WO2019206144A1 - 一种信息处理方法及装置、计算机可读存储介质 - Google Patents

一种信息处理方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2019206144A1
WO2019206144A1 PCT/CN2019/083897 CN2019083897W WO2019206144A1 WO 2019206144 A1 WO2019206144 A1 WO 2019206144A1 CN 2019083897 W CN2019083897 W CN 2019083897W WO 2019206144 A1 WO2019206144 A1 WO 2019206144A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
sequence
extended
length
information processing
Prior art date
Application number
PCT/CN2019/083897
Other languages
English (en)
French (fr)
Inventor
袁志锋
胡宇洲
田力
纵金榜
黄琛
焦戊臣
李卫敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019206144A1 publication Critical patent/WO2019206144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to communication technologies, and more particularly to an information processing method and apparatus, and a computer readable storage medium.
  • the symbol-based extension technique refers to spreading a symbol to be transmitted using an extended sequence (a symbol to be transmitted includes a digital amplitude modulation symbol, a symbol generated by a series of processing of a digital amplitude modulation symbol, and a pilot symbol).
  • a symbol to be transmitted s is extended by using a spreading sequence of length L, that is, the symbol s is multiplied by each element in the extended sequence to generate L symbols, for example, one extended sequence of L lengths is set.
  • L symbols generated by the expansion of the symbol s using this extended sequence are [s ⁇ c 0 , s ⁇ c 1 ,...s ⁇ c L- 1 ].
  • the flexibility is not enough and the application scenario is limited.
  • At least one embodiment of the present invention provides an information processing method and apparatus, and a computer readable storage medium.
  • At least one embodiment of the present invention provides an information processing method, including:
  • a plurality of symbols are extended using a spreading sequence, wherein lengths of the spreading sequences corresponding to two or more symbols are different.
  • At least one embodiment of the present invention provides an information processing apparatus including a memory and a processor, the memory storing a program, and when the program is read and executed by the processor, implementing information processing according to any of the embodiments method.
  • At least one embodiment of the present invention provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement any An information processing method according to an embodiment.
  • 1 is a schematic diagram of multi-carrier OFDM modulation in the related art
  • FIG. 2 is a schematic diagram of a frequency domain generation method of an SC-FDMA signal in the related art
  • FIG. 3 is a schematic diagram of a time domain generating method of an SC-FDMA signal in the related art
  • FIG. 4 is a flowchart of an information processing method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a multi-carrier OFDM symbol extension according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a DFT-S-OFDM symbol extension according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of SC-FDMA symbol expansion according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of symbol extension according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of symbol extension according to another embodiment of the present invention.
  • FIG. 10 is a block diagram of an information processing apparatus according to an embodiment of the present invention.
  • the symbol extension technology can be applied to CP (Cyclic Prefix)-OFDM (Orthogonal Frequency Division Multiplexing), and can also be applied to SC-FDMA (Single-carrier Frequency) with low peak-to-average ratio of CP.
  • CP Cyclic Prefix
  • SC-FDMA Single-carrier Frequency
  • -Division Multiple Access DFT-S-OFDM (Discrete Fourier Transform-Spread OFDM) transmission scheme.
  • FIG. 1 is a schematic diagram of multi-carrier OFDM modulation in the related art.
  • each resource element directly carries a digital amplitude modulation symbol, or the M digital amplitude modulation symbols are carried by one OFDM symbol (because there is M subcarriers in one OFDM symbol here), or One OFDM symbol carries M digital amplitude and phase modulation symbols. Then, an Inverse Fast Fourier Transform (IFFT) is performed, and a cyclic prefix is added, and parallel to serial conversion is performed, and then transmitted through a transmitting circuit.
  • IFFT Inverse Fast Fourier Transform
  • one resource unit of the OFDM symbol is a subcarrier resource of one OFDM symbol. Since the subcarrier is in the frequency domain, one resource unit may also be referred to as a frequency domain resource unit.
  • the definition of the RE resource unit is equally applicable to DFT-S-OFDM/SC-FDMA modulation, which is also a subcarrier resource of a DFT-S-OFDM/SC-FDMA symbol.
  • Single-carrier SC-FDMA modulation is LTE (Long Term) because it can basically maintain the excellent properties of multi-carrier OFDM and can have the advantages of low peak-to-average ratio (Low PAPR) of single carrier signals.
  • the Evolution, Long Term Evolution standard is adopted as a carrier modulation method for uplink transmission.
  • DFT discrete Fourier transform
  • FIG. 2 is a schematic diagram of a frequency domain generation method of an SC-FDMA signal in the related art.
  • S [s 0 , s 1 , ... s M-1 ] generated by DFT transform.
  • S [s 0 , s 1 , ... s M-1 ] generated by DFT transform.
  • S [s 0 , s 1 , ... s M-1 ] generated by DFT transform.
  • S DFT(D)
  • DFT() refers to DFT extended transform function
  • DFT extended transform function or DFT extended transform operation The precise operation rule of DFT transform can be represented by matrix operation.
  • Q is an M ⁇ M matrix, that is, a square matrix of M rows and M columns, the row index is from the 1st row to the Mth row, and the column index is from the 1st column to the Mth column, where the n+1th row, the m+th
  • the elements of column 1 are 0 ⁇ m ⁇ M, 0 ⁇ n ⁇ M.
  • M digital amplitude and phase modulation symbols D [d 0 , d 1 , ... d M-1 ]
  • M symbols S [s 0 , s 1 , ... s M - are obtained. 1 ], mapping S to M subcarriers, then performing N-point IFFT, adding a cyclic prefix, performing parallel-to-serial conversion, and transmitting through a transmitting circuit.
  • FIG. 3 is a schematic diagram of a time domain generating method of an SC-FDMA signal in the related art. As shown in Figure 3, this method has no DFT and IFFT operations, and is simpler to implement, and is suitable for scenes requiring low implementation complexity.
  • M digital amplitude and phase modulation symbols D [d 0 , d 1 ,...d M-1 ] are transmitted directly in the time domain, not directly carried in the RE. on. There are two ways to do this:
  • the time-domain generation method of single-carrier SC-FDMA has no explicit DFT and IFFT time-frequency transform, so the symbols carried on the frequency domain subcarriers that are not explicitly generated during the process are generated, or the frequency domain RE is not explicitly generated.
  • DFT/IDFT discrete Fourier transform / discrete Inverse Fourier Transform
  • the time domain generation method of SC-FDMA and the frequency domain generation method are equivalent.
  • An embodiment of the present invention provides an information processing method, as shown in FIG. 4, including:
  • Step 401 Extend a plurality of symbols by using a spreading sequence, wherein lengths of the extended sequences corresponding to the two or more symbols are different.
  • the lengths of the extended sequences corresponding to the two or more symbols indicate that the symbols are extended by using the extended sequence of at least two lengths, for example, some symbols of the plurality of symbols are expanded by using the extended sequence of the length L1, and the other part is extended.
  • the symbols are extended using a spreading sequence of length L2.
  • the specific value of the elements of the extended sequence is not limited in this application.
  • the information processing method provided in this embodiment extends the symbols by using extended sequences of different lengths, and the extension manner is more flexible and adapts to system requirements.
  • One extension method is, for example, a symbol s to be transmitted, and when the extension sequence [c 0 , c 1 , ... c L-1 ] of length L is used for expansion, the symbol s and the extension sequence are each The elements are multiplied to generate L symbols [s ⁇ c 0 , s ⁇ c 1 ,...s ⁇ c L-1 ].
  • the method further includes: determining, according to one of the following manners, the extension sequence: determining index information, selecting an extension sequence from the stored extension sequence table according to the index information; or determining index information, according to The index information generates the extended sequence by a preset generation rule.
  • the selecting the extended sequence from the stored extended sequence table according to the index information comprises: directly selecting the extended sequence from the extended sequence table according to the index information, or The index information is selected from the spread sequence formed by energy normalization of the spread sequence in the extended sequence table.
  • the index information is determined according to one of the following manners: determining, according to the system configuration information, determining, according to the indication information sent by the receiving end of the symbol, that the information bit corresponding to the symbol is subjected to cyclic redundancy check
  • the code word bits formed after the encoding are determined, and are randomly generated according to the number of symbols before the expansion and the number of the expanded symbols.
  • the randomly generated generation end of the symbol randomly generates index information.
  • the codeword bits (referred to as CRC codeword bits) formed by the cyclic redundancy check coding of the information bits corresponding to the symbols, including the information bits corresponding to the symbols, and the information bits are subjected to cyclic redundancy check coding.
  • the generated check bits are determined according to the codeword bits formed by the CRC encoding of the information bits, which is advantageous for the receiver of the non-scheduled access scheme to reconstruct the correct bits and eliminate the process, because the decoding is correct
  • the CRC codeword bits are all correct, so the extended sequence used by the transmitter can be accurately known, which can be useful for determining the specified value used by the transmitter at the transmitting end.
  • the expanding the plurality of symbols to be transmitted by using the extended sequence comprises: when the plurality of symbols are three, expanding one of the symbols by using a spreading sequence of length 4, using a length of 3
  • the spreading sequence extends the other two symbols; alternatively, two of the symbols are extended using a spreading sequence of length 4, and the other symbol is extended using a spreading sequence of length 2.
  • the expanding the plurality of symbols to be transmitted by using the extended sequence comprises: when the plurality of symbols are three, expanding the two symbols by using a spreading sequence of length 4, and using the length The extended sequence of 3 extends the other symbol.
  • the method further comprises mapping the extended symbols onto the same subcarrier in a certain transmission time interval.
  • the information processing method is applied to multi-carrier OFDM or SC-FDMA or discrete Fourier extended orthogonal frequency division multiplexing.
  • D [d 0 , d 1 , . . . , M M ]
  • D [d 0 , d 1 , . . . , M M ]
  • the extension sequence of length 3 is used to expand one of the symbols, and the extension sequence with an extension length of 4 is used to the other.
  • the number of symbols to be transmitted is two, but the number of symbols after expansion is limited to 5, one of the symbols is extended by using a spreading sequence of length 3, and the extended sequence with an extended length of 2 is used to the other.
  • the number of symbols to be transmitted is three, but when the number of symbols to be expanded is limited to 10, two of the symbols are extended using a spreading sequence of length 4, and the extended sequence of length 2 is used to the other.
  • the number of symbols to be transmitted is three, but when the number of symbols to be expanded is limited to 10, one of the symbols is extended by using a spreading sequence with an extended length of 4, and the extended sequence of length 3 is used for the other two.
  • One TTI (Transmission Time Interval, transmission time interval, length 1 ms) of the LTE/5G NR (New Radio) system has 14 OFDM symbols, or 14 SC-FDMA/DFT-S-OFDM symbols, of which 2 are Demodulation Reference Signal (DMRS).
  • DMRS Demodulation Reference Signal
  • Some applications require more pilot symbols, such as non-orthogonal multiple access, which supports a larger number of users, and requires more demodulation of pilot symbols, such as 4 demodulation pilot symbols. After removing the four demodulation pilot symbols, there are 10 OFDM/SC-FDMA/DFT-S-OFDM symbols left, that is, the number of symbols to be expanded in this scenario needs to be 10.
  • the number of symbols before expansion is three, and the symbol is expanded by using the extension sequence of the same length, the number of symbols after expansion may not be 10, which cannot satisfy the requirement.
  • the information symbol passes through OFDM/SC-FDMA/ After DFT-S-OFDM modulation, 3 OFDM/SC-FDMA/DFT-S-OFDM symbols are generated, and the application extension technology needs to extend the 3 OFDM/SC-FDMA/DFT-S-OFDM symbols if used.
  • extension is 3 OFDM/SC-FDMA/DFT-S-OFDM symbols, and the extension is 10 OFDM/SC-FDMA/DFT-S-OFDM symbols
  • the application can only be applied: where two OFDM/SC-FDMA/DFT-S-OFDM symbols are spread using one extended-length extended sequence and another OFDM/SC-FDMA/DFT-S-OFDM symbol is used in another Extended sequence extension of extended length.
  • some applications require three demodulation pilot symbols. After removing the three demodulation pilot symbols, there are 11 OFDM/SC-FDMA/DFT-S-OFDM symbols remaining, that is, the number of symbols to be expanded in this scenario needs to be 11. If the number of symbols before the expansion is three, and the symbols are extended by using the extension sequence of the same length, it may not be possible to make the number of the expanded symbols to be 11, which cannot satisfy the requirement. For example, the information symbols pass through OFDM/SC-FDMA/DFT.
  • -S-OFDM modulation will generate 3 OFDM/SC-FDMA/DFT-S-OFDM symbols, and the application extension technique needs to extend the 3 OFDM/SC-FDMA/DFT-S-OFDM symbols if the length is used.
  • extension 12 symbols, more than 11 symbols, therefore, if the extension is 3 OFDM/SC-FDMA/DFT-S-OFDM symbols, and the extension is 11 OFDM/SC-FDMA/DFT-S-OFDM symbols, Only the application can be applied: two OFDM/SC-FDMA/DFT-S-OFDM symbols are spread using one extended-length extended sequence, and the other OFDM/SC-FDMA/DFT-S-OFDM symbol is used in another Extended length extension sequence extension.
  • a general symbol extension technique may be a technique of spreading one symbol into a plurality of symbols, for example, a symbol s is extended by L extension sequences [c 0 , c 1 , ... c L-1 ] into L symbols [s ⁇ c 0 , s ⁇ c 1 , ... s ⁇ c L-1 ].
  • the symbol extension technique is applied to OFDM/SC-FDMA/DFT-S-OFDM modulation, and may be extended in units of one OFDM/SC-FDMA/DFT-S-OFDM symbol, specifically, one OFDM/SC.
  • the -FDMA/DFT-S-OFDM symbol is extended to L OFDM/SC-FDMA/DFT-S-OFDM symbols by an L-long spreading sequence, as shown in Figures 5-7.
  • the process of expanding one OFDM symbol into a plurality of OFDM symbols correspondingly is as shown in FIG. 5.
  • the symbol extension may extend the digital amplitude modulation symbols before subcarrier mapping, or may extend the subcarrier mapped symbols, or
  • the symbols after the IFFT transformation can be extended, or the symbols after the CP addition can be expanded.
  • symbol extension may extend the digital amplitude modulation symbols before DFT for symbol extension, or may The symbols after DFT are extended, or the symbol extension may extend the subcarrier mapped symbols, or the IFFT transformed symbols may be extended, or the CP added symbols may be extended.
  • the process of expanding an SC-FDMA symbol into a plurality of SC-FDMA symbols correspondingly is as shown in FIG. 7.
  • the sign extension can expand the digital amplitude modulation symbols before frequency shifting, or expand the symbols after frequency shifting. Or you can extend the symbol after adding the CP.
  • both the receiving end and the transmitting end of the symbol contain an extended sequence table storing these extended sequences.
  • the example shown in FIG. 8 requires an extension of length 4.
  • the sequence and the extended sequence of length 2, the receiving end and the transmitting end of the symbol need to include an extended sequence table storing a spreading sequence of length 4 and a spreading sequence of length 2, and then obtaining a table according to the sequence index.
  • the required extension sequence of length 4 and the extension sequence of length 2 are required.
  • the extended sequence of length 4 may be all or part of the extended sequence of Table 1, or all or part of the sequence formed by energy normalization of the extended sequence in the table; or Table 2 and All or part of the extended sequence of Table 3, or all or part of the sequence formed by energy normalization of the extended sequences in Tables 2 and 3.
  • Table 2 is a sequence of length 2
  • Table 3 is a sequence of length 2
  • the receiving end and the transmitting end of the symbol may both include an extended sequence table storing all or part of the sequence of Table 4.
  • Table 4 simultaneously stores a spreading sequence of length 4 and an extended sequence of length 2.
  • all or part of the sequence formed by the energy normalization of the extension sequence of length 4 and the extension sequence of length 2 in Table 4 are stored.
  • Table 4 contains both a spreading sequence of length 4 and a spreading sequence of length 2
  • the example shown in FIG. 9 requires a spreading sequence of length 4 and a spreading sequence of length 3, and both the receiving end and the transmitting end of the symbol need to include an extension sequence storing a length of 4 and an extension of a spreading sequence of length 3.
  • the sequence table then proceeds to the table according to the sequence index to obtain the desired extended sequence of length 4 and the extended sequence of length 3.
  • the extended sequence of length 4 may be all or part of the extended sequence of Table 1, or all or part of the sequence formed by the energy normalization of the extended sequence in the table; specifically, the length is 3
  • the extended sequence may be all or part of the extended sequence of Tables 5 to 8 below, or all or part of the sequence formed by energy normalization of the extended sequences in Tables 5 to 8.
  • Table 5 is a sequence of length 3
  • Table 6 is a sequence of length 3
  • Table 7 is a sequence of three lengths of three
  • Table 8 is a sequence of three lengths of three
  • the receiving end and the transmitting end of the symbol may both include an extended sequence table, which stores all or part of the sequence of Table 9 or Table 10 or Table 11, and Table 9 or Table 10 or Table 11 simultaneously stores the length of 4 The extended sequence and the extended sequence of length 3.
  • all or part of the sequence formed by the energy normalization of the extension sequence of length 4 and the extension sequence of length 3 in Table 9 or Table 10 is stored.
  • Table 9 contains both a spreading sequence of length 4 and a spreading sequence of length 3.
  • Table 10 contains both a spreading sequence of length 4 and a spreading sequence of length 3.
  • Table 11 contains both a spreading sequence of length 4 and a spreading sequence of length 3.
  • the extended sequence of the two lengths shown in FIG. 8 and FIG. 9 can obtain the index information of the extended sequence by using the system configuration information, the indication information of the receiving end of the symbol, and the cyclic redundancy check CRC coding according to the information bit.
  • the post-formed bits are determined based on the number of symbols before expansion and the number of symbols after expansion.
  • the extended sequence of the two lengths is obtained from the stored extended sequence table, or the extended sequence is generated according to the index information and the preset generation rule.
  • the preset generation rule is, for example, a formula, and an extended sequence is generated according to the formula, and the index information is relative to the input parameter of the formula.
  • an embodiment of the present invention provides an information processing apparatus 100 including a memory 1010 and a processor 1020.
  • the memory 1010 stores a program, when the program is read and executed by the processor 1020. Do the following: Extend multiple symbols using an extended sequence, where the lengths of the extended sequences corresponding to two or more symbols are different.
  • the program when executed by the processor, performs the information processing method of any of the embodiments.
  • An embodiment of the invention provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement any The information processing method described in the embodiment.
  • the computer readable storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes. Medium.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种信息处理方法及装置、计算机可读存储介质。该信息处理方法包括:使用扩展序列对多个符号进行扩展,其中,两个或两个以上符号所对应的扩展序列的长度不同。

Description

一种信息处理方法及装置、计算机可读存储介质
本申请要求在2018年04月27日提交中国专利局、申请号为201810395932.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤指一种信息处理方法及装置、计算机可读存储介质。
背景技术
基于符号扩展的技术是指使用扩展序列对待传输符号进行扩展(待传输符号包括数字幅相调制符号、数字幅相调制符号经过一系列处理后生成的符号、以及导频符号)。
具体地,一个待传输符号s,使用长度为L的扩展序列进行扩展,就是符号s与扩展序列里的每个元素相乘,生成L个符号的操作,例如,设其中一条L长的扩展序列为[c 0,c 1,...c L-1],符号s使用此扩展序列扩展后生成的L个符号为[s·c 0,s·c 1,...s·c L-1]。当存在多个待传输符号时,均使用长度为L的扩展序列进行扩展。该方案有利于简化发射侧的扩展和接收侧的解扩操作,但灵活性不够,应用场景受限。
发明内容
本发明至少一实施例提供了一种信息处理方法及装置、计算机可读存储介质。
为了达到本发明目的,本发明至少一实施例提供了一种信息处理方法,包括:
使用扩展序列对多个符号进行扩展,其中,两个或两个以上符号所对应的扩展序列的长度不同。
本发明至少一实施例提供一种信息处理装置,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现任一实施例所述的信息处理方法。
本发明至少一实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理 器执行,以实现任一实施例所述的信息处理方法。
与相关技术相比,本发明至少一实施例中,对待传输的多个符号使用扩展序列进行扩展时,使用至少2个长度不同的扩展序列进行扩展,满足对扩展后的符号数量有要求的场景的需求。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为相关技术中多载波OFDM调制示意图;
图2为相关技术中SC-FDMA信号的频域产生方法示意图;
图3为相关技术中SC-FDMA信号的时域产生方法示意图;
图4为本发明一实施例提供的信息处理方法流程图;
图5为本发明一实施例提供的多载波OFDM符号扩展示意图;
图6为本发明一实施例提供的DFT-S-OFDM符号扩展示意图;
图7为本发明一实施例提供的SC-FDMA符号扩展示意图;
图8为本发明一实施例提供的符号扩展示意图;
图9为本发明另一实施例提供的符号扩展示意图;
图10为本发明一实施例提供的信息处理装置框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
符号扩展技术可以应用于CP(Cyclic Prefix,循环前缀)-OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用),也可以应用于带CP的低峰 均比的SC-FDMA(Single-carrier Frequency-Division Multiple Access,单载波频分多址)/DFT-S-OFDM(Discrete Fourier Transform-Spread OFDM,离散傅里叶扩展正交频分复用)发射方案。
图1是相关技术中多载波OFDM调制示意图,如图1所示,数字幅相调制符号d(xPSK/xQAM symbol,例如BPSK(Binary Phase Shift Keying,二进制相移键控)、QPSK(Quadrature Phase Shift Keying,正交相移键控)、16QAM(Quadrature Amplitude Modulation,正交幅度调制)等)(有时可以简称为调制符号)先分组,每组M个符号,即D=[d 0,d 1,...d M-1]。直接映射到一个OFDM符号的M个子载波上。也可以说,每个资源单元(Resource Element,RE)直接承载一个数字幅相调制符号,或者这M个数字幅相调制符号被一个OFDM符号承载(因为这里一个OFDM符号有M个子载波),或者一个OFDM符号承载了M个数字幅相调制符号。之后进行N点快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT),添加循环前缀、并行到串行转换后,通过发射电路进行发射。这里OFDM符号的一个资源单元,是一个OFDM符号的一个子载波资源,由于子载波是在频域的,所以一个资源单元也可以称为一个频域资源单元。而且,RE资源单元的定义也同样适用于DFT-S-OFDM/SC-FDMA调制,即也是一个DFT-S-OFDM/SC-FDMA符号的一个子载波资源。单载波化的SC-FDMA调制由于可以基本保持多载波OFDM的优良属性,并且可以有单载波信号的低峰均比(Low PAPR,Low Peak to Average Power Ratio)的优点,因此被LTE(Long Term Evolution,长期演进)标准采纳为上行传输的载波调制方法。单载波化的SC-FDMA信号产生方法可以有两种:1)基于离散傅里叶变换(DFT)扩展的频域生成方法,即DFT-S-OFDM方法;2)直接时域生成方法。
图2是相关技术中SC-FDMA信号的频域产生方法示意图。如图2所示,单载波化SC-FDMA的频域产生方法,即DFT-S-OFDM调制与多载波OFDM方式相同,每个DFT-S-OFDM符号也是承载M个数字幅相调制符号D=[d 0,d 1,...d M-1]。但与多载波OFDM方式不同的是,在DFT-S-OFDM调制符号中,这M个数字幅相调制符号D=[d 0,d 1,...d M-1]是在时域上传输的,而不是直接承载在频域的RE上的。确切地说,一个DFT-S-OFDM符号的M个RE不是直接承载M个数字幅相调制符号D=[d 0,d 1,...d M-1],而是承载这M个数字幅相调制符号D=[d 0,d 1,...d M-1]经过DFT变换扩展后生成的M个符号S=[s 0,s 1,...s M-1]。S和D的关 系可以表示为S=DFT(D),这里DFT()是指DFT扩展变换函数,或者DFT扩展变换功能或DFT扩展变换操作,DFT变换的精确运算规则可以用矩阵运算表示,一种常见的M点DFT变换操作S=DFT(D)的具体矩阵运算规则如下:
Figure PCTCN2019083897-appb-000001
即S=QD。
其中
Figure PCTCN2019083897-appb-000002
是该M点DFT变换的变换矩阵。Q是一个M×M的矩阵,即M行M列的方阵,行索引从第1行到第M行,列索引从第1列到第M列,其中第n+1行,第m+1列的元素是
Figure PCTCN2019083897-appb-000003
0<m≤M,0<n≤M。
可见,DFT扩展变换是一种线性运算,即一个DFT-S-OFDM符号的每个RE承载的信号是这M个数字幅相调制符号D=[d 0,d 1,...d M-1]的线性组合。
M个数字幅相调制符号D=[d 0,d 1,...d M-1]进行M点DFT扩展后,得到M个符号S=[s 0,s 1,...s M-1],将S映射到M个子载波上,之后进行N点IFFT,添加循环前缀,进行并行到串行转换后,通过发射电路进行发射。
图3是相关技术中SC-FDMA信号的时域产生方法示意图。如图3所示,这种方式没有DFT和IFFT操作,实现上简单些,适合一些要求低实现复杂度的场景。与多载波OFDM方式不同,SC-FDMA调制中,M个数字幅相调制符号D=[d 0,d 1,...d M-1]是直接在时域上传输,不是直接承载在RE上。有两种实现方式:
没有块重复,具体的,M个数字幅相调制符号D=[d 0,d 1,...d M-1]进行用户专有频率偏移后,添加循环前缀,进行脉冲滤波,通过发射电路进行发射。如图3中(a)所示。
有块重复,具体的,M个数字幅相调制符号D=[d 0,d 1,...d M-1]进行用户专有块重复后,再进行用户专有频率偏移,添加循环前缀,进行脉冲滤波,通过发射电路进行发射。如图3中(b)所示。
单载波化SC-FDMA的时域产生方法没有显式的DFT和IFFT时频变换,所以产生过程中没有显式产生的频域子载波上承载的符号,或者说没有显式的产生频域RE上承载的符号,但只要将一个SC-FDMA符号通过离散傅里叶变换到频域,还是能够产生这个SC-FDMA符号的M个子载波上的频域符号S=[s 0,s 1,...s M-1]的。因此可以说SC-FDMA时域产生方法产生的一个SC-FDMA符号中隐式地包含了M个子载波上的M个频域符号S=[s 0,s 1,...s M-1],或者说隐式地包含了M个频域RE上承载的M个频域符号S=[s 0,s 1,...s M-1],而这M个频域符号S=[s 0,s 1,...s M-1]与M个时域数字幅相调制符号D=[d 0,d 1,...d M-1]也是可以通过离散傅里叶变换/离散傅里叶逆变换(DFT/IDFT)转换的,即S=DFT(D)。相对的,频域产生方法,即DFT-S-OFDM调制有显式的DFT和IFFT时频变换,产生过程中会显式地产生M个子载波上的M个频域符号S=[s 0,s 1,...s M-1]。
所以,也可以说SC-FDMA时域产生方法产生的一个SC-FDMA符号中隐式地包含了M个频域RE上承载的M个频域符号S=[s 0,s 1,...s M-1],其中频域符号是时域的M个数字幅相调制符号D=[d 0,d 1,...d M-1]的线性组合。SC-FDMA的时域产生方法和频域产生方法是等价的。
相关技术中基于符号扩展的技术,一次传输的所有待传输符号使用相同长度的扩展序列进行扩展。具体地,一次传输的所有待传输符号有N个,都使用长度为L的扩展序列进行扩展,最终生成N*L个扩展后的符号。但如果一次传输可用的符号不是N*L个时,无法应用该扩展技术。因此,本申请至少一实施例中,使用2种或2种以上长度的扩展序列对符号进行扩展。下面通过具体实施例进一步说明本申请。
实施例一
本发明一实施例提供一种信息处理方法,如图4所示,包括:
步骤401,使用扩展序列对多个符号进行扩展,其中,两个或两个以上符号所对应的扩展序列的长度不同。
其中,两个或两个以上符号所对应的扩展序列的长度不同表示使用至少两 种长度的扩展序列对符号进行扩展,比如,多个符号中一部分符号使用长度L1的扩展序列进行扩展,另一部分符号使用长度为L2的扩展序列进行扩展。扩展序列的元素的具体取值本申请对此不作限定。
本实施例提供的信息处理方法,使用不同长度的扩展序列对符号进行扩展,扩展方式更为灵活,适应***需求。
其中,一种扩展方式比如为:一个待传输符号s,使用长度为L的扩展序列[c 0,c 1,...c L-1]进行扩展时,将符号s与扩展序列里的每个元素相乘,生成L个符号[s·c 0,s·c 1,...s·c L-1]。
在一实施例中,所述方法还包括,通过如下方式之一确定所述扩展序列:确定索引信息,根据所述索引信息从存储的扩展序列表中选择扩展序列;或者,确定索引信息,根据所述索引信息通过预设生成规则生成所述扩展序列。
在一实施例中,所述根据所述索引信息从存储的扩展序列表中选择所述扩展序列包括:根据所述索引信息直接从所述扩展序列表中选择所述扩展序列,或者,根据所述索引信息从所述扩展序列表中的扩展序列进行能量归一化后形成的扩展序列中选择所述扩展序列。
在一实施例中,所述索引信息根据如下方式之一确定:根据***配置信息确定,根据所述符号的接收端发送的指示信息确定,根据所述符号对应的信息比特经过循环冗余校验编码后形成的码字比特确定,根据扩展前的符号数量和扩展后的符号数量确定,随机生成。其中,所述随机生成为所述符号的发送端随机生成索引信息。其中,所述符号对应的信息比特经过循环冗余校验编码后形成的码字比特(可简称CRC码字比特),包括所述符号对应的信息比特以及这些信息比特经过循环冗余校验编码产生的校验比特,而根据信息比特CRC编码后形成的码字比特决定扩展序列,有利于免调度接入方案的接收机将译码正确比特重构并消除这一过程,因为译码正确后,CRC码字比特都是正确的,因此可以准确地知道发射机使用的扩展序列,这样可以有利于确定发送端的发射机使用的指定值。
其中,所述根据扩展前的符号数量和扩展后的符号数量确定包括:获取符号数量目标值(即扩展后的符号数量),根据所述符号数量目标值确定扩展序列的长度,使得扩展后的符号数为符号数量目标值。比如,待扩展的符号为2 个,符号数量目标值为9,则可以选择一个长度为4的扩展序列,一个长度为5的扩展序列,从而扩展后的符号数为4+5=9,即扩展后的符号数为符号数量目标值。
在一实施例中,所述对待传输的多个符号使用扩展序列进行扩展包括:当所述多个符号为3个时,使用长度为4的扩展序列对其中一个符号进行扩展,使用长度为3的扩展序列对另外两个符号进行扩展;或者,使用长度为4的扩展序列对其中两个符号进行扩展,使用长度为2的扩展序列对另外一个符号进行扩展。
在一实施例中,所述对待传输的多个符号使用扩展序列进行扩展包括:当所述多个符号为3个时,使用长度为4的扩展序列对其中两个符号进行扩展,使用长度为3的扩展序列对另外一个符号进行扩展。
在一实施例中,所述方法还包括,将扩展后的符号映射到一定传输时间间隔中的同一个子载波上。
在一实施例中,所述信息处理方法应用于多载波OFDM或SC-FDMA或离散傅里叶扩展正交频分复用。比如,应用到多载波OFDM时,可以在进行子载波映射前,将D=[d 0,d 1,...d M-1]使用本实施例提供的扩展方法进行扩展。又比如,应用到SC-FDMA时,将D=[d 0,d 1,...d M-1]使用本实施例提供的扩展方法进行扩展后,再进行M点DFT扩展。需要说明的是,不限于对D=[d 0,d 1,...d M-1]进行扩展,多载波OFDM或SC-FDMA过程中的其他符号也可以使用本实施例提供的信息处理方法进行扩展。另外,本实施例提供的信息处理方法不限于多载波OFDM或SC-FDMA,也可应用其他需要进行符号扩展的场景。
实施例二
本实施例中,待传输符号是2个,但扩展后的符号数被限制为7时,则使用长度为3的扩展序列对其中一个符号进行扩展,使用扩展长度为4的扩展序列对另一个符号进行扩展,扩展后得到的符号数为3+4=7。
实施例三
本实施例中,待传输符号是2个,但扩展后的符号数被限制为5时,则使用长度为3的扩展序列对其中一个符号进行扩展,使用扩展长度为2的扩展序列对另一个符号进行扩展,扩展后得到的符号数为3+2=5。
实施例四
本实施例中,待传输符号是3个,但扩展后的符号数被限制为10时,则使用长度为4的扩展序列对其中两个符号进行扩展,使用长度为2的扩展序列对另一个符号进行扩展,扩展后得到的符号数为4*2+2=10。
实施例五
本实施例中,待传输符号是3个,但扩展后的符号数被限制为10时,则使用扩展长度为4的扩展序列对其中一个符号进行扩展,使用长度为3的扩展序列对另两个符号进行扩展,扩展后得到的符号数为4+3*2=10。
实施例六
本实施例中,待传输符号是3个,但扩展后的符号数被限制为11时,则使用扩展长度为4的扩展序列对其中两个符号进行扩展,使用长度为3的扩展序列对另一个符号进行扩展,扩展后得到的符号数为4*2+3=11。
实施例七
LTE/5G NR(New Radio)***的1个TTI(Transmission Time Interval,传输时间间隔,长度为1ms)有14个OFDM符号,或者14个SC-FDMA/DFT-S-OFDM符号,其中2个是解调导频符号(Demodulation Reference Signal,DMRS)。有些应用需要更多导频符号,例如支持用户数比较多的非正交多址接入,需要更多的解调导频符号,例如需要4个解调导频符号。去掉这4个解调导频符号后,剩下10个OFDM/SC-FDMA/DFT-S-OFDM符号,即该场景下扩展后的符号数需要为10个。如果扩展前的符号数为3个,使用相同长度的扩展序列对符号进行扩展,则可能无法使得扩展后的符号数为10个,从而无法满足需求,比如,信 息符号经过OFDM/SC-FDMA/DFT-S-OFDM调制后会生成3个OFDM/SC-FDMA/DFT-S-OFDM符号,则应用扩展技术需要对这3个OFDM/SC-FDMA/DFT-S-OFDM符号进行扩展,如果使用长度为3的扩展序列,则扩展后为3*3=9个OFDM/SC-FDMA/DFT-S-OFDM符号,不是10个符号,如果使用长度为4的扩展序列,则扩展后为3*4=12个符号,超过10个符号,因此,如果扩展前是3个OFDM/SC-FDMA/DFT-S-OFDM符号,而扩展后是10个OFDM/SC-FDMA/DFT-S-OFDM符号,则只能应用本申请:其中两个OFDM/SC-FDMA/DFT-S-OFDM符号使用一种扩展长度的扩展序列扩展,另一个OFDM/SC-FDMA/DFT-S-OFDM符号使用另一种扩展长度的扩展序列扩展。
另外,有些应用需要3个解调导频符号。去掉这3个解调导频符号后,剩下11个OFDM/SC-FDMA/DFT-S-OFDM符号,即该场景下扩展后的符号数需要为11个。如果扩展前的符号数为3个,使用相同长度的扩展序列对符号进行扩展,则可能无法使得扩展后的符号数为11个,从而无法满足需求比如,信息符号经过OFDM/SC-FDMA/DFT-S-OFDM调制后会生成3个OFDM/SC-FDMA/DFT-S-OFDM符号,则应用扩展技术需要对这3个OFDM/SC-FDMA/DFT-S-OFDM符号进行扩展,如果使用长度为3的扩展序列,则扩展后为3*3=9个OFDM/SC-FDMA/DFT-S-OFDM符号,不是11个符号,如果使用长度为4的扩展序列,则扩展后为3*4=12个符号,超过11个符号,因此,如果扩展前是3个OFDM/SC-FDMA/DFT-S-OFDM符号,而扩展后是11个OFDM/SC-FDMA/DFT-S-OFDM符号,则只能应用本申请:其中两个OFDM/SC-FDMA/DFT-S-OFDM符号使用一种扩展长度的扩展序列扩展,另一个OFDM/SC-FDMA/DFT-S-OFDM符号使用另一种扩展长度的扩展序列扩展。
通用的符号扩展技术可以是将一个符号扩展成多个符号的技术,例如符号s被L长的扩展序列[c 0,c 1,...c L-1],扩展成L个符号[s·c 0,s·c 1,...s·c L-1]。而符号扩展技术应用到OFDM/SC-FDMA/DFT-S-OFDM调制中,也可以是以一个OFDM/SC-FDMA/DFT-S-OFDM符号为单位进行扩展,具体地,将一个OFDM/SC-FDMA/DFT-S-OFDM符号,通过L长扩展序列,相应地扩展成L个OFDM/SC-FDMA/DFT-S-OFDM符号,具体扩展方式如图5~7所示。
将一个OFDM符号相应地扩展成若干个OFDM符号的过程如图5所示,符号扩展可以对子载波映射前的数字幅相调制符号进行扩展,或者可以对子载波 映射后的符号进行扩展,或者可以对IFFT变换后的符号进行扩展,或者可以对加CP后的符号进行扩展。
将一个DFT-S-OFDM符号相应地扩展成若干个DFT-S-OFDM符号的过程如图6所示,符号扩展可以对符号扩展可以对DFT前的数字幅相调制符号进行扩展,或者可以对DFT后的符号进行扩展,或者符号扩展可以对子载波映射后的符号进行扩展,或者可以对IFFT变换后的符号进行扩展,或者可以对加CP后的符号进行扩展。
将一个SC-FDMA符号相应地扩展成若干个SC-FDMA符号的过程如图7所示,符号扩展可以对对频率搬移前的数字幅相调制符号进行扩展,或者对频率搬移后的符号进行扩展,或者可以对加CP后的符号进行扩展。
具体地,其中两个OFDM/SC-FDMA/DFT-S-OFDM符号使用长度为4的扩展序列进行扩展,扩展成2*4=8个OFDM/SC-FDMA/DFT-S-OFDM符号,另一个OFDM/SC-FDMA/DFT-S-OFDM符号使用长度为2的扩展序列进行扩展。这样扩展后刚好是2*4+2=10个OFDM/SC-FDMA/DFT-S-OFDM符号,映射到一个TTI中。如图8所示。
或者,其中两个OFDM/SC-FDMA/DFT-S-OFDM符号使用扩展长度为3的扩展序列进行扩展,另一个OFDM/SC-FDMA/DFT-S-OFDM符号使用长度为4的扩展序列进行扩展。这样扩展后刚好是3*2+4=10个OFDM/SC-FDMA/DFT-S-OFDM符号,映射到一个TTI中。如图9所示。
其中两个OFDM/SC-FDMA/DFT-S-OFDM符号使用长度为4的扩展序列进行扩展,扩展成2*4=8个OFDM/SC-FDMA/DFT-S-OFDM符号,另一个OFDM/SC-FDMA/DFT-S-OFDM符号使用长度为3的扩展序列进行扩展。这样扩展后刚好是2*4+3=11个OFDM/SC-FDMA/DFT-S-OFDM符号,映射到一个TTI中。
为了实施上述符号扩展,需要产生两种长度的扩展序列,这个过程需要所述符号的接收端和发送端都包含存储这些扩展序列的扩展序列表,例如图8所示例子需要长度为4的扩展序列和长度为2的扩展序列,则所述符号的接收端和发送端都需要包含存储长度为4的扩展序列和长度为2的扩展序列的扩展序列表,然后根据序列索引去表格中得到所需的长度为4的扩展序列和长度为2 的扩展序列。
具体的,其中长度为4的扩展序列可以是表1的扩展序列的全部或部分,或者是该表格中的扩展序列经过能量归一化后形成的序列的全部或部分;也可以是表2和表3的扩展序列的全部或部分,或者是表2和表3中的扩展序列经过能量归一化后形成的序列的全部或部分。其中,以表1中第一个扩展序列为例,能量归一是指每个元素/2,(1/2)^2+(1/2)^2+(1/2)^2+(1/2)^2=1。其余元素类似。
表1长度为4的扩展序列
Figure PCTCN2019083897-appb-000004
Figure PCTCN2019083897-appb-000005
其中,i为虚数单位且i=sqrt(-1),sqrt()为平方根运算,下文中i=sqrt(-1),不再说明。
表2长度为2的扩展序列一
Figure PCTCN2019083897-appb-000006
表3长度为2的扩展序列二
Figure PCTCN2019083897-appb-000007
具体地,所述符号的接收端和发送端可以都包含一个扩展序列表,存储了表4的全部或者部分序列,表4同时存储了长度为4的扩展序列和长度为2的扩展序列。有些应用场景中,会存储表4中的长度为4的扩展序列和长度为2的扩展序列分别经过能量归一化后形成的序列的全部或部分。
表4同时包含长度为4的扩展序列和长度为2的扩展序列
Figure PCTCN2019083897-appb-000008
Figure PCTCN2019083897-appb-000009
例如图9所示例子需要长度为4的扩展序列和长度为3的扩展序列,则所述符号的接收端和发送端都需要包含存储长度为4的扩展序列和长度为3的扩展序列的扩展序列表,然后根据序列索引去表格中得到所需的长度为4的扩展序列和长度为3的扩展序列。
具体的,长度为4的扩展序列可以是表1的扩展序列的全部或部分,或者是该表格中的扩展序列经过能量归一化后形成的序列的全部或部分;具体的,长度为3的扩展序列可以是以下表5至表8的扩展序列的全部或部分,或者是表5至表8中的扩展序列经过能量归一化后形成的序列的全部或部分。
表5长度为3的扩展序列一
Figure PCTCN2019083897-appb-000010
Figure PCTCN2019083897-appb-000011
表6长度为3的扩展序列二
Figure PCTCN2019083897-appb-000012
其中,表6中,w=exp(i*2/3*π),w2=w*w=exp(i*4/3*π)。
表7长度为3的扩展序列三
Figure PCTCN2019083897-appb-000013
其中,表7中,a=(1+sqrt(5))/2。
表8长度为3的扩展序列四
Figure PCTCN2019083897-appb-000014
具体地,所述符号的接收端和发送端可以都包含一个扩展序列表,存储了 表9或者表10或者表11的全部或者部分序列,表9或者表10或者表11同时存储了长度为4扩展序列和长度为3的扩展序列。有些应用场景中,会存储表9或者表10中的长度为4的扩展序列和长度为3的扩展序列分别经过能量归一化后形成的序列的的全部或部分。
表9同时包含长度为4的扩展序列和长度为3的扩展序列
Figure PCTCN2019083897-appb-000015
Figure PCTCN2019083897-appb-000016
表10同时包含长度为4的扩展序列和长度为3的扩展序列
Figure PCTCN2019083897-appb-000017
Figure PCTCN2019083897-appb-000018
其中,表10中w=exp(i*2/3*π),w2=w*w=exp(i*4/3*π)。
表11同时包含长度为4的扩展序列和长度为3的扩展序列
Figure PCTCN2019083897-appb-000019
Figure PCTCN2019083897-appb-000020
其中,表11中,a=(1+sqrt(5))/2。
需要说明的是,上述表格中的扩展序列取值仅为示例,可以根据需要取其他值。
图8和图9所述两种长度的扩展序列可以通过以下方式之一得到扩展序列的索引信息:通过***配置信息,所述符号的接收端的指示信息,根据信息比特循环冗余校验CRC编码后形成的比特决定,根据扩展前符号数量和扩展后符号数量确定。
然后根据索引信息,从存储的扩展序列表中得到所述两种长度的扩展序列,或者,根据索引信息和预设生成规则生成扩展序列。预设生成规则比如为一公式,根据该公式生成扩展序列,此时索引信息相对于该公式的输入参数。
如图10所示,本发明一实施例提供一种信息处理装置100,包括存储器1010和处理器1020,所述存储器1010存储有程序,所述程序在被所述处理器1020读取执行时,执行以下操作:使用扩展序列对多个符号进行扩展,其中,两个或两个以上符号所对应的扩展序列的长度不同。
在另一实施例中,所述程序在被所述处理器读取执行时,还执行任一实施例所述的信息处理方法。
本发明一实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现任一实施例所述的信息处理方法。
所述计算机可读存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种信息处理方法,包括:
    使用扩展序列对多个符号进行扩展,其中,至少两个符号所对应的扩展序列的长度不同。
  2. 根据权利要求1所述的信息处理方法,还包括:通过如下方式之一确定所述扩展序列:
    确定索引信息,根据所述索引信息从存储的扩展序列表中选择所述扩展序列;或者,
    确定索引信息,根据所述索引信息通过预设生成规则生成所述扩展序列。
  3. 根据权利要求2所述的信息处理方法,其中,所述索引信息根据如下方式之一确定:根据***配置信息确定,根据所述符号的接收端发送的指示信息确定,根据所述符号对应的信息比特经过循环冗余校验编码后形成的码字比特确定,根据扩展前的符号数量和扩展后的符号数量确定,随机生成。
  4. 根据权利要求2或3所述的信息处理方法,其中,所述根据所述索引信息从存储的扩展序列表中选择所述扩展序列包括:根据所述索引信息直接从存储的扩展序列表中选择所述扩展序列,或者,根据所述索引信息从存储的扩展序列表中的扩展序列进行能量归一化后形成的扩展序列中选择所述扩展序列。
  5. 根据权利要求1-4任一项所述的信息处理方法,其中,所述使用扩展序列对多个符号进行扩展包括:
    在所述多个符号为3个的情况下,使用长度为4的扩展序列对所述多个符号中一个符号进行扩展,使用长度为3的扩展序列对另外两个符号进行扩展;或者,使用长度为4的扩展序列对所述多个符号中两个符号进行扩展,使用长度为2的扩展序列对另外一个符号进行扩展。
  6. 根据权利要求1-4任一项所述的信息处理方法,其中,所述使用扩展序列对多个符号进行扩展包括:
    在所述多个符号为3个的情况下,使用长度为4的扩展序列对所述多个符号中两个符号进行扩展,使用长度为3的扩展序列对另外一个符号进行扩展。
  7. 根据权利要求1-6任一项所述的信息处理方法,还包括:将扩展后的符号映射到一定传输时间间隔中的同一个子载波上。
  8. 根据权利要求1至7任一项所述的信息处理方法,其中,所述信息处理方法应用于多载波正交频分复用或离散傅里叶扩展正交频分复用或单载波频分多址。
  9. 一种信息处理装置,包括存储器和处理器,所述存储器存储有程序,所 述程序在被所述处理器读取执行时,实现如权利要求1至8任一所述的信息处理方法。
  10. 一种计算机可读存储介质,存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求1至8任一所述的信息处理方法。
PCT/CN2019/083897 2018-04-27 2019-04-23 一种信息处理方法及装置、计算机可读存储介质 WO2019206144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810395932.9A CN110417698B (zh) 2018-04-27 2018-04-27 一种信息处理方法及装置、计算机可读存储介质
CN201810395932.9 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019206144A1 true WO2019206144A1 (zh) 2019-10-31

Family

ID=68294911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083897 WO2019206144A1 (zh) 2018-04-27 2019-04-23 一种信息处理方法及装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110417698B (zh)
WO (1) WO2019206144A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124573A1 (zh) * 2022-12-16 2024-06-20 华为技术有限公司 一种序列传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022293A2 (en) * 2007-08-14 2009-02-19 Nokia Corporation Variable transmission structure for reference signals in uplink messages
CN103312438A (zh) * 2012-03-12 2013-09-18 中兴通讯股份有限公司 上行信息发送方法及装置
CN105493426A (zh) * 2013-08-30 2016-04-13 高通股份有限公司 用于处理突发干扰的资源映射

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916783B (zh) * 2011-08-02 2015-09-30 华为技术有限公司 信息发送和接收处理方法、基站和用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022293A2 (en) * 2007-08-14 2009-02-19 Nokia Corporation Variable transmission structure for reference signals in uplink messages
CN103312438A (zh) * 2012-03-12 2013-09-18 中兴通讯股份有限公司 上行信息发送方法及装置
CN105493426A (zh) * 2013-08-30 2016-04-13 高通股份有限公司 用于处理突发干扰的资源映射

Also Published As

Publication number Publication date
CN110417698A (zh) 2019-11-05
CN110417698B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US9942011B2 (en) Wireless communication apparatus and the method thereof
JP5890391B2 (ja) 無線通信システムにおける制御情報の伝送方法及び装置
JP5782052B2 (ja) 無線通信システムにおける制御情報の伝送方法及び装置
EP2618505B1 (en) Method and device for uplink resource allocation
JP5973353B2 (ja) 無線通信システムにおける制御情報の伝送方法及び装置
US11791941B2 (en) Methods and apparatuses for transmitting and receiving uplink information
WO2017121415A1 (zh) 一种上行信号发送方法和装置
US11177992B2 (en) Sequence-based signal processing method and signal processing apparatus
WO2011087314A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
JP5397080B2 (ja) 伝送リソース割当方法及び伝送リソース割当装置
US11329850B2 (en) Signal processing method and apparatus
US11894955B2 (en) Systems and methods for transmitting control data in a communication network
WO2020143591A1 (zh) 传输解调参考信号的方法、终端设备和网络设备
CN111510412A (zh) 一种数据调制方法、装置和设备
WO2019206144A1 (zh) 一种信息处理方法及装置、计算机可读存储介质
WO2017121416A1 (zh) 上行控制信息的发送方法及装置
CN113765635B (zh) 数据变换预处理方法、装置及网络设备
CN112514342B (zh) 用于dft-s-ofdm的符号合并方案
CN117176535A (zh) 信号的生成方法、装置、存储介质和计算机设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.03.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19791536

Country of ref document: EP

Kind code of ref document: A1