量比Ge/Gnを小さくするに伴って、エジェクタ式冷凍サイクルのCOP向上効果を得やすくなる。
 その理由は、流量比Ge/Gnを小さくするに伴って、ノズル部へ流入する冷媒流量を増加させて、噴射冷媒の流速を増速させることができるからである。これにより、混合冷媒の速度エネルギを増加させて、ディフューザ部における昇圧量ΔPを増加させることができる。その結果、流量比Ge/Gnを小さくするに伴って、エジェクタ式冷凍サイクルのCOP向上効果を得やすくなる。
 さらに、特許文献1のエジェクタ式冷凍サイクルのサイクル構成では、高段側冷媒流量G_heがノズル部側流量Gnと等しくなり、低段側冷媒流量G_leが吸引側流量Geと等しくなる。このため、特許文献1のエジェクタ式冷凍サイクルでは、COPを向上させるために、流量比Ge/Gn(すなわち、流量比G_le/G_he)を小さくすると、低段側蒸発器にて発揮される冷却能力が減少してしまう。
 本開示は、上記点に鑑み、低段側蒸発器にて発揮される冷却能力の減少を招くことなく、成績係数を向上することのできるエジェクタ式冷凍サイクルを提供することを目的とする。
 本開示の第1の態様のエジェクタ式冷凍サイクルは、圧縮機と、放熱器と、高段側減圧部と、高段側蒸発器と、低段側減圧部と、低段側蒸発器と、分岐部と、エジェクタと、を備える。
 圧縮機は、冷媒を圧縮して吐出する。放熱器は、圧縮機から吐出された冷媒を放熱させる。高段側減圧部は、放熱器から流出した冷媒を減圧させる。高段側蒸発器は、高段側減圧部にて減圧された冷媒を蒸発させる。低段側減圧部は、放熱器から流出した冷媒を減圧させる。低段側蒸発器は、低段側減圧部にて減圧された冷媒を蒸発させる。分岐部は、放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を低段側蒸発器の冷媒入口側へ流出させる。エジェクタは、ノズル部から噴射される高速度の噴射冷媒の吸引作用によって、低段側蒸発器から流出した冷媒を冷媒吸引口から吸引する。エジェクタは、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて圧縮機の吸入口側へ流出させる昇圧部を有する。
 さらに、エジェクタ式冷凍サイクルは、エンタルピ調整部を備える。エンタルピ調整部は、低段側蒸発器へ流入する冷媒のエンタルピを低下させる。
 これによれば、エンタルピ調整部を備えているので、低段側蒸発器の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算した低段側エンタルピ差Δh_leを増大させることができる。
 従って、成績係数を向上させるために、高段側冷媒流量G_heに対する低段側冷媒流量G_leの流量比G_le/G_heを小さくしても、低段側蒸発器にて発揮される低段側冷却能力Δh_le×G_leの減少を抑制することができる。高段側冷媒流量G_heは、分岐部から高段側蒸発器へ流入させる冷媒の流量である。低段側冷媒流量G_leは、分岐部から低段側蒸発器へ流入させる冷媒の流量である。
 すなわち、本開示の第1の態様のエジェクタ式冷凍サイクルによれば、低段側冷却能力Δh_le×G_leの減少を招くことなく、成績係数を向上することのできるエジェクタ式冷凍サイクルを提供することができる。
第1実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第1実施形態のエジェクタ式冷凍サイクルを作動させた際の冷媒の状態を示すモリエル線図である。 第1実施形態のエジェクタ式冷凍サイクルにおける流量比の低減効果を示すグラフである。 第1実施形態のエジェクタ式冷凍サイクルにおけるエジェクタ効率ηeと成績係数COPとの関係を示すグラフである。 第2実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第2実施形態のエジェクタ式冷凍サイクルを作動させた際の冷媒の状態を示すモリエル線図である。 第3実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第3実施形態のエジェクタ式冷凍サイクルを作動させた際の冷媒の状態を示すモリエル線図である。 第4実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第4実施形態のエジェクタ式冷凍サイクルを作動させた際の冷媒の状態を示すモリエル線図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 図1~図4を用いて、本開示の第1実施形態について説明する。本実施形態のエジェクタ式冷凍サイクル10は、冷蔵車両に搭載された車両用冷凍サイクル装置に適用されている。車両用冷凍サイクル装置は、冷蔵車両において、車室内の空調を行うとともに、車両の荷台に配置された冷蔵庫内を冷却する。
 エジェクタ式冷凍サイクル10は、車両用冷凍サイクル装置において、車室内へ送風される室内用送風空気を冷却するとともに、冷蔵庫内へ循環送風される庫内用送風空気を冷却する。
 従って、本実施形態では、車室内空間および冷蔵庫内空間の双方が、エジェクタ式冷凍サイクル10の冷却対象空間となる。さらに、本実施形態では、車室内と冷蔵庫内の容積が略同等となっており、それぞれの冷却対象空間を冷却するために必要な冷却能力も同等となっている。
 ここで、本実施形態における冷却能力は、エジェクタ式冷凍サイクル10が備える蒸発器の出口側冷媒のエンタルピから蒸発器の入口側冷媒のエンタルピを減算したエンタルピ差Δhと、蒸発器を流通する冷媒流量Gとの積算値Δh×Gによって定義される。
 エジェクタ式冷凍サイクル10では、冷媒として自然冷媒(具体的には、R600a)を採用しており、高圧側の冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 図1の全体構成図に示すエジェクタ式冷凍サイクル10において、圧縮機11は、冷媒を吸入し、圧縮して吐出する。圧縮機11は、ハウジングの内部に、固定容量型の圧縮機構および圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機である。圧縮機11は、後述する制御装置50から出力される制御信号によって、その作動が制御される。
 圧縮機11の吐出口には、放熱器12の冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高温高圧の吐出冷媒と冷却用送風機12aにより送風される車室外空気(外気)とを熱交換させて、高圧冷媒を放熱させて凝縮させる凝縮用熱交換器である。冷却用送風機12aは、制御装置50から出力される制御電圧によって回転数(すなわち、送風空気量)が制御される電動式送風機である。
 放熱器12の冷媒出口には、分岐部13aの冷媒流入口側が接続されている。分岐部13aは、放熱器12の下流側の冷媒の流れを分岐する。分岐部13aは、互いに連通する3つの冷媒流入出口を有する三方継手構造のもので、3つの冷媒流入出口のうち1つを冷媒流入口とし、残りの2つを冷媒流出口としている。
 分岐部13aの一方の冷媒流出口には、高段側膨張弁14aの入口側が接続されている。また、分岐部13aの他方の冷媒流出口には、分離器側膨張弁14bの入口側が接続されている。
 高段側膨張弁14aは、放熱器12にて放熱した冷媒のうち、分岐部13aにて分岐された一方の冷媒を減圧させる高段側減圧部である。さらに、高段側膨張弁14aは、その下流側に流出させる冷媒の流量を調整する高段側流量調整部である。
 より具体的には、高段側膨張弁14aは、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータ(具体的には、ステッピングモータ)とを有して構成される電気式の可変絞り機構である。高段側膨張弁14aは、制御装置50から出力される制御信号によって、その作動が制御される。
 分離器側膨張弁14bは、分岐部13aにて分岐された他方の冷媒を気液二相状態となるように減圧させる分離器側減圧部である。分離器側膨張弁14bは、その下流側へ流出させる冷媒の流量を調整する分離器側流量調整部である。分離器側膨張弁14bの基本的構成は、高段側膨張弁14aと同様である。
 高段側膨張弁14aの出口には、高段側蒸発器15の冷媒入口側が接続されている。高段側蒸発器15は、高段側膨張弁14aにて減圧された低圧冷媒と室内用送風機15aから車室内へ送風される室内用送風空気とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。室内用送風機15aは、制御装置50から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。
 高段側蒸発器15の冷媒出口には、合流部13bの一方の冷媒流入口側が接続されている。合流部13bは、高段側蒸発器15から流出した冷媒の流れと後述する気液分離器17から流出した気相冷媒の流れとを合流させる。合流部13bの基本的構成は、分岐部13aと同様である。合流部13bは、3つの冷媒流入出口のうち2つを冷媒流入口とし、残りの1つを冷媒流出口としている。
 合流部13bの冷媒流出口には、エジェクタ16のノズル部16aの入口側が接続されている。エジェクタ16は、高段側蒸発器15から流出した冷媒を、さらに減圧させて噴射するノズル部16aを有している。従って、エジェクタ16は冷媒減圧部である。さらに、エジェクタ16は、ノズル部16aの冷媒噴射口から噴射された噴射冷媒の吸引作用によって、外部から冷媒を吸引して循環させる冷媒循環部である。
 これに加えて、エジェクタ16は、ノズル部16aから噴射された噴射冷媒と冷媒吸引口16cから吸引された吸引冷媒との混合冷媒の運動エネルギを圧力エネルギに変換し、混合冷媒を昇圧させるエネルギ変換部である。
 エジェクタ16は、ノズル部16aおよびボデー部16bを有している。ノズル部16aは、冷媒の流れ方向に向かって徐々に先細る略円筒状の金属(本実施形態では、ステンレス合金)で形成されている。ノズル部16aは、内部に形成された冷媒通路にて冷媒を等エントロピ的に減圧させる。
 ノズル部16aの内部に形成された冷媒通路には、通路断面積を最も縮小させる喉部、および喉部から冷媒を噴射する冷媒噴射口へ向かうに伴って通路断面積が徐々に拡大する末広部が形成されている。つまり、本実施形態のノズル部16aは、ラバールノズルとして構成されている。
 さらに、本実施形態では、ノズル部16aとして、エジェクタ式冷凍サイクル10の通常運転時に、冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、ノズル部16aを先細ノズルで構成してもよい。
 ボデー部16bは、略円筒状の金属(本実施形態では、アルミニウム)で形成されている。ボデー部16bは、内部にノズル部16aを支持固定する固定部材として機能するとともに、内部に冷媒を流通させる冷媒通路を形成する。より具体的には、ノズル部16aは、ボデー部16bの長手方向一端側の内部に収容されるように圧入にて固定されている。ボデー部16bは、樹脂にて形成されていてもよい。
 ボデー部16bの外周面のうち、ノズル部16aの外周側に対応する部位には、その内外を貫通してノズル部16aの冷媒噴射口と連通するように設けられた冷媒吸引口16cが形成されている。冷媒吸引口16cは、ノズル部16aから噴射される噴射冷媒の吸引作用によって、後述する低段側蒸発器18から流出した冷媒をエジェクタ16の内部へ吸引する貫通穴である。
 ボデー部16bの内部には、吸引通路16eおよびディフューザ部16dが形成されている。吸引通路16eは、冷媒吸引口16cから吸引された吸引冷媒をノズル部16aの冷媒噴射口側へ導く冷媒通路である。ディフューザ部16dは、吸引冷媒と噴射冷媒とを混合させて昇圧させる昇圧部として機能する冷媒通路である。
 より詳細には、吸引通路16eは、ノズル部16aの先細り形状の先端部周辺の外周側とボデー部16bの内周側との間の断面円環状の空間によって形成されている。吸引通路16eの通路断面積は、冷媒流れ下流側へ向かうに伴って縮小している。これにより、吸引通路16eを流通する吸引冷媒の流速を増速させて、ディフューザ部16dにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(いわゆる、混合損失)を減少させている。
 ディフューザ部16dは、吸引通路16eの出口に連続するように配置された円錐台状に広がる冷媒通路である。ディフューザ部16dでは、通路断面積が冷媒流れ下流側に向かうに伴って拡大している。ディフューザ部16dは、このような通路形状によって、混合冷媒の運動エネルギを圧力エネルギに変換する。
 本実施形態では、ディフューザ部16dを形成するボデー部16bの内周壁面の軸方向断面形状が、複数の曲線を組み合わせた形状に形成されている。そして、ディフューザ部16dの通路断面積の広がり度合が冷媒流れ方向に向かうに伴って大きくなった後に再び小さくなっていることで、冷媒を等エントロピ的に昇圧させることができる。ディフューザ部16dの出口には、圧縮機11の吸入口側が接続されている。
 また、分離器側膨張弁14bの出口には、気液分離器17の入口側が接続されている。気液分離器17は、分離器側膨張弁14bにて減圧された冷媒の気液を分離する気液分離部である。このような気液分離部としては、遠心力の作用によって冷媒の気液を分離する遠心分離方式のものや、衝突板に衝突させることによって流速を低下させた冷媒の気液を重力の作用によって分離する衝突板方式のもの等を採用することができる。
 気液分離器17の気相冷媒出口は、合流部13bの他方の冷媒流入口側が接続されている。換言すると、気液分離器17の気相冷媒出口は、エジェクタ16のノズル部16aの入口側に接続されている。また、気液分離器17の液相冷媒出口は、低段側膨張弁14cの入口側に接続されている。
 低段側膨張弁14cは、放熱器12にて放熱した冷媒のうち、気液分離器17にて分離された液相冷媒を減圧させる低段側減圧部である。さらに、低段側膨張弁14cは、その下流側に流出させる冷媒の流量を調整する低段側流量調整部である。低段側膨張弁14cの基本的構成は、高段側膨張弁14aおよび分離器側膨張弁14bと同様である。
 低段側膨張弁14cの出口には、低段側蒸発器18の冷媒入口側が接続されている。低段側蒸発器18は、低段側膨張弁14cにて減圧された低圧冷媒と庫内用送風機18aから冷蔵庫内を循環送風される庫内用送風空気とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。庫内用送風機18aは、制御装置50から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。
 低段側蒸発器18の冷媒出口には、前述の如く、エジェクタ16の冷媒吸引口16c側が接続されている。
 以上の説明から明らかなように、分岐部13aは、放熱器12の下流側の冷媒の流れを分岐している。そして、分岐部13aにて分岐された一方の冷媒を、高段側膨張弁14aを介して高段側蒸発器15の冷媒入口側へ流出させている。さらに、分岐部13aにて分岐された他方の冷媒を、少なくとも低段側膨張弁14cを介して低段側蒸発器18の冷媒入口側へ流出させている。
 また、分離器側膨張弁14bは、分岐部13aにて分岐された他方の冷媒を気液二相冷媒となるように減圧させる。従って、気液分離器17では、冷媒の気液を確実に分離することができる。そして、気液分離器17の液相冷媒流出口から流出する冷媒のエンタルピを、気液分離器17へ流入する冷媒のエンタルピよりも確実に低下させることができる。
 換言すると、気液分離器17の液相冷媒流出口から流出して低段側膨張弁14cを介して低段側蒸発器18へ流入する冷媒のエンタルピを、分岐部13aにて分岐される冷媒のエンタルピよりも低下させることができる。従って、本実施形態の分離器側膨張弁14bおよび気液分離器17は、低段側蒸発器18へ流入する冷媒のエンタルピを低下させるエンタルピ調整部を構成している。
 また、エジェクタ式冷凍サイクル10において、圧縮機11から吐出された冷媒の流量を、吐出流量Gaと定義する。高段側蒸発器15へ流入させる冷媒の流量を、高段側冷媒流量G_heと定義する。低段側蒸発器18へ流入させる冷媒の流量を、低段側冷媒流量G_leと定義する。エジェクタ16のノズル部16aへ流入させる冷媒の流量を、ノズル側流量Gnと定義する。エジェクタ16の冷媒吸引口16cへ吸引させる冷媒の流量を、吸引側流量Geと定義する。気液分離器17の気相冷媒出口から流出する冷媒の流量を、気相冷媒流量G_gasと定義する。気液分離器17の液相冷媒出口から流出する冷媒の流量を、液相冷媒流量G_lqと定義する。これらの冷媒の流量は、いずれも質量流量である。
 エジェクタ式冷凍サイクル10では、各流量について、以下数式F1~F4に示す関係が成立している。
Ga=G_he+G_gas+G_lq …(F1)
Gn=G_he+G_gas …(F2)
Ge=G_lq …(F3)
Ge=G_le …(F4)
 つまり、吐出流量Gは、高段側冷媒流量G_he、気相冷媒流量G_gasおよび液相冷媒流量G_lqの合計値と等しい。ノズル側流量Gnは、高段側冷媒流量G_heおよび気相冷媒流量G_gasの合計値と等しい。吸引側流量Geは、液相冷媒流量G_lqと等しい。さらに、吸引側流量Geは、低段側冷媒流量G_leと等しい。
 次に、本実施形態の電気制御部について説明する。制御装置50は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置50は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、12a、14a~14c、15a、18a等の作動を制御する。
 制御装置50の入力側には、内気温センサ、外気温センサ、日射センサ、高段側蒸発器温度センサ、低段側蒸発器温度センサといった制御用のセンサ群51が接続されている。そして、制御装置50には、制御用のセンサ群51の検出信号が入力される。
 内気温センサは、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサは、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサは、車室内へ照射される日射量Asを検出する日射量検出部である。高段側蒸発器温度センサは、高段側蒸発器15における冷媒蒸発温度(高段側蒸発器温度)Te_heを検出する蒸発器温度検出部である。低段側蒸発器温度センサは、低段側蒸発器18における高段側蒸発温度(低段側蒸発器温度)Te_leを検出する低段側蒸発器温度検出部である。
 さらに、制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル52が接続されている。そして、操作パネル52に設けられた各種操作スイッチからの操作信号が制御装置50へ入力される。操作パネル52に設けられた各種操作スイッチとしては、車両用冷凍サイクル装置の作動あるいは停止を要求する作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、庫内温度を設定する庫内温度設定スイッチ等が設けられている。
 ここで、本実施形態の制御装置50は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成された装置である。そして、制御装置50のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。
 例えば、本実施形態では、圧縮機11の作動を制御する構成が圧縮機制御部を構成している。例えば、高段側膨張弁14aおよび低段側膨張弁14cの作動を制御する構成が、高段側冷媒流量G_heと低段側冷媒流量G_leとの流量比、あるいは、ノズル側流量Gnと吸引側流量Geとの流量比を制御する流量比制御部を構成している。
 次に、図2のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。まず、操作パネル52の作動スイッチが投入(ON)されると、制御装置50が各種制御対象機器を作動させる。これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。
 圧縮機11から吐出された高温高圧の吐出冷媒(図2のa2点)は、放熱器12へ流入する。放熱器12へ流入した冷媒は、冷却用送風機12aから送風された外気と熱交換して、放熱して凝縮する(図2のa2点→b2点)。放熱器12から流出した冷媒の流れは、分岐部13aにて分岐される。
 分岐部13aにて分岐された一方の冷媒は、高段側膨張弁14aへ流入して等エンタルピ的に減圧される(図2のb2点→c2点)。この際、高段側膨張弁14aの絞り開度は、高段側蒸発器15出口側冷媒(図2のd2点)の過熱度が予め定めた所定範囲内となるように調整される。
 高段側膨張弁14aにて減圧された低圧冷媒は、高段側蒸発器15へ流入する。高段側蒸発器15へ流入した低圧冷媒は、室内用送風機15aから送風された室内用送風空気から吸熱して蒸発する(図2のc2点→d2点)。これにより、室内用送風空気が冷却される。ここで、図2のd2点とc2点とのエンタルピ差は、高段側蒸発器15の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算した高段側エンタルピ差Δh_heである。
 高段側蒸発器15から流出した過熱度を有する気相冷媒(図2のd2点)は、合流部13bへ流入して、気液分離器17にて分離された気相冷媒(図2のj2点)と合流する(図2のd2点→e2点、j2点→e2点)。合流部13bから流出した気相冷媒(図2のe2点)は、エジェクタ16のノズル部16aへ流入する。
 エジェクタ16のノズル部16aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図2のe2点→f2点)。そして、この噴射冷媒の吸引作用によって、低段側蒸発器18から流出した冷媒(図2のn2点)が、エジェクタ16の冷媒吸引口16cから吸引される。
 冷媒吸引口16cから吸引された冷媒は、エジェクタ16の内部に形成された吸引通路16eを流通する際に、等エントロピ的に減圧されて僅かに圧力を低下させる(図2のn2点→o2点)。ノズル部16aから噴射された噴射冷媒および冷媒吸引口16cから吸引された吸引冷媒は、エジェクタ16のディフューザ部16dへ流入する(図2のf2→g2点、o2点→g2点)。
 ディフューザ部16dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する(図2のg2点→h2点)。ディフューザ部16dから流出した冷媒は、圧縮機11へ吸入されて再び圧縮される(図2のh2点→a2点)。
 一方、分岐部13aにて分岐された他方の冷媒は、分離器側膨張弁14bへ流入して等エンタルピ的に減圧される(図2のb2点→i2点)。この際、分離器側膨張弁14bの絞り開度は、気液分離器17内の冷媒圧力が高段側蒸発器15の冷媒出口側の冷媒圧力よりも高い範囲で、高段側蒸発器15の冷媒出口側の冷媒圧力に近づくように調整される。
 このため、本実施形態の分離器側膨張弁14bにおける冷媒の減圧量は、高段側膨張弁14aにおける冷媒の減圧量と冷媒が高段側蒸発器15を流通する際に生じる圧力損失による減圧量との合計値に近づく。
 分離器側膨張弁14bにて減圧された冷媒は、気液二相冷媒となって気液分離器17へ流入する。気液分離器17へ流入した冷媒は、気相冷媒と液相冷媒に分離される(図2のi2点→j2点、i2点→k2点)。気液分離器17にて分離された気相冷媒(図2のj2点)は、前述の如く、合流部13bへ流入して、高段側蒸発器15から流出した過熱度を有する気相冷媒(図2のd2点)と合流する。
 気液分離器17にて分離された液相冷媒(図2のk2点)は、低段側膨張弁14cへ流入して等エンタルピ的に減圧される(図2のk2点→m2点)。この際、低段側膨張弁14cの絞り開度は、低段側蒸発器18における冷媒蒸発温度が庫内温度設定スイッチによって設定された目標庫内温度に近づくように調整される。
 低段側膨張弁14cにて減圧された低圧冷媒は、低段側蒸発器18へ流入する。低段側蒸発器18へ流入した低圧冷媒は、庫内用送風機18aから循環送風された庫内用送風空気から吸熱して蒸発する(図2のm2点→n2点)。これにより、庫内用送風空気が冷却される。ここで、図2のn2点とm2点とのエンタルピ差は、低段側蒸発器18の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算した低段側エンタルピ差Δh_leである。
 低段側蒸発器18から流出した冷媒は、前述の如く、エジェクタ16の冷媒吸引口16cから吸引される(図2のn2点→o2点→g2点)。
 本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動するので、車室内へ送風される室内用送風空気、および冷蔵庫内へ循環送風される庫内用送風空気を冷却することができる。この際、低段側蒸発器18の冷媒蒸発圧力(すなわち、冷媒蒸発温度)が、高段側蒸発器15の冷媒蒸発圧力(すなわち、冷媒蒸発温度)よりも低くなるので、車室内および冷蔵庫内を異なる温度帯で冷却することができる。
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタ16のディフューザ部16dにて昇圧された冷媒(図2のh2点)を圧縮機11に吸入させている。従って、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
 ところで、ディフューザ部16dにおける昇圧量ΔPを増加させるためには、ノズル部側流量Gnに対する吸引側流量Geの流量比Ge/Gnを小さくすればよい。その理由は、流量比Ge/Gnを小さくするに伴って、ノズル部16aへ流入する冷媒流量を増加させて、噴射冷媒の流速を増速させることができるからである。従って、エジェクタ式冷凍サイクル10では、流量比Ge/Gnを小さくするに伴って、COPを向上させやすい。
 ところが、前述の数式F1、F2から明らかなように、流量比Ge/Gnを小さくすることは、流量比G_le/(G_he+G_gas)を小さくすることと同義である。
 このため、従って、COPを向上させるために、流量比Ge/Gnを小さくすると、低段側蒸発器18へ流入する冷媒の低段側冷媒流量G_leが減少してしまいやすい。つまり、流量比Ge/Gnを小さくすると、低段側蒸発器にて発揮される低段側冷却能力Δh_le×G_leが減少してしまうおそれがある。
 さらに、本実施形態の車両用冷凍サイクル装置では、前述の如く、車室内を冷却するために必要な冷却能力と冷蔵庫内を冷却するために必要な冷却能力が同等となる。従って、低段側冷却能力Δh_le×G_leを、高段側蒸発器にて発揮される高段側冷却能力Δh_he×G_heに近づける必要がある。
 これに対して、本実施形態のエジェクタ式冷凍サイクル10によれば、分離器側膨張弁14bおよび気液分離器17によって構成されるエンタルピ調整部を備えている。従って、低段側蒸発器18の出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算した低段側エンタルピ差Δh_leを増大させることができる。
 より具体的には、従来技術のエンタルピ調整部を備えていないエジェクタ式冷凍サイクル(以下、比較用サイクルと記載する。)の低段側蒸発器におけるエンタルピ差よりも、図2の+Δhに相当する分のエンタルピ差を増大させることができる。
 従って、COPを向上させるために、流量比Ge/Gnを小さくして、低段側冷媒流量G_leが減少してしまっても、低段側冷却能力Δh_le×G_leが減少してしまうことを抑制することができる。換言すると、流量比Ge/Gnを1に近づけなくても低段側冷却能力Δh_le×G_leを高段側冷却能力Δh_he×G_heに近づけることができる。
 本開示の発明者らの検討によれば、図3に示すように、本実施形態のエジェクタ式冷凍サイクル10では、流量比Ge/Gnを0.791とすれば、比較用サイクルにて流量比Ge/Gnを1としたときと同様に、低段側冷却能力Δh_le×G_leと高段側冷却能力Δh_he×G_heとを近づけることができると確認されている。
 また、数式F2に示すように、ノズル部側流量Gnが高段側冷媒流量G_heと気相冷媒流量G_gasとの合計値となる。従って、本実施形態のエジェクタ式冷凍サイクル10では、比較用サイクルのノズル部側流量よりも、ノズル部側流量Gnを気相冷媒流量G_gasの分だけ増加させることができる。
 その結果、流量比G_le/(G_he+G_gas)を小さくすることができ、より一層、ディフューザ部16dにおける昇圧量ΔPを増加させて、COPを向上させることができる。
 ここで、本開示の発明者らの検討によれば、図4に示すように、本実施形態のエジェクタ式冷凍サイクル10では、流量比Ge/Gnを1とし、エジェクタ効率ηeが0.5となるエジェクタ16を採用した際に、比較用サイクルよりも3%程度のCOPの向上が図れることが確認されている。エジェクタ効率ηeは、エジェクタのエネルギ変換効率であって、エジェクタ式冷凍サイクル10の運転条件やエジェクタ16の寸法諸元等によって決定される値である。
 すなわち、本実施形態のエジェクタ式冷凍サイクル10によれば、低段側蒸発器18にて発揮される冷却能力の減少を招くことなく、COPを向上させることができる。
 また、本実施形態のエジェクタ式冷凍サイクル10では、分離器側膨張弁14bおよび気液分離器17によって、エンタルピ調整部を構成している。さらに、分岐部13aの一方の冷媒流出口に、高段側膨張弁14aの入口側を接続し、高段側蒸発器15の冷媒出口に、ノズル部16aの入口側を接続している。
 分岐部13aの他方の冷媒流出口に、分離器側膨張弁14bの入口側を接続している。気液分離器17の気相冷媒出口に、ノズル部16aの入口側を接続している。気液分離器17の液相冷媒出口に、低段側膨張弁14cの入口側を接続している。従って、簡素なサイクル構成で、上述したCOP向上効果を得ることができる。
 また、本実施形態の分離器側膨張弁14bの絞り開度は、気液分離器17内の冷媒の圧力が高段側蒸発器15の冷媒出口側の冷媒圧力に近づくように調整される。
 これによれば、合流部13bから気液分離器17側への冷媒の逆流等を招くことなく、合流部13bにて、高段側蒸発器15から流出した過熱度を有する気相冷媒の流れと気液分離器17の気相冷媒出口から流出した気相冷媒の流れとを適切に混合させてノズル部16aへ供給することができる。
 (第2実施形態)
 本実施形態では、第1実施形態に対して、図5の全体構成図に示すように、エジェクタ式冷凍サイクル10のサイクル構成を変更した例を説明する。なお、図5では、図示の明確化のため、制御装置50、制御用のセンサ群51、操作パネル52等を省略している。また、図5では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
 本実施形態のエジェクタ式冷凍サイクル10の放熱器12の冷媒出口には、高段側膨張弁14aの入口側が接続されている。高段側膨張弁14aの出口には、分岐部13aの冷媒流入口側が接続されている。分岐部13aの一方の冷媒流出口には、高段側蒸発器15の冷媒入口側が接続されている。その他の構成は、第1実施形態と同様である。
 次に、図6のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。なお、図6では、第1実施形態で説明した図2のモリエル線図に対してサイクル構成上同等の箇所の冷媒の状態を、図2と同一の符号(アルファベット)で示し、添字(数字)のみを図番に合わせて変更している。このことは、以下で説明する他のモリエル線図においても同様である。
 圧縮機11から吐出された高温高圧の吐出冷媒(図6のa6点)は、第1実施形態と同様に、放熱器12へ流入して凝縮する(図6のa6点→b6点)。放熱器12から流出した冷媒は、高段側膨張弁14aへ流入して等エンタルピ的に減圧される(図2のb6点→c6点)。この際、高段側膨張弁14aの絞り開度は、高段側蒸発器15出口側冷媒(図6のd6点)の過熱度が予め定めた所定範囲内となるように調整される。
 高段側膨張弁14aから流出した低圧冷媒の流れは、分岐部13aにて分岐される。分岐部13aにて分岐された一方の冷媒は、高段側蒸発器15へ流入して、第1実施形態と同様に、室内用送風空気から吸熱して蒸発する(図6のc6点→d6点)。これにより、室内送風空気が冷却される。
 分岐部13aにて分岐された他方の冷媒は、分離器側膨張弁14bへ流入して等エンタルピ的に減圧される(図6のc6点→i6点)。この際、分離器側膨張弁14bの絞り開度は、第1実施形態と同様に、気液分離器17内の冷媒圧力が高段側蒸発器15の冷媒出口側の冷媒圧力よりも高い範囲で、高段側蒸発器15の冷媒出口側の冷媒圧力に近づくように調整される。以降の作動は、第1実施形態と同様である。
 従って、本実施形態のエジェクタ式冷凍サイクル10においても、第1実施形態と同様の効果を得ることができる。すなわち、低段側蒸発器18にて発揮される冷却能力の減少を招くことなく、エジェクタ式冷凍サイクル10のCOPを向上させることができる。
 (第3実施形態)
 本実施形態では、第1実施形態に対して、図7の全体構成図に示すように、サイクル構成を変更したエジェクタ式冷凍サイクル10aについて説明する。
 具体的には、エジェクタ式冷凍サイクル10aの気液分離器17の気相冷媒出口には、エジェクタ16のノズル部16aの入口側が接続されている。エジェクタ16のディフューザ部16dの出口には、合流部13bの他方の冷媒流入口側が接続されている。合流部13bの冷媒流出口には、圧縮機11の吸入口側が接続されている。その他の構成は、第1実施形態と同様である。
 従って、本実施形態のエジェクタ式冷凍サイクル10aでは、各流量について、第1実施形態で説明した、数式F1、F3、F4は成立するものの、数式F2は成立しない。そして、数式F2に代えて、以下数式F5に示す関係が成立している。
Gn=G_gas …(F5)
 つまり、ノズル側流量Gnは、気相冷媒流量G_gasと等しい。
 次に、図8のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル10aの作動について説明する。
 圧縮機11から吐出された高温高圧の吐出冷媒(図8のa8点)は、第1実施形態と同様に、放熱器12へ流入して凝縮する(図8のa8点→b8点)。放熱器12から流出した冷媒の流れは、分岐部13aにて分岐され、分岐された一方の冷媒は、第1実施形態と同様に、高段側膨張弁14aを介して、高段側蒸発器15へ流入して蒸発する(図8のb8点→c8点→d8点)。これにより、室内送風空気が冷却される。
 高段側蒸発器15から流出した冷媒は、合流部13bへ流入して、エジェクタ16のディフューザ部16dから流出した冷媒を合流する(図8のd8点→e8点、h8点→e8点)。合流部13bから流出した冷媒は、圧縮機11へ吸入されて再び圧縮される(図8のe8点→a8点)。
 また、分岐された他方の冷媒は、第1実施形態と同様に、分離器側膨張弁14bにて減圧され、気液分離器17にて気液分離される(図8のb8点→i8点→j8点、b8点→i8点→k8点)。この際、分離器側膨張弁14bの絞り開度は、COPが極大値(ピーク値)に近づくように調整される。
 ここで、気液分離器17へ流入する冷媒は、分離器側膨張弁14bにて等エンタルピ的に減圧された冷媒なので、圧力の低下に伴って乾き度が高くなる。このため、気液分離器17へ流入する冷媒の圧力の低下に伴って、気相冷媒流量G_gasが増加し、液相冷媒流量G_lqが減少する。さらに、エジェクタ式冷凍サイクル10aではく、気液分離器17の気相冷媒出口に、エジェクタ16のノズル部16aの入口側が接続されている。
 従って、気液分離器17へ流入する冷媒の圧力の低下に伴って、気相冷媒流量G_gas(すなわち、ノズル側流量Gn)を増加させて、エジェクタ16のディフューザ部16dにおける昇圧量ΔPを増加させやすい。その一方で、気液分離器17へ流入する冷媒の圧力の低下に伴って、液相冷媒流量G_lq(すなわち、低段側冷媒流量G_le)が減少するので、低段側冷却能力Δh_le×G_leが減少しやすい。
 このため、エジェクタ式冷凍サイクル10aでは、気液分離器17へ流入する冷媒の圧力の変化に対して、COPが極大値(ピーク値)に有するように変化する。そこで、本実施形態では、COPが極大値(ピーク値)に近づくように分離器側膨張弁14bの絞り開度を調整している。
 気液分離器17にて分離された気相冷媒(図8のj8点)は、エジェクタ16のノズル部16aへ流入する。エジェクタ16のノズル部16aへ流入した冷媒は、第1実施形態と同様に、等エントロピ的に減圧されて噴射される(図8のj8点→f8点)。これにより、低段側蒸発器18から流出した冷媒(図8のn8点)が、エジェクタ16の冷媒吸引口16cから吸引される(図8のn8点→o8点)。
 さらに、噴射冷媒と吸引冷媒は、第1実施形態と同様に、ディフューザ部16dにて昇圧されて、合流部13bの他方の冷媒流入口へ流入する(図8のf8点→g8点→h8点、図8のo8点→g8点→h8点)。
 気液分離器17にて分離された液相冷媒(図8のk8点)は、第1実施形態と同様に、低段側膨張弁14cを介して、低段側蒸発器18へ流入して蒸発する(図8のm8点→n8点)。これにより、庫内用送風空気が冷却される。以降の作動は、第1実施形態と同様である。
 従って、本実施形態のエジェクタ式冷凍サイクル10aにおいても、第1実施形態と同様に、低段側蒸発器18にて発揮される冷却能力の減少を招くことなく、エジェクタ式冷凍サイクル10aのCOPを向上させることができる。
 ここで、図8では、分離器側膨張弁14bにて減圧された冷媒の圧力(図8のi8点)が、高段側膨張弁14aにて減圧された冷媒の圧力(図8のc8点)よりも低くなっている例を示しているが、両者の関係はこれに限定されない。
 つまり、分離器側膨張弁14bの絞り開度が、エジェクタ式冷凍サイクル10aのCOPが極大値に近づくように調整されていれば、分離器側膨張弁14bにて減圧された冷媒の圧力(図8のi8点)が、高段側膨張弁14aにて減圧された冷媒の圧力(図8のc8点)以上となっていてもよい。
 (第4実施形態)
 本実施形態では、第3実施形態に対して、図9の全体構成図に示すように、エジェクタ式冷凍サイクル10aのサイクル構成を変更した例を説明する。
 本実施形態のエジェクタ式冷凍サイクル10の放熱器12の冷媒出口には、高段側膨張弁14aの入口側が接続されている。高段側膨張弁14aの出口には、分岐部13aの冷媒流入口側が接続されている。分岐部13aの一方の冷媒流出口には、高段側蒸発器15の冷媒入口側が接続されている。その他の構成は、第3実施形態と同様である。
 次に、図10のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。
 圧縮機11から吐出された高温高圧の吐出冷媒(図10のa10点)は、第3実施形態と同様に、放熱器12にて凝縮する(図10のa10点→b10点)。放熱器12から流出した冷媒は、高段側膨張弁14aへ流入して等エンタルピ的に減圧される(図10のb10点→c10点)。この際、高段側膨張弁14aの絞り開度は、高段側蒸発器1出口側冷媒(図10のd10点)の過熱度が予め定めた所定範囲内となるように調整される。
 高段側膨張弁14aから流出した低圧冷媒の流れは、分岐部13aにて分岐される。分岐部13aにて分岐された一方の冷媒は、高段側蒸発器15へ流入して、第3実施形態と同様に、室内用送風空気から吸熱して蒸発する(図10のc10点→d10点)。これにより、室内送風空気が冷却される。
 分岐部13aにて分岐された他方の冷媒は、分離器側膨張弁14bへ流入して等エンタルピ的に減圧される(図10のc10点→i10点)。この際、分離器側膨張弁14bの絞り開度は、第3実施形態と同様に、COPが極大値(ピーク値)に近づくように調整される。以降の作動は、第1実施形態と同様である。
 従って、本実施形態のエジェクタ式冷凍サイクル10aにおいても、第3実施形態と同様に、低段側蒸発器18にて発揮される冷却能力の減少を招くことなく、エジェクタ式冷凍サイクル10aのCOPを向上させることができる。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 上述の実施形態では、分離器側膨張弁14bおよび気液分離器17によってエンタルピ調整部を構成した例を説明したが、エンタルピ調整部は、これに限定されない。例えば、低段側蒸発器18へ流入する冷媒と、これよりも低温の冷媒とを熱交換させて、低段側蒸発器18へ流入する冷媒のエンタルピを低下させる内部熱交換器をエンタルピ調整部として採用してもよい。
 上述の各実施形態では、本開示に係るエジェクタ式冷凍サイクル10を冷蔵車両用の冷凍サイクル装置に適用した例を説明したが、本開示に係るエジェクタ式冷凍サイクル10の適用はこれに限定されない。
 例えば、車両用に適用する場合は、本開示に係るエジェクタ式冷凍サイクル10を、いわゆるデュアルエアコンシステムに適用してもよい。デュアルエアコンシステムでは、高段側蒸発器15にて車両前席側へ送風される前席用送風空気を冷却し、低段側蒸発器18にて車両後席側へ送風される後席用送風空気を冷却する。
 さらに、車両用に限定されることなく、据え置き型の冷蔵冷凍装置、ショーケース、空調装置等に適用してもよい。この際、複数の冷却対象空間のうち、最も温度を低くしたい低温側の冷却対象空間を低段側蒸発器18にて冷却し、低温側の冷却対象空間よりも高い温度帯で冷却される冷却対象空間を高段側蒸発器15にて冷却するようにしてもよい。
 エジェクタ式冷凍サイクル10を構成する構成機器は、上述の実施形態に開示されたものに限定されない。
 例えば、圧縮機11として、プーリ、ベルト等を介してエンジン(内燃機関)から伝達された回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。この種のエンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機等を採用することができる。
 また、放熱器12として、いわゆるサブクール型の凝縮器を採用してもよい。サブクール型の凝縮器は、凝縮部、モジュレータ部、および過冷却部を有している。凝縮部は、圧縮機11から吐出された吐出冷媒と外気とを熱交換させて、吐出冷媒を凝縮させる熱交換部である。モジュレータ部は、凝縮部から流出した冷媒の気液を分離する気液分離部である。過冷却部は、モジュレータ部から流出した液相冷媒と外気とを熱交換させて液相冷媒を過冷却する熱交換部である。
 また、高段側膨張弁14aとして、温度式膨張弁を採用してもよい。温度式膨張弁は、感温部および機械的機構部を有している。感温部は、高段側蒸発器15の出口側の冷媒の温度および圧力に応じて変形する変形部材(具体的には、ダイヤフラム)を有する。機械的機構部は、感温部の変形部材の変形に連動して絞り開度を変化させる。
 分離器側膨張弁14bあるいは低段側膨張弁14cのいずれか一方に低段側蒸発器の出口側の冷媒の過熱度が予め定めた基準過熱度に近づくように絞り開度を調整する温度式膨張弁を採用してもよい。さらに、他方を絞り開度の固定された固定絞り(具体的には、オリフィス、キャピラリチューブ)を採用してもよい。
 さらに、高段側膨張弁14a、分離器側膨張弁14bおよび低段側膨張弁14cのいずれか1つに可変絞り機構を採用してもよい。さらに、残余の膨張弁として固定絞りを採用してもよい。
 また、上述の実施形態では、エジェクタ16としてノズル部16aの喉部(最小通路面積部)の通路断面積が変化しない固定ノズル部を有する固定エジェクタを採用した例を説明した。この変形例として、エジェクタ16として、喉部の通路断面積を調整可能な可変ノズル部を有する可変エジェクタを用いてもよい。
 また、上述の実施形態では、高段側蒸発器15および低段側蒸発器18を備えるエジェクタ式冷凍サイクル10、10aについて説明したが、さらに蒸発器を備えていてもよい。
 例えば、第1実施形態のエジェクタ式冷凍サイクル10において、分岐部13aにて分岐された他方の冷媒を更に分岐する補助分岐部、および補助分岐部と圧縮機11の吸入口とを接続するバイパス通路を設ける。そして、バイパス通路に補助減圧部および補助蒸発器を配置してもよい。
 例えば、第1実施形態のエジェクタ式冷凍サイクル10において、高段側膨張弁14aにて減圧された冷媒の流れを分岐する第1補助分岐部、および第1補助分岐部と圧縮機11の吸入口とを接続する第1バイパス通路を設ける。そして、第1バイパス通路に補助高段側蒸発器および補助エジェクタを配置する。
 さらに、低段側膨張弁14cにて減圧された冷媒の流れを分岐する第2補助分岐部、および第2補助分岐部と補助エジェクタの冷媒吸引口とを接続する第2バイパス通路を設ける。そして、第2バイパス通路に補助低段側蒸発器を配置してもよい。
 上述の実施形態では、冷媒としてR600aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R1234yf、R410A、R404A、R32、R1234yfxf、R407C等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (6)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、
     前記高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、
     前記放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、
     前記低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、
     前記放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を前記高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を前記低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、
     冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、前記低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて前記圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
     さらに、前記低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備えるエジェクタ式冷凍サイクル。
  2.  前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
     前記放熱器の冷媒出口は、前記分岐部の流入口側に接続されており、
     前記分岐部の一方の流出口は、前記高段側減圧部の入口側に接続されており、
     前記高段側蒸発器の冷媒出口は、前記ノズル部の入口側に接続されており、
     前記分岐部の他方の流出口は、前記分離器側減圧部の入口側に接続されており、
     前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
     前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されている請求項1に記載のエジェクタ式冷凍サイクル。
  3.  前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
     前記放熱器の冷媒出口は、前記高段側減圧部の入口側に接続されており、
     前記高段側減圧部の出口は、前記分岐部の流入口側に接続されており、
     前記分岐部の一方の流出口は、前記高段側蒸発器の冷媒入口側に接続されており、
     前記高段側蒸発器の冷媒出口は、前記ノズル部の入口側に接続されており、
     前記分岐部の他方の流出口は、前記分離器側減圧部(14b)の入口側に接続されており、
     前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
     前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されている請求項1に記載のエジェクタ式冷凍サイクル。
  4.  前記分離器側減圧部は、前記気液分離部内の冷媒の圧力が前記高段側蒸発器(15)の出口側の冷媒の圧力に近づくように絞り開度を調整するものである請求項2または3に記載のエジェクタ式冷凍サイクル。
  5.  前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
     前記放熱器の冷媒出口は、前記分岐部の流入口側に接続されており、
     前記分岐部の一方の流出口は、前記高段側減圧部の入口側に接続されており、
     前記高段側蒸発器の冷媒出口は、前記圧縮機の吸入口側に接続されており、
     前記分岐部の他方の流出口は、前記分離器側減圧部の入口側に接続されており、
     前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
     前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されている請求項1に記載のエジェクタ式冷凍サイクル。
  6.  前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
     前記放熱器の冷媒出口は、前記高段側減圧部の入口側に接続されており、
     前記高段側減圧部の出口は、前記分岐部の流入口側に接続されており、
     前記分岐部の一方の流出口は、前記高段側蒸発器の冷媒入口側に接続されており、
     前記高段側蒸発器の冷媒出口は、前記圧縮機の吸入口側に接続されており、
     前記分岐部の他方の流出口は、前記分離器側減圧部の入口側に接続されており、
     前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
     前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されている請求項1に記載のエジェクタ式冷凍サイクル。
PCT/JP2019/016802 2018-04-27 2019-04-19 エジェクタ式冷凍サイクル WO2019208428A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-087044 2018-04-27
JP2018087044A JP6939691B2 (ja) 2018-04-27 2018-04-27 エジェクタ式冷凍サイクル

Publications (1)

Publication Number Publication Date
WO2019208428A1 true WO2019208428A1 (ja) 2019-10-31

Family

ID=68295287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016802 WO2019208428A1 (ja) 2018-04-27 2019-04-19 エジェクタ式冷凍サイクル

Country Status (2)

Country Link
JP (1) JP6939691B2 (ja)
WO (1) WO2019208428A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102388766B1 (ko) * 2019-11-18 2022-04-22 제주대학교 산학협력단 이젝터를 이용한 냉동장치
DE102022115627A1 (de) 2022-06-23 2023-12-28 HTM Automotive GmbH Steuersystem, Verfahren zum Steuern eines Thermometermanagementsystems eines Fahrzeugs, computerlesbares-Speichermedium und Fahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308380A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2007057156A (ja) * 2005-08-24 2007-03-08 Calsonic Kansei Corp 冷凍サイクル
JP2012149790A (ja) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp 冷凍サイクル装置及び流路切替装置及び流路切替方法
JP2012220162A (ja) * 2011-04-13 2012-11-12 Takasago Thermal Eng Co Ltd 冷凍サイクル方法
JP2015224861A (ja) * 2014-05-30 2015-12-14 株式会社デンソー エジェクタ式冷凍サイクル
JP2017072291A (ja) * 2015-10-06 2017-04-13 株式会社デンソー 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308380A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2007057156A (ja) * 2005-08-24 2007-03-08 Calsonic Kansei Corp 冷凍サイクル
JP2012149790A (ja) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp 冷凍サイクル装置及び流路切替装置及び流路切替方法
JP2012220162A (ja) * 2011-04-13 2012-11-12 Takasago Thermal Eng Co Ltd 冷凍サイクル方法
JP2015224861A (ja) * 2014-05-30 2015-12-14 株式会社デンソー エジェクタ式冷凍サイクル
JP2017072291A (ja) * 2015-10-06 2017-04-13 株式会社デンソー 冷凍サイクル装置

Also Published As

Publication number Publication date
JP6939691B2 (ja) 2021-09-22
JP2019190794A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6299495B2 (ja) エジェクタ式冷凍サイクル
JP6277869B2 (ja) エジェクタ式冷凍サイクル
CN107407507B (zh) 喷射器式制冷循环
JP6547781B2 (ja) 冷凍サイクル装置
WO2014156075A1 (ja) エジェクタ
US9328742B2 (en) Ejector
JP2007040612A (ja) 蒸気圧縮式サイクル
WO2018198609A1 (ja) エジェクタ式冷凍サイクル
WO2019208428A1 (ja) エジェクタ式冷凍サイクル
JP2018119542A (ja) エジェクタ
WO2018159322A1 (ja) エジェクタモジュール、およびエジェクタ式冷凍サイクル
WO2019017168A1 (ja) エジェクタ式冷凍サイクル
JP5962596B2 (ja) エジェクタ式冷凍サイクル
JP6512071B2 (ja) エジェクタ式冷凍サイクル
WO2017217142A1 (ja) 冷凍サイクル装置
JP6547698B2 (ja) エジェクタ式冷凍サイクル
JP6780567B2 (ja) 気液分離器、および冷凍サイクル装置
JP2019190795A (ja) エジェクタ式冷凍サイクル
JP6327088B2 (ja) エジェクタ式冷凍サイクル
WO2018186129A1 (ja) 気液分離器、および冷凍サイクル装置
JP7119785B2 (ja) エジェクタ式冷凍サイクル、およびエジェクタモジュール
WO2018139417A1 (ja) エジェクタ
WO2019155806A1 (ja) エジェクタ式冷凍サイクル、およびエジェクタモジュール
WO2017154603A1 (ja) 蒸発器ユニット
WO2017187932A1 (ja) 減圧装置および冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791493

Country of ref document: EP

Kind code of ref document: A1