WO2019205744A1 - 图像畸变校正方法及装置、显示设备、计算机可读介质、电子设备 - Google Patents

图像畸变校正方法及装置、显示设备、计算机可读介质、电子设备 Download PDF

Info

Publication number
WO2019205744A1
WO2019205744A1 PCT/CN2019/071091 CN2019071091W WO2019205744A1 WO 2019205744 A1 WO2019205744 A1 WO 2019205744A1 CN 2019071091 W CN2019071091 W CN 2019071091W WO 2019205744 A1 WO2019205744 A1 WO 2019205744A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
adjusted
correction
image distortion
circle
Prior art date
Application number
PCT/CN2019/071091
Other languages
English (en)
French (fr)
Inventor
楚明磊
张�浩
陈丽莉
王晨如
刘亚丽
孙玉坤
闫桂新
孙建康
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/473,110 priority Critical patent/US11423518B2/en
Publication of WO2019205744A1 publication Critical patent/WO2019205744A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • G06V10/242Aligning, centring, orientation detection or correction of the image by image rotation, e.g. by 90 degrees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user

Definitions

  • the present disclosure relates to the field of display, and in particular, to an image distortion correction method, an image distortion correction device, a display device, a computer readable medium, and an electronic device.
  • Virtual Reality technology is a virtual reality through the computer, projected to the human eye retina through the display screen and visual system, combined with other human sensing input devices to simulate a visual, auditory, tactile and other aspects.
  • Realistic virtual world The essence of virtual reality technology is to present a user's perspective as the main body, and can observe objects in the three-dimensional space in real time and without restriction, giving the user an immersive experience.
  • Virtual reality technology covers tracking sensing technology, wide-angle stereo display technology, stereo, and tactile feedback. It has been widely used in entertainment, military training, medical training, product 3D virtual display and other fields.
  • the present disclosure provides an image distortion correction method and apparatus, a computer readable medium, and an electronic device.
  • the correction grid Forming a correction grid on the imaging screen of the display device, the correction grid comprising a plurality of grid points to be adjusted;
  • the grid points to be adjusted located on the circle and outside the circle are moved to correct image distortion.
  • forming a circle on the correction grid includes:
  • the circle is formed by using a distance between a grid point to be adjusted and a distance between the plurality of grid points to be adjusted as a radius.
  • forming a correction grid on the imaging screen of the display device includes:
  • the initialization grid is imaged by a lens disposed on one side of the display screen to form the correction grid on the imaging screen.
  • the display device includes a first lens and a second lens that are symmetrically disposed; forming the correction grid on the imaging screen includes:
  • the initialization mesh is imaged by the first lens and the second lens to form a first correction grid and a second correction grid that are symmetric with each other on the imaging screen.
  • establishing a two-dimensional coordinate system on the correction grid includes:
  • the two-dimensional coordinate system is imaged on the correction grid by the lens.
  • moving the to-be-adjusted grid point located on the circle and outside the circle includes:
  • the grid points to be adjusted are moved in a direction parallel to the abscissa or ordinate axis of the two-dimensional coordinate system such that the grid lines of the correction grid are straight.
  • the grid points to be adjusted are repeatedly adjusted multiple times using different visual parameters, and the final adjustment position is determined based on the results of the multiple adjustments.
  • a plurality of sub-correction grids corresponding to different colors are obtained, and the sub-correction grids are respectively adjusted to correct distortion of different colors.
  • At least one embodiment of the present disclosure provides an image distortion correcting apparatus, including:
  • a correction grid generating module configured to form a correction grid on the imaging screen of the display device, the correction grid comprising a plurality of grid points to be adjusted;
  • a coordinate system establishing module for forming a circle on the correction grid
  • An image distortion correction module is configured to move the grid points to be adjusted on the circle and outside the circle to correct image distortion.
  • the coordinate system establishing module is further configured to:
  • the correction module is further configured to: move the centering at an origin of the two-dimensional coordinate system, and use the distance between the grid point to be adjusted and the origin of the plurality of to-be-adjusted network points as a radius
  • At least one embodiment of the present disclosure provides a display device including the image distortion correcting device as described above.
  • the grid point to be adjusted whose distance from the reference point is greater than and equal to a preset value is moved to correct image distortion.
  • moving the to-be-adjusted grid point whose distance from the point is greater than and equal to the first threshold to correct the image distortion further includes:
  • the grid to be adjusted whose distance from the point is less than a preset value is kept.
  • the grid points to be adjusted that need to be adjusted are selected.
  • moving the to-be-adjusted grid point whose distance from the reference point is greater than and equal to the preset value to correct the image distortion further includes:
  • At least one embodiment of the present disclosure provides a computer readable medium having stored thereon a computer program, wherein the program is implemented by a processor to implement an image distortion correction method as described above.
  • At least one embodiment of the present disclosure provides an electronic device, including:
  • One or more processors are One or more processors;
  • a storage device for storing one or more programs, when the one or more programs are executed by the one or more processors, causing the one or more processors to implement an image distortion correction method as described above .
  • FIG. 1 is a flowchart showing an image distortion correction method in an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a virtual reality device in an exemplary embodiment of the present disclosure
  • FIG. 3 illustrates an imaging diagram of a virtual reality device in an exemplary embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a correction grid in an exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a correction grid in an exemplary embodiment of the present disclosure.
  • FIG. 6 is a schematic structural view and a partial enlarged view of a correction grid in an exemplary embodiment of the present disclosure
  • FIG. 7 illustrates concentric circles including grid points to be adjusted in an exemplary embodiment of the present disclosure
  • FIG. 8 illustrates a schematic diagram of moving a grid point to be adjusted in an exemplary embodiment of the present disclosure
  • FIG. 9 is a block diagram showing the structure of an image distortion correcting device in an exemplary embodiment of the present disclosure.
  • FIG. 10 is a block diagram showing the structure of an image distortion correcting device in an exemplary embodiment of the present disclosure.
  • Figure 11 is a block diagram showing the structure of a computer readable medium in an exemplary embodiment of the present disclosure
  • FIG. 12 is a block diagram showing the structure of an electronic device in an exemplary embodiment of the present disclosure.
  • the virtual reality device In order to give the user a realistic sense of immersion, the virtual reality device should cover the visual range of the human eye as much as possible, usually by setting a large curved spherical display in the virtual reality device or adding a lens in front of the display screen. To get a larger viewing angle, but setting up a spherical display is cumbersome and expensive, so you can add a lens in front of the rectangular display screen, but when you use a lens to project a normal image into the human eye, the observed image is surrounded by distortion distortion. There is no way for the human eye to obtain the position in the virtual space; and the distortion of the lens is inevitable. As the field of view (FOV) increases, the edge image distortion will be more obvious. Due to the presence of distortion, the effect of binocular overlap will be even worse, or even impossible to watch properly.
  • FOV field of view
  • the present disclosure provides an image distortion correction method, which may include:
  • the grid point to be adjusted whose distance from the reference point is greater than and equal to a preset value is moved to correct image distortion.
  • the step of moving the mesh point to be adjusted with the distance between the points being greater than and equal to the first threshold to correct the image distortion may further include:
  • the grid to be adjusted whose distance from the point is less than a preset value is kept.
  • the image distortion correction method described above may further include:
  • the grid points to be adjusted that need to be adjusted are selected.
  • the moving the mesh point to be adjusted with the distance between the reference point and the reference point being greater than or equal to the preset value to correct the image distortion may further include:
  • FIG. 1 is a flow chart showing an image distortion correction method, as shown in FIG. 1, the specific flow is as follows:
  • S130 Move the to-be-adjusted grid points on the circle and outside the circle to correct image distortion.
  • forming a circle on the correction grid may mean forming a circle of a solid on the grid, or forming a virtual or imaginary circle for use. Determine the grid point to be adjusted that will be adjusted.
  • a correction grid is formed on the imaging screen of the display device, the correction grid including a plurality of grid points to be adjusted.
  • the display device may be a virtual reality device or an augmented reality device, or may be other large field of view optical display devices.
  • a virtual reality device shows a schematic structural view of a virtual reality device 200 including a foam pad 201, a lens 202, an adjustment knob 203, a display screen 204, a circuit board 205, and a housing 206, wherein the lens 202 includes symmetry (eg, relative The first lens and the second lens are disposed symmetrically with respect to a vertical bisector of the user's binocular pupil connection line.
  • 3 shows an imaging optical path diagram of a virtual reality device. As shown in FIG.
  • the center of the lens 202 is located at half the height of the display screen 204 and coincides with the optical axis of the human eye.
  • the display screen 204 is located at the focal length f of the lens 202.
  • a virtual image is formed on the imaging screen 207 behind the display screen 204.
  • the imaging screen 207 may be a component actually present in the display device, or may not be a component actually present in the display device.
  • the imaging screen is only the surface on which the virtual image is located, not in the device. The actual parts that exist.
  • the imaging screen may also be a simulation program of the display device or an analog display of the imaging screen in the simulation device, which is not limited in the disclosure.
  • optical system parameters of the virtual reality device 200 may first be obtained through lens parameters and structural parameters in the virtual reality device 200.
  • the lens parameter may be a parameter such as a focal length, a thickness, and a refractive index of the lens 202.
  • the structural parameter may be a parameter of the size, object distance, exit pupil distance, lens center distance, screen spacing, etc. of the display screen 204, and the object distance of the display screen 204 is The distance from the screen 204 to the center of the lens 202 is shown, and the exit pupil distance is the distance from the eye to the center of the lens 202.
  • a plurality of initialization grid points may be formed on the display screen 204 according to the relationship between the object height and the image height or the field of view angle, and the initialization grid points are connected to each other. Form an initialization grid.
  • the number of initialization grid points in the present disclosure can be set according to actual needs. For example, 65 ⁇ 65 initial grid points can be formed to divide the display screen 204 into 64 ⁇ 64 copies.
  • the initialization mesh may be imaged through a lens disposed on one side of the display screen of the display device to form a correction network on the imaging screen.
  • FIG. 4 shows a schematic structural diagram of a correction grid.
  • the correction grid includes a plurality of grid points to be adjusted, and the image distortion can be corrected by adjusting the position of the grid points to be adjusted.
  • image distortion is divided into barrel distortion and pincushion distortion. Among them, barrel distortion is normal image after lens imaging, the image will be away from the center of the image, the shape looks like a wooden barrel; and the pincushion distortion is normal.
  • the initialization mesh may be imaged by a first lens and a second lens in the lens 202, forming a first correction grid and a second correction grid on the imaging screen 207. Since the lens imaging causes distortion around the image, the correction grid formed by the lens 202 is distorted, especially the distortion at the edge of the image is the most serious. In order to view the normal image and improve the user experience, the motion correction can be performed. The grid points to be adjusted in the grid to correct the distortion.
  • the initialization mesh is imaged on the imaging screen 207 after being imaged by the lens 202.
  • the formed first correction grid and the second correction grid are mutually symmetrical.
  • the correction grid on the other side can be obtained by mirroring; further, when adjusting the first correction grid
  • the displacement amount of the grid point to be adjusted in the first correction grid may be synchronously adjusted to correspond to the grid point to be adjusted in the first correction grid in the second correction grid. The position of the grid point to be adjusted to correct the distortion synchronously.
  • forming a circle on the correction grid may include:
  • the circle is formed by using a distance between a grid point to be adjusted and a distance between the plurality of grid points to be adjusted as a radius.
  • FIG. 5 shows a structural schematic diagram of a correction grid forming a two-dimensional coordinate system.
  • the orthographic projection point on the display screen 204 may be centered on the lens 202.
  • the origin, the X-axis is formed in the horizontal direction through the origin, and the Y-axis is formed in the vertical direction to form a two-dimensional coordinate system, and the two-dimensional coordinate system can be formed on the correction grid by the lens 202.
  • forming a two-dimensional coordinate system along the X-axis and the Y-axis is only a schematic illustration of forming a two-dimensional coordinate system in the present disclosure, and of course, may also have an angle along the X-axis and the Y-axis.
  • the direction of the formation forms a two-dimensional coordinate system, which is not specifically limited in the present disclosure.
  • the origin of the two-dimensional coordinate system can be adjusted accordingly according to actual needs.
  • the origin of the two-dimensional coordinate system may be the position corresponding to the optical center of the lens or the user. The location of the visual center.
  • moving the to-be-adjusted grid point located on the circle and outside the circle to correct image distortion may include: moving at a center centered on the two-dimensional coordinate system Correcting image distortion on a circle having a radius of a distance between the plurality of grid points to be adjusted and the origin to be adjusted, and the grid point to be adjusted outside the circle .
  • the origin of the two-dimensional coordinate system formed on the display screen 204 may be centered, and the distance from the initial grid point corresponding to the grid point to the origin (center) may be adjusted to be a circle.
  • the circle is imaged on the imaging screen by the lens 202; then the grid points to be adjusted located on the circle and outside the circle are adjusted to make the grid lines of the correction grid straight, thereby correcting the distortion of the image.
  • FIG. 6 shows a schematic structural view of a correction grid and a partial enlarged view thereof.
  • the circle at the intersection of the horizontal and vertical grid lines on the correction grid is To adjust the grid point, point O is the origin of the two-dimensional coordinate system.
  • the left and right sides of the correction grid are not symmetric about the Y-axis, and the correction grid corresponding to the right eye, wherein the correction grid area on the left side of the vertical axis of the two-dimensional coordinate system is smaller than the vertical axis.
  • the area of the side correspondingly, the correction grid corresponding to the left eye, wherein the area of the correction grid located on the left side of the longitudinal axis of the two-dimensional coordinate system is larger than the area on the right side of the vertical axis, and when the origin is the center of the origin O, the distance from the origin
  • the distance from the far-pointed grid point to the origin is the radius to form a circle, since a part of the circle may have exceeded the range of the displayed image, there may be two grid points to be adjusted falling on the circle.
  • the other grid point to be adjusted is also adjusted at the same time; when the origin is the center, the distance from the grid point to be adjusted closer to the origin O is the radius to form a circle, A total of four grid points to be adjusted fall on the circle. If one of the grid points to be adjusted is adjusted, the other three grid points to be adjusted are also adjusted. Since the correction grids corresponding to the left and right eyes are symmetrical to each other, when adjusting a grid point to be adjusted, correspondingly four or eight grid points to be adjusted are simultaneously adjusted, that is, when adjusting the correction grid When a certain grid point is to be adjusted, there may be multiple grid points to be adjusted that are simultaneously adjusted.
  • the correction grid is an initialization mesh formed on the imaging screen 207 by the lens 202
  • grid points corresponding to the grid points to be adjusted in the correction grid can be found in the initialization grid.
  • the distance of the grid point in the grid to be adjusted or its corresponding initialization grid to the origin can be calculated and recorded, and then the origin O can be used as the center to record all the waiting
  • Adjust the distance from the grid point to the origin as a radius to form a set of concentric circles on the initialization grid, and adjust the points to be adjusted on each circle and outside the circle in a direction away from the center of the circle; or only according to one
  • the distance from the grid point to the origin is adjusted to form a circle on the initial grid.
  • the next grid point to be adjusted is selected.
  • the distance from the next grid point to the origin is the radius to form another radius.
  • Circle move the grid points on the circle and outside the circle to correct the distortion.
  • FIG. 7 shows a schematic diagram of forming a set of concentric circles on the correction grid.
  • FIG. 8 is a schematic view showing movement of a grid point to be adjusted.
  • the grid point to be adjusted moves in a direction parallel to the abscissa axis of the two-dimensional coordinate system; as shown in FIGS. 8C-8D.
  • the grid point to be adjusted moves in a direction parallel to the ordinate axis of the two-dimensional coordinate system.
  • the disclosure adjusts the grid points to be adjusted on the circle and outside the circle in a direction parallel to the abscissa axis or the ordinate axis of the two-dimensional coordinate system, so that the mesh of the grid point to be adjusted in the correction grid is located.
  • the grid is straight.
  • an external device connected to the virtual reality device 200 through a keyboard, a handle, or the like, or a component disposed in the virtual reality device 200 through an embedded adjustment knob or the like, to be adjusted on a circle and an outer circle
  • the grid points are adjusted, and the grid points to be adjusted can be moved in a direction parallel to the abscissa axis of the two-dimensional coordinate system under the control of the adjusting device (component), and repeatedly adjusted until the grid lines on the grid are corrected. Straight. Repeat the above steps until all the adjustments of the grid points to be adjusted are completed. After the adjustment is completed, the adjusted position of the grid points to be adjusted can be saved to avoid distortion when the virtual reality device is used subsequently.
  • the adjustment grid points may be sequentially adjusted in a direction away from the origin to correct the distortion. Specifically, when moving the grid point to be adjusted, only the grid points to be adjusted on the circle and outside of the circle are moved relative to the origin under the control of the adjusting device (component), and the grid point to be adjusted whose distance is smaller than the radius of the circle The position of the grid is unchanged (already adjusted), so that during the adjustment process, the points on the grid are divided into points to be adjusted and points that have been adjusted, taking into account the position of the point to be adjusted and the position of the adjusted point. Changes can improve the correction efficiency of distortion.
  • the grid points to be adjusted are moved to obtain multiple sets of adjusted grid point positions to be adjusted, and multiple sets of grid points to be adjusted are obtained according to the positions of the grid points to be adjusted and the positions of the grid points to be adjusted before adjustment.
  • the displacement amount can be obtained by averaging the plurality of sets of displacements to obtain the final adjustment position of the grid point to be adjusted.
  • the method of averaging may be a weighted average, an arithmetic average, or the like, which is not specifically limited in the present disclosure.
  • the image distortion correction method of the present disclosure can also be used to correct distortion of different colors.
  • the sub-correction grid can be formed on the images of different colors, and then the grid points to be adjusted in the sub-correction grid are adjusted so that the grid lines of the sub-correction grid are straight, thereby realizing distortion of different colors. Correction.
  • the image distortion correction method corrects the image distortion on the one hand, and improves the user experience; on the other hand, only the grid points to be adjusted on the circle and the circle outside the adjustment grid point are adjusted to correct the image distortion. , improved calibration efficiency.
  • FIG. 9 is a schematic structural diagram of an image distortion correcting apparatus 900.
  • the image distortion correcting apparatus 900 includes a corrected mesh generating module 901 and a coordinate system establishing module 902. And an image distortion correction module 903, specifically:
  • a correction grid generating module 901 configured to form a correction grid on the imaging screen of the display device, the correction grid comprising a plurality of grid points to be adjusted;
  • a coordinate system establishing module 902 configured to form a circle on the correction grid
  • the image distortion correction module 903 is configured to move the to-be-adjusted grid points located on the circle and outside the circle to correct image distortion.
  • the coordinate system establishing module 902 is further configured to:
  • the circle is formed by using a distance between a grid point to be adjusted and a distance between the plurality of grid points to be adjusted as a radius.
  • the image distortion correction module 903 is further configured to: move the center point of the two-dimensional coordinate system as a center, and adjust one of the plurality of network points to be adjusted The distance from the origin is the radius of the circle and the outer grid point to be adjusted to correct image distortion.
  • FIG. 10 is a schematic structural diagram of an image distortion correcting apparatus 900.
  • the image distortion correcting apparatus 900 further includes a color distortion correcting module 904 for acquiring a plurality of corresponding differences.
  • a sub-correction grid of colors is adjusted to correct the distortion of the different colors, respectively.
  • modules or units of equipment for action execution are mentioned in the detailed description above, such division is not mandatory. Indeed, in accordance with embodiments of the present disclosure, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one of the modules or units described above may be further divided into multiple modules or units.
  • the exemplary embodiments described herein may be implemented by software or by software in combination with necessary hardware. Therefore, the technical solution according to an embodiment of the present disclosure may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.) or on a network.
  • a non-volatile storage medium which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a number of instructions are included to cause a computing device (which may be a personal computer, server, mobile terminal, or network device, etc.) to perform a method in accordance with an embodiment of the present disclosure.
  • an electronic device capable of implementing the above method is also provided.
  • FIG. 11 An electronic device 1100 according to an exemplary embodiment of the present disclosure is described below with reference to FIG. 11 is merely an example, and should not impose any limitation on the function and scope of use of the embodiments of the present disclosure.
  • electronic device 1100 is embodied in the form of a general purpose computing device.
  • the components of the electronic device 1100 may include, but are not limited to, the at least one processing unit 1110, the at least one storage unit 1120, and the bus 1130 that connects different system components (including the storage unit 1120 and the processing unit 1110).
  • the storage unit stores program code, which can be executed by the processing unit 1110, such that the processing unit 1110 performs various exemplary embodiments according to the present disclosure described in the "Exemplary Method" section of the present specification.
  • the processing unit 1110 may perform S110 as shown in FIG.
  • forming a correction grid on the imaging screen of the display device the correction grid including a plurality of grid points to be adjusted
  • S120 in the Establishing a two-dimensional coordinate system on the correction grid
  • S130 moving is located at a center of the two-dimensional coordinate system, and between one of the plurality of grid points to be adjusted and the origin The distance is on the circle of the radius and the point of the grid to be adjusted outside the circle to correct the image distortion.
  • the storage unit 1120 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 11201 and/or a cache storage unit 11202, and may further include a read only storage unit (ROM) 11203.
  • RAM random access storage unit
  • ROM read only storage unit
  • the storage unit 1120 may also include a program/utility 11204 having a set (at least one) of the program modules 11205, such program modules 11205 including but not limited to: an operating system, one or more applications, other program modules, and program data, Implementations of the network environment may be included in each or some of these examples.
  • the bus 1130 can be one or more of a number of types of bus structures, including a memory unit bus or memory unit controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any of a variety of bus structures. bus.
  • the electronic device 1100 can also be in communication with one or more external devices 1300 (eg, a keyboard, pointing device, Bluetooth device, etc.), and can also be in communication with one or more devices that enable a user to interact with the electronic device 1100, and/or Any device (eg, router, modem, etc.) that enables the electronic device 1100 to communicate with one or more other computing devices. This communication can take place via an input/output (I/O) interface 1150. Also, the electronic device 1100 can communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 1160.
  • networks eg, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet
  • network adapter 1160 communicates with other modules of electronic device 1100 via bus 1130. It should be understood that although not shown in the figures, other hardware and/or software modules may be utilized in conjunction with electronic device 1100, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives. And data backup storage systems, etc.
  • the technical solution according to an embodiment of the present disclosure may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.) or on a network.
  • a non-volatile storage medium which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a number of instructions are included to cause a computing device (which may be a personal computer, server, terminal device, or network device, etc.) to perform a method in accordance with an embodiment of the present disclosure.
  • a computer readable storage medium having stored thereon a program product capable of implementing the above method of the present specification.
  • various aspects of the present disclosure may also be embodied in the form of a program product comprising program code for causing said program product to run on a terminal device The terminal device performs the steps according to various exemplary embodiments of the present disclosure described in the "Exemplary Method" section of the present specification.
  • a program product 1200 for implementing the above method which may employ a portable compact disk read only memory (CD-ROM) and includes program code, and may be at a terminal device, according to an embodiment of the present disclosure, is described.
  • CD-ROM portable compact disk read only memory
  • the program product of the present disclosure is not limited thereto, and in this document, the readable storage medium may be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • the program product can employ any combination of one or more readable media.
  • the readable medium can be a readable signal medium or a readable storage medium.
  • the readable storage medium can be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above. More specific examples (non-exhaustive lists) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • the computer readable signal medium may include a data signal that is propagated in the baseband or as part of a carrier, carrying readable program code. Such propagated data signals can take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the readable signal medium can also be any readable medium other than a readable storage medium that can transmit, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a readable medium can be transmitted using any suitable medium, including but not limited to wireless, wireline, optical cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language, such as Java, C++, etc., including conventional procedural Programming language—such as the "C" language or a similar programming language.
  • the program code can execute entirely on the user computing device, partially on the user device, as a stand-alone software package, partially on the remote computing device on the user computing device, or entirely on the remote computing device or server. Execute on.
  • the remote computing device can be connected to the user computing device via any kind of network, including a local area network (LAN) or wide area network (WAN), or can be connected to an external computing device (eg, provided using an Internet service) Businesses are connected via the Internet).
  • LAN local area network
  • WAN wide area network
  • an external computing device eg, provided using an Internet service
  • Businesses are connected via the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)

Abstract

一种图像畸变校正方法及装置、显示设备、计算机可读介质、电子设备。所述图像畸变校正方法包括:在显示装置的成像屏幕上形成一校正网格,所述校正网格包括多个待调整网格点(S110);在所述校正网格上形成圆(S120);移动位于所述圆上及所述圆外的所述待调整网格点,以校正图像畸变(S130)。通过手动调整图像畸变校正网格,实现了较好的校正效果,提高了显示质量和用户体验。

Description

图像畸变校正方法及装置、显示设备、计算机可读介质、电子设备
相关申请的交叉引用
本申请要求于2018年4月28日递交的第201810403187.8号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及显示领域,特别涉及一种图像畸变校正方法、图像畸变校正装置、显示设备、计算机可读介质和电子设备。
背景技术
虚拟现实(Virtual Reality)技术是通过计算机虚拟出现实世界,通过显示屏和目视***投射到人眼视网膜,结合其他人体传感的输入设备模拟出一个从视觉,听觉,触觉等多方面都很逼真的虚拟世界。虚拟现实技术的本质就是呈现一个以使用者视角为主体,可以实时、无限制地观察三维空间内的物体,给使用者沉浸感体验。虚拟现实技术涵盖了跟踪传感技术、广角立体显示技术、立体声、触觉反馈等多种技术。已经广泛应用在娱乐,军事训练,医疗培训、产品三维虚拟展示等多个领域。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供一种图像畸变校正方法及装置、计算机可读介质和电子设备。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
本公开的至少一个实施例提供一种图像畸变校正方法,其包括:
在显示装置的成像屏幕上形成一校正网格,所述校正网格包括多个待调 整网格点;
在所述校正网格上形成圆;
移动位于所述圆上及所述圆外的所述待调整网格点,以校正图像畸变。
在本公开的示例性实施例提供的图像畸变校正方法中,在所述校正网格上形成圆包括:
在所述校正网格上建立二维坐标系;
以所述二维坐标系的原点为圆心,以所述多个待调整网格点中的一个待调整网格点与所述原点之间的距离为半径形成所述圆。
在本公开的示例性实施例提供的图像畸变校正方法中,在显示装置的成像屏幕上形成一校正网格包括:
根据所述显示装置的光学参数在所述显示装置的显示屏幕上形成初始化网格;
将所述初始化网格经设置于所述显示屏幕一侧的透镜成像,以在所述成像屏幕上形成所述校正网格。
在本公开的示例性实施例提供的图像畸变校正方法中,所述显示装置包括对称设置的第一透镜和第二透镜;在所述成像屏幕上形成所述校正网格包括:
所述初始化网格经所述第一透镜和所述第二透镜成像,以在所述成像屏幕上分别形成相互对称的第一校正网格和第二校正网格。
在本公开的示例性实施例提供的图像畸变校正方法中,在所述校正网格上建立二维坐标系包括:
以所述透镜的中心在所述显示屏幕上的正投影点为原点,沿着水平方向和竖直方向建立二维坐标系;
所述二维坐标系经所述透镜成像形成在所述校正网格上。
本公开的示例性实施例提供的图像畸变校正方法还包括:
根据所述校正网格中网格线是否平直,选择需要调整的所述待调整网格点,以对所述需要调整的所述待调整网格点所在圆上及所述圆外的所述待调整网格点进行调整。
在本公开的示例性实施例提供的图像畸变校正方法中,移动位于所述圆上及所述圆外的所述待调整网格点包括:
沿着与所述二维坐标系的横坐标轴或纵坐标轴平行的方向移动所述待调整网格点,以使所述校正网格的网格线平直。
在本公开的示例性实施例提供的图像畸变校正方法中,移动所述待调整网格点时,位于所述圆上和所述圆外的所有网格点同时靠近或远离所述圆心。
本公开的示例性实施例提供的图像畸变校正方法还包括:
调整所述第一校正网格中的待调整网格点;
根据所述第一校正网格中待调整网格点的位移量,同步调整所述第二校正网格中与所述第一校正网格中待调整网格点对应的待调整网格点的位置。
本公开的示例性实施例提供的图像畸变校正方法还包括:
使用不同的视觉参数重复多次调整所述待调整网格点,并基于多次调整的结果确定最终的调整位置。
本公开的示例性实施例提供的图像畸变校正方法还包括:
获取多个对应不同颜色的子校正网格,分别对所述子校正网格进行调整以校正不同颜色的畸变。
本公开的至少一个实施例提供一种图像畸变校正装置,其包括:
校正网格生成模块,用于在显示装置的成像屏幕上形成一校正网格,所述校正网格包括多个待调整网格点;
坐标系建立模块,用于在所述校正网格上形成圆;
图像畸变校正模块,用于移动位于所述圆上及所述圆外的所述待调整网格点,以校正图像畸变。
在根据本公开的示例性实施例提供的图像畸变校正装置中,
所述坐标系建立模块还用于:
在所述校正网格上建立二维坐标系;
以所述二维坐标系的原点为圆心,以所述多个待调整网格点中的一个待调整网格点与所述原点之间的距离为半径形成所述圆,以及所述图像畸变校正模块还用于:移动位于以所述二维坐标系的原点为圆心,以所述多个待调整网络点中的一个待调整网格点与所述原点之间的距离为半径的所述圆上及所述圆外的所述待调整网格点,以校正图像畸变。
本公开的至少一个实施例提供一种显示设备,所述显示设备包括如上所述的图像畸变校正装置。
本公开的至少一个实施例提供一种图像畸变校正方法,其包括:
获取与初始化网格对应的校正网格,所述校正网格包括多个待调整网格点;
在所述校正网格所在面上确定参考点;以及
移动与所述参考点之间距离大于和等于预设值的待调整网格点,以校正图像畸变。
在本公开的示例性实施例提供的图像畸变校正方法中,移动与所述点之间距离大于和等于第一阈值的待调整网格点,以校正图像畸变还包括:
保持与所述点之间距离小于预设值的待调整网格点不动。
本公开的示例性实施例提供的图像畸变校正方法还包括:
根据所述校正网格中网格线是否平直,选择需要调整的所述待调整网格点。
在本公开的示例性实施例提供的图像畸变校正方法中,移动与所述参考点之间距离大于和等于预设值的待调整网格点,以校正图像畸变还包括:
移动与所述参考点之间距离大于和等于预设值的待调整网格点,以使得被移动的所述待调整网格点所在的网格线平直。
本公开的至少一个实施例提供一种计算机可读介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如上所述的图像畸变校正方法。
本公开的至少一个实施例提供一种电子设备,其包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如上所述的图像畸变校正方法。
本公开应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描 述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本公开示例性实施例中图像畸变校正方法的流程图;
图2示出本公开示例性实施例中虚拟现实设备的结构示意图;
图3示出本公开示例性实施例中虚拟现实设备的成像示意图;
图4示出本公开示例性实施例中校正网格的结构示意图;
图5示出本公开示例性实施例中校正网格的结构示意图;
图6示出本公开示例性实施例中校正网格的结构示意图及局部放大图;
图7示出本公开示例性实施例中包含待调整网格点的同心圆;
图8示出本公开示例性实施例中移动待调整网格点的示意图;
图9示出本公开示例性实施例中图像畸变校正装置的结构示意图;
图10示出本公开示例性实施例中图像畸变校正装置的结构示意图;
图11示出本公开示例性实施例中计算机可读介质的结构示意图;
图12示出本公开示例性实施例中电子设备的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免喧宾夺主而使得本公开的各方面变得模糊。
本说明书中使用用语“一个”、“一”、“该”和“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相 同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。
为了让用户在视觉上拥有真实的沉浸感,虚拟现实设备就要尽可能的覆盖人眼的视觉范围,通常通过在虚拟现实设备中设置一个大的弯曲的球形显示器或在显示屏幕前增加一个透镜以获得更大的视角,但是设置球形显示器既笨重又昂贵,于是可以通过在矩形显示屏幕前增加一个透镜,但是利用透镜将正常的图像投射到人眼中时,观察到的图像四周是扭曲畸变的,人眼没有办法获得虚拟空间中的定位;而且透镜出现畸变是不可避免的,随着视场角(FOV)的增大,边缘图像畸变会更加明显。由于畸变的存在,双目重叠后的效果会更差,甚至根本无法正常观看。
本公开提供了一种图像畸变校正方法,其可包括:
获取与初始化网格对应的校正网格,所述校正网格包括多个待调整网格点;
在所述校正网格所在面上确定参考点;以及
移动与所述参考点之间距离大于和等于预设值的待调整网格点,以校正图像畸变。
在本公开的一些示例性实施例中,上述的移动与所述点之间距离大于和等于第一阈值的待调整网格点,以校正图像畸变的步骤还可包括:
保持与所述点之间距离小于预设值的待调整网格点不动。
在本公开的一些示例性实施例中,上述的图像畸变校正方法还可包括:
根据所述校正网格中网格线是否平直,选择需要调整的所述待调整网格点。
在本公开的一些示例性实施例中,上述的移动与所述参考点之间距离大于和等于预设值的待调整网格点,以校正图像畸变还可包括:
移动与所述参考点之间距离大于和等于预设值的待调整网格点,以使得被移动的所述待调整网格点所在的网格线平直。
下面将结合显示装置对根据本公开的一些实施例的图像畸变校正方法进行详细描述。
图1示出了图像畸变校正方法的流程图,如图1所示,具体流程如下:
S110:在显示装置的成像屏幕上形成一校正网格,所述校正网格包括多个待调整网格点;
S120:在所述校正网格上形成圆;
S130:移动位于所述圆上及所述圆外的所述待调整网格点,以校正图像畸变。
应当理解的是,在本公开中,在所述校正网格上“形成圆”,可以指在网格上真正形成一个实体的圆,也可以表示形成一个虚拟的或者想象中的圆,以用于确定将被调整的待调整网格点。
下面,对本公开中图像畸变校正方法的各步骤进行详细说明。
在S110中,在显示装置的成像屏幕上形成一校正网格,所述校正网格包括多个待调整网格点。
在本公开的示例性实施例中,显示装置可以是虚拟现实设备或增强现实设备,也可以是其它的大视场光学显示设备。为方便理解,本公开以虚拟现实设备为例进行说明。图2示出了一种虚拟现实设备的结构示意图,虚拟现实设备200包括泡沫垫201、透镜202、调节旋钮203、显示屏幕204、电路板205和外壳206,其中透镜202包括对称(例如,相对于用户双眼瞳孔连接线的垂直平分线对称)设置的第一透镜和第二透镜。图3示出了虚拟现实设备的成像光路图,如图3所示,透镜202的中心位于显示屏幕204高度的一半处,并与人眼的光轴重合,显示屏幕204位于透镜202的焦距f内,并在显示屏幕204后方的成像屏幕207上形成虚像。值得注意的是,成像屏幕207可以是显示装置中实际存在的部件,也可以不是显示装置中实际存在的部件,例如对虚拟现实设备而言,成像屏幕仅是虚像所在的面,而不是设备中实际存在的部件。此外,应理解,该成像屏幕还可以是该显示装置的模拟程序或模拟装置中的该成像屏幕的模拟显示,本公开对此不作限制。
在本公开的示例性实施例中,首先可以通过虚拟现实设备200中的透镜参数和结构参数获得虚拟现实设备200的光学***参数。其中透镜参数可以是透镜202的焦距、厚度、折射率等参数,结构参数可以是显示屏幕204的尺寸、物距、出瞳距离、透镜中心间距、屏幕间距等参数,显示屏幕204的物距为显示屏幕204到透镜202中心的距离,出瞳距离为眼睛到透镜202中心的距离。获取虚拟现实设备200的光学***参数后可以根据该光学***参 数测试物高与像高或者视场角的关系,在显示屏幕204上形成多个初始化网格点,该些初始化网格点相互连接形成一初始化网格。本公开中初始化网格点的数量可以根据实际需要进行设定,例如可以形成65×65个初始化网格点,以将显示屏幕204分为64×64份。
在本公开的示例性实施例中,在显示装置的显示屏幕上形成初始化网格后,可以将初始化网格通过设置于显示装置的显示屏幕一侧的透镜成像,以在成像屏幕上形成校正网格。图4示出了一种校正网格的结构示意图,如图4所示,校正网格包括多个待调整网格点,可以通过调整待调整网格点的位置以对图像畸变进行校正。通常图像畸变分为桶形畸变和枕形畸变两种,其中,桶形畸变是正常图像经过透镜成像后,图像的四周会远离图像中心,形状看起来像一个木桶;而枕形畸变是正常图像经过透镜成像后,图像的四周会向图像中心靠近,形成一个形如枕头的图像。在虚拟现实设备200中,初始化网格可以通过透镜202中的第一透镜和第二透镜成像,在成像屏幕207上形成第一校正网格和第二校正网格。由于透镜成像会使图像的四周发生畸变,因此经过透镜202成像形成的校正网格是畸变的,特别是图像边缘处的畸变最严重,为了观看到正常的图像,提高用户体验,可以通过移动校正网格中的待调整网格点以对畸变部分进行校正。
在本公开的示例性实施例中,由于左右眼分别通过第一透镜和第二透镜观看图像,且第一透镜和第二透镜相互对称,因此初始化网格经透镜202成像后在成像屏幕207上形成的第一校正网格和第二校正网格相互对称,当形成一侧的校正网格后,可以通过镜像得到另一侧的校正网格;进一步的,当通过调整第一校正网格中的待调整网格点的位置校正畸变时,可以根据第一校正网格中待调整网格点的位移量,同步调整第二校正网格中与第一校正网格中待调整网格点对应的待调整网格点的位置,以同步校正畸变。
在S120中,在所述校正网格上形成圆。
在本公开的示例性实施例中,在所述校正网格上形成圆可包括:
在所述校正网格上建立二维坐标系;
以所述二维坐标系的原点为圆心,以所述多个待调整网格点中的一个待调整网格点与所述原点之间的距离为半径形成所述圆。
在本公开的示例性实施例中,图5示出了形成二维坐标系的校正网格的 结构示意图,如图5所示,可以以透镜202的中心在显示屏幕204上的正投影点为原点,过原点沿水平方向形成X轴,沿竖直方向形成Y轴,以形成二维坐标系,并且该二维坐标系可以通过透镜202成像形成在校正网格上。
作为本领域技术人员应当理解,沿X轴、Y轴形成二维坐标系仅是本公开中形成二维坐标系的一种示意性说明,当然也可以沿着与X轴、Y轴具有一定角度的方向形成二维坐标系,本公开对此不做具体限定。另外,本领域技术人员还应当理解,二维坐标系的原点可以根据实际需要进行相应地调整,根据一个实施例,二维坐标系的原点可以是对应于透镜的光学中心所在的位置或者是用户的视觉中心所在的位置。
在S130中,移动位于所述圆上及所述圆外的所述待调整网格点,以校正图像畸变。
在本公开的示例性实施例中,移动位于所述圆上及所述圆外的所述待调整网格点,以校正图像畸变可包括:移动位于以所述二维坐标系的原点为圆心,以所述多个待调整网格点中的一个待调整网格点与所述原点之间的距离为半径的圆上及所述圆外的所述待调整网格点,以校正图像畸变。
在本公开的示例性实施例中,可以以显示屏幕204上形成的二维坐标系的原点为圆心,以待调整网格点对应的初始化网格点到原点(圆心)的距离为半径画圆;该圆经透镜202成像在成像屏幕上;然后对位于圆上及圆外的待调整网格点进行调整,以使校正网格的网格线平直,进而校正图像的畸变。
在本公开的示例性实施例中,图6示出了一种校正网格的结构示意图及其局部放大图,如图6所示,校正网格上横纵网格线相交处的圆点为待调整网格点,点O为二维坐标系的原点。由图4可知,校正网格的左右两侧关于Y轴并不是对称的,与右眼相对应的校正网格,其中位于二维坐标系纵轴左侧的校正网格面积小于位于纵轴右侧的面积,相应地,与左眼对应的校正网格,其中位于二维坐标系纵轴左侧的校正网格面积大于位于纵轴右侧的面积,并且当以原点O为圆心,距离原点O较远的一待调整网格点到原点的距离为半径形成圆时,由于圆的一部分可能已经超出了显示图像的范围,所以可能共有两个待调整网格点落在该圆上,若调整其中一待调整网格点时,另一待调整网格点也同时被调整;当以原点为圆心,距离原点O较近的待调整网格点到原点的距离为半径形成圆时,可能共有四个待调整网格点落在该圆上, 若调整其中一待调整网格点时,其余三个待调整网格点也同时被调整。由于左右眼对应的校正网格相互对称,因此当调整某一待调整网格点时,相应地会有四个或八个待调整网格点被同时调整,也就是说当调整校正网格中的某一个待调整网格点时,可能会有多个待调整网格点被同时调整。
由于校正网格是初始化网格经透镜202成像形成在成像屏幕207上的,因此在初始化网格中可以找到与校正网格中的待调整网格点对应的网格点。当确定好待调整网格点后,可以计算并记录待调整网格点或其对应的初始化网格中的网格点到原点的距离,然后可以以原点O为圆心,以记录的所有的待调整网格点到原点的距离为半径在初始化网格上形成一组同心圆,沿着远离圆心的方向对每个圆上及位于该圆外的待调整网格点进行调整;或者只根据一个待调整网格点到原点的距离为半径在初始化网格上形成一个圆,根据校正的需要再选择下一个待调整网格点,以下一个待调整网格点到原点的距离为半径形成另一个圆,移动圆上及园外的待调整网格点以校正畸变。进一步的,由于透镜成像,在校正网格上也形成有一组同心圆或单独的圆,图7示出了在校正网格上形成一组同心圆的示意图。为了校正畸变,可以根据校正网格中网格线是否平直,从同心圆中选择需要调整的待调整网格点所在的圆,通过对不同圆上及圆外的待调整网格点进行多次调整,以校正图像畸变。
在本公开的示例性实施例中,确定好需要调整的待调整网格点所在的圆后,可以对与该圆对应的初始化网格上的圆进行调整。图8示出了移动待调整网格点的示意图,如图8A-8B所示,待调整网格点沿着与二维坐标系的横坐标轴平行的方向移动;如图8C-8D所示,待调整网格点沿着与二维坐标系的纵坐标轴平行的方向移动。本公开通过对圆上及圆外的待调整网格点沿着与二维坐标系的横坐标轴或纵坐标轴平行的方向进行调整,以使校正网格中待调整网格点所在的网格线平直。
在本公开的示例性实施例中,可以通过键盘、手柄等与虚拟现实设备200连接的外部装置或通过嵌入的调节旋钮等设置于虚拟现实设备200中的部件对圆上及圆外的待调整网格点进行调整,待调整网格点可以在调节装置(部件)的控制下沿着与二维坐标系的横坐标轴平行的方向移动,经反复调整,直至校正网格上的网格线平直。重复上述步骤直至完成所有待调整网格点的调整,调整结束后,可以保存调整后的待调整网格点的位置,以避免后续使 用虚拟现实设备时出现畸变。
在本公开的示例性实施例中,可以沿着远离原点的方向依次对待调整网格点进行调整,以校正畸变。具体而言,在移动待调整网格点时,仅圆上和圆外的待调整网格点在调节装置(部件)的控制下相对原点进行移动,而距离小于圆半径的待调整网格点的位置不变(已经调整过的),这样在调整的过程中,将网格上的点分为待调整的点和已经调整过的点,考虑了待调整的点和调整过的点的位置变化,可以提高畸变的校正效率。
在本公开的示例性实施例中,当移动位于圆上和圆外的一待调整网格点时,其它位于圆上和圆外的待调整网格点也同时靠近或者远离原点,进一步提高了校正效率。
为了满足不同用户的需求,考虑到用户瞳距及感受的差异,可以采用不同的视觉参数(如出瞳距、物距、屏幕尺寸等)根据本公开的图像畸变校正方法对校正网格中的待调整网格点进行移动,以得到多组调整后的待调整网格点位置,根据多组调整后待调整网格点和调整前待调整网格点的位置获取多组待调整网格点的位移量,通过对多组位移量求平均值即可获得待调整网格点最终的调整位置。该求平均值的方法可以是加权平均、算术平均等方法,本公开对此不做具体限定。
进一步地,本公开的图像畸变校正方法还可以用于对不同颜色的畸变进行校正。具体而言,可以在不同颜色的图像上形成子校正网格,然后调整子校正网格中的待调整网格点,以使子校正网格的网格线平直,进而实现对不同颜色畸变的校正。当然,为了提高校正的准确率,适应不同用户的需求,也可以对不同颜色的畸变进行多次校正,获得多组调整后的待调整网格点相对于调整前的待调整网格点的相对位移,然后对多组相对位移求平均值以获得最终的调整位置。
根据本公开实施例的图像畸变校正方法一方面校正了图像畸变,提高了用户体验;另一方面只对待调整网格点所在的圆上及圆外的待调整网格点进行调整以校正图像畸变,提高了校正效率。
本公开还提供了一种图像畸变校正装置,图9示出了图像畸变校正装置900的结构示意图,如图9所示,图像畸变校正装置900包括校正网格生成模块901、坐标系建立模块902和图像畸变校正模块903,具体地:
校正网格生成模块901,用于在显示装置的成像屏幕上形成一校正网格,所述校正网格包括多个待调整网格点;
坐标系建立模块902,用于在所述校正网格上形成圆;
图像畸变校正模块903,用于移动位于所述圆上及所述圆外的所述待调整网格点,以校正图像畸变。
在本公开的示例性实施例中,坐标系建立模块902还用于:
在所述校正网格上建立二维坐标系;
以所述二维坐标系的原点为圆心,以所述多个待调整网格点中的一个待调整网格点与所述原点之间的距离为半径形成所述圆。
在本公开的示例性实施例中,图像畸变校正模块903还用于:移动位于以所述二维坐标系的原点为圆心,以所述多个待调整网络点中的一个待调整网格点与所述原点之间的距离为半径的所述圆上及所述圆外的所述待调整网格点,以校正图像畸变。
在本公开的示例性实施例中,图10示出了图像畸变校正装置900的结构示意图,如图10所示,图像畸变校正装置900还包括颜色畸变校正模块904,用于获取多个对应不同颜色的子校正网格,分别对所述子校正网格进行调整以校正不同颜色的畸变。
上述图像畸变校正装置中各模块的具体细节已经在对应的图像畸变校正方法中进行了详细的描述,因此此处不再赘述。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的 示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。
在本公开的示例性实施例中,还提供了一种能够实现上述方法的电子设备。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为***、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“***”。
下面参照图11来描述根据本公开的示例性实施方式的电子设备1100。图11显示的电子设备1100仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图11所示,电子设备1100以通用计算设备的形式表现。电子设备1100的组件可以包括但不限于:上述至少一个处理单元1110、上述至少一个存储单元1120、连接不同***组件(包括存储单元1120和处理单元1110)的总线1130。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元1110执行,使得所述处理单元1110执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。例如,所述处理单元1110可以执行如图1中所示的S110:在显示装置的成像屏幕上形成一校正网格,所述校正网格包括多个待调整网格点;S120:在所述校正网格上建立二维坐标系;S130:移动位于以所述二维坐标系的原点为圆心,以所述多个待调整网格点中的一个待调整网格点与所述原点之间的距离为半径的圆上及所述圆外的所述待调整网格点,以校正图像畸变。
存储单元1120可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)11201和/或高速缓存存储单元11202,还可以进一步包括只读存储单元(ROM)11203。
存储单元1120还可以包括具有一组(至少一个)程序模块11205的程序/实用工具11204,这样的程序模块11205包括但不限于:操作***、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线1130可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、***总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备1100也可以与一个或多个外部设备1300(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备1100交互的设备通信,和/或与使得该电子设备1100能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口1150进行。并且,电子设备1100还可以通过网络适配器1160与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器1160通过总线1130与电子设备1100的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备1100使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID***、磁带驱动器以及数据备份存储***等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。
在本公开的示例性实施例中,还提供了一种计算机可读存储介质,其上存储有能够实现本说明书上述方法的程序产品。在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的 步骤。
参考图12所示,描述了根据本公开的实施方式的用于实现上述方法的程序产品1200,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
此外,上述附图仅是根据本公开示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。

Claims (20)

  1. 一种图像畸变校正方法,包括:
    在显示装置的成像屏幕上形成一校正网格,所述校正网格包括多个待调整网格点;
    在所述校正网格上形成圆;
    移动位于所述圆上及圆外的所述待调整网格点,以校正图像畸变。
  2. 根据权利要求1所述的图像畸变校正方法,其中,在所述校正网格上形成圆包括:
    在所述校正网格上建立二维坐标系;
    以所述二维坐标系的原点为圆心,以所述多个待调整网格点中的一个待调整网格点与所述原点之间的距离为半径形成所述圆。
  3. 根据权利要求1或2所述的图像畸变校正方法,其中,在显示装置的成像屏幕上形成一校正网格包括:
    根据所述显示装置的光学参数在所述显示装置的显示屏幕上形成初始化网格;
    将所述初始化网格经设置于所述显示屏幕一侧的透镜成像,以在所述成像屏幕上形成所述校正网格。
  4. 根据权利要求3所述的图像畸变校正方法,其中,所述显示装置包括对称设置的第一透镜和第二透镜;在所述成像屏幕上形成所述校正网格包括:
    所述初始化网格经所述第一透镜和所述第二透镜成像,以在所述成像屏幕上形成相互对称的第一校正网格和第二校正网格。
  5. 根据权利要求3所述的图像畸变校正方法,其中,在所述校正网格上建立二维坐标系包括:
    以所述透镜的中心在所述显示屏幕上的正投影点为原点,沿着水平方向和竖直方向建立二维坐标系;
    所述二维坐标系经所述透镜成像形成在所述校正网格上。
  6. 根据权利要求1至5任一所述的图像畸变校正方法,还包括:
    根据所述校正网格中网格线是否平直,选择需要调整的所述待调整网格点,以对所述需要调整的所述待调整网格点所在圆上及所述圆外的所述待调 整网格点进行调整。
  7. 根据权利要求1至6任一所述的图像畸变校正方法,其中,移动位于所述圆上及所述圆外的所述待调整网格点包括:
    沿着与所述二维坐标系的横坐标轴或纵坐标轴平行的方向移动所述待调整网格点,以使所述校正网格的网格线平直。
  8. 根据权利要求7所述的图像畸变校正方法,其中,移动所述待调整网格点时,位于所述圆上和所述圆外的所有网格点同时靠近或远离所述圆心。
  9. 根据权利要求4所述的图像畸变校正方法,还包括:
    调整所述第一校正网格中的待调整网格点;
    根据所述第一校正网格中待调整网格点的位移量,同步调整所述第二校正网格中与所述第一校正网格中待调整网格点对应的待调整网格点的位置。
  10. 根据权利要求1至9任一所述的图像畸变校正方法,还包括:
    使用不同的视觉参数重复多次调整所述待调整网格点,并基于多次调整的结果确定最终的调整位置。
  11. 根据权利要求1至10任一所述的图像畸变校正方法,还包括:
    获取多个对应不同颜色的子校正网格,分别对所述子校正网格进行调整以校正不同颜色的畸变。
  12. 一种图像畸变校正装置,包括:
    校正网格生成模块,用于在显示装置的成像屏幕上形成一校正网格,所述校正网格包括多个待调整网格点;
    坐标系建立模块,用于在所述校正网格上形成圆;
    图像畸变校正模块,用于移动所述圆上及所述圆外的所述待调整网格点,以校正图像畸变。
  13. 根据权利要求12所述的图像畸变校正装置,其中,
    所述坐标系建立模块还用于:
    在所述校正网格上建立二维坐标系;
    以所述二维坐标系的原点为圆心,以所述多个待调整网格点中的一个待调整网格点与所述原点之间的距离为半径形成所述圆,以及
    所述图像畸变校正模块还用于:移动位于以所述二维坐标系的原点为圆心,以所述多个待调整网络点中的一个待调整网格点与所述原点之间的距离 为半径的所述圆上及所述圆外的所述待调整网格点,以校正图像畸变。
  14. 一种显示设备,包括如权利要求12或13所述的图像畸变校正装置。
  15. 一种图像畸变校正方法,包括:
    获取与初始化网格对应的校正网格,所述校正网格包括多个待调整网格点;
    在所述校正网格所在面上确定参考点;以及
    移动与所述参考点之间距离大于和等于预设值的待调整网格点,以校正图像畸变。
  16. 根据权利要求15所述的图像畸变校正方法,其中,移动与所述点之间距离大于和等于第一阈值的待调整网格点,以校正图像畸变还包括:
    保持与所述点之间距离小于预设值的待调整网格点不动。
  17. 根据权利要求15或16所述的图像畸变校正方法,还包括:
    根据所述校正网格中网格线是否平直,选择需要调整的所述待调整网格点。
  18. 根据权利要求15-17中任一项所述的图像畸变校正方法,其中,移动与所述参考点之间距离大于和等于预设值的待调整网格点,以校正图像畸变还包括:
    移动与所述参考点之间距离大于和等于预设值的待调整网格点,以使得被移动的所述待调整网格点所在的网格线平直。
  19. 一种计算机可读介质,其上存储有计算机程序,所述程序被处理器执行时实现如权利要求1至11和权利要求15-18中任一项所述的图像畸变校正方法。
  20. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至11和权利要求15-18中任一项所述的图像畸变校正方法。
PCT/CN2019/071091 2018-04-28 2019-01-10 图像畸变校正方法及装置、显示设备、计算机可读介质、电子设备 WO2019205744A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/473,110 US11423518B2 (en) 2018-04-28 2019-01-10 Method and device of correcting image distortion, display device, computer readable medium, electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810403187.8 2018-04-28
CN201810403187.8A CN108596854B (zh) 2018-04-28 2018-04-28 图像畸变校正方法及装置、计算机可读介质、电子设备

Publications (1)

Publication Number Publication Date
WO2019205744A1 true WO2019205744A1 (zh) 2019-10-31

Family

ID=63620099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071091 WO2019205744A1 (zh) 2018-04-28 2019-01-10 图像畸变校正方法及装置、显示设备、计算机可读介质、电子设备

Country Status (3)

Country Link
US (1) US11423518B2 (zh)
CN (1) CN108596854B (zh)
WO (1) WO2019205744A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111369441A (zh) * 2020-03-09 2020-07-03 稿定(厦门)科技有限公司 文字处理方法、介质、设备及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108596854B (zh) * 2018-04-28 2021-02-12 京东方科技集团股份有限公司 图像畸变校正方法及装置、计算机可读介质、电子设备
CN109754380B (zh) * 2019-01-02 2021-02-02 京东方科技集团股份有限公司 一种图像处理方法及图像处理装置、显示装置
CN109769112B (zh) * 2019-01-07 2021-04-09 上海临奇智能科技有限公司 具有多种屏幕效果的虚拟屏幕一体机的组装设置方法
CN110473159B (zh) * 2019-08-20 2022-06-10 Oppo广东移动通信有限公司 图像处理方法和装置、电子设备、计算机可读存储介质
CN110475110A (zh) * 2019-09-25 2019-11-19 上海迪东实业有限公司 投影图像几何校正方法、投影图像几何校正设备及投影仪
CN111539898B (zh) * 2020-05-09 2023-08-01 京东方科技集团股份有限公司 图像处理方法及图像显示装置
CN111861932B (zh) * 2020-07-28 2022-05-17 RealMe重庆移动通信有限公司 图像的畸变校正方法、装置及移动终端
CN112883963B (zh) * 2021-02-01 2022-02-01 合肥联宝信息技术有限公司 一种定位校正方法、设备及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336641A1 (en) * 2017-08-07 2017-11-23 Maximilian Ralph Peter von und zu Liechtenstein Apparatus und Method for Rendering a Virtual Monitor on Smart Ophthalmic Devices in Augmented Reality Environments
CN107432750A (zh) * 2017-07-31 2017-12-05 上海联影医疗科技有限公司 校正成像***的方法和***
CN107610044A (zh) * 2017-08-29 2018-01-19 歌尔科技有限公司 图像处理方法、计算机可读存储介质及虚拟现实头戴设备
CN107850777A (zh) * 2015-04-22 2018-03-27 易赛特股份有限公司 光学相差校正的方法和装置
CN108596854A (zh) * 2018-04-28 2018-09-28 京东方科技集团股份有限公司 图像畸变校正方法及装置、计算机可读介质、电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256295A (ja) * 1994-12-21 1996-10-01 Olympus Optical Co Ltd 画像処理装置
US6538691B1 (en) * 1999-01-21 2003-03-25 Intel Corporation Software correction of image distortion in digital cameras
JP2005151317A (ja) * 2003-11-18 2005-06-09 Tamron Co Ltd 歪曲収差変更撮影装置
JP2006010613A (ja) * 2004-06-29 2006-01-12 Medeikku Engineering:Kk 画像の歪み補正方法
JP2006292453A (ja) * 2005-04-07 2006-10-26 Matsushita Electric Ind Co Ltd 画像認識方法
US7881563B2 (en) * 2006-02-15 2011-02-01 Nokia Corporation Distortion correction of images using hybrid interpolation technique
CN103530852A (zh) * 2013-10-15 2014-01-22 南京芒冠光电科技股份有限公司 一种镜头畸变校正方法
WO2019049331A1 (ja) * 2017-09-08 2019-03-14 株式会社ソニー・インタラクティブエンタテインメント キャリブレーション装置、キャリブレーションシステム、およびキャリブレーション方法
CN107942514A (zh) * 2017-11-15 2018-04-20 青岛海信电器股份有限公司 一种虚拟现实设备的图像畸变校正方法及装置
US10477186B2 (en) * 2018-01-17 2019-11-12 Nextvr Inc. Methods and apparatus for calibrating and/or adjusting the arrangement of cameras in a camera pair

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107850777A (zh) * 2015-04-22 2018-03-27 易赛特股份有限公司 光学相差校正的方法和装置
CN107432750A (zh) * 2017-07-31 2017-12-05 上海联影医疗科技有限公司 校正成像***的方法和***
US20170336641A1 (en) * 2017-08-07 2017-11-23 Maximilian Ralph Peter von und zu Liechtenstein Apparatus und Method for Rendering a Virtual Monitor on Smart Ophthalmic Devices in Augmented Reality Environments
CN107610044A (zh) * 2017-08-29 2018-01-19 歌尔科技有限公司 图像处理方法、计算机可读存储介质及虚拟现实头戴设备
CN108596854A (zh) * 2018-04-28 2018-09-28 京东方科技集团股份有限公司 图像畸变校正方法及装置、计算机可读介质、电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111369441A (zh) * 2020-03-09 2020-07-03 稿定(厦门)科技有限公司 文字处理方法、介质、设备及装置
CN111369441B (zh) * 2020-03-09 2022-11-15 稿定(厦门)科技有限公司 文字处理方法、介质、设备及装置

Also Published As

Publication number Publication date
CN108596854B (zh) 2021-02-12
US11423518B2 (en) 2022-08-23
US20210358093A1 (en) 2021-11-18
CN108596854A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2019205744A1 (zh) 图像畸变校正方法及装置、显示设备、计算机可读介质、电子设备
US9544706B1 (en) Customized head-related transfer functions
US11340695B2 (en) Converting a 2D positional input into a 3D point in space
JP2021508426A (ja) 双方向性拡張または仮想現実装置
JP2017531222A (ja) ホログラフィックオブジェクトのためのスマート透明度
CN110447224B (zh) 在显示器中控制虚像的方法
JP2018523326A (ja) 全球状取込方法
CN110506419B (zh) 在虚拟现实中渲染扩展视频
WO2018086295A1 (zh) 一种应用界面显示方法及装置
KR101788452B1 (ko) 시선 인식을 이용하는 콘텐츠 재생 장치 및 방법
WO2018064213A1 (en) Systems and methods for using sensing of real object position, trajectory, or attitude to enable user interaction with a virtual object
Peterson Virtual Reality, Augmented Reality, and Mixed Reality Definitions
US10897570B1 (en) Room acoustic matching using sensors on headset
WO2020255766A1 (ja) 情報処理装置、情報処理方法、プログラム、投映装置、および情報処理システム
JP2024069464A (ja) 反響利得正規化
CN110286906B (zh) 用户界面显示方法、装置、存储介质与移动终端
WO2021041428A1 (en) Method and device for sketch-based placement of virtual objects
CN110968248A (zh) 生成用于视觉触摸检测的指尖的3d模型
WO2019130141A1 (en) Audio copy-paste function
CN112262373B (zh) 基于视图的断点
JP2023514571A (ja) 遅延オーディオ追従
US11205307B2 (en) Rendering a message within a volumetric space
US11763517B1 (en) Method and device for visualizing sensory perception
US11281351B2 (en) Selecting objects within a three-dimensional point cloud environment
KR20210062962A (ko) 동공 추적 기반 가상 콘텐츠 표시 장치 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793646

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19793646

Country of ref document: EP

Kind code of ref document: A1