WO2019208153A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2019208153A1
WO2019208153A1 PCT/JP2019/015021 JP2019015021W WO2019208153A1 WO 2019208153 A1 WO2019208153 A1 WO 2019208153A1 JP 2019015021 W JP2019015021 W JP 2019015021W WO 2019208153 A1 WO2019208153 A1 WO 2019208153A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carbon atoms
nonaqueous electrolyte
secondary battery
Prior art date
Application number
PCT/JP2019/015021
Other languages
French (fr)
Japanese (ja)
Inventor
真梨恵 中西
健二 撹上
洋平 青山
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2020516172A priority Critical patent/JPWO2019208153A1/en
Priority to KR1020207022766A priority patent/KR20210002452A/en
Publication of WO2019208153A1 publication Critical patent/WO2019208153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery including a sulfur-modified organic compound in a positive electrode and an alkali metal in a negative electrode.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, so portable electronic devices such as portable personal computers, handy video cameras, and information terminals. Widely used as a power source for equipment. From the viewpoint of environmental problems, electric vehicles using nonaqueous electrolyte secondary batteries and hybrid vehicles using electric power as a part of power have been put into practical use. Therefore, in recent years, further improvements in the performance of secondary batteries have been demanded from the viewpoints of the usable time of portable electronic devices, the cruising distance of automobiles, and the safety thereof.
  • Sulfur for example, has a theoretically large electric capacity compared to a positive electrode active material such as a lithium-transition metal composite oxide, and is extremely concerned about resource reserves and costs such as transition metals. small. Further, lithium metal or an alloy containing lithium metal is lighter and has a higher energy density than a negative electrode active material for a secondary battery such as carbon intercalated with lithium ions. Therefore, a lithium-sulfur secondary battery that uses lithium metal as a negative electrode active material and a material containing sulfur as a positive electrode active material is one of the promising candidates that satisfy the above-mentioned demand.
  • an electrolytic solution containing a compound having a silyl ester group is a nonaqueous electrolyte secondary battery using a lithium transition metal composite oxide or a lithium-containing transition metal phosphate compound as a positive electrode active material and artificial graphite or the like as a negative electrode active material.
  • a non-aqueous solution using a positive electrode using a sulfur-modified organic compound as a positive electrode active material and a negative electrode using an alkali metal such as lithium or sodium as a negative electrode active material is not known (for example, Patent Documents 11 and 12).
  • a compound added to the non-aqueous electrolyte of the secondary battery (hereinafter sometimes referred to as an electrolyte additive or electrolyte additive) reacts with the initial charge / discharge, so that a solid electrolyte interface is formed on the electrode surface.
  • SEI film called
  • Patent Document 13 discloses that SEI formed by adding hypervalent iodine to a non-aqueous electrolyte suppresses lithium dendrite growth and leads to improved cycle characteristics.
  • Patent Documents 14 and 15 disclose that charging-discharging efficiency and utilization efficiency of sulfur can be improved by adding LiNO 3 to a non-aqueous electrolyte.
  • An object of the present invention is to provide a positive electrode using a sulfur-modified organic compound as a positive electrode active material, which has a high capacity even after repeated charge and discharge, and has both excellent charge / discharge characteristics at low temperatures and excellent high-temperature storage stability.
  • Another object of the present invention is to provide a non-aqueous electrolyte secondary battery using a negative electrode using an alkali metal or alkaline earth metal such as lithium or sodium as a negative electrode active material.
  • the inventors of the present invention contain a compound having a specific structure when using a positive electrode containing a sulfur-modified organic compound and a negative electrode containing an alkali metal or alkaline earth metal including lithium metal. It has been found that the above problem can be achieved by using a non-aqueous electrolyte, and the present invention has been completed.
  • the present invention relates to a positive electrode containing a sulfur-modified organic compound; a negative electrode containing at least one metal selected from the group consisting of alkali metals and alkaline earth metals; and at least one compound represented by the general formula (1). And a nonaqueous electrolyte containing at least one metal salt selected from the group consisting of alkali metal salts and alkaline earth metal salts.
  • R 1 to R 3 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, and R 4 represents an n-valent hydrocarbon group having 1 to 10 carbon atoms, or an oxygen atom or sulfur
  • It represents an n-valent hydrocarbon group having 1 to 10 carbon atoms and containing at least one atom, and n represents an integer of 1 to 6.
  • FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic view showing a basic configuration of a cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention.
  • FIG. 3 is a perspective view showing the internal structure of the cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention as a cross section.
  • nonaqueous electrolyte secondary battery of the present invention will be described in detail based on preferred embodiments.
  • the positive electrode used for the nonaqueous electrolyte secondary battery of the present invention contains a sulfur-modified organic compound.
  • the sulfur-modified organic compound acts as a positive electrode active material.
  • the sulfur content of the sulfur-modified organic compound is not particularly limited, but is preferably 25% by mass or more, and more preferably 30% by mass or more.
  • the sulfur-modified organic compound used in the present invention is obtained by heat-treating an organic compound and sulfur.
  • the compound obtained by heat treating an organic compound and sulfur include, for example, a sulfur-modified polyacrylonitrile compound, a sulfur-modified elastomer compound, a sulfur-modified pitch compound, a sulfur-modified polynuclear aromatic ring compound, a sulfur-modified aliphatic hydrocarbon oxide, and a sulfur-modified polyether.
  • examples thereof include compounds, polythienoacene compounds, sulfur-modified polyamide compounds, and polysulfide carbon.
  • These compounds are a mixture of sulfur and polyacrylonitrile compound, elastomer compound, pitch compound, polynuclear aromatic ring compound, aliphatic hydrocarbon oxide, polyether compound, polyacene compound, polyamide compound, or hexachlorobutadiene, It can be produced by heat-denaturing at 250 to 600 ° C. in a non-oxidizing atmosphere. When these compounds are heated with sulfur, only one of these compounds may be used, or two or more may be used in combination.
  • the sulfur-modified organic compound is preferably a sulfur-modified polyacrylonitrile compound because a large charge / discharge capacity can be obtained.
  • Non-oxidizing atmosphere means an oxygen concentration of less than 5% by volume, preferably less than 2% by volume, more preferably an atmosphere substantially free of oxygen, for example, an inert gas atmosphere such as nitrogen, helium, argon, It is a sulfur gas atmosphere.
  • the sulfur-modified polyacrylonitrile compound is a compound obtained by heat-treating a polyacrylonitrile compound and elemental sulfur in a non-oxidizing atmosphere.
  • the polyacrylonitrile compound may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and other monomers.
  • the content of acrylonitrile in the copolymer of acrylonitrile and other monomers is preferably at least 90% by mass, and more preferably a polyacrylonitrile homopolymer.
  • examples of other monomers include acrylic acid, vinyl acetate, N-vinylformamide, and N, N′-methylenebis (acrylamide).
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C.
  • the sulfur content of the sulfur-modified polyacrylonitrile is preferably 30 to 60% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified elastomer compound is a compound obtained by heat-treating a mixture of rubber and elemental sulfur in a non-oxidizing atmosphere.
  • the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, and acrylonitrile butadiene rubber. These rubber
  • gum can be used individually by 1 type, and can be used in combination of 2 or more type.
  • the raw rubber may be vulcanized rubber or unvulcanized rubber.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C., and the sulfur content of the sulfur-modified elastomer compound is preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified pitch compound is a compound obtained by heat-treating a mixture of pitches and elemental sulfur in a non-oxidizing atmosphere.
  • Pitches include petroleum pitch, coal pitch, mesophase pitch, asphalt, coal tar, coal tar pitch, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compounds, and heteroatom-containing condensed polycyclic aroma.
  • organic synthetic pitch obtained by polycondensation of a group hydrocarbon compound.
  • Pitches are a mixture of various compounds and contain fused polycyclic aromatics.
  • the condensed polycyclic aromatic contained in the pitches may be a single species or a plurality of species. This condensed polycyclic aromatic may contain nitrogen or sulfur in addition to carbon and hydrogen in the ring.
  • the temperature of the heat treatment is preferably 300 ° C. to 500 ° C.
  • the sulfur content of the sulfur-modified pitch compound is preferably 25 to 70% by mass because a large charge / discharge capacity can be obtained.
  • Sulfur-modified polynuclear aromatic ring compounds include, for example, a mixture of benzene-based aromatic ring compounds such as naphthalene, anthracene, tetracene, pentacene, phenanthrene, chrysene, picene, pyrene, benzopyrene, perylene, coronene, and simple sulfur in a non-oxidizing atmosphere. It is a compound obtained by heat-treating.
  • aromatic ring compounds in which part of the benzene aromatic ring compound is a 5-membered ring, or hetero atom-containing heteroaromatic ring compounds in which some of these carbon atoms are replaced with sulfur, oxygen, nitrogen, etc. .
  • these polynuclear aromatic ring compounds are linear or branched alkyl groups having 1 to 12 carbon atoms, alkoxyl groups, hydroxyl groups, carboxyl groups, amino groups, aminocarbonyl groups, aminothio groups, mercaptothiocarbonylamino groups, carboxy groups. It may have a substituent such as an alkylcarbonyl group.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C.
  • the sulfur content of the sulfur-modified pitch compound is preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
  • Sulfur-modified aliphatic hydrocarbon oxides are obtained by heat-treating aliphatic hydrocarbon oxides such as aliphatic alcohols, aliphatic aldehydes, aliphatic ketones, aliphatic epoxides, and fatty acids and simple sulfur in a non-oxidizing atmosphere.
  • the resulting compound The temperature of the heat treatment is preferably 300 ° C to 500 ° C.
  • the sulfur content of the sulfur-modified aliphatic hydrocarbon oxide is preferably 45 to 75% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified polyether compound is a compound obtained by heat-treating a polyether compound and elemental sulfur in a non-oxidizing atmosphere.
  • the polyether compound include polyethylene glycol, polypropylene glycol, ethylene oxide / propylene oxide copolymer, polytetramethylene glycol, and the like.
  • the polyether compound may be terminated with an alkyl ether group, an alkylphenyl ether group or an acyl group, or may be an ethylene oxide adduct of a polyol such as glycerin or sorbitol.
  • the temperature of the heat treatment is preferably 250 to 500 ° C.
  • the sulfur content of the sulfur-modified polyether compound is preferably 30 to 75% by mass because a large charge / discharge capacity can be obtained.
  • the polythienoacene compound is a compound having a polythienoacene structure containing sulfur represented by the following general formula (3).
  • the polythienoacene compound is a compound obtained by heat-treating an aliphatic polymer compound having a linear structure such as a polyethylene compound or a polymer compound having a thiophene structure such as polythiophene and simple sulfur in a non-oxidizing atmosphere.
  • the temperature of the heat treatment is preferably 300 ° C. to 600 ° C.
  • the sulfur content of the polythienoacene compound is preferably 30 to 80% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified polyamide compound is a sulfur-modified organic compound having a carbon skeleton derived from a polymer having an amide bond, specifically, an aminocarboxylic acid compound and simple sulfur, or a polyamine compound and polycarboxylic acid compound and simple sulfur, It is a compound obtained by heat treatment in a non-oxidizing atmosphere.
  • the temperature of the heat treatment is preferably 250 to 600 ° C.
  • the sulfur content of the sulfur-modified polyamide compound is preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
  • the polysulfide carbon is a compound represented by the general formula (CS x ) n (x is 0.5 to 2, n is a number of 4 or more), for example, alkali metal sulfide such as sodium sulfide. It can be obtained by heat-treating a precursor in which a halogenated unsaturated hydrocarbon such as hexachlorobutadiene is reacted with a complex of a product and elemental sulfur.
  • the temperature of the heat treatment is preferably 300 to 450 ° C.
  • the sulfur content of the polysulfide carbon compound is preferably 65 to 75% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur content can be measured by performing elemental analysis using, for example, a CHN analyzer (such as Elementer Vario MICRO cube) that can analyze sulfur and oxygen.
  • a CHN analyzer such as Elementer Vario MICRO cube
  • graphite carbon materials such as natural graphite, artificial graphite and expanded graphite, carbon materials such as carbon black, activated carbon, carbon fiber, coke, soft carbon, hard carbon, carbon nanotubes, tetramethylthiuram Vulcanization accelerators such as disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethylthiuram monosulfide, dipentamethylenethiuram tetrasulfide can be used. These can be used alone or in combination of two or more.
  • the carbon material and the vulcanization accelerator can be blended in a known blending recipe at a known blending ratio.
  • the shape of the sulfur-modified organic compound is not particularly limited.
  • it is spherical, polyhedral, fibrous, rod-like, plate-like, scale-like, or amorphous, and these may be hollow.
  • a spherical or polyhedral shape is preferable.
  • the average particle diameter (D50) of the sulfur-modified organic compound is preferably 0.5 to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and still more preferably 1 ⁇ m to 20 ⁇ m.
  • the average particle diameter (D50) refers to a 50% particle diameter measured by a laser diffraction light scattering method.
  • the particle diameter is a volume-based diameter, and the diameter of secondary particles is measured by the laser diffraction light scattering method.
  • the sulfur-modified organic compound can have a desired particle size by a method such as pulverization.
  • the pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water.
  • Examples of the industrial pulverization method include a ball mill, a roller mill, a turbo mill, a jet mill, a cyclone mill, a hammer mill, a pin mill, a rotating mill, a vibration mill, a planetary mill, an attritor, and a bead mill.
  • the positive electrode used in the present invention can be produced according to a known method.
  • the electrode mixture is applied onto the current collector by applying a mixture of the positive electrode active material, the binder and the conductive additive to the current collector by applying an electrode mixture paste slurryed with an organic solvent or water to the current collector.
  • a positive electrode on which a layer is formed can be produced.
  • binders can be used as the binder used in the present invention.
  • the binder include, for example, styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene rubber, styrene-isoprene rubber, fluorine rubber, polyethylene, polypropylene, polyamide, polyamideimide, polyimide, polyacrylonitrile, Polyurethane, polyvinylidene fluoride, polytetrafluoroethylene, styrene-acrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl ether, polyvinyl chloride , Polyacrylic acid, methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, Loin nanofibers, and starch.
  • an aqueous binder is preferable because it has a low environmental load and sulfur elution hardly occurs.
  • Styrene-butadiene rubber, sodium carboxymethyl cellulose, and polyacrylic acid are more preferable. Only one binder can be used, or two or more binders can be used in combination.
  • the content of the binder is preferably 1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • conductive assistants for electrodes can be used.
  • This conductive auxiliary agent can be mixed during the production of the sulfur-modified organic compound.
  • the particle size of the conductive aid is preferably 0.0001 ⁇ m to 100 ⁇ m, and more preferably 0.01 ⁇ m to 50 ⁇ m.
  • the content of the conductive assistant is usually 0.1 to 50 parts by mass, preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the electrode active material.
  • Solvents for preparing the electrode mixture paste include, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propio Nitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, nitromethane, N-methylpyrrolidone, N, N-dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran, dimethyl sulfoxide, sulfolane, ⁇ -butyrolactone, water, alcohol And the like.
  • the amount of the solvent used can be adjusted according to the method selected when coating the slurry.
  • the total amount of the sulfur-modified organic compound, the binder and the conductive auxiliary agent is 100 mass.
  • the amount is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass with respect to parts.
  • the electrode mixture paste composition contains, in addition to the above components, other components such as, for example, a viscosity modifier, a reinforcing material, an antioxidant, a pH adjuster, and a dispersant, as long as the effects of the present invention are not impaired. It does n’t matter.
  • known components can be used at a known blending ratio.
  • Electrode mixture paste manufacturing process In the production of the electrode mixture paste, when the positive electrode active material, the binder and the conductive additive are dispersed or dissolved in the solvent, all of them can be added to the solvent at once and dispersed, or separately added and dispersed. You can also. It is preferable to sequentially add a binder, a conductive additive, and an active material in the solvent in the order of the dispersion treatment, since these can be uniformly dispersed in the solvent. When the electrode mixture paste contains other components, the other components can be added all at once, and the dispersion treatment can be performed. However, the dispersion treatment is preferably performed every time one kind is added.
  • the dispersion treatment method is not particularly limited, but as an industrial method, for example, a normal ball mill, sand mill, bead mill, cyclone mill, pigment disperser, crushed grinder, ultrasonic disperser, homogenizer, rotation / revolution mixer, Planetary mixers, fill mixes, jet pasters, etc. can be used.
  • a conductive material such as titanium, titanium alloy, aluminum, aluminum alloy, nickel, stainless steel, nickel-plated steel, or the like is used.
  • the shape of the current collector include a foil shape, a plate shape, and a net shape, and the current collector may be either porous or non-porous.
  • these conductive materials may be subjected to surface treatment in order to improve adhesion and electrical characteristics.
  • aluminum is preferable from the viewpoint of conductivity and price, and aluminum foil is particularly preferable.
  • the thickness of the current collector is not particularly limited, but is usually 5 to 30 ⁇ m.
  • the method for applying the electrode mixture paste composition to the current collector is not particularly limited.
  • the die coater method, comma coater method, curtain coater method, spray coater method, gravure coater method, flexo coater method, knife coater method Each method such as a doctor blade method, a reverse roll method, a brush coating method, and a dip method can be used.
  • a die coater method, a knife coater method, and a doctor blade method are preferable in that a favorable surface state of the coating layer can be obtained in accordance with the viscosity and drying property of the electrode mixture paste.
  • coating to the electrical power collector of an electrode mixture paste composition can be performed to the single side
  • each side can be applied sequentially, or both sides can be applied simultaneously.
  • coat continuously on the surface of an electrical power collector can also apply
  • the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
  • the method for drying the electrode mixture paste composition applied on the current collector is not particularly limited, and a known method can be used.
  • the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, drying by irradiation with far infrared rays, infrared rays, electron beams, or the like. These can be implemented in combination.
  • the temperature at the time of heating is, for example, generally about 50 ° C. to 180 ° C., but the conditions such as the temperature can be appropriately set according to the coating amount of the slurry composition, the boiling point of the solvent used, and the like. .
  • volatile components such as a solvent are volatilized from the coating film of the electrode mixture paste composition, and an electrode mixture layer is formed on the current collector.
  • the negative electrode used for the nonaqueous electrolyte secondary battery of the present invention contains at least one metal selected from the group consisting of alkali metals and alkaline earth metals. In the present invention, these metals act as a negative electrode active material.
  • Examples of the alkali metal include lithium, sodium, and potassium. These alloys can also be used as the negative electrode active material.
  • Examples of the alloy containing an alkali metal include a lithium alloy and a sodium alloy.
  • the lithium alloy is not particularly limited as long as the effect of the present invention is not hindered.
  • what added the other metal 1 mass% or less to these lithium alloys can also be used.
  • these lithium alloys those containing 30% by mass or more of lithium are preferable, and those containing 40% by mass or more are more preferable.
  • the alloy of sodium and 1 or more types of metals chosen from the group of aluminum, silicon, tin, magnesium, indium, calcium is mentioned. .
  • what added 1 mass% of other metals to these sodium alloys can also be used.
  • these sodium alloys those containing 30% by mass or more of sodium are preferable, and those containing 50% by mass or more are more preferable.
  • Examples of the alkaline earth metal include magnesium, calcium, strontium, barium and the like. These alloys can also be used as the negative electrode active material.
  • Examples of the alloy containing an alkaline earth metal include a magnesium alloy and a calcium alloy. Further, these magnesium alloys are not limited as long as the effects of the present invention are not hindered. For example, an alloy with one or more metals selected from the group of silver, indium, aluminum, nickel, germanium, silicon, and tin is used. Can be mentioned. Furthermore, what added 1 mass% or less of other metals to these magnesium alloys can also be used. Among these magnesium metals, those containing 30% by mass or more of magnesium are preferable, and those containing 40% by mass or more are more preferable.
  • the calcium alloy is not limited as long as the effects of the present invention are not hindered.
  • Examples of the calcium alloy include alloys with one or more metals selected from the group consisting of silver, indium, aluminum, nickel, germanium, silicon, and tin. Furthermore, what added 1 mass% or less of other metals to these calcium alloys can also be used. Among these calcium metals, those containing 30% by mass or more of calcium are preferable, and those containing 40% by mass or more are more preferable.
  • An alkali metal, alkaline earth metal, or an alloy containing an alkali metal or alkaline earth metal may have an inorganic protective layer or an organic protective layer on the surface, and a laminate of these may also be used. .
  • the alkali metals, alkaline earth metals, and alloys containing alkali metals or alkaline earth metals lithium and sodium are preferable, and lithium is more preferable.
  • the shape of the alkali metal, the alkaline earth metal, and the alloy containing the alkali metal or the alkaline earth metal is not particularly limited, but may be, for example, a foil shape, a plate shape, a sheet shape, or a mesh shape. Among these, a plate shape and a foil shape are preferable from the viewpoint of ease of handling.
  • the thickness is not particularly limited, but is generally 10 ⁇ m to 3 mm, preferably 50 ⁇ m to 1 mm.
  • the negative electrode current collector may not be used because the negative electrode active material itself has high electronic conductivity. However, depending on the configuration of the battery, a metal material that does not form an alloy with the negative electrode active material is used as the negative electrode current collector. You can also Although it does not specifically limit as a metal material, Stainless steel, copper, nickel, or silver is mentioned. After forming the negative electrode active material to a required size, the negative electrode can be manufactured by pressure bonding on the current collector, and after forming the negative electrode active material on the current collector, the required size is formed. You can also
  • the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention is at least one compound selected from the group consisting of at least one compound represented by the following general formula (1) and an alkali metal salt and an alkaline earth metal salt. Contains one metal salt.
  • R 1 to R 3 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, and R 4 represents an n-valent hydrocarbon group having 1 to 10 carbon atoms, or an oxygen atom or sulfur
  • It represents an n-valent hydrocarbon group having 1 to 10 carbon atoms and containing at least one atom, and n represents an integer of 1 to 6.
  • hydrocarbon group having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, i-propyl group, butyl group, 2-butyl group, i-butyl group, t-butyl group, pentyl group, aliphatic saturated hydrocarbon groups such as i-pentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl; vinyl, allyl, butenyl, pentenyl Aliphatic unsaturated hydrocarbon groups such as hexenyl group and octenyl group; alicyclic hydrocarbon groups such as cyclopentyl group, cyclohexyl group and methylcyclohexyl group; phenyl group, methylphenyl group, ethylphenyl group, t-butylphenyl group And aromatic hydrocarbon groups such as phenyl
  • the hydrocarbon group having 1 to 10 carbon atoms is preferably a methyl group, an ethyl group, a butyl group, a vinyl group, or a phenyl group because excellent cycle characteristics and a high capacity can be obtained even after repeated charge and discharge use.
  • a methyl group is more preferred.
  • R 4 in the general formula (1) represents an n-valent hydrocarbon group having 1 to 10 carbon atoms or an n-valent hydrocarbon group having 1 to 10 carbon atoms containing at least one oxygen atom or sulfur atom.
  • N represents an integer of 1-6.
  • a compound in which R 4 is an n-valent hydrocarbon group having 1 to 10 carbon atoms is represented by n hydrogen atoms of a hydrocarbon having 1 to 10 carbon atoms.
  • R 1 to R 3 have the same meanings as in general formula (1), and * represents a binding site.
  • hydrocarbon having 1 to 10 carbon atoms examples include saturated hydrocarbons having 1 to 10 carbon atoms, unsaturated hydrocarbons having 2 to 10 carbon atoms, and aromatic hydrocarbons having 6 to 10 carbon atoms.
  • the saturated hydrocarbon having 1 to 10 carbon atoms and the unsaturated hydrocarbon having 2 to 10 carbon atoms may have a straight chain structure or a branched structure.
  • saturated hydrocarbon having 1 to 10 carbon atoms examples include methane, ethane, n-propane, n-butane, n-pentane, n-hexane, cyclohexane, heptane, octane, nonane, decane, adamantane and the like.
  • Examples of unsaturated hydrocarbons having 2 to 10 carbon atoms include ethene, ethyne, propene, propyne, 1-butene, 2-butene, 1,3-butadiene, 1-pentene, 2-pentene, 1,3- Pentadiene, 1-hexene, 3-hexene, 1,3,5-hexatriene, cyclohexene, 1-heptene, 1-octene, 3-octene, 1,3,5,7-octatetraene, 1-nonene, 1 -Decene and the like.
  • Examples of the aromatic hydrocarbon having 6 to 10 carbon atoms include benzene, phenol, methylbenzene, dimethylbenzene, ethylbenzene, butylbenzene, naphthalene, and the like.
  • n is preferably 2 to 4 and more preferably 2 because excellent cycle characteristics, high capacity can be obtained even after repeated charge and discharge use, and synthesis is easy.
  • R 4 of the compound represented by the general formula (1) is an n-valent hydrocarbon having 1 to 10 carbon atoms and containing at least one oxygen atom or sulfur atom
  • R 4 is an oxygen atom or sulfur.
  • R 4 is a divalent to tetravalent aliphatic hydrocarbon having 1 to 10 carbon atoms containing at least one oxygen atom or sulfur atom.
  • the following compound No. 4-1. 4-18 since the excellent cycle characteristics and high capacity can be obtained even after repeated charge / discharge use, the compound No. 4-1, compound no. 4-7, and compound no. 4-10 is preferred, and compound No. 4-1 and compound no. 4-7 is more preferable.
  • R 4 when R 4 is a heterocyclic compound having 2 to 10 carbon atoms containing at least one oxygen atom or sulfur atom, examples of the heterocyclic compound include: Oxolane, thiolane, furan, thiophene, oxane, thiane, pyran, benzofuran, benzothiophene, thienothiophene, dibenzofuran, dibenzothiophene and the like.
  • thiophene and furan are preferable, and thiophene is more preferable because excellent cycle characteristics and high capacity can be obtained even after repeated charge and discharge use.
  • R 4 is a heterocyclic compound having 2 to 10 carbon atoms, and n is 2, for example, the following compound No. 5-1 to No. 5 5-14.
  • the nonaqueous electrolyte used in the present invention contains at least one compound represented by the general formula (1).
  • a nonaqueous electrolyte secondary battery having a high electric capacity can be obtained even after repeated charge and discharge.
  • the content of the compound is preferably 0.01% by mass to 20% by mass in the nonaqueous electrolyte, more preferably 0.05% by mass to 10% by mass in the nonaqueous electrolyte, Most preferably, it is 0.1% by mass to 5% by mass in the electrolyte.
  • the non-aqueous electrolyte used in the present invention does not include a non-aqueous electrolyte obtained by dissolving a metal salt in an organic solvent, a polymer gel electrolyte in which the metal salt is dissolved in an organic solvent and gelled with a polymer, and does not contain an organic solvent. Any genuine polymer electrolyte in which a metal salt is dispersed in a polymer can be used.
  • the metal salt used for the non-aqueous electrolyte and the polymer gel electrolyte may be a conventionally known lithium salt such as LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), LiSbF 6 , LiSiF 5 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, LiAlF 4 , LiAlCl 4 , LiPO 2 F 2 , and derivatives thereof, among which LiPF 6
  • Examples of the metal salt used for the pure polymer electrolyte when the non-aqueous electrolyte secondary battery of the present invention is a lithium ion secondary battery include LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2). ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , and LiB (C 2 O 4 ) 2 .
  • the lithium salt concentration in the non-aqueous electrolyte of a lithium ion secondary battery may be insufficient if the lithium salt concentration is too low. If the lithium salt concentration is too high, the stability of the non-aqueous electrolyte may be reduced. Since there is a risk of damage, 0.5 to 7 mol / L is preferable, and 0.8 to 1.8 mol / L is more preferable.
  • the lithium salt can be used in combination of two or more.
  • the metal salt used for the non-aqueous electrolyte and the polymer gel electrolyte is sodium obtained by replacing lithium in the lithium salt with sodium.
  • a salt can be used, and the sodium salt can be used at the same concentration as the lithium salt in the case of a lithium ion secondary battery.
  • Sodium salts can be used in combination of two or more.
  • the non-aqueous electrolyte of the present invention can further contain nitrate and nitrite in addition to the metal salt.
  • nitrates include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, barium nitrate, ammonium nitrate, manganese nitrate, zinc nitrate, and nickel nitrate.
  • the nitrite include lithium nitrite, sodium nitrite, potassium nitrite, cesium nitrite, ammonium nitrite, manganese nitrite, zinc nitrite, and nickel nitrite.
  • lithium nitrate and sodium nitrate are preferable because a high capacity can be obtained after the charge / discharge cycle.
  • concentration of nitrate and nitrite in the non-aqueous electrolyte is preferably 0.01% by mass to 10% by mass, and preferably 0.1% by mass to 5% by mass because a high capacity is obtained after the charge / discharge cycle. % Is more preferable.
  • organic solvent used in the non-aqueous electrolyte of the present invention an organic solvent usually used for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery can be used.
  • organic solvents that are usually used in nonaqueous electrolytes of nonaqueous electrolyte secondary batteries include saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, and chain ethers. Examples thereof include a compound, a cyclic ether compound, and a saturated chain ester compound.
  • the organic solvent can be used alone or in combination of two or more.
  • saturated cyclic carbonate compounds saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, and amide compounds are preferable because they have a high relative dielectric constant and thus serve to increase the dielectric constant of the nonaqueous electrolyte.
  • a saturated cyclic carbonate compound is particularly preferable.
  • the saturated cyclic carbonate compound include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1-dimethylethylene carbonate, and the like. It is done.
  • saturated cyclic ester compound examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, and ⁇ -octanolactone.
  • sulfoxide compound examples include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene, and the like.
  • sulfone compound examples include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenmethyl sulfolane. , Sulfolane, 3-methylsulfolene, 3-ethylsulfolene, 3-bromomethylsulfolene and the like, and sulfolane and tetramethylsulfolane are preferable.
  • the amide compound examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
  • saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds and saturated chain ester compounds can reduce the viscosity of the nonaqueous electrolyte and increase the mobility of electrolyte ions. Battery characteristics such as output density can be made excellent. Moreover, since it is low-viscosity, the performance of the nonaqueous electrolyte at low temperatures can be enhanced.
  • a saturated chain carbonate compound is preferable.
  • saturated chain carbonate compound examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate, and the like.
  • Examples of the chain ether compound or the cyclic ether compound include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis ( Ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (Trifluoroethyl) ether and the like can be mentioned, and among these, dioxolane is preferable.
  • saturated chain ester compound monoester compounds and diester compounds having a total number of carbon atoms in the molecule of 2 to 8 are preferable, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, Ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate , Methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl, etc., including methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate
  • acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can be used as the organic solvent used for the preparation of the nonaqueous electrolytic solution.
  • Examples of the polymer used for the polymer gel electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinylidene fluoride, and polyhexafluoropropylene.
  • Examples of the polymer used in the pure polymer electrolyte include polyethylene oxide, polypropylene oxide, and polystyrene sulfonic acid.
  • the nonaqueous electrolyte used in the present invention may contain an azide, an organic nitro compound, a pyridine N-oxide compound, an alkylamine N-oxide compound or tetramethylpiperidine N-oxyl in order to increase the capacity after a charge / discharge cycle. is there.
  • Examples of the azide include hydrogen azide, lithium azide, sodium azide, lead azide, diphenyl phosphate azide and the like.
  • Examples of the organic nitro compound include nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitrotoluene, dinitrotoluene, nitropyridine, and dinitropyridine.
  • Examples of the pyridine N-oxide compound include pyridine N-oxide, 4- (dimethylamino) pyridine N-oxide, 2,6 dimethylpyridine N-oxide, and 2,6 dichloropyridine N-oxide.
  • alkylamine N-oxide compound examples include N, N-dimethyloctylamine N-oxide, N, N-dimethyldecylamine N-oxide, N, N-dodecylamine N-oxide, dimethyllaurylamine N-oxide, N, N-dimethylaniline N-oxide, N-methylmorpholine N-oxide and the like can be mentioned.
  • azides are preferred, and lithium azide and sodium azide are more preferred.
  • the concentration in the non-aqueous electrolyte of at least one compound selected from the group consisting of organic nitro compounds, azide compounds, and organic nitro compounds is too small to show the effect of addition.
  • 0.01% by mass to 10% by mass is preferable, and 0.1% by mass to 5% by mass is more preferable.
  • the nonaqueous electrolyte used in the present invention may further contain a compound represented by the general formula (2) in order to enhance storage stability.
  • R 5 to R 9 are each independently a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or 5 carbon atoms
  • a cycloalkyl group having 12 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, an oxyalkyl group having 1 to 12 carbon atoms, an acyl group having 1 to 12 carbon atoms, or —SiR R 12 represents a group represented by R 13 R 14
  • R 10 to R 14 each independently represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a group having 5 to 12 carbon atoms.
  • X 1 represents an m-valent alkyl group having 1 to 12 carbon atoms, 2 to 12 carbon atoms.
  • alkyl group having 1 to 12 carbon atoms examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, Examples include isopropyl group, isobutyl group, s-butyl group, t-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, and 2-methylhexyl group.
  • alkenyl group having 2 to 12 carbon atoms examples include vinyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 1-methylvinyl, 2- Butenyl, 3-butenyl, 1,3-butadienyl, 1-methylvinyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 1-methylvinyl, 2-methylvinyl, 1-methylallyl, 1,1-dimethylallyl, pentenyl, hexenyl, heptenyl, octenyl Group, nonenyl group, decenyl group, undecenyl group, dodecenyl group and the like.
  • Examples of the cycloalkyl group having 5 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, and a 2-norbornyl group.
  • Examples of the aryl group having 6 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, and a 2-norbornyl group.
  • Examples of the aryl group having 6 to 12 carbon atoms include phenyl, biphenyl, naphthyl, tolyl, xylyl, mesityl, and ethylphenyl groups.
  • Examples of the aralkyl group having 7 to 12 carbon atoms include benzyl group, phenylethyl group, phenylpropyl group, tolylmethyl group, tolylethyl group, tolylpropyl group, xylylmethyl group, xylylethyl group, xylylpropyl group and the like.
  • Examples of the oxyalkyl group having 1 to 12 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, octyloxy group, decyloxy group and the like.
  • acyl group having 1 to 12 carbon atoms examples include methanoyl group, ethanoyl group, propanoyl group, butanoyl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, undecanoyl group, dodecanoyl group and the like. It is done.
  • R 5 to R 9 are preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom, from the viewpoint of easy availability of raw materials.
  • R 10 to R 14 are preferably a hydrogen atom, a methyl group, or an ethyl group, more preferably a methyl group, from the viewpoint of ease of synthesis.
  • the amount of the compound represented by the general formula (2) added to the non-aqueous electrolyte is preferably 0.1% by mass to 10% by mass, more preferably 0.1% by mass to 7.0% by mass, It is more preferably from 5% by mass to 7.0% by mass, and most preferably from 1% by mass to 5% by mass.
  • the content is less than 0.1% by mass, a sufficient effect cannot be exerted.
  • the content is more than 10% by mass, the increase effect corresponding to the addition amount is not seen, but the battery performance is reduced. There is.
  • the non-aqueous electrolyte may contain known additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge preventing agent in order to improve battery life and safety.
  • additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge preventing agent in order to improve battery life and safety.
  • concentration in the non-aqueous electrolyte is too small to exert the effect of addition, and when the concentration is too large, the characteristics of the non-aqueous electrolyte secondary battery may be adversely affected. 01% by mass to 10% by mass is preferable, and 0.1% by mass to 5% by mass is more preferable.
  • a separator between the positive electrode and the negative electrode.
  • a commonly used polymer microporous film can be used without particular limitation.
  • the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide.
  • the microporosity method includes a phase separation method in which a polymer compound and a solvent solution are formed into a film while microphase separation is performed, and the solvent is extracted and removed to make it porous.
  • the film is extruded and then heat treated, the crystals are arranged in one direction, and a “stretching method” or the like is performed by forming a gap between the crystals by stretching, and is appropriately selected depending on the film used.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and can be various shapes such as a coin shape, a cylindrical shape, a square shape, and a laminate shape.
  • FIG. 1 shows an example of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention
  • FIGS. 2 and 3 show examples of a cylindrical battery, respectively.
  • 1 is a positive electrode capable of releasing lithium ions
  • 1a is a positive electrode current collector
  • 2 is a negative electrode capable of inserting and extracting lithium ions released from the positive electrode
  • 2a is A negative electrode current collector
  • 3 is a nonaqueous electrolyte
  • 4 is a positive electrode case made of stainless steel
  • 5 is a negative electrode case made of stainless steel
  • 6 is a gasket made of polypropylene
  • 7 is a separator made of polyethylene.
  • 11 is a negative electrode
  • 12 is a negative electrode current collector
  • 13 is a positive electrode
  • 14 is a positive electrode current collector
  • 15 is a nonaqueous electrolyte
  • 16 is a separator
  • 17 is a positive terminal
  • 18 is a negative terminal
  • 19 is a negative electrode plate
  • 20 is a negative electrode lead
  • 21 is a positive electrode plate
  • 22 is a positive electrode lead
  • 23 is a case
  • 24 is an insulating plate
  • 25 is a gasket
  • 26 is a safety valve 27 are PTC elements.
  • a laminate film or a metal container can be used as an exterior member of the nonaqueous electrolyte secondary battery of the present invention.
  • the thickness of the exterior member is usually 0.5 mm or less, preferably 0.5 mm or less.
  • Examples of the shape of the exterior member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • a multilayer film having a metal layer between resin films can also be used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene, polyethylene, nylon, or polyethylene terephthalate can be used.
  • the laminate film can be formed into the shape of an exterior member by performing heat sealing.
  • the metal container can be formed of, for example, stainless steel, aluminum, aluminum alloy, or the like.
  • the aluminum alloy an alloy containing elements such as magnesium, zinc, and silicon is preferable.
  • transition metals such as iron, copper, nickel, and chromium
  • the product was placed in a glass tube oven and heated at 250 ° C. for 3 hours with vacuum suction to remove elemental sulfur.
  • the obtained sulfur-modified product was pulverized using a ball mill and classified with a sieve to obtain sulfur-modified polyacrylonitrile having an average particle size of 10 ⁇ m.
  • the sulfur content was 38.4% by mass.
  • Sulfur-modified pitch compound (A-2) 100 parts by weight of coal pitch (coal tar, manufactured by Yoshida Refinery) and 500 parts by weight of elemental sulfur (manufactured by Sigma Aldrich, average particle size 200 ⁇ m) are used as the pitch compound, in accordance with Example 1 of JP2012-099342A
  • the reaction was carried out to obtain a reaction product.
  • the obtained reaction product was pulverized to obtain sulfur-modified pitch compound A-2 having an average particle size of 15 ⁇ m.
  • the sulfur content was 32.5% by mass.
  • Sulfur-modified polynuclear aromatic compound (A-3) 100 parts by mass of anthracene (manufactured by Tokyo Chemical Industry) and 500 parts by mass of elemental sulfur (manufactured by Sigma-Aldrich, average particle diameter 200 ⁇ m) are used as the sulfur-modified polynuclear aromatic ring compound, and in accordance with Reference Example 1 of JP2012-150934A Reaction was performed to obtain a reaction product.
  • the obtained reaction product was pulverized to obtain a sulfur-modified polynuclear aromatic compound A-3 having an average particle size of 16 ⁇ m.
  • the sulfur content was 47.7% by mass.
  • A-1 sulfur-modified polyacrylonitrile
  • the electrode mixture paste was applied to a current collector made of carbon-coated aluminum foil (thickness: 22 ⁇ m) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours to dry. Thereafter, this electrode was cut into a predetermined size (disc shape), and further vacuum-dried at 150 ° C. for 2 hours immediately before use to produce a positive electrode.
  • a current collector made of carbon-coated aluminum foil (thickness: 22 ⁇ m) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours to dry. Thereafter, this electrode was cut into a predetermined size (disc shape), and further vacuum-dried at 150 ° C. for 2 hours immediately before use to produce a positive electrode.
  • LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate to prepare an electrolyte solution. This is followed by compound no.
  • Example 2 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 2 was produced in the same manner as in Example 1, except that 4% by mass of 4-7 was added.
  • Example 3 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. Compound No. 5-4 in which the substitution positions are ⁇ and ⁇ ′ positions on the thiophene ring. A nonaqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1 except that 1.0% by mass of 5-4A was added.
  • Example 4 A nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as in Example 1, except that 0.1% by mass of lithium nitrate was further added to the nonaqueous electrolyte of Example 1.
  • Example 5 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no.
  • a nonaqueous electrolyte secondary battery of Example 5 was produced in the same manner as in Example 1 except that 1.0% by mass of 4-7 and 0.1% by mass of lithium nitrate were added.
  • Example 6 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of compound 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 6 was produced in the same manner as in Example 1, except that 1.0% by mass of 5-4A and 0.1% by mass of lithium nitrate were added.
  • Example 7 The same procedure as in Example 1 was performed except that the sulfur-modified pitch compound (A-2) was used instead of the sulfur-modified polyacrylonitrile (A-1) as the positive electrode active material in Example 1. A water electrolyte secondary battery was produced.
  • Example 8 was carried out in the same manner as in Example 1, except that the sulfur-modified polynuclear aromatic compound (A-3) was used instead of sulfur-modified polyacrylonitrile (A-1) as the positive electrode active material of Example 1.
  • a non-aqueous electrolyte secondary battery was prepared.
  • Example 9 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 9 was produced in the same manner as in Example 1, except that 0.5% by mass of 2-1 and 0.5% by mass of compound 6-1 were added.
  • Example 10 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no.
  • a nonaqueous electrolyte secondary battery of Example 10 was produced in the same manner as in Example 1, except that 0.5% by mass of 4-7 and 0.5% by mass of Compound 6-1 were added.
  • Example 11 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no.
  • a nonaqueous electrolyte secondary battery of Example 11 was produced in the same manner as in Example 1, except that 0.5% by mass of 2-1 and 0.5% by mass of vinylene carbonate (VC) were added.
  • VC vinylene carbonate
  • Example 12 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no.
  • a nonaqueous electrolyte secondary battery of Example 12 was produced in the same manner as in Example 1, except that 0.5% by mass of 4-7 and 0.5% by mass of vinylene carbonate (VC) were added.
  • VC vinylene carbonate
  • Example 13 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no.
  • a nonaqueous electrolyte secondary battery of Example 13 was produced in the same manner as in Example 1 except that 0.5% by mass of 2-1 and 0.5% by mass of fluoroethylene carbonate (FEC) were added.
  • FEC fluoroethylene carbonate
  • Example 14 Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no.
  • a nonaqueous electrolyte secondary battery of Example 14 was produced in the same manner as in Example 1, except that 0.5% by mass of 4-7 and 0.5% by mass of fluoroethylene carbonate (FEC) were added.
  • FEC fluoroethylene carbonate
  • Example 15 Instead of using an electrolyte solution prepared by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate in the nonaqueous electrolyte of Example 1, 1,3- Except for using an electrolyte solution in which lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of dioxolane and 50% by volume of 1,2-dimethoxyethane, A nonaqueous electrolyte secondary battery of Example 15 was produced in the same manner as in Example 1.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • Example 16> To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 16 was produced in the same manner as in Example 15, except that 1.0% by mass of 4-7 was added.
  • Example 17 To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 17 was produced in the same manner as in Example 15 except that 1.0% by mass of 5-4A was added.
  • Example 18 A nonaqueous electrolyte secondary battery of Example 18 was produced in the same manner as in Example 15, except that 0.1% by mass of lithium nitrate was further added to the nonaqueous electrolyte of Example 15.
  • Example 19 A nonaqueous electrolyte secondary battery of Example 19 was produced in the same manner as in Example 15, except that 0.1% by mass of lithium nitrate was further added to the nonaqueous electrolyte of Example 16.
  • Example 20 A nonaqueous electrolyte secondary battery of Example 20 was produced in the same manner as in Example 15, except that 0.1% by mass of lithium nitrate was further added to the nonaqueous electrolyte of Example 17.
  • Example 21 To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 21 was produced in the same manner as in Example 15, except that 0.5% by mass of 2-1 and 0.5% by mass of vinylene carbonate were added.
  • Example 22 To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 22 was produced in the same manner as in Example 15, except that 0.5% by mass of 4-7 and 0.5% by mass of vinylene carbonate were added.
  • Example 23 To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 23 was produced in the same manner as in Example 15, except that 2-1 was added by 0.5 mass% and fluoroethylene carbonate was added by 0.5 mass%.
  • Example 24 To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 24 was produced in the same manner as in Example 15, except that 0.5% by mass of 4-7 and 0.5% by mass of fluoroethylene carbonate were added.
  • Example 25> Instead of using an electrolyte solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate in the nonaqueous electrolyte of Example 7, 1,3- Except for using an electrolyte solution in which lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of dioxolane and 50% by volume of 1,2-dimethoxyethane, A nonaqueous electrolyte secondary battery of Example 26 was produced in the same manner as in Example 7.
  • LiPF 6 lithium bis (trifluoromethanesulfonyl) imide
  • Example 26> Instead of using an electrolyte solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate in the nonaqueous electrolyte of Example 8, 1,3- Except for using an electrolyte solution in which lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of dioxolane and 50% by volume of 1,2-dimethoxyethane, A nonaqueous electrolyte secondary battery of Example 26 was produced in the same manner as in Example 7.
  • LiPF 6 lithium bis (trifluoromethanesulfonyl) imide
  • Compound No. 1 was added to the non-aqueous electrolyte of Example 1.
  • a nonaqueous electrolyte secondary battery of Comparative Example 4 was produced in the same manner as in Example 1, except that 1.0% by mass of vinylene carbonate (VC) was added instead of adding 1.0% by mass of 2-1. .
  • VC vinylene carbonate
  • Compound No. 1 was added to the non-aqueous electrolyte of Example 1.
  • a nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 1, except that 0.1% by mass of lithium nitrate was added instead of adding 1.0% by mass of 2-1.
  • Example 6 Compound No. 1 was added to the non-aqueous electrolyte of Example 1.
  • a nonaqueous electrolyte secondary battery of Comparative Example 6 was produced in the same manner as in Example 1, except that 1.0% by mass of fluoroethylene carbonate was added instead of adding 1.0% by mass of 2-1.
  • ⁇ Battery evaluation 1> The nonaqueous electrolyte secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 5 were placed in a constant temperature bath at 25 ° C., the charge end voltage was 3.0 V, the discharge end voltage was 1.0 V, and the charge rate was 0.1 C. The charge / discharge test at a discharge rate of 0.1 C was performed for 5 cycles. Thereafter, the sample was placed in a thermostatic chamber at ⁇ 10 ° C., a charge / discharge test of 100 cycles was performed at a charge rate of 0.3 C and a discharge rate of 0.3 C, and the discharge capacity was measured. This discharge capacity was set to L1. The unit is mAh / g, and the results are shown in Table 1.
  • ⁇ Battery evaluation 2> The nonaqueous electrolyte secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 5 were placed in a constant temperature bath at 25 ° C., the charge end voltage was 3.0 V, the discharge end voltage was 1.0 V, and the charge rate was 0.1 C. Then, a charge / discharge test at a discharge rate of 0.1 C was performed for 5 cycles, followed by a charge / discharge test of 150 cycles at a charge rate of 1.0 C and a discharge rate of 1.0 C to measure the discharge capacity. This discharge capacity was set to L2. The unit is mAh / g, and the results are shown in Table 1.
  • ⁇ Battery evaluation 3> The nonaqueous electrolyte secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 5 were placed in a constant temperature bath at 25 ° C., the charge end voltage was 3.0 V, the discharge end voltage was 1.0 V, and the charge rate was 0.1 C. Then, a charge / discharge test at a discharge rate of 0.1 C was performed for 5 cycles, and then a charge test at a charge rate of 0.1 C was performed once. Then, it put into a 45 degreeC thermostat and preserve
  • a positive electrode having a sulfur-modified organic compound a negative electrode having a metal selected from the group consisting of alkali metals and alkaline earth metals, at least one of the general formula (1), and an alkali metal
  • the nonaqueous electrolyte secondary battery of the present invention comprising a nonaqueous electrolyte containing at least one metal salt selected from the group consisting of a salt or an alkaline earth metal salt is after 150 cycles compared to the secondary battery shown in the comparative example. The capacity of was large.
  • the nonaqueous electrolyte secondary battery of the present invention has both excellent charge / discharge characteristics at low temperatures and excellent high-temperature storage stability.
  • non-aqueous electrolyte secondary battery having a high capacity even after repeated charging and discharging.
  • nonaqueous electrolyte secondary battery that is excellent in capacity characteristics after storage at high temperatures.

Abstract

The present invention addresses the problem of providing a nonaqueous electrolyte secondary battery that has a high capacity even after repeated charging and discharging. The present invention is the nonaqueous electrolyte secondary battery that includes: a positive electrode that contains a sulfur-modified organic compound; a negative electrode that contains at least one metal selected from the group consisting of alkali metal and alkaline earth metal; and a nonaqueous electrolyte that contains at least one compound represented by general formula (1) and at least one metal salt selected from the group consisting of alkali metal salt and alkaline earth metal salt. (In the formula, R1 to R3 are each independently a hydrocarbon group having 1 to 10 carbon atoms, R4 is an n-valent hydrocarbon group having 1 to 10 carbon atoms or an n-valent hydrocarbon group having 1 to 10 carbon atoms that includes at least one oxygen atom or sulfur atom, and n is an integer of 1 to 6.)

Description

非水電解質二次電池Nonaqueous electrolyte secondary battery
 本発明は、硫黄変性有機化合物を正極に含み、アルカリ金属を負極に含む、非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery including a sulfur-modified organic compound in a positive electrode and an alkali metal in a negative electrode.
 リチウムイオン二次電池などの非水電解質二次電池は、小型で軽量、かつエネルギー密度が高く、さらに繰り返し充放電が可能であることから、携帯用パソコン、ハンディビデオカメラ、情報端末等の携帯電子機器の電源として広く用いられている。また、環境問題の観点から、非水電解質二次電池を使用した電気自動車や、電力を動力の一部に利用したハイブリッド車の実用化が行われている。そのため近年では、携帯電子機器の使用可能時間、自動車の航続距離、さらにはそれらの安全性の観点から、二次電池のさらなる性能向上が求められている。 Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, so portable electronic devices such as portable personal computers, handy video cameras, and information terminals. Widely used as a power source for equipment. From the viewpoint of environmental problems, electric vehicles using nonaqueous electrolyte secondary batteries and hybrid vehicles using electric power as a part of power have been put into practical use. Therefore, in recent years, further improvements in the performance of secondary batteries have been demanded from the viewpoints of the usable time of portable electronic devices, the cruising distance of automobiles, and the safety thereof.
 硫黄は、例えば、リチウム-遷移金属複合酸化物の様な正極活物質と比較して理論的に大きな電気容量を有し、更に遷移金属の様な資源埋蔵量に対する懸念や、コストに対する懸念が極めて小さい。また、リチウム金属又はリチウム金属を含む合金は、例えばリチウムイオンをインターカレートした炭素の様な二次電池用負極活物質と比較して、軽量、高いエネルギー密度を有する。そのため、リチウム金属を負極活物質に、硫黄を含む材料を正極活物質に用いるリチウム硫黄二次電池は、前記要望を満たす有力な候補の一つである。 Sulfur, for example, has a theoretically large electric capacity compared to a positive electrode active material such as a lithium-transition metal composite oxide, and is extremely concerned about resource reserves and costs such as transition metals. small. Further, lithium metal or an alloy containing lithium metal is lighter and has a higher energy density than a negative electrode active material for a secondary battery such as carbon intercalated with lithium ions. Therefore, a lithium-sulfur secondary battery that uses lithium metal as a negative electrode active material and a material containing sulfur as a positive electrode active material is one of the promising candidates that satisfy the above-mentioned demand.
 しかし、硫黄を正極活物質として用いたリチウム硫黄二次電池では、放電時に硫黄とリチウムの化合物が生成し、この化合物が電解質に溶解、分散することで活物質が消失する。そのため、充放電を繰り返すごとに電気容量が低下(以下、サイクル特性ということがある)する。このため、硫黄―炭素結合を有する硫黄変性有機化合物が開発され、正極活物質として検討されている(例えば、特許文献1~10)。しかし、硫黄変性有機化合物を含む正極と、リチウム金属を負極とした二次電池では、さらなるサイクル特性の向上が要望されている。 However, in a lithium-sulfur secondary battery using sulfur as a positive electrode active material, a compound of sulfur and lithium is generated during discharge, and the active material disappears when this compound is dissolved and dispersed in the electrolyte. Therefore, the electric capacity decreases every time charging / discharging is repeated (hereinafter sometimes referred to as cycle characteristics). For this reason, sulfur-modified organic compounds having a sulfur-carbon bond have been developed and studied as positive electrode active materials (for example, Patent Documents 1 to 10). However, there is a demand for further improvement in cycle characteristics in a secondary battery using a positive electrode containing a sulfur-modified organic compound and lithium metal as a negative electrode.
 一方、シリルエステル基を有する化合物を含む電解液は、正極活物質としてリチウム遷移金属複合酸化物やリチウム含有遷移金属リン酸化合物を、負極活物質として人造黒鉛等を用いた非水電解質二次電池において、サイクル特性を改善する効果があることが開示されているものの、硫黄変性有機化合物を正極活物質とした正極と、リチウムやナトリウムなどのアルカリ金属を負極活物質とした負極を用いた非水電解質二次電池については知られていない(例えば、特許文献11、12)。 On the other hand, an electrolytic solution containing a compound having a silyl ester group is a nonaqueous electrolyte secondary battery using a lithium transition metal composite oxide or a lithium-containing transition metal phosphate compound as a positive electrode active material and artificial graphite or the like as a negative electrode active material. However, it is disclosed that there is an effect of improving cycle characteristics, but a non-aqueous solution using a positive electrode using a sulfur-modified organic compound as a positive electrode active material and a negative electrode using an alkali metal such as lithium or sodium as a negative electrode active material. An electrolyte secondary battery is not known (for example, Patent Documents 11 and 12).
 また、リチウム金属、またはリチウム金属を含む合金を負極活物質として含む二次電池は、充放電を繰り返すのに伴い、負極上にリチウムデンドライトが形成され、充放電サイクル特性が低下する可能性がある。このため、二次電池の非水電解質に添加された化合物(以後、電解液添加剤又は電解質添加剤と呼ぶことがある。)が初期の充放電により反応することで、電極表面に固体電解質インターフェイス(SEI)と呼ばれる膜が形成され、デンドライト形成を抑制して、サイクル特性の低下を抑制する電池特性を改善する技術が開示されている。例えば、特許文献13では、超原子価ヨウ素を非水電解質に添加することで形成されたSEIにより、リチウムデンドライトの成長を抑制し、サイクル特性向上につながることを開示している。特許文献14、15には、LiNOを非水電解質に添加することで、充電-放電効率や、硫黄の利用効率が改善出来ることが開示されている。 In addition, in a secondary battery including a lithium metal or an alloy containing lithium metal as a negative electrode active material, lithium dendrite may be formed on the negative electrode as charge and discharge are repeated, and charge / discharge cycle characteristics may be deteriorated. . For this reason, a compound added to the non-aqueous electrolyte of the secondary battery (hereinafter sometimes referred to as an electrolyte additive or electrolyte additive) reacts with the initial charge / discharge, so that a solid electrolyte interface is formed on the electrode surface. A technique for improving battery characteristics in which a film called (SEI) is formed, and dendrite formation is suppressed to suppress deterioration of cycle characteristics is disclosed. For example, Patent Document 13 discloses that SEI formed by adding hypervalent iodine to a non-aqueous electrolyte suppresses lithium dendrite growth and leads to improved cycle characteristics. Patent Documents 14 and 15 disclose that charging-discharging efficiency and utilization efficiency of sulfur can be improved by adding LiNO 3 to a non-aqueous electrolyte.
特開2003-151550号公報JP 2003-151550 A US8940436US89040436 特開2011-028948号公報JP 2011-028948 A 特開2011-170991号公報JP 2011-170991 A 特開2012-099342号公報JP 2012-099342 A 特開2012-150933号公報JP 2012-150933 A WO2012/114651号WO2012 / 114651 US10008722US10000872 US2018072665US2018072665 US2018065927US2018065927 US2018026304US2018026304 US2018226683US2018226683 特開2012-059541号公報JP 2012-059541 A US7019494US7019494 US7358012US7358012
 しかしながら、例えば、特許文献14及び15に多くの電解液添加剤が開示されているものの、サイクル特性や、二次電池を繰り返し充放電して使用した後の電気容量は充分なものではなかった。本発明の課題は、充放電を繰り返した後も高い容量を有し、低温での優れた充放電特性と、優れた高温保存性とを併せ持つ、硫黄変性有機化合物を正極活物質とした正極と、リチウムやナトリウムなどのアルカリ金属又はアルカリ土類金属を負極活物質とした負極とを用いた非水電解質二次電池を提供することにある。 However, for example, although many electrolytic solution additives are disclosed in Patent Documents 14 and 15, the cycle characteristics and the electric capacity after repeatedly charging and discharging a secondary battery are not sufficient. An object of the present invention is to provide a positive electrode using a sulfur-modified organic compound as a positive electrode active material, which has a high capacity even after repeated charge and discharge, and has both excellent charge / discharge characteristics at low temperatures and excellent high-temperature storage stability. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery using a negative electrode using an alkali metal or alkaline earth metal such as lithium or sodium as a negative electrode active material.
 本発明者らは、鋭意検討を行った結果、硫黄変性有機化合物を含む正極及びリチウム金属をはじめとしたアルカリ金属又はアルカリ土類金属を含む負極を用いる場合、特定の構造を有する化合物を含有する非水電解質を用いることで、上記課題を達成できることを見出し、本発明を完成させた。 As a result of intensive studies, the inventors of the present invention contain a compound having a specific structure when using a positive electrode containing a sulfur-modified organic compound and a negative electrode containing an alkali metal or alkaline earth metal including lithium metal. It has been found that the above problem can be achieved by using a non-aqueous electrolyte, and the present invention has been completed.
 本発明は、硫黄変性有機化合物を含有する正極;アルカリ金属及びアルカリ土類金属からなる群から選ばれる少なくとも1種の金属を含有する負極;一般式(1)で表される化合物を少なくとも1種、並びにアルカリ金属塩及びアルカリ土類金属塩からなる群から選ばれる少なくとも1種の金属塩を含む非水電解質;を有する非水電解質二次電池である。 The present invention relates to a positive electrode containing a sulfur-modified organic compound; a negative electrode containing at least one metal selected from the group consisting of alkali metals and alkaline earth metals; and at least one compound represented by the general formula (1). And a nonaqueous electrolyte containing at least one metal salt selected from the group consisting of alkali metal salts and alkaline earth metal salts.
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、それぞれ独立に炭素原子数1~10の炭化水素基を表し、Rは、炭素原子数1~10のn価の炭化水素基、又は酸素原子若しくは硫黄原子を少なくとも1原子含む炭素原子数1~10のn価の炭化水素基を表し、nは1~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 to R 3 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, and R 4 represents an n-valent hydrocarbon group having 1 to 10 carbon atoms, or an oxygen atom or sulfur) (It represents an n-valent hydrocarbon group having 1 to 10 carbon atoms and containing at least one atom, and n represents an integer of 1 to 6.)
図1は、本発明の非水電解質二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention. 図2は、本発明の非水電解質二次電池の円筒型電池の基本構成を示す概略図である。FIG. 2 is a schematic view showing a basic configuration of a cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention. 図3は、本発明の非水電解質二次電池の円筒型電池の内部構造を断面として示す斜視図である。FIG. 3 is a perspective view showing the internal structure of the cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention as a cross section.
 以下に、本発明の非水電解質二次電池について、好ましい実施形態に基づき詳細に説明する。 Hereinafter, the nonaqueous electrolyte secondary battery of the present invention will be described in detail based on preferred embodiments.
<正極>
 本発明の非水電解質二次電池に用いられる正極は、硫黄変性有機化合物を含有する。本発明において硫黄変性有機化合物は、正極活物質として作用する。硫黄変性有機化合物の硫黄の含有量は、特に限定されるものではないが、25質量%以上であることが好ましく、30質量%以上であることがさらに好ましい。
<Positive electrode>
The positive electrode used for the nonaqueous electrolyte secondary battery of the present invention contains a sulfur-modified organic compound. In the present invention, the sulfur-modified organic compound acts as a positive electrode active material. The sulfur content of the sulfur-modified organic compound is not particularly limited, but is preferably 25% by mass or more, and more preferably 30% by mass or more.
 本発明で用いる硫黄変性有機化合物は、有機化合物と硫黄を加熱処理することにより得られる。有機化合物と硫黄を加熱処理した化合物としては、例えば、硫黄変性ポリアクリロニトリル化合物、硫黄変性エラストマー化合物、硫黄変性ピッチ化合物、硫黄変性多核芳香環化合物、硫黄変性脂肪族炭化水素酸化物、硫黄変性ポリエーテル化合物、ポリチエノアセン化合物、硫黄変性ポリアミド化合物、及びポリ硫化カーボン等が挙げられる。これらの化合物は、硫黄と、ポリアクリロニトリル化合物、エラストマー化合物、ピッチ化合物、多核芳香環環化合物、脂肪族炭化水素酸化物、ポリエーテル化合物、ポリアセン化合物、ポリアミド化合物、又はヘキサクロロブタジエン等とを混合し、非酸化性雰囲気中、250℃~600℃で加熱変性して製造することができる。これらの化合物を硫黄と加熱する際、前記の化合物の中から1種のみ使用しても良いし、2種以上を組み合わせて使用しても良い。硫黄変性有機化合物は、大きな充放電容量が得られることから、硫黄変性ポリアクリロニトリル化合物が好ましい。 The sulfur-modified organic compound used in the present invention is obtained by heat-treating an organic compound and sulfur. Examples of the compound obtained by heat treating an organic compound and sulfur include, for example, a sulfur-modified polyacrylonitrile compound, a sulfur-modified elastomer compound, a sulfur-modified pitch compound, a sulfur-modified polynuclear aromatic ring compound, a sulfur-modified aliphatic hydrocarbon oxide, and a sulfur-modified polyether. Examples thereof include compounds, polythienoacene compounds, sulfur-modified polyamide compounds, and polysulfide carbon. These compounds are a mixture of sulfur and polyacrylonitrile compound, elastomer compound, pitch compound, polynuclear aromatic ring compound, aliphatic hydrocarbon oxide, polyether compound, polyacene compound, polyamide compound, or hexachlorobutadiene, It can be produced by heat-denaturing at 250 to 600 ° C. in a non-oxidizing atmosphere. When these compounds are heated with sulfur, only one of these compounds may be used, or two or more may be used in combination. The sulfur-modified organic compound is preferably a sulfur-modified polyacrylonitrile compound because a large charge / discharge capacity can be obtained.
 非酸化性雰囲気とは、酸素濃度が5体積%未満、好ましくは2体積%未満、更に好ましくは、酸素を実質的に含有しない雰囲気、例えば、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気や、硫黄ガス雰囲気のことである。 Non-oxidizing atmosphere means an oxygen concentration of less than 5% by volume, preferably less than 2% by volume, more preferably an atmosphere substantially free of oxygen, for example, an inert gas atmosphere such as nitrogen, helium, argon, It is a sulfur gas atmosphere.
 硫黄変性ポリアクリロニトリル化合物は、ポリアクリロニトリル化合物と単体硫黄を、非酸化性雰囲気中で加熱処理して得られる化合物である。ポリアクリロニトリル化合物は、アクリロニトリルのホモポリマーであっても、アクリロニトリルと他のモノマーとのコポリマーであっても差し支えない。ポリアクリロニトリル化合物におけるアクリロニトリルの含有量が低くなると電池性能が低くなり、更に、炭化が比較的容易で炭化物が比較的高い導電性を示し、そのため活物質の利用率が向上して高容量化を図ることができるという観点から、アクリロニトリルと他のモノマーとのコポリマーにおけるアクリロニトリルの含有量は少なくとも90質量%であることが好ましく、ポリアクリロニトリルホモポリマーが更に好ましい。他のモノマーとしては、例えば、アクリル酸、酢酸ビニル、N-ビニルホルムアミド、N,N’-メチレンビス(アクリルアミド)が挙げられる。加熱処理の温度は250℃~550℃が好ましく、硫黄変性ポリアクリロニトリルの硫黄含有量は、大きな充放電容量が得られることから、30~60質量%が好ましい。 The sulfur-modified polyacrylonitrile compound is a compound obtained by heat-treating a polyacrylonitrile compound and elemental sulfur in a non-oxidizing atmosphere. The polyacrylonitrile compound may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and other monomers. When the content of acrylonitrile in the polyacrylonitrile compound decreases, the battery performance decreases, and further, carbonization is relatively easy and the carbide exhibits a relatively high conductivity. Therefore, the utilization ratio of the active material is improved and the capacity is increased. In view of the possibility, the content of acrylonitrile in the copolymer of acrylonitrile and other monomers is preferably at least 90% by mass, and more preferably a polyacrylonitrile homopolymer. Examples of other monomers include acrylic acid, vinyl acetate, N-vinylformamide, and N, N′-methylenebis (acrylamide). The temperature of the heat treatment is preferably 250 ° C. to 550 ° C., and the sulfur content of the sulfur-modified polyacrylonitrile is preferably 30 to 60% by mass because a large charge / discharge capacity can be obtained.
 硫黄変性エラストマー化合物は、ゴムと単体硫黄の混合物を、非酸化性雰囲気中で加熱処理して得られる化合物である。ゴムとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム及びアクリロニトリルブタジエンゴム等が挙げられる。これらのゴムは1種を単独で使用することができ、2種以上を組合せて使用することができる。原料のゴムは、加硫ゴムでも加硫前のゴムでもよい。加熱処理の温度は、250℃~550℃が好ましく、硫黄変性エラストマー化合物の硫黄含有量は、大きな充放電容量が得られることから、40~70質量%が好ましい。 The sulfur-modified elastomer compound is a compound obtained by heat-treating a mixture of rubber and elemental sulfur in a non-oxidizing atmosphere. Examples of the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, and acrylonitrile butadiene rubber. These rubber | gum can be used individually by 1 type, and can be used in combination of 2 or more type. The raw rubber may be vulcanized rubber or unvulcanized rubber. The temperature of the heat treatment is preferably 250 ° C. to 550 ° C., and the sulfur content of the sulfur-modified elastomer compound is preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
 硫黄変性ピッチ化合物は、ピッチ類と単体硫黄との混合物を、非酸化性雰囲気中で加熱処理して得られる化合物である。ピッチ類としては、石油ピッチ、石炭ピッチ、メソフェーズピッチ、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、及び、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられる。ピッチ類は様々な化合物の混合物であり、縮合多環芳香族を含む。ピッチ類に含まれる縮合多環芳香族は、単一種である場合があり、複数種である場合がある。この縮合多環芳香族は、環の中に、炭素と水素以外にも、窒素や硫黄を含んでいる場合がある。加熱処理の温度は、300℃~500℃が好ましく、硫黄変性ピッチ化合物の硫黄含有量は、大きな充放電容量が得られることから、25~70質量%が好ましい。 The sulfur-modified pitch compound is a compound obtained by heat-treating a mixture of pitches and elemental sulfur in a non-oxidizing atmosphere. Pitches include petroleum pitch, coal pitch, mesophase pitch, asphalt, coal tar, coal tar pitch, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compounds, and heteroatom-containing condensed polycyclic aroma. And organic synthetic pitch obtained by polycondensation of a group hydrocarbon compound. Pitches are a mixture of various compounds and contain fused polycyclic aromatics. The condensed polycyclic aromatic contained in the pitches may be a single species or a plurality of species. This condensed polycyclic aromatic may contain nitrogen or sulfur in addition to carbon and hydrogen in the ring. The temperature of the heat treatment is preferably 300 ° C. to 500 ° C., and the sulfur content of the sulfur-modified pitch compound is preferably 25 to 70% by mass because a large charge / discharge capacity can be obtained.
 硫黄変性多核芳香環化合物は、例えば、ナフタレン、アントラセン、テトラセン、ペンタセン、フェナントレン、クリセン、ピセン、ピレン、ベンゾピレン、ペリレン、コロネン等のベンゼン系芳香環化合物と単体硫黄の混合物を、非酸化性雰囲気中で加熱処理して得られる化合物である。また、ベンゼン系芳香環化合物の一部が5員環となった芳香族環化合物、又はこれらの炭素原子の一部が硫黄、酸素、窒素などに置き換わったヘテロ原子含有複素芳香環化合物が挙げられる。更に、これらの多核芳香環化合物は、炭素原子数1~12の鎖状又は分岐状アルキル基、アルコキシル基、水酸基、カルボキシル基、アミノ基、アミノカルボニル基、アミノチオ基、メルカプトチオカルボニルアミノ基、カルボキシアルキルカルボニル基などの置換基を有している場合がある。加熱処理の温度は、250℃~550℃が好ましく、硫黄変性ピッチ化合物の硫黄含有量は、大きな充放電容量が得られることから、40~70質量%が好ましい。 Sulfur-modified polynuclear aromatic ring compounds include, for example, a mixture of benzene-based aromatic ring compounds such as naphthalene, anthracene, tetracene, pentacene, phenanthrene, chrysene, picene, pyrene, benzopyrene, perylene, coronene, and simple sulfur in a non-oxidizing atmosphere. It is a compound obtained by heat-treating. In addition, aromatic ring compounds in which part of the benzene aromatic ring compound is a 5-membered ring, or hetero atom-containing heteroaromatic ring compounds in which some of these carbon atoms are replaced with sulfur, oxygen, nitrogen, etc. . Further, these polynuclear aromatic ring compounds are linear or branched alkyl groups having 1 to 12 carbon atoms, alkoxyl groups, hydroxyl groups, carboxyl groups, amino groups, aminocarbonyl groups, aminothio groups, mercaptothiocarbonylamino groups, carboxy groups. It may have a substituent such as an alkylcarbonyl group. The temperature of the heat treatment is preferably 250 ° C. to 550 ° C., and the sulfur content of the sulfur-modified pitch compound is preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
 硫黄変性脂肪族炭化水素酸化物は、脂肪族アルコール、脂肪族アルデヒド、脂肪族ケトン、脂肪族エポキシド、脂肪酸等の脂肪族炭化水素酸化物と単体硫黄を、非酸化性雰囲気中で加熱処理して得られる化合物である。加熱処理の温度は300℃~500℃が好ましい。硫黄変性脂肪族炭化水素酸化物の硫黄含有量は、大きな充放電容量が得られることから、45~75質量%が好ましい。 Sulfur-modified aliphatic hydrocarbon oxides are obtained by heat-treating aliphatic hydrocarbon oxides such as aliphatic alcohols, aliphatic aldehydes, aliphatic ketones, aliphatic epoxides, and fatty acids and simple sulfur in a non-oxidizing atmosphere. The resulting compound. The temperature of the heat treatment is preferably 300 ° C to 500 ° C. The sulfur content of the sulfur-modified aliphatic hydrocarbon oxide is preferably 45 to 75% by mass because a large charge / discharge capacity can be obtained.
 硫黄変性ポリエーテル化合物は、ポリエーテル化合物と単体硫黄を非酸化性雰囲気中で加熱処理して得られる化合物である。ポリエーテル化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、エチレンオキシド/プロピレンオキシドコポリマー、ポリテトラメチレングリコール等が挙げられる。ポリエーテル化合物は、末端がアルキルエーテル基、アルキルフェニルエーテル基、アシル基であってもよく、グリセリン、ソルビトール等のポリオールのエチレンオキシド付加物であってもよい。加熱処理の温度は、250~500℃が好ましい。硫黄変性ポリエーテル化合物の硫黄含有量は、大きな充放電容量が得られることから、30~75質量%が好ましい。 The sulfur-modified polyether compound is a compound obtained by heat-treating a polyether compound and elemental sulfur in a non-oxidizing atmosphere. Examples of the polyether compound include polyethylene glycol, polypropylene glycol, ethylene oxide / propylene oxide copolymer, polytetramethylene glycol, and the like. The polyether compound may be terminated with an alkyl ether group, an alkylphenyl ether group or an acyl group, or may be an ethylene oxide adduct of a polyol such as glycerin or sorbitol. The temperature of the heat treatment is preferably 250 to 500 ° C. The sulfur content of the sulfur-modified polyether compound is preferably 30 to 75% by mass because a large charge / discharge capacity can be obtained.
 ポリチエノアセン化合物は、下記一般式(3)で表される、硫黄を含むポリチエノアセン構造を有する化合物である。ポリチエノアセン化合物は、ポリエチレン化合物等の直鎖構造を有する脂肪族のポリマー化合物や、ポリチオフェン等のチオフェン構造を有するポリマー化合物と、単体硫黄を非酸化性雰囲気中で加熱処理して得られる化合物である。加熱処理の温度は、300℃~600℃が好ましい。ポリチエノアセン化合物の硫黄含有量は、大きな充放電容量が得られることから、30~80質量%が好ましい。 The polythienoacene compound is a compound having a polythienoacene structure containing sulfur represented by the following general formula (3). The polythienoacene compound is a compound obtained by heat-treating an aliphatic polymer compound having a linear structure such as a polyethylene compound or a polymer compound having a thiophene structure such as polythiophene and simple sulfur in a non-oxidizing atmosphere. The temperature of the heat treatment is preferably 300 ° C. to 600 ° C. The sulfur content of the polythienoacene compound is preferably 30 to 80% by mass because a large charge / discharge capacity can be obtained.
Figure JPOXMLDOC01-appb-C000004
(式中、*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, * represents a bond.)
 硫黄変性ポリアミド化合物は、アミド結合を有するポリマー由来の炭素骨格を有する硫黄変性有機化合物であり、具体的には、アミノカルボン酸化合物と単体硫黄、又はポリアミン化合物とポリカルボン酸化合物と単体硫黄を、非酸化性雰囲気中で加熱処理して得られる化合物である。加熱処理の温度は、250~600℃が好ましい。硫黄変性ポリアミド化合物の硫黄含有量は、大充放電容量が得られることから、40~70質量%が好ましい。 The sulfur-modified polyamide compound is a sulfur-modified organic compound having a carbon skeleton derived from a polymer having an amide bond, specifically, an aminocarboxylic acid compound and simple sulfur, or a polyamine compound and polycarboxylic acid compound and simple sulfur, It is a compound obtained by heat treatment in a non-oxidizing atmosphere. The temperature of the heat treatment is preferably 250 to 600 ° C. The sulfur content of the sulfur-modified polyamide compound is preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
 ポリ硫化カーボンは、一般式(CS(xは0.5~2であり、nは4以上の数である。)で表される化合物であり、例えば、硫化ナトリウム等のアルカリ金属硫化物と単体硫黄の複合体に、ヘキサクロロブタジエン等のハロゲン化不飽和炭化水素を反応させた前駆体を、加熱処理することにより得ることができる。加熱処理の温度は300~450℃が好ましく、ポリ硫化カーボン化合物の硫黄含有量は、大きな充放電容量が得られることから、65~75質量%が好ましい。 The polysulfide carbon is a compound represented by the general formula (CS x ) n (x is 0.5 to 2, n is a number of 4 or more), for example, alkali metal sulfide such as sodium sulfide. It can be obtained by heat-treating a precursor in which a halogenated unsaturated hydrocarbon such as hexachlorobutadiene is reacted with a complex of a product and elemental sulfur. The temperature of the heat treatment is preferably 300 to 450 ° C., and the sulfur content of the polysulfide carbon compound is preferably 65 to 75% by mass because a large charge / discharge capacity can be obtained.
 硫黄含有量は、例えば、硫黄及び酸素が分析可能なCHN分析装置(エレメンター社 vario MICRO cube等)を用いて元素分析を行い測定することができる。 The sulfur content can be measured by performing elemental analysis using, for example, a CHN analyzer (such as Elementer Vario MICRO cube) that can analyze sulfur and oxygen.
 加熱時には前記材料以外にも、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛系炭素材料、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボン、カーボンナノチューブ等の炭素材料や、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラキス(2-エチルへキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等の加硫促進剤を用いることができる。これらは1種のみ使用することもでき、2種以上を組み合わせて使用することもできる。炭素材料や加硫促進剤は、公知の配合率により、公知の配合処方で配合することができる。 In addition to the above materials during heating, graphite carbon materials such as natural graphite, artificial graphite and expanded graphite, carbon materials such as carbon black, activated carbon, carbon fiber, coke, soft carbon, hard carbon, carbon nanotubes, tetramethylthiuram Vulcanization accelerators such as disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethylthiuram monosulfide, dipentamethylenethiuram tetrasulfide can be used. These can be used alone or in combination of two or more. The carbon material and the vulcanization accelerator can be blended in a known blending recipe at a known blending ratio.
 硫黄変性有機化合物の形状は、特に限定されないが、例えば、球状、多面体状、繊維状、棒状、板状、鱗片状、又は無定形状であり、これらは中空状であっても構わない。これらの中で、電極合剤層が均一に形成されることから、球状又は多面体状が好ましい。 The shape of the sulfur-modified organic compound is not particularly limited. For example, it is spherical, polyhedral, fibrous, rod-like, plate-like, scale-like, or amorphous, and these may be hollow. Among these, since the electrode mixture layer is uniformly formed, a spherical or polyhedral shape is preferable.
 硫黄変性有機化合物の粒子径は、粒子径が小さいと粉体を取り扱う上で作業が難しくなり、一方大きいと電極の均一性・平滑性が低下することから、硫黄-多孔性炭素複合体、または硫黄変性有機化合物の平均粒子径(D50)は、0.5~100μmが好ましく、1μm~50μmがより好ましく、1μm~20μmが更に好ましい。本発明において、平均粒子径(D50)とは、レーザー回折光散乱法により測定された50%粒子径をいう。粒子径は体積基準の直径であり、レーザー回折光散乱法では、二次粒子の直径が測定される。 If the particle size of the sulfur-modified organic compound is small, it becomes difficult to handle the powder. On the other hand, if the particle size is large, the uniformity / smoothness of the electrode decreases, so the sulfur-porous carbon composite, or The average particle diameter (D50) of the sulfur-modified organic compound is preferably 0.5 to 100 μm, more preferably 1 μm to 50 μm, and still more preferably 1 μm to 20 μm. In the present invention, the average particle diameter (D50) refers to a 50% particle diameter measured by a laser diffraction light scattering method. The particle diameter is a volume-based diameter, and the diameter of secondary particles is measured by the laser diffraction light scattering method.
 硫黄変性有機化合物は、粉砕等の方法により所望の粒径とすることができる。粉砕は、気体中で行う乾式粉砕でも、水等の液体中で行う湿式粉砕でもよい。工業的な粉砕方法としては、例えば、ボールミル、ローラーミル、ターボミル、ジェットミル、サイクロンミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミル等が挙げられる。 The sulfur-modified organic compound can have a desired particle size by a method such as pulverization. The pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water. Examples of the industrial pulverization method include a ball mill, a roller mill, a turbo mill, a jet mill, a cyclone mill, a hammer mill, a pin mill, a rotating mill, a vibration mill, a planetary mill, an attritor, and a bead mill.
 本発明で用いる正極は、公知の方法に準じて製造することができる。例えば、正極活物質、バインダー及び導電助剤を含む配合物を、有機溶媒又は水でスラリー化した電極合剤ペーストを集電体に塗布して乾燥することにより、集電体上に電極合剤層が形成された正極を製造することができる。 The positive electrode used in the present invention can be produced according to a known method. For example, the electrode mixture is applied onto the current collector by applying a mixture of the positive electrode active material, the binder and the conductive additive to the current collector by applying an electrode mixture paste slurryed with an organic solvent or water to the current collector. A positive electrode on which a layer is formed can be produced.
<バインダー>
 本発明で用いるバインダーは、公知のものを用いることができる。バインダーの具体例としては、例えば、スチレン-ブタジエンゴム、ブタジエンゴム、アクリロニトリル-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、スチレン-イソプレンゴム、フッ素ゴム、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリウレタン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-アクリル酸エステル共重合体、エチレン-ビニルアルコール共重合体、ポリメチルメタクリレート、ポリアクリレート、ポリビニルアルコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルエーテル、ポリ塩化ビニル、ポリアクリル酸、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースナノファイバー、デンプン等が挙げられる。
 バインダーとしては、環境負荷が低く、硫黄の溶出が起こりにくいため、水系バインダーが好ましく、スチレン-ブタジエンゴム、カルボキシメチルセルロースナトリウム、ポリアクリル酸が更に好ましい。
 バインダーは1種のみ使用することもでき、2種以上を組合せて使用することもできる。
 バインダーの含有量は、正極活物質100質量部に対し、1質量部~30質量部であることが好ましく、1質量部~20質量部であることが更に好ましい。
<Binder>
Known binders can be used as the binder used in the present invention. Specific examples of the binder include, for example, styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene rubber, styrene-isoprene rubber, fluorine rubber, polyethylene, polypropylene, polyamide, polyamideimide, polyimide, polyacrylonitrile, Polyurethane, polyvinylidene fluoride, polytetrafluoroethylene, styrene-acrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl ether, polyvinyl chloride , Polyacrylic acid, methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, Loin nanofibers, and starch.
As the binder, an aqueous binder is preferable because it has a low environmental load and sulfur elution hardly occurs. Styrene-butadiene rubber, sodium carboxymethyl cellulose, and polyacrylic acid are more preferable.
Only one binder can be used, or two or more binders can be used in combination.
The content of the binder is preferably 1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material.
<導電助剤>
 本発明で用いる導電助剤としては、電極の導電助剤として公知のものを用いることができる。具体的には、例えば、天然黒鉛、人造黒鉛、コールタールピッチ、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、カーボンナノチューブ、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、グラフェン、フラーレン、ニードルコークス等の炭素材料;アルミニウム粉、ニッケル粉、チタン粉等の金属粉末;酸化亜鉛、酸化チタン等の導電性金属酸化物;La、Sm、Ce、TiS等の硫化物が挙げられる。この導電助剤は、前記硫黄変性有機化合物の製造時に混合することも可能である。
 導電助剤の粒子径は、0.0001μm~100μmが好ましく、0.01μm~50μmがより好ましい。
 導電助剤の含有量は、電極活物質100質量部に対し、通常0.1~50質量部であり、好ましくは1~30質量部、より好ましくは2~20質量部である。
<Conductive aid>
As the conductive assistant used in the present invention, those known as conductive assistants for electrodes can be used. Specifically, for example, natural graphite, artificial graphite, coal tar pitch, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon nanotube, vapor grown carbon fiber (Vapor Grown) Carbon Fiber (VGCF), graphene, fullerene, needle coke and other carbon materials; metal powders such as aluminum powder, nickel powder and titanium powder; conductive metal oxides such as zinc oxide and titanium oxide; La 2 S 3 and Sm 2 Examples thereof include sulfides such as S 3 , Ce 2 S 3 and TiS 2 . This conductive auxiliary agent can be mixed during the production of the sulfur-modified organic compound.
The particle size of the conductive aid is preferably 0.0001 μm to 100 μm, and more preferably 0.01 μm to 50 μm.
The content of the conductive assistant is usually 0.1 to 50 parts by mass, preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the electrode active material.
<溶媒>
 前記電極合剤ペーストを調製するための溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ニトロメタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、水、アルコール等が挙げられる。溶媒の使用量は、スラリーを塗膜する際に選択する方法にあわせて調整することができ、例えば、ドクターブレード法による塗布の場合、硫黄変性有機化合物、バインダー及び導電助剤の合計量100質量部に対し、20~300質量部が好ましく、30~200質量部が更に好ましい。
<Solvent>
Solvents for preparing the electrode mixture paste include, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propio Nitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, nitromethane, N-methylpyrrolidone, N, N-dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran, dimethyl sulfoxide, sulfolane, γ-butyrolactone, water, alcohol And the like. The amount of the solvent used can be adjusted according to the method selected when coating the slurry. For example, in the case of application by the doctor blade method, the total amount of the sulfur-modified organic compound, the binder and the conductive auxiliary agent is 100 mass. The amount is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass with respect to parts.
 電極合剤ペースト組成物には、本発明の効果を損なわない範囲で、前記成分に加え、例えば、粘度調整剤、補強材、酸化防止剤、pH調整剤、分散剤等の他の成分を含有させても構わない。これらの他の成分としては公知のものを、公知の配合比率で使用することができる。 The electrode mixture paste composition contains, in addition to the above components, other components such as, for example, a viscosity modifier, a reinforcing material, an antioxidant, a pH adjuster, and a dispersant, as long as the effects of the present invention are not impaired. It does n’t matter. As these other components, known components can be used at a known blending ratio.
<電極合剤ペースト製造工程>
 電極合剤ペーストの製造において、正極活物質、バインダー及び導電助剤を溶媒に分散又は溶解させる際、すべてを一括して溶媒に加えて分散処理することができ、別々に加えて分散処理することもできる。溶媒中に、バインダー、導電助剤、活物質の順番で逐次添加して分散処理を行なうと、これらを溶媒に均一に分散できるため好ましい。電極合剤ペーストが他の成分を含有する場合、他の成分を一括して加えて分散処理することができるが、1種添加するごとに分散処理することが好ましい。
<Electrode mixture paste manufacturing process>
In the production of the electrode mixture paste, when the positive electrode active material, the binder and the conductive additive are dispersed or dissolved in the solvent, all of them can be added to the solvent at once and dispersed, or separately added and dispersed. You can also. It is preferable to sequentially add a binder, a conductive additive, and an active material in the solvent in the order of the dispersion treatment, since these can be uniformly dispersed in the solvent. When the electrode mixture paste contains other components, the other components can be added all at once, and the dispersion treatment can be performed. However, the dispersion treatment is preferably performed every time one kind is added.
 分散処理の方法としては特に制限されないが、工業的な方法として、例えば、通常のボールミル、サンドミル、ビーズミル、サイクロンミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、自転・公転ミキサー、プラネタリーミキサー、フィルミックス、ジェットペースタ等を使用することができる。 The dispersion treatment method is not particularly limited, but as an industrial method, for example, a normal ball mill, sand mill, bead mill, cyclone mill, pigment disperser, crushed grinder, ultrasonic disperser, homogenizer, rotation / revolution mixer, Planetary mixers, fill mixes, jet pasters, etc. can be used.
<集電体>
 前記集電体としては、チタン、チタン合金、アルミニウム、アルミニウム合金、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の導電材料が用いられる。集電体の形状としては、箔状、板状、網状等が挙げられ、集電体は多孔質又は無孔のどちらでも構わない。また、これらの導電材料は、密着性や電気特性を改良するために表面処理が施されている場合がある。これらの導電材料の中でも、導電性や価格の観点からアルミニウムが好ましく、アルミニウム箔が特に好ましい。集電体の厚みは、特に制限はないが、通常5~30μmである。
<Current collector>
As the current collector, a conductive material such as titanium, titanium alloy, aluminum, aluminum alloy, nickel, stainless steel, nickel-plated steel, or the like is used. Examples of the shape of the current collector include a foil shape, a plate shape, and a net shape, and the current collector may be either porous or non-porous. In addition, these conductive materials may be subjected to surface treatment in order to improve adhesion and electrical characteristics. Among these conductive materials, aluminum is preferable from the viewpoint of conductivity and price, and aluminum foil is particularly preferable. The thickness of the current collector is not particularly limited, but is usually 5 to 30 μm.
<正極製造工程>
 電極合剤ペースト組成物を集電体に塗布する方法は、特に限定されないが、例えば、ダイコーター法、コンマコーター法、カーテンコーター法、スプレーコーター法、グラビアコーター法、フレキソコーター法、ナイフコーター法、ドクターブレード法、リバースロール法、ハケ塗り法、ディップ法等の各手法を用いることができる。電極合剤ペーストの粘性及び乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ダイコーター法、ナイフコーター法、ドクターブレード法が好ましい。
<Positive electrode manufacturing process>
The method for applying the electrode mixture paste composition to the current collector is not particularly limited. For example, the die coater method, comma coater method, curtain coater method, spray coater method, gravure coater method, flexo coater method, knife coater method Each method such as a doctor blade method, a reverse roll method, a brush coating method, and a dip method can be used. A die coater method, a knife coater method, and a doctor blade method are preferable in that a favorable surface state of the coating layer can be obtained in accordance with the viscosity and drying property of the electrode mixture paste.
 電極合剤ペースト組成物の集電体への塗布は、集電体の片面に行うことができ、両面に行うこともできる。集電体の両面に塗布する場合は、片面ずつ逐次塗布することができ、両面同時に塗布することもできる。また、集電体の表面に連続に塗布することができ、間欠して塗布することもでき、ストライプ状で塗布することもできる。塗布層の厚さ、長さや幅は、電池の大きさ等に応じて、適宜、決定することができる。 Application | coating to the electrical power collector of an electrode mixture paste composition can be performed to the single side | surface of a collector, and can also be performed to both surfaces. In the case of applying to both sides of the current collector, each side can be applied sequentially, or both sides can be applied simultaneously. Moreover, it can apply | coat continuously on the surface of an electrical power collector, can also apply | coat intermittently, and can also apply | coat in stripe form. The thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
 集電体上に塗布された電極合剤ペースト組成物を乾燥させる方法としては、特に限定されず、公知の方法を用いることができる。乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、加熱炉などに静置する、遠赤外線や赤外線、又は電子線等を照射することによる乾燥が挙げられる。これらは組合せて実施することができる。加熱する場合の温度は、例えば、一般的には50℃~180℃程度であるが、温度などの条件はスラリー組成物の塗布量、使用した溶媒の沸点等に応じて適宜設定することができる。この乾燥により、電極合剤ペースト組成物の塗膜から溶媒等の揮発成分が揮発し、集電体上に電極合剤層が形成される。 The method for drying the electrode mixture paste composition applied on the current collector is not particularly limited, and a known method can be used. Examples of the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, drying by irradiation with far infrared rays, infrared rays, electron beams, or the like. These can be implemented in combination. The temperature at the time of heating is, for example, generally about 50 ° C. to 180 ° C., but the conditions such as the temperature can be appropriately set according to the coating amount of the slurry composition, the boiling point of the solvent used, and the like. . By this drying, volatile components such as a solvent are volatilized from the coating film of the electrode mixture paste composition, and an electrode mixture layer is formed on the current collector.
<負極>
 本発明の非水電解質二次電池に用いられる負極は、アルカリ金属及びアルカリ土類金属からなる群から選ばれる少なくとも1種の金属を含有する。本発明において、これらの金属は、負極活物質として作用する。
<Negative electrode>
The negative electrode used for the nonaqueous electrolyte secondary battery of the present invention contains at least one metal selected from the group consisting of alkali metals and alkaline earth metals. In the present invention, these metals act as a negative electrode active material.
 アルカリ金属としては、例えば、リチウム、ナトリウム、カリウムが挙げられる。負極活物質としては、これらの合金も用いることができる。
 アルカリ金属を含む合金としては、リチウム合金、ナトリウム合金が挙げられる。リチウム合金としては、本発明の効果を妨げない限り特に限定されないが、例えば、リチウムと、アルミニウム、鉛、ビスマス、インジウム、ガリウム、ニッケル、ゲルマニウム、シリコン、スズの群から選ばれる1種以上の金属との合金が挙げられる。さらに、これらのリチウム合金に、1質量%以下の他の金属を添加したものも用いることができる。これらのリチウム合金の中でも、リチウムが30質量%以上含まれるものが好ましく、40質量%以上含まれるものが更に好ましい。ナトリウム合金としては、本発明の効果を妨げない限り特に限定されないが、例えば、ナトリウムと、アルミニウム、シリコン、スズ、マグネシウム、インジウム、カルシウムの群から選ばれる1種以上の金属との合金が挙げられる。さらに、これらのナトリウム合金に、1質量%の他の金属を添加したものも用いることができる。これらのナトリウム合金の中でも、ナトリウムが30質量%以上含まれるものが好ましく、50質量%以上含まれるものが更に好ましい。
Examples of the alkali metal include lithium, sodium, and potassium. These alloys can also be used as the negative electrode active material.
Examples of the alloy containing an alkali metal include a lithium alloy and a sodium alloy. The lithium alloy is not particularly limited as long as the effect of the present invention is not hindered. For example, one or more metals selected from the group consisting of lithium and aluminum, lead, bismuth, indium, gallium, nickel, germanium, silicon, and tin. And alloys thereof. Furthermore, what added the other metal 1 mass% or less to these lithium alloys can also be used. Among these lithium alloys, those containing 30% by mass or more of lithium are preferable, and those containing 40% by mass or more are more preferable. Although it does not specifically limit as long as the effect of this invention is not prevented as a sodium alloy, For example, the alloy of sodium and 1 or more types of metals chosen from the group of aluminum, silicon, tin, magnesium, indium, calcium is mentioned. . Furthermore, what added 1 mass% of other metals to these sodium alloys can also be used. Among these sodium alloys, those containing 30% by mass or more of sodium are preferable, and those containing 50% by mass or more are more preferable.
 アルカリ土類金属としては、例えば、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。負極活物質としては、これらの合金も用いることができる。
 アルカリ土類金属を含む合金としては、マグネシウム合金、カルシウム合金が挙げられる。さらに、これらのマグネシウム合金としては、本発明の効果を妨げない限り限定されないが、例えば、銀、インジウム、アルミニウム、ニッケル、ゲルマニウム、シリコン、スズの群から選ばれる1種以上の金属との合金が挙げられる。さらに、これらのマグネシウム合金に、1質量%以下の他の金属を添加したものも用いることができる。これらのマグネシウム金属の中でも、マグネシウムが30質量%以上含まれるものが好ましく、40質量%以上含まれるものが更に好ましい。カルシウム合金としては、本発明の効果を妨げない限り限定されないが、例えば、銀、インジウム、アルミニウム、ニッケル、ゲルマニウム、シリコン、スズの群から選ばれる1種以上の金属との合金が挙げられる。さらに、これらのカルシウム合金に、1質量%以下の他の金属を添加したものも用いることができる。これらのカルシウム金属の中でも、カルシウムが30質量%以上含まれるものが好ましく、40質量%以上含まれるものが更に好ましい。
Examples of the alkaline earth metal include magnesium, calcium, strontium, barium and the like. These alloys can also be used as the negative electrode active material.
Examples of the alloy containing an alkaline earth metal include a magnesium alloy and a calcium alloy. Further, these magnesium alloys are not limited as long as the effects of the present invention are not hindered. For example, an alloy with one or more metals selected from the group of silver, indium, aluminum, nickel, germanium, silicon, and tin is used. Can be mentioned. Furthermore, what added 1 mass% or less of other metals to these magnesium alloys can also be used. Among these magnesium metals, those containing 30% by mass or more of magnesium are preferable, and those containing 40% by mass or more are more preferable. The calcium alloy is not limited as long as the effects of the present invention are not hindered. Examples of the calcium alloy include alloys with one or more metals selected from the group consisting of silver, indium, aluminum, nickel, germanium, silicon, and tin. Furthermore, what added 1 mass% or less of other metals to these calcium alloys can also be used. Among these calcium metals, those containing 30% by mass or more of calcium are preferable, and those containing 40% by mass or more are more preferable.
 アルカリ金属、アルカリ土類金属、又はアルカリ金属若しくはアルカリ土類金属を含む合金は、表面に無機質保護層又は有機質保護層を有している場合があり、これらが積層されたものも用いることができる。
 アルカリ金属、アルカリ土類金属、及びアルカリ金属又はアルカリ土類金属を含む合金の中で、リチウム、ナトリウムが好ましく、リチウムがさらに好ましい。
 アルカリ金属、アルカリ土類金属、及びアルカリ金属またはアルカリ土類金属を含む合金の形状は、特に限定されないが、例えば、箔状、板状、シート状、メッシュ状でもよい。中でも板状、箔状が取り扱いやすさの観点から好ましい。また、厚さは、特に限定されないが、一般的には10μm~3mmであり、50μm~1mmが好ましい。
An alkali metal, alkaline earth metal, or an alloy containing an alkali metal or alkaline earth metal may have an inorganic protective layer or an organic protective layer on the surface, and a laminate of these may also be used. .
Among the alkali metals, alkaline earth metals, and alloys containing alkali metals or alkaline earth metals, lithium and sodium are preferable, and lithium is more preferable.
The shape of the alkali metal, the alkaline earth metal, and the alloy containing the alkali metal or the alkaline earth metal is not particularly limited, but may be, for example, a foil shape, a plate shape, a sheet shape, or a mesh shape. Among these, a plate shape and a foil shape are preferable from the viewpoint of ease of handling. The thickness is not particularly limited, but is generally 10 μm to 3 mm, preferably 50 μm to 1 mm.
 負極集電体は、負極活物質自体の電子伝導性が高いため使用しなくてもよいが、電池の構成の都合によっては、負極活物質と合金を形成しない金属材料を負極集電体として使用することもできる。金属材料としては、特に限定されないが、ステンレス、銅、ニッケル、又は銀が挙げられる。前記負極活物質を必要な大きさに成形したのち、集電体上に圧着して負極を製造することができるし、負極活物質を集電体上に圧着した後、必要な大きさに成形することもできる。 The negative electrode current collector may not be used because the negative electrode active material itself has high electronic conductivity. However, depending on the configuration of the battery, a metal material that does not form an alloy with the negative electrode active material is used as the negative electrode current collector. You can also Although it does not specifically limit as a metal material, Stainless steel, copper, nickel, or silver is mentioned. After forming the negative electrode active material to a required size, the negative electrode can be manufactured by pressure bonding on the current collector, and after forming the negative electrode active material on the current collector, the required size is formed. You can also
<非水電解質>
 本発明の非水電解質二次電池に用いられる非水電解質は、下記一般式(1)で表される化合物を少なくとも1種、並びにアルカリ金属塩及びアルカリ土類金属塩からなる群から選ばれる少なくとも1種の金属塩を含む。下記一般式(1)で表される化合物を少なくとも1種含む非水電解質を用いることで、充放電を繰り返した後も、高い容量を有する非水電解質二次電池が得られる。
<Nonaqueous electrolyte>
The nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention is at least one compound selected from the group consisting of at least one compound represented by the following general formula (1) and an alkali metal salt and an alkaline earth metal salt. Contains one metal salt. By using a nonaqueous electrolyte containing at least one compound represented by the following general formula (1), a nonaqueous electrolyte secondary battery having a high capacity can be obtained even after repeated charge and discharge.
Figure JPOXMLDOC01-appb-C000005
(式中、R~Rは、それぞれ独立に炭素原子数1~10の炭化水素基を表し、Rは、炭素原子数1~10のn価の炭化水素基、又は酸素原子若しくは硫黄原子を少なくとも1原子含む炭素原子数1~10のn価の炭化水素基を表し、nは1~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
(Wherein R 1 to R 3 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, and R 4 represents an n-valent hydrocarbon group having 1 to 10 carbon atoms, or an oxygen atom or sulfur) (It represents an n-valent hydrocarbon group having 1 to 10 carbon atoms and containing at least one atom, and n represents an integer of 1 to 6.)
 炭素原子数1~10の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、2-ブチル基、i-ブチル基、t-ブチル基、ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、ノニル基、デシル基等の脂肪族飽和炭化水素基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基等の脂肪族不飽和炭化水素基;シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基等の脂環式炭化水素基;フェニル基、メチルフェニル基、エチルフェニル基、t-ブチルフェニル基、フェニルメチル基、フェニルエチル基、ナフチル基、チエニル基、ベンゾチエニル基等の芳香族炭化水素基等が挙げられる。炭素原子数1~10の炭化水素基としては、優れたサイクル特性や、繰り返し充放電使用後にも高い容量が得られることから、メチル基、エチル基、ブチル基、ビニル基、フェニル基が好ましく、メチル基が更に好ましい。 Examples of the hydrocarbon group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, i-propyl group, butyl group, 2-butyl group, i-butyl group, t-butyl group, pentyl group, aliphatic saturated hydrocarbon groups such as i-pentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl; vinyl, allyl, butenyl, pentenyl Aliphatic unsaturated hydrocarbon groups such as hexenyl group and octenyl group; alicyclic hydrocarbon groups such as cyclopentyl group, cyclohexyl group and methylcyclohexyl group; phenyl group, methylphenyl group, ethylphenyl group, t-butylphenyl group And aromatic hydrocarbon groups such as phenylmethyl group, phenylethyl group, naphthyl group, thienyl group, and benzothienyl group. The hydrocarbon group having 1 to 10 carbon atoms is preferably a methyl group, an ethyl group, a butyl group, a vinyl group, or a phenyl group because excellent cycle characteristics and a high capacity can be obtained even after repeated charge and discharge use. A methyl group is more preferred.
 一般式(1)のRは、炭素原子数1~10のn価の炭化水素基、または酸素原子若しくは硫黄原子を少なくとも1原子含む炭素原子数1~10のn価の炭化水素基を表し、nは1~6の整数を表す。
 一般式(1)で表される化合物のうち、Rが、炭素原子数1~10のn価の炭化水素基である化合物は、炭素原子数1~10の炭化水素のn個の水素原子が、下記一般式(1a)で表される基で置換された化合物に言い換えることができる。
R 4 in the general formula (1) represents an n-valent hydrocarbon group having 1 to 10 carbon atoms or an n-valent hydrocarbon group having 1 to 10 carbon atoms containing at least one oxygen atom or sulfur atom. , N represents an integer of 1-6.
Among the compounds represented by the general formula (1), a compound in which R 4 is an n-valent hydrocarbon group having 1 to 10 carbon atoms is represented by n hydrogen atoms of a hydrocarbon having 1 to 10 carbon atoms. Can be paraphrased as a compound substituted with a group represented by the following general formula (1a).
Figure JPOXMLDOC01-appb-C000006
(式中、R~Rは一般式(1)と同義であり、*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000006
(Wherein R 1 to R 3 have the same meanings as in general formula (1), and * represents a binding site.)
 炭素原子数1~10の炭化水素としては、炭素原子数1~10の飽和炭化水素、炭素原子数2~10の不飽和炭化水素、炭素原子数6~10の芳香族炭化水素が挙げられる。炭素原子数1~10の飽和炭化水素、炭素原子数2~10の不飽和炭化水素は、直鎖構造であっても、分岐構造であっても構わない。 Examples of the hydrocarbon having 1 to 10 carbon atoms include saturated hydrocarbons having 1 to 10 carbon atoms, unsaturated hydrocarbons having 2 to 10 carbon atoms, and aromatic hydrocarbons having 6 to 10 carbon atoms. The saturated hydrocarbon having 1 to 10 carbon atoms and the unsaturated hydrocarbon having 2 to 10 carbon atoms may have a straight chain structure or a branched structure.
 炭素原子数1~10の飽和炭化水素としては、例えば、メタン、エタン、n-プロパン、n-ブタン、n-ペンタン、n-ヘキサン、シクロヘキサン、ヘプタン、オクタン、ノナン、デカン、アダマンタン等が挙げられる。
 炭素原子数2~10の不飽和炭化水素としては、例えば、エテン、エチン、プロペン、プロピン、1-ブテン、2-ブテン、1,3-ブタジエン、1-ペンテン、2-ペンテン、1,3-ペンタジエン、1-ヘキセン、3-ヘキセン、1,3,5-ヘキサトリエン、シクロヘキセン、1-ヘプテン、1-オクテン、3-オクテン、1,3,5,7-オクタテトラエン、1-ノネン、1-デセン等が挙げられる。
 炭素原子数6~10の芳香族炭化水素としては、例えば、ベンゼン、フェノール、メチルベンゼン、ジメチルベンゼン、エチルベンゼン、ブチルベンゼン、ナフタレン等が挙げられる。
Examples of the saturated hydrocarbon having 1 to 10 carbon atoms include methane, ethane, n-propane, n-butane, n-pentane, n-hexane, cyclohexane, heptane, octane, nonane, decane, adamantane and the like. .
Examples of unsaturated hydrocarbons having 2 to 10 carbon atoms include ethene, ethyne, propene, propyne, 1-butene, 2-butene, 1,3-butadiene, 1-pentene, 2-pentene, 1,3- Pentadiene, 1-hexene, 3-hexene, 1,3,5-hexatriene, cyclohexene, 1-heptene, 1-octene, 3-octene, 1,3,5,7-octatetraene, 1-nonene, 1 -Decene and the like.
Examples of the aromatic hydrocarbon having 6 to 10 carbon atoms include benzene, phenol, methylbenzene, dimethylbenzene, ethylbenzene, butylbenzene, naphthalene, and the like.
 炭素原子数1~10の飽和炭化水素の2個の水素原子が、一般式(1a)で表される基で置換された化合物として、下記の化合物No.1-1~No.1-13が挙げられる。なお、化合物No.1-12の様な化合物は、置換位置が任意の位置であることを示す。 As a compound in which two hydrogen atoms of a saturated hydrocarbon having 1 to 10 carbon atoms are substituted with a group represented by the general formula (1a), the following compound No. 1-1-No. 1-13. In addition, Compound No. A compound such as 1-12 indicates that the substitution position is an arbitrary position.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 炭素原子数2~10の不飽和炭化水素の2個の水素原子、または炭素原子数1~10の飽和炭化水素の3~4個の水素原子が、一般式(1a)で表される基で置換された化合物として、化合物No.2-1~No.2-23が挙げられる。二重結合を含む化合物は、E体であってもZ体であっても構わない。中でも、優れたサイクル特性や、繰り返し充放電使用後にも高い容量が得られることから、化合物No.2-1、化合物No.2-6、化合物No.2-7が好ましく、化合物No.2-1がさらに好ましい。 2 hydrogen atoms of an unsaturated hydrocarbon having 2 to 10 carbon atoms or 3 to 4 hydrogen atoms of a saturated hydrocarbon having 1 to 10 carbon atoms is a group represented by the general formula (1a) As a substituted compound, Compound No. 2-1. 2-23. The compound containing a double bond may be E-form or Z-form. Among these, since the excellent cycle characteristics and high capacity can be obtained even after repeated charge / discharge use, the compound No. 2-1, compound no. 2-6, Compound No. 2 2-7 are preferred, and compound no. 2-1 is more preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 炭素原子数6~10の芳香族炭化水素の2個の水素原子が一般式(1a)で表される基で置換された化合物として、下記の化合物No.3-1~No.3-7が挙げられる。 As a compound in which two hydrogen atoms of an aromatic hydrocarbon having 6 to 10 carbon atoms are substituted with a group represented by the general formula (1a), the following compound No. 3-1. 3-7.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 炭素原子数1~10の炭化水素としては、優れたサイクル特性や、繰り返し充放電使用後にも高い容量が得られることから、メタン、エタン、エテン、ベンゼンが好ましく、エテン、ベンゼンがさらに好ましい。また、優れたサイクル特性や、繰り返し充放電使用後にも高い容量が得られる事に加え、合成が容易であることから、nは2~4が好ましく、2が更に好ましい。 As the hydrocarbon having 1 to 10 carbon atoms, methane, ethane, ethene and benzene are preferable, and ethene and benzene are more preferable because of excellent cycle characteristics and high capacity after repeated charge and discharge use. Further, n is preferably 2 to 4 and more preferably 2 because excellent cycle characteristics, high capacity can be obtained even after repeated charge and discharge use, and synthesis is easy.
 一般式(1)で表される化合物のRが、酸素原子または硫黄原子を少なくとも1原子含む炭素原子数1~10のn価の炭化水素であるとは、Rが、酸素原子または硫黄原子を少なくとも1原子含む炭素原子数1~10のn価の脂肪族炭化水素、または炭素原子数2~10のn価の複素環化合物のことをいう。 When R 4 of the compound represented by the general formula (1) is an n-valent hydrocarbon having 1 to 10 carbon atoms and containing at least one oxygen atom or sulfur atom, R 4 is an oxygen atom or sulfur. An n-valent aliphatic hydrocarbon having 1 to 10 carbon atoms containing at least one atom or an n-valent heterocyclic compound having 2 to 10 carbon atoms.
 一般式(1)で表される化合物のうち、Rが、酸素原子または硫黄原子を少なくとも1原子含む、炭素原子数1~10の2~4価の脂肪族炭化水素である化合物として、例えば、下記の化合物No.4-1~No.4-18が挙げられる。中でも、優れたサイクル特性や、繰り返し充放電使用後にも高い容量が得られることから、化合物No.4-1、化合物No.4-7、及び化合物No.4-10が好ましく、化合物No.4-1及び化合物No.4-7が更に好ましい。 Among the compounds represented by the general formula (1), R 4 is a divalent to tetravalent aliphatic hydrocarbon having 1 to 10 carbon atoms containing at least one oxygen atom or sulfur atom. The following compound No. 4-1. 4-18. Among these, since the excellent cycle characteristics and high capacity can be obtained even after repeated charge / discharge use, the compound No. 4-1, compound no. 4-7, and compound no. 4-10 is preferred, and compound No. 4-1 and compound no. 4-7 is more preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(1)で表される化合物のうち、Rが、酸素原子または硫黄原子を少なくとも1原子含む、炭素原子数2~10の複素環化合物である場合の該複素環化合物としては、例えば、オキソラン、チオラン、フラン、チオフェン、オキサン、チアン、ピラン、ベンゾフラン、ベンゾチオフェン、チエノチオフェン、ジベンゾフラン、ジベンゾチオフェン等が挙げられる。中でも、優れたサイクル特性や、繰り返し充放電使用後にも高い容量が得られることから、チオフェン、フランが好ましく、チオフェンが更に好ましい。一般式(1)で表される化合物のうち、Rが、炭素原子数2~10の複素環化合物であり、nが2場合の化合物として、例えば、下記の化合物No.5-1~No.5-14が挙げられる。 Among the compounds represented by the general formula (1), when R 4 is a heterocyclic compound having 2 to 10 carbon atoms containing at least one oxygen atom or sulfur atom, examples of the heterocyclic compound include: Oxolane, thiolane, furan, thiophene, oxane, thiane, pyran, benzofuran, benzothiophene, thienothiophene, dibenzofuran, dibenzothiophene and the like. Among these, thiophene and furan are preferable, and thiophene is more preferable because excellent cycle characteristics and high capacity can be obtained even after repeated charge and discharge use. Of the compounds represented by the general formula (1), R 4 is a heterocyclic compound having 2 to 10 carbon atoms, and n is 2, for example, the following compound No. 5-1 to No. 5 5-14.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(1)で表される化合物として例示した上記化合物No.1-1~No.5-14の中で、充放電を繰り返した後も高い容量を有し、低温での優れた充放電特性と、優れた高温保存性とを併せ持つ非水電解質二次電池を製造できることから、化合物No.2-1、2-6、2-7、3-1、4-1、4-2、4-7、4-10、4-12、5-3、5-4が好ましく、化合物No.2-1、4-7、5-4がより好ましい。 The above compound No. exemplified as the compound represented by the general formula (1). 1-1-No. 5-14, it is possible to produce a non-aqueous electrolyte secondary battery having a high capacity even after repeated charge and discharge, having both excellent charge / discharge characteristics at low temperatures and excellent high-temperature storage stability. No. 2-1, 2-6, 2-7, 3-1, 4-1, 4-2, 4-7, 4-10, 4-12, 5-3, 5-4 are preferred. 2-1, 4-7, and 5-4 are more preferable.
 本発明で用いる非水電解質は、一般式(1)で表される化合物を少なくとも1種含む。該化合物を含有させることによって、充放電を繰り返した後も、高い電気容量を有する非水電解質二次電池を得られる。
 該化合物の含有量は、非水電解質中の0.01質量%~20質量%であることが好ましく、非水電解質中の0.05質量%~10質量%であることが更に好ましく、非水電解質中の0.1質量%~5質量%であることが最も好ましい。該化合物の含有量が少なすぎる場合には、サイクル後の電気容量の向上効果が充分ではなく、また、多すぎる場合には配合量に見合う効果が見られず、かえって非水電解質二次電池の特性に悪影響を及ぼすことがある。
The nonaqueous electrolyte used in the present invention contains at least one compound represented by the general formula (1). By containing the compound, a nonaqueous electrolyte secondary battery having a high electric capacity can be obtained even after repeated charge and discharge.
The content of the compound is preferably 0.01% by mass to 20% by mass in the nonaqueous electrolyte, more preferably 0.05% by mass to 10% by mass in the nonaqueous electrolyte, Most preferably, it is 0.1% by mass to 5% by mass in the electrolyte. When the content of the compound is too small, the effect of improving the electric capacity after the cycle is not sufficient, and when it is too large, an effect commensurate with the blending amount is not seen, and instead of the non-aqueous electrolyte secondary battery. May adversely affect properties.
 本発明で用いる非水電解質は、金属塩を有機溶媒に溶解して得られる非水電解液、金属塩を有機溶媒に溶解し高分子でゲル化した高分子ゲル電解質、有機溶媒を含まず、金属塩を高分子に分散させた純正高分子電解質のいずれであっても差し支えない。 The non-aqueous electrolyte used in the present invention does not include a non-aqueous electrolyte obtained by dissolving a metal salt in an organic solvent, a polymer gel electrolyte in which the metal salt is dissolved in an organic solvent and gelled with a polymer, and does not contain an organic solvent. Any genuine polymer electrolyte in which a metal salt is dispersed in a polymer can be used.
 <金属塩>
 本発明の非水電解質二次電池の負極が、リチウムまたはリチウム金属合金である場合の、非水電解液及び高分子ゲル電解質に用いる金属塩としては、従来公知のリチウム塩、例えば、LiPF、LiBF、LiAsF、LiCFSO、LiCFCO、LiN(CFSO、LiN(CSO、LiN(SOF)、LiC(CFSO、LiB(CFSO、LiB(C、LiBF(C)、LiSbF、LiSiF、LiSCN、LiClO、LiCl、LiF、LiBr、LiI、LiAlF、LiAlCl、LiPO、及びこれらの誘導体等が挙げられ、これらの中でも、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(SOF)、LiC(CFSO、LiCFSOの誘導体、及びLiC(CFSOの誘導体からなる群から選ばれる1種以上を用いるのが好ましい。
<Metal salt>
When the negative electrode of the non-aqueous electrolyte secondary battery of the present invention is lithium or a lithium metal alloy, the metal salt used for the non-aqueous electrolyte and the polymer gel electrolyte may be a conventionally known lithium salt such as LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), LiSbF 6 , LiSiF 5 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, LiAlF 4 , LiAlCl 4 , LiPO 2 F 2 , and derivatives thereof, among which LiPF 6 , LiBF 4 LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiCF It is preferable to use one or more selected from the group consisting of derivatives of 3 SO 3 and derivatives of LiC (CF 3 SO 2 ) 3 .
 本発明の非水電解質二次電池がリチウムイオン二次電池である場合の、純正高分子電解質に用いる金属塩としては、例えば、LiN(CFSO、LiN(CSO、LiN(SOF)、LiC(CFSO、LiB(CFSO、及びLiB(Cが挙げられる。 Examples of the metal salt used for the pure polymer electrolyte when the non-aqueous electrolyte secondary battery of the present invention is a lithium ion secondary battery include LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2). ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , and LiB (C 2 O 4 ) 2 .
 リチウムイオン二次電池の非水電解液におけるリチウム塩の濃度は、リチウム塩濃度が低すぎると十分な電流密度が得られないことがあり、リチウム塩濃度が高過ぎると非水電解質の安定性を損なう恐れがあることから、0.5~7mol/Lが好ましく、0.8~1.8mol/Lがより好ましい。前記リチウム塩は、2種以上を組み合わせて使用することができる。 The lithium salt concentration in the non-aqueous electrolyte of a lithium ion secondary battery may be insufficient if the lithium salt concentration is too low. If the lithium salt concentration is too high, the stability of the non-aqueous electrolyte may be reduced. Since there is a risk of damage, 0.5 to 7 mol / L is preferable, and 0.8 to 1.8 mol / L is more preferable. The lithium salt can be used in combination of two or more.
 本発明の非水電解質二次電池の負極が、ナトリウムまたはナトリウム金属合金である場合の、非水電解液及び高分子ゲル電解質に用いる金属塩としては、前記リチウム塩のリチウムをナトリウムに置換したナトリウム塩を使用することができ、ナトリウム塩の濃度は、リチウムイオン二次電池である場合のリチウム塩と同様の濃度で使用できる。ナトリウム塩は、2種以上組み合わせて使用することができる。 When the negative electrode of the non-aqueous electrolyte secondary battery of the present invention is sodium or a sodium metal alloy, the metal salt used for the non-aqueous electrolyte and the polymer gel electrolyte is sodium obtained by replacing lithium in the lithium salt with sodium. A salt can be used, and the sodium salt can be used at the same concentration as the lithium salt in the case of a lithium ion secondary battery. Sodium salts can be used in combination of two or more.
 本発明の非水電解質は、前記金属塩に加え、更に硝酸塩、亜硝酸塩を含むことができる。硝酸塩の例としては、例えば、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸セシウム、硝酸バリウム、硝酸アンモニウム、硝酸マンガン、硝酸亜鉛、および硝酸ニッケル等が挙げられる。亜硝酸塩としては、例えば、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸セシウム、および亜硝酸アンモニウム、亜硝酸マンガン、亜硝酸亜鉛、および亜硝酸ニッケル等が挙げられる。
 充放電サイクル後に高い容量が得られることから、硝酸塩、亜硝酸塩の中でも、硝酸リチウム、硝酸ナトリウムが好ましい。非水電解質中の硝酸塩、亜硝酸塩の非水電解質中の濃度は、充放電サイクル後に高い容量が得られることから、0.01質量%~10質量%が好ましく、0.1質量%~5質量%がより好ましい。
The non-aqueous electrolyte of the present invention can further contain nitrate and nitrite in addition to the metal salt. Examples of nitrates include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, barium nitrate, ammonium nitrate, manganese nitrate, zinc nitrate, and nickel nitrate. Examples of the nitrite include lithium nitrite, sodium nitrite, potassium nitrite, cesium nitrite, ammonium nitrite, manganese nitrite, zinc nitrite, and nickel nitrite.
Among nitrates and nitrites, lithium nitrate and sodium nitrate are preferable because a high capacity can be obtained after the charge / discharge cycle. The concentration of nitrate and nitrite in the non-aqueous electrolyte is preferably 0.01% by mass to 10% by mass, and preferably 0.1% by mass to 5% by mass because a high capacity is obtained after the charge / discharge cycle. % Is more preferable.
 本発明の非水電解液に用いる有機溶媒としては、非水電解質二次電池の非水電解質に通常使用される有機溶媒を使用することができる。非水電解質二次電池の非水電解質に通常使用される有機溶媒としては、例えば、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。有機溶媒は、1種のみ、又は2種以上組み合わせて使用することができる。 As the organic solvent used in the non-aqueous electrolyte of the present invention, an organic solvent usually used for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery can be used. Examples of organic solvents that are usually used in nonaqueous electrolytes of nonaqueous electrolyte secondary batteries include saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, and chain ethers. Examples thereof include a compound, a cyclic ether compound, and a saturated chain ester compound. The organic solvent can be used alone or in combination of two or more.
 前記有機溶媒のうち、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物は、比誘電率が高いため、非水電解質の誘電率を上げる役割を果たし、好ましい。特に、飽和環状カーボネート化合物が好ましい。
 飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1-ジメチルエチレンカーボネート等が挙げられる。前記飽和環状エステル化合物としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン等が挙げられる。前記スルホキシド化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。前記スルホン化合物としては、例えば、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニメチルスルホラン、スルホレン、3-メチルスルホレン、3-エチルスルホレン、3-ブロモメチルスルホレン等が挙げられ、スルホラン、テトラメチルスルホランが好ましい。前記アマイド化合物としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
Of the organic solvents, saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, and amide compounds are preferable because they have a high relative dielectric constant and thus serve to increase the dielectric constant of the nonaqueous electrolyte. A saturated cyclic carbonate compound is particularly preferable.
Examples of the saturated cyclic carbonate compound include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1-dimethylethylene carbonate, and the like. It is done. Examples of the saturated cyclic ester compound include γ-butyrolactone, γ-valerolactone, γ-caprolactone, δ-hexanolactone, and δ-octanolactone. Examples of the sulfoxide compound include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene, and the like. Examples of the sulfone compound include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenmethyl sulfolane. , Sulfolane, 3-methylsulfolene, 3-ethylsulfolene, 3-bromomethylsulfolene and the like, and sulfolane and tetramethylsulfolane are preferable. Examples of the amide compound include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
 前記有機溶媒のうち、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物は、非水電解質の粘度を低くすることができ、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であるため、低温での非水電解質の性能を高くすることができる。特に、飽和鎖状カーボネート化合物が好ましい。飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルブチルカーボネート、メチル-t-ブチルカーボネート、ジイソプロピルカーボネート、t-ブチルプロピルカーボネート等が挙げられる。前記の鎖状エーテル化合物又は環状エーテル化合物としては、例えば、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でも、ジオキソランが好ましい。 Among the organic solvents, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds and saturated chain ester compounds can reduce the viscosity of the nonaqueous electrolyte and increase the mobility of electrolyte ions. Battery characteristics such as output density can be made excellent. Moreover, since it is low-viscosity, the performance of the nonaqueous electrolyte at low temperatures can be enhanced. In particular, a saturated chain carbonate compound is preferable. Examples of the saturated chain carbonate compound include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate, and the like. Examples of the chain ether compound or the cyclic ether compound include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis ( Ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (Trifluoroethyl) ether and the like can be mentioned, and among these, dioxolane is preferable.
 前記飽和鎖状エステル化合物としては、分子中の炭素原子数の合計が2~8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、及びプロピオン酸エチルが好ましい。 As the saturated chain ester compound, monoester compounds and diester compounds having a total number of carbon atoms in the molecule of 2 to 8 are preferable, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, Ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate , Methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl, etc., including methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, propionic acid Me Le, and ethyl propionate are preferred.
 その他、非水電解液の調製に用いる有機溶媒として、例えば、アセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体、各種イオン液体を用いることもできる。 In addition, for example, acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can be used as the organic solvent used for the preparation of the nonaqueous electrolytic solution.
 高分子ゲル電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルクロライド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等が挙げられる。純正高分子電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリスチレンスルホン酸が挙げられる。
 ゲル電解質中の配合比率、複合化の方法については特に制限はなく、本技術分野で公知の配合比率、公知の複合化方法を採用することができる。
Examples of the polymer used for the polymer gel electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinylidene fluoride, and polyhexafluoropropylene. Examples of the polymer used in the pure polymer electrolyte include polyethylene oxide, polypropylene oxide, and polystyrene sulfonic acid.
There is no restriction | limiting in particular about the compounding ratio in a gel electrolyte, and the compounding method, A compounding ratio well-known in this technical field and a well-known compounding method are employable.
 本発明で用いる非水電解質には、充放電サイクル後の容量を高めるため、アジ化物、有機ニトロ化合物、ピリジンN-オキシド化合物、アルキルアミンN-オキシド化合物またはテトラメチルピペリジンN-オキシルを含む場合がある。 The nonaqueous electrolyte used in the present invention may contain an azide, an organic nitro compound, a pyridine N-oxide compound, an alkylamine N-oxide compound or tetramethylpiperidine N-oxyl in order to increase the capacity after a charge / discharge cycle. is there.
 アジ化物の例としては、例えば、アジ化水素、アジ化リチウム、アジ化ナトリウム、アジ化鉛、ジフェニルリン酸アジド等が挙げられる。
 有機ニトロ化合物の例としては、例えば、ニトロメタン、ニトロプロパン、ニトロブタン、ニトロベンゼン、ジニトロベンゼン、ニトロトルエン、ジニトロトルエン、ニトロピリジン、およびジニトロピリジン等が挙げられる。
 ピリジンN-オキシド化合物としては、例えば、ピリジンN-オキシド、4-(ジメチルアミノ)ピリジンN-オキシド、2,6ジメチルピリジンN-オキシド、2,6ジクロロピリジンN-オキシドなどが挙げられる。
 アルキルアミンN-オキシド化合物としては、例えば、N,N-ジメチルオクチルアミンN-オキシド、N,N-ジメチルデシルアミンN-オキシド、N,N-ドデシルアミンN-オキシド、ジメチルラウリルアミンN-オキシド、N,N-ジメチルアニリンN-オキシド、N-メチルモルホリンN-オキシド等が挙げられる。
Examples of the azide include hydrogen azide, lithium azide, sodium azide, lead azide, diphenyl phosphate azide and the like.
Examples of the organic nitro compound include nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitrotoluene, dinitrotoluene, nitropyridine, and dinitropyridine.
Examples of the pyridine N-oxide compound include pyridine N-oxide, 4- (dimethylamino) pyridine N-oxide, 2,6 dimethylpyridine N-oxide, and 2,6 dichloropyridine N-oxide.
Examples of the alkylamine N-oxide compound include N, N-dimethyloctylamine N-oxide, N, N-dimethyldecylamine N-oxide, N, N-dodecylamine N-oxide, dimethyllaurylamine N-oxide, N, N-dimethylaniline N-oxide, N-methylmorpholine N-oxide and the like can be mentioned.
 有機ニトロ化合物、アジ化合物、ピリジンN-オキシド化合物、アルキルアミンN-オキシド化合物およびテトラメチルピぺリジンN-オキシル化合物の中でも、アジ化物が好ましく、アジ化リチウム、アジ化ナトリウムがさらに好ましい。 Among organic nitro compounds, azide compounds, pyridine N-oxide compounds, alkylamine N-oxide compounds and tetramethylpiperidine N-oxyl compounds, azides are preferred, and lithium azide and sodium azide are more preferred.
 有機ニトロ化合物、アジ化合物、有機ニトロ化合物の群から選ばれる少なくとも1種の化合物の、非水電解質中の濃度は、小さすぎると添加効果が見られず、大きすぎるとかえって充放電後の容量が低下する事から、0.01質量%~10質量%が好ましく、0.1質量%~5質量%がより好ましい。 The concentration in the non-aqueous electrolyte of at least one compound selected from the group consisting of organic nitro compounds, azide compounds, and organic nitro compounds is too small to show the effect of addition. In view of the decrease, 0.01% by mass to 10% by mass is preferable, and 0.1% by mass to 5% by mass is more preferable.
 本発明で用いる非水電解質は、保存安定性を高めるため、更に一般式(2)で表される化合物を含む場合がある。 The nonaqueous electrolyte used in the present invention may further contain a compound represented by the general formula (2) in order to enhance storage stability.
Figure JPOXMLDOC01-appb-C000012
(式中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、ニトリル基、ニトロ基、炭素原子数1~12のアルキル基、炭素原子数2~12のアルケニル基、炭素原子数5~12のシクロアルキル基、炭素原子数6~12のアリール基、炭素原子数7~12のアラルキル基、炭素原子数1~12のオキシアルキル基、炭素原子数1~12のアシル基又は-SiR121314で表される基を表し、R10~R14はそれぞれ独立して炭素原子数1~12のアルキル基、炭素原子数2~12のアルケニル基、炭素原子数5~12のシクロアルキル基、炭素原子数6~12のアリール基又は炭素原子数7~12のアラルキル基を表し、Xは、m価の、炭素原子数1~12のアルキル基、炭素原子数2~12のアルケニル基、炭素原子数5~12のシクロアルキル基、炭素原子数6~12のアリール基、炭素原子数7~12のアラルキル基又は炭素原子数1~12のオキシアルキル基を表し、mは1~3の数を表す。)
Figure JPOXMLDOC01-appb-C000012
(Wherein R 5 to R 9 are each independently a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or 5 carbon atoms) A cycloalkyl group having 12 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, an oxyalkyl group having 1 to 12 carbon atoms, an acyl group having 1 to 12 carbon atoms, or —SiR R 12 represents a group represented by R 13 R 14 , and R 10 to R 14 each independently represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a group having 5 to 12 carbon atoms. Represents a cycloalkyl group, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms, and X 1 represents an m-valent alkyl group having 1 to 12 carbon atoms, 2 to 12 carbon atoms. An alkenyl group of A cycloalkyl group having 5 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, or an oxyalkyl group having 1 to 12 carbon atoms, and m is 1 to 3 Represents a number.)
 炭素原子数1~12のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基等が挙げられる。
 炭素原子数2~12のアルケニル基としては、例えば、ビニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタジエニル基、1-メチルビニル基、2-ブテニル基、3-ブテニル基、1,3-ブタジエニル基、1-メチルビニル基、2-メチルビニル基、1-メチルアリル基、1,1-ジメチルアリル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等が挙げられる。
 炭素原子数5~12のシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、2-ノルボルニル基等が挙げられる。炭素原子数6~12のアリール基としては、シクロペンチル基、シクロヘキシル基、2-ノルボルニル基等が挙げられる。
 炭素原子数6~12のアリール基としては、例えば、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、エチルフェニル基等が挙げられる。
 炭素原子数7~12のアラルキル基としては、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基、トリルメチル基、トリルエチル基、トリルプロピル基、キシリルメチル基、キシリルエチル基、キシリルプロピル基等が挙げられる。
 炭素原子数1~12のオキシアルキル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、デシルオキシ基等が挙げられる。
 炭素原子数1~12のアシル基としては、メタノイル基、エタノイル基、プロパノイル基、ブタノイル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ウンデカノイル基、ドデカノイル基等が挙げられる。
Examples of the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, Examples include isopropyl group, isobutyl group, s-butyl group, t-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, and 2-methylhexyl group.
Examples of the alkenyl group having 2 to 12 carbon atoms include vinyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 1-methylvinyl, 2- Butenyl, 3-butenyl, 1,3-butadienyl, 1-methylvinyl, 2-methylvinyl, 1-methylallyl, 1,1-dimethylallyl, pentenyl, hexenyl, heptenyl, octenyl Group, nonenyl group, decenyl group, undecenyl group, dodecenyl group and the like.
Examples of the cycloalkyl group having 5 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, and a 2-norbornyl group. Examples of the aryl group having 6 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, and a 2-norbornyl group.
Examples of the aryl group having 6 to 12 carbon atoms include phenyl, biphenyl, naphthyl, tolyl, xylyl, mesityl, and ethylphenyl groups.
Examples of the aralkyl group having 7 to 12 carbon atoms include benzyl group, phenylethyl group, phenylpropyl group, tolylmethyl group, tolylethyl group, tolylpropyl group, xylylmethyl group, xylylethyl group, xylylpropyl group and the like.
Examples of the oxyalkyl group having 1 to 12 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, octyloxy group, decyloxy group and the like.
Examples of the acyl group having 1 to 12 carbon atoms include methanoyl group, ethanoyl group, propanoyl group, butanoyl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, undecanoyl group, dodecanoyl group and the like. It is done.
 一般式(2)で表される化合物として、例えば、下記の化合物No.6-1~No.6-15が挙げられる。 As the compound represented by the general formula (2), for example, the following compound No. 6-1 to No. 6-15.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(2)で表される化合物は、合成の簡便さから、m=1が好ましい。R~Rは、原料入手のしやすさから、水素原子、メチル基、エチル基が好ましく、水素原子がより好ましい。R10~R14は、合成の簡便さから、水素原子、メチル基、エチル基が好ましく、メチル基がより好ましい。
 一般式(2)で表される化合物の非水電解質への添加量は、0.1質量~10質量%であることが好ましく、0.1質量%~7.0質量%がより好ましく、0.5質量%~7.0質量%が更に好ましく、1質量%~5質量%が最も好ましい。含有量が0.1質量%よりも少ない場合には十分な効果を発揮できず、10質量%よりも多い場合には添加量に見合った増量効果はみられず、かえって電池性能を低下させる場合がある。
In the compound represented by the general formula (2), m = 1 is preferable from the viewpoint of ease of synthesis. R 5 to R 9 are preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom, from the viewpoint of easy availability of raw materials. R 10 to R 14 are preferably a hydrogen atom, a methyl group, or an ethyl group, more preferably a methyl group, from the viewpoint of ease of synthesis.
The amount of the compound represented by the general formula (2) added to the non-aqueous electrolyte is preferably 0.1% by mass to 10% by mass, more preferably 0.1% by mass to 7.0% by mass, It is more preferably from 5% by mass to 7.0% by mass, and most preferably from 1% by mass to 5% by mass. When the content is less than 0.1% by mass, a sufficient effect cannot be exerted. When the content is more than 10% by mass, the increase effect corresponding to the addition amount is not seen, but the battery performance is reduced. There is.
 非水電解質に一般式(2)で表される化合物を配合するタイミングには限定がなく、金属塩又は一般式(1)で表される化合物のいずれかを、一般式(2)で表される化合物に混合した後に、その他の材料を混合することができるし、金属塩及び一般式(1)で表される化合物以外の材料と、一般式(2)で表される化合物を混合した後に、金属塩及び一般式(1)を配合し、非水電解質を調製することもできる。 There is no limitation in the timing which mix | blends the compound represented by General formula (2) with a nonaqueous electrolyte, and either the metal salt or the compound represented by General formula (1) is represented by General formula (2). After mixing with the compound, other materials can be mixed, and after mixing the compound represented by the general formula (2) with a material other than the metal salt and the compound represented by the general formula (1) A non-aqueous electrolyte can also be prepared by blending the metal salt and the general formula (1).
 非水電解質は、電池寿命の向上、安全性向上等のため、電極被膜形成剤、酸化防止剤、難燃剤、過充電防止剤等、公知の添加剤を含んでもよい。これらの添加剤を用いる場合の非水電解質中の濃度は、少ないとその添加効果が発揮できず、多すぎるとかえって非水電解質二次電池の特性に悪影響を及ぼすことがあることから、0.01質量%~10質量%が好ましく、0.1質量%~5質量%がより好ましい。 The non-aqueous electrolyte may contain known additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge preventing agent in order to improve battery life and safety. When these additives are used, the concentration in the non-aqueous electrolyte is too small to exert the effect of addition, and when the concentration is too large, the characteristics of the non-aqueous electrolyte secondary battery may be adversely affected. 01% by mass to 10% by mass is preferable, and 0.1% by mass to 5% by mass is more preferable.
<セパレータ>
 本発明の非水電解質二次電池では、正極と負極との間にセパレータを用いることが好ましい。該セパレータとしては、通常用いられる高分子の微多孔性のフィルムを特に限定なく使用できる。該フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられ、これらのフィルムは、アルミナやシリカなどのセラミック材料、酸化マグネシウム、アラミド樹脂、ポリフッ化ビニリデンでコートされている場合がある。
 これらのフィルムは、単独で用いることができ、これらのフィルムを重ね合わせて複層フィルムとして用いることもできる。更に、これらのフィルムには、種々の添加剤を用いることができ、その種類や含有量は特に制限されない。これらのフィルムの中でも、二次電池の製造方法で製造される二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。
<Separator>
In the nonaqueous electrolyte secondary battery of the present invention, it is preferable to use a separator between the positive electrode and the negative electrode. As the separator, a commonly used polymer microporous film can be used without particular limitation. Examples of the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide. Films composed of ethers, various celluloses such as carboxymethylcellulose and hydroxypropylcellulose, polymer compounds mainly composed of poly (meth) acrylic acid and various esters thereof, derivatives thereof, copolymers and mixtures thereof. These films may be coated with ceramic materials such as alumina and silica, magnesium oxide, aramid resin, and polyvinylidene fluoride. That.
These films can be used alone, and can be used as a multilayer film by superposing these films. Furthermore, various additives can be used for these films, and the kind and content thereof are not particularly limited. Among these films, a film made of polyethylene, polypropylene, polyvinylidene fluoride, or polysulfone is preferably used for a secondary battery manufactured by a method for manufacturing a secondary battery.
 これらのフィルムは、非水電解質がしみ込んでイオンが透過し易いように、微多孔化がなされたものが用いられる。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、更に延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられるフィルムによって適宜選択される。 These films are made microporous so that the nonaqueous electrolyte is soaked and ions are easily transmitted. The microporosity method includes a phase separation method in which a polymer compound and a solvent solution are formed into a film while microphase separation is performed, and the solvent is extracted and removed to make it porous. The film is extruded and then heat treated, the crystals are arranged in one direction, and a “stretching method” or the like is performed by forming a gap between the crystals by stretching, and is appropriately selected depending on the film used.
 本発明の非水電解質二次電池においては、その形状には特に制限を受けず、コイン型、円筒型、角型、ラミネート型等、種々の形状とすることができる。図1は、本発明の非水電解質二次電池のコイン型電池の一例を、図2及び図3は円筒型電池の一例をそれぞれ示したものである。 The shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and can be various shapes such as a coin shape, a cylindrical shape, a square shape, and a laminate shape. FIG. 1 shows an example of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention, and FIGS. 2 and 3 show examples of a cylindrical battery, respectively.
 図1に示すコイン型の非水電解質二次電池10において、1はリチウムイオンを放出できる正極、1aは正極集電体、2は正極から放出されたリチウムイオンを吸蔵、放出できる負極、2aは負極集電体、3は非水電解質、4はステンレス製の正極ケース、5はステンレス製の負極ケース、6はポリプロピレン製のガスケット、7はポリエチレン製のセパレータである。 In the coin-type non-aqueous electrolyte secondary battery 10 shown in FIG. 1, 1 is a positive electrode capable of releasing lithium ions, 1a is a positive electrode current collector, 2 is a negative electrode capable of inserting and extracting lithium ions released from the positive electrode, and 2a is A negative electrode current collector, 3 is a nonaqueous electrolyte, 4 is a positive electrode case made of stainless steel, 5 is a negative electrode case made of stainless steel, 6 is a gasket made of polypropylene, and 7 is a separator made of polyethylene.
 また、図2及び図3に示す円筒型の非水電解質二次電池10’において、11は負極、12は負極集電体、13は正極、14は正極集電体、15は非水電解質、16はセパレータ、17は正極端子、18は負極端子、19は負極板、20は負極リード、21は正極板、22は正極リード、23はケース、24は絶縁板、25はガスケット、26は安全弁、27はPTC素子である。 2 and 3, in the cylindrical nonaqueous electrolyte secondary battery 10 ', 11 is a negative electrode, 12 is a negative electrode current collector, 13 is a positive electrode, 14 is a positive electrode current collector, 15 is a nonaqueous electrolyte, 16 is a separator, 17 is a positive terminal, 18 is a negative terminal, 19 is a negative electrode plate, 20 is a negative electrode lead, 21 is a positive electrode plate, 22 is a positive electrode lead, 23 is a case, 24 is an insulating plate, 25 is a gasket, 26 is a safety valve 27 are PTC elements.
<外部包装>
 本発明の非水電解質二次電池の外装部材としては、ラミネートフィルム又は金属製容器を用いることができる。外装部材の厚さは、通常0.5mm以下であり、好ましくは0.5mm以下である。外装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。
<External packaging>
As an exterior member of the nonaqueous electrolyte secondary battery of the present invention, a laminate film or a metal container can be used. The thickness of the exterior member is usually 0.5 mm or less, preferably 0.5 mm or less. Examples of the shape of the exterior member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
 ラミネートフィルムは、樹脂フィルム間に金属層を有する多層フィルムを用いることもできる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えばポリプロピレン、ポリエチレン、ナイロン、ポリエチレンテレフタレート等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に形成することができる。 As the laminate film, a multilayer film having a metal layer between resin films can also be used. The metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction. For the resin film, for example, a polymer material such as polypropylene, polyethylene, nylon, or polyethylene terephthalate can be used. The laminate film can be formed into the shape of an exterior member by performing heat sealing.
 金属製容器は、例えば、ステンレス、アルミニウム又はアルミニウム合金等から形成することができる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。アルミニウム又はアルミニウム合金において、鉄、銅、ニッケル、クロム等の遷移金属の含有量を1%以下にすることで、高温環境下での長期信頼性及び放熱性を飛躍的に向上させることができる。 The metal container can be formed of, for example, stainless steel, aluminum, aluminum alloy, or the like. As the aluminum alloy, an alloy containing elements such as magnesium, zinc, and silicon is preferable. In aluminum or an aluminum alloy, by setting the content of transition metals such as iron, copper, nickel, and chromium to 1% or less, long-term reliability and heat dissipation in a high temperature environment can be dramatically improved.
 以上、本発明の実施形態を説明したが、本発明は、前記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
 以下に、実施例及び比較例により本発明を更に詳細に説明する。ただし、以下の実施例等により本発明は何等制限されるものではない。なお、実施例中の「部」や「%」は、特にことわらない限り、質量基準である。硫黄変性有機化合物の硫黄含有量は、硫黄及び酸素が分析可能なCHN分析装置(エレメンター社 vario MICRO cube)を用いて元素分析を行い算出した。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples. In the examples, “parts” and “%” are based on mass unless otherwise specified. The sulfur content of the sulfur-modified organic compound was calculated by elemental analysis using a CHN analyzer (Elementor VARI MICRO cube) that can analyze sulfur and oxygen.
<製造例1> 硫黄変性ポリアクリロニトリル(A-1)の製造
 開口径30μmのふるいで分級したポリアクリロニトリル粉末(シグマアルドリッチ製)10質量部及び硫黄粉末(シグマアルドリッチ製、平均粒子径200μm)30質量部を、乳鉢を用いて混合した。特開2013-054957の実施例参照し、この混合物を有底円筒状ガラス管に収容したのち、ガラス管の下部をルツボ型電気炉に入れ、窒素気流下で、発生する硫化水素を除去しながら400℃で1時間加熱した。冷却後、生成物をガラスチューブオーブンに入れ、真空吸引しつつ250℃で3時間加熱することにより単体硫黄を除去した。得られた硫黄変性生成物を、ボールミルを用いて粉砕し、ふるいで分級して平均粒子径が10μmの硫黄変性ポリアクリロニトリルを得た。硫黄含有量は38.4質量%であった。
<Production Example 1> Production of sulfur-modified polyacrylonitrile (A-1) 10 parts by mass of polyacrylonitrile powder (manufactured by Sigma-Aldrich) and 30 parts by mass of sulfur powder (manufactured by Sigma-Aldrich, average particle diameter 200 μm) classified by a sieve having an opening diameter of 30 μm The parts were mixed using a mortar. Referring to the examples of JP2013-054957A, this mixture was accommodated in a cylindrical glass tube with a bottom, and the lower part of the glass tube was placed in a crucible type electric furnace while removing hydrogen sulfide generated under a nitrogen stream. Heated at 400 ° C. for 1 hour. After cooling, the product was placed in a glass tube oven and heated at 250 ° C. for 3 hours with vacuum suction to remove elemental sulfur. The obtained sulfur-modified product was pulverized using a ball mill and classified with a sieve to obtain sulfur-modified polyacrylonitrile having an average particle size of 10 μm. The sulfur content was 38.4% by mass.
<製造例2> 硫黄変性ピッチ化合物(A-2)
 ピッチ化合物として石炭ピッチ(コールタール、吉田製油所製)を100質量部、単体硫黄(シグマアルドリッチ製、平均粒子径200μm)500質量部を用い、特開2012-099342号公報の実施例1に準拠して反応を行い、反応生成物を得た。得られた反応生成物を粉砕して、平均粒子径15μmの硫黄変性ピッチ化合物A-2を得た。硫黄含有量は32.5質量%であった。
<Production Example 2> Sulfur-modified pitch compound (A-2)
100 parts by weight of coal pitch (coal tar, manufactured by Yoshida Refinery) and 500 parts by weight of elemental sulfur (manufactured by Sigma Aldrich, average particle size 200 μm) are used as the pitch compound, in accordance with Example 1 of JP2012-099342A The reaction was carried out to obtain a reaction product. The obtained reaction product was pulverized to obtain sulfur-modified pitch compound A-2 having an average particle size of 15 μm. The sulfur content was 32.5% by mass.
<製造例3> 硫黄変性多核芳環化合物(A-3)
 硫黄変性多核芳香環化合物としてアントラセン(東京化成製)100質量部、単体硫黄(シグマアルドリッチ製、平均粒子径200μm)500質量部を用い、特開2012-150934号公報の参考例1に準拠して反応を行い、反応生成物を得た。得られた反応生成物を粉砕して、平均粒子径16μmの硫黄変性多核芳香環化合物A-3を得た。硫黄含有量は47.7質量%であった。
<Production Example 3> Sulfur-modified polynuclear aromatic compound (A-3)
100 parts by mass of anthracene (manufactured by Tokyo Chemical Industry) and 500 parts by mass of elemental sulfur (manufactured by Sigma-Aldrich, average particle diameter 200 μm) are used as the sulfur-modified polynuclear aromatic ring compound, and in accordance with Reference Example 1 of JP2012-150934A Reaction was performed to obtain a reaction product. The obtained reaction product was pulverized to obtain a sulfur-modified polynuclear aromatic compound A-3 having an average particle size of 16 μm. The sulfur content was 47.7% by mass.
<実施例1>
<正極の作製>
 正極活物質として、製造例1で製造した硫黄変性ポリアクリロニトリル(A-1)を92.0質量部、導電助剤としてアセチレンブラック(電気化学工業社製)を3.5質量部及びカーボンナノチューブ(昭和電工社製、商品名VGCF)を1.5質量部、並びに、バインダーとしてスチレン-ブタジエンゴム(40質量%水分散液、日本ゼオン社製)1.5質量部(固形分)及びカルボキシメチルセルロースナトリウム(ダイセルファインケム社製)1.5質量部を、溶媒である水100質量部に添加し、自転・公転ミキサーを用いて分散しスラリーとして電極合剤ペーストを得た。
 前記電極合剤ペーストを、ドクターブレード法によりカーボンコートアルミニウム箔(厚さ22μm)からなる集電体に塗布し、90℃で3時間静置して乾燥した。その後、この電極を所定の大きさ(円盤状)にカットし、更に使用直前に150℃で2時間真空乾燥して正極を作製した。
 <非水電解質の調製>
 エチレンカーボネート50体積%、ジエチルカーボネート50体積%からなる混合溶媒に、LiPFを1.0mol/Lの濃度で溶解し電解質溶液を調製した。これに化合物No.2-1を1.0質量%加え、非水電解質とした。
<電池の組み立て>
 前記で得られた円盤状正極、及び円盤状にカットした厚さ500μmのリチウム金属を負極として用い、セパレータとしてガラスフィルターを挟んでケース内に保持した。その後、先に調製した非水電解質をケース内に注入し、かしめ機により密閉、封止して、実施例1の非水電解質二次電池(金属硫黄二次電池、φ20mm、厚さ3.2mmのコイン型)を作製した。
<Example 1>
<Preparation of positive electrode>
92.0 parts by mass of the sulfur-modified polyacrylonitrile (A-1) produced in Production Example 1 as a positive electrode active material, 3.5 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent, and carbon nanotubes ( Showa Denko Co., Ltd., trade name VGCF) 1.5 parts by mass, and styrene-butadiene rubber (40% by mass aqueous dispersion, Nippon Zeon Co., Ltd.) 1.5 parts by mass (solid content) and sodium carboxymethyl cellulose as binder 1.5 parts by mass (manufactured by Daicel Finechem Co., Ltd.) was added to 100 parts by mass of water as a solvent, and dispersed using a rotation / revolution mixer to obtain an electrode mixture paste as a slurry.
The electrode mixture paste was applied to a current collector made of carbon-coated aluminum foil (thickness: 22 μm) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours to dry. Thereafter, this electrode was cut into a predetermined size (disc shape), and further vacuum-dried at 150 ° C. for 2 hours immediately before use to produce a positive electrode.
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate to prepare an electrolyte solution. This is followed by compound no. 1.0% by mass of 2-1 was added to obtain a non-aqueous electrolyte.
<Battery assembly>
The disk-shaped positive electrode obtained above and lithium metal having a thickness of 500 μm cut into a disk shape were used as a negative electrode, and the glass filter was held as a separator and held in a case. Thereafter, the previously prepared non-aqueous electrolyte was poured into the case, sealed and sealed with a caulking machine, and the non-aqueous electrolyte secondary battery of Example 1 (metal sulfur secondary battery, φ20 mm, thickness 3.2 mm) Coin type).
<実施例2>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに化合物No.4-7を1.0質量%加えた以外は、実施例1と同様の操作により実施例2の非水電解質二次電池を作製した。
<Example 2>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 2 was produced in the same manner as in Example 1, except that 4% by mass of 4-7 was added.
<実施例3>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.5-4のうち置換位置がチオフェン環上のα及びα’位である化合物No.5-4Aを1.0質量%加えた以外は、実施例1と同様の操作により実施例3の非水電解質二次電池を作製した。
<Example 3>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. Compound No. 5-4 in which the substitution positions are α and α ′ positions on the thiophene ring. A nonaqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1 except that 1.0% by mass of 5-4A was added.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
<実施例4>
 実施例1の非水電解質に、更に硝酸リチウムを0.1質量%加えた以外は、実施例1と同様の操作により実施例4の非水電解質二次電池を作製した。
<Example 4>
A nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as in Example 1, except that 0.1% by mass of lithium nitrate was further added to the nonaqueous electrolyte of Example 1.
<実施例5>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.4-7を1.0質量%と、硝酸リチウムを0.1質量%加えた以外は、実施例1と同様の操作により実施例5の非水電解質二次電池を作製した。
<Example 5>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 5 was produced in the same manner as in Example 1 except that 1.0% by mass of 4-7 and 0.1% by mass of lithium nitrate were added.
<実施例6>
 実施例1の非水電解質に、化合物No.2-1の代わりに、化合物No.5-4Aを1.0質量%と、硝酸リチウムを0.1質量%加えた以外は、実施例1と同様の操作により実施例6の非水電解質二次電池を作製した。
<Example 6>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of compound 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 6 was produced in the same manner as in Example 1, except that 1.0% by mass of 5-4A and 0.1% by mass of lithium nitrate were added.
<実施例7>
 実施例1の正極活物質に、硫黄変性ポリアクリロニトリル(A-1)の代わりに、硫黄変性ピッチ化合物(A-2)を用いた以外は、実施例1と同様の操作により実施例7の非水電解質二次電池を作製した。
<Example 7>
The same procedure as in Example 1 was performed except that the sulfur-modified pitch compound (A-2) was used instead of the sulfur-modified polyacrylonitrile (A-1) as the positive electrode active material in Example 1. A water electrolyte secondary battery was produced.
<実施例8>
 実施例1の正極活物質に、硫黄変ポリアクリロニトリル(A-1)の代わりに、硫黄変性多核芳香環化合物(A-3)を用いた以外は、実施例1と同様の操作により実施例8の非水電解質二次電池を作製した。
<Example 8>
Example 8 was carried out in the same manner as in Example 1, except that the sulfur-modified polynuclear aromatic compound (A-3) was used instead of sulfur-modified polyacrylonitrile (A-1) as the positive electrode active material of Example 1. A non-aqueous electrolyte secondary battery was prepared.
<実施例9>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.2-1を0.5質量%、化合物6-1を0.5質量%加えた以外は、実施例1と同様の操作により実施例9の非水電解質二次電池を作製した。
<Example 9>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 9 was produced in the same manner as in Example 1, except that 0.5% by mass of 2-1 and 0.5% by mass of compound 6-1 were added.
<実施例10>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.4-7を0.5質量%、化合物6-1を0.5質量%加えた以外は、実施例1と同様の操作により実施例10の非水電解質二次電池を作製した。
<Example 10>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 10 was produced in the same manner as in Example 1, except that 0.5% by mass of 4-7 and 0.5% by mass of Compound 6-1 were added.
<実施例11>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.2-1を0.5質量%、ビニレンカーボネート(VC)を0.5質量%加えた以外は、実施例1と同様の操作により実施例11の非水電解質二次電池を作製した。
<Example 11>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 11 was produced in the same manner as in Example 1, except that 0.5% by mass of 2-1 and 0.5% by mass of vinylene carbonate (VC) were added.
<実施例12>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.4-7を0.5質量%、ビニレンカーボネート(VC)を0.5質量%加えた以外は、実施例1と同様の操作により実施例12の非水電解質二次電池を作製した。
<Example 12>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 12 was produced in the same manner as in Example 1, except that 0.5% by mass of 4-7 and 0.5% by mass of vinylene carbonate (VC) were added.
<実施例13>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.2-1を0.5質量%、フルオロエチレンカーボネート(FEC)を0.5質量%加えた以外は、実施例1と同様の操作により実施例13の非水電解質二次電池を作製した。
<Example 13>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 13 was produced in the same manner as in Example 1 except that 0.5% by mass of 2-1 and 0.5% by mass of fluoroethylene carbonate (FEC) were added.
<実施例14>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.4-7を0.5質量%、フルオロエチレンカーボネート(FEC)を0.5質量%加えた以外は、実施例1と同様の操作により実施例14の非水電解質二次電池を作製した。
<Example 14>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 14 was produced in the same manner as in Example 1, except that 0.5% by mass of 4-7 and 0.5% by mass of fluoroethylene carbonate (FEC) were added.
<実施例15>
 実施例1の非水電解質に、エチレンカーボネート50体積%、ジエチルカーボネート50体積%からなる混合溶媒に、LiPFを1.0mol/Lの濃度で溶解した電解質溶液を用いる代わりに、1,3-ジオキソラン50体積%、1,2-ジメトキシエタン50体積%からなる混合溶媒に、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を1.0mol/Lの濃度で溶解した電解質溶液を用いた以外は、実施例1と同様の操作により、実施例15の非水電解質二次電池を作製した。
<Example 15>
Instead of using an electrolyte solution prepared by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate in the nonaqueous electrolyte of Example 1, 1,3- Except for using an electrolyte solution in which lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of dioxolane and 50% by volume of 1,2-dimethoxyethane, A nonaqueous electrolyte secondary battery of Example 15 was produced in the same manner as in Example 1.
<実施例16>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.4-7を1.0質量%加えた以外は、実施例15と同様の操作により実施例16の非水電解質二次電池を作製した。
<Example 16>
To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 16 was produced in the same manner as in Example 15, except that 1.0% by mass of 4-7 was added.
<実施例17>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.5-4Aを1.0質量%加えた以外は、実施例15と同様の操作により実施例17の非水電解質二次電池を作製した。
<Example 17>
To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 17 was produced in the same manner as in Example 15 except that 1.0% by mass of 5-4A was added.
<実施例18>
 実施例15の非水電解質に、更に硝酸リチウムを0.1質量%加えた以外は、実施例15と同様の操作により実施例18の非水電解質二次電池を作製した。
<Example 18>
A nonaqueous electrolyte secondary battery of Example 18 was produced in the same manner as in Example 15, except that 0.1% by mass of lithium nitrate was further added to the nonaqueous electrolyte of Example 15.
<実施例19>
 実施例16の非水電解質に、更に硝酸リチウムを0.1質量%加えた以外は、実施例15と同様の操作により実施例19の非水電解質二次電池を作製した。
<Example 19>
A nonaqueous electrolyte secondary battery of Example 19 was produced in the same manner as in Example 15, except that 0.1% by mass of lithium nitrate was further added to the nonaqueous electrolyte of Example 16.
<実施例20>
 実施例17の非水電解質に、更に硝酸リチウムを0.1質量%加えた以外は、実施例15と同様の操作により実施例20の非水電解質二次電池を作製した。
<Example 20>
A nonaqueous electrolyte secondary battery of Example 20 was produced in the same manner as in Example 15, except that 0.1% by mass of lithium nitrate was further added to the nonaqueous electrolyte of Example 17.
<実施例21>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.2-1を0.5質量%と、ビニレンカーボネートを0.5質量%加えた以外は、実施例15と同様の操作により実施例21の非水電解質二次電池を作製した。
<Example 21>
To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 21 was produced in the same manner as in Example 15, except that 0.5% by mass of 2-1 and 0.5% by mass of vinylene carbonate were added.
<実施例22>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.4-7を0.5質量%と、ビニレンカーボネートを0.5質量%加えた以外は、実施例15と同様の操作により実施例22の非水電解質二次電池を作製した。
<Example 22>
To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 22 was produced in the same manner as in Example 15, except that 0.5% by mass of 4-7 and 0.5% by mass of vinylene carbonate were added.
<実施例23>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.2-1を0.5質量%と、フルオロエチレンカーボネートを0.5質量%加えた以外は、実施例15と同様の操作により実施例23の非水電解質二次電池を作製した。
<Example 23>
To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 23 was produced in the same manner as in Example 15, except that 2-1 was added by 0.5 mass% and fluoroethylene carbonate was added by 0.5 mass%.
<実施例24>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、化合物No.4-7を0.5質量%と、フルオロエチレンカーボネートを0.5質量%加えた以外は、実施例15と同様の操作により実施例24の非水電解質二次電池を作製した。
<Example 24>
To the non-aqueous electrolyte of Example 15, compound No. Instead of adding 1.0% by mass of 2-1, compound no. A nonaqueous electrolyte secondary battery of Example 24 was produced in the same manner as in Example 15, except that 0.5% by mass of 4-7 and 0.5% by mass of fluoroethylene carbonate were added.
<実施例25>
 実施例7の非水電解質に、エチレンカーボネート50体積%、ジエチルカーボネート50体積%からなる混合溶媒に、LiPFを1.0mol/Lの濃度で溶解した電解質溶液を用いる代わりに、1,3-ジオキソラン50体積%、1,2-ジメトキシエタン50体積%からなる混合溶媒に、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を1.0mol/Lの濃度で溶解した電解質溶液を用いた以外は、実施例7と同様の操作により、実施例26の非水電解質二次電池を作製した。
<Example 25>
Instead of using an electrolyte solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate in the nonaqueous electrolyte of Example 7, 1,3- Except for using an electrolyte solution in which lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of dioxolane and 50% by volume of 1,2-dimethoxyethane, A nonaqueous electrolyte secondary battery of Example 26 was produced in the same manner as in Example 7.
<実施例26>
 実施例8の非水電解質に、エチレンカーボネート50体積%、ジエチルカーボネート50体積%からなる混合溶媒に、LiPFを1.0mol/Lの濃度で溶解した電解質溶液を用いる代わりに、1,3-ジオキソラン50体積%、1,2-ジメトキシエタン50体積%からなる混合溶媒に、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を1.0mol/Lの濃度で溶解した電解質溶液を用いた以外は、実施例7と同様の操作により、実施例26の非水電解質二次電池を作製した。
<Example 26>
Instead of using an electrolyte solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate in the nonaqueous electrolyte of Example 8, 1,3- Except for using an electrolyte solution in which lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of dioxolane and 50% by volume of 1,2-dimethoxyethane, A nonaqueous electrolyte secondary battery of Example 26 was produced in the same manner as in Example 7.
<比較例1>
 実施例1の非水電解質に、化合物No.2-1を加えなかった以外は、実施例1と同様の操作により比較例1の非水電解質二次電池を作製した。
<Comparative Example 1>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. A nonaqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that 2-1 was not added.
<比較例2>
 実施例7の非水電解質に、化合物No.2-1を加えなかった以外は、実施例7と同様の操作により比較例2の非水電解質二次電池を作製した。
<Comparative example 2>
To the non-aqueous electrolyte of Example 7, compound No. A nonaqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 7, except that 2-1 was not added.
<比較例3>
 実施例8の非水電解質に、化合物No.2-1を加えなかった以外は、実施例8と同様の操作により比較例3の非水電解質二次電池を作製した。
<Comparative Example 3>
To the non-aqueous electrolyte of Example 8, compound No. A nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 8, except that 2-1 was not added.
<比較例4>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、ビニレンカーボネート(VC)を1.0質量%添加した以外は、実施例1と同様の操作により比較例4の非水電解質二次電池を作製した。
<Comparative Example 4>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. A nonaqueous electrolyte secondary battery of Comparative Example 4 was produced in the same manner as in Example 1, except that 1.0% by mass of vinylene carbonate (VC) was added instead of adding 1.0% by mass of 2-1. .
<比較例5>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、硝酸リチウムを0.1質量%加えた以外は、実施例1と同様の操作により比較例3の非水電解質二次電池を作製した。
<Comparative Example 5>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. A nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 1, except that 0.1% by mass of lithium nitrate was added instead of adding 1.0% by mass of 2-1.
<比較例6>
 実施例1の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、フルオロエチレンカーボネートを1.0質量%添加した以外は、実施例1と同様の操作により比較例6の非水電解質二次電池を作製した。
<Comparative Example 6>
Compound No. 1 was added to the non-aqueous electrolyte of Example 1. A nonaqueous electrolyte secondary battery of Comparative Example 6 was produced in the same manner as in Example 1, except that 1.0% by mass of fluoroethylene carbonate was added instead of adding 1.0% by mass of 2-1.
<比較例7>
 実施例15の非水電解質に、化合物No.2-1を加えなかった以外は、実施例15と同様の操作により比較例7の非水電解質二次電池を作製した。
<Comparative Example 7>
To the non-aqueous electrolyte of Example 15, compound No. A nonaqueous electrolyte secondary battery of Comparative Example 7 was produced in the same manner as in Example 15 except that 2-1 was not added.
<比較例8>
 実施例25の非水電解質に、化合物No.2-1を加えなかった以外は、実施例25と同様の操作により比較例8の非水電解質二次電池を作製した。
<Comparative Example 8>
To the nonaqueous electrolyte of Example 25, Compound No. A nonaqueous electrolyte secondary battery of Comparative Example 8 was produced in the same manner as in Example 25 except that 2-1 was not added.
<比較例9>
 実施例26の非水電解質に、化合物No.2-1を加えなかった以外は、実施例26と同様の操作により比較例9の非水電解質二次電池を作製した。
<Comparative Example 9>
To the nonaqueous electrolyte of Example 26, Compound No. A nonaqueous electrolyte secondary battery of Comparative Example 9 was produced in the same manner as in Example 26 except that 2-1 was not added.
<比較例10>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、ビニレンカーボネート(VC)を1.0質量%加えた以外は、実施例15と同様の操作により比較例10の非水電解質二次電池を作製した。
<Comparative Example 10>
To the non-aqueous electrolyte of Example 15, compound No. A nonaqueous electrolyte secondary battery of Comparative Example 10 was produced in the same manner as in Example 15 except that 1.0% by mass of vinylene carbonate (VC) was added instead of adding 1.0% by mass of 2-1. .
<比較例11>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、フルオロエチレンカーボネート(FEC)を1.0質量%加えた以外は、実施例15と同様の操作により比較例11の非水電解質二次電池を作製した。
<Comparative Example 11>
To the non-aqueous electrolyte of Example 15, compound No. A nonaqueous electrolyte secondary battery of Comparative Example 11 was produced in the same manner as in Example 15 except that 1.0% by mass of fluoroethylene carbonate (FEC) was added instead of 1.0% by mass of 2-1 did.
<比較例12>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに硝酸リチウムを1.0質量%加えた以外は、実施例15と同様の操作により比較例12の非水電解質二次電池を作製した。
<Comparative Example 12>
To the non-aqueous electrolyte of Example 15, compound No. A nonaqueous electrolyte secondary battery of Comparative Example 12 was produced in the same manner as in Example 15 except that 1.0% by mass of lithium nitrate was added instead of adding 1.0% by mass of 2-1.
<比較例13>
 実施例15の非水電解質に、化合物No.2-1を1.0質量%加える代わりに、硝酸リチウム0.5質量%及びフルオロエチレンカーボネート0.5質量%を加えた以外は、実施例15と同様の操作により比較例13の非水電解質二次電池を作製した。
<Comparative Example 13>
To the non-aqueous electrolyte of Example 15, compound No. The nonaqueous electrolyte of Comparative Example 13 was prepared in the same manner as in Example 15 except that 0.5% by mass of lithium nitrate and 0.5% by mass of fluoroethylene carbonate were added instead of adding 1.0% by mass of 2-1. A secondary battery was produced.
<電池評価1>
 実施例1~8及び比較例1~5の非水電解質二次電池を、25℃の恒温槽に入れ、充電終止電圧を3.0V、放電終止電圧を1.0Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を5サイクル行った。その後、-10℃の恒温槽に入れ、充電レート0.3C、放電レート0.3Cで100サイクルの充放電試験を行い、放電容量を測定した。この放電容量をL1とした。単位はmAh/gであり、結果を表1に示す。
<Battery evaluation 1>
The nonaqueous electrolyte secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 5 were placed in a constant temperature bath at 25 ° C., the charge end voltage was 3.0 V, the discharge end voltage was 1.0 V, and the charge rate was 0.1 C. The charge / discharge test at a discharge rate of 0.1 C was performed for 5 cycles. Thereafter, the sample was placed in a thermostatic chamber at −10 ° C., a charge / discharge test of 100 cycles was performed at a charge rate of 0.3 C and a discharge rate of 0.3 C, and the discharge capacity was measured. This discharge capacity was set to L1. The unit is mAh / g, and the results are shown in Table 1.
<電池評価2>
 実施例1~8及び比較例1~5の非水電解質二次電池を、25℃の恒温槽に入れ、充電終止電圧を3.0V、放電終止電圧を1.0Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を5サイクル、引き続き、充電レート1.0C、放電レート1.0Cで150サイクルの充放電試験を行い、放電容量を測定した。この放電容量をL2とした。単位はmAh/gであり、結果を表1に示す。
<Battery evaluation 2>
The nonaqueous electrolyte secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 5 were placed in a constant temperature bath at 25 ° C., the charge end voltage was 3.0 V, the discharge end voltage was 1.0 V, and the charge rate was 0.1 C. Then, a charge / discharge test at a discharge rate of 0.1 C was performed for 5 cycles, followed by a charge / discharge test of 150 cycles at a charge rate of 1.0 C and a discharge rate of 1.0 C to measure the discharge capacity. This discharge capacity was set to L2. The unit is mAh / g, and the results are shown in Table 1.
<電池評価3>
 実施例1~8及び比較例1~5の非水電解質二次電池を、25℃の恒温槽に入れ、充電終止電圧を3.0V、放電終止電圧を1.0Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を5サイクル、引き続き、充電レート0.1Cの充電試験を1回行った。その後、45℃の恒温槽に入れ、2週間保存した。さらに、25℃の恒温槽に移し、充電終止電圧を3.0V、放電終止電圧を1.0Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を3サイクル行った。この放電容量をL3とした。単位はmAh/gであり、結果を表1に示す。
<Battery evaluation 3>
The nonaqueous electrolyte secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 5 were placed in a constant temperature bath at 25 ° C., the charge end voltage was 3.0 V, the discharge end voltage was 1.0 V, and the charge rate was 0.1 C. Then, a charge / discharge test at a discharge rate of 0.1 C was performed for 5 cycles, and then a charge test at a charge rate of 0.1 C was performed once. Then, it put into a 45 degreeC thermostat and preserve | saved for two weeks. Furthermore, it moved to the 25 degreeC thermostat, the charge end voltage was set to 3.0V, the discharge end voltage was set to 1.0V, and the charge / discharge test of charge rate 0.1C and discharge rate 0.1C was performed 3 cycles. This discharge capacity was set to L3. The unit is mAh / g, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表1に示した放電容量L2から、硫黄変性有機化合物を有する正極、アルカリ金属及びアルカリ土類金属からなる群から選ばれる金属を有する負極、前記一般式(1)を少なくとも1種、及びアルカリ金属塩又はアルカリ土類金属塩からなる群から選ばれる少なくとも1種の金属塩を含む非水電解質を備える本発明の非水電解質二次電池は、比較例に示す二次電池と比べ、150サイクル後の容量が大きいものであった。 From the discharge capacity L2 shown in Table 1, a positive electrode having a sulfur-modified organic compound, a negative electrode having a metal selected from the group consisting of alkali metals and alkaline earth metals, at least one of the general formula (1), and an alkali metal The nonaqueous electrolyte secondary battery of the present invention comprising a nonaqueous electrolyte containing at least one metal salt selected from the group consisting of a salt or an alkaline earth metal salt is after 150 cycles compared to the secondary battery shown in the comparative example. The capacity of was large.
 また、表1に示した放電容量L1及びL3から、本発明の非水電解質二次電池は、低温での優れた充放電特性と、優れた高温保存性とを併せ持つものであった。 Further, from the discharge capacities L1 and L3 shown in Table 1, the nonaqueous electrolyte secondary battery of the present invention has both excellent charge / discharge characteristics at low temperatures and excellent high-temperature storage stability.
 本発明によれば、充放電を繰り返した後も、高い容量を有する非水電解質二次電池を提供することが可能となる。また、高温で保存後の容量特性に優れる非水電解質二次電池を提供することが可能となる。 According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having a high capacity even after repeated charging and discharging. In addition, it is possible to provide a nonaqueous electrolyte secondary battery that is excellent in capacity characteristics after storage at high temperatures.
1  正極
1a 正極集電体
2  負極
2a 負極集電体
3  非水電解質
4  正極ケース
5  負極ケース
6  ガスケット
7  セパレータ
10 コイン型の非水電解質二次電池
10’円筒型の非水電解質二次電池
11 負極
12 負極集電体
13 正極
14 正極集電体
15 非水電解質
16 セパレータ
17 正極端子
18 負極端子
19 負極板
20 負極リード
21 正極板
22 正極リード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 2 Negative electrode 2a Negative electrode collector 3 Nonaqueous electrolyte 4 Positive electrode case 5 Negative electrode case 6 Gasket 7 Separator 10 Coin type nonaqueous electrolyte secondary battery 10 'Cylindrical type nonaqueous electrolyte secondary battery 11 Negative electrode 12 Negative electrode current collector 13 Positive electrode 14 Positive electrode current collector 15 Nonaqueous electrolyte 16 Separator 17 Positive electrode terminal 18 Negative electrode terminal 19 Negative electrode plate 20 Negative electrode lead 21 Positive electrode plate 22 Positive electrode lead 23 Case 24 Insulating plate 25 Gasket 26 Safety valve 27 PTC element

Claims (8)

  1.  硫黄変性有機化合物を含有する正極;アルカリ金属及びアルカリ土類金属からなる群から選ばれる少なくとも1種の金属を含有する負極;一般式(1)で表される化合物を少なくとも1種、並びにアルカリ金属塩及びアルカリ土類金属塩からなる群から選ばれる少なくとも1種の金属塩を含む非水電解質;を有する非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rは、それぞれ独立に炭素原子数1~10の炭化水素基を表し、Rは、炭素原子数1~10のn価の炭化水素基、又は酸素原子若しくは硫黄原子を少なくとも1原子含む炭素原子数1~10のn価の炭化水素基を表し、nは1~6の整数を表す。)
    A positive electrode containing a sulfur-modified organic compound; a negative electrode containing at least one metal selected from the group consisting of alkali metals and alkaline earth metals; at least one compound represented by formula (1); and an alkali metal A non-aqueous electrolyte secondary battery comprising: a non-aqueous electrolyte containing at least one metal salt selected from the group consisting of a salt and an alkaline earth metal salt.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 to R 3 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, and R 4 represents an n-valent hydrocarbon group having 1 to 10 carbon atoms, or an oxygen atom or sulfur) (It represents an n-valent hydrocarbon group having 1 to 10 carbon atoms and containing at least one atom, and n represents an integer of 1 to 6.)
  2.  一般式(1)で表される化合物の含有量が、非水電解質中の0.01質量%~20質量%である請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the content of the compound represented by the general formula (1) is 0.01 mass% to 20 mass% in the nonaqueous electrolyte.
  3.  一般式(1)で表される化合物のRが、炭素原子数2~10の不飽和炭化水素基、炭素原子数2~10の硫黄を含む複素芳香族基、又は硫黄を含む炭素原子数2~10の脂肪族炭化水素基を表し、nが2である請求項1又は2に記載の非水電解質二次電池。 R 4 of the compound represented by the general formula (1) is an unsaturated hydrocarbon group having 2 to 10 carbon atoms, a heteroaromatic group containing sulfur having 2 to 10 carbon atoms, or the number of carbon atoms containing sulfur The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the nonaqueous electrolyte secondary battery represents 2 to 10 aliphatic hydrocarbon groups and n is 2.
  4.  さらに、非水電解質が、アジ化物、有機ニトロ化合物、ピリジンN-オキシド化合物、アルキルアミンN-オキシド化合物及びテトラメチルピペリジンN-オキシルからなる群から選ばれる少なくとも1種の化合物を含む、請求項1~3のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte further comprises at least one compound selected from the group consisting of azide, organic nitro compound, pyridine N-oxide compound, alkylamine N-oxide compound, and tetramethylpiperidine N-oxyl. 4. The nonaqueous electrolyte secondary battery according to any one of items 1 to 3.
  5.  アジ化物、有機ニトロ化合物、ピリジンN-オキシド化合物、アルキルアミンN-オキシド化合物及びテトラメチルピペリジンN-オキシルからなる群から選ばれる化合物の合計含有量が、非水電解質中の0.01質量%~10質量%である、請求項4に記載の非水電解質二次電池。 The total content of the compound selected from the group consisting of azide, organic nitro compound, pyridine N-oxide compound, alkylamine N-oxide compound and tetramethylpiperidine N-oxyl is 0.01% by mass or more in the non-aqueous electrolyte. The nonaqueous electrolyte secondary battery according to claim 4, wherein the nonaqueous electrolyte secondary battery is 10% by mass.
  6.  さらに、非水電解質が、一般式(2)で表される化合物を少なくとも1種含む、請求項1~5のいずれか1項に記載の非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rは、それぞれ独立して水素原子、ハロゲン原子、ニトリル基、ニトロ基、炭素原子数1~12のアルキル基、炭素原子数5~12のシクロアルキル基、炭素原子数6~12のアリール基、炭素原子数7~12のアラルキル基、炭素原子数1~12のオキシアルキル基、炭素原子数1~12のアシル基又は-SiR121314で表される基を表し、R10~R14は、それぞれ独立して炭素原子数1~12のアルキル基、炭素原子数2~12のアルケニル基、炭素原子数5~12のシクロアルキル基、炭素原子数6~12のアリール基又は炭素原子数7~12のアラルキル基を表し、Xはm価の炭化水素基を表し、mは1~3の整数を表す。)
    The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the nonaqueous electrolyte further includes at least one compound represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 5 to R 9 each independently represents a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or a carbon atom) Represented by an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, an oxyalkyl group having 1 to 12 carbon atoms, an acyl group having 1 to 12 carbon atoms, or —SiR 12 R 13 R 14 R 10 to R 14 each independently represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or 6 carbon atoms. Represents an aryl group of ˜12 or an aralkyl group of 7 to 12 carbon atoms, X 1 represents an m-valent hydrocarbon group, and m represents an integer of 1 to 3.)
  7.  負極がリチウム又はナトリウムを含有する、請求項1~6のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the negative electrode contains lithium or sodium.
  8.  硫黄変性有機化合物が、硫黄変性ポリアクリロニトリルである、請求項1~7のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein the sulfur-modified organic compound is sulfur-modified polyacrylonitrile.
PCT/JP2019/015021 2018-04-25 2019-04-04 Nonaqueous electrolyte secondary battery WO2019208153A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020516172A JPWO2019208153A1 (en) 2018-04-25 2019-04-04 Non-aqueous electrolyte secondary battery
KR1020207022766A KR20210002452A (en) 2018-04-25 2019-04-04 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018084262 2018-04-25
JP2018-084262 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208153A1 true WO2019208153A1 (en) 2019-10-31

Family

ID=68294184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015021 WO2019208153A1 (en) 2018-04-25 2019-04-04 Nonaqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JPWO2019208153A1 (en)
KR (1) KR20210002452A (en)
WO (1) WO2019208153A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670575A (en) * 2020-12-22 2021-04-16 上海卡耐新能源有限公司 Additive for lithium ion battery electrolyte and application thereof
CN114207902A (en) * 2020-04-14 2022-03-18 株式会社Lg新能源 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2022553728A (en) * 2020-04-17 2022-12-26 エルジー エナジー ソリューション リミテッド Electrolyte for lithium secondary battery and lithium secondary battery containing the same
EP4099468A4 (en) * 2020-01-30 2024-01-10 Panasonic Ip Man Co Ltd Nonaqueous electrolytic solution additive, nonaqueous electrolytic solution including same, and nonaqueous electrolytic solution secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200704B1 (en) * 1998-09-01 2001-03-13 Polyplus Battery Company, Inc. High capacity/high discharge rate rechargeable positive electrode
JP2004172121A (en) * 2002-11-16 2004-06-17 Samsung Sdi Co Ltd Nonaqueous electrolytic solution and lithium cell adopting the same
JP2007123097A (en) * 2005-10-28 2007-05-17 Sony Corp Battery
JP2007518231A (en) * 2004-01-06 2007-07-05 サイオン パワー コーポレイション How to charge a lithium sulfur cell
JP2008146930A (en) * 2006-12-07 2008-06-26 Sony Corp Electrolytic solution and battery
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
WO2011145623A1 (en) * 2010-05-21 2011-11-24 三井化学株式会社 Nonaqueous electrolyte solution containing silyl ester group-containing phosphonic acid derivative, and lithium secondary battery
WO2015040709A1 (en) * 2013-09-18 2015-03-26 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
WO2016147872A1 (en) * 2015-03-17 2016-09-22 株式会社Adeka Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151550A (en) 2001-11-13 2003-05-23 Hitachi Maxell Ltd Nonaqueous secondary battery
US7358012B2 (en) 2004-01-06 2008-04-15 Sion Power Corporation Electrolytes for lithium sulfur cells
JP5440003B2 (en) 2009-07-23 2014-03-12 株式会社豊田中央研究所 Electric storage device and method for manufacturing electrode active material
JP5467264B2 (en) 2010-02-16 2014-04-09 株式会社豊田自動織機 Method for producing electrode material for non-aqueous electrolyte secondary battery, electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the electrode material
JP2012059541A (en) 2010-09-09 2012-03-22 Sumitomo Electric Ind Ltd Lithium battery
JP5164286B2 (en) 2010-11-02 2013-03-21 株式会社豊田自動織機 Method for producing sulfur-based positive electrode active material, sulfur-based positive electrode active material, and positive electrode for lithium ion secondary battery
JP2012150933A (en) 2011-01-18 2012-08-09 Toyota Industries Corp Sulfur-based positive electrode active material, method for manufacturing the same, and positive electrode for lithium ion secondary battery
WO2012114651A1 (en) 2011-02-25 2012-08-30 株式会社豊田自動織機 Sulfur-modified polyacrylonitrile and evaluation method therefor, positive electrode using sulfur-modified polyacrylonitrile, non-aqueous electrolyte secondary battery, and vehicle
JP6132102B2 (en) 2013-10-04 2017-05-24 住友ゴム工業株式会社 Method for producing sulfur-based positive electrode active material and method for producing lithium ion secondary battery
WO2016158675A1 (en) 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 Organic sulfur material and method for producing same
KR20170133406A (en) 2015-03-31 2017-12-05 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Organic sulfur material and its manufacturing method
JP6738815B2 (en) 2015-09-17 2020-08-12 株式会社Adeka Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200704B1 (en) * 1998-09-01 2001-03-13 Polyplus Battery Company, Inc. High capacity/high discharge rate rechargeable positive electrode
JP2004172121A (en) * 2002-11-16 2004-06-17 Samsung Sdi Co Ltd Nonaqueous electrolytic solution and lithium cell adopting the same
JP2007518231A (en) * 2004-01-06 2007-07-05 サイオン パワー コーポレイション How to charge a lithium sulfur cell
JP2007123097A (en) * 2005-10-28 2007-05-17 Sony Corp Battery
JP2008146930A (en) * 2006-12-07 2008-06-26 Sony Corp Electrolytic solution and battery
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
WO2011145623A1 (en) * 2010-05-21 2011-11-24 三井化学株式会社 Nonaqueous electrolyte solution containing silyl ester group-containing phosphonic acid derivative, and lithium secondary battery
WO2015040709A1 (en) * 2013-09-18 2015-03-26 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
WO2016147872A1 (en) * 2015-03-17 2016-09-22 株式会社Adeka Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4099468A4 (en) * 2020-01-30 2024-01-10 Panasonic Ip Man Co Ltd Nonaqueous electrolytic solution additive, nonaqueous electrolytic solution including same, and nonaqueous electrolytic solution secondary battery
CN114207902A (en) * 2020-04-14 2022-03-18 株式会社Lg新能源 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2022542350A (en) * 2020-04-14 2022-10-03 エルジー エナジー ソリューション リミテッド Lithium-sulfur battery electrolyte and lithium-sulfur battery containing the same
JP7442618B2 (en) 2020-04-14 2024-03-04 エルジー エナジー ソリューション リミテッド Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries containing the same
JP2022553728A (en) * 2020-04-17 2022-12-26 エルジー エナジー ソリューション リミテッド Electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP7376711B2 (en) 2020-04-17 2023-11-08 エルジー エナジー ソリューション リミテッド Electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
CN112670575A (en) * 2020-12-22 2021-04-16 上海卡耐新能源有限公司 Additive for lithium ion battery electrolyte and application thereof

Also Published As

Publication number Publication date
KR20210002452A (en) 2021-01-08
JPWO2019208153A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2019208153A1 (en) Nonaqueous electrolyte secondary battery
JP7225199B2 (en) Organic sulfur-based electrode active material
JP6412689B2 (en) Lithium ion secondary battery negative electrode water based slurry (slurry), lithium ion secondary battery negative electrode active material layer, and lithium ion secondary battery
WO2019181703A1 (en) Method for suppressing thermal runaway caused by internal short circuit
KR20200081370A (en) Slurry composition and electrode using slurry composition
JP2003168429A (en) Nonaqueous electrolyte secondary battery
JP7261169B2 (en) Method for producing organic sulfur-based electrode active material
WO2020170833A1 (en) Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP7216073B2 (en) Non-aqueous electrolyte secondary battery
WO2020017378A1 (en) Nonaqueous electrolyte secondary battery
JP2020027695A (en) Composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
KR20220070486A (en) Sulfur-modified polyacrylonitrile
WO2019189146A1 (en) Lithium ion secondary battery and method of operating same
JP2019220415A (en) Composition, nonaqueous electrolyte and nonaqueous electrolyte secondary battery
US20230261193A1 (en) Sulfur-modified polyacrylonitrile, electrode active material containing same, electrode for secondary battery containing said electrode active material, method of manufacturing said electrode, and non-aqueous electrolyte secondary battery using said electrode
JP2021051854A (en) Method for manufacturing nonaqueous electrolyte secondary battery
WO2021124522A1 (en) Electrode active material, method for producing same, composition for forming electrode mixture layer, electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2021060045A1 (en) Electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using said electrode
JP2023070237A (en) Battery additive, non-aqueous electrolyte containing the same, and non-aqueous electrolyte secondary battery
JP2021114435A (en) Nonaqueous electrolyte additive, and nonaqueous electrolyte and nonaqueous electrolyte secondary battery that contain the same
WO2019225588A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793454

Country of ref document: EP

Kind code of ref document: A1