WO2019208380A1 - 重合体組成物、シアノ基含有重合体の製造方法およびシアノ基含有重合体組成物 - Google Patents

重合体組成物、シアノ基含有重合体の製造方法およびシアノ基含有重合体組成物 Download PDF

Info

Publication number
WO2019208380A1
WO2019208380A1 PCT/JP2019/016610 JP2019016610W WO2019208380A1 WO 2019208380 A1 WO2019208380 A1 WO 2019208380A1 JP 2019016610 W JP2019016610 W JP 2019016610W WO 2019208380 A1 WO2019208380 A1 WO 2019208380A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyano group
group
containing polymer
olefinic double
polymer
Prior art date
Application number
PCT/JP2019/016610
Other languages
English (en)
French (fr)
Inventor
祐輔 安
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020516282A priority Critical patent/JP7375747B2/ja
Priority to US17/049,336 priority patent/US20210054130A1/en
Priority to CN201980025377.3A priority patent/CN111971345A/zh
Priority to EP19793034.0A priority patent/EP3786234A4/en
Publication of WO2019208380A1 publication Critical patent/WO2019208380A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups

Definitions

  • the present invention relates to a polymer composition, a method for producing a cyano group-containing polymer using the same, and a cyano group-containing polymer composition.
  • Patent Document 1 discloses a conjugated diene and (meta ) A method for selectively hydrogenating a carbon-carbon double bond of a nitrile group-containing copolymer containing acrylonitrile as an essential component in the presence of a specific catalyst has been proposed.
  • Non-Patent Document 1 proposes a method of obtaining a copolymer containing a cyano group and not containing an olefinic double bond by copolymerizing ethylene and acrylonitrile in the presence of a palladium catalyst. Yes.
  • Patent Document 2 discloses a catalytic hydrocyano of pentenenitrile catalyzed by zero-valent nickel in the presence of two Lewis acid promoters. There has been proposed a method for obtaining adiponitrile (a synthetic intermediate of nylon 6 and 6) by conversion.
  • Non-Patent Document 2 as a method for hydrocyanating olefins using alkyl nitriles, a technique for hydrocyanating olefins by reacting olefins and butyronitrile in the presence of a nickel catalyst is proposed.
  • Patent Document 1 has a restriction that a pressure-resistant reaction vessel is required because high-pressure hydrogen must be used when performing the hydrogenation reaction. Moreover, it is difficult to obtain a high molecular weight polymer by the method of Non-Patent Document 1. Furthermore, the method described in Patent Document 2 is problematic in that highly toxic hydrogen cyanide must be used.
  • the methods of Patent Document 2 and Non-Patent Document 2 are techniques relating to hydrocyanation of low-molecular compounds, and Patent Document 2 and Non-Patent Document 2 do not provide any suggestions regarding hydrocyanation of a polymer. Therefore, there has been a demand for a method for easily producing a cyano group-containing polymer by efficiently introducing a cyano group into the polymer while reducing the amount of olefinic double bonds.
  • the present invention provides a technique for efficiently producing a cyano group-containing polymer by efficiently introducing a cyano group into a polymer while reducing the amount of olefinic double bonds, and an olefin.
  • An object of the present invention is to provide a composition comprising a cyano group-containing polymer with a reduced amount of sexual double bonds.
  • the present inventor has intensively studied to achieve the above object. Then, the present inventor conceived that if a polymer containing an olefinic double bond such as polybutadiene is hydrocyanated, a polymer having a cyano group introduced can be obtained while reducing the amount of the olefinic double bond. did. Therefore, the present inventor has further studied and reacting an olefinic double bond-containing polymer with a predetermined cyano group-containing compound in the presence of a hydrocyanation catalyst, the olefin of the olefinic double bond-containing polymer. As a result, the present inventors have found that a cyano group can be efficiently introduced into a polymer while reducing the amount of an olefinic double bond by selectively hydrocyanating an ionic double bond.
  • the polymer composition of this invention is an olefinic double bond containing polymer, following formula (1), and R—C 2 H 4 —CN (1)
  • R represents a hydrogen atom, an alkyl group which may have a substituent, an aromatic ring group which may have a substituent, a cyano group, a hydroxy group or a cycloalkyl group. .
  • a hydrocyanation catalyst According to the polymer composition of the present invention containing such components, the olefinic double bond-containing polymer is hydrocyanated to efficiently introduce cyano groups into the polymer while reducing the amount of olefinic double bonds. Thus, a cyano group-containing polymer can be easily produced.
  • the olefinic double bond-containing polymer preferably has a weight average molecular weight of 1,000 or more and 1,000,000 or less. If the weight average molecular weight of the olefinic double bond-containing weight body is within the above range, side reactions such as gelation caused by the olefinic double bond-containing polymer can be suppressed. Can be manufactured.
  • the content of the cyano group-containing compound is preferably 0.05 mol% or more and 200000 mol% or less with respect to the olefinic double bond-containing polymer.
  • the content of the cyano group-containing compound in the polymer composition is within the above range, the cyano group-containing polymer can be more efficiently produced using the polymer composition of the present invention.
  • R is preferably an alkyl group having no substituent. If R in Formula (1) is an alkyl group having no substituent, a cyano group-containing polymer can be more efficiently produced using the polymer composition of the present invention.
  • the number of carbon atoms contained in R in the formula (1) is 30 or less.
  • the yield of the cyano group-containing polymer when the cyano group-containing polymer is produced using the polymer composition of the present invention. Can be improved.
  • the manufacturing method of the cyano group containing polymer of this invention uses the polymer composition of this invention, and the said olefinic double. It includes a reaction step of performing a hydrocyanation reaction of a bond-containing polymer. By including a reaction step of performing a hydrocyanation reaction of an olefinic double bond-containing polymer using the polymer composition of the present invention, a cyano group can be efficiently converted into a polymer while reducing the amount of olefinic double bonds. Cyano group-containing polymer can be easily produced.
  • the olefinic double bond reduction rate of the olefinic double bond-containing polymer is 0.1 mol% or more and 100. It is preferable that it is below mol%. If the decreasing rate of the olefinic double bond that is reduced by the hydrocyanation reaction is within the above range, a cyano group-containing polymer in which the amount of the olefinic double bond is suitably reduced can be provided.
  • the said reaction process is following formula (2).
  • R—CH ⁇ CH 2 (2) [In Formula (2), R is the same as R in Formula (1). ] It is preferable to carry out at the temperature more than the boiling point of the vinyl group containing compound represented by these. By performing the reaction step at a temperature equal to or higher than the boiling point of the vinyl group-containing compound represented by the formula (2), the hydrocyanation reaction easily proceeds.
  • the present invention aims to advantageously solve the above-mentioned problems, and the cyano group-containing polymer composition of the present invention comprises a cyano group-containing polymer and a hydrocyanation catalyst. And If a cyano group-containing polymer is produced by carrying out the hydrocyanation reaction described above using the polymer composition of the present invention, a cyano group-containing polymer composition containing such components can be obtained.
  • a polymer composition that can be used to easily produce a cyano group-containing polymer by efficiently introducing a cyano group into the polymer while reducing the amount of olefinic double bonds. And a method for producing a cyano group-containing polymer using the polymer composition. Furthermore, according to the present invention, a cyano group-containing polymer composition containing a cyano group-containing polymer with a reduced amount of olefinic double bonds can be provided.
  • the polymer composition of the present invention can be used for producing a cyano group-containing polymer in the method for producing a cyano group-containing polymer of the present invention.
  • the manufacturing method of the cyano group containing polymer of this invention introduce
  • the cyano group-containing polymer composition of the present invention is a composition containing a cyano group-containing polymer in which the amount of olefinic double bonds is reduced.
  • the cyano group-containing polymer composition is suitable for producing rubber molded articles. Can be used.
  • the polymer composition of the present invention includes an olefinic double bond-containing polymer, a cyano group-containing compound, and a hydrocyanation catalyst, and may optionally further include a solvent and / or other components.
  • the olefinic double bond-containing polymer contained in the polymer composition of the present invention is a polymer that undergoes a hydrocyanation reaction with a cyano group-containing compound in the presence of a hydrocyanation catalyst.
  • the olefinic double bond-containing polymer is not particularly limited as long as it is a polymer having a carbon-carbon double bond as an olefinic double bond in the molecule.
  • the olefinic double bond-containing polymer of the present invention usually has no cyano group.
  • the olefinic double bond-containing polymer examples include monomers derived from compounds having two or more olefinic double bonds such as conjugated diene compounds (for example, 1,3-butadiene, isoprene, etc.) and non-conjugated diene compounds. Examples thereof include polymers containing units. Specific examples of the olefinic double bond-containing polymer include polybutadiene (PBD), polyisoprene (PIP), polycyclopentene (PCP), styrene-isoprene-styrene-block copolymer (SIS), and styrene.
  • PBD polybutadiene
  • PIP polyisoprene
  • PCP polycyclopentene
  • SIS styrene-isoprene-styrene-block copolymer
  • SIS styrene
  • Examples include butadiene copolymer (SBD), acrylic polymer (ACL), polybutadiene-polyisoprene copolymer (PBD-PI), polydicyclopentadiene, polynorbornene, and the like.
  • SBD butadiene copolymer
  • ACL acrylic polymer
  • PBD-PI polybutadiene-polyisoprene copolymer
  • PBD, PIP, PCP, SIS, ACL And PBD-PI are preferred, and PBD, PCP, SIS and ACL are more preferred.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the olefinic double bond-containing polymer is a polymer containing monomer units derived from a conjugated diene compound
  • 1,2-vinyl bond and 1,4-vinyl bond in the olefinic double bond-containing polymer The molar ratio (1,2-vinyl bond / 1,4-vinyl bond) is usually 99/1 to 1/99, preferably 95/5 to 5/95, and 90/10 to 10 / 90 is particularly preferred.
  • the weight average molecular weight (Mw) of the olefinic double bond-containing polymer is preferably 1,000 or more, more preferably 2,000 or more, and still more preferably 3,000 or more. 5,000 or more, more preferably 1,000,000 or less, more preferably 600,000 or less, still more preferably 500,000 or less, and 400,000 Is more preferably 200,000 or less, and most preferably 100,000 or less. If the weight average molecular weight of the olefinic double bond-containing polymer is within the above range, side reactions such as gelation caused by the olefinic double bond-containing polymer can be further suppressed. It can be manufactured efficiently.
  • the weight average molecular weight of an olefinic double bond containing polymer is below the said upper limit, the quantity of an olefinic double bond can be reduced efficiently.
  • the weight average molecular weight (Mw) of the olefinic double bond-containing polymer can be measured using gel permeation chromatography.
  • the molecular weight distribution (Mw / Mn) of the olefinic double bond-containing polymer is preferably 1 or more, preferably 10 or less, more preferably 6 or less, and 4 or less. Is more preferable and 2 or less is particularly preferable. If the molecular weight distribution of the olefinic double bond-containing polymer is within the above range, side reactions such as gelation by the olefinic double bond-containing polymer can be further suppressed. Can be manufactured.
  • the molecular weight distribution refers to the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the olefinic double bond-containing polymer.
  • the number average molecular weight (Mn) of the olefinic double bond-containing polymer can be measured using gel permeation chromatography.
  • the olefinic double bond-containing polymer contained in the polymer composition of the present invention can be produced by a conventionally known method such as an emulsion polymerization method, a suspension polymerization method, or a solution polymerization method. Moreover, you may use a commercial item as an olefinic double bond containing polymer. In addition, the olefinic double bond-containing polymer used in the present invention is usually not hydrogenated.
  • content of an olefinic double bond containing polymer is 1 mass% or more and 100 mass% or less with respect to 100 mass% of total solids in a polymer composition. Is preferred. If the content of the olefinic double bond-containing polymer in the polymer composition is not less than the above lower limit, the hydrocyanation reaction is carried out when the cyano group-containing polymer is produced using the polymer composition of the present invention. Preferably proceeds.
  • the cyano group-containing compound contained in the polymer composition of the present invention is a compound that undergoes a hydrocyanation reaction with the above-described olefinic double bond-containing polymer in the presence of a hydrocyanation catalyst, and is represented by the following formula (1). Is done. R—C 2 H 4 —CN (1)
  • R is a hydrogen atom, an alkyl group which may have a substituent, an aromatic ring group which may have a substituent, a cyano group, a hydroxy group A group or a cycloalkyl group;
  • alkyl group of the alkyl group which may have a substituent may be linear or branched.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, and n-heptyl group.
  • examples of the aromatic ring group that may have a substituent include an aromatic hydrocarbon ring group and an aromatic heterocyclic group.
  • Examples of the aromatic hydrocarbon ring group include a benzene ring group, a naphthalene ring group, an anthracene ring group, a phenanthrene ring group, a pyrene ring group, and a fluorene ring group.
  • a benzene ring group, a naphthalene ring group, an anthracene ring group, and a fluorene ring group are preferable, and a benzene ring group and a naphthalene ring group are more preferable in that the effects of the present invention can be more easily obtained.
  • examples of the aromatic heterocyclic group include 1H-isoindole-1,3 (2H) -dione ring group, 1-benzofuran ring group, 2-benzofuran ring group, acridine ring group, isoquinoline ring group, imidazole ring.
  • the aromatic heterocyclic group includes a monocyclic aromatic heterocyclic group such as a furan ring group, a pyran ring group, a thiophene ring group, an oxazole ring group, an oxadiazole ring group, a thiazole ring group, and a thiadiazole ring group.
  • Benzothiazole ring group benzoxazole ring group, quinoline ring group, 1-benzofuran ring group, 2-benzofuran ring group, benzo [b] thiophene ring group, 1H-isoindole-1,3 (2H)- Dione ring group, benzo [c] thiophene ring group, thiazolopyridine ring group, thiazolopyrazine ring group, benzoisoxazole ring group, benzooxadiazole ring group, benzothiadiazole ring group, xanthene ring group, etc.
  • An aromatic heterocyclic group is preferred.
  • Examples of the substituent of the alkyl group which may have a substituent or the aromatic ring group which may have a substituent include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a methyl group
  • a halogen atom such as a fluorine atom and a chlorine atom
  • a cyano group such as a methyl group
  • An alkyl group having 1 to 6 carbon atoms such as vinyl group or propyl group; an alkenyl group having 2 to 6 carbon atoms such as vinyl group or allyl group; at least one hydrogen atom such as trifluoromethyl group or pentafluoroethyl group; C1-C6 alkyl group substituted with halogen; C2-C12 N, N-dialkylamino group such as dimethylamino group; C1-C6 alkoxy such as methoxy group, ethoxy group and isopropoxy group A nitro group; an aromatic
  • R Y is (i) an optionally substituted alkyl group having 1 to 20 carbon atoms, (ii) an optionally substituted alkenyl group having 2 to 20 carbon atoms, ( iii) represents an optionally substituted cycloalkyl group having 3 to 12 carbon atoms, or (iv) an optionally substituted aromatic hydrocarbon ring group having 5 to 12 carbon atoms.
  • R b represents an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; or an alkyl group having 1 to 6 carbon atoms such as a phenyl group, a 4-methylphenyl group, or a 4-methoxyphenyl group;
  • An aromatic hydrocarbon ring group having 6 to 20 carbon atoms which may have an alkoxy group having 1 to 6 carbon atoms as a substituent.
  • R is an alkyl group having no substituent. It is preferable that
  • the cyano group-containing compound represented by the above formula (1) in the present invention include alkyl nitriles such as propionitrile, butyronitrile, pentanitrile, 3-phenylpropionitrile, and decane nitrile. .
  • alkyl nitriles such as propionitrile, butyronitrile, pentanitrile, 3-phenylpropionitrile, and decane nitrile.
  • the solubility of the cyano group-containing compound represented by the above (1) in a solvent is improved.
  • the cyano group-containing compound represented by the above formula (1) is preferably propionitrile, butyronitrile, or pentanitrile, and more preferably butyronitrile.
  • the number of carbon atoms contained in R is preferably 30 or less, and more preferably 10 or less. More preferably, it is 5 or less. If the number of carbon atoms contained in R is 30 or less, the following formula (2) produced by a hydrocyanation reaction between the olefinic double bond-containing polymer and the cyano group-containing compound represented by formula (1): ) R—CH ⁇ CH 2 (2) [In Formula (2), R is the same as R in Formula (1). ] Is volatilized and is easily discharged out of the reaction system. Therefore, the hydrocyanation reaction, which is an equilibrium reaction, can be facilitated to improve the yield of the cyano group-containing polymer. In addition, when said R has a substituent, the number of the carbon atoms contained in said R is the number including the carbon atom of the substituent.
  • Method for producing cyano group-containing compound is not specifically limited, It can manufacture by a conventionally well-known method. Moreover, you may use a commercial item as a cyano group containing compound.
  • content of the cyano group containing compound represented by said Formula (1) is 0.05 mol% or more with respect to 100 mol% of olefinic double bond containing polymers. It is preferably 0.2 mol% or more, more preferably 0.5 mol% or more, further preferably 200000 mol% or less, and preferably 10,000 mol% or less. More preferably, it is more preferably 5000 mol% or less, even more preferably 1000 mol% or less, particularly preferably 100 mol% or less, and most preferably 25 mol% or less.
  • the content of the cyano group-containing compound represented by the formula (1) is within the above range, in the method for producing a cyano group-containing polymer using the polymer composition of the present invention, The hydrocyanation reaction proceeds suitably.
  • the hydrocyanation catalyst contained in the polymer composition of the present invention functions as a catalyst in the hydrocyanation reaction between the olefinic double bond-containing polymer and the cyano group-containing compound represented by the above formula (1). If it is a thing, it will not be limited.
  • the hydrocyanation catalyst for example, a nickel complex, a promoter, and a ligand can be used.
  • nickel complex examples include nickel chloride (II), [1,1′-bis (diphenylphosphino) ferrocene] nickel (II) dichloride, [1,2-bis (diphenylphosino) ethane] nickel.
  • bis (1,5-cyclooctadiene) nickel is preferable from the viewpoint of suitably performing the hydrocyanation reaction in the method for producing a cyano group-containing polymer using the polymer composition of the present invention.
  • the content of the nickel complex is preferably 0.01 mol% or more with respect to 100 mol% of the olefinic double bond-containing polymer, and 0.05 mol% or more. More preferably, it is preferably 10 mol% or less, more preferably 5 mol% or less. If the content of the nickel complex in the polymer composition is within the above range, the hydrocyanation reaction proceeds more suitably in the method for producing a cyano group-containing polymer using the polymer composition of the present invention.
  • cocatalyst examples include Lewis acids such as trichloroaluminum, tribromoaluminum, dichloromethylaluminum, dichloroethylaluminum, diethylchloroaluminum, and dimethylchloroaluminum.
  • Lewis acids such as trichloroaluminum, tribromoaluminum, dichloromethylaluminum, dichloroethylaluminum, diethylchloroaluminum, and dimethylchloroaluminum.
  • dimethylchloroaluminum is preferable from the viewpoint of suitably exhibiting the catalytic function of the hydrocyanation catalyst in the method for producing a cyano group-containing polymer using the polymer composition of the present invention.
  • the cocatalyst content is preferably 0.01 mol% or more and 0.05 mol% or more with respect to 100 mol% of the olefinic double bond-containing polymer. More preferably, it is 10 mol% or less, more preferably 5 mol% or less. If the content of the co-catalyst in the polymer composition is within the above range, the catalytic function of the hydrocyanation catalyst is more suitably exhibited in the method for producing a cyano group-containing polymer using the polymer composition of the present invention. Is done.
  • Examples of the ligand include triphenylphosphine, tricyclohexylphosphine, triethylphosphine, triparafluorophenylphosphine, triparatrifluoromethylphenylphosphine, triparamethoxyphenylphosphine, bis [2- (diphenylphosphino) phenyl] ether. Etc.
  • bis [2- (diphenylphosphino) is preferred from the viewpoint of more suitably exerting the catalytic function of the hydrocyanation catalyst. Phenyl] ether is preferred.
  • content of a ligand is 0.01 mol% or more with respect to 100 mol% of olefinic double bond containing polymers, and is 0.05 mol% or more. More preferably, it is preferably 10 mol% or less, more preferably 5 mol% or less. If the content of the ligand in the polymer composition is within the above range, the catalyst function of the hydrocyanation catalyst is more suitable in the method for producing a cyano group-containing polymer using the polymer composition of the present invention. To be demonstrated.
  • the solvent that can optionally be included in the polymer composition of the present invention is not particularly limited, and examples thereof include toluene, xylene, benzene, chlorobenzene, tetrahydrofuran, and cyclotoluene.
  • the method for producing a cyano group-containing polymer using the polymer composition of the present invention by improving the solubility of the cyano group-containing compound represented by the above formula (1) in a solvent, From the viewpoint of increasing the productivity of the group-containing polymer, toluene, xylene and benzene are preferable as the solvent, and toluene is more preferable.
  • the polymer composition of the present invention may contain one kind of these solvents alone, or may contain two or more kinds.
  • content of the solvent which can be contained in a polymer composition is 50 to 2000 mass parts with respect to 100 mass parts of olefinic double bond containing polymers. If the content of the solvent in the polymer composition is within the above range, side reactions such as gelation caused by the olefinic double bond-containing polymer can be sufficiently suppressed, so that the cyano group-containing polymer is extremely efficient. Can be manufactured automatically.
  • a polymer composition can be prepared by mixing each component mentioned above by a known method.
  • the polymer composition of the present invention can be suitably used for producing a cyano group-containing polymer. So, below, although the manufacturing method of the cyano group containing polymer using the polymer composition of this invention is demonstrated, the use of the polymer composition of this invention is not limited to the following examples.
  • the method for producing a cyano group-containing polymer of the present invention includes a reaction step of performing a hydrocyanation reaction of an olefinic double bond-containing polymer using the polymer composition of the present invention, and may optionally include a recovery step. .
  • reaction step a hydrocyanation reaction of the olefinic double bond-containing polymer is performed using the polymer composition of the present invention.
  • the hydrocyanation reaction performed in the reaction step is represented by the olefinic double bond-containing polymer in the polymer composition and the above-described formula (1) using the hydrocyanation catalyst contained in the polymer composition of the present invention as a catalyst.
  • the cyano group-containing compound is reacted.
  • the olefinic double bond of the olefinic double bond-containing polymer is selectively hydrocyanated, and a cyano group-containing polymer in which a cyano group is efficiently introduced into the polymer,
  • the vinyl group-containing compound represented by (2) is obtained.
  • R is the same as R in the above-described formula (1), and thus description thereof is omitted here.
  • examples of the cyano group-containing polymer include those represented by the following formula (4) or formula (5).
  • Ph shows a phenyl group
  • r shows random
  • m, n, o, and p show a repeating number, respectively.
  • Bu represents butadiene
  • r represents random
  • m, n, o, and p each represents the number of repetitions.
  • reaction temperature in the reaction step is preferably 20 ° C or higher, more preferably 40 ° C or higher, preferably 200 ° C or lower, more preferably 150 ° C or lower, and 120 ° C or lower. More preferably, it can be set to about 110 ° C., for example. If reaction temperature is more than the said lower limit, a hydrocyanation reaction can fully be performed in a reaction process. On the other hand, if the reaction temperature is not more than the above upper limit, the decomposition and gelation of the olefinic double bond-containing polymer and the cyano group-containing compound represented by the above formula (1) can be sufficiently suppressed in the reaction step. it can.
  • the reaction step is preferably performed at a temperature equal to or higher than the boiling point of the vinyl group-containing compound represented by the formula (2). Because the hydrocyanation reaction is an equilibrium reaction, if the reaction temperature is set to a temperature equal to or higher than the boiling point of the vinyl group-containing compound represented by the above formula (2), the vinyl group-containing compound is volatilized and discharged out of the reaction system. This is because the hydrocyanation reaction easily proceeds.
  • reaction time in the reaction step is preferably 1 minute or longer, more preferably 5 minutes or longer, preferably 48 hours or shorter, more preferably 24 hours or shorter, for example 30 It can be about minutes. If reaction time is more than the said lower limit, a hydrocyanation reaction can fully be performed in a reaction process. On the other hand, if reaction time is below the said upper limit, the time which manufactures a cyano group containing polymer can be reduced and process property can be improved.
  • the reduction rate of the olefinic double bond of the olefinic double bond-containing polymer, which is reduced by the hydrocyanation reaction is preferably 0.1 mol% or more, more preferably 50 mol% or more. Usually, it is preferably 100 mol% or less.
  • the reduction rate of the olefinic double bond is within the above range, the cyano group-containing polymer in which the amount of the olefinic double bond is reduced is efficiently obtained by the method for producing a cyano group-containing polymer of the present invention. be able to.
  • the decreasing rate of an olefinic double bond can be calculated
  • the cyano group-containing polymer obtained by the method for producing a cyano group-containing polymer of the present invention preferably has a hydrocyanation rate of 0.1% or more, more preferably 50% or more, usually It is preferable that it is 100% or less.
  • a hydrocyanation rate is within the above range, a cyano group-containing polymer with a reduced amount of olefinic double bonds can be efficiently obtained by the method for producing a cyano group-containing polymer of the present invention.
  • the hydrocyanation rate can be determined by the method described in the examples of this specification.
  • the cyano group containing polymer obtained after the said reaction process is collect
  • the method for recovering the cyano group-containing polymer is not particularly limited.
  • the reaction solution obtained after the reaction step is dropped into a poor solvent such as methanol to solidify the cyano group-containing polymer, and the filtration is performed. It can be recovered by separating the solidified cyano group-containing polymer using the solid-liquid separation means.
  • the weight average molecular weight of the cyano group-containing polymer obtained by the production method of the present invention is preferably 1000 or more, more preferably 30,000 or more, still more preferably 50,000 or more, 500 Is preferably 1,000 or less, and more preferably 100,000 or less. If the weight average molecular weight of the cyano group-containing polymer is within the above range, the cyano group-containing polymer obtained by the method for producing a cyano group-containing polymer of the present invention is suitable for producing, for example, rubber molded articles. Can be used.
  • the molecular weight distribution (weight average molecular weight / number average molecular weight) of the cyano group-containing polymer obtained by the production method of the present invention is preferably 1.0 or more, and preferably 4.0 or less. More preferably, it is 0.0 or less. If the molecular weight distribution of the cyano group-containing polymer is within the above range, the cyano group-containing polymer obtained by the production method of the present invention can be more suitably used, for example, when producing a rubber molded article or the like. .
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the cyano group-containing polymer obtained by the production method of the present invention can be measured using gel permeation chromatography.
  • the cyano group-containing polymer obtained by the production method of the present invention preferably has a glass transition temperature of ⁇ 150 ° C. or higher, more preferably ⁇ 50 ° C. or higher, and preferably ⁇ 10 ° C. or higher. More preferably, it is preferably 50 ° C. or lower, and more preferably 25 ° C. or lower.
  • the glass transition temperature of the cyano group-containing polymer is within the above range, the obtained cyano group-containing polymer can be more suitably used when producing, for example, a rubber molded article.
  • a glass transition temperature can be measured by the method as described in the Example of this specification.
  • the cyano group-containing polymer composition of the present invention includes a cyano group-containing polymer and a hydrocyanation catalyst, and optionally further includes a solvent and / or other components.
  • the cyano group-containing polymer contained in the cyano group-containing polymer composition has a cyano group and optionally further has an olefinic double bond.
  • the properties of the cyano group-containing polymer such as the weight average molecular weight of the cyano group-containing polymer contained in the cyano group-containing polymer composition are those containing the cyano group obtained by the method for producing a cyano group-containing polymer of the present invention. This can be the same as the properties of the polymer.
  • the solvent and / or other components optionally contained in the cyano group-containing polymer composition are the same as the solvent and other components optionally contained in the polymer composition of the present invention, and the following:
  • the vinyl group containing compound represented by Formula (3) is mentioned. R—CH ⁇ CH 2 (3)
  • R is the same as R in the formula (1), and the description thereof is omitted here.
  • the cyano group-containing polymer composition can be obtained by subjecting the polymer composition of the present invention to a hydrocyanation reaction. That is, the reaction mixture obtained by the method for producing a cyano group-containing polymer of the present invention can be used as it is as a cyano group-containing polymer composition.
  • the ratio of the cyano group-containing polymer to 100% of the total solid content in the cyano group-containing polymer composition is 0.1 mol% or more and 100 mol% or less. It is preferable. If the ratio of the cyano group-containing polymer to the total solid content in the cyano group-containing polymer composition is within the above range, the rubber composition can be efficiently used, for example, by using the cyano group-containing polymer composition of the present invention. Can be manufactured.
  • the hydrocyanation catalyst (total amount of nickel complex, promoter and ligand) with respect to 100% of the total solid content in the cyano group-containing polymer composition.
  • the ratio is preferably 0.005 mol% or more and 10 mol% or less. If the ratio of the hydrocyanation catalyst to the total solid content in the cyano group-containing polymer composition is within the above range, it is produced when a rubber molded article or the like is produced using the cyano group-containing polymer composition of the present invention. It is easy to remove the hydrocyanation catalyst remaining later.
  • the ratio of the vinyl group-containing compound to 100% of the total solid content in the cyano group-containing polymer composition is 0.1 mol% or more and 99 mol% or less. Is preferred. If the ratio of the vinyl group-containing compound with respect to the total solid content in the cyano group-containing polymer composition is within the above range, the rubber composition is produced using the cyano group-containing polymer composition of the present invention. Functionalization by removal and functionalization of the remaining vinyl group-containing compound becomes easy.
  • ⁇ Ratio of olefinic double bonds The NMR of the polymer before and after the reaction performed in each example and each comparative example was measured. Then, from the NMR peak value derived from the olefinic double bond of the polymer before the reaction and the NMR peak value derived from the olefinic double bond of the polymer after the reaction, the olefinic double bond in the polymer before the reaction is obtained. The ratio of olefinic double bonds in the polymer after the reaction when the ratio of bonds was 100% was determined. The smaller the ratio of olefinic double bonds, the smaller the amount of olefinic double bonds remaining in the polymer after the reaction.
  • ⁇ Decrease rate of olefinic double bond was calculated from the ratio of the integral value of the signal in the vinyl region and the integral value of the signal in the aliphatic region by dissolving the crude product after the reaction in deuterated chloroform and measuring 1 HNMR.
  • Tg ⁇ Glass transition temperature (Tg)> Using a differential scanning calorimeter (DSC, X-DSC7000 manufactured by Hitachi High-Tech Science Co., Ltd.), the glass transition temperature of the polymer obtained by the reaction under the condition of increasing the temperature from ⁇ 90 ° C. to 60 ° C. at 10 ° C./min. (Tg) was measured.
  • DSC differential scanning calorimeter
  • Index value range “0” to “100”
  • B Index value range is “ ⁇ 40” to “ ⁇ 1”
  • C Index value range is “ ⁇ 70” to “ ⁇ 41”
  • D Index value range is “ ⁇ 100” to “ ⁇ 71” The larger the index value, the better the reaction efficiency.
  • Example 1 Under a nitrogen atmosphere, a pressure resistant glass reaction vessel was charged with polybutadiene (1,2-vinyl bond to 1,4-vinyl bond mass ratio (1,2-vinyl bond / 1) as an olefinic double bond-containing polymer.
  • Example 2 The reaction was carried out in the same procedure as in Example 1. Specifically, polybutadiene (mass ratio of 1,2-vinyl bond and 1,4-vinyl bond as a polymer containing olefinic double bonds (1,2 -Vinyl bond / 1,4-vinyl bond): 95/5, weight average molecular weight: 44,500, molecular weight distribution: 1.03) 0.6 g, degassed and dehydrated butyronitrile as a cyano group-containing compound, 2 mL, and 20 mL of toluene as a solvent was added.
  • polybutadiene mass ratio of 1,2-vinyl bond and 1,4-vinyl bond as a polymer containing olefinic double bonds (1,2 -Vinyl bond / 1,4-vinyl bond): 95/5, weight average molecular weight: 44,500, molecular weight distribution: 1.03
  • degassed and dehydrated butyronitrile as a cyano group-containing
  • the olefinic double bond ratio, the olefinic double bond reduction rate, the hydrocyanation rate, the weight average molecular weight, the molecular weight distribution, and the glass transition temperature were measured for the obtained polymer.
  • the results are shown in Table 1. Further, it was confirmed by 1 HNMR that the reaction product contained the nickel complex, promoter and ligand used in Example 2.
  • Example 3 The reaction was carried out in the same procedure as in Example 1. Specifically, polybutadiene (mass ratio of 1,2-vinyl bond and 1,4-vinyl bond as a polymer containing olefinic double bonds (1,2 -Vinyl bond / 1,4-vinyl bond): 96/4, weight average molecular weight: 120,000, molecular weight distribution: 1.10) 0.6 g, degassed / dehydrated butyronitrile as a cyano group-containing compound, 2 mL, and 20 mL of toluene as a solvent was added.
  • polybutadiene mass ratio of 1,2-vinyl bond and 1,4-vinyl bond as a polymer containing olefinic double bonds (1,2 -Vinyl bond / 1,4-vinyl bond): 96/4, weight average molecular weight: 120,000, molecular weight distribution: 1.10
  • degassed / dehydrated butyronitrile as a cyano group-containing
  • the olefinic double bond ratio, the olefinic double bond reduction rate, the hydrocyanation rate, the weight average molecular weight, the molecular weight distribution, and the glass transition temperature were measured for the obtained polymer.
  • the results are shown in Table 1. Further, it was confirmed by 1 HNMR that the reaction product contained the nickel complex, promoter and ligand used in Example 3.
  • Example 4 The reaction was carried out in the same procedure as in Example 1. Specifically, polybutadiene (mass ratio of 1,2-vinyl bond and 1,4-vinyl bond as a polymer containing olefinic double bonds (1,2 -Vinyl bond / 1,4-vinyl bond): 83/17, weight average molecular weight: 64,000, molecular weight distribution: 1.07) 0.8 g, degassed and dehydrated butyronitrile as a cyano group-containing compound, 20 mL of toluene as a solvent was added.
  • polybutadiene mass ratio of 1,2-vinyl bond and 1,4-vinyl bond as a polymer containing olefinic double bonds (1,2 -Vinyl bond / 1,4-vinyl bond): 83/17, weight average molecular weight: 64,000, molecular weight distribution: 1.07
  • degassed and dehydrated butyronitrile as a cyano group-containing compound, 20
  • the olefinic double bond ratio, the olefinic double bond reduction rate, the hydrocyanation rate, the weight average molecular weight, the molecular weight distribution, and the glass transition temperature were measured for the obtained polymer.
  • the results are shown in Table 1. Further, it was confirmed by 1 HNMR that the reaction product contained the nickel catalyst, promoter and ligand used in Example 4.
  • Example 5 The reaction was carried out in the same procedure as in Example 1. Specifically, polybutadiene (mass ratio of 1,2-vinyl bond and 1,4-vinyl bond as a polymer containing olefinic double bonds (1,2 -Vinyl bond / 1,4-vinyl bond): 50/50, weight average molecular weight: 61,000, molecular weight distribution: 1.03) 0.3 g, degassed and dehydrated butyronitrile as a cyano group-containing compound, 10 mL of toluene as a solvent was added.
  • polybutadiene mass ratio of 1,2-vinyl bond and 1,4-vinyl bond as a polymer containing olefinic double bonds (1,2 -Vinyl bond / 1,4-vinyl bond): 50/50, weight average molecular weight: 61,000, molecular weight distribution: 1.03
  • degassed and dehydrated butyronitrile as a cyano group-containing compound
  • the olefinic double bond ratio, the olefinic double bond reduction rate, the hydrocyanation rate, the weight average molecular weight, the molecular weight distribution, and the glass transition temperature were measured for the obtained polymer.
  • the results are shown in Table 1. It was also confirmed by 1 HNMR that the reaction product contained the nickel complex, promoter and ligand used in Example 5.
  • Example 6 The reaction was carried out in the same procedure as in Example 1. Specifically, polycyclopentene (PCP) as an olefinic double bond-containing polymer (no branching, weight average molecular weight: 500,000, molecular weight distribution: 2.00) in a pressure resistant glass reaction vessel under a nitrogen atmosphere. ) 1 g, 8 mL of deaerated and dehydrated butyronitrile as a cyano group-containing compound, and 24 mL of toluene as a solvent were added.
  • PCP polycyclopentene
  • the olefinic double bond ratio, the olefinic double bond reduction rate, the hydrocyanation rate, the weight average molecular weight, the molecular weight distribution, and the glass transition temperature were measured for the obtained polymer.
  • the results are shown in Table 1. Further, it was confirmed by 1 HNMR that the reaction product contained the nickel complex, promoter and ligand used in Example 7.
  • Example 8 The reaction was carried out in the same procedure as in Example 1. Specifically, polybutadiene ((1,2-vinyl bond and 1,4-vinyl bond mass ratio (1,2 2-vinyl bond / 1,4-vinyl bond): 95/5, weight average molecular weight: 44,500, molecular weight distribution: 1.03) 0.6 g, decane nitrile 2 mL as cyano group-containing compound, and solvent 20 mL of toluene was added, and then 0.06 part (2 mol%) of bis (1,5-cyclooctadiene) nickel as a nickel complex with respect to 100 parts of polybutadiene and 0.
  • PBD polybutadiene
  • PCP polycyclopentene
  • Ni (COD) 2 represents bis (1,5-cyclooctadiene) nickel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

オレフィン性二重結合含有重合体と、 下記式(1) R-C-CN・・・(1) [式(1)中、Rは、素原子、置換基を有していてもよいアルキル基、置換基を有していてもよい芳香環基、シアノ基、ヒドロキシ基、またはシクロアルキル基を示す] で表されるシアノ基含有化合物と、ヒドロシアノ化触媒とを含む重合体組成物を用いてシアノ基含有重合体を製造する。

Description

重合体組成物、シアノ基含有重合体の製造方法およびシアノ基含有重合体組成物
 本発明は、重合体組成物およびそれを用いたシアノ基含有重合体の製造方法、ならびにシアノ基含有重合体組成物に関する。
 従来、シアノ基を含有する重合体が、様々な用途に使用されている。そして、シアノ基を含み、且つ、耐候性低下や弾性低下等の原因になり得るオレフィン性二重結合の量が低減されたゴム材料の製造方法として、例えば特許文献1では、共役ジエンおよび(メタ)アクリロニトリルを必須成分とするニトリル基含有の共重合体の炭素-炭素二重結合を、特定の触媒の存在下で選択的に水素化する方法が提案されている。
 また、非特許文献1では、パラジウム触媒の存在下、エチレンとアクリロニトリルとを共重合することにより、シアノ基を含み、且つ、オレフィン性二重結合を含まない共重合体を得る方法が提案されている。
 また、オレフィン性二重結合を有する化合物をヒドロシアノ化してシアノ基を導入する技術に関して、特許文献2では、2種のルイス酸促進剤の存在下、ゼロ価ニッケルにより触媒されたペンテンニトリルの接触ヒドロシアノ化により、アジポニトリル(ナイロン6,6の合成中間体)を得る方法が提案されている。
 また、非特許文献2においては、アルキルニトリルを用いてオレフィン類をヒドロシアノ化する方法として、オレフィン類およびブチロニトリルをニッケル触媒の存在下反応させて、オレフィン類をヒドロシアノ化する技術が提案されている。
特開平01-045402号公報 特開平02-006451号公報
K.Nozaki et al.、「Formation of linear copolymers of ethylene and acrylonitrile catalyzed by phosphine sulfonate palladium complexes」、Journal of the American Chemical Society 2007年、129巻、8948~8949頁 Morandi et al.、「Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation」、Science、2016年2月19日、第351巻、第6275号、832~836頁
 しかし、特許文献1の方法では、水素添加反応を行う際に、高圧の水素を使用しなければならないため、耐圧性の反応容器が必要という制約がある。
 また、非特許文献1の方法では、高分子量の重合体を得ることは難しい。
 更に、特許文献2に記載の方法は、毒性の高いシアン化水素を使用しなければならない点で問題である。
 そして、特許文献2および非特許文献2の方法は、低分子化合物のヒドロシアノ化に関する技術であり、特許文献2および非特許文献2では重合体のヒドロシアノ化に関しては何らの示唆もされていない。
 そのため、オレフィン性二重結合の量を低減させつつシアノ基を重合体に効率的に導入して、シアノ基含有重合体を簡便に製造する方法が求められていた。
 そこで、本発明は、オレフィン性二重結合の量を低減させつつシアノ基を重合体に効率的に導入して、シアノ基含有重合体を簡便に製造することを可能にする技術、および、オレフィン性二重結合の量が低減されたシアノ基含有重合体を含む組成物を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、ポリブタジエンなどのオレフィン性二重結合含有重合体をヒドロシアノ化すれば、オレフィン性二重結合の量を低減させつつ、シアノ基が導入された重合体が得られることに着想した。そこで、本発明者は更に検討を重ね、ヒドロシアノ化触媒の存在下、オレフィン性二重結合含有重合体と、所定のシアノ基含有化合物とを反応させると、オレフィン性二重結合含有重合体のオレフィン性二重結合が選択的にヒドロシアノ化されて、オレフィン性二重結合の量を低減させつつ、シアノ基を重合体に効率的に導入できることを見出し、本発明を完成させるに至った。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の重合体組成物は、オレフィン性二重結合含有重合体と、下記式(1)
     R-C-CN・・・(1)
[式(1)中、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよい芳香環基、シアノ基、ヒドロキシ基、またはシクロアルキル基を示す。]
で表されるシアノ基含有化合物と、ヒドロシアノ化触媒と、を含むことを特徴とする。このような成分を含む本発明の重合体組成物によれば、オレフィン性二重結合含有重合体をヒドロシアノ化し、オレフィン性二重結合の量を低減させつつシアノ基を重合体に効率的に導入して、シアノ基含有重合体を簡便に製造することができる。
 ここで、本発明の重合体組成物は、前記オレフィン性二重結合含有重合体の重量平均分子量が、1,000以上1,000,000以下であることが好ましい。オレフィン性二重結合含有重量体の重量平均分子量が上記範囲内であれば、オレフィン性二重結合含有重合体に起因したゲル化等の副反応を抑制できるため、シアノ基含有重合体を効率的に製造することができる。
 また、本発明の重合体組成物において、前記シアノ基含有化合物の含有量が、前記オレフィン性二重結合含有重合体に対して、0.05モル%以上200000モル%以下であることが好ましい。重合体組成物中のシアノ基含有化合物の含有量が上記範囲内であれば、本発明の重合体組成物を用いて、シアノ基含有重合体をより効率的に製造することができる。
 そして、本発明の重合体組成物において、前記式(1)中、前記Rが、置換基を有さないアルキル基であることが好ましい。式(1)中のRが、置換基を有さないアルキル基であれば、本発明の重合体組成物を用いて、シアノ基含有重合体を更に効率的に製造することができる。
 また、本発明の重合体組成物において、前記式(1)中、前記Rに含まれる炭素原子の数が30以下であることが好ましい。式(1)中、Rに含まれる炭素原子の数が30以下であれば、本発明の重合体組成物を用いてシアノ基含有重合体を製造する際に、シアノ基含有重合体の収率を向上させることができる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のシアノ基含有重合体の製造方法は、本発明の重合体組成物を用いて前記オレフィン性二重結合含有重合体のヒドロシアノ化反応を行う反応工程を含むことを特徴とする。本発明の重合体組成物を用いてオレフィン性二重結合含有重合体のヒドロシアノ化反応を行う反応工程を含むことで、オレフィン性二重結合の量を低減させつつシアノ基を重合体に効率的に導入して、シアノ基含有重合体を簡便に製造することができる。
 また、本発明のシアノ基含有重合体の製造方法において、前記ヒドロシアノ化反応によって減少する、前記オレフィン性二重結合含有重合体のオレフィン性二重結合の減少率が、0.1モル%以上100モル%以下であることが好ましい。ヒドロシアノ化反応によって減少する、オレフィン性二重結合の減少率が上記範囲内であれば、オレフィン性二重結合の量が好適に低減されたシアノ基含有重合体を提供することができる。
 そして、本発明のシアノ基含有重合体の製造方法では、前記反応工程を、下記式(2)
   R-CH=CH   ・・・(2)
[式(2)中、Rは、前記式(1)中のRと同じである。]
で表されるビニル基含有化合物の沸点以上の温度で行うことが好ましい。反応工程を式(2)で表されるビニル基含有化合物の沸点以上の温度で行うことで、ヒドロシアノ化反応が進行し易くなる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のシアノ基含有重合体組成物は、シアノ基含有重合体と、ヒドロシアノ化触媒とを含むことを特徴とする。本発明の重合体組成物を用いて上述したヒドロシアノ化反応を行うことによりシアノ基含有重合体を製造すれば、このような成分を含むシアノ基含有重合体組成物が得られる。
 本発明によれば、オレフィン性二重結合の量を低減させつつシアノ基を重合体に効率的に導入して、シアノ基含有重合体を簡便に製造するために用いることができる重合体組成物と、該重合体組成物を用いたシアノ基含有重合体の製造方法を提供することができる。更に、本発明によれば、オレフィン性二重結合の量が低減されたシアノ基含有重合体を含む、シアノ基含有重合体組成物を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の重合体組成物は、本発明のシアノ基含有重合体の製造方法において、シアノ基含有重合体を製造するために用いることができる。そして、本発明のシアノ基含有重合体の製造方法は、本発明の重合体組成物を用いることで、オレフィン性二重結合の量を低減させつつシアノ基を重合体に効率的に導入し、シアノ基含有重合体を簡便に製造する方法である。更に、本発明のシアノ基含有重合体組成物は、オレフィン性二重結合の量が低減されたシアノ基含有重合体を含む組成物であり、例えば、ゴム成形品などを製造する際に好適に使用することができる。
(重合体組成物)
 本発明の重合体組成物は、オレフィン性二重結合含有重合体と、シアノ基含有化合物と、ヒドロシアノ化触媒とを含み、任意に、溶媒および/またはその他の成分を更に含み得る。
<オレフィン性二重結合含有重合体>
 本発明の重合体組成物中に含まれるオレフィン性二重結合含有重合体は、ヒドロシアノ化触媒の存在下、シアノ基含有化合物とヒドロシアノ化反応する重合体である。本発明において、オレフィン性二重結合含有重合体は、分子中にオレフィン性二重結合としての炭素-炭素二重結合を有する重合体であれば、特に限定されるものではない。なお、本発明のオレフィン性二重結合含有重合体は、通常、シアノ基を有さないものである。
 オレフィン性二重結合含有重合体としては、共役ジエン化合物(例えば、1,3-ブタジエン、イソプレン等)や、非共役ジエン化合物などのオレフィン性二重結合を2つ以上有する化合物由来の単量体単位を含む重合体が挙げられる。具体的には、オレフィン性二重結合含有重合体としては、例えば、ポリブタジエン(PBD)、ポリイソプレン(PIP)、ポリシクロペンテン(PCP)、スチレン-イソプレン-スチレン-ブロック共重合体(SIS)、スチレンブタジエン共重合体(SBD)、アクリル重合体(ACL)、ポリブタジエン-ポリイソプレン共重合体(PBD-PI)、ポリジシクロペンタジエン、ポリノルボルネン等が挙げられ、中でも、PBD、PIP、PCP、SIS、ACLおよびPBD-PIが好ましく、PBD、PCP、SISおよびACLがより好ましい。なお、これらは1種を単独で用いてもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
 オレフィン性二重結合含有重合体が共役ジエン化合物由来の単量体単位を含む重合体である場合、当該オレフィン性二重結合含有重合体中の1,2-ビニル結合と1,4-ビニル結合の比率は、モル比(1,2-ビニル結合/1,4-ビニル結合)で、通常99/1~1/99であり、95/5~5/95が好ましく、90/10~10/90が特に好ましい。
[重量平均分子量(Mw)]
 そして、オレフィン性二重結合含有重合体の重量平均分子量(Mw)は、1,000以上であることが好ましく、2,000以上であることがより好ましく、3,000以上であることが更に好ましく、5,000以上であることがより一層好ましく、1,000,000以下であることが好ましく、600,000以下であることがより好ましく、500,000以下であることが更に好ましく、400,000以下であることがより一層好ましく、200,000以下であることが特に好ましく、100,000以下であることが最も好ましい。オレフィン性二重結合含有重合体の重量平均分子量が上記範囲内であれば、オレフィン性二重結合含有重合体に起因したゲル化等の副反応をより抑制できるため、シアノ基含有重合体をより効率的に製造することができる。また、オレフィン性二重結合含有重合体の重量平均分子量が上記上限値以下であれば、オレフィン性二重結合の量を効率的に低減させることができる。なお、本発明において、オレフィン性二重結合含有重合体の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィーを用いて測定することができる。
[分子量分布]
 そして、オレフィン性二重結合含有重合体の分子量分布(Mw/Mn)は、1以上であることが好ましく、10以下であることが好ましく、6以下であることがより好ましく、4以下であることが更に好ましく、2以下であることが特に好ましい。オレフィン性二重結合含有重合体の分子量分布が上記範囲内であれば、オレフィン性二重結合含有重合体によるゲル化等の副反応を更に抑制できるため、シアノ基含有重合体を更に効率的に製造することができる。なお、本発明において、分子量分布は、オレフィン性二重結合含有重合体の数平均分子量(Mn)に対する重量平均分子量(Mw)の比を指す。また、オレフィン性二重結合含有重合体の数平均分子量(Mn)は、ゲル浸透クロマトグラフィーを用いて測定することができる。
[オレフィン性二重結合含有重合体の製造方法]
 本発明の重合体組成物中に含まれるオレフィン性二重結合含有重合体は、例えば、乳化重合法、懸濁重合法、溶液重合法等の従来公知の方法により製造することができる。また、オレフィン性二重結合含有重合体として、市販品を用いてもよい。なお、本発明で用いるオレフィン性二重結合含有重合体は、通常、水素化されたものではない。
[オレフィン性二重結合含有重合体の含有量]
 そして、本発明の重合体組成物中、オレフィン性二重結合含有重合体の含有量は、重合体組成物中の全固形分100質量%に対して1質量%以上100質量%以下であることが好ましい。重合体組成物中のオレフィン性二重結合含有重合体の含有量が上記下限値以上であれば、本発明の重合体組成物を用いてシアノ基含有重合体を製造する際に、ヒドロシアノ化反応が好適に進行する。一方、重合体組成物中のオレフィン性二重結合含有重合体の含有量が上記上限値以下であれば、本発明の重合体組成物を用いてシアノ基含有重合体を製造する際に、ヒドロシアノ化反応後の触媒残渣を容易に除去することができる。
<シアノ基含有化合物>
 本発明の重合体組成物中に含まれるシアノ基含有化合物は、ヒドロシアノ化触媒の存在下、上述したオレフィン性二重結合含有重合体とヒドロシアノ化反応する化合物であり、下記式(1)で表される。
     R-C-CN・・・(1)
 そして、上記シアノ基含有化合物は、オレフィン性二重結合含有重合体が有するオレフィン性二重結合をヒドロシアノ化し、下記式(2)で表されるビニル基含有化合物を生成する。
   R-CH=CH   ・・・(2)
 ここで、上記式(1)および式(2)中、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよい芳香環基、シアノ基、ヒドロキシ基、またはシクロアルキル基を示す。
 そして、置換基を有していてもよいアルキル基のアルキル基は、直鎖状でも、分岐状でもよい。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基等が挙げられる。
 また、置換基を有していてもよい芳香環基の芳香環基としては、芳香族炭化水素環基、または、芳香族複素環基が挙げられる。
 そして、芳香族炭化水素環基としては、例えば、ベンゼン環基、ナフタレン環基、アントラセン環基、フェナントレン環基、ピレン環基、フルオレン環基等が挙げられる。これらの中でも、本発明の効果がより得られやすい点で、ベンゼン環基、ナフタレン環基、アントラセン環基、フルオレン環基が好ましく、ベンゼン環基、ナフタレン環基がより好ましい。
 更に、芳香族複素環基としては、例えば、1H-イソインドール-1,3(2H)-ジオン環基、1-ベンゾフラン環基、2-ベンゾフラン環基、アクリジン環基、イソキノリン環基、イミダゾール環基、インドール環基、オキサジアゾール環基、オキサゾール環基、オキサゾロピラジン環基、オキサゾロピリジン環基、オキサゾロピリダジル環基、オキサゾロピリミジン環基、キナゾリン環基、キノキサリン環基、キノリン環基、シンノリン環基、チアジアゾール環基、チアゾール環基、チアゾロピラジン環基、チアゾロピリジン環基、チアゾロピリダジン環基、チアゾロピリミジン環基、チオフェン環基、トリアジン環基、トリアゾール環基、ナフチリジン環基、ピラジン環基、ピラゾール環基、ピラノン環基、ピラン環基、ピリジン環基、ピリダジン環基、ピリミジン環基、ピロール環基、フェナントリジン環基、フタラジン環基、フラン環基、ベンゾ[b]チオフェン環基、ベンゾ[c]チオフェン環基、ベンゾイソオキサゾール環基、ベンゾイソチアゾール環基、ベンゾイミダゾール環基、ベンゾオキサジアゾール環基、ベンゾオキサゾール環基、ベンゾチアジアゾール環基、ベンゾチアゾール環基、ベンゾチオフェン環基、ベンゾトリアジン環基、ベンゾトリアゾール環基、ベンゾピラゾール環基、ペンゾピラノン環基、キサンテン環基等が挙げられる。
 これらの中でも、芳香族複素環基としては、フラン環基、ピラン環基、チオフェン環基、オキサゾール環基、オキサジアゾール環基、チアゾール環基、チアジアゾール環基等の単環の芳香族複素環基;および、ベンゾチアゾール環基、ベンゾオキサゾール環基、キノリン環基、1-ベンゾフラン環基、2-ベンゾフラン環基、ベンゾ[b]チオフェン環基、1H-イソインドール-1,3(2H)-ジオン環基、ベンゾ[c]チオフェン環基、チアゾロピリジン環基、チアゾロピラジン環基、ベンゾイソオキサゾール環基、ベンゾオキサジアゾール環基、ベンゾチアジアゾール環基、キサンテン環基等の縮合環の芳香族複素環基;が好ましい。
 そして、置換基を有していてもよいアルキル基、または置換基を有していてもよい芳香環基の置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基、ペンタフルオロエチル基等の少なくとも1つの水素原子がハロゲンで置換された炭素数1~6アルキル基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;-OCF;-C(=O)-R;-C(=O)-O-R;-O-C(=O)-R;および-SO;等が挙げられる。ここで、Rは、(i)置換基を有していてもよい炭素数1~20のアルキル基、(ii)置換基を有していてもよい炭素数2~20のアルケニル基、(iii)置換基を有していてもよい炭素数3~12のシクロアルキル基、または、(iv)置換基を有していてもよい炭素数5~12の芳香族炭化水素環基を表す。また、Rは、メチル基、エチル基等の炭素数1~6のアルキル基;または、フェニル基、4-メチルフェニル基、4-メトキシフェニル基等の、炭素数1~6のアルキル基若しくは炭素数1~6のアルコキシ基を置換基として有していてもよい炭素数6~20の芳香族炭化水素環基を表す。
 ここで、本発明の重合体組成物を用いてシアノ基含有重合体を効率的に製造できる観点から、上記式(1)および式(2)中、Rは、置換基を有さないアルキル基であることが好ましい。
 本発明において上記式(1)で表されるシアノ基含有化合物としては、具体的には、例えば、プロピオニトリル、ブチロニトリル、ペンタニトリル、3-フェニルプロピオニトリル、デカンニトリル等のアルキルニトリルが挙げられる。これらの中でも、本発明の重合体組成物を用いてシアノ基含有重合体を製造する際に、上記(1)で表されるシアノ基含有化合物の溶媒への溶解性を向上させることでシアノ基含有重合体の生産性を向上させる観点から、上記式(1)で表されるシアノ基含有化合物は、プロピオニトリル、ブチロニトリル、ペンタニトリルであることが好ましく、ブチロニトリルであることがより好ましい。
 ここで、上記式(1)で表されるシアノ基含有化合物において、式(1)中、Rに含まれる炭素原子の数は、30以下であることが好ましく、10以下であることがより好ましく、5以下であることが更に好ましい。Rに含まれる炭素原子の数が30以下であれば、オレフィン性二重結合含有重合体と、式(1)で表されるシアノ基含有化合物とのヒドロシアノ化反応によって生成する、下記式(2)
   R-CH=CH   ・・・(2)
[式(2)中、Rは、前記式(1)中のRと同じである。]
で表されるビニル基含有化合物が揮発して反応系外に排出され易くなる。そのため、平衡反応であるヒドロシアノ化反応を進行し易くして、シアノ基含有重合体の収率を向上させることができる。なお、上記Rが置換基を有する場合には、上記Rに含まれる炭素原子の数は、置換基の炭素原子を含めた数である。
[シアノ基含有化合物の製造方法]
 ここで、シアノ基含有化合物の製造方法は、特に限定されず、従来公知の方法により製造することができる。また、シアノ基含有化合物として、市販品を用いてもよい。
 [シアノ基含有化合物の含有量]
 そして、本発明の重合体組成物中、上記式(1)で表されるシアノ基含有化合物の含有量は、オレフィン性二重結合含有重合体100モル%に対して、0.05モル%以上であることが好ましく、0.2モル%以上であることがより好ましく、0.5モル%以上であることが更に好ましく、200000モル%以下であることが好ましく、10000モル%以下であることがより好ましく、5000モル%以下であることが更に好ましく、1000モル%以下であることがより一層好ましく、100モル%以下であることが特に好ましく、25モル%以下であることが最も好ましい。重合体組成物中、上記式(1)で表されるシアノ基含有化合物の含有量が上記範囲内であれば、本発明の重合体組成物を用いたシアノ基含有重合体の製造方法において、ヒドロシアノ化反応が好適に進行する。
<ヒドロシアノ化触媒>
 本発明の重合体組成物中に含まれるヒドロシアノ化触媒は、オレフィン性二重結合含有重合体と、上記式(1)で表されるシアノ基含有化合物とのヒドロシアノ化反応において、触媒として機能するものであれば限定されない。ヒドロシアノ化触媒としては、例えば、ニッケル錯体と、助触媒と、配位子とを用いることができる。
[ニッケル錯体]
 ここで、ニッケル錯体としては、例えば、塩化ニッケル(II)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ニッケル(II)ジクロリド、[1,2-ビス(ジフェニルホスィノ)エタン]ニッケル(II)ジクロリド、トリフルオロメタンスルホン酸ニッケル(II)、ビス(2,4-ペンタンジオナト)ニッケル(II)水和物、ビス(1,5-シクロオクタジエン)ニッケル等が挙げられる。これらの中でも、本発明の重合体組成物を用いたシアノ基含有重合体の製造方法において、ヒドロシアノ化反応を好適に行える観点からは、ビス(1,5-シクロオクタジエン)ニッケルが好ましい。
-ニッケル錯体の含有量-
 ここで、重合体組成物中、ニッケル錯体の含有量は、オレフィン性二重結合含有重合体100モル%に対して、0.01モル%以上であることが好ましく、0.05モル%以上であることがより好ましく、10モル%以下であることが好ましく、5モル%以下であることがより好ましい。重合体組成物中のニッケル錯体の含有量が上記範囲内であれば、本発明の重合体組成物を用いたシアノ基含有重合体の製造方法において、ヒドロシアノ化反応がより好適に進行する。
[助触媒]
 また、助触媒としては、例えば、トリクロロアルミニウム、トリブロモアルミニウム、ジクロロメチルアルミニウム、ジクロロエチルアルミニウム、ジエチルクロロアルミニウム、ジメチルクロロアルミニウム等のルイス酸が挙げられる。これらの中でも、本発明の重合体組成物を用いたシアノ基含有重合体の製造方法において、ヒドロシアノ化触媒の触媒機能が好適に発揮される観点からは、ジメチルクロロアルミニウムが好ましい。
-助触媒の含有量-
 また、重合体組成物中、助触媒の含有量は、オレフィン性二重結合含有重合体100モル%に対して、0.01モル%以上であることが好ましく、0.05モル%以上であることがより好ましく、10モル%以下であることが好ましく、5モル%以下であることがより好ましい。重合体組成物中の助触媒の含有量が上記範囲内であれば、本発明の重合体組成物を用いたシアノ基含有重合体の製造方法において、ヒドロシアノ化触媒の触媒機能がより好適に発揮される。
[配位子]
 そして、配位子としては、例えば、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリエチルホスフィン、トリパラフルオロフェニルホスフィン、トリパラトリフルオロメチルフェニルホスフィン、トリパラメトキシフェニルホスフィン、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル等が挙げられる。これらの中でも、本発明の重合体組成物を用いたシアノ基含有重合体の製造方法において、ヒドロシアノ化触媒の触媒機能が更に好適に発揮される観点からは、ビス[2-(ジフェニルホスフィノ)フェニル]エーテルが好ましい。
-配位子の含有量-
 そして、重合体組成物中、配位子の含有量は、オレフィン性二重結合含有重合体100モル%に対して、0.01モル%以上であることが好ましく、0.05モル%以上であることがより好ましく、10モル%以下であることが好ましく、5モル%以下であることがより好ましい。重合体組成物中の配位子の含有量が上記範囲内であれば、本発明の重合体組成物を用いたシアノ基含有重合体の製造方法において、ヒドロシアノ化触媒の触媒機能がより一層好適に発揮される。
[溶媒]
 更に、本発明の重合体組成物が任意に含み得る溶媒としては、特に限定されることなく、例えば、トルエン、キシレン、ベンゼン、クロロベンゼン、テトラヒドロフラン、シクロトルエン等が挙げられる。これらの中でも、本発明の重合体組成物を用いたシアノ基含有重合体の製造方法において、上記式(1)で表されるシアノ基含有化合物の溶媒への溶解性を向上させることで、シアノ基含有重合体の生産性を高める観点からは、溶媒として、トルエン、キシレン、ベンゼンが好ましく、トルエンがより好ましい。本発明の重合体組成物は、これらの溶媒のうち1種類を単独で含んでいてもよいし、2種類以上を含んでいてもよい。
-溶媒の含有量-
 そして、重合体組成物中に含まれ得る溶媒の含有量は、オレフィン性二重結合含有重合体100質量部に対して50質量部以上2000質量部以下であることが好ましい。重合体組成物中の溶媒の含有量が上記範囲内であれば、オレフィン性二重結合含有重合体に起因したゲル化等の副反応を十分に抑制できるため、シアノ基含有重合体を極めて効率的に製造することができる。
[その他の成分]
 また、重合体組成物中に任意に含まれ得るその他の成分としては、特に限定されることなく、例えば、上述したヒドロシアノ化触媒以外の他の触媒等が挙げられる。その他の成分は、本発明の効果を損なわない範囲で含み得る。
<重合体組成物の調製方法>
 本発明の重合体組成物の製造方法は、特に限定されるものではなく、上述した各成分を既知の方法により混合することで、重合体組成物を調製することができる。
 そして、本発明の重合体組成物は、シアノ基含有重合体を製造するために好適に用いることができる。そこで、以下では、本発明の重合体組成物を用いたシアノ基含有重合体の製造方法について説明するが、本発明の重合体組成物の用途は、以下の一例に限定されるものではない。
<シアノ基含有重合体の製造方法>
 本発明のシアノ基含有重合体の製造方法は、本発明の重合体組成物を用いてオレフィン性二重結合含有重合体のヒドロシアノ化反応を行う反応工程を含み、任意に、回収工程を含み得る。
<反応工程>
 本発明のシアノ基含有重合体の製造方法において、反応工程では、本発明の重合体組成物を用いて、オレフィン性二重結合含有重合体のヒドロシアノ化反応を行う。
[ヒドロシアノ化反応]
 反応工程で行うヒドロシアノ化反応は、本発明の重合体組成物に含まれるヒドロシアノ化触媒を触媒として、重合体組成物中のオレフィン性二重結合含有重合体と、上述した式(1)で表されるシアノ基含有化合物とを反応させる。このヒドロシアノ化反応により、オレフィン性二重結合含有重合体のオレフィン性二重結合は選択的にヒドロシアノ化されて、シアノ基が重合体に効率的に導入されたシアノ基含有重合体と、下記式(2)で表されるビニル基含有化合物とが得られる。
   R-CH=CH   ・・・(2)
 式(2)中、Rは、上述した式(1)中のRと同じであることから、ここでの説明は省略する。
 ここで、上記シアノ基含有重合体としては、例えば、以下の式(4)または式(5)で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(4)中、Phはフェニル基を示し、rはランダムを示し、m,n,oおよびpはそれぞれ繰り返し数を示す。
 また、上記式(5)中、Buはブタジエンを示し、rはランダムを示し、m,n,oおよびpはそれぞれ繰り返し数を示す。
-反応温度-
 そして、反応工程における反応温度は、20℃以上であることが好ましく、40℃以上であることがより好ましく、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることが更に好ましく、例えば、110℃程度とすることができる。反応温度が上記下限値以上であれば、反応工程においてヒドロシアノ化反応を十分に行うことができる。一方、反応温度が上記上限値以下であれば、反応工程においてオレフィン性二重結合含有重合体や上記式(1)で表されるシアノ基含有化合物の分解およびゲル化を十分に抑制することができる。
 ここで、上記反応工程は、上記式(2)で表されるビニル基含有化合物の沸点以上の温度で行うことが好ましい。なぜなら、ヒドロシアノ化反応は平衡反応であるため、反応温度を上記式(2)で表されるビニル基含有化合物の沸点以上の温度とすれば、ビニル基含有化合物が揮発して反応系外に排出されることにより、ヒドロシアノ化反応が進行し易くなるからである。
-反応時間-
 また、反応工程における反応時間は、1分以上であることが好ましく、5分以上であることがより好ましく、48時間以下であることが好ましく、24時間以下であることがより好ましく、例えば、30分程度とすることができる。反応時間が上記下限値以上であれば、反応工程においてヒドロシアノ化反応を十分に行うことができる。一方、反応時間が上記上限値以下であれば、シアノ基含有重合体の製造に要する時間を低減し、プロセス性を高めることができる。
[オレフィン性二重結合の減少率]
 そして、上記ヒドロシアノ化反応によって減少する、オレフィン性二重結合含有重合体のオレフィン性二重結合の減少率は、0.1モル%以上であることが好ましく、50モル%以上であることがより好ましく、通常は100モル%以下であることが好ましい。オレフィン性二重結合の減少率が上記範囲内であれば、本発明のシアノ基含有重合体の製造方法によって、オレフィン性二重結合の量が低減されたシアノ基含有重合体を効率的に得ることができる。なお、オレフィン性二重結合の減少率は、本明細書の実施例に記載の方法によって求めることができる。
[ヒドロシアノ化率]
 また、本発明のシアノ基含有重合体の製造方法によって得られるシアノ基含有重合体は、ヒドロシアノ化率が0.1%以上であることが好ましく、50%以上であることがより好ましく、通常は100%以下であることが好ましい。ヒドロシアノ化率が上記範囲内であれば、本発明のシアノ基含有重合体の製造方法によって、オレフィン性二重結合の量が低減されたシアノ基含有重合体を効率的に得ることができる。なお、ヒドロシアノ化率は、本明細書の実施例に記載の方法によって求めることができる。
<回収工程>
 そして、本発明のシアノ基含有重合体の製造方法が任意に含み得る回収工程では、上記反応工程後に得られたシアノ基含有重合体を回収する。シアノ基含有重合体の回収方法は、特に限定されることなく、例えば、反応工程の後に得られた反応溶液をメタノール等の貧溶媒中に滴下してシアノ基含有重合体を凝固させ、ろ過などの固液分離手段を用いて凝固したシアノ基含有重合体を分離することにより、回収することができる。
[シアノ基含有重合体の重量平均分子量]
 本発明の製造方法によって得られるシアノ基含有重合体の重量平均分子量は、1000以上であることが好ましく、30,000以上であることがより好ましく、50,000以上であることが更に好ましく、500,000以下であることが好ましく、100,000以下であることがより好ましい。シアノ基含有重合体の重量平均分子量が上記範囲内であれば、本発明のシアノ基含有重合体の製造方法によって得られるシアノ基含有重合体を、例えばゴム成形品などを製造する際に好適に使用することができる。
[分子量分布]
 そして、本発明の製造方法によって得られるシアノ基含有重合体の分子量分布(重量平均分子量/数平均分子量)は、1.0以上であることが好ましく、4.0以下であることが好ましく、2.0以下であることがより好ましい。シアノ基含有重合体の分子量分布が上記範囲内であれば、本発明の製造方法によって得られるシアノ基含有重合体を、例えば、ゴム成形品などを製造する際に更に好適に使用することができる。
 なお、本発明の製造方法によって得られるシアノ基含有重合体の重量平均分子量(Mw)および数平均分子量(Mn)は、ゲル浸透クロマトグラフィーを使用して測定することができる。
[ガラス転移温度]
 そして、本発明の製造方法によって得られるシアノ基含有重合体は、ガラス転移温度が-150℃以上であることが好ましく、-50℃以上であることがより好ましく、-10℃以上であることが更に好ましく、50℃以下であることが好ましく、25℃以下であることがより好ましい。シアノ基含有重合体のガラス転移温度が上記範囲内であれば、得られるシアノ基含有重合体を、例えばゴム成形品などを製造する際により一層好適に使用することができる。なお、ガラス転移温度は、本明細書の実施例に記載の方法によって測定することができる。
<シアノ基含有重合体組成物>
 そして、本発明のシアノ基含有重合体組成物は、シアノ基含有重合体と、ヒドロシアノ化触媒とを含み、任意に溶媒および/またはその他の成分を更に含む。
 ここで、シアノ基含有重合体組成物中に含まれるシアノ基含有重合体は、シアノ基を有し、任意に、オレフィン性二重結合を更に有するものである。なお、シアノ基含有重合体組成物中に含まれるシアノ基含有重合体の重量平均分子量等のシアノ基含有重合体の性状は、本発明のシアノ基含有重合体の製造方法によって得られるシアノ基含有重合体の性状と同様とすることができる。
 更に、シアノ基含有重合体組成物中に任意で含まれる溶媒および/またはその他の成分としては、本発明の重合体組成物中に任意で含まれる溶媒やその他の成分と同様のものの他、下記式(3)で表されるビニル基含有化合物が挙げられる。
   R-CH=CH   ・・・(3)
 なお、式(3)中、Rは、前記式(1)中のRと同じであることから、ここでの説明は省略する。
 そして、シアノ基含有重合体組成物は、本発明の重合体組成物をヒドロシアノ化反応させることにより、得ることができる。即ち、本発明のシアノ基含有重合体の製造方法によって得られる反応混合物を、そのまま、シアノ基含有重合体組成物として用いることができる。
 なお、本発明のシアノ基含有重合体組成物において、シアノ基含有重合体組成物中の全固形分100%に対するシアノ基含有重合体の割合は、0.1モル%以上100モル%以下であることが好ましい。シアノ基含有重合体組成物中の全固形分に対するシアノ基含有重合体の割合が上記範囲内であれば、本発明のシアノ基含有重合体組成物を用いて、例えばゴム成形品などを効率的に製造することができる。
 また、本発明のシアノ基含有重合体組成物において、シアノ基含有重合体組成物中の全固形分100%に対するヒドロシアノ化触媒(ニッケル錯体と、助触媒と、配位子との合計量)の割合は、0.005モル%以上10モル%以下であることが好ましい。シアノ基含有重合体組成物中の全固形分に対するヒドロシアノ化触媒の割合が上記範囲内であれば、本発明のシアノ基含有重合体組成物を用いてゴム成形品などを製造した際に、製造後に残存するヒドロシアノ化触媒の除去が容易となる。
 更に、本発明のシアノ基含有重合体組成物において、シアノ基含有重合体組成物中の全固形分100%に対するビニル基含有化合物の割合は、0.1モル%以上99モル%以下であることが好ましい。シアノ基含有重合体組成物中の全固形分に対するビニル基含有化合物の割合が上記範囲内であれば、本発明のシアノ基含有重合体組成物を用いてゴム成形品などを製造した後に、製造後に残存するビニル基含有化合物の除去および官能基化による機能化が容易となる。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではなない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、数平均分子量、分子量分布、ガラス転移温度、および反応効率は、それぞれ以下の方法を使用して測定または評価した。
<オレフィン性二重結合の割合>
 各実施例および各比較例で行う反応前後における重合体のNMRを測定した。そして、反応前の重合体のオレフィン性二重結合由来のNMRピーク値と、反応後の重合体のオレフィン性二重結合由来のNMRピーク値とから、反応前の重合体中のオレフィン性二重結合の割合を100%としたときの、反応後の重合体中のオレフィン性二重結合の割合を求めた。オレフィン性二重結合の割合が少ないほど、反応後に重合体中に残存するオレフィン性二重結合の量が少ないことを示す。
<オレフィン性二重結合の減少率>
 オレフィン性二重結合の減少率は、反応後の粗生成物を重クロロホルムに溶解させHNMRを測定し、ビニル領域のシグナルの積分値と脂肪族領域のシグナルの積分値の比率から算出した。
<ヒドロシアノ化率>
 各実施例および各比較例で行う反応前のオレフィン性二重結合含有重合体のオレフィン性二重結合由来のNMRピーク値と、反応後に得られた重合体のオレフィン性二重結合由来のNMRピーク値との差を百分率で示したものを、ヒドロシアノ化率とした。
<重量平均分子量、数平均分子量および分子量分布>
 ゲル浸透クロマトグラフィーを用いて重合体の重量平均分子量(Mw)および数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を算出した。
 その際、測定器としてはHLC-8320(東ソー社製)を用い、カラムはTSKgelα-M(東ソー社製)二本を直列に連結して用い、検出器は示差屈折計RI-8320(東ソー社製)を用いた。そして、展開溶媒としてテトラヒドロフランを用いて、重合体の重量平均分子量(Mw)および数平均分子量(Mn)を標準ポリスチレン換算値として求めた。そして、分子量分布(Mw/Mn)を算出した。
<ガラス転移温度(Tg)>
 示差走査型熱量計(DSC,日立ハイテクサイエンス社製X-DSC7000)を用いて、-90℃~60℃まで10℃/分で昇温する条件で、反応により得られた重合体のガラス転移温度(Tg)を測定した。
<反応効率の評価>
 ヒドロシアノ化率と、オレフィン性二重結合含有重合体の全有機基中に占めるビニル基の割合との差(「ヒドロシアノ化率」-「オレフィン性二重結合含有重合体の全有機基中に占めるビニル基の割合」。なお、オレフィン性二重結合含有重合体がポリブタジエンの場合には、「1,2-ビニル結合」の割合を、「オレフィン性二重結合含有重合体の全有機基中に占めるビニル基の割合」とした。)を反応効率の指標値として用いた。そして、この指標値から、反応効率を以下のように評価した。
   A・・・指標値の範囲「0」~「100」
   B・・・指標値の範囲が「-40」~「-1」
   C・・・指標値の範囲が「-70」~「-41」
   D・・・指標値の範囲が「-100」~「-71」
 指標値が大きいほど、反応効率が良いことを示す。
(実施例1)
 窒素雰囲気下、耐圧性のガラス反応容器に、オレフィン性二重結合含有重合体としてのポリブタジエン(1,2-ビニル結合と1,4-ビニル結合との質量比(1,2-ビニル結合/1,4-ビニル結合):90/10、重量平均分子量:5,800、分子量分布:1.31)12.5gと、シアノ基含有化合物として、脱気・脱水したブチロニトリル30mLとを加えた後、ニッケル錯体としてのビス(1,5-シクロオクタジエン)ニッケルをポリブタジエン100部に対して0.12部(0.285モル%)と、助触媒としてのジメチルクロロアルミニウム0.23mL(ポリブタジエンに対して0.285モル%)と、配位子としてのビス[2-(ジフェニルホスフィノ)フェニル]エーテルをポリブタジエン100部に対して0.24部(0.285モル%)と、を加えた。この混合物を、窒素雰囲気下、120℃で17時間反応させた。反応後に得られた重合体について、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、分子量分布およびガラス転移温度を測定した。結果を表1に示す。また、反応生成物中に実施例1で使用したニッケル錯体、助触媒および配位子が含まれていることをHNMRによって確認した。
(実施例2)
 実施例1と同様の手順で反応を行った。具体的には、窒素雰囲気下、耐圧性のガラス反応容器に、オレフィン性二重結合含有重合体としてのポリブタジエン(1,2-ビニル結合と1,4-ビニル結合との質量比(1,2-ビニル結合/1,4-ビニル結合):95/5、重量平均分子量:44,500、分子量分布:1.03)0.6g、シアノ基含有化合物として、脱気・脱水したブチロニトリル2mL、および溶媒としてのトルエン20mLを加えた。その後、ニッケル錯体としてのビス(1,5-シクロオクタジエン)ニッケルをポリブタジエン100部に対して0.06部(2モル%)と、助触媒としてのジメチルクロロアルミニウム0.22mL(ポリブタジエンに対して2モル%)と、配位子としてのビス[2-(ジフェニルホスフィノ)フェニル]エーテルをポリブタジエン100部に対して0.12部(2モル%)と、を加えた。この混合物を、窒素雰囲気下、110℃で30分間反応させた。反応後、得られた重合体について、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、分子量分布およびガラス転移温度を測定した。結果を表1に示す。また、反応生成物中に、実施例2で使用したニッケル錯体、助触媒および配位子が含まれていることをHNMRによって確認した。
(実施例3)
 実施例1と同様の手順で反応を行った。具体的には、窒素雰囲気下、耐圧性のガラス反応容器に、オレフィン性二重結合含有重合体としてのポリブタジエン(1,2-ビニル結合と1,4-ビニル結合との質量比(1,2-ビニル結合/1,4-ビニル結合):96/4、重量平均分子量:120,000、分子量分布:1.10)0.6g、シアノ基含有化合物として、脱気・脱水したブチロニトリル2mL、および溶媒としてのトルエン20mLを加えた。その後、ニッケル錯体としてのビス(1,5-シクロオクタジエン)ニッケルをポリブタジエン100部に対して0.06部(2モル%)と、助触媒としてのジメチルクロロアルミニウム0.22mL(ポリブタジエンに対して2モル%)と、配位子としてのビス[2-(ジフェニルホスフィノ)フェニル]エーテルをポリブタジエン100部に対して0.12部(2モル%)と、を加えた。この混合物を、窒素雰囲気下、110℃で30分間反応させた。反応後、得られた重合体について、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、分子量分布およびガラス転移温度を測定した。結果を表1に示す。また、反応生成物中に、実施例3で使用したニッケル錯体、助触媒および配位子が含まれていることをHNMRによって確認した。
(実施例4)
 実施例1と同様の手順で反応を行った。具体的には、窒素雰囲気下、耐圧性のガラス反応容器に、オレフィン性二重結合含有重合体としてのポリブタジエン(1,2-ビニル結合と1,4-ビニル結合との質量比(1,2-ビニル結合/1,4-ビニル結合):83/17、重量平均分子量:64,000、分子量分布:1.07)0.8g、シアノ基含有化合物として、脱気・脱水したブチロニトリル2mL、および溶媒としてのトルエン20mLを加えた。その後、ニッケル錯体としてのビス(1,5-シクロオクタジエン)ニッケルをポリブタジエン100部に対して0.06部(1.8モル%)と、助触媒としてのジメチルクロロアルミニウム0.22mL(ポリブタジエンに対して1.8モル%)と、配位子としてのビス[2-(ジフェニルホスフィノ)フェニル]エーテルをポリブタジエン100部に対して0.12部(1.8モル%)と、を加えた。この混合物を、窒素雰囲気下、110℃で30分間反応させた。反応後、得られた重合体について、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、分子量分布およびガラス転移温度を測定した。結果を表1に示す。また、反応生成物中に、実施例4で使用したニッケル触媒、助触媒および配位子が含まれていることをHNMRによって確認した。
(実施例5)
 実施例1と同様の手順で反応を行った。具体的には、窒素雰囲気下、耐圧性のガラス反応容器に、オレフィン性二重結合含有重合体としてのポリブタジエン(1,2-ビニル結合と1,4-ビニル結合との質量比(1,2-ビニル結合/1,4-ビニル結合):50/50、重量平均分子量:61,000、分子量分布:1.03)0.3g、シアノ基含有化合物として、脱気・脱水したブチロニトリル1mL、および溶媒としてのトルエン10mLを加えた。その後、ニッケル錯体としてのビス(1,5-シクロオクタジエン)ニッケルをポリブタジエン100部に対して0.03部(2モル%)と、助触媒としてのジメチルクロロアルミニウム0.11mL(ポリブタジエンに対して2モル%)と、配位子としてのビス[2-(ジフェニルホスフィノ)フェニル]エーテルをポリブタジエン100部に対して0.06部(2モル%)と、を加えた。この混合物を、窒素雰囲気下、110℃で30分間反応させた。反応後、得られた重合体について、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、分子量分布およびガラス転移温度を測定した。結果を表1に示す。また、反応生成物中に、実施例5で使用したニッケル錯体、助触媒および配位子が含まれていることをHNMRによって確認した。
(実施例6)
 実施例1と同様の手順で反応を行った。具体的には、窒素雰囲気下、耐圧性のガラス反応容器に、オレフィン性二重結合含有重合体としてのポリシクロペンテン(PCP)(分岐なし、重量平均分子量:500,000、分子量分布:2.00)1gと、シアノ基含有化合物として、脱気・脱水したブチロニトリル8mL、および溶媒としてのトルエン24mLとを加えた。その後、ニッケル錯体としてのビス(1,5-シクロオクタジエン)ニッケルをポリシクロペンテン100部に対して0.72部(2モル%)と、助触媒としてのジメチルクロロアルミニウム0.27mL(ポリシクロペンテンに対して2モル%)と、配位子としてのビス[2-(ジフェニルホスフィノ)フェニル]エーテルをポリシクロペンテン100部に対して0.14質量部(2モル%)と、を加えた。この混合物を、窒素雰囲気下、110℃で4時間反応させた。反応後、得られた重合体について、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、分子量分布およびガラス転移温度を測定した。結果を表1に示す。また、反応生成物中に、実施例6で使用したニッケル錯体、助触媒および配位子が含まれていることをHNMRによって確認した。
(実施例7)
 実施例1と同様の手順で反応を行った。具体的には、窒素雰囲気下、耐圧性のガラス反応容器に、オレフィン性二重結合含有重合体としてのポリブタジエン(1,2-ビニル結合と1,4-ビニル結合との質量比(1,2-ビニル結合/1,4-ビニル結合):95/5、重量平均分子量:44,500、分子量分布:1.03)0.6g、シアノ基含有化合物として、脱気・脱水した3-フェニルプロピオニトリル2mL、および溶媒としてのトルエン20mLを加えた。その後、ニッケル錯体としてのビス(1,5-シクロオクタジエン)ニッケルをポリブタジエン100部に対して0.06部(2モル%)と、助触媒としてのジメチルクロロアルミニウム0.22mL(ポリブタジエンに対して2モル%)と、配位子としてのビス[2-(ジフェニルホスフィノ)フェニル]エーテルをポリブタジエン100部に対して0.12質量部(2モル%)と、を加えた。この混合物を、窒素雰囲気下、110℃で30分間反応させた。反応後、得られた重合体について、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、分子量分布およびガラス転移温度を測定した。結果を表1に示す。また、反応生成物中に、実施例7で使用したニッケル錯体、助触媒および配位子が含まれていることをHNMRによって確認した。
(実施例8)
 実施例1と同様の手順で反応を行った。具体的には、窒素雰囲気下、耐圧性のガラス反応容器に、オレフィン性二重結合含有重合体としてのポリブタジエン((1,2-ビニル結合と1,4-ビニル結合との質量比(1,2-ビニル結合/1,4-ビニル結合):95/5、重量平均分子量:44,500、分子量分布:1.03)0.6g、シアノ基含有化合物としてのデカンニトリル2mL、および溶媒としてのトルエン20mLを加えた。その後、ニッケル錯体としてのビス(1,5-シクロオクタジエン)ニッケルをポリブタジエン100部に対して0.06部(2モル%)と、助触媒としてのジメチルクロロアルミニウム0.22mL(ポリブタジエンに対して2モル%)と、配位子としてのビス[2-(ジフェニルホスフィノ)フェニル]エーテルをポリブタジエン100部に対して0.12部(2モル%)と、を加え、110℃で30分間反応させた。反応後、得られた重合体について、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、分子量分布およびガラス転移温度を測定した。結果を表1に示す。また、反応生成物中に、実施例8で使用したニッケル触媒、助触媒および配位子が含まれていることをHNMRによって確認した。
(比較例1)
 窒素雰囲気下、耐圧性のガラス反応容器に、オレフィン性二重結合含有重合体としてのポリブタジエン(1,2-ビニル結合と1,4-ビニル結合との質量比(1,2-ビニル結合/1,4-ビニル結合):95/5、重量平均分子量:44,500、分子量分布:1.03)0.6g、シアノ基含有化合物としてのアクリロニトリル2mL、および溶媒としてのトルエン20mLを加えた。その後、ニッケル錯体としてのビス(1,5-シクロオクタジエン)ニッケルをポリブタジエン100部に対して0.06部(2モル%)と、助触媒としてのジメチルクロロアルミニウム0.22mL(ポリブタジエンに対して2モル%)と、配位子としてのビス[2-(ジフェニルホスフィノ)フェニル]エーテルをポリブタジエン100部に対して0.12部(2モル%)と、を加えた。この混合物を、窒素雰囲気下、110℃で17時間反応させた。反応後、得られた重合体について、オレフィン性二重結合の割合、オレフィン性二重結合の減少率、ヒドロシアノ化率、重量平均分子量、分子量分布およびガラス転移温度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1中、「PBD」は、ポリブタジエンを表し、「PCP」はポリシクロペンテンを表し、「Ni(COD)」は、ビス(1,5-シクロオクタジエン)ニッケルを表す。
 表1より、シアノ基含有化合物として、本発明で規定する所定のシアノ基含有化合物を使用した実施例1~8では、反応によってオレフィン性二重結合含有重合体中のポリブタジエンまたはポリシクロペンテンのオレフィン性二重結合の量が低減し、反応後に得られた重合体にはシアノ基が導入されていることが分かる。
 これに対し、シアノ基含有化合物として、本発明で規定する所定のシアノ基含有化合物に含まれないアクリロニトリルを使用した比較例1では、反応によってオレフィン性二重結合含有重合体としてのポリブタジエンのオレフィン性二重結合の量が低減せず、反応後に得られた重合体にはシアノ基が導入されていないことが分かる。
 本発明によれば、オレフィン性二重結合の量を低減させつつシアノ基を重合体に効率的に導入して、シアノ基含有重合体を簡便に製造することを可能にする技術を提供することができる。

Claims (9)

  1.  オレフィン性二重結合含有重合体と、
     下記式(1)
         R-C-CN・・・(1)
    [式(1)中、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよい芳香環基、シアノ基、ヒドロキシ基、またはシクロアルキル基を示す。]
    で表されるシアノ基含有化合物と、
     ヒドロシアノ化触媒と、
    を含む、重合体組成物。
  2.  前記オレフィン性二重結合含有重合体の重量平均分子量が、1,000以上1,000,000以下である、請求項1に記載の重合体組成物。
  3.  前記シアノ基含有化合物の含有量が、前記オレフィン性二重結合含有重合体に対して、0.05モル%以上200000モル%以下である、請求項1または2に記載の重合体組成物。
  4.  前記式(1)中、前記Rが、置換基を有さないアルキル基である、請求項1~3のいずれか1項に記載の重合体組成物。
  5.  前記式(1)中、前記Rに含まれる炭素原子の数が30以下である、請求項1~4のいずれか1項に記載の重合体組成物。
  6.  請求項1~5のいずれか1項に記載の重合体組成物を用いて前記オレフィン性二重結合含有重合体のヒドロシアノ化反応を行う反応工程を含む、シアノ基含有重合体の製造方法。
  7.  前記ヒドロシアノ化反応によって減少する、前記オレフィン性二重結合含有重合体のオレフィン性二重結合の減少率が、0.1モル%以上100モル%以下である、請求項6に記載のシアノ基含有重合体の製造方法。
  8.  前記反応工程を、下記式(2)
       R-CH=CH   ・・・(2)
    [式(2)中、Rは、前記式(1)中のRと同じである。]
    で表されるビニル基含有化合物の沸点以上の温度で行う、請求項6または7に記載のシアノ基含有重合体の製造方法。
  9.  シアノ基含有重合体と、
     ヒドロシアノ化触媒と、
    を含む、シアノ基含有重合体組成物。
PCT/JP2019/016610 2018-04-26 2019-04-18 重合体組成物、シアノ基含有重合体の製造方法およびシアノ基含有重合体組成物 WO2019208380A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020516282A JP7375747B2 (ja) 2018-04-26 2019-04-18 重合体組成物、シアノ基含有重合体の製造方法およびシアノ基含有重合体組成物
US17/049,336 US20210054130A1 (en) 2018-04-26 2019-04-18 Polymer composition, method of producing cyano group-containing polymer, and cyano group-containing polymer composition
CN201980025377.3A CN111971345A (zh) 2018-04-26 2019-04-18 聚合物组合物、含氰基聚合物的制造方法及含氰基聚合物组合物
EP19793034.0A EP3786234A4 (en) 2019-04-18 Polymer composition, production method for cyano group-containing polymer, and cyano group-containing polymer composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018085256 2018-04-26
JP2018-085256 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019208380A1 true WO2019208380A1 (ja) 2019-10-31

Family

ID=68294510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016610 WO2019208380A1 (ja) 2018-04-26 2019-04-18 重合体組成物、シアノ基含有重合体の製造方法およびシアノ基含有重合体組成物

Country Status (4)

Country Link
US (1) US20210054130A1 (ja)
JP (1) JP7375747B2 (ja)
CN (1) CN111971345A (ja)
WO (1) WO2019208380A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507451A (ja) * 1999-08-26 2003-02-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー モノオレフィン類のニッケル触媒ヒドロシアノ化のための不溶性ルイス酸促進剤
JP2007519666A (ja) * 2004-01-29 2007-07-19 ビーエーエスエフ アクチェンゲゼルシャフト 1,3−ブタジエンをヒドロシアノ化する方法
JP2012025939A (ja) * 2010-07-23 2012-02-09 National Cheng Kung Univ 低いゲル化温度を有する電解質組成物及びそれを用いた電子デバイスの製造方法
JP2012515839A (ja) * 2009-01-23 2012-07-12 株式会社ブリヂストン ポリシアノ化合物で官能化されたポリマー
JP2014523893A (ja) * 2011-07-08 2014-09-18 ロディア オペレーションズ ニトリル官能基を有する化合物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728927A1 (de) * 1987-08-29 1989-03-09 Bayer Ag Nitrilgruppenhaltige polymere
FR2742760B1 (fr) * 1995-12-22 1998-01-30 Atochem Elf Sa Oligomeres de 1,3 diene partiellement hydrogenes aminotelecheliques et procede de preparation de ces composes
US20060189774A1 (en) * 2005-02-18 2006-08-24 Agency For Science, Technology And Research Modifiable polyunsaturated polymers and processes for their preparation
CN105693986B (zh) * 2016-01-29 2018-04-17 上海益弹新材料有限公司 一种耐高温高湿的液压支架密封件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507451A (ja) * 1999-08-26 2003-02-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー モノオレフィン類のニッケル触媒ヒドロシアノ化のための不溶性ルイス酸促進剤
JP2007519666A (ja) * 2004-01-29 2007-07-19 ビーエーエスエフ アクチェンゲゼルシャフト 1,3−ブタジエンをヒドロシアノ化する方法
JP2012515839A (ja) * 2009-01-23 2012-07-12 株式会社ブリヂストン ポリシアノ化合物で官能化されたポリマー
JP2012025939A (ja) * 2010-07-23 2012-02-09 National Cheng Kung Univ 低いゲル化温度を有する電解質組成物及びそれを用いた電子デバイスの製造方法
JP2014523893A (ja) * 2011-07-08 2014-09-18 ロディア オペレーションズ ニトリル官能基を有する化合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG, XIANJIEPENG YUBILL MORANDI: "Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation", SCIENCE, vol. 351.6275, 2016, pages 832 - 836, XP055268889, DOI: 10.1126/science.aae0427
KOCHI, TAKUYA ET AL.: "Formation of linear copolymers of ethylene and acrylonitrile catalyzed by phosphine sulfonate palladium complexes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129.29, 2007, pages 8948 - 8949, XP008132604, DOI: 10.1021/ja0725504

Also Published As

Publication number Publication date
JPWO2019208380A1 (ja) 2021-05-13
JP7375747B2 (ja) 2023-11-08
US20210054130A1 (en) 2021-02-25
CN111971345A (zh) 2020-11-20
EP3786234A1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP4691867B2 (ja) 環状オレフィンの開環重合体水素化物の製造方法
US8362171B2 (en) Norbornene monomers with an epoxy group and polymer material thereof
EP3617182A1 (en) Method for producing alpha-fluoroacrylic acid ester
CN107987107B (zh) 钌卡宾催化剂及其催化的降冰片烯开环易位聚合反应
CA2561908A1 (en) A process for the preparation of vinylaromatic (co)polymers grafted on an elastomer in a controlled way
CN109762027A (zh) 一种对位含芳基取代的α-二亚胺镍配合物及其制备方法和应用
Wappel et al. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands
JP7375747B2 (ja) 重合体組成物、シアノ基含有重合体の製造方法およびシアノ基含有重合体組成物
US8030424B2 (en) Cyclobutene polymers and methods of making the same
US8609804B2 (en) Polyarylene polymers and processes for preparing
CN112480374A (zh) 一种极性环烯烃共聚物及其制备方法
JP2012500310A5 (ja)
Wei et al. Ring opening metathesis polymerization of triazole‐bearing cyclobutenes: Diblock copolymer synthesis and evaluation of the effect of side group size on polymerization kinetics
Maeyama et al. Synthesis of fully aromatic polyketones without ether linkages in the main chain. Nickel complex-mediated aromatic coupling polymerization of bis (chlorobenzoylated) o-terphenyls
CN105254786B (zh) 一种C‑C桥连[ONNO]‑β‑酮亚胺金属催化剂及制备方法
JP2010254880A (ja) 架橋重合体
EP1520846B1 (en) Method for producing polymerized hydrocarbon
JP7419681B2 (ja) シアノ基含有炭化水素樹脂およびその製造方法
KR101748323B1 (ko) 염소계 유기용매를 이용한 고분자 중합방법
Çetinkaya et al. Synthesis of high‐Tg polymers via ROMP of oxanorbornene dicarboximides with halogen groups
JP2004149704A (ja) 環状ジエン単量体、重合体、およびそれらの製造方法
JP5257232B2 (ja) エチレン系共重合体の製造方法
JP4925629B2 (ja) スルホンアミド化合物
JP2007314668A (ja) 環状オレフィン系開環重合体水素化物およびその製造方法並びに架橋重合体およびその製造方法
JP2016014105A (ja) ポリマーアロイ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019793034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019793034

Country of ref document: EP

Effective date: 20201126