WO2019207711A1 - Vehicle steering control device and vehicle steering device - Google Patents

Vehicle steering control device and vehicle steering device Download PDF

Info

Publication number
WO2019207711A1
WO2019207711A1 PCT/JP2018/016984 JP2018016984W WO2019207711A1 WO 2019207711 A1 WO2019207711 A1 WO 2019207711A1 JP 2018016984 W JP2018016984 W JP 2018016984W WO 2019207711 A1 WO2019207711 A1 WO 2019207711A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
reaction force
steering
clutch
control device
Prior art date
Application number
PCT/JP2018/016984
Other languages
French (fr)
Japanese (ja)
Inventor
伸吾 石毛
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Priority to JP2018521694A priority Critical patent/JP6444570B1/en
Priority to PCT/JP2018/016984 priority patent/WO2019207711A1/en
Publication of WO2019207711A1 publication Critical patent/WO2019207711A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a device for controlling a steering system used in a vehicle such as an automobile (steering control device for a vehicle), an input shaft, a reaction force generating device, a turning force generating device, a connecting device, and a control unit. And a device (a vehicle steering device) and the like.
  • Patent Document 1 discloses a steering operation device as a so-called steer-by-wire steering system. It is controlled by an electronic control unit (control device). Note that the electronic control unit of Patent Document 1 can control the reaction force actuator, the coupling device, and the turning actuator through three control circuits (see FIG. 1 of Patent Document 1).
  • the steering operation device of Patent Document 1 can include detection means that can detect a non-connected state in which the connection device releases the mechanical connection between the operation unit and the steering means, and the detection means includes a gap sensor. (See paragraphs [0011], [0012], etc. of Patent Document 1).
  • the gap sensor can determine whether or not the connecting unit maintains the connected state due to a malfunction.
  • the electronic control unit can perform stop control by cutting off the power supply to the steering actuator (see paragraphs [0012], [0043], etc. of Patent Document 1).
  • the gap sensor can determine whether or not the coupling means (specifically, the clutch) malfunctions, but increases the manufacturing cost of the steering operation device (steering system).
  • An object of the present invention is to provide a vehicle steering control device that can reduce the manufacturing cost of a steering system.
  • the vehicle steering control device that controls the steer-by-wire having the coupling device determines whether or not the coupling device has failed based on the driving state of at least one of the steering motor and the reaction force motor.
  • a detection device such as a gap sensor for detecting the state of the coupling device is not required, and only the driving state of at least one of the steering motor and the reaction force motor provided in the steering system is monitored. It can be determined whether or not the coupling device has failed.
  • the steering system does not need to be provided with a gap sensor, and therefore, in the embodiment according to the present invention, the manufacturing cost of the steering system can be reduced.
  • FIGS. 3A, 3B, and 3C correspond to FIGS. 2A, 2B, and 2C, respectively.
  • 3 (D), 3 (E), and 3 (F) show the change in the reaction motor current value, the change in the steering motor current value, and the clutch engagement when the clutch is disengaged. Indicates the state of connection / release.
  • 7 shows a flowchart showing an operation example of the control device according to the present invention when the steering motor is driven to hold the position and the reaction force motor is driven to move the position.
  • 5 (A), 5 (B) and 5 (C) respectively show changes in the current value of the reaction force motor and the steering motor when the reaction force motor is driven to hold the position while the clutch is in a normal state. The change in the current value and the state of engagement / release of the clutch are shown.
  • 5D, 5E, and 5F show the change in the reaction motor current value, the change in the steering motor current, and the clutch The engaged / released state is shown.
  • 6A, 6B, and 6C correspond to FIGS. 5A, 5B, and 5C, respectively.
  • 6 (D), 6 (E), and 6 (F) show the change in the reaction motor current value, the change in the steering motor current value, and the clutch engagement when the clutch has a release failure, respectively.
  • 7 is a flowchart showing an operation example of the control device according to the present invention when the reaction force motor is driven to hold the position and the steering motor is driven to move the position.
  • FIGS. 9A, 9B, and 9C correspond to FIGS. 8A, 8B, and 8C, respectively.
  • FIGS. 9A, 9B, and 9C correspond to FIGS. 8A, 8B, and 8C, respectively.
  • FIGS. 8D, 8E, and 8F show the change in the rotational speed of the reaction force motor, the change in the rotational speed of the steered motor, and the clutch relationship when the clutch fails to open. Indicates the state of connection / release.
  • FIGS. 10A, 10B, and 10C respectively show changes in the rotational speed of the reaction force motor when the steering motor is driven to hold the position while the clutch is in a normal state. The change in the current value and the state of engagement / release of the clutch are shown.
  • 10 (D), 10 (E), and 10 (F) are respectively the change in the rotational speed of the reaction force motor, the change in the current value of the steered motor, and the clutch The engaged / released state is shown.
  • 11A, 11B, and 11C correspond to FIGS. 10A, 10B, and 10C, respectively.
  • 11 (D), 11 (E), and 11 (F) respectively show changes in the rotational speed of the reaction force motor, changes in the current value of the steering motor, and clutch engagement when the clutch fails to open. Indicates the state of connection / release.
  • report a failure of an initial check to a user before carrying out position holding drive of a steering motor and driving a reaction force motor to position movement is shown.
  • FIG. 1 shows a configuration example of a vehicle steering system 10 to which a control device 16 according to the present invention is applied.
  • a vehicle steering system 10 (which may be called a vehicle steering device) includes, for example, a steering unit 12 that generates a steering input of a steering wheel 11 of a vehicle such as an automobile, A steering unit 14 that steers the steering wheels 13 and 13, a clutch 15 (connecting device in a broad sense) interposed between the steering unit 12 and the steering unit 14, and a control device (vehicle steering control) Device) 16.
  • a control device vehicle steering control
  • the vehicle steering system 10 normally opens the clutch 15 and operates the steering actuator 39 (in a broad sense, a turning force generating device) according to the steering amount of the steered wheels 11. Therefore, a so-called steer-by-wire (abbreviated as “SBW”) method is adopted in which the left and right steered wheels 13 are steered.
  • SBW steer-by-wire
  • the steering unit 12 applies a steering reaction force (reaction torque) to the steering wheel 11 that is operated by a user, for example, a driver, the steering shaft 21 connected to the steering wheel 11, and the steering wheel 11.
  • a reaction force addition actuator 22 (a reaction force generator in a broad sense).
  • the reaction force addition actuator 22 gives the driver a steering feeling by generating a steering reaction force that resists the steering force of the steered wheels 11 by the driver.
  • the reaction force addition actuator 22 includes a reaction force motor 23 that generates a steering reaction force, and a reaction force transmission mechanism 24 that transmits the steering reaction force to the steering shaft 21.
  • the reaction force motor 23 is configured by, for example, an electric motor.
  • the reaction force transmission mechanism 24 is configured by, for example, a worm gear mechanism.
  • the worm gear mechanism 24 (reaction force transmission mechanism 24) includes a worm gear 24a provided on the motor shaft 23a of the reaction force motor 23 and a worm wheel 24b provided on the steering shaft 21.
  • the steering reaction force generated by the reaction force motor 23 is added to the steering shaft 21 via the reaction force transmission mechanism 24.
  • the steered portion 14 of FIG. 1 includes an input shaft 33 connected to the steering shaft 21 by universal shaft couplings 31 and 31 and a connecting shaft 32, and an output shaft connected to the input shaft 33 via the clutch 15. 34, a steered shaft 36 connected to the output shaft 34 by an operating force transmission mechanism 35, and left and right wheels connected to both ends of the steered shaft 36 via tie rods 37, 37 and knuckles 38, 38. It includes steered wheels 13 and 13 and a steered actuator 39 that adds steered power to the steered shaft 36.
  • the operating force transmission mechanism 35 is configured by, for example, a rack and pinion mechanism.
  • the rack and pinion mechanism 35 (operation force transmission mechanism 35) includes a pinion 35a provided on the output shaft 34 and a rack 35b provided on the steered shaft 36.
  • the steered shaft 36 is movable in the axial direction (vehicle width direction).
  • the 1 includes a steered motor (steered power motor) 41 that generates power for steering, and a steered power transmission mechanism 42 that transmits the steered power to the steered shaft 36. .
  • the turning power generated by the turning motor 41 is transmitted to the turning shaft 36 by the turning power transmission mechanism 42.
  • the steered motor 41 is configured by, for example, an electric motor.
  • the steered power transmission mechanism 42 includes, for example, a belt transmission mechanism 43 and a ball screw 44.
  • the belt transmission mechanism 43 includes a driving pulley 45 provided on the motor shaft 41 a of the steered motor 41, a driven pulley 46 provided on a nut of the ball screw 44, and a belt hung on the driving pulley 45 and the driven pulley 46. 47.
  • the ball screw 44 is a kind of conversion mechanism that converts rotational motion into linear motion, and transmits the driving force generated by the steered motor 41 to the steered shaft 36.
  • the steered power transmission mechanism 42 is not limited to the configuration of the belt transmission mechanism 43 and the ball screw 44, and may be, for example, a worm gear mechanism or a rack and pinion mechanism.
  • a control device (vehicle steering control device) 16, which may be called a control unit, includes, for example, a steering angle sensor 91, a steering torque sensor 92, a motor rotation angle sensor (reaction force motor rotation angle sensor). ) 93, output shaft rotation angle sensor 94, motor rotation angle sensor (steering motor rotation angle sensor) 95, vehicle speed sensor 96, yaw rate sensor 97, acceleration sensor 98, and other various sensors 99, respectively, to receive the detection signals and clutch 15.
  • a control signal is issued to the reaction force motor 23, the steering motor 41, and the solenoid 71.
  • the steering angle sensor 91 detects the steering angle of the steered wheels 11.
  • the steering torque sensor 92 detects the steering torque generated in the steering shaft 21.
  • the motor rotation angle sensor 93 detects the rotation angle of the reaction force motor 23.
  • the output shaft rotation angle sensor 94 detects the rotation angle of the output shaft 34 having the pinion 35a.
  • the motor rotation angle sensor 95 detects the rotation angle of the steering motor 41.
  • the vehicle speed sensor 96 detects the traveling speed of the vehicle.
  • the yaw rate sensor 97 detects the yaw angular velocity of the vehicle (the angular velocity of the yaw motion).
  • the acceleration sensor 98 detects the acceleration of the vehicle.
  • the connection device for example, the input shaft 33 and the rack 35b can be mechanically connected only by monitoring the driving state of the reaction force motor 23 and the steered motor 41). It can be determined whether or not the clutch 15) has failed.
  • the steering system including the control device 16 according to the present invention it is not necessary to include a gap sensor as disclosed in Patent Document 1, and the manufacturing cost of the steering system can be reduced.
  • the change of the electric current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown.
  • FIG. 2C for example, when an ignition switch (not shown) that enables the vehicle to start is turned on, the control device 16 switches the clutch 15 from the released state to the engaged state. At this time, as shown in FIG. 2A, the control device 16 can start the rotation of the steering shaft 21 by controlling the reaction force motor 23.
  • the control device 16 sets the current value I of the current flowing through the reaction force motor 23 (also referred to as the drive current) in order to gently start the rotation of the steering shaft 21, for example.
  • the increased current value I flowing through the reaction force motor 23 can be maintained, for example, constant (FIG. 2A). )reference).
  • the state in which the increased current value I is kept constant can be exemplified by the maximum output of the reaction force motor 23, for example.
  • the current value is set to be small
  • the current is set to a constant current (maintenance current) that sets the output of the reaction force motor 23 to the maximum output, the failure can be estimated with high accuracy. .
  • the steering motor 41 is driven to hold the position. Specifically, the control device 16 controls the steered motor 41 so that the position of the rack 35b (that is, the steered shaft 36) is maintained in order to determine whether or not the clutch 15 has failed. can do. More specifically, as an example, the control device 16 increases the current of the reaction motor 23 so that the steering shaft 21 rotates as the clutch 15 is engaged. However, since the steered motor 41 is driven to maintain the position, as shown in FIG. 2B, the control device 16 drives the current (drive) that flows through the steered motor 41 so that the position of the rack 35b is retained. Current value I) (which can also be called current) is increased linearly or linearly, for example.
  • Current value I (which can also be called current) is increased linearly or linearly, for example.
  • control device 16 can maintain, for example, the increased current value I flowing through the steered motor 41, for example, so that the position of the rack 35b is maintained. it can. Since the position of the rack 35b is maintained when the increased current value I flowing to the reaction force motor 23 is maintained constant, for example, the increased current value I flowing to the steering motor 41 is also maintained constant, for example. It will be.
  • the control device 16 switches the clutch 15 from the engaged state to the released state.
  • the reaction force motor 23 attempts to rotate the steering shaft 21. That is, the controller 16 maintains the position of the rack 35b so that the increased current value I flowing to the steered motor 41 when the clutch 15 is in an engaged state is also maintained constant, for example ( (See FIG. 2B).
  • the control device 16 only needs to drive the steering motor 41 while maintaining the position regardless of the rotation of the steering shaft 21. Specifically, the control device 16 can rapidly reduce the current value I that flows to the steering motor 41 once increased as the clutch 15 is released, for example, to the initial value (FIG. 2B). )reference).
  • the left and right steered wheels 13 are driven when the steered motor 41 is driven to hold the position. , 13 can be estimated with high accuracy without moving.
  • the left and right steered wheels 13 and 13 do not move on any road surface (arbitrary friction coefficient ⁇ ), it is safe in any environment (including under low temperatures, for example). Failure determination is possible.
  • FIG. 2 (A) to 2 (C), FIG. 2 (D), FIG. 2 (E), and FIG. 2 (F) show that the clutch 15 has failed in engagement (from the disengaged state).
  • the change in the current value of the reaction force motor 23, the change in the current value of the steered motor 41, and the engagement / disengagement state of the clutch 15 are shown.
  • FIG. 2E when the clutch 15 is switched from the released state to the engaged state and the current of the reaction force motor 23 increases so that the steering shaft 21 rotates, the control device 16 There is no need to increase the current (initial value) flowing through the steering motor 41 (see arrow A in FIG. 2E).
  • the control device 16 After the clutch 15 is switched from the disengaged state to the engaged state, the control device 16 operates in a state where the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It can be determined whether or not the current (initial value) flowing through 41 exceeds a threshold (for example, threshold current I1). In this way, the control device 16 can determine whether or not the clutch 15 has failed due to the current value I of the steered motor 41.
  • a threshold for example, threshold current I1
  • the control device 16 is based on a value other than the threshold, such as the degree of increase in the current of the steered motor 41, for example. It may be determined whether or not the clutch 15 is in an engagement failure.
  • FIG. 3A, FIG. 3B, and FIG. 3C correspond to FIG. 2A, FIG. 2B, and FIG. 2C, respectively.
  • a change in the current value of the reaction force motor 23, a change in the current value of the steered motor 41, and a state of engagement / release of the clutch 15 when the steered motor 41 is driven to hold the position in a normal state are shown.
  • FIGS. 3D, 3E, and 3F respectively show changes in the current value of the reaction force motor 23 when the clutch 15 fails to be released (the clutch does not switch from the engaged state to the released state).
  • the change of the current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown.
  • the control device 16 is configured so that the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It can be determined whether or not the current flowing through 41 falls below a threshold (for example, threshold current I2). In this way, the control device 16 can determine whether or not the clutch 15 has a disengagement failure based on the current value I of the steering motor 41.
  • a threshold for example, threshold current I2
  • FIG. 4 is a flowchart showing an operation example of the control device 16 according to the present invention when the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move the position.
  • the control device 16 in FIG. 1 can determine whether or not the ignition switch is turned on, for example, by various sensors 99 or by a change in the voltage of the vehicle battery based on ON / OFF of the ignition switch (FIG. 4). Step S1).
  • Step S4 of FIG. 4 the control device 16 drives the steering motor 41 to maintain its position.
  • the control device 16 inputs an output from, for example, a motor rotation angle sensor (steering motor rotation angle sensor) 95, and monitors the monitoring result while keeping the rotation angle of the motor shaft of the steering motor 41 constant.
  • the steered motor 41 can be controlled to be held.
  • the control device 16 replaces the motor rotation angle sensor 95 or, in addition to the motor rotation angle sensor 95, for example, inputs and monitors the output from the output shaft rotation angle sensor 94 while monitoring the position of the rack 35b. Can be controlled such that the steering motor 41 is driven.
  • reaction force motor position movement drive As shown in step S5 of FIG. 4, the control device 16 drives the reaction force motor 23 to move. As an example, the control device 16 generates the current value I of the reaction force motor 23 while generating, monitoring, or referring to the set value or current set value that is the source of the reaction force motor 23 or the drive current. ) Can be increased and retained. In other words, the control device 16 attempts to rotate the steering shaft 21 by driving the reaction force motor 23.
  • the controller 16 determines, for example, whether or not the rotation of the steering shaft 21 actually occurs, for example, a motor rotation angle sensor (reaction force motor rotation angle sensor) 93 and / or a steering angle sensor, for example.
  • the reaction force motor 23 may be driven to move while inputting and monitoring the output from 91.
  • step S ⁇ b> 6 of FIG. 4 the control device 16 increases the current or drive current flowing through the steered motor 41 due to the increase in the current or drive current flowing through the reaction force motor 23. It can be determined whether or not. For example, as shown in FIG. 2B, when the current value I of the current flowing through the steered motor 41 or the drive current I increases or exceeds a threshold value (for example, threshold current I1), the control device 16 It can be determined that 15 is not engaged. As described above, the control device 16 determines whether the clutch 15 has failed based on the current value I of the steering motor 41 when the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It is possible to determine whether or not (see step S6 in FIG. 4).
  • a threshold value for example, threshold current I1
  • control device 16 can release the clutch 15 as shown in FIG. 2C, for example (see step S7 in FIG. 4).
  • the control device 16 determines whether or not the current or drive current flowing through the steered motor 41 decreases due to the clutch 15 being released. it can. For example, as shown in FIG. 2B, the control is performed when the current value I of the current flowing through the steered motor 41 or the drive current I decreases, or when the current value falls below or returns to the initial value (eg, the threshold current I1). The device 16 can determine that the clutch 15 is not open. As described above, the control device 16 determines whether the clutch 15 has failed based on the current value I of the steering motor 41 when the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It is possible to determine whether or not (see step S8 in FIG. 4).
  • step S6 of FIG. 4 As a result of executing step S6 of FIG. 4, for example, as shown in FIG. 2E, when the current value I of the current flowing through the steered motor 41 or the drive current I is constant, or a threshold (for example, threshold current I1) ), The control device 16 can determine that the clutch 15 has failed.
  • step S8 of FIG. 4 for example, as shown in FIG. 3E, when the current value I of the current flowing through the steered motor 41 or the current I of the drive current does not decrease, or a threshold value (for example, threshold value) When the current I2 or I1) is exceeded, the control device 16 can determine that the clutch 15 has failed.
  • step S10 of FIG. 4 when the clutch 15 is broken down, specifically, for example, when the clutch 15 is broken down, the control device 16 causes the clutch 15 to fail to the driver. Fail processing for detection can be executed. Thereafter, the control device 16 can stop the vehicle steering system 10.
  • step S6 in FIG. 4 it is determined that the clutch 15 is in an engagement failure, and the control device 16 does not execute step S10 but also when the clutch 15 is in an engagement failure.
  • the control device 16 detects the error of the steering motor 41. It is possible to estimate with high accuracy that the clutch 15 is normal, not an operation or malfunction of the reaction force motor 23.
  • the existence of both the engagement non-failure (normal) and the release non-failure (normal) of the clutch 15 is confirmed, and it can be said that the clutch 15 is normal with high accuracy.
  • the control device 16 executes a vehicle start prohibition process, or prohibits the vehicle start to another electronic control unit or main control unit that manages or controls the start of the vehicle.
  • An instruction for executing can be transmitted.
  • FIGS. 5A, 5B, and 5C respectively show changes in the current value of the reaction force motor 23 when the reaction force motor 23 is driven to hold the position while the clutch 15 is in a normal state.
  • the change of the electric current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown.
  • FIG. 5C for example, when the ignition switch is turned on, the control device 16 switches the clutch 15 from the released state to the engaged state.
  • the control device 16 can start the movement (rotation) of the rack 35 b (output shaft 34) by controlling the steered motor 41.
  • the control device 16 sets a current value I of a current (also referred to as a drive current) flowing through the steered motor 41 in order to gently start the rotation of the output shaft 34, for example.
  • a current value I flowing to the steered motor 41 can be maintained, for example, constant (FIG. 5B )reference).
  • the state in which the increased current value I is kept constant can be exemplified by the maximum output of the steered motor 41, for example.
  • the current value is set to be small
  • the current is set to a constant current (maintenance current) that sets the output of the steered motor 41 to the maximum output, the failure can be estimated with high accuracy. .
  • one of the features of the control device 16 is that the reaction force motor 23 is driven to hold the position.
  • the control device 16 can control the reaction force motor 23 so that the position (rotation angle) of the steering shaft 21 is maintained in order to determine whether or not the clutch 15 is broken. it can. More specifically, as an example, the control device 16 increases the current of the steered motor 41 so that the output shaft 34 (rack 35b) rotates (moves) as the clutch 15 is engaged. However, since the reaction force motor 23 is driven to hold the position, as shown in FIG. 5A, the control device 16 causes the current flowing through the reaction force motor 23 so that the rotation angle of the steering shaft 21 is maintained.
  • the current value I (which can also be called a drive current) is increased linearly or linearly, for example.
  • the control device 16 sets the increased current value I flowing through the reaction force motor 23 to, for example, a constant value so that the position (rotation angle) of the steering shaft 21 is maintained. Can be maintained. Since the rotation angle of the steering shaft 21 is maintained when the increased current value I flowing to the steered motor 41 is maintained constant, for example, the increased current value I flowing to the reaction motor 23 is also maintained constant, for example. Will be.
  • the control device 16 switches the clutch 15 from the engaged state to the released state.
  • the steered motor 41 tries to move the rack 35b. That is, the control device 16 maintains the increased current value I flowing to the reaction force motor 23 when the clutch 15 is engaged in order to maintain the rotation angle of the steering shaft 21, for example, constant. (See FIG. 5A).
  • the control device 16 may drive the steering shaft 21 while maintaining the position regardless of the movement of the rack 35b. Specifically, the control device 16 can decrease the current value I flowing through the reaction force motor 23 once increased as the clutch 15 is released, and return it to, for example, an initial value (FIG. 5A). )reference).
  • FIGS. 5D, 5E, and 5F show the reaction force when the clutch 15 fails to engage, respectively.
  • a change in the current value of the motor 23, a change in the current value of the steered motor 41, and the state of engagement / release of the clutch 15 are shown.
  • the control device 16 After the clutch 15 is switched from the disengaged state to the engaged state, the control device 16 operates in a state in which the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move. It is possible to determine whether or not the current (initial value) flowing through 23 exceeds a threshold (for example, threshold current I1). As described above, the control device 16 can determine whether or not the clutch 15 has failed due to the current value I of the reaction force motor 23.
  • a threshold for example, threshold current I1
  • the control device 16 is based on a value other than the threshold, such as the degree of increase in the current of the reaction force motor 23, for example. It may be determined whether or not the clutch 15 is in an engagement failure.
  • FIG. 6A, FIG. 6B, and FIG. 6C correspond to FIG. 5A, FIG. 5B, and FIG. 5C, respectively.
  • a change in the current value of the reaction force motor 23, a change in the current value of the steered motor 41, and a state of engagement / release of the clutch 15 when the steered motor 41 is driven to hold the position in a normal state are shown.
  • FIGS. 6D, 6E, and 6F respectively show the change in the current value of the reaction force motor 23, the change in the current value of the steering motor 41, and the change in the clutch 15 when the clutch 15 fails to open.
  • the engaged / released state of the clutch 15 is shown.
  • the control device 16 After the clutch 15 is switched from the engaged state to the disengaged state, the control device 16 operates in a state in which the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move. It is possible to determine whether or not the current flowing through 23 is lower than a threshold value (for example, threshold current I2). As described above, the control device 16 can determine whether or not the clutch 15 is in a disengagement failure based on the current value I of the reaction force motor 23.
  • a threshold value for example, threshold current I2
  • FIG. 7 shows a flowchart showing an operation example of the control device according to the present invention when the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move the position.
  • the control device 16 in FIG. 1 can determine whether or not the ignition switch is turned on (see step S21 in FIG. 7).
  • the control device 16 can engage the clutch 15 (see step S22) and turn on the power of the reaction force motor 23 and the turning motor 41 (step S22). (See S23). For example, as shown in FIGS. 5A and 5B, the control device 16 turns on the power of the reaction force motor 23 and the turning motor 41 before the ignition switch is turned on, for example, A small amount of current that does not move the initial value or the steering shaft 21 and the rack 35b may be supplied.
  • the control device 16 drives the reaction force motor 23 to hold the position.
  • the control device 16 inputs an output from, for example, a motor rotation angle sensor (reaction force motor rotation angle sensor) 93, and monitors the monitoring result while keeping the rotation angle of the motor shaft of the reaction force motor 23 constant.
  • the reaction force motor 23 can be controlled to be held.
  • the control device 16 replaces the motor rotation angle sensor 93 or, in addition to the motor rotation angle sensor 93, for example, inputs and monitors the output from the steering angle sensor 91 while monitoring the position of the steering shaft 21b ( The driving of the steered motor 41 can be controlled so that the rotation angle is maintained.
  • Step S ⁇ b> 25 of FIG. 7 the control device 16 drives the steering motor 41 to move its position.
  • the control device 16 generates, monitors, or refers to the set value or the current set value, which is the source of the current or drive current of the steered motor 41, and determines the current value I of the steered motor 41 as shown in FIG. ) Can be increased and retained.
  • the control device 16 attempts to move (rotate) the rack 35 b (output shaft 34) by driving the steered motor 41.
  • the control device 16 determines, for example, whether or not the movement of the rack 35b actually occurs, for example, a motor rotation angle sensor (drive motor rotation angle sensor) 95 and / or an output shaft rotation angle sensor, for example.
  • the steered motor 41 may be driven to move while inputting and monitoring the output from 94.
  • the control device 16 increases the current or drive current flowing through the reaction motor 23 due to the increase in the current or drive current flowing through the steering motor 41. It can be determined whether or not. For example, as shown in FIG. 5A, when the current value I of the current flowing through the reaction motor 23 or the drive current I increases or exceeds a threshold value (for example, threshold current I1), the control device 16 It can be determined that 15 is not engaged. In this way, the control device 16 determines whether the clutch 15 has failed based on the current value I of the reaction force motor 23 when the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move. It is possible to determine whether or not (see step S26 in FIG. 7).
  • a threshold value for example, threshold current I1
  • control device 16 can release the clutch 15 as shown in FIG. 5C, for example (see step S27 in FIG. 7).
  • the control device 16 determines whether or not the current or drive current flowing through the reaction motor 23 decreases due to the clutch 15 being released. it can. For example, as shown in FIG. 5 (A), when the current value I of the current flowing through the steering motor 41 or the drive current I decreases, or when the current value I falls below a threshold value (for example, the threshold current I1) or returns to the initial value, the control is performed. The device 16 can determine that the clutch 15 is not open. In this way, the control device 16 determines whether the clutch 15 has failed based on the current value I of the reaction force motor 23 when the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move. It is possible to determine whether or not (see step S28 in FIG. 7).
  • step S29 of FIG. 7 when the clutch 15 is not in the engagement failure and the clutch 15 is not in the release failure, it is determined or confirmed that the clutch 15 is normal, and thereafter The control device 16 can execute normal control of the vehicle steering system 10.
  • step S26 in FIG. 7 when the current value I of the current flowing through the reaction force motor 23 or the drive current I is constant, or a threshold value (for example, threshold current I1). ), The control device 16 can determine that the clutch 15 has failed.
  • step S28 of FIG. 7, for example, as shown in FIG. 6D when the current value I of the reaction force motor 23 or the current I of the drive current does not decrease, or a threshold value (for example, threshold value) When the current I2 or I1) is exceeded, the control device 16 can determine that the clutch 15 has failed.
  • the control device 16 by confirming the existence of both the engagement non-failure (normal) and the release non-failure (normal) of the clutch 15, the control device 16 highly accurately estimates that the clutch 15 is normal. can do.
  • FIG. 8C shows changes in the rotational speed of the reaction force motor 23 when the steering motor 41 is driven to hold the position while the clutch 15 is in a normal state.
  • the change of the rotational speed of the steered motor 41 and the state of engagement / release of the clutch 15 are shown.
  • FIG. 8C for example, when the ignition switch is turned on, the control device 16 switches the clutch 15 from the released state to the engaged state.
  • the control device 16 can start the rotation of the steering shaft 21 by controlling the reaction force motor 23.
  • the control device 16 causes the current flowing in the reaction force motor 23 to gradually start the rotation of the steering shaft 21 as shown in FIG.
  • the current value I also referred to as drive current
  • the control device 16 may attempt to rotate the steering shaft 21 by driving the reaction force motor 23 with a voltage.
  • the steering motor 41 is driven to hold the position. Specifically, in order to determine whether or not the clutch 15 has failed, the control device 16 turns the steering motor 41 so that the position (rotation angle) of the rack 35b (output shaft 34) is maintained. Can be controlled. More specifically, as an example, the control device 16 starts driving the steered motor 41 and attempts to rotate the steering shaft 21, so that the reaction force motor 23 is driven to hold the position. ), The rotational speed ⁇ of the steered motor 41 is zero. Note that when the rotational speed ⁇ of the steered motor 41 is zero, the rotational angle of the steered motor 41 is constant.
  • the reaction force motor 23 When the clutch 15 is in a normal state, the reaction force motor 23 is driven so that the steering shaft 21 is rotated by the engagement of the clutch 15, but the steering motor 41 is driven to hold the position.
  • the rotational speed ⁇ of the motor 41 is zero. Therefore, as shown in FIG. 8A, the rotational speed ⁇ of the reaction motor 23 is also zero.
  • the rotation angle of the reaction force motor 23 is constant. Therefore, actually, even when the reaction force motor 23 is driven, the steering shaft 21 does not rotate, the output shaft 34 does not rotate, and the rack 35b does not move.
  • the control device 16 switches the clutch 15 from the engaged state to the released state.
  • the reaction force motor 23 tries to rotate the steering shaft 21.
  • the control device 16 turns the reaction force motor 23 to rotate the steering shaft 21 regardless of the position holding drive of the steered motor 41. Drive.
  • the rotational speed ⁇ of the reaction force motor 23 increases linearly or linearly, for example, and then becomes constant, for example, as shown in FIG. Maintained.
  • the state in which the increased rotational speed ⁇ is kept constant can be exemplified by the maximum output of the reaction force motor 23, for example.
  • the rotational speed is set to be small
  • the rotational speed is set to a constant rotational speed (maintenance rotational speed) that sets the output of the reaction force motor 23 to the maximum output, the failure is estimated with high accuracy. be able to.
  • FIG. 8 (A) to 8 (C), FIG. 8 (D), FIG. 8 (E), and FIG. 8 (F) show the reaction force when the clutch 15 fails in engagement, respectively.
  • a change in the rotation speed of the motor 23, a change in the rotation speed of the steered motor 41, and the engagement / release state of the clutch 15 are shown.
  • FIG. 8D when the reaction force motor 23 is driven so that the clutch 15 is switched from the released state to the engaged state and the steering shaft 21 rotates, the rotation of the reaction force motor 23 is performed.
  • the speed ⁇ increases, for example, linearly or linearly (see arrow C in FIG. 8D).
  • the control device 16 is configured so that the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It is possible to determine whether or not the rotational speed ⁇ (initial value) 23 exceeds a threshold value (for example, the threshold rotational speed ⁇ 1 or ⁇ 2). As described above, the control device 16 can determine whether or not the clutch 15 has failed due to the rotational speed ⁇ of the reaction force motor 23. Note that the control device 16 may determine whether or not the clutch 15 has failed due to the rotation angle of the reaction force motor 23 instead of the rotation speed ⁇ of the reaction force motor 23.
  • a threshold value for example, the threshold rotational speed ⁇ 1 or ⁇ 2
  • the control device 16 increases the rotational speed ⁇ of the reaction force motor 23 from the initial value to the target value, and keeps the target value constant. Can do. For example, when determining the engagement failure of the clutch 15 and switching the clutch 15 from the engaged state to the released state, the control device 16 returns the rotational speed ⁇ of the reaction force motor 23 to the initial value or the reaction force motor 23 as an example. Can be stopped (see FIGS. 8D and 8F).
  • FIGS. 9A, 9B, and 9C correspond to FIGS. 8A, 8B, and 8C, respectively.
  • the clutch 15 is A change in the rotational speed of the reaction force motor 23, a change in the rotational speed of the steered motor 41, and an engaged / released state of the clutch 15 when the steering motor 41 is driven to hold the position in a normal state are shown.
  • FIGS. 9D, 9E, and 9F show changes in the rotational speed of the reaction force motor 23, changes in the rotational speed of the steering motor 41, and The engaged / released state of the clutch 15 is shown.
  • the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It is possible to determine whether or not the rotational speed ⁇ 23 is lower than a threshold (for example, the threshold rotational speed ⁇ 1). In this way, the control device 16 can determine whether or not the clutch 15 has a disengagement failure based on the rotational speed ⁇ of the reaction force motor 23.
  • a threshold for example, the threshold rotational speed ⁇ 1
  • the control device 16 by confirming the existence of both the engagement non-failure (normal) and the release non-failure (normal) of the clutch 15, the control device 16 highly accurately estimates that the clutch 15 is normal. can do.
  • 10 (A), 10 (B) and 10 (C) respectively show changes in the rotational speed of the reaction force motor 23 when the steering motor 41 is driven to hold the position while the clutch 15 is in a normal state.
  • the change of the electric current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown.
  • FIG. 10C for example, when the ignition switch is turned on, the control device 16 switches the clutch 15 from the released state to the engaged state.
  • the control device 16 can start the rotation of the steering shaft 21 by controlling the reaction force motor 23.
  • the control device 16 causes the current flowing in the reaction force motor 23 to gradually start the rotation of the steering shaft 21 as shown in FIG.
  • the current value I also referred to as drive current
  • the control device 16 may attempt to rotate the steering shaft 21 by driving the reaction force motor 23 with a voltage.
  • the steering motor 41 is driven to hold the position. Specifically, in order to determine whether or not the clutch 15 has failed, the control device 16 turns the steering motor 41 so that the position (rotation angle) of the rack 35b (output shaft 34) is maintained. Can be controlled. More specifically, as an example, the control device 16 starts driving the steered motor 41 and attempts to rotate the steering shaft 21, so that the steered motor 41 is driven to hold the position, so that FIG. ), The current value I of the steered motor 41 increases as the reaction force motor 23 is driven.
  • FIGS. 10 (D), 10 (E), and 10 (F) each show that the clutch 15 is not engaged (specifically, although not limited thereto, for example, a change in the rotational speed of the reaction force motor 23, a change in the current value of the steered motor 41, and a state of engagement / release of the clutch 15 when an incomplete engagement failure occurs are shown.
  • incomplete engagement failure refers to a situation where the clutch 15 is not completely switched from the released state to the engaged state. In the case of this incomplete engagement failure, the engagement force of the clutch 15 is lower than that in the fully engaged state. As shown in FIG.
  • the control device 16 operates in a state where the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It can be determined whether or not the current value I (initial value) 41 exceeds two threshold values (for example, threshold currents I1 and I2).
  • the current value I (initial value) of the rudder motor 41 cannot exceed the threshold current I2 even if it exceeds the threshold current I1 (see arrow E1 in FIG. 10E).
  • control device 16 can determine whether or not the clutch 15 has failed due to the current value I of the steering motor 41 and the rotational speed ⁇ of the reaction force motor 23. Preferably, the control device 16 can determine whether there is an engagement failure due to deterioration of the clutch 15.
  • 11 (A), 11 (B), and 11 (C) correspond to FIGS. 10 (A), 10 (B), and 10 (C), respectively.
  • a change in the rotational speed of the reaction force motor 23, a change in the current value of the steered motor 41, and a state of engagement / release of the clutch 15 when the steered motor 41 is driven to hold the position in a normal state are shown.
  • 11 (D), 11 (E), and 11 (F) show changes in the rotational speed of the reaction force motor 23 when the clutch 15 has an open failure (specifically, an incomplete open failure), respectively.
  • the change of the current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown.
  • the “incomplete release failure” is a situation where the clutch 15 is not completely switched from the engaged state to the released state. In the case of this incomplete opening failure, the engagement force of the clutch 15 does not become zero.
  • the control device 16 is configured so that the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It can be determined whether or not the current value I (initial value) 41 falls below two threshold values (for example, threshold currents I1 and I2).
  • threshold currents I1 and I2 for example, threshold currents I1 and I2.
  • the engagement force (friction force) of the friction clutch 15 has deteriorated due to, for example, a change over time. Even if the current value I of the motor 41 falls below the threshold current I2, it cannot fall below the threshold current I1 (see arrow F1 in FIG. 11E).
  • FIG. 11E since the clutch 15 has an incomplete open failure, for example, the engagement force (friction force) of the friction clutch 15 has deteriorated due to, for example, a change over time. Even if the current value I of the motor 41 falls below the threshold current I2, it cannot fall below the threshold current I1 (see arrow F1 in FIG. 11E). Similarly, in the example of FIG
  • control device 16 can determine whether or not the clutch 15 is malfunctioning based on the current value I of the steered motor 41 and the rotational speed ⁇ of the reaction force motor 23. Preferably, the control device 16 can determine whether or not there is an open failure due to deterioration of the clutch 15.
  • the control device 16 can estimate with high accuracy that the clutch 15 is abnormal. In other words, in the fourth embodiment, by confirming the existence of both the engagement failure (abnormality) and the release failure (abnormality) of the clutch 15, the control device 16 highly accurately determines that the clutch 15 is abnormal. Can be estimated.
  • the estimation of the incomplete engagement failure or the incomplete disengagement failure has been described. However, as a matter of course, the same can be used for the estimation of the normal engagement failure or the disengagement failure. it can.
  • One of the features of the control device 16 according to the fourth embodiment is that the steered motor 41 is driven to hold the position.
  • the control device 16 according to the fourth embodiment may drive the reaction force motor 23 to hold the position instead of the steered motor 41.
  • the control device 16 can determine whether or not the clutch 15 has an engagement failure and / or a release failure.
  • the control device 16 can determine whether or not there is an engagement failure and / or a release failure due to deterioration of the clutch 15.
  • Modification 2 In the control device 16 according to the first to fourth embodiments and the modified example such as the modified example 1, it is possible to notify the user of the failure of the initial check. In other words, when there is a risk of adversely affecting the failure determination of the clutch 15 such as the user's hand touching the steering wheel such as the steering wheel 11, the control device 16 does not perform the failure determination or cancels the execution. Or it can be postponed.
  • control device 16 adds whether or not the failure determination of the clutch 15 is to be performed, and if not, notifies the user to that effect. be able to. This will be described below with reference to FIG.
  • FIG. 12 shows an operation example of the control device 16 according to the present invention that can notify the user of the failure of the initial check before the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move.
  • a flowchart is shown.
  • the control device 16 inputs the output of the steering torque sensor 92, for example, in order to determine whether or not the user is operating the steered wheel 11 after confirming that the ignition switch is turned on in step S41 of FIG. It can be monitored (see step S42 in FIG. 12).
  • the control device 16 executes steps S43 to S52 of FIG. 12 in the same manner as steps S2 to S11 of FIG. Can do.
  • another detection unit such as a touch sensor (not shown) provided on the steering wheel 11 or a camera (not shown) provided in the vehicle interior determines whether the user has released the hand. May be. Further, the determination of letting go may be performed during the execution of steps S43 to S49 in FIG.
  • the control device 16 when the steering wheel 11 is operated by the user immediately after the ignition switch is turned on, the control device 16 counts up tn, for example, as shown in steps S53, S54, and S56 in FIG. 12, for example. Then, until tn is incremented from 0 (initial value) to n, for example, it is possible to notify the user that the user has not released his hand from the steered wheel 11, that is, the failure of the initial check. Specifically, the control device 16 outputs an audio signal to the vehicle-mounted speaker, or outputs a notification signal such as an audio signal, a display signal, and an image signal to an electronic control unit that controls the audio, navigation, meter, and the like. Can do.
  • the control device 16 performs steps S43 to S52 in FIG. Can be executed.
  • the control device 16 can determine whether or not the clutch 15 has failed after the ignition switch is turned on. However, it suffices to determine whether or not the clutch 15 has failed before the user starts driving the vehicle. Specifically, the control device 16 is, for example, a user who carries a smart key or a key fob (fob). After detecting the approach to the vehicle and determining or estimating that the user gets into the vehicle, it may be determined whether or not the clutch 15 has failed. Alternatively, the control device 16 may determine whether or not the clutch 15 has failed after the user touches the door knob on the driver's seat side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

Provided is a vehicle steering control device with which the cost of producing a steering system can be reduced. A vehicle steering control device 16 controls a steering motor 41 and a reaction force motor 23 such that either one of the steering motor 41 and the reaction force motor 23 (the steering motor 41, for example) is driven in a manner in which the position thereof is retained and the other one of the steering motor 41 and the reaction force motor 23 (the reaction force motor 23, for example) is driven in a manner in which the position thereof is moved. The vehicle steering control device 16 can determine whether there is a failure in a coupling device 15 on the basis of the driving state of the steering motor 41 and/or the driving state of the reaction force motor 23 (the current value I of the steering motor 41, for example).

Description

車両用ステアリング制御装置及び車両用ステアリング装置Vehicle steering control device and vehicle steering device
 本発明は、例えば自動車等の車両に用いられるステアリングシステムを制御する装置(車両用ステアリング制御装置)、及び、入力軸と反力発生装置と、転舵力発生装置と、連結装置と、制御部と、を有する装置(車両用ステアリング装置)等に関する。 The present invention relates to a device for controlling a steering system used in a vehicle such as an automobile (steering control device for a vehicle), an input shaft, a reaction force generating device, a turning force generating device, a connecting device, and a control unit. And a device (a vehicle steering device) and the like.
 例えば特開2007-185985号公報(以下、「特許文献1」と言う。)は、いわゆるステアバイワイヤ式(steer-by-wire)のステアリングシステムとして、操舵操作装置を開示し、その操舵操作装置は、電子制御ユニット(制御装置)によって制御されている。なお、特許文献1の電子制御ユニットは、3つの制御回路を介して、反力アクチュエータ、連結装置及び転舵アクチュエータを制御することができる(特許文献1の図1等参照)。 For example, Japanese Patent Laid-Open No. 2007-185985 (hereinafter referred to as “Patent Document 1”) discloses a steering operation device as a so-called steer-by-wire steering system. It is controlled by an electronic control unit (control device). Note that the electronic control unit of Patent Document 1 can control the reaction force actuator, the coupling device, and the turning actuator through three control circuits (see FIG. 1 of Patent Document 1).
 特許文献1の操舵操作装置は、連結装置が操作部と転舵手段との機械的な連結を解除した非連結状態を検出可能である検出手段を備えることができ、その検出手段は、ギャップセンサで構成される(特許文献1の段落[0011],[0012]等参照)。特許文献1の操舵操作装置において、ギャップセンサは、連結手段が誤動作によって連結状態を維持しているか否かを判定することができる。連結手段が誤動作によって連結状態である時に、電子制御ユニットは、転舵アクチュエータに対する電力の供給を遮断して停止制御することができる(特許文献1の段落[0012],[0043]等参照)。 The steering operation device of Patent Document 1 can include detection means that can detect a non-connected state in which the connection device releases the mechanical connection between the operation unit and the steering means, and the detection means includes a gap sensor. (See paragraphs [0011], [0012], etc. of Patent Document 1). In the steering operation device disclosed in Patent Document 1, the gap sensor can determine whether or not the connecting unit maintains the connected state due to a malfunction. When the connecting means is in a connected state due to a malfunction, the electronic control unit can perform stop control by cutting off the power supply to the steering actuator (see paragraphs [0012], [0043], etc. of Patent Document 1).
 ギャップセンサによって、連結手段(具体的には、クラッチ)の誤動作の有無を判定することができるが、操舵操作装置(ステアリングシステム)の製造コストが増加してしまう。 The gap sensor can determine whether or not the coupling means (specifically, the clutch) malfunctions, but increases the manufacturing cost of the steering operation device (steering system).
 本発明の1つの目的は、ステアリングシステムの製造コストを低減可能である、車両用ステアリング制御装置を提供することである。 An object of the present invention is to provide a vehicle steering control device that can reduce the manufacturing cost of a steering system.
 以下に、本発明の概要を容易に理解するために、本発明に従う態様を例示する。 Hereinafter, in order to easily understand the outline of the present invention, an embodiment according to the present invention is illustrated.
 本発明に従う態様において、転舵モータ又は反力モータの何れか一方が位置保持駆動され、且つ転舵モータ又は反力モータの何れか他方が位置移動駆動される時に、転舵モータ、反力モータ及び連結装置を有するステアバイワイヤを制御する車両用ステアリング制御装置は、転舵モータ及び反力モータの少なくとも一方の駆動状態に基づき、連結装置が故障しているか否かを判定する。 In the aspect according to the present invention, when one of the steered motor or the reaction force motor is driven to hold the position and the other of the steered motor or the reaction force motor is driven to move, the steered motor and the reaction force motor. The vehicle steering control device that controls the steer-by-wire having the coupling device determines whether or not the coupling device has failed based on the driving state of at least one of the steering motor and the reaction force motor.
 本発明に従う態様では、連結装置の状態を検出するギャップセンサ等の検出装置を必要とせず、ステアリングシステムに設けられている転舵モータ及び反力モータの少なくとも一方の駆動状態を監視するたけで、連結装置が故障しているか否かを判定することができる。ステアリングシステムは、ギャップセンサを備える必要がなく、従って、本発明に従う態様では、ステアリングシステムの製造コストを低減することができる。 In the aspect according to the present invention, a detection device such as a gap sensor for detecting the state of the coupling device is not required, and only the driving state of at least one of the steering motor and the reaction force motor provided in the steering system is monitored. It can be determined whether or not the coupling device has failed. The steering system does not need to be provided with a gap sensor, and therefore, in the embodiment according to the present invention, the manufacturing cost of the steering system can be reduced.
 当業者は、例示した本発明に従う態様が、本発明の精神を逸脱することなく、さらに変更され得ることを容易に理解できるであろう。 Those skilled in the art will readily understand that the illustrated embodiment according to the present invention can be further modified without departing from the spirit of the present invention.
本発明に従う制御装置が適用された車両用ステアリングシステムの構成例を示す。1 shows a configuration example of a vehicle steering system to which a control device according to the present invention is applied. 図2(A)、図2(B)及び図2(C)は、それぞれ、クラッチが正常な状態で転舵モータを位置保持駆動する時の、反力モータの電流値の変化、転舵モータの電流値の変化及びクラッチの係合/開放の状態を示す。図2(D)、図2(E)及び図2(F)は、それぞれ、クラッチが係合故障した時の、反力モータの電流値の変化、転舵モータの電流値の変化及びクラッチの係合/開放の状態を示す。2 (A), 2 (B) and 2 (C) respectively show changes in the current value of the reaction force motor when the steering motor is driven to hold the position while the clutch is in a normal state. The change in the current value and the state of engagement / release of the clutch are shown. 2 (D), 2 (E), and 2 (F) are respectively a change in the reaction motor current value, a change in the steering motor current value, and a clutch The engaged / released state is shown. 図3(A)、図3(B)及び図3(C)は、それぞれ、図2(A)、図2(B)及び図2(C)に対応する。図3(D)、図3(E)及び図3(F)は、それぞれ、クラッチが開放故障した時の、反力モータの電流値の変化、転舵モータの電流値の変化及びクラッチの係合/開放の状態を示す。FIGS. 3A, 3B, and 3C correspond to FIGS. 2A, 2B, and 2C, respectively. 3 (D), 3 (E), and 3 (F) show the change in the reaction motor current value, the change in the steering motor current value, and the clutch engagement when the clutch is disengaged. Indicates the state of connection / release. 転舵モータを位置保持駆動し、且つ反力モータを位置移動駆動する時の本発明に従う制御装置の動作例を表すフローチャートを示す。7 shows a flowchart showing an operation example of the control device according to the present invention when the steering motor is driven to hold the position and the reaction force motor is driven to move the position. 図5(A)、図5(B)及び図5(C)は、それぞれ、クラッチが正常な状態で反力モータを位置保持駆動する時の、反力モータの電流値の変化、転舵モータの電流値の変化及びクラッチの係合/開放の状態を示す。図5(D)、図5(E)及び図5(F)は、それぞれ、クラッチが係合故障した時の、反力モータの電流値の変化、転舵モータの電流値の変化及びクラッチの係合/開放の状態を示す。5 (A), 5 (B) and 5 (C) respectively show changes in the current value of the reaction force motor and the steering motor when the reaction force motor is driven to hold the position while the clutch is in a normal state. The change in the current value and the state of engagement / release of the clutch are shown. FIGS. 5D, 5E, and 5F show the change in the reaction motor current value, the change in the steering motor current, and the clutch The engaged / released state is shown. 図6(A)、図6(B)及び図6(C)は、それぞれ、図5(A)、図5(B)及び図5(C)に対応する。図6(D)、図6(E)及び図6(F)は、それぞれ、クラッチが開放故障した時の、反力モータの電流値の変化、転舵モータの電流値の変化及びクラッチの係合/開放の状態を示す。6A, 6B, and 6C correspond to FIGS. 5A, 5B, and 5C, respectively. 6 (D), 6 (E), and 6 (F) show the change in the reaction motor current value, the change in the steering motor current value, and the clutch engagement when the clutch has a release failure, respectively. Indicates the state of connection / release. 反力モータを位置保持駆動し、且つ転舵モータを位置移動駆動する時の本発明に従う制御装置の動作例を表すフローチャートを示す。7 is a flowchart showing an operation example of the control device according to the present invention when the reaction force motor is driven to hold the position and the steering motor is driven to move the position. 図8(A)、図8(B)及び図8(C)は、それぞれ、クラッチが正常な状態で転舵モータを位置保持駆動する時の、反力モータの回転速度の変化、転舵モータの回転速度の変化及びクラッチの係合/開放の状態を示す。図5(D)、図5(E)及び図5(F)は、それぞれ、クラッチが係合故障した時の、反力モータの回転速度の変化、転舵モータの回転速度の変化及びクラッチの係合/開放の状態を示す。FIGS. 8A, 8B, and 8C respectively show changes in the rotational speed of the reaction force motor when the steering motor is driven to hold the position while the clutch is in a normal state. The change of the rotation speed of this and the state of engagement / release of a clutch are shown. 5 (D), 5 (E) and 5 (F) respectively show changes in the rotational speed of the reaction force motor, changes in the rotational speed of the steering motor, and changes in the clutch when the clutch fails to engage. The engaged / released state is shown. 図9(A)、図9(B)及び図9(C)は、それぞれ、図8(A)、図8(B)及び図8(C)に対応する。図8(D)、図8(E)及び図8(F)は、それぞれ、クラッチが開放故障した時の、反力モータの回転速度の変化、転舵モータの回転速度の変化及びクラッチの係合/開放の状態を示す。FIGS. 9A, 9B, and 9C correspond to FIGS. 8A, 8B, and 8C, respectively. FIGS. 8D, 8E, and 8F show the change in the rotational speed of the reaction force motor, the change in the rotational speed of the steered motor, and the clutch relationship when the clutch fails to open. Indicates the state of connection / release. 図10(A)、図10(B)及び図10(C)は、それぞれ、クラッチが正常な状態で転舵モータを位置保持駆動する時の、反力モータの回転速度の変化、転舵モータの電流値の変化及びクラッチの係合/開放の状態を示す。図10(D)、図10(E)及び図10(F)は、それぞれ、クラッチが係合故障した時の、反力モータの回転速度の変化、転舵モータの電流値の変化及びクラッチの係合/開放の状態を示す。FIGS. 10A, 10B, and 10C respectively show changes in the rotational speed of the reaction force motor when the steering motor is driven to hold the position while the clutch is in a normal state. The change in the current value and the state of engagement / release of the clutch are shown. 10 (D), 10 (E), and 10 (F) are respectively the change in the rotational speed of the reaction force motor, the change in the current value of the steered motor, and the clutch The engaged / released state is shown. 図11(A)、図11(B)及び図11(C)は、それぞれ、図10(A)、図10(B)及び図10(C)に対応する。図11(D)、図11(E)及び図11(F)は、それぞれ、クラッチが開放故障した時の、反力モータの回転速度の変化、転舵モータの電流値の変化及びクラッチの係合/開放の状態を示す。FIGS. 11A, 11B, and 11C correspond to FIGS. 10A, 10B, and 10C, respectively. 11 (D), 11 (E), and 11 (F) respectively show changes in the rotational speed of the reaction force motor, changes in the current value of the steering motor, and clutch engagement when the clutch fails to open. Indicates the state of connection / release. 転舵モータを位置保持駆動し、且つ反力モータを位置移動駆動する前に、イニシャルチェックの失敗をユーザに報知可能である、本発明に従う制御装置の動作例を表すフローチャートを示す。The flowchart showing the example of operation | movement of the control apparatus according to this invention which can alert | report a failure of an initial check to a user before carrying out position holding drive of a steering motor and driving a reaction force motor to position movement is shown.
 以下に説明する最良の実施形態は、本発明を容易に理解するために用いられている。したがって、当業者は、本発明が、以下に説明される実施形態によって不当に限定されないことを留意すべきである。 The best mode described below is used for easy understanding of the present invention. Accordingly, those skilled in the art should note that the present invention is not unduly limited by the embodiments described below.
 (車両用ステアリングシステム)
 図1は、本発明に従う制御装置16が適用された車両用ステアリングシステム10の構成例を示す。図1に示されるように、車両用ステアリングシステム10(車両用ステアリング装置と呼んでもよい。)は、一例として、自動車等の車両の操舵輪11の操舵入力が生じる操舵部12と、左右の転舵車輪13,13を転舵する転舵部14と、操舵部12と転舵部14との間に介在しているクラッチ15(広義には、連結装置)と、制御装置(車両用ステアリング制御装置)16と、を含む。クラッチ15が開放状態となる通常時には、操舵部12と転舵部14との間が機械的に分離されている。このように、車両用ステアリングシステム10は、通常時において、クラッチ15を開放状態とし、操舵輪11の操舵量に応じて転舵用アクチュエータ39(広義には、転舵力発生装置)を作動させることにより、左右の転舵車輪13,13を転舵する方式、いわゆるステアバイワイヤ式(steer-by-wire、略称「SBW」)を採用している。
(Vehicle steering system)
FIG. 1 shows a configuration example of a vehicle steering system 10 to which a control device 16 according to the present invention is applied. As shown in FIG. 1, a vehicle steering system 10 (which may be called a vehicle steering device) includes, for example, a steering unit 12 that generates a steering input of a steering wheel 11 of a vehicle such as an automobile, A steering unit 14 that steers the steering wheels 13 and 13, a clutch 15 (connecting device in a broad sense) interposed between the steering unit 12 and the steering unit 14, and a control device (vehicle steering control) Device) 16. During normal times when the clutch 15 is released, the steering unit 12 and the steered unit 14 are mechanically separated. As described above, the vehicle steering system 10 normally opens the clutch 15 and operates the steering actuator 39 (in a broad sense, a turning force generating device) according to the steering amount of the steered wheels 11. Therefore, a so-called steer-by-wire (abbreviated as “SBW”) method is adopted in which the left and right steered wheels 13 are steered.
 操舵部12は、ユーザである例えば運転手が操作する操舵輪11と、この操舵輪11に連結されているステアリング軸21と、操舵輪11に対して操舵反力(反力トルク)を付加する反力付加アクチュエータ22(広義には、反力発生装置)と、を含む。この反力付加アクチュエータ22は、運転者が操舵輪11の操舵力に抵抗する操舵反力を発生することによって、運転者に操舵感を与える。 The steering unit 12 applies a steering reaction force (reaction torque) to the steering wheel 11 that is operated by a user, for example, a driver, the steering shaft 21 connected to the steering wheel 11, and the steering wheel 11. And a reaction force addition actuator 22 (a reaction force generator in a broad sense). The reaction force addition actuator 22 gives the driver a steering feeling by generating a steering reaction force that resists the steering force of the steered wheels 11 by the driver.
 図1の例において、反力付加アクチュエータ22は、操舵反力を発生する反力モータ23と、操舵反力をステアリング軸21に伝達する反力伝達機構24と、を含む。反力モータ23は、例えば電動モータによって構成される。反力伝達機構24は、例えばウォームギア機構によって構成される。このウォームギア機構24(反力伝達機構24)は、反力モータ23のモータ軸23aに設けられたウォームギヤ24aと、ステアリング軸21に設けられたウォームホイール24bとからなる。反力モータ23が発生した操舵反力は、反力伝達機構24を介して、ステアリング軸21に付加される。 1, the reaction force addition actuator 22 includes a reaction force motor 23 that generates a steering reaction force, and a reaction force transmission mechanism 24 that transmits the steering reaction force to the steering shaft 21. The reaction force motor 23 is configured by, for example, an electric motor. The reaction force transmission mechanism 24 is configured by, for example, a worm gear mechanism. The worm gear mechanism 24 (reaction force transmission mechanism 24) includes a worm gear 24a provided on the motor shaft 23a of the reaction force motor 23 and a worm wheel 24b provided on the steering shaft 21. The steering reaction force generated by the reaction force motor 23 is added to the steering shaft 21 via the reaction force transmission mechanism 24.
 図1の転舵部14は、ステアリング軸21に自在軸継手31,31及び連結軸32とによって連結されている入力軸33と、この入力軸33にクラッチ15を介して連結されている出力軸34と、この出力軸34に操作力伝達機構35によって連結されている転舵軸36と、この転舵軸36の両端にタイロッド37,37及びナックル38,38を介して連結されている左右の転舵車輪13,13と、転舵軸36に転舵用動力を付加する転舵用アクチュエータ39と、を含む。 The steered portion 14 of FIG. 1 includes an input shaft 33 connected to the steering shaft 21 by universal shaft couplings 31 and 31 and a connecting shaft 32, and an output shaft connected to the input shaft 33 via the clutch 15. 34, a steered shaft 36 connected to the output shaft 34 by an operating force transmission mechanism 35, and left and right wheels connected to both ends of the steered shaft 36 via tie rods 37, 37 and knuckles 38, 38. It includes steered wheels 13 and 13 and a steered actuator 39 that adds steered power to the steered shaft 36.
 図1の例において、操作力伝達機構35は、例えばラックアンドピニオン機構によって構成される。このラックアンドピニオン機構35(操作力伝達機構35)は、出力軸34に設けられたピニオン35aと、転舵軸36に設けられたラック35bとからなる。転舵軸36は、軸方向(車幅方向)へ移動可能である。 In the example of FIG. 1, the operating force transmission mechanism 35 is configured by, for example, a rack and pinion mechanism. The rack and pinion mechanism 35 (operation force transmission mechanism 35) includes a pinion 35a provided on the output shaft 34 and a rack 35b provided on the steered shaft 36. The steered shaft 36 is movable in the axial direction (vehicle width direction).
 図1の転舵用アクチュエータ39は、転舵用動力を発生する転舵モータ(転舵動力モータ)41と、転舵用動力を転舵軸36に伝達する転舵動力伝達機構42とからなる。転舵モータ41が発生した転舵用動力は、転舵動力伝達機構42によって転舵軸36に伝達される。この結果、転舵軸36は車幅方向にスライドする。転舵モータ41は、例えば電動モータによって構成される。 1 includes a steered motor (steered power motor) 41 that generates power for steering, and a steered power transmission mechanism 42 that transmits the steered power to the steered shaft 36. . The turning power generated by the turning motor 41 is transmitted to the turning shaft 36 by the turning power transmission mechanism 42. As a result, the steered shaft 36 slides in the vehicle width direction. The steered motor 41 is configured by, for example, an electric motor.
 転舵動力伝達機構42は、例えばベルト伝動機構43とボールねじ44とからなる。ベルト伝動機構43は、転舵モータ41のモータ軸41aに設けられた駆動プーリ45と、ボールねじ44のナットに設けられた従動プーリ46と、駆動プーリ45と従動プーリ46とに掛けられたベルト47とからなる。ボールねじ44は、回転運動を直線運動に変換する変換機構の一種であって、転舵モータ41が発生した駆動力を前記転舵軸36に伝達する。なお、転舵動力伝達機構42は、ベルト伝動機構43とボールねじ44の構成に限定されるものではなく、例えばウォームギヤ機構やラックアンドピニオン機構であってもよい。 The steered power transmission mechanism 42 includes, for example, a belt transmission mechanism 43 and a ball screw 44. The belt transmission mechanism 43 includes a driving pulley 45 provided on the motor shaft 41 a of the steered motor 41, a driven pulley 46 provided on a nut of the ball screw 44, and a belt hung on the driving pulley 45 and the driven pulley 46. 47. The ball screw 44 is a kind of conversion mechanism that converts rotational motion into linear motion, and transmits the driving force generated by the steered motor 41 to the steered shaft 36. The steered power transmission mechanism 42 is not limited to the configuration of the belt transmission mechanism 43 and the ball screw 44, and may be, for example, a worm gear mechanism or a rack and pinion mechanism.
 (車両用ステアリング制御装置)
 図1に示されるように、制御部と呼んでもよい制御装置(車両用ステアリング制御装置)16は、一例として、操舵角センサ91、操舵トルクセンサ92、モータ回転角センサ(反力モータ回転角センサ)93、出力軸回転角センサ94、モータ回転角センサ(転舵モータ回転角センサ)95、車速センサ96、ヨーレートセンサ97、加速度センサ98、その他の各種センサ99からそれぞれ検出信号を受けて、クラッチ15、反力モータ23、転舵モータ41及びソレノイド71に制御信号を発する。
(Vehicle steering control device)
As shown in FIG. 1, a control device (vehicle steering control device) 16, which may be called a control unit, includes, for example, a steering angle sensor 91, a steering torque sensor 92, a motor rotation angle sensor (reaction force motor rotation angle sensor). ) 93, output shaft rotation angle sensor 94, motor rotation angle sensor (steering motor rotation angle sensor) 95, vehicle speed sensor 96, yaw rate sensor 97, acceleration sensor 98, and other various sensors 99, respectively, to receive the detection signals and clutch 15. A control signal is issued to the reaction force motor 23, the steering motor 41, and the solenoid 71.
 図1の例において、操舵角センサ91は、操舵輪11の操舵角を検出する。操舵トルクセンサ92は、ステアリング軸21に発生する操舵トルクを検出する。モータ回転角センサ93は、反力モータ23の回転角を検出する。出力軸回転角センサ94は、ピニオン35aを有した出力軸34の回転角を検出する。モータ回転角センサ95は、転舵モータ41の回転角を検出する。車速センサ96は、車両の走行速度を検出する。ヨーレートセンサ97は、車両のヨー角速度(ヨー運動の角速度)を検出する。加速度センサ98は、車両の加速度を検出する。 1, the steering angle sensor 91 detects the steering angle of the steered wheels 11. The steering torque sensor 92 detects the steering torque generated in the steering shaft 21. The motor rotation angle sensor 93 detects the rotation angle of the reaction force motor 23. The output shaft rotation angle sensor 94 detects the rotation angle of the output shaft 34 having the pinion 35a. The motor rotation angle sensor 95 detects the rotation angle of the steering motor 41. The vehicle speed sensor 96 detects the traveling speed of the vehicle. The yaw rate sensor 97 detects the yaw angular velocity of the vehicle (the angular velocity of the yaw motion). The acceleration sensor 98 detects the acceleration of the vehicle.
 本発明に従う制御装置(車両用ステアリング制御装置)16では、反力モータ23及び転舵モータ41の駆動状態を監視するたけで、入力軸33とラック35bを機械的に連結可能な連結装置(例えばクラッチ15)が故障しているか否かを判定することができる。本発明に従う制御装置16を含むステアリングシステムでは、特許文献1に開示されるようなギャップセンサを備える必要がなく、ステアリングシステムの製造コストを低減することができる。 In the control device (vehicle steering control device) 16 according to the present invention, the connection device (for example, the input shaft 33 and the rack 35b can be mechanically connected only by monitoring the driving state of the reaction force motor 23 and the steered motor 41). It can be determined whether or not the clutch 15) has failed. In the steering system including the control device 16 according to the present invention, it is not necessary to include a gap sensor as disclosed in Patent Document 1, and the manufacturing cost of the steering system can be reduced.
 (第1の実施形態)
 図2(A)、図2(B)及び図2(C)は、それぞれ、クラッチ15が正常な状態で転舵モータ41を位置保持駆動する時の、反力モータ23の電流値の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。図2(C)に示されるように、例えば車両を始動可能にさせるイグニッションスイッチ(図示せず)がONされる時に、制御装置16は、クラッチ15を開放状態から係合状態に切り替える。この時に、図2(A)に示されるように、制御装置16は、反力モータ23を制御して、ステアリング軸21の回転を開始することができる。言い換えれば、クラッチ15が係合状態である時に、制御装置16は、ステアリング軸21の回転を緩やかに開始させるために、反力モータ23に流れる電流(駆動電流とも言える)の電流値Iを例えば線形に又は直線的に増加させ、その後、ステアリング軸21の回転を継続又は開始させるために、反力モータ23に流れる、増加した電流値Iを例えば一定に維持することができる(図2(A)参照)。
(First embodiment)
2 (A), 2 (B), and 2 (C), respectively, changes in the current value of the reaction force motor 23 when the steering motor 41 is driven to hold the position while the clutch 15 is in a normal state. The change of the electric current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown. As shown in FIG. 2C, for example, when an ignition switch (not shown) that enables the vehicle to start is turned on, the control device 16 switches the clutch 15 from the released state to the engaged state. At this time, as shown in FIG. 2A, the control device 16 can start the rotation of the steering shaft 21 by controlling the reaction force motor 23. In other words, when the clutch 15 is in the engaged state, the control device 16 sets the current value I of the current flowing through the reaction force motor 23 (also referred to as the drive current) in order to gently start the rotation of the steering shaft 21, for example. In order to increase linearly or linearly and then continue or start the rotation of the steering shaft 21, the increased current value I flowing through the reaction force motor 23 can be maintained, for example, constant (FIG. 2A). )reference).
 なお、増加した電流値Iを一定に維持した状態というのは、例えば反力モータ23の出力の最大出力であることを例示することができる。電流値が小さく設定される場合と比較して、反力モータ23の出力を最大出力に設定する一定電流(維持電流)に電流が設定される場合には、確度高く故障を推定することができる。 Note that the state in which the increased current value I is kept constant can be exemplified by the maximum output of the reaction force motor 23, for example. Compared with the case where the current value is set to be small, when the current is set to a constant current (maintenance current) that sets the output of the reaction force motor 23 to the maximum output, the failure can be estimated with high accuracy. .
 本発明に従う制御装置16の特徴の1つは、転舵モータ41を位置保持駆動することにある。具体的には、制御装置16は、クラッチ15が故障しているか否かを判定するために、ラック35b(つまり、転舵軸36)の位置が保持されるように、転舵モータ41を制御することができる。より具体的には、一例として、制御装置16は、クラッチ15の係合に伴ってステアリング軸21が回転するように、反力モータ23の電流が増加する。しかしながら、転舵モータ41が位置保持駆動されるので、図2(B)に示されるように、制御装置16は、ラック35bの位置が保持されるように、転舵モータ41に流れる電流(駆動電流とも言える)の電流値Iを例えば線形に又は直線的に増加させる。 One of the features of the control device 16 according to the present invention is that the steering motor 41 is driven to hold the position. Specifically, the control device 16 controls the steered motor 41 so that the position of the rack 35b (that is, the steered shaft 36) is maintained in order to determine whether or not the clutch 15 has failed. can do. More specifically, as an example, the control device 16 increases the current of the reaction motor 23 so that the steering shaft 21 rotates as the clutch 15 is engaged. However, since the steered motor 41 is driven to maintain the position, as shown in FIG. 2B, the control device 16 drives the current (drive) that flows through the steered motor 41 so that the position of the rack 35b is retained. Current value I) (which can also be called current) is increased linearly or linearly, for example.
 クラッチ15が正常な状態である時に、クラッチ15の係合によって、ステアリング軸21が回転するように、反力モータ23の電流が増加するが、転舵モータ41が位置保持駆動されるので、転舵モータ41の電流も増加する。したがって、実際には、反力モータ23の電流が増加する状況であっても、ステアリング軸21は回転せず、出力軸34も回転せず、且つ、ラック35bも移動しない。 When the clutch 15 is in a normal state, the current of the reaction force motor 23 increases so that the steering shaft 21 rotates due to the engagement of the clutch 15, but the steering motor 41 is driven to maintain the position, so The current of the rudder motor 41 also increases. Therefore, actually, even if the current of the reaction force motor 23 increases, the steering shaft 21 does not rotate, the output shaft 34 does not rotate, and the rack 35b does not move.
 加えて、図2(B)に示されるように、制御装置16は、ラック35bの位置が保持されるように、転舵モータ41に流れる、増加した電流値Iを例えば一定に維持することができる。反力モータ23に流れる、増加した電流値Iが例えば一定に維持される時に、ラック35bの位置が保持されるので、転舵モータ41に流れる、増加した電流値Iも例えば一定に維持されることになる。 In addition, as shown in FIG. 2B, the control device 16 can maintain, for example, the increased current value I flowing through the steered motor 41, for example, so that the position of the rack 35b is maintained. it can. Since the position of the rack 35b is maintained when the increased current value I flowing to the reaction force motor 23 is maintained constant, for example, the increased current value I flowing to the steering motor 41 is also maintained constant, for example. It will be.
 次に、図2(C)に示されるように、その後、制御装置16は、クラッチ15を係合状態から開放状態に切り替える。図2(A)に示されるように、反力モータ23は、ステアリング軸21の回転を試みている。すなわち、制御装置16は、ラック35bの位置を保持するために、クラッチ15が係合状態である時に、転舵モータ41に流れる、増加した電流値Iも例えば一定に維持されることになる(図2(B)参照)。しかしながら、クラッチ15が係合状態から開放状態に切り替えられた後は、ステアリング軸21の回転とは無関係に、制御装置16は、転舵モータ41を位置保持駆動すればよい。具体的には、制御装置16は、転舵モータ41に流れる、一旦増加した電流値Iをクラッチ15の開放に伴って急激に減少させて、例えば初期値まで戻すことができる(図2(B)参照)。 Next, as shown in FIG. 2C, after that, the control device 16 switches the clutch 15 from the engaged state to the released state. As shown in FIG. 2A, the reaction force motor 23 attempts to rotate the steering shaft 21. That is, the controller 16 maintains the position of the rack 35b so that the increased current value I flowing to the steered motor 41 when the clutch 15 is in an engaged state is also maintained constant, for example ( (See FIG. 2B). However, after the clutch 15 is switched from the engaged state to the released state, the control device 16 only needs to drive the steering motor 41 while maintaining the position regardless of the rotation of the steering shaft 21. Specifically, the control device 16 can rapidly reduce the current value I that flows to the steering motor 41 once increased as the clutch 15 is released, for example, to the initial value (FIG. 2B). )reference).
 このように、転舵モータ41が位置保持駆動される時に、クラッチ15の状態(係合/開放)及びステアリング軸21の状態(停止/回転)とは無関係に、ラック35bの位置が保持される。したがって、左右の転舵車輪13,13も動かずに、より一層安全である。 Thus, when the steering motor 41 is driven to hold the position, the position of the rack 35b is held regardless of the state of the clutch 15 (engagement / release) and the state of the steering shaft 21 (stop / rotation). . Therefore, the left and right steered wheels 13 and 13 do not move and are further safer.
 特に、反力モータ23の出力を最大出力に設定する一定電流(維持電流)に電流が設定される場合であっても、転舵モータ41が位置保持駆動される時に、左右の転舵車輪13,13は、動くことがなく、確度高く故障を推定することができる。加えて、どのような路面(任意の摩擦係数μ)であっても、左右の転舵車輪13,13が動かないので、どのような環境(例えば低温下も含む)であっても、安全に故障判定が可能である。 In particular, even when the current is set to a constant current (maintenance current) that sets the output of the reaction force motor 23 to the maximum output, the left and right steered wheels 13 are driven when the steered motor 41 is driven to hold the position. , 13 can be estimated with high accuracy without moving. In addition, since the left and right steered wheels 13 and 13 do not move on any road surface (arbitrary friction coefficient μ), it is safe in any environment (including under low temperatures, for example). Failure determination is possible.
 図2(A)~図2(C)の状況とは異なり、図2(D)、図2(E)及び図2(F)は、それぞれ、クラッチ15が係合故障した(開放状態から係合状態に切り替わらない)時の、反力モータ23の電流値の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。図2(E)に示されるように、クラッチ15が開放状態から係合状態に切り替えられ、且つ、ステアリング軸21が回転するように反力モータ23の電流が増加する時に、制御装置16は、転舵モータ41に流れる電流(初期値)を増加させる必要がない(図2(E)中の矢印A参照)。クラッチ15が係合故障する状況では、クラッチ15が係合するように、制御装置16がクラッチ15に指示又は制御信号を出力しても、クラッチ15は開放状態であり続けるので、ステアリング軸21の回転は、出力軸34を回転させる力として伝達しない。したがって、ラック35bを移動させる力も存在しない。 2 (A) to 2 (C), FIG. 2 (D), FIG. 2 (E), and FIG. 2 (F) show that the clutch 15 has failed in engagement (from the disengaged state). The change in the current value of the reaction force motor 23, the change in the current value of the steered motor 41, and the engagement / disengagement state of the clutch 15 are shown. As shown in FIG. 2E, when the clutch 15 is switched from the released state to the engaged state and the current of the reaction force motor 23 increases so that the steering shaft 21 rotates, the control device 16 There is no need to increase the current (initial value) flowing through the steering motor 41 (see arrow A in FIG. 2E). In a situation where the clutch 15 is in an engagement failure, even if the control device 16 outputs an instruction or a control signal to the clutch 15 so that the clutch 15 is engaged, the clutch 15 remains in the released state. The rotation is not transmitted as a force for rotating the output shaft 34. Accordingly, there is no force for moving the rack 35b.
 言い換えれば、クラッチ15が開放状態から係合状態に切り替えられた後に、転舵モータ41が位置保持駆動され、且つ反力モータ23が位置移動駆動される状態で、制御装置16は、転舵モータ41に流れる電流(初期値)が閾値(例えば閾値電流I1)を超えるか否かを判定することができる。このように、制御装置16は、転舵モータ41の電流値Iに基づき、クラッチ15が係合故障しているか否かを判定することができる。 In other words, after the clutch 15 is switched from the disengaged state to the engaged state, the control device 16 operates in a state where the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It can be determined whether or not the current (initial value) flowing through 41 exceeds a threshold (for example, threshold current I1). In this way, the control device 16 can determine whether or not the clutch 15 has failed due to the current value I of the steered motor 41.
 なお、転舵モータ41に流れる電流が閾値を超えるか否かを判定することの代わりに、制御装置16は、例えば転舵モータ41の電流の増加度等の閾値以外の他の値に基づき、クラッチ15が係合故障しているか否かを判定してもよい。 Instead of determining whether or not the current flowing through the steered motor 41 exceeds a threshold, the control device 16 is based on a value other than the threshold, such as the degree of increase in the current of the steered motor 41, for example. It may be determined whether or not the clutch 15 is in an engagement failure.
 図3(A)、図3(B)及び図3(C)は、それぞれ、図2(A)、図2(B)及び図2(C)に対応し、具体的には、クラッチ15が正常な状態で転舵モータ41を位置保持駆動する時の、反力モータ23の電流値の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。図3(D)、図3(E)及び図3(F)は、それぞれ、クラッチ15が開放故障した(係合状態から開放状態に切り替わらない)時の、反力モータ23の電流値の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。 3A, FIG. 3B, and FIG. 3C correspond to FIG. 2A, FIG. 2B, and FIG. 2C, respectively. A change in the current value of the reaction force motor 23, a change in the current value of the steered motor 41, and a state of engagement / release of the clutch 15 when the steered motor 41 is driven to hold the position in a normal state are shown. FIGS. 3D, 3E, and 3F respectively show changes in the current value of the reaction force motor 23 when the clutch 15 fails to be released (the clutch does not switch from the engaged state to the released state). The change of the current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown.
 図3(E)に示されるように、開放故障したクラッチ15が係合状態から開放状態に切り替えられ、且つ、ステアリング軸21が回転するように反力モータ23の電流が維持又は印加される時に、制御装置16は、ラック35bの位置が保持されるように、転舵モータ41に流れる電流を維持する必要がある(図3(E)中の矢印B参照)。クラッチ15が開放故障する状況では、クラッチ15が開放するように、制御装置16がクラッチ15に指示又は制御信号を出力しても、クラッチ15は係合状態であり続けるので、ステアリング軸21の回転の試みに基づく、出力軸34を回転させる力が存在する。したがって、ラック35bを移動させない力を維持する必要がある。 As shown in FIG. 3E, when the clutch 15 that has failed to open is switched from the engaged state to the released state, and the current of the reaction force motor 23 is maintained or applied so that the steering shaft 21 rotates. The control device 16 needs to maintain the current flowing through the steered motor 41 so that the position of the rack 35b is maintained (see arrow B in FIG. 3E). In a situation where the clutch 15 is in a release failure, the clutch 15 continues to be engaged even if the control device 16 outputs an instruction or control signal to the clutch 15 so that the clutch 15 is released. There is a force to rotate the output shaft 34 based on this attempt. Therefore, it is necessary to maintain a force that does not move the rack 35b.
 言い換えれば、クラッチ15が係合状態から開放状態に切り替えられた後に、転舵モータ41が位置保持駆動され、且つ反力モータ23が位置移動駆動される状態で、制御装置16は、転舵モータ41に流れる電流が閾値(例えば閾値電流I2)を下回るか否かを判定することができる。このように、制御装置16は、転舵モータ41の電流値Iに基づき、クラッチ15が開放故障しているか否かを判定することができる。 In other words, after the clutch 15 is switched from the engaged state to the disengaged state, the control device 16 is configured so that the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It can be determined whether or not the current flowing through 41 falls below a threshold (for example, threshold current I2). In this way, the control device 16 can determine whether or not the clutch 15 has a disengagement failure based on the current value I of the steering motor 41.
 図4は、転舵モータ41を位置保持駆動し、且つ反力モータ23を位置移動駆動する時の本発明に従う制御装置16の動作例を表すフローチャートを示す。図1の制御装置16は、例えば各種センサ99で、或いは、イグニッションスイッチのON/OFFに基づく車載バッテリの電圧の変化で、イグニッションスイッチがONされているか否かを判定することができる(図4のステップS1参照)。 FIG. 4 is a flowchart showing an operation example of the control device 16 according to the present invention when the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move the position. The control device 16 in FIG. 1 can determine whether or not the ignition switch is turned on, for example, by various sensors 99 or by a change in the voltage of the vehicle battery based on ON / OFF of the ignition switch (FIG. 4). Step S1).
 (クラッチの係合)
 図4の例において、イグニッションスイッチがONである時に、制御装置16は、クラッチ15を係合させ(ステップS2参照)、反力モータ23及び転舵モータ41の電源をONすることができる(ステップS3参照)。
(Engagement of clutch)
In the example of FIG. 4, when the ignition switch is ON, the control device 16 can engage the clutch 15 (see step S2) and turn on the power of the reaction force motor 23 and the turning motor 41 (step S2). (See S3).
 (転舵モータの位置保持駆動)
 図4のステップS4に示されるように、制御装置16は、転舵モータ41を位置保持駆動する。具体的には、制御装置16は、例えばモータ回転角センサ(転舵モータ回転角センサ)95からの出力を入力し、それを監視しながら、転舵モータ41のモータ軸の回転角が一定に保持されるように、転舵モータ41を制御することができる。代替的に、制御装置16は、モータ回転角センサ95に代えて、或いは、モータ回転角センサ95に加えて、例えば出力軸回転角センサ94からの出力を入力・監視しながら、ラック35bの位置が保持されるように、転舵モータ41の駆動を制御することができる。
(Steering motor position holding drive)
As shown in step S4 of FIG. 4, the control device 16 drives the steering motor 41 to maintain its position. Specifically, the control device 16 inputs an output from, for example, a motor rotation angle sensor (steering motor rotation angle sensor) 95, and monitors the monitoring result while keeping the rotation angle of the motor shaft of the steering motor 41 constant. The steered motor 41 can be controlled to be held. Alternatively, the control device 16 replaces the motor rotation angle sensor 95 or, in addition to the motor rotation angle sensor 95, for example, inputs and monitors the output from the output shaft rotation angle sensor 94 while monitoring the position of the rack 35b. Can be controlled such that the steering motor 41 is driven.
 (反力モータの位置移動駆動)
 図4のステップS5に示されるように、制御装置16は、反力モータ23を位置移動駆動する。制御装置16は、一例として、反力モータ23の電流又は駆動電流の元である設定値又は電流設定値を生成・監視又は参照しながら、反力モータ23の電流値Iを例えば図2(A)のように増加・保持することができる。言い換えれば、制御装置16は、反力モータ23の駆動によって、ステアリング軸21の回転を試みる。
(Reaction force motor position movement drive)
As shown in step S5 of FIG. 4, the control device 16 drives the reaction force motor 23 to move. As an example, the control device 16 generates the current value I of the reaction force motor 23 while generating, monitoring, or referring to the set value or current set value that is the source of the reaction force motor 23 or the drive current. ) Can be increased and retained. In other words, the control device 16 attempts to rotate the steering shaft 21 by driving the reaction force motor 23.
 なお、制御装置16は、ステアリング軸21の回転が実際に発生しているか否かを判定又は監視するために、例えばモータ回転角センサ(反力モータ回転角センサ)93及び/又は例えば操舵角センサ91からの出力を入力・監視しながら、反力モータ23を位置移動駆動してもよい。 The controller 16 determines, for example, whether or not the rotation of the steering shaft 21 actually occurs, for example, a motor rotation angle sensor (reaction force motor rotation angle sensor) 93 and / or a steering angle sensor, for example. The reaction force motor 23 may be driven to move while inputting and monitoring the output from 91.
 クラッチ15が係合故障していない時に、ステアリング軸21の回転の試みに基づく出力軸34を回転させる力が存在し、したがって、ラック35bを移動させる力が存在するが、制御装置16は、反力モータ23を位置移動駆動するので、ラック35bの位置は、保持されることになる。したがって、クラッチ15が係合故障していない時に、ステアリング軸21の回転の試みが実行されて、言い換えれば、反力モータ23の位置移動駆動が実行されても、ステアリング軸21の位置(回転角)は、保持されることになる。 When the clutch 15 is not in engagement failure, there is a force to rotate the output shaft 34 based on an attempt to rotate the steering shaft 21, and thus there is a force to move the rack 35b. Since the force motor 23 is driven to move, the position of the rack 35b is held. Therefore, when the clutch 15 is not in the failure of engagement, an attempt to rotate the steering shaft 21 is executed. In other words, even if the position movement driving of the reaction force motor 23 is executed, the position (rotation angle) of the steering shaft 21 is executed. ) Will be held.
 (クラッチ係合故障の判定)
 図4のステップS6に示されるように、制御装置16は、一例として、転舵モータ41に流れる電流又は駆動電流が、反力モータ23に流れる電流又は駆動電流の増加に起因して、増加するか否かを判定することができる。例えば図2(B)に示されるように、転舵モータ41に流れる電流又は駆動電流の電流値Iが増加する時に、或いは、閾値(例えば閾値電流I1)を超える時に、制御装置16は、クラッチ15が係合故障していないことを判定することができる。このように、制御装置16は、転舵モータ41が位置保持駆動され、且つ反力モータ23が位置移動駆動される時に、転舵モータ41の電流値Iに基づき、クラッチ15が故障しているか否を判定することができる(図4のステップS6参照)。
(Determination of clutch engagement failure)
As shown in step S <b> 6 of FIG. 4, as an example, the control device 16 increases the current or drive current flowing through the steered motor 41 due to the increase in the current or drive current flowing through the reaction force motor 23. It can be determined whether or not. For example, as shown in FIG. 2B, when the current value I of the current flowing through the steered motor 41 or the drive current I increases or exceeds a threshold value (for example, threshold current I1), the control device 16 It can be determined that 15 is not engaged. As described above, the control device 16 determines whether the clutch 15 has failed based on the current value I of the steering motor 41 when the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It is possible to determine whether or not (see step S6 in FIG. 4).
 (クラッチの開放)
 クラッチ15が故障していない時に、制御装置16は、例えば図2(C)に示されるように、クラッチ15を開放させることができる(図4のステップS7参照)。
(Clutch release)
When the clutch 15 has not failed, the control device 16 can release the clutch 15 as shown in FIG. 2C, for example (see step S7 in FIG. 4).
 (クラッチ開放故障の判定)
 図4のステップS8に示されるように、制御装置16は、一例として、転舵モータ41に流れる電流又は駆動電流が、クラッチ15の開放に起因して、減少するか否かを判定することができる。例えば図2(B)に示されるように、転舵モータ41に流れる電流又は駆動電流の電流値Iが減少する時に、或いは、閾値(例えば閾値電流I1)を下回る又は初期値に戻る時に、制御装置16は、クラッチ15が開放故障していないことを判定することができる。このように、制御装置16は、転舵モータ41が位置保持駆動され、且つ反力モータ23が位置移動駆動される時に、転舵モータ41の電流値Iに基づき、クラッチ15が故障しているか否を判定することができる(図4のステップS8参照)。
(Determination of clutch release failure)
As shown in step S8 of FIG. 4, as an example, the control device 16 determines whether or not the current or drive current flowing through the steered motor 41 decreases due to the clutch 15 being released. it can. For example, as shown in FIG. 2B, the control is performed when the current value I of the current flowing through the steered motor 41 or the drive current I decreases, or when the current value falls below or returns to the initial value (eg, the threshold current I1). The device 16 can determine that the clutch 15 is not open. As described above, the control device 16 determines whether the clutch 15 has failed based on the current value I of the steering motor 41 when the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It is possible to determine whether or not (see step S8 in FIG. 4).
 (通常制御)
 図4のステップS9に示されるように、クラッチ15が係合故障しておらず、且つ、クラッチ15が開放故障していない時に、クラッチ15が正常であることを判定又は確定し、その後に、制御装置16は、車両用ステアリングシステム10の通常制御を実行することができる。言い換えれば、クラッチ15が正常であることを確定した後に、制御装置16は、ステアバイワイヤ式のステアリング制御を実行することができる。
(Normal control)
As shown in step S9 of FIG. 4, when the clutch 15 is not engaged and the clutch 15 is not released, it is determined or confirmed that the clutch 15 is normal, and thereafter The control device 16 can execute normal control of the vehicle steering system 10. In other words, after determining that the clutch 15 is normal, the control device 16 can execute steer-by-wire steering control.
 (フェール処理)
 図4のステップS6を実行した結果、例えば図2(E)に示されるように、転舵モータ41に流れる電流又は駆動電流の電流値Iが一定である時に、或いは、閾値(例えば閾値電流I1)を超えない時に、制御装置16は、クラッチ15が係合故障していることを判定することができる。同様に、図4のステップS8を実行した結果、例えば図3(E)に示されるように、転舵モータ41に流れる電流又は駆動電流の電流値Iが減少しない時に、或いは、閾値(例えば閾値電流I2又はI1)を超えている時に、制御装置16は、クラッチ15が開放故障していることを判定することができる。
(Fail processing)
As a result of executing step S6 of FIG. 4, for example, as shown in FIG. 2E, when the current value I of the current flowing through the steered motor 41 or the drive current I is constant, or a threshold (for example, threshold current I1) ), The control device 16 can determine that the clutch 15 has failed. Similarly, as a result of executing step S8 of FIG. 4, for example, as shown in FIG. 3E, when the current value I of the current flowing through the steered motor 41 or the current I of the drive current does not decrease, or a threshold value (for example, threshold value) When the current I2 or I1) is exceeded, the control device 16 can determine that the clutch 15 has failed.
 図4のステップS10に示されるように、クラッチ15が故障している時に、具体的には、例えばクラッチ15が係合故障している時に、制御装置16は、運転手へのクラッチ15の故障検知を行うフェール処理を実行することができる。その後、制御装置16は、車両用ステアリングシステム10を停止させることができる。 As shown in step S10 of FIG. 4, when the clutch 15 is broken down, specifically, for example, when the clutch 15 is broken down, the control device 16 causes the clutch 15 to fail to the driver. Fail processing for detection can be executed. Thereafter, the control device 16 can stop the vehicle steering system 10.
 なお、図4のステップS6を実行した結果、クラッチ15が係合故障していることを判定し、ステップS10を実行するのではなく、クラッチ15が係合故障している時も、制御装置16は、ステップS7及びS8を実行し、クラッチ15が開放故障しているか否かを判定することができる。クラッチ15が係合される期間及びクラッチ15が開放される期間の双方において、クラッチ15の係合故障及び開放故障の双方の存在を確認することによって、制御装置16は、転舵モータ41の誤作動又は反力モータ23の誤作動ではなく、クラッチ15が正常であることを確度高く推定することができる。 As a result of executing step S6 in FIG. 4, it is determined that the clutch 15 is in an engagement failure, and the control device 16 does not execute step S10 but also when the clutch 15 is in an engagement failure. Can execute steps S7 and S8 to determine whether or not the clutch 15 has a disengagement failure. By confirming the presence of both the engagement failure and the release failure of the clutch 15 both in the period in which the clutch 15 is engaged and in the period in which the clutch 15 is released, the control device 16 detects the error of the steering motor 41. It is possible to estimate with high accuracy that the clutch 15 is normal, not an operation or malfunction of the reaction force motor 23.
 第1の実施形態では、クラッチ15の係合非故障(正常)及び開放非故障(正常)の双方の存在を確認することによって、確度高く、クラッチ15が正常であると言える。 In the first embodiment, the existence of both the engagement non-failure (normal) and the release non-failure (normal) of the clutch 15 is confirmed, and it can be said that the clutch 15 is normal with high accuracy.
 (車両発進禁止)
 好ましくは、図4のステップS11に示されるように、制御装置16は、車両発進禁止処理を実行し、或いは、車両の発進を管理又は制御する他の電子制御ユニット又はメイン制御ユニットに車両発進禁止を実行させるための指示を送信することができる。
(Vehicle start prohibited)
Preferably, as shown in step S11 of FIG. 4, the control device 16 executes a vehicle start prohibition process, or prohibits the vehicle start to another electronic control unit or main control unit that manages or controls the start of the vehicle. An instruction for executing can be transmitted.
 (第2の実施形態)
 図5(A)、図5(B)及び図5(C)は、それぞれ、クラッチ15が正常な状態で反力モータ23を位置保持駆動する時の、反力モータ23の電流値の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。図5(C)に示されるように、例えば、イグニッションスイッチがONされる時に、制御装置16は、クラッチ15を開放状態から係合状態に切り替える。この時に、図5(B)に示されるように、制御装置16は、転舵モータ41を制御して、ラック35b(出力軸34)の移動(回転)を開始することができる。言い換えれば、クラッチ15が係合状態である時に、制御装置16は、出力軸34の回転を緩やかに開始させるために、転舵モータ41に流れる電流(駆動電流とも言える)の電流値Iを例えば線形に又は直線的に増加させ、その後、出力軸34の回転を継続又は開始させるために、転舵モータ41に流れる、増加した電流値Iを例えば一定に維持することができる(図5(B)参照)。
(Second Embodiment)
FIGS. 5A, 5B, and 5C respectively show changes in the current value of the reaction force motor 23 when the reaction force motor 23 is driven to hold the position while the clutch 15 is in a normal state. The change of the electric current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown. As shown in FIG. 5C, for example, when the ignition switch is turned on, the control device 16 switches the clutch 15 from the released state to the engaged state. At this time, as shown in FIG. 5B, the control device 16 can start the movement (rotation) of the rack 35 b (output shaft 34) by controlling the steered motor 41. In other words, when the clutch 15 is in the engaged state, the control device 16 sets a current value I of a current (also referred to as a drive current) flowing through the steered motor 41 in order to gently start the rotation of the output shaft 34, for example. In order to increase linearly or linearly and then continue or start the rotation of the output shaft 34, the increased current value I flowing to the steered motor 41 can be maintained, for example, constant (FIG. 5B )reference).
 なお、増加した電流値Iを一定に維持した状態というのは、例えば転舵モータ41の出力の最大出力であることを例示することができる。電流値が小さく設定される場合と比較して、転舵モータ41の出力を最大出力に設定する一定電流(維持電流)に電流が設定される場合には、確度高く故障を推定することができる。 Note that the state in which the increased current value I is kept constant can be exemplified by the maximum output of the steered motor 41, for example. Compared with the case where the current value is set to be small, when the current is set to a constant current (maintenance current) that sets the output of the steered motor 41 to the maximum output, the failure can be estimated with high accuracy. .
 第2の実施形態では、本発明に従う制御装置16の特徴の1つは、反力モータ23を位置保持駆動することにある。具体的には、制御装置16は、クラッチ15が故障しているか否かを判定するために、ステアリング軸21の位置(回転角)が保持されるように、反力モータ23を制御することができる。より具体的には、一例として、制御装置16は、クラッチ15の係合に伴って出力軸34(ラック35b)が回転(移動)するように、転舵モータ41の電流が増加する。しかしながら、反力モータ23が位置保持駆動されるので、図5(A)に示されるように、制御装置16は、ステアリング軸21の回転角が保持されるように、反力モータ23に流れる電流(駆動電流とも言える)の電流値Iを例えば線形に又は直線的に増加させる。 In the second embodiment, one of the features of the control device 16 according to the present invention is that the reaction force motor 23 is driven to hold the position. Specifically, the control device 16 can control the reaction force motor 23 so that the position (rotation angle) of the steering shaft 21 is maintained in order to determine whether or not the clutch 15 is broken. it can. More specifically, as an example, the control device 16 increases the current of the steered motor 41 so that the output shaft 34 (rack 35b) rotates (moves) as the clutch 15 is engaged. However, since the reaction force motor 23 is driven to hold the position, as shown in FIG. 5A, the control device 16 causes the current flowing through the reaction force motor 23 so that the rotation angle of the steering shaft 21 is maintained. The current value I (which can also be called a drive current) is increased linearly or linearly, for example.
 クラッチ15が正常な状態である時に、クラッチ15の係合によって、ラック35bが移動するように、転舵モータ41の電流が増加するが、反力モータ23が位置保持駆動されるので、反力モータ23の電流も増加する。したがって、実際には、転舵モータ41の電流が増加する状況であっても、ラック35bは移動せず、出力軸34も回転せず、且つ、ステアリング軸21も回転しない。 When the clutch 15 is in a normal state, the current of the steered motor 41 is increased so that the rack 35b is moved by the engagement of the clutch 15, but the reaction force motor 23 is driven to hold the position, so the reaction force The current of the motor 23 also increases. Therefore, actually, even if the current of the steering motor 41 increases, the rack 35b does not move, the output shaft 34 does not rotate, and the steering shaft 21 does not rotate.
 加えて、図5(A)に示されるように、制御装置16は、ステアリング軸21の位置(回転角)が保持されるように、反力モータ23に流れる、増加した電流値Iを例えば一定に維持することができる。転舵モータ41に流れる、増加した電流値Iが例えば一定に維持される時に、ステアリング軸21の回転角が保持されるので、反力モータ23に流れる、増加した電流値Iも例えば一定に維持されることになる。 In addition, as shown in FIG. 5A, the control device 16 sets the increased current value I flowing through the reaction force motor 23 to, for example, a constant value so that the position (rotation angle) of the steering shaft 21 is maintained. Can be maintained. Since the rotation angle of the steering shaft 21 is maintained when the increased current value I flowing to the steered motor 41 is maintained constant, for example, the increased current value I flowing to the reaction motor 23 is also maintained constant, for example. Will be.
 次に、図5(C)に示されるように、その後、制御装置16は、クラッチ15を係合状態から開放状態に切り替える。図5(B)に示されるように、転舵モータ41は、ラック35bの移動を試みている。すなわち、制御装置16は、ステアリング軸21の回転角を保持するために、クラッチ15が係合状態である時に、反力モータ23に流れる、増加した電流値Iも例えば一定に維持されることになる(図5(A)参照)。しかしながら、クラッチ15が係合状態から開放状態に切り替えられた後は、ラック35bの移動とは無関係に、制御装置16は、ステアリング軸21を位置保持駆動すればよい。具体的には、制御装置16は、反力モータ23に流れる、一旦増加した電流値Iをクラッチ15の開放に伴って急激に減少させて、例えば初期値まで戻すことができる(図5(A)参照)。 Next, as shown in FIG. 5C, after that, the control device 16 switches the clutch 15 from the engaged state to the released state. As shown in FIG. 5B, the steered motor 41 tries to move the rack 35b. That is, the control device 16 maintains the increased current value I flowing to the reaction force motor 23 when the clutch 15 is engaged in order to maintain the rotation angle of the steering shaft 21, for example, constant. (See FIG. 5A). However, after the clutch 15 is switched from the engaged state to the released state, the control device 16 may drive the steering shaft 21 while maintaining the position regardless of the movement of the rack 35b. Specifically, the control device 16 can decrease the current value I flowing through the reaction force motor 23 once increased as the clutch 15 is released, and return it to, for example, an initial value (FIG. 5A). )reference).
 このように、ステアリング軸21が位置保持駆動される時に、クラッチ15の状態(係合/開放)及びラック35bの状態(停止/移動)とは無関係に、ステアリング軸21の位置が保持される。 Thus, when the steering shaft 21 is driven to hold the position, the position of the steering shaft 21 is held regardless of the state of the clutch 15 (engaged / released) and the state of the rack 35b (stopped / moved).
 図5(A)~図5(C)の状況とは異なり、図5(D)、図5(E)及び図5(F)は、それぞれ、クラッチ15が係合故障した時の、反力モータ23の電流値の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。 Unlike the situation in FIGS. 5A to 5C, FIGS. 5D, 5E, and 5F show the reaction force when the clutch 15 fails to engage, respectively. A change in the current value of the motor 23, a change in the current value of the steered motor 41, and the state of engagement / release of the clutch 15 are shown.
 図5(D)に示されるように、クラッチ15が開放状態から係合状態に切り替えられ、且つ、ラック35bが移動するように転舵モータ41の電流が増加する時に、制御装置16は、反力モータ23に流れる電流(初期値)を増加させる必要がない(図5(D)中の矢印A’参照)。クラッチ15が係合故障する状況では、クラッチ15が係合するように、制御装置16がクラッチ15に指示又は制御信号を出力しても、クラッチ15は開放状態であり続けるので、ラック35b(出力軸34)の移動(回転)は、ステアリング軸21を回転させる力として伝達しないからである。 As shown in FIG. 5D, when the clutch 15 is switched from the disengaged state to the engaged state and the current of the steered motor 41 increases so that the rack 35b moves, the control device 16 There is no need to increase the current (initial value) flowing through the force motor 23 (see arrow A ′ in FIG. 5D). In a situation where the clutch 15 is in an engagement failure, even if the control device 16 outputs an instruction or a control signal to the clutch 15 so that the clutch 15 is engaged, the clutch 15 continues to be in the released state, so the rack 35b (output This is because the movement (rotation) of the shaft 34) is not transmitted as a force for rotating the steering shaft 21.
 言い換えれば、クラッチ15が開放状態から係合状態に切り替えられた後に、反力モータ23が位置保持駆動され、且つ転舵モータ41が位置移動駆動される状態で、制御装置16は、反力モータ23に流れる電流(初期値)が閾値(例えば閾値電流I1)を超えるか否かを判定することができる。このように、制御装置16は、反力モータ23の電流値Iに基づき、クラッチ15が係合故障しているか否かを判定することができる。 In other words, after the clutch 15 is switched from the disengaged state to the engaged state, the control device 16 operates in a state in which the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move. It is possible to determine whether or not the current (initial value) flowing through 23 exceeds a threshold (for example, threshold current I1). As described above, the control device 16 can determine whether or not the clutch 15 has failed due to the current value I of the reaction force motor 23.
 なお、反力モータ23に流れる電流が閾値を超えるか否かを判定することの代わりに、制御装置16は、例えば反力モータ23の電流の増加度等の閾値以外の他の値に基づき、クラッチ15が係合故障しているか否かを判定してもよい。 Instead of determining whether or not the current flowing through the reaction force motor 23 exceeds the threshold, the control device 16 is based on a value other than the threshold, such as the degree of increase in the current of the reaction force motor 23, for example. It may be determined whether or not the clutch 15 is in an engagement failure.
 図6(A)、図6(B)及び図6(C)は、それぞれ、図5(A)、図5(B)及び図5(C)に対応し、具体的には、クラッチ15が正常な状態で転舵モータ41を位置保持駆動する時の、反力モータ23の電流値の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。図6(D)、図6(E)及び図6(F)は、それぞれ、クラッチ15が開放故障した時の、反力モータ23の電流値の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。 6A, FIG. 6B, and FIG. 6C correspond to FIG. 5A, FIG. 5B, and FIG. 5C, respectively. A change in the current value of the reaction force motor 23, a change in the current value of the steered motor 41, and a state of engagement / release of the clutch 15 when the steered motor 41 is driven to hold the position in a normal state are shown. FIGS. 6D, 6E, and 6F respectively show the change in the current value of the reaction force motor 23, the change in the current value of the steering motor 41, and the change in the clutch 15 when the clutch 15 fails to open. The engaged / released state of the clutch 15 is shown.
 図6(D)に示されるように、開放故障したクラッチ15が係合状態から開放状態に切り替えられ、且つ、ラック35b(出力軸34)が移動(回転)するように転舵モータ41の電流が維持又は印加される時に、制御装置16は、ステアリング軸21の回転角が保持されるように、反力モータ23に流れる電流を維持する必要がある(図6(D)中の矢印B’参照)。クラッチ15が開放故障する状況では、クラッチ15が開放するように、制御装置16がクラッチ15に指示又は制御信号を出力しても、クラッチ15は係合状態であり続けるので、ラック35bの移動の試みに基づく、出力軸34を回転させる力が存在する。したがって、ステアリング軸21を回転させない力を維持する必要がある。 As shown in FIG. 6D, the current of the steered motor 41 so that the clutch 15 that has failed to open is switched from the engaged state to the released state, and the rack 35b (output shaft 34) moves (rotates). Is maintained or applied, the control device 16 needs to maintain the current flowing through the reaction force motor 23 so that the rotation angle of the steering shaft 21 is maintained (arrow B ′ in FIG. 6D). reference). In a situation where the clutch 15 is in a release failure, even if the control device 16 outputs an instruction or control signal to the clutch 15 so that the clutch 15 is released, the clutch 15 continues to be in an engaged state. There is a force based on the attempt to rotate the output shaft 34. Therefore, it is necessary to maintain a force that does not rotate the steering shaft 21.
 言い換えれば、クラッチ15が係合状態から開放状態に切り替えられた後に、反力モータ23が位置保持駆動され、且つ転舵モータ41が位置移動駆動される状態で、制御装置16は、反力モータ23に流れる電流が閾値(例えば閾値電流I2)を下回るか否かを判定することができる。このように、制御装置16は、反力モータ23の電流値Iに基づき、クラッチ15が開放故障しているか否かを判定することができる。 In other words, after the clutch 15 is switched from the engaged state to the disengaged state, the control device 16 operates in a state in which the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move. It is possible to determine whether or not the current flowing through 23 is lower than a threshold value (for example, threshold current I2). As described above, the control device 16 can determine whether or not the clutch 15 is in a disengagement failure based on the current value I of the reaction force motor 23.
 図7は、反力モータ23を位置保持駆動し、且つ転舵モータ41を位置移動駆動する時の本発明に従う制御装置の動作例を表すフローチャートを示す。図1の制御装置16は、イグニッションスイッチがONされているか否かを判定することができる(図7のステップS21参照)。 FIG. 7 shows a flowchart showing an operation example of the control device according to the present invention when the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move the position. The control device 16 in FIG. 1 can determine whether or not the ignition switch is turned on (see step S21 in FIG. 7).
 (クラッチの係合)
 図7の例において、イグニッションスイッチがONである時に、制御装置16は、クラッチ15を係合させ(ステップS22参照)、反力モータ23及び転舵モータ41の電源をONすることができる(ステップS23参照)。なお、例えば図5(A)及び図5(B)に示されるように、イグニッションスイッチがONである前から、制御装置16は、反力モータ23及び転舵モータ41の電源をONし、例えば初期値又はステアリング軸21及びラック35bが動かない程度の微量の電流を流してもよい。
(Engagement of clutch)
In the example of FIG. 7, when the ignition switch is ON, the control device 16 can engage the clutch 15 (see step S22) and turn on the power of the reaction force motor 23 and the turning motor 41 (step S22). (See S23). For example, as shown in FIGS. 5A and 5B, the control device 16 turns on the power of the reaction force motor 23 and the turning motor 41 before the ignition switch is turned on, for example, A small amount of current that does not move the initial value or the steering shaft 21 and the rack 35b may be supplied.
 (反転モータの位置保持駆動)
 図7のステップS24に示されるように、制御装置16は、反力モータ23を位置保持駆動する。具体的には、制御装置16は、例えばモータ回転角センサ(反力モータ回転角センサ)93からの出力を入力し、それを監視しながら、反力モータ23のモータ軸の回転角が一定に保持されるように、反力モータ23を制御することができる。代替的に、制御装置16は、モータ回転角センサ93に代えて、或いは、モータ回転角センサ93に加えて、例えば操舵角センサ91からの出力を入力・監視しながら、ステアリング軸21bの位置(回転角)が保持されるように、転舵モータ41の駆動を制御することができる。
(Reverse motor position holding drive)
As shown in step S <b> 24 of FIG. 7, the control device 16 drives the reaction force motor 23 to hold the position. Specifically, the control device 16 inputs an output from, for example, a motor rotation angle sensor (reaction force motor rotation angle sensor) 93, and monitors the monitoring result while keeping the rotation angle of the motor shaft of the reaction force motor 23 constant. The reaction force motor 23 can be controlled to be held. Alternatively, the control device 16 replaces the motor rotation angle sensor 93 or, in addition to the motor rotation angle sensor 93, for example, inputs and monitors the output from the steering angle sensor 91 while monitoring the position of the steering shaft 21b ( The driving of the steered motor 41 can be controlled so that the rotation angle is maintained.
 (転舵モータの位置移動駆動)
 図7のステップS25に示されるように、制御装置16は、転舵モータ41を位置移動駆動する。制御装置16は、一例として、転舵モータ41の電流又は駆動電流の元である設定値又は電流設定値を生成・監視又は参照しながら、転舵モータ41の電流値Iを例えば図5(B)のように増加・保持することができる。言い換えれば、制御装置16は、転舵モータ41の駆動によって、ラック35b(出力軸34)の移動(回転)を試みる。
(Steering motor position movement drive)
As shown in step S <b> 25 of FIG. 7, the control device 16 drives the steering motor 41 to move its position. As an example, the control device 16 generates, monitors, or refers to the set value or the current set value, which is the source of the current or drive current of the steered motor 41, and determines the current value I of the steered motor 41 as shown in FIG. ) Can be increased and retained. In other words, the control device 16 attempts to move (rotate) the rack 35 b (output shaft 34) by driving the steered motor 41.
 なお、制御装置16は、ラック35bの移動が実際に発生しているか否かを判定又は監視するために、例えばモータ回転角センサ(駆動モータ回転角センサ)95及び/又は例えば出力軸回転角センサ94からの出力を入力・監視しながら、転舵モータ41を位置移動駆動してもよい。 The control device 16 determines, for example, whether or not the movement of the rack 35b actually occurs, for example, a motor rotation angle sensor (drive motor rotation angle sensor) 95 and / or an output shaft rotation angle sensor, for example. The steered motor 41 may be driven to move while inputting and monitoring the output from 94.
 クラッチ15が係合故障していない時に、ラック35bの移動の試みに基づく出力軸34を回転させる力が存在し、したがって、ステアリング軸21を回転させる力が存在するが、制御装置16は、反力モータ23を位置移動駆動するので、ステアリング軸21の位置(回転角)は、保持されることになる。したがって、クラッチ15が係合故障していない時に、ラック35bの移動の試みが実行されて、言い換えれば、転舵モータ41の位置移動駆動が実行されても、ラック35b(出力軸34)の位置(回転角)は、保持されることになる。 When the clutch 15 is not in engagement failure, there is a force to rotate the output shaft 34 based on an attempt to move the rack 35b, and thus there is a force to rotate the steering shaft 21, but the control device 16 Since the force motor 23 is driven to move, the position (rotation angle) of the steering shaft 21 is maintained. Accordingly, when the clutch 15 is not engaged and failed, an attempt to move the rack 35b is performed. In other words, even if the position movement drive of the steered motor 41 is performed, the position of the rack 35b (output shaft 34). (Rotation angle) is held.
 (クラッチ係合故障の判定)
 図7のステップS26に示されるように、制御装置16は、一例として、反力モータ23に流れる電流又は駆動電流が、転舵モータ41に流れる電流又は駆動電流の増加に起因して、増加するか否かを判定することができる。例えば図5(A)に示されるように、反力モータ23に流れる電流又は駆動電流の電流値Iが増加する時に、或いは、閾値(例えば閾値電流I1)を超える時に、制御装置16は、クラッチ15が係合故障していないことを判定することができる。このように、制御装置16は、反力モータ23が位置保持駆動され、且つ転舵モータ41が位置移動駆動される時に、反力モータ23の電流値Iに基づき、クラッチ15が故障しているか否を判定することができる(図7のステップS26参照)。
(Determination of clutch engagement failure)
As shown in step S <b> 26 of FIG. 7, as an example, the control device 16 increases the current or drive current flowing through the reaction motor 23 due to the increase in the current or drive current flowing through the steering motor 41. It can be determined whether or not. For example, as shown in FIG. 5A, when the current value I of the current flowing through the reaction motor 23 or the drive current I increases or exceeds a threshold value (for example, threshold current I1), the control device 16 It can be determined that 15 is not engaged. In this way, the control device 16 determines whether the clutch 15 has failed based on the current value I of the reaction force motor 23 when the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move. It is possible to determine whether or not (see step S26 in FIG. 7).
 (クラッチの開放)
 クラッチ15が故障していない時に、制御装置16は、例えば図5(C)に示されるように、クラッチ15を開放させることができる(図7のステップS27参照)。
(Clutch release)
When the clutch 15 has not failed, the control device 16 can release the clutch 15 as shown in FIG. 5C, for example (see step S27 in FIG. 7).
 (クラッチ開放故障の判定)
 図7のステップS28に示されるように、制御装置16は、一例として、反力モータ23に流れる電流又は駆動電流が、クラッチ15の開放に起因して、減少するか否かを判定することができる。例えば図5(A)に示されるように、転舵モータ41に流れる電流又は駆動電流の電流値Iが減少する時に、或いは、閾値(例えば閾値電流I1)を下回る又は初期値に戻る時に、制御装置16は、クラッチ15が開放故障していないことを判定することができる。このように、制御装置16は、反力モータ23が位置保持駆動され、且つ転舵モータ41が位置移動駆動される時に、反力モータ23の電流値Iに基づき、クラッチ15が故障しているか否を判定することができる(図7のステップS28参照)。
(Determination of clutch release failure)
As shown in step S28 in FIG. 7, for example, the control device 16 determines whether or not the current or drive current flowing through the reaction motor 23 decreases due to the clutch 15 being released. it can. For example, as shown in FIG. 5 (A), when the current value I of the current flowing through the steering motor 41 or the drive current I decreases, or when the current value I falls below a threshold value (for example, the threshold current I1) or returns to the initial value, the control is performed. The device 16 can determine that the clutch 15 is not open. In this way, the control device 16 determines whether the clutch 15 has failed based on the current value I of the reaction force motor 23 when the reaction force motor 23 is driven to hold the position and the steering motor 41 is driven to move. It is possible to determine whether or not (see step S28 in FIG. 7).
 図7のステップS29に示されるように、クラッチ15が係合故障しておらず、且つ、クラッチ15が開放故障していない時に、クラッチ15が正常であることを判定又は確定し、その後に、制御装置16は、車両用ステアリングシステム10の通常制御を実行することができる。 As shown in step S29 of FIG. 7, when the clutch 15 is not in the engagement failure and the clutch 15 is not in the release failure, it is determined or confirmed that the clutch 15 is normal, and thereafter The control device 16 can execute normal control of the vehicle steering system 10.
 図7のステップS26を実行した結果、例えば図5(D)に示されるように、反力モータ23に流れる電流又は駆動電流の電流値Iが一定である時に、或いは、閾値(例えば閾値電流I1)を超えない時に、制御装置16は、クラッチ15が係合故障していることを判定することができる。同様に、図7のステップS28を実行した結果、例えば図6(D)に示されるように、反力モータ23に流れる電流又は駆動電流の電流値Iが減少しない時に、或いは、閾値(例えば閾値電流I2又はI1)を超えている時に、制御装置16は、クラッチ15が開放故障していることを判定することができる。 As a result of executing step S26 in FIG. 7, for example, as shown in FIG. 5D, when the current value I of the current flowing through the reaction force motor 23 or the drive current I is constant, or a threshold value (for example, threshold current I1). ), The control device 16 can determine that the clutch 15 has failed. Similarly, as a result of executing step S28 of FIG. 7, for example, as shown in FIG. 6D, when the current value I of the reaction force motor 23 or the current I of the drive current does not decrease, or a threshold value (for example, threshold value) When the current I2 or I1) is exceeded, the control device 16 can determine that the clutch 15 has failed.
 第2の実施形態では、クラッチ15の係合非故障(正常)及び開放非故障(正常)の双方の存在を確認することによって、制御装置16は、クラッチ15が正常であることを確度高く推定することができる。 In the second embodiment, by confirming the existence of both the engagement non-failure (normal) and the release non-failure (normal) of the clutch 15, the control device 16 highly accurately estimates that the clutch 15 is normal. can do.
 (第3の実施形態)
 図8(A)、図8(B)及び図8(C)は、それぞれ、クラッチ15が正常な状態で転舵モータ41を位置保持駆動する時の、反力モータ23の回転速度の変化、転舵モータ41の回転速度の変化及びクラッチ15の係合/開放の状態を示す。図8(C)に示されるように、例えば、イグニッションスイッチがONされる時に、制御装置16は、クラッチ15を開放状態から係合状態に切り替える。
(Third embodiment)
8 (A), 8 (B), and 8 (C) respectively show changes in the rotational speed of the reaction force motor 23 when the steering motor 41 is driven to hold the position while the clutch 15 is in a normal state. The change of the rotational speed of the steered motor 41 and the state of engagement / release of the clutch 15 are shown. As shown in FIG. 8C, for example, when the ignition switch is turned on, the control device 16 switches the clutch 15 from the released state to the engaged state.
 この時に、制御装置16は、反力モータ23を制御して、ステアリング軸21の回転を開始することができる。言い換えれば、クラッチ15が係合状態である時に、制御装置16は、ステアリング軸21の回転を緩やかに開始させるために、例えば図2(A)に示されるように、反力モータ23に流れる電流(駆動電流とも言える)の電流値Iを例えば線形に又は直線的に増加させ、その後、ステアリング軸21の回転を継続又は開始させるために、反力モータ23に流れる、増加した電流値Iを例えば一定に維持することができる。なお、制御装置16は、反力モータ23を電圧駆動して、ステアリング軸21の回転を試みてもよい。 At this time, the control device 16 can start the rotation of the steering shaft 21 by controlling the reaction force motor 23. In other words, when the clutch 15 is in the engaged state, the control device 16 causes the current flowing in the reaction force motor 23 to gradually start the rotation of the steering shaft 21 as shown in FIG. In order to increase the current value I (also referred to as drive current), for example, linearly or linearly, and then continue or start the rotation of the steering shaft 21, the increased current value I flowing to the reaction motor 23 is, for example, Can be kept constant. Note that the control device 16 may attempt to rotate the steering shaft 21 by driving the reaction force motor 23 with a voltage.
 第3の実施形態に従う制御装置16の特徴の1つは、転舵モータ41を位置保持駆動することにある。具体的には、制御装置16は、クラッチ15が故障しているか否かを判定するために、ラック35b(出力軸34)の位置(回転角)が保持されるように、転舵モータ41を制御することができる。より具体的には、一例として、制御装置16は、転舵モータ41の駆動を開始し、ステアリング軸21の回転を試みても、反力モータ23が位置保持駆動されるので、図8(B)に示されるように、転舵モータ41の回転速度ωはゼロである。なお、転舵モータ41の回転速度ωがゼロである時に、転舵モータ41の回転角は一定である。 One of the features of the control device 16 according to the third embodiment is that the steering motor 41 is driven to hold the position. Specifically, in order to determine whether or not the clutch 15 has failed, the control device 16 turns the steering motor 41 so that the position (rotation angle) of the rack 35b (output shaft 34) is maintained. Can be controlled. More specifically, as an example, the control device 16 starts driving the steered motor 41 and attempts to rotate the steering shaft 21, so that the reaction force motor 23 is driven to hold the position. ), The rotational speed ω of the steered motor 41 is zero. Note that when the rotational speed ω of the steered motor 41 is zero, the rotational angle of the steered motor 41 is constant.
 クラッチ15が正常な状態である時に、クラッチ15の係合によって、ステアリング軸21が回転するように、反力モータ23が駆動されるが、転舵モータ41が位置保持駆動されるので、転舵モータ41の回転速度ωはゼロであり、したがって、図8(A)に示されるように、反力モータ23の回転速度ωもゼロである。ここで、反力モータ23の回転速度ωがゼロである時に、反力モータ23の回転角は一定である。したがって、実際には、反力モータ23が駆動される状況であっても、ステアリング軸21は回転せず、出力軸34も回転せず、且つ、ラック35bも移動しない。 When the clutch 15 is in a normal state, the reaction force motor 23 is driven so that the steering shaft 21 is rotated by the engagement of the clutch 15, but the steering motor 41 is driven to hold the position. The rotational speed ω of the motor 41 is zero. Therefore, as shown in FIG. 8A, the rotational speed ω of the reaction motor 23 is also zero. Here, when the rotational speed ω of the reaction force motor 23 is zero, the rotation angle of the reaction force motor 23 is constant. Therefore, actually, even when the reaction force motor 23 is driven, the steering shaft 21 does not rotate, the output shaft 34 does not rotate, and the rack 35b does not move.
 次に、図8(C)に示されるように、その後、制御装置16は、クラッチ15を係合状態から開放状態に切り替える。この時に、反力モータ23は、ステアリング軸21の回転を試みている。したがって、クラッチ15が係合状態から開放状態に切り替えられた後は、転舵モータ41の位置保持駆動とは無関係に、制御装置16は、ステアリング軸21を回転させるために、反力モータ23を駆動させる。 Next, as shown in FIG. 8C, after that, the control device 16 switches the clutch 15 from the engaged state to the released state. At this time, the reaction force motor 23 tries to rotate the steering shaft 21. Accordingly, after the clutch 15 is switched from the engaged state to the released state, the control device 16 turns the reaction force motor 23 to rotate the steering shaft 21 regardless of the position holding drive of the steered motor 41. Drive.
 このように、反力モータ23が駆動される時に、図8(A)に示されるように、反力モータ23の回転速度ωは、例えば線形に又は直線的に増加し、その後、例えば一定に維持される。 As described above, when the reaction force motor 23 is driven, the rotational speed ω of the reaction force motor 23 increases linearly or linearly, for example, and then becomes constant, for example, as shown in FIG. Maintained.
 なお、増加した回転速度ωを一定に維持した状態というのは、例えば反力モータ23の出力の最大出力であることを例示することができる。回転速度が小さく設定される場合と比較して、反力モータ23の出力を最大出力に設定する一定回転速度(維持回転速度)に回転速度が設定される場合には、確度高く故障を推定することができる。 Note that the state in which the increased rotational speed ω is kept constant can be exemplified by the maximum output of the reaction force motor 23, for example. Compared with the case where the rotational speed is set to be small, when the rotational speed is set to a constant rotational speed (maintenance rotational speed) that sets the output of the reaction force motor 23 to the maximum output, the failure is estimated with high accuracy. be able to.
 図8(A)~図8(C)の状況とは異なり、図8(D)、図8(E)及び図8(F)は、それぞれ、クラッチ15が係合故障した時の、反力モータ23の回転速度の変化、転舵モータ41の回転速度の変化及びクラッチ15の係合/開放の状態を示す。図8(D)に示されるように、クラッチ15が開放状態から係合状態に切り替えられ、且つ、ステアリング軸21が回転するように反力モータ23が駆動される時に、反力モータ23の回転速度ωは、例えば線形に又は直線的に増加する(図8(D)中の矢印C参照)。 8 (A) to 8 (C), FIG. 8 (D), FIG. 8 (E), and FIG. 8 (F) show the reaction force when the clutch 15 fails in engagement, respectively. A change in the rotation speed of the motor 23, a change in the rotation speed of the steered motor 41, and the engagement / release state of the clutch 15 are shown. As shown in FIG. 8D, when the reaction force motor 23 is driven so that the clutch 15 is switched from the released state to the engaged state and the steering shaft 21 rotates, the rotation of the reaction force motor 23 is performed. The speed ω increases, for example, linearly or linearly (see arrow C in FIG. 8D).
 言い換えれば、クラッチ15が開放状態から係合状態に切り替えられた後に、転舵モータ41が位置保持駆動され、且つ反力モータ23が位置移動駆動される状態で、制御装置16は、反力モータ23の回転速度ω(初期値)が閾値(例えば閾値回転速度ω1又はω2)を超えるか否かを判定することができる。このように、制御装置16は、反力モータ23の回転速度ωに基づき、クラッチ15が係合故障しているか否かを判定することができる。なお、制御装置16は、反力モータ23の回転速度ωの代わりに、反力モータ23の回転角に基づき、クラッチ15が係合故障しているか否かを判定してもよい。 In other words, after the clutch 15 is switched from the disengaged state to the engaged state, the control device 16 is configured so that the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It is possible to determine whether or not the rotational speed ω (initial value) 23 exceeds a threshold value (for example, the threshold rotational speed ω1 or ω2). As described above, the control device 16 can determine whether or not the clutch 15 has failed due to the rotational speed ω of the reaction force motor 23. Note that the control device 16 may determine whether or not the clutch 15 has failed due to the rotation angle of the reaction force motor 23 instead of the rotation speed ω of the reaction force motor 23.
 加えて、図8(D)に示されるように、制御装置16は、一例として、反力モータ23の回転速度ωを初期値から目標値に増加させて、その目標値で一定に維持することができる。例えばクラッチ15の係合故障を判定し、クラッチ15を係合状態から開放状態に切り替える時に、制御装置16は、一例として、反力モータ23の回転速度ωを初期値に戻す又は反力モータ23の駆動を停止することができる(図8(D)及び図8(F)参照)。 In addition, as shown in FIG. 8D, for example, the control device 16 increases the rotational speed ω of the reaction force motor 23 from the initial value to the target value, and keeps the target value constant. Can do. For example, when determining the engagement failure of the clutch 15 and switching the clutch 15 from the engaged state to the released state, the control device 16 returns the rotational speed ω of the reaction force motor 23 to the initial value or the reaction force motor 23 as an example. Can be stopped (see FIGS. 8D and 8F).
 図9(A)、図9(B)及び図9(C)は、それぞれ、図8(A)、図8(B)及び図8(C)に対応し、具体的には、クラッチ15が正常な状態で転舵モータ41を位置保持駆動する時の、反力モータ23の回転速度の変化、転舵モータ41の回転速度の変化及びクラッチ15の係合/開放の状態を示す。図9(D)、図9(E)及び図9(F)は、それぞれ、クラッチ15が開放故障した時の、反力モータ23の回転速度の変化、転舵モータ41の回転速度の変化及びクラッチ15の係合/開放の状態を示す。 FIGS. 9A, 9B, and 9C correspond to FIGS. 8A, 8B, and 8C, respectively. Specifically, the clutch 15 is A change in the rotational speed of the reaction force motor 23, a change in the rotational speed of the steered motor 41, and an engaged / released state of the clutch 15 when the steering motor 41 is driven to hold the position in a normal state are shown. FIGS. 9D, 9E, and 9F show changes in the rotational speed of the reaction force motor 23, changes in the rotational speed of the steering motor 41, and The engaged / released state of the clutch 15 is shown.
 図9(D)に示されるように、開放故障の状態にあるクラッチ15が係合状態から開放状態に切り替えられ、且つ、ステアリング軸21が回転するように反力モータ23が駆動される時に、制御装置16は、ラック35bの位置が保持されるように、転舵モータ41を駆動している。したがって、クラッチ15が開放故障する状況では、クラッチ15が開放するように、制御装置16がクラッチ15に指示又は制御信号を出力しても、クラッチ15は係合状態であり続けるので、反力モータ23の回転速度ωは、増加しないで、初期値のままである(図9(D)中の矢印D参照)。 As shown in FIG. 9D, when the clutch 15 in the open failure state is switched from the engaged state to the released state, and the reaction force motor 23 is driven so that the steering shaft 21 rotates, The control device 16 drives the steered motor 41 so that the position of the rack 35b is maintained. Therefore, in a situation where the clutch 15 is in a release failure, the clutch 15 remains engaged even if the control device 16 outputs an instruction or control signal to the clutch 15 so that the clutch 15 is released. The rotational speed ω 23 does not increase and remains at the initial value (see arrow D in FIG. 9D).
 言い換えれば、クラッチ15が係合状態から開放状態に切り替えられた後に、転舵モータ41が位置保持駆動され、且つ反力モータ23が位置移動駆動される状態で、制御装置16は、反力モータ23の回転速度ωが閾値(例えば閾値回転速度ω1)を下回るか否かを判定することができる。このように、制御装置16は、反力モータ23の回転速度ωに基づき、クラッチ15が開放故障しているか否かを判定することができる。 In other words, after the clutch 15 is switched from the engaged state to the disengaged state, the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It is possible to determine whether or not the rotational speed ω 23 is lower than a threshold (for example, the threshold rotational speed ω1). In this way, the control device 16 can determine whether or not the clutch 15 has a disengagement failure based on the rotational speed ω of the reaction force motor 23.
 第3の実施形態では、クラッチ15の係合非故障(正常)及び開放非故障(正常)の双方の存在を確認することによって、制御装置16は、クラッチ15が正常であることを確度高く推定することができる。 In the third embodiment, by confirming the existence of both the engagement non-failure (normal) and the release non-failure (normal) of the clutch 15, the control device 16 highly accurately estimates that the clutch 15 is normal. can do.
 (第4の実施形態) (Fourth embodiment)
 図10(A)、図10(B)及び図10(C)は、それぞれ、クラッチ15が正常な状態で転舵モータ41を位置保持駆動する時の、反力モータ23の回転速度の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。図10(C)に示されるように、例えば、イグニッションスイッチがONされる時に、制御装置16は、クラッチ15を開放状態から係合状態に切り替える。 10 (A), 10 (B) and 10 (C) respectively show changes in the rotational speed of the reaction force motor 23 when the steering motor 41 is driven to hold the position while the clutch 15 is in a normal state. The change of the electric current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown. As shown in FIG. 10C, for example, when the ignition switch is turned on, the control device 16 switches the clutch 15 from the released state to the engaged state.
 この時に、制御装置16は、反力モータ23を制御して、ステアリング軸21の回転を開始することができる。言い換えれば、クラッチ15が係合状態である時に、制御装置16は、ステアリング軸21の回転を緩やかに開始させるために、例えば図2(A)に示されるように、反力モータ23に流れる電流(駆動電流とも言える)の電流値Iを例えば線形に又は直線的に増加させ、その後、ステアリング軸21の回転を継続又は開始させるために、反力モータ23に流れる、増加した電流値Iを例えば一定に維持することができる。なお、制御装置16は、反力モータ23を電圧駆動して、ステアリング軸21の回転を試みてもよい。 At this time, the control device 16 can start the rotation of the steering shaft 21 by controlling the reaction force motor 23. In other words, when the clutch 15 is in the engaged state, the control device 16 causes the current flowing in the reaction force motor 23 to gradually start the rotation of the steering shaft 21 as shown in FIG. In order to increase the current value I (also referred to as drive current), for example, linearly or linearly, and then continue or start the rotation of the steering shaft 21, the increased current value I flowing to the reaction motor 23 is, for example, Can be kept constant. Note that the control device 16 may attempt to rotate the steering shaft 21 by driving the reaction force motor 23 with a voltage.
 第4の実施形態に従う制御装置16の特徴の1つは、転舵モータ41を位置保持駆動することにある。具体的には、制御装置16は、クラッチ15が故障しているか否かを判定するために、ラック35b(出力軸34)の位置(回転角)が保持されるように、転舵モータ41を制御することができる。より具体的には、一例として、制御装置16は、転舵モータ41の駆動を開始し、ステアリング軸21の回転を試みても、転舵モータ41が位置保持駆動されるので、図10(B)に示されるように、転舵モータ41の電流値Iは、反力モータ23の駆動に応じて、増加する。 One of the features of the control device 16 according to the fourth embodiment is that the steering motor 41 is driven to hold the position. Specifically, in order to determine whether or not the clutch 15 has failed, the control device 16 turns the steering motor 41 so that the position (rotation angle) of the rack 35b (output shaft 34) is maintained. Can be controlled. More specifically, as an example, the control device 16 starts driving the steered motor 41 and attempts to rotate the steering shaft 21, so that the steered motor 41 is driven to hold the position, so that FIG. ), The current value I of the steered motor 41 increases as the reaction force motor 23 is driven.
 クラッチ15が正常な状態である時に、クラッチ15の係合によって、ステアリング軸21が回転するように、反力モータ23が駆動されるが、転舵モータ41が位置保持駆動されるので、図10(A)に示されるように、反力モータ23の回転速度ωは、ゼロである。ここで、反力モータ23の回転速度ωがゼロである時に、反力モータ23の回転角は一定である。したがって、実際には、反力モータ23が駆動される状況であっても、ステアリング軸21は回転せず、出力軸34も回転せず、且つ、ラック35bも移動しない。 When the clutch 15 is in a normal state, the reaction force motor 23 is driven so that the steering shaft 21 is rotated by the engagement of the clutch 15, but the steering motor 41 is driven to hold the position. As shown in (A), the rotational speed ω of the reaction force motor 23 is zero. Here, when the rotational speed ω of the reaction force motor 23 is zero, the rotation angle of the reaction force motor 23 is constant. Therefore, actually, even when the reaction force motor 23 is driven, the steering shaft 21 does not rotate, the output shaft 34 does not rotate, and the rack 35b does not move.
 次に、図10(C)に示されるように、その後、制御装置16は、クラッチ15を係合状態から開放状態に切り替える。この時に、反力モータ23は、ステアリング軸21の回転を試みている。したがって、クラッチ15が係合状態から開放状態に切り替えられた後は、転舵モータ41の位置保持駆動の影響がなくなり、したがって、反力モータ23の回転速度ωは、ゼロ(初期値)から増加する(図10(A)参照)。 Next, as shown in FIG. 10C, after that, the control device 16 switches the clutch 15 from the engaged state to the released state. At this time, the reaction force motor 23 tries to rotate the steering shaft 21. Therefore, after the clutch 15 is switched from the engaged state to the disengaged state, the influence of the position holding drive of the steered motor 41 is eliminated, and therefore the rotational speed ω of the reaction force motor 23 increases from zero (initial value). (See FIG. 10A).
 このように、反力モータ23が駆動される時に、図10(A)に示されるように、反力モータ23の回転速度ωは、例えば線形に又は直線的に増加し、その後、例えば一定に維持される。 Thus, when the reaction force motor 23 is driven, as shown in FIG. 10A, the rotational speed ω of the reaction force motor 23 increases linearly or linearly, for example, and then becomes constant, for example. Maintained.
 図10(A)~図10(C)の状況とは異なり、図10(D)、図10(E)及び図10(F)は、それぞれ、クラッチ15が係合故障(具体的には、これに限定されないが、例えば不完全係合故障)した時の、反力モータ23の回転速度の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。ここで、「不完全係合故障」とは、クラッチ15が開放状態から係合状態へ完全には切り替わらない状況のことである。この不完全係合故障の場合には、クラッチ15の係合力は、完全に係合している状態に比べて低下する。図10(D)に示されるように、クラッチ15が開放状態から係合状態に切り替えられ、且つ、ステアリング軸21が回転するように反力モータ23が駆動される時に、転舵モータ41の電流値Iは、例えば線形に又は直線的に増加し(図10(E)中の矢印E1参照)、反力モータ23の回転速度ωも、例えば線形に又は直線的に増加する(図10(D)中の矢印E2参照)。 Unlike the situation of FIGS. 10 (A) to 10 (C), FIGS. 10 (D), 10 (E), and 10 (F) each show that the clutch 15 is not engaged (specifically, Although not limited thereto, for example, a change in the rotational speed of the reaction force motor 23, a change in the current value of the steered motor 41, and a state of engagement / release of the clutch 15 when an incomplete engagement failure occurs are shown. Here, “incomplete engagement failure” refers to a situation where the clutch 15 is not completely switched from the released state to the engaged state. In the case of this incomplete engagement failure, the engagement force of the clutch 15 is lower than that in the fully engaged state. As shown in FIG. 10D, when the clutch 15 is switched from the released state to the engaged state, and the reaction motor 23 is driven so that the steering shaft 21 rotates, the current of the steering motor 41 The value I increases, for example, linearly or linearly (see arrow E1 in FIG. 10E), and the rotational speed ω of the reaction force motor 23 also increases, for example, linearly or linearly (FIG. 10D ) (See arrow E2).
 言い換えれば、クラッチ15が開放状態から係合状態に切り替えられた後に、転舵モータ41が位置保持駆動され、且つ反力モータ23が位置移動駆動される状態で、制御装置16は、転舵モータ41の電流値I(初期値)が2つの閾値(例えば閾値電流I1及びI2)を超えるか否かを判定することができる。図10(E)の例において、クラッチ15が例えば不完全係合故障であるので、言い換えれば、例えば摩擦式のクラッチ15の係合力(摩擦力)が例えば経時変化によって劣化しているので、転舵モータ41の電流値I(初期値)は、閾値電流I1を超えても閾値電流I2を超えることができない(図10(E)中の矢印E1参照)。同様に、図10(D)の例において、クラッチ15が例えば不完全係合故障であるので、反力モータ23の回転速度ω(初期値)は、閾値回転数ω1を超えても閾値回転数ω2を超えることができない(図10(D)中の矢印E2参照)。 In other words, after the clutch 15 is switched from the disengaged state to the engaged state, the control device 16 operates in a state where the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It can be determined whether or not the current value I (initial value) 41 exceeds two threshold values (for example, threshold currents I1 and I2). In the example of FIG. 10E, since the clutch 15 has an incomplete engagement failure, for example, the engagement force (friction force) of the friction clutch 15 has deteriorated due to, for example, a change over time. The current value I (initial value) of the rudder motor 41 cannot exceed the threshold current I2 even if it exceeds the threshold current I1 (see arrow E1 in FIG. 10E). Similarly, in the example of FIG. 10D, since the clutch 15 has an incomplete engagement failure, for example, the rotational speed ω (initial value) of the reaction force motor 23 exceeds the threshold rotational speed ω1. ω2 cannot be exceeded (see arrow E2 in FIG. 10D).
 このように、制御装置16は、転舵モータ41の電流値Iと反力モータ23の回転速度ωとに基づき、クラッチ15が係合故障しているか否かを判定することができる。好ましくは、制御装置16は、クラッチ15の劣化による係合故障の有無を判定することができる。 Thus, the control device 16 can determine whether or not the clutch 15 has failed due to the current value I of the steering motor 41 and the rotational speed ω of the reaction force motor 23. Preferably, the control device 16 can determine whether there is an engagement failure due to deterioration of the clutch 15.
 図11(A)、図11(B)及び図11(C)は、それぞれ、図10(A)、図10(B)及び図10(C)に対応し、具体的には、クラッチ15が正常な状態で転舵モータ41を位置保持駆動する時の、反力モータ23の回転速度の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。図11(D)、図11(E)及び図11(F)は、それぞれ、クラッチ15が開放故障(具体的には、不完全開放故障)した時の、反力モータ23の回転速度の変化、転舵モータ41の電流値の変化及びクラッチ15の係合/開放の状態を示す。ここで、「不完全開放故障」とは、クラッチ15が係合状態から開放状態へ完全には切り替わらない状況のことである。この不完全開放故障の場合には、クラッチ15の係合力はゼロ(零)にはならない。 11 (A), 11 (B), and 11 (C) correspond to FIGS. 10 (A), 10 (B), and 10 (C), respectively. A change in the rotational speed of the reaction force motor 23, a change in the current value of the steered motor 41, and a state of engagement / release of the clutch 15 when the steered motor 41 is driven to hold the position in a normal state are shown. 11 (D), 11 (E), and 11 (F) show changes in the rotational speed of the reaction force motor 23 when the clutch 15 has an open failure (specifically, an incomplete open failure), respectively. The change of the current value of the steering motor 41 and the state of engagement / release of the clutch 15 are shown. Here, the “incomplete release failure” is a situation where the clutch 15 is not completely switched from the engaged state to the released state. In the case of this incomplete opening failure, the engagement force of the clutch 15 does not become zero.
 図11(E)に示されるように、クラッチ15が係合状態から開放状態に切り替えられ、且つ、ステアリング軸21が回転するように反力モータ23が駆動される時に、転舵モータ41の電流値Iは、減少し(図11(E)中の矢印F1参照)、反力モータ23の回転速度ωは、増加する(図11(D)中の矢印F2参照)。 As shown in FIG. 11E, when the clutch 15 is switched from the engaged state to the released state and the reaction force motor 23 is driven so that the steering shaft 21 rotates, the current of the steering motor 41 The value I decreases (see arrow F1 in FIG. 11E), and the rotational speed ω of the reaction force motor 23 increases (see arrow F2 in FIG. 11D).
 言い換えれば、クラッチ15が係合状態から開放状態に切り替えられた後に、転舵モータ41が位置保持駆動され、且つ反力モータ23が位置移動駆動される状態で、制御装置16は、転舵モータ41の電流値I(初期値)が2つの閾値(例えば閾値電流I1及びI2)を下回るか否かを判定することができる。図11(E)の例において、クラッチ15が例えば不完全開放故障であるので、言い換えれば、例えば摩擦式のクラッチ15の係合力(摩擦力)が例えば経時変化によって劣化しているので、転舵モータ41の電流値Iは、閾値電流I2を下回っても閾値電流I1を下回ることができない(図11(E)中の矢印F1参照)。同様に、図11(D)の例において、クラッチ15が例えば不完全係合故障であるので、反力モータ23の回転速度ωは、閾値回転数ω1を超えても閾値回転数ω2を超えることができない(図11(D)中の矢印F2参照)。 In other words, after the clutch 15 is switched from the engaged state to the disengaged state, the control device 16 is configured so that the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. It can be determined whether or not the current value I (initial value) 41 falls below two threshold values (for example, threshold currents I1 and I2). In the example of FIG. 11E, since the clutch 15 has an incomplete open failure, for example, the engagement force (friction force) of the friction clutch 15 has deteriorated due to, for example, a change over time. Even if the current value I of the motor 41 falls below the threshold current I2, it cannot fall below the threshold current I1 (see arrow F1 in FIG. 11E). Similarly, in the example of FIG. 11D, since the clutch 15 is incompletely engaged, for example, the rotational speed ω of the reaction force motor 23 exceeds the threshold rotational speed ω2 even if it exceeds the threshold rotational speed ω1. Cannot be performed (see arrow F2 in FIG. 11D).
 このように、制御装置16は、転舵モータ41の電流値Iと反力モータ23の回転速度ωとに基づき、クラッチ15が開放故障しているか否かを判定することができる。好ましくは、制御装置16は、クラッチ15の劣化による開放故障の有無を判定することができる。 Thus, the control device 16 can determine whether or not the clutch 15 is malfunctioning based on the current value I of the steered motor 41 and the rotational speed ω of the reaction force motor 23. Preferably, the control device 16 can determine whether or not there is an open failure due to deterioration of the clutch 15.
 第4の実施形態では、クラッチ15の係合故障(異常)及び開放故障(異常)の時に、反力モータ23の回転速度ωと転舵モータ41の電流値Iの、両方の関連値をみることによって、制御装置16は、クラッチ15が異常であることを確度高く推定することができる。言い換えると、第4の実施形態では、クラッチ15の係合故障(異常)及び開放故障(異常)の双方の存在を確認することによって、制御装置16は、クラッチ15が異常であることを確度高く推定することができる。 In the fourth embodiment, at the time of the engagement failure (abnormality) and the release failure (abnormality) of the clutch 15, both related values of the rotational speed ω of the reaction force motor 23 and the current value I of the steered motor 41 are viewed. Thus, the control device 16 can estimate with high accuracy that the clutch 15 is abnormal. In other words, in the fourth embodiment, by confirming the existence of both the engagement failure (abnormality) and the release failure (abnormality) of the clutch 15, the control device 16 highly accurately determines that the clutch 15 is abnormal. Can be estimated.
 なお、第4の実施形態では、係合不完全故障や不完全開放故障の推定について説明をしたが、当然のことながら、通常の係合故障や開放故障の推定にも、同様に用いることができる。 In the fourth embodiment, the estimation of the incomplete engagement failure or the incomplete disengagement failure has been described. However, as a matter of course, the same can be used for the estimation of the normal engagement failure or the disengagement failure. it can.
 (変形例1)
 第4の実施形態に従う制御装置16の特徴の1つは、転舵モータ41を位置保持駆動することにある。しかしながら、第2の実施形態と同様に、第4の実施形態に従う制御装置16は、転舵モータ41ではなく、反力モータ23を位置保持駆動してもよい。この場合において、反力モータ23の電流値Iと転舵モータ41の回転速度ωとに基づき、クラッチ15が係合故障及び/又は開放故障しているか否かを判定することができる。好ましくは、制御装置16は、クラッチ15の劣化による係合故障及び/又は開放故障の有無を判定することができる。
(Modification 1)
One of the features of the control device 16 according to the fourth embodiment is that the steered motor 41 is driven to hold the position. However, similarly to the second embodiment, the control device 16 according to the fourth embodiment may drive the reaction force motor 23 to hold the position instead of the steered motor 41. In this case, based on the current value I of the reaction force motor 23 and the rotational speed ω of the steered motor 41, it can be determined whether or not the clutch 15 has an engagement failure and / or a release failure. Preferably, the control device 16 can determine whether or not there is an engagement failure and / or a release failure due to deterioration of the clutch 15.
 (変形例2)
 第1~第4の実施形態及び変形例1等の変形例に従う制御装置16では、イニシャルチェックの失敗をユーザに報知可能である。言い換えれば、ユーザの手が操舵輪11等のステアリングハンドルに触れている等のクラッチ15の故障判定に悪影響を及ぼすおそれがある時に、制御装置16は、その故障判定を実施しない又はその実施を中止又は延期することができる。
(Modification 2)
In the control device 16 according to the first to fourth embodiments and the modified example such as the modified example 1, it is possible to notify the user of the failure of the initial check. In other words, when there is a risk of adversely affecting the failure determination of the clutch 15 such as the user's hand touching the steering wheel such as the steering wheel 11, the control device 16 does not perform the failure determination or cancels the execution. Or it can be postponed.
 具体的には、例えば図4のステップS1とS2との間に、制御装置16は、クラッチ15の故障判定を実施するか否かを追加し、実施しない場合に、その旨をユーザに報知することができる。以下に、図12を用いて説明する。 Specifically, for example, between steps S1 and S2 of FIG. 4, the control device 16 adds whether or not the failure determination of the clutch 15 is to be performed, and if not, notifies the user to that effect. be able to. This will be described below with reference to FIG.
 図12は、転舵モータ41を位置保持駆動し、且つ反力モータ23を位置移動駆動する前に、イニシャルチェックの失敗をユーザに報知可能である、本発明に従う制御装置16の動作例を表すフローチャートを示す。制御装置16は、図12のステップS41でイグニッションスイッチのONを確認後、ユーザが操舵輪11を操作しているか否かを判定するために、例えば操舵トルクセンサ92の出力を入力し、それを監視することができる(図12のステップS42参照)。操舵トルクセンサ92の出力に基づき、ユーザが操舵輪11からその手を放している時に、制御装置16は、図4のステップS2~S11と同様に、図12のステップS43~S52を実行することができる。 FIG. 12 shows an operation example of the control device 16 according to the present invention that can notify the user of the failure of the initial check before the steering motor 41 is driven to hold the position and the reaction force motor 23 is driven to move. A flowchart is shown. The control device 16 inputs the output of the steering torque sensor 92, for example, in order to determine whether or not the user is operating the steered wheel 11 after confirming that the ignition switch is turned on in step S41 of FIG. It can be monitored (see step S42 in FIG. 12). When the user releases his / her hand from the steered wheel 11 based on the output of the steering torque sensor 92, the control device 16 executes steps S43 to S52 of FIG. 12 in the same manner as steps S2 to S11 of FIG. Can do.
 なお、操舵トルクセンサ92の代わりに、操舵輪11に設けられたタッチセンサ(図示せず)、車室内に設けられたカメラ(図示せず)等の他の検出部で、ユーザの手放しが判定されてもよい。また、手放しの判定は、図12のステップS43~S49の実行中に、実施されてもよい。 In addition, instead of the steering torque sensor 92, another detection unit such as a touch sensor (not shown) provided on the steering wheel 11 or a camera (not shown) provided in the vehicle interior determines whether the user has released the hand. May be. Further, the determination of letting go may be performed during the execution of steps S43 to S49 in FIG.
 例えばイグニッションスイッチがONされた直後から、ユーザによって操舵輪11が操作されている時に、制御装置16は、一例として、例えば図12のステップS53、S54及びS56で示されるように、tnをカウントアップし、tnが例えば0(初期値)からnまでインクリメントされるまで、ユーザが操舵輪11からその手を放していないこと、即ちイニシャルチェックの失敗をユーザに報知することができる。具体的には、制御装置16は、音声信号を車載スピーカに出力し、或いは、音声信号、表示信号、画像信号等の報知信号をオーディオ、ナビゲーション、メータ等を制御する電子制御ユニットに出力することができる。 For example, when the steering wheel 11 is operated by the user immediately after the ignition switch is turned on, the control device 16 counts up tn, for example, as shown in steps S53, S54, and S56 in FIG. 12, for example. Then, until tn is incremented from 0 (initial value) to n, for example, it is possible to notify the user that the user has not released his hand from the steered wheel 11, that is, the failure of the initial check. Specifically, the control device 16 outputs an audio signal to the vehicle-mounted speaker, or outputs a notification signal such as an audio signal, a display signal, and an image signal to an electronic control unit that controls the audio, navigation, meter, and the like. Can do.
 他方、イグニッションスイッチがONされた後に、例えばtn(=n)に対応する所定期間内に、ユーザが操舵輪11からその手を放す場合には、制御装置16は、図12のステップS43~S52を実行することができる。 On the other hand, when the user releases his / her hand from the steered wheel 11 within a predetermined period corresponding to, for example, tn (= n) after the ignition switch is turned on, the control device 16 performs steps S43 to S52 in FIG. Can be executed.
 (変形例3)
 図2~図12を通して、制御装置16は、イグニッションスイッチがONされた後に、クラッチ15の故障の有無を判定することができる。しかしながら、ユーザが車両の運転を開始する前にクラッチ15の故障の有無を判定すればよく、具体的には、制御装置16は、一例として、例えばスマートキー又はキーフォブ(fob)を携帯するユーザの車両への接近を検出し、ユーザが車両に乗り込むことを判定又は推定した後に、クラッチ15の故障の有無を判定してもよい。或いは、制御装置16は、ユーザが運転席側のドアノブをタッチした後に、クラッチ15の故障の有無を判定してもよい。
(Modification 3)
2 to 12, the control device 16 can determine whether or not the clutch 15 has failed after the ignition switch is turned on. However, it suffices to determine whether or not the clutch 15 has failed before the user starts driving the vehicle. Specifically, the control device 16 is, for example, a user who carries a smart key or a key fob (fob). After detecting the approach to the vehicle and determining or estimating that the user gets into the vehicle, it may be determined whether or not the clutch 15 has failed. Alternatively, the control device 16 may determine whether or not the clutch 15 has failed after the user touches the door knob on the driver's seat side.
 本発明は、上述の例示的な実施形態に限定されず、また、当業者は、上述の例示的な実施形態を特許請求の範囲に含まれる範囲まで、容易に変更することができるであろう。 The present invention is not limited to the above-described exemplary embodiments, and those skilled in the art will be able to easily modify the above-described exemplary embodiments to the extent included in the claims. .

Claims (9)

  1.  転舵モータ、反力モータ及び連結装置を有するステアバイワイヤを制御する車両用ステアリング制御装置であり、
     前記転舵モータ又は前記反力モータの何れか一方が位置保持駆動され、且つ前記転舵モータ又は前記反力モータの何れか他方が位置移動駆動される時に、前記転舵モータ及び前記反力モータの少なくとも一方の駆動状態に基づき、前記連結装置が故障しているか否かを判定する、
     車両用ステアリング制御装置。
    A steering control device for a vehicle that controls a steer-by-wire having a steering motor, a reaction force motor, and a coupling device,
    When either one of the steered motor or the reaction force motor is driven to hold a position, and one of the steered motor or the reaction force motor is driven to move, the steered motor and the reaction force motor Determining whether or not the coupling device is malfunctioning based on at least one of the driving states of:
    Vehicle steering control device.
  2.  前記転舵モータが位置保持駆動され、且つ前記反力モータが位置移動駆動される時に、前記転舵モータの電流値に基づき、前記連結装置が故障しているか否かを判定する、
     請求項1に記載の車両用ステアリング制御装置。
    When the steering motor is driven to hold the position and the reaction force motor is driven to move, it is determined whether or not the coupling device has failed based on the current value of the steering motor.
    The vehicle steering control device according to claim 1.
  3.  前記反力モータが位置保持駆動され、且つ前記転舵モータが位置移動駆動される時に、前記反力モータの電流値に基づき、前記連結装置が故障しているか否かを判定する、
     請求項1に記載の車両用ステアリング制御装置。
    When the reaction force motor is driven to hold the position and the steering motor is driven to move, it is determined whether or not the coupling device is broken based on the current value of the reaction force motor.
    The vehicle steering control device according to claim 1.
  4.  前記転舵モータが位置保持駆動され、且つ前記反力モータが位置移動駆動される時に、前記反力モータの回転速度又は回転角に基づき、前記連結装置が故障しているか否かを判定する、
     請求項1に記載の車両用ステアリング制御装置。
    When the steering motor is driven to hold a position and the reaction force motor is driven to move, it is determined whether or not the coupling device has failed based on the rotation speed or rotation angle of the reaction force motor.
    The vehicle steering control device according to claim 1.
  5.  前記反力モータが位置保持駆動され、且つ前記転舵モータが位置移動駆動される時に、前記転舵モータの回転速度又は回転角に基づき、前記連結装置が故障しているか否かを判定する、
     請求項1に記載の車両用ステアリング制御装置。
    When the reaction force motor is driven to hold the position and the steering motor is driven to move, it is determined whether or not the coupling device has failed based on the rotation speed or rotation angle of the steering motor.
    The vehicle steering control device according to claim 1.
  6.  前記転舵モータが位置保持駆動され、且つ前記反力モータが位置移動駆動される時に、前記転舵モータの回転速度又は回転角と前記転舵モータの電流値とに基づき、前記連結装置が故障しているか否かを判定する、
     請求項1に記載の車両用ステアリング制御装置。
    When the steered motor is driven to hold the position and the reaction motor is driven to move, the connecting device fails based on the rotational speed or angle of the steered motor and the current value of the steered motor. To determine whether or not
    The vehicle steering control device according to claim 1.
  7.  前記反力モータが位置保持駆動され、且つ前記転舵モータが位置移動駆動される時に、前記転舵モータの回転速度又は回転角と前記反力モータの電流値とに基づき、前記連結装置が故障しているか否かを判定する、
     請求項1に記載の車両用ステアリング制御装置。
    When the reaction motor is driven to hold the position and the steering motor is driven to move, the connecting device fails based on the rotation speed or rotation angle of the steering motor and the current value of the reaction motor. To determine whether or not
    The vehicle steering control device according to claim 1.
  8.  前記連結装置が係合される期間及び前記連結装置が開放される期間の双方において、前記転舵モータ又は前記反力モータの何れか一方が位置保持駆動され、前記転舵モータ及び前記反力モータの少なくとも一方の駆動状態に基づき、前記連結装置の係合故障の有無及び開放故障の有無を判定する、
     請求項1~7の何れか1項に記載の車両用ステアリング制御装置。
    In both the period in which the coupling device is engaged and the period in which the coupling device is opened, either the steering motor or the reaction force motor is driven to hold the position, and the steering motor and the reaction force motor are driven. Determining the presence or absence of an engagement failure and the presence or absence of an opening failure of the coupling device based on at least one of the driving states of
    The vehicle steering control device according to any one of claims 1 to 7.
  9.  操舵輪に接続された入力軸と、
     前記入力軸に接続され、前記操舵輪に反力を与える反力発生装置と、
     転舵輪に接続されたラックを駆動する転舵力発生装置と、
     前記入力軸と前記ラックを機械的に連結可能な連結装置と、
     前記反力発生装置又は前記転舵力発生装置のいずれか一方を位置保持駆動し、且つ前記反力発生装置又は前記転舵力発生装置のいずれか他方が位置移動駆動される時に、前記反力発生装置及び前記転舵力発生装置の少なくとも一方の駆動状態に基づき、前記連結装置が故障しているか否かを判定する制御部と、
     を有する車両用ステアリング装置
    An input shaft connected to the steering wheel;
    A reaction force generator connected to the input shaft and applying a reaction force to the steered wheels;
    A turning force generator for driving a rack connected to the turning wheels;
    A coupling device capable of mechanically coupling the input shaft and the rack;
    When either one of the reaction force generation device or the turning force generation device is driven to hold the position, and either one of the reaction force generation device or the turning force generation device is driven to move, the reaction force A control unit that determines whether or not the coupling device is out of order based on a drive state of at least one of the generator and the steering force generator;
    Vehicle steering apparatus having
PCT/JP2018/016984 2018-04-26 2018-04-26 Vehicle steering control device and vehicle steering device WO2019207711A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018521694A JP6444570B1 (en) 2018-04-26 2018-04-26 Vehicle steering control device and vehicle steering device
PCT/JP2018/016984 WO2019207711A1 (en) 2018-04-26 2018-04-26 Vehicle steering control device and vehicle steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016984 WO2019207711A1 (en) 2018-04-26 2018-04-26 Vehicle steering control device and vehicle steering device

Publications (1)

Publication Number Publication Date
WO2019207711A1 true WO2019207711A1 (en) 2019-10-31

Family

ID=64899449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016984 WO2019207711A1 (en) 2018-04-26 2018-04-26 Vehicle steering control device and vehicle steering device

Country Status (2)

Country Link
JP (1) JP6444570B1 (en)
WO (1) WO2019207711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124196A1 (en) * 2020-12-07 2022-06-16 Ntn株式会社 Automatic steering device for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270675A (en) * 1989-04-11 1990-11-05 Jidosha Kiki Co Ltd Control of motor-driven type power steering device
JPH06227421A (en) * 1993-02-09 1994-08-16 Nippondenso Co Ltd Front and rear wheel steering device of vehicle
JP2006082685A (en) * 2004-09-16 2006-03-30 Toyota Motor Corp Steering device of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270675A (en) * 1989-04-11 1990-11-05 Jidosha Kiki Co Ltd Control of motor-driven type power steering device
JPH06227421A (en) * 1993-02-09 1994-08-16 Nippondenso Co Ltd Front and rear wheel steering device of vehicle
JP2006082685A (en) * 2004-09-16 2006-03-30 Toyota Motor Corp Steering device of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124196A1 (en) * 2020-12-07 2022-06-16 Ntn株式会社 Automatic steering device for vehicle

Also Published As

Publication number Publication date
JPWO2019207711A1 (en) 2020-04-30
JP6444570B1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
EP1630069B1 (en) Steering apparatus for vehicle
CN105358408B8 (en) Steering for vehicle
RU2571679C1 (en) Vehicle steering control device and process
JP6533772B2 (en) Steering device
US9988072B2 (en) Steering apparatus
JP2007245825A (en) Steering device of vehicle
JP2009090939A (en) Steering control device and steering input device
JP2005096745A (en) Vehicular steering device
WO2008059731A1 (en) Vehicle steering device
JP6444570B1 (en) Vehicle steering control device and vehicle steering device
JP5076564B2 (en) Drive control device and steering control device using the same
JP5239245B2 (en) Vehicle steering control device
JP2010149678A (en) Apparatus and method for controlling vehicle steering
JP2002087308A (en) Steering device for vehicle
JP2008155723A (en) Steering device for vehicle
JP2007203799A (en) Transmission ratio variable device
JP5050402B2 (en) Vehicle steering control device
JP2009179185A (en) Diagnostic device and method of steer-by-wire system
JP4396453B2 (en) Vehicle steering system
JP4802641B2 (en) Vehicle steering system
JP2005178460A (en) Steering device for vehicle
JP6313060B2 (en) Steer-by-wire steering device
JP4446861B2 (en) Steering system
JP2010069895A (en) Steer-by-wire steering system
JP6521301B2 (en) Vehicle steering system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521694

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915803

Country of ref document: EP

Kind code of ref document: A1