WO2019205321A1 - 睡眠阶段的监测方法、空调器及计算机可读存储介质 - Google Patents

睡眠阶段的监测方法、空调器及计算机可读存储介质 Download PDF

Info

Publication number
WO2019205321A1
WO2019205321A1 PCT/CN2018/097383 CN2018097383W WO2019205321A1 WO 2019205321 A1 WO2019205321 A1 WO 2019205321A1 CN 2018097383 W CN2018097383 W CN 2018097383W WO 2019205321 A1 WO2019205321 A1 WO 2019205321A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
sleep stage
rate
motion amplitude
change
Prior art date
Application number
PCT/CN2018/097383
Other languages
English (en)
French (fr)
Inventor
邓焯伟
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2019205321A1 publication Critical patent/WO2019205321A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants

Definitions

  • the present application relates to the field of air conditioner technology, and in particular, to a sleep phase monitoring method, an air conditioner, and a computer readable storage medium.
  • the sleep stage of the user is generally monitored by means of a wearable device, a camera, an infrared sensor, etc., thereby adjusting the operating parameters of the air conditioner according to the sleep stage.
  • the sleep stage of the user is monitored by the wearable device, since the wearable device needs to be worn, the user sleeps to a certain extent; when the user sleeps through the camera, the camera has a blind spot and affects to some extent.
  • Infrared sensors have the disadvantage of low precision when monitoring the user's sleep stage through infrared sensors.
  • monitoring the user's sleep stage through wearable devices, cameras, infrared sensors, etc. has disadvantages that are not conducive to user sleep, affecting user privacy, and low precision.
  • the main purpose of the present application is to provide a sleep phase monitoring method, an air conditioner, and a computer readable storage medium, which have the advantages of not affecting user sleep, affecting user privacy, and high precision.
  • the present application provides a monitoring method for a sleep stage, the method for monitoring the sleep stage comprising the following steps:
  • the sleep stage of the user is determined according to the rate of change of the motion amplitude.
  • the step of determining the sleep stage of the user according to the rate of change of the motion amplitude comprises:
  • the sleep stage is determined according to the respiratory rate change rate and the motion amplitude change rate.
  • the method further includes:
  • the air conditioner is controlled to operate in accordance with the operating parameters.
  • the method further includes:
  • the air conditioner is controlled to operate according to an operating parameter corresponding to the highest priority sleep phase.
  • the step of acquiring the rate of change of the motion amplitude of the user by using the radar sensor in real time or timing includes:
  • the step of acquiring the rate of change of the running amplitude of the user according to the distance includes:
  • the motion amplitude change rate is calculated based on the motion amplitude and the last acquired distance.
  • the method further includes:
  • the step of calculating the motion amplitude change rate according to the motion amplitude and the last acquired distance is performed.
  • the method before the real-time or timing acquires the rate of change of the motion amplitude of the user by using the radar sensor, the method further includes:
  • the step of acquiring the motion amplitude change rate of the user by the radar sensor in real time or timing is performed.
  • the step of determining whether the user is in a sleep state comprises:
  • the present application further provides an air conditioner, the air conditioner comprising:
  • a radar sensor a memory, a processor, and a monitoring program of a sleep phase stored on the memory and operable on the processor, the sleep phase monitoring program being executed by the processor to implement a sleep phase as described above The steps of the monitoring method.
  • the present application further provides a computer readable storage medium having a sleep stage monitoring program stored thereon, and the sleep stage monitoring program is executed by a processor to implement a sleep stage as described above. The steps of the monitoring method.
  • the sleep stage monitoring method, the air conditioner and the computer readable storage medium provided by the present application acquire the user's motion amplitude change rate through the radar sensor in real time or timing, and determine the sleep stage of the user according to the motion amplitude change rate. In this way, the radar sensor determines the sleep stage in which the user is located, and has the advantages of not affecting the user's sleep, affecting the user's privacy, and high precision.
  • FIG. 1 is a schematic diagram of a hardware operating environment of a terminal involved in a solution according to an embodiment of the present application
  • FIG. 2 is a schematic flow chart of a first embodiment of a monitoring method for a sleep stage according to the present application
  • FIG. 3 is a schematic flow chart of a second embodiment of a monitoring method for a sleep stage according to the present application.
  • FIG. 4 is a schematic flow chart of a third embodiment of a monitoring method for a sleep stage according to the present application.
  • FIG. 5 is a schematic flow chart of a fourth embodiment of a monitoring method for a sleep stage according to the present application.
  • FIG. 6 is a schematic flow chart of a fifth embodiment of a monitoring method for a sleep stage according to the present application.
  • FIG. 7 is a schematic flow chart of a sixth embodiment of a method for monitoring a sleep stage according to the present application.
  • FIG. 8 is a schematic flow chart of a seventh embodiment of a monitoring method for a sleep stage according to the present application.
  • FIG. 9 is a schematic flow chart of an eighth embodiment of a monitoring method for a sleep stage according to the present application.
  • FIG. 10 is a schematic flow chart of a ninth embodiment of a monitoring method for a sleep stage according to the present application.
  • the present application provides a monitoring method for a sleep stage, which determines a sleep stage in which a user is located by using a radar sensor, and has the advantages of not affecting user sleep, affecting user privacy, and high precision.
  • FIG. 1 is a schematic diagram of a hardware operating environment of a terminal involved in an embodiment of the present application.
  • the terminal in the embodiment of the present application may be an air conditioner or an air conditioner or the like.
  • the terminal may include a processor 1001 (eg, a CPU), a radar sensor 1003, a memory 1004, and a communication bus 1002, wherein the communication bus 1002 is used to implement connection communication between these components.
  • the memory 1004 may be a high speed RAM memory or a stable memory (non-volatile) Memory), such as disk storage.
  • the memory 1004 can also optionally be a storage device independent of the aforementioned processor 1001.
  • a memory 1004 as a computer storage medium may include an operating system and a monitoring program for the sleep phase.
  • the processor 1001 can be used to call the monitoring program of the sleep stage stored in the memory 1004 and perform the following operations:
  • the sleep stage of the user is determined according to the rate of change of the motion amplitude.
  • processor 1001 can call the monitoring program of the sleep stage stored in the memory 1004, and also perform the following operations:
  • the sleep stage is determined according to the respiratory rate change rate and the motion amplitude change rate.
  • processor 1001 can call the monitoring program of the sleep stage stored in the memory 1004, and also perform the following operations:
  • the air conditioner is controlled to operate in accordance with the operating parameters.
  • processor 1001 can call the monitoring program of the sleep stage stored in the memory 1004, and also perform the following operations:
  • the air conditioner is controlled to operate according to an operating parameter corresponding to the highest priority sleep phase.
  • processor 1001 can call the monitoring program of the sleep stage stored in the memory 1004, and also perform the following operations:
  • processor 1001 can call the monitoring program of the sleep stage stored in the memory 1004, and also perform the following operations:
  • the motion amplitude change rate is calculated based on the motion amplitude and the last acquired distance.
  • processor 1001 can call the monitoring program of the sleep stage stored in the memory 1004, and also perform the following operations:
  • the step of calculating the motion amplitude change rate according to the motion amplitude and the last acquired distance is performed.
  • processor 1001 can call the monitoring program of the sleep stage stored in the memory 1004, and also perform the following operations:
  • the step of acquiring the motion amplitude change rate of the user by the radar sensor in real time or timing is performed.
  • processor 1001 can call the monitoring program of the sleep stage stored in the memory 1004, and also perform the following operations:
  • the monitoring method of the sleep stage includes:
  • Step S10 obtaining a change rate of the motion amplitude of the user by using a radar sensor in real time or timing;
  • a radar sensor is disposed on the air conditioner, and the distance between the user and the air conditioner is obtained by the radar sensor in real time or at a time to obtain the user's operating amplitude change rate according to the distance. Specifically, calculating a difference between the acquired distance and the last acquired distance, using the difference as the motion amplitude of the user, and calculating a quotient between the difference and the last acquired distance. The quotient value is taken as the rate of change of the motion amplitude.
  • the infrared and ultrasonic technologies in the prior art can only detect users in a straight line direction, and cannot detect the distance between the user and the air conditioner, and the radar sensor realizes a 360° dead angle detection user, and detects the user and the air conditioner.
  • the distance between the devices Specifically, the radar sensor detects the user using electromagnetic waves and receives the echo of the user, thereby obtaining the distance between the user and the air conditioner.
  • the radar sensor detects the human body through breathing and heart rate. If there are multiple users in the environment of the air conditioner, the echoes of different users may also differ due to the difference in respiratory frequency and heartbeat frequency of different users.
  • the position and the number of the radar sensors can be set according to actual applications, which is not specifically limited in this application.
  • the execution subject of this embodiment is an air conditioner or a server.
  • the air conditioner acquires the distance between the user and the air conditioner through the radar sensor, and calculates the movement amplitude change rate of the user according to the distance;
  • the radar sensor acquires the user and the air conditioner.
  • the distance between the two is sent to the server, so that the server calculates the rate of change of the user's motion amplitude according to the distance and feeds back.
  • Step S20 Determine a sleep stage of the user according to the motion amplitude change rate.
  • the user has multiple sleep stages in the sleep state, such as the waking period, the sleep period, the shallow sleep period, the deep sleep period, and the REM before going to bed.
  • the rate of change of the motion amplitude is different for different sleep stages, so The user's sleep stage can be determined according to the rate of change of the motion amplitude.
  • the rate of change in the movement range of the shallow sleep period is about 20%; the rate of change in the exercise range during the deep sleep period is about 10%; and the rate of change in the movement amplitude of the REM is 30%.
  • the user's sleep stage can be determined by the rate of change of the motion amplitude.
  • the sleep stage of the user may also be determined according to the respiratory rate change rate and the motion amplitude change rate.
  • the motion amplitude change rate and the respiratory frequency change rate of the user are acquired by the radar sensor in real time or timing, and the sleep phase is determined according to the motion amplitude change rate and the respiratory frequency change rate.
  • the radar sensor acquires a breathing interval of a user in an environment where the air conditioner is located, so that the air conditioner or the server calculates the breathing frequency according to the breathing interval.
  • the calculation method of the respiratory rate change rate is similar to the calculation method of the motion amplitude change rate, and the difference between the acquired respiratory frequency and the last acquired respiratory frequency is calculated, and the difference is calculated and the last acquired The quotient between the respiratory frequencies, which is the rate of change of the respiratory rate.
  • the rate of change in the awake period is about 50%
  • the rate of change in respiratory rate is about 15%
  • the rate of change in the range of movement during sleep is about 45%
  • the rate of change in respiratory rate is 8 About %
  • the rate of change of the motion amplitude of the user is acquired by the radar sensor in real time or timing, and the sleep stage of the user is determined according to the rate of change of the motion amplitude.
  • the radar sensor determines the sleep stage in which the user is located, and has the advantages of not affecting the user's sleep, affecting the user's privacy, and high precision.
  • the step of determining the sleep stage of the user according to the change rate of the motion amplitude includes:
  • Step S21 acquiring the respiratory rate change rate of the user by using the radar sensor in real time or timing;
  • Step S22 determining the sleep stage according to the respiratory rate change rate and the motion amplitude change rate.
  • a radar sensor is disposed on the air conditioner, and the breathing interval of the user in the environment where the air conditioner is located is obtained by the radar sensor in real time or periodically, so that the air conditioner or the server calculates the breathing frequency according to the breathing interval.
  • the radar sensor acquires the distance between the user and the air conditioner in real time or timing to obtain the user's operating amplitude change rate according to the distance. Specifically, calculating a difference between the acquired respiratory frequency and the last acquired respiratory frequency, and calculating a quotient between the difference and the last acquired respiratory frequency, using the quotient as a breath Frequency change rate.
  • the respiratory rate change rate is not limited to the above calculation method, and may be set according to actual conditions.
  • the rate of change of the user's movement during the waking period is about 50%, and the rate of change of the respiratory rate is about 15%; the rate of change of the movement of the user during the sleep period is about 45%, and the rate of change of the respiratory rate is about 8%;
  • the rate of change in the movement range of the shallow sleep period is about 20%, and the rate of change of the respiratory rate is about 5%;
  • the rate of change of the movement amplitude of the user during the deep sleep period is about 10%, and the rate of change of the respiratory rate is about 2%;
  • the user is in the REM
  • the rate of change of motion amplitude is about 30%, and the rate of change of respiratory rate is about 35%. Therefore, the sleep stage of the user can be determined by the rate of change of respiratory rate and the rate of change of motion amplitude.
  • the sleep phase is determined based on the respiratory rate change rate and the rate of change of the exercise amplitude, thus ensuring the accuracy of the sleep phase acquisition.
  • the method further includes:
  • Step S30 Obtain an operation parameter corresponding to the sleep stage.
  • Step S40 Control the air conditioner to operate according to the operating parameter.
  • the operating parameters include at least one of a set temperature, a set humidity, a supply wind speed, a supply air type, an air deflector angle, and a freshness, wherein the freshness includes a volatile organic compound, PM2.5, and carbon dioxide.
  • At least one of the air supply types includes direct blow prevention, no wind feeling, soft wind feeling, and the like.
  • the operation parameters corresponding to the respective sleep stages are set in advance, and when the sleep stage in which the user is currently located is detected, the air conditioner is controlled to operate according to the operation parameters corresponding to the sleep stage.
  • the preset duration of each sleep stage is preset, and when the sleep duration of a certain sleep stage is detected to be too short or too long, the operating parameters can be automatically adjusted to ensure the user's sleep quality. For example, when it is detected that the duration of the user's sleep period is greater than the preset duration, the running parameters corresponding to the deep sleep period are automatically run to help the user quickly enter the deep sleep period.
  • the operating parameters corresponding to the sleep phase are acquired, and the air conditioner is controlled to operate according to the operating parameters, thus ensuring the sleep quality of the user.
  • the method further includes:
  • Step S401 Acquire a priority of the sleep stage when acquiring a plurality of operation parameters corresponding to the sleep stage;
  • Step S402 Control the air conditioner to operate according to an operation parameter corresponding to a sleep stage with the highest priority.
  • the priority of the sleep stage is set in advance so that a plurality of users are in a sleep state in the environment where the air conditioner is located, but when the plurality of users are in different sleep stages, the air conditioner is controlled according to the sleep stage with the highest priority. Run the parameter to run. For example, setting the deep sleep period has a higher priority than the light sleep period, and when the deep sleep period and the shallow sleep period are detected, the control air conditioner operates according to the operating parameters corresponding to the deep sleep period.
  • the priority of the user may also be set in advance, so that when multiple users in the environment where the air conditioner is located are in a sleep state, and the plurality of users are in different sleep stages, the air conditioner is controlled according to the user with the highest priority.
  • the operating parameters corresponding to the sleep phase are run.
  • the user performs a binding operation with the air conditioner in advance.
  • the radar sensor acquires and records the respiratory frequency of the user, and creates user information for the user, and the user information includes priorities. For example, setting the priority of the elderly in the family is the highest, and the second is the child. The priority of the adult is the lowest. When there are elderly, adults and children in the room, the operation parameters corresponding to the sleep stage of the elderly are given priority.
  • the air conditioner when the operation parameters corresponding to the plurality of sleep stages are acquired, the priority of the sleep stage is acquired, and the air conditioner is controlled to operate according to the operation parameter corresponding to the sleep stage with the highest priority. In this way, the orderly adjustment of the air conditioner is ensured.
  • the real-time or timing acquisition of the motion amplitude change rate of the user by the radar sensor includes:
  • Step S11 Obtain a distance between the user and the air conditioner by using the radar sensor in real time or timing;
  • Step S12 Acquire a rate of change of the operating amplitude of the user according to the distance.
  • a radar sensor is disposed on the air conditioner, and the distance between the user and the air conditioner is obtained by the radar sensor in real time or at a time to obtain the user's operating amplitude change rate according to the distance.
  • calculating a difference between the acquired distance and the last acquired distance using the difference as the motion amplitude of the user, and calculating a quotient between the difference and the last acquired distance.
  • the quotient value is taken as the rate of change of the motion amplitude.
  • the distance between the user and the air conditioner is acquired by the radar sensor in real time or at a time, and the rate of change of the user's running amplitude is obtained according to the distance. In this way, it is determined that the sleep stage in which the user is located is determined according to the rate of change of the operating amplitude.
  • the step of acquiring the operating amplitude change rate of the user according to the distance includes:
  • Step S121 calculating a difference between the distance acquired this time and the distance obtained last time, and using the difference as the motion amplitude of the user;
  • Step S122 Calculate the motion amplitude change rate according to the motion amplitude and the last acquired distance.
  • a radar sensor is disposed on the air conditioner, and the distance between the user and the air conditioner is obtained by the radar sensor in real time or at a time to obtain the user's operating amplitude change rate according to the distance.
  • calculating a difference between the acquired distance and the last acquired distance using the difference as the motion amplitude of the user, and calculating a quotient between the difference and the last acquired distance.
  • the quotient value is taken as the rate of change of the motion amplitude.
  • the rate of change of the motion amplitude is not limited to the above calculation method, and may be set according to actual conditions.
  • the difference between the currently acquired distance and the last acquired distance is calculated, and the motion amplitude change rate is calculated based on the difference and the last acquired distance. In this way, it is determined that the sleep stage in which the user is located is determined according to the rate of change of the operating amplitude.
  • the method further includes:
  • Step S123 determining whether the motion amplitude is less than a preset motion amplitude
  • Step S124 When the motion amplitude is less than the preset motion amplitude, perform the step of calculating the motion amplitude change rate according to the motion amplitude and the last acquired distance.
  • the operating amplitude change rate is acquired to acquire the sleep phase of the user according to the operating amplitude change rate.
  • the motion amplitude change rate is calculated, thus reducing the calculation load of the air conditioner or the server.
  • the method further includes:
  • Step S50 determining whether the user is in a sleep state
  • Step S60 When the user is in the sleep state, perform the step of acquiring the motion amplitude change rate of the user by using the radar sensor in real time or timing.
  • whether the user is in a sleep state can be determined in various manners.
  • the Bluetooth sensor is used to determine whether the user is in a sleep state.
  • the motion amplitude of the user is obtained in real time or timing, and it is determined whether the motion amplitude is less than the preset motion amplitude.
  • the motion amplitude is less than the preset motion amplitude, it is determined that the user is in a sleep state, thereby performing real-time or timing acquisition of the user through the radar sensor.
  • the step of the rate of change of the amplitude of the movement is performed.
  • the rate of change of the user's motion amplitude is acquired by the radar sensor, thus reducing the computational burden of the air conditioner or the server.
  • the step of determining whether the user is in a sleep state comprises:
  • Step S51 acquiring the motion range of the user in real time or timing
  • Step S52 determining whether the motion amplitude is less than the preset motion amplitude
  • Step S53 When the motion amplitude is less than the preset motion amplitude, determine that the user is in the sleep state.
  • the motion amplitude of the user is acquired in real time or at a time, and when the motion amplitude is less than the preset motion amplitude, it is determined that the user is in a sleep state. This reduces the computational burden on the air conditioner or server.
  • the present application also provides an air conditioner including a radar sensor, a memory, a processor, and a monitoring program of a sleep stage stored on the memory and operable on the processor, the processor performing the sleep
  • the monitoring procedure of the stage implements the steps of the monitoring method of the sleep stage as described in the above embodiments.
  • the present application also proposes a computer readable storage medium comprising a sleep stage monitoring program, the sleep stage monitoring program being executed by the processor to implement the sleep stage as described in the above embodiments The steps of the monitoring method.
  • the technical solution of the present application which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM as described above). , a disk, an optical disk, including a number of instructions for causing a terminal device (which may be a television, a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to perform the methods described in the various embodiments of the present application.
  • a terminal device which may be a television, a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种睡眠阶段的监测方法,包括以下步骤:实时或定时通过雷达传感器获取用户的运动幅度变化率(S10);根据所述运动幅度变化率确定所述用户的睡眠阶段(S20)。还公开了一种空调器以及计算机可读存储介质。通过雷达传感器(1003)确定用户所处的睡眠阶段,具有不影响用户睡眠、不影响用户隐私以及精度高的优点。

Description

睡眠阶段的监测方法、空调器及计算机可读存储介质
技术领域
本申请涉及空调器技术领域,尤其涉及一种睡眠阶段的监测方法、空调器以及计算机可读存储介质。
背景技术
在现有的空调器中,在用户处于睡眠状态时,一般通过可穿戴设备、摄像头、红外传感器等方式对用户的睡眠阶段进行监测,从而根据睡眠阶段调节空调器的运行参数。但是,在通过可穿戴设备监测用户的睡眠阶段时,由于可穿戴设备需要佩戴,在一定程度上影响用户睡眠;在通过摄像头监测用户的睡眠阶段时,摄像头存在拍摄盲区,并在一定程度上影响用户的隐私;在通过红外传感器监测用户的睡眠阶段时,红外传感器具有精度低的缺点。综上,通过可穿戴设备、摄像头、红外传感器等方式对用户的睡眠阶段进行监测存在不利于用户睡眠、影响用户隐私以及精度低的缺点。
发明内容
本申请的主要目的在于提供一种睡眠阶段的监测方法、空调器以及计算机可读存储介质,其具有不影响用户睡眠、不影响用户隐私以及精度高的优点。
为实现上述目的,本申请提供一种睡眠阶段的监测方法,所述睡眠阶段的监测方法包括以下步骤:
实时或定时通过雷达传感器获取用户的运动幅度变化率;
根据所述运动幅度变化率确定所述用户的睡眠阶段。
可选地,所述根据所述运动幅度变化率确定所述用户的睡眠阶段的步骤包括:
实时或定时通过所述雷达传感器获取所述用户的呼吸频率变化率;
根据所述呼吸频率变化率以及所述运动幅度变化率确定所述睡眠阶段。
可选地,所述根据所述运动幅度变化率确定所述用户的睡眠阶段之后,还包括:
获取所述睡眠阶段对应的运行参数;
控制所述空调器按照所述运行参数运行。
可选地,所述获取所述睡眠阶段对应的运行参数之后,还包括:
在获取到多个所述睡眠阶段对应的运行参数时,获取所述睡眠阶段的优先级;
控制所述空调器按照优先级最高的睡眠阶段对应的运行参数运行。
可选地,所述实时或定时通过雷达传感器获取用户的运动幅度变化率的步骤包括:
实时或定时通过所述雷达传感器获取所述用户与所述空调器之间的距离;
根据所述距离获取所述用户的运行幅度变化率。
可选地,所述根据所述距离获取所述用户的运行幅度变化率的步骤包括:
计算本次获取到的距离与上次获取到的距离之间的差值,将所述差值作为所述用户的运动幅度;
根据所述运动幅度与上次获取到的距离计算所述运动幅度变化率。
可选地,所述将所述差值作为所述用户的运动幅度之后,还包括:
判断所述运动幅度是否小于预设运动幅度;
在所述运动幅度小于所述预设运动幅度时,则执行所述根据所述运动幅度与上次获取到的距离计算所述运动幅度变化率的步骤。
可选地,所述实时或定时通过雷达传感器获取用户的运动幅度变化率之前,还包括:
判断所述用户是否处于睡眠状态;
在所述用户处于所述睡眠状态时,则执行所述实时或定时通过雷达传感器获取用户的运动幅度变化率的步骤。
可选地,所述判断所述用户是否处于睡眠状态的步骤包括:
实时或定时获取所述用户的运动幅度;
在所述运动幅度小于所述预设运动幅度时,则判定所述用户处于所述睡眠状态。
为实现上述目的,本申请还提供一种空调器,所述空调器包括:
雷达传感器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的睡眠阶段的监测程序,所述睡眠阶段的监测程序被所述处理器执行时实现如上述睡眠阶段的监测方法的步骤。
为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有睡眠阶段的监测程序,所述睡眠阶段的监测程序被处理器执行时实现如上述睡眠阶段的监测方法的步骤。
本申请提供的睡眠阶段的监测方法、空调器以及计算机可读存储介质,实时或定时通过雷达传感器获取用户的运动幅度变化率,并根据运动幅度变化率确定所述用户的睡眠阶段。这样,通过雷达传感器确定用户所处的睡眠阶段,具有不影响用户睡眠、不影响用户隐私以及精度高的优点。
附图说明
图1为本申请实施例方案涉及的终端的硬件运行环境示意图;
图2为本申请睡眠阶段的监测方法第一实施例的流程示意图;
图3为本申请睡眠阶段的监测方法第二实施例的流程示意图;
图4为本申请睡眠阶段的监测方法第三实施例的流程示意图;
图5为本申请睡眠阶段的监测方法第四实施例的流程示意图;
图6为本申请睡眠阶段的监测方法第五实施例的流程示意图;
图7为本申请睡眠阶段的监测方法第六实施例的流程示意图;
图8为本申请睡眠阶段的监测方法第七实施例的流程示意图;
图9为本申请睡眠阶段的监测方法第八实施例的流程示意图;
图10为本申请睡眠阶段的监测方法第九实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供一种睡眠阶段的监测方法,通过雷达传感器确定用户所处的睡眠阶段,具有不影响用户睡眠、不影响用户隐私以及精度高的优点。
如图1所示,图1是本申请实施例方案涉及的终端的硬件运行环境示意图。
本申请实施例终端可以是空调器,也可以是空气调节器等设备。
如图1所示,该终端可以包括:处理器1001(例如CPU)、雷达传感器1003、存储器1004以及通信总线1002,其中,通信总线1002用于实现这些组件之间的连接通信。存储器1004可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1004可选的还可以是独立于前述处理器1001的存储装置。
如图1所示,作为一种计算机存储介质的存储器1004中可以包括操作***以及睡眠阶段的监测程序。
在图1所示的终端中,处理器1001可以用于调用存储器1004中存储的睡眠阶段的监测程序,并执行以下操作:
实时或定时通过雷达传感器获取用户的运动幅度变化率;
根据所述运动幅度变化率确定所述用户的睡眠阶段。
进一步地,处理器1001可以调用存储器1004中存储的睡眠阶段的监测程序,还执行以下操作:
实时或定时通过所述雷达传感器获取所述用户的呼吸频率变化率;
根据所述呼吸频率变化率以及所述运动幅度变化率确定所述睡眠阶段。
进一步地,处理器1001可以调用存储器1004中存储的睡眠阶段的监测程序,还执行以下操作:
获取所述睡眠阶段对应的运行参数;
控制所述空调器按照所述运行参数运行。
进一步地,处理器1001可以调用存储器1004中存储的睡眠阶段的监测程序,还执行以下操作:
在获取到多个所述睡眠阶段对应的运行参数时,获取所述睡眠阶段的优先级;
控制所述空调器按照优先级最高的睡眠阶段对应的运行参数运行。
进一步地,处理器1001可以调用存储器1004中存储的睡眠阶段的监测程序,还执行以下操作:
实时或定时通过所述雷达传感器获取所述用户与所述空调器之间的距离;
根据所述距离获取所述用户的运行幅度变化率。
进一步地,处理器1001可以调用存储器1004中存储的睡眠阶段的监测程序,还执行以下操作:
计算本次获取到的距离与上次获取到的距离之间的差值,将所述差值作为所述用户的运动幅度;
根据所述运动幅度与上次获取到的距离计算所述运动幅度变化率。
进一步地,处理器1001可以调用存储器1004中存储的睡眠阶段的监测程序,还执行以下操作:
判断所述运动幅度是否小于预设运动幅度;
在所述运动幅度小于所述预设运动幅度时,则执行所述根据所述运动幅度与上次获取到的距离计算所述运动幅度变化率的步骤。
进一步地,处理器1001可以调用存储器1004中存储的睡眠阶段的监测程序,还执行以下操作:
判断所述用户是否处于睡眠状态;
在所述用户处于所述睡眠状态时,则执行所述实时或定时通过雷达传感器获取用户的运动幅度变化率的步骤。
进一步地,处理器1001可以调用存储器1004中存储的睡眠阶段的监测程序,还执行以下操作:
实时或定时获取所述用户的运动幅度;
在所述运动幅度小于所述预设运动幅度时,则判定所述用户处于所述睡眠状态。
参照图2,在第一实施例中,所述睡眠阶段的监测方法包括:
步骤S10、实时或定时通过雷达传感器获取用户的运动幅度变化率;
本实施例中,空调器上设置雷达传感器,并由雷达传感器实时或定时获取用户与空调器之间的距离,以根据距离获取用户的运行幅度变化率。具体地,计算本次获取到的距离与上次获取到的距离之间的差值,将该差值作为用户的运动幅度,并计算该差值与上次获取到的距离之间的商值,将该商值作为运动幅度变化率。
需要说明的是,现有技术中的红外以及超声波技术只能检测直线方向的用户,并不能检测用户与空调器之间的距离,而雷达传感器实现360°无死角检测用户,并检测用户与空调器之间的距离。具体地,雷达传感器利用电磁波探测用户,并接收用户的回波,由此获得用户与空调器之间的距离。需要说明的是,雷达传感器通过呼吸、心率来探测人体,若空调器所在环境中存在多个用户,由于不同用户的呼吸频率以及心跳频率有差异,那么不同用户反馈的回波也会有差异。
本实施例中,雷达传感器的位置和数量可根据实际应用进行设置,本申请不做具体限定。
本实施例的执行主体为空调器或者服务器。比如,在执行主体为空调器时,空调器通过雷达传感器获取用户与空调器之间的距离,并根据距离计算用户的运动幅度变化率;在执行主体为服务器时,雷达传感器获取用户与空调器之间的距离,并将该距离发送至服务器,使得服务器根据距离计算用户的运动幅度变化率并反馈。
步骤S20、根据所述运动幅度变化率确定所述用户的睡眠阶段。
本实施例中,用户在睡眠状态下有多个睡眠阶段,比如睡前的清醒期、入睡期、浅睡期、深睡期以及REM,针对不同的睡眠阶段,运动幅度变化率不相同,因此可根据运动幅度变化率确定用户的睡眠阶段。
比如,用户在浅睡期、深睡期以及REM时,浅睡期的运动幅度变化率在20%左右;深睡期的运动幅度变化率在10%左右;REM的运动幅度变化率在30%左右,因此可通过运动幅度变化率确定用户的睡眠阶段。
需要说明的是,也可根据呼吸频率变化率以及运动幅度变化率确定用户的睡眠阶段。具体地,实时或定时通过所述雷达传感器获取用户的运动幅度变化率以及呼吸频率变化率,并根据运动幅度变化率以及呼吸频率变化率确定睡眠阶段。其中,雷达传感器获取空调器所在环境的用户的呼吸间隔,以使得空调器或者服务器根据呼吸间隔计算呼吸频率。呼吸频率变化率的计算方法与运动幅度变化率的计算方法类似,计算本次获取到的呼吸频率与上次获取到的呼吸频率之间的差值,并计算该差值与上次获取到的呼吸频率之间的商值,将该商值作为呼吸频率变化率。
比如,用户在清醒期以及入睡期时,清醒期的运动幅度变化率在50%左右,呼吸频率变化率在15%左右;入睡期的运动幅度变化率在45%左右,呼吸频率变化率在8%左右,因此可通过呼吸频率变化率以及运动幅度变化率确定用户的睡眠阶段。
在第一实施例中,实时或定时通过雷达传感器获取用户的运动幅度变化率,并根据运动幅度变化率确定所述用户的睡眠阶段。这样,通过雷达传感器确定用户所处的睡眠阶段,具有不影响用户睡眠、不影响用户隐私以及精度高的优点。
在第二实施例中,如图3所示,在上述图2所示的实施例基础上,所述根据所述运动幅度变化率确定所述用户的睡眠阶段的步骤包括:
步骤S21、实时或定时通过所述雷达传感器获取所述用户的呼吸频率变化率;
步骤S22、根据所述呼吸频率变化率以及所述运动幅度变化率确定所述睡眠阶段。
本实施例中,空调器上设置雷达传感器,并由雷达传感器实时或定时获取空调器所在环境的用户的呼吸间隔,以使得空调器或者服务器根据呼吸间隔计算呼吸频率。同时,雷达传感器实时或定时获取用户与空调器之间的距离,以根据距离获取用户的运行幅度变化率。具体地,计算本次获取到的呼吸频率与上次获取到的呼吸频率之间的差值,并计算该差值与上次获取到的呼吸频率之间的商值,将该商值作为呼吸频率变化率。需要说明的是,呼吸频率变化率不限于上述计算方法,可根据实际情况进行设置。
比如,用户在清醒期的运动幅度变化率在50%左右,呼吸频率变化率在15%左右;用户在入睡期的运动幅度变化率在45%左右,呼吸频率变化率在8%左右;用户在浅睡期的运动幅度变化率在20%左右,呼吸频率变化率在5%左右;用户在深睡期的运动幅度变化率在10%左右,呼吸频率变化率在2%左右;用户在REM的运动幅度变化率在30%左右,呼吸频率变化率在35%左右,因此可通过呼吸频率变化率以及运动幅度变化率确定用户的睡眠阶段。
在第二实施例中,根据呼吸频率变化率以及运动幅度变化率确定睡眠阶段,这样,保证了睡眠阶段采集的准确性。
在第三实施例中,如图4所示,在上述图2至图3所示的实施例基础上,所述根据所述运动幅度变化率确定所述用户的睡眠阶段之后,还包括:
步骤S30、获取所述睡眠阶段对应的运行参数;
步骤S40、控制所述空调器按照所述运行参数运行。
本实施例中,运行参数包括设定温度、设定湿度、送风风速、送风类型、导风板角度、新鲜度中的至少一个,其中新鲜度包括挥发性有机化合物、PM2.5以及二氧化碳中的至少一个,送风类型包括防直吹、无风感、柔风感等。
具体地,预先设置各个睡眠阶段对应的运行参数,并在检测到用户当前所处的睡眠阶段时,控制空调器按照睡眠阶段对应的运行参数运行。需要说明的是,预先设置各个睡眠阶段的预设时长,在检测到某一睡眠阶段的睡眠时长过短或者过长时,可自动调节运行参数,以保证用户的睡眠质量。比如,在检测到用户处于浅睡期的持续时长大于预设时长时,则自动运行深睡期对应的运行参数,以帮助用户快速进入深睡期。
在第三实施例中,获取睡眠阶段对应的运行参数,并控制空调器按照运行参数运行,这样,保证了用户的睡眠质量。
在第四实施例中,如图5所示,在上述图2至图4所示的实施例基础上,所述获取所述睡眠阶段对应的运行参数之后,还包括:
步骤S401、在获取到多个所述睡眠阶段对应的运行参数时,获取所述睡眠阶段的优先级;
步骤S402、控制所述空调器按照优先级最高的睡眠阶段对应的运行参数运行。
本实施例中,预先设置睡眠阶段的优先级,以在空调器所在环境有多个用户处于睡眠状态,但多个用户处于不同的睡眠阶段时,控制空调器按照优先级最高的睡眠阶段对应的运行参数运行。比如,设置深睡期的优先级高于浅睡期,在检测到深睡期以及浅睡期时,控制空调器按照深睡期对应的运行参数运行。
本实施例中,也可预先设置用户的优先级,以在空调器所在环境有多个用户处于睡眠状态,且多个用户处于不同的睡眠阶段时,控制空调器按照优先级最高的用户所在的睡眠阶段对应的运行参数运行。其中,用户预先与空调器进行绑定操作,在绑定操作的过程中,雷达传感器获取并记录用户的呼吸频率,并为用户创建用户信息,用户信息包括优先级。比如设置家中老年人的优先级最高,小孩子其次,成年人的优先级最低,在室内同时存在老年人、成年人以及小孩子时,优先以老年人所在的睡眠阶段对应的运行参数运行。
在第四实施例中,在获取到多个睡眠阶段对应的运行参数时,获取睡眠阶段的优先级,并控制空调器按照优先级最高的睡眠阶段对应的运行参数运行。这样,保证了空调器的有序调节。
在第五实施例中,如图6所示,在上述图2至图5所示的实施例基础上,所述实时或定时通过雷达传感器获取用户的运动幅度变化率的步骤包括:
步骤S11、实时或定时通过所述雷达传感器获取所述用户与所述空调器之间的距离;
步骤S12、根据所述距离获取所述用户的运行幅度变化率。
本实施例中,空调器上设置雷达传感器,并由雷达传感器实时或定时获取用户与空调器之间的距离,以根据距离获取用户的运行幅度变化率。
具体地,计算本次获取到的距离与上次获取到的距离之间的差值,将该差值作为用户的运动幅度,并计算该差值与上次获取到的距离之间的商值,将该商值作为运动幅度变化率。
在第五实施例中,实时或定时通过雷达传感器获取用户与空调器之间的距离,并根据距离获取用户的运行幅度变化率。这样,实现根据运行幅度变化率确定用户所处的睡眠阶段。
在第六实施例中,如图7所示,在上述图2至图6所示的实施例基础上,所述根据所述距离获取所述用户的运行幅度变化率的步骤包括:
步骤S121、计算本次获取到的距离与上次获取到的距离之间的差值,将所述差值作为所述用户的运动幅度;
步骤S122、根据所述运动幅度与上次获取到的距离计算所述运动幅度变化率。
本实施例中,空调器上设置雷达传感器,并由雷达传感器实时或定时获取用户与空调器之间的距离,以根据距离获取用户的运行幅度变化率。
具体地,计算本次获取到的距离与上次获取到的距离之间的差值,将该差值作为用户的运动幅度,并计算该差值与上次获取到的距离之间的商值,将该商值作为运动幅度变化率。比如,三次获取到的距离分别为80cm、90cm以及110cm,那么运动幅度为10cm、20cm(运动幅度取绝对值),运动幅度变化率为10/80=0.125、10/90=0.222。
需要说明的是,运动幅度变化率不限于上述计算方法,可根据实际情况进行设置。
在第六实施例中,计算本次获取到的距离与上次获取到的距离之间的差值,并根据差值与上次获取到的距离计算运动幅度变化率。这样,实现根据运行幅度变化率确定用户所处的睡眠阶段。
在第七实施例中,如图8所示,在上述图2至图7所示的实施例基础上,所述将所述差值作为所述用户的运动幅度之后,还包括:
步骤S123、判断所述运动幅度是否小于预设运动幅度;
步骤S124、在所述运动幅度小于所述预设运动幅度时,则执行所述根据所述运动幅度与上次获取到的距离计算所述运动幅度变化率的步骤。
本实施例中,在运动幅度小于预设运动幅度时,则判定用户处于睡眠状态,此时获取运行幅度变化率,以根据运行幅度变化率获取用户的睡眠阶段。
在第七实施例中,在运动幅度小于预设运动幅度时,则计算运动幅度变化率,这样,减轻了空调器或者服务器的计算负担。
在第八实施例中,如图9所示,在上述图2至图8所示的实施例基础上,所述实时或定时通过雷达传感器获取用户的运动幅度变化率之前,还包括:
步骤S50、判断所述用户是否处于睡眠状态;
步骤S60、在所述用户处于所述睡眠状态时,则执行所述实时或定时通过雷达传感器获取用户的运动幅度变化率的步骤。
本实施例中,可以通过多种方式判断用户是否处于睡眠状态,比如摄像头、红外传感器等,优选的,通过蓝牙传感器判断用户是否处于睡眠状态。具体地,实时或定时获取用户的运动幅度,并判断运动幅度是否小于预设运动幅度,在运动幅度小于预设运动幅度时,则判定用户处于睡眠状态,从而执行实时或定时通过雷达传感器获取用户的运动幅度变化率的步骤。
在第八实施例中, 在用户处于睡眠状态时,则通过雷达传感器获取用户的运动幅度变化率,这样,减轻了空调器或者服务器的计算负担。
在第九实施例中,如图10所示,在上述图2至图9所示的实施例基础上,所述判断所述用户是否处于睡眠状态的步骤包括:
步骤S51、实时或定时获取所述用户的运动幅度;
步骤S52、判断所述运动幅度是否小于所述预设运动幅度;
步骤S53、在所述运动幅度小于所述预设运动幅度时,则判定所述用户处于所述睡眠状态。
在第九实施例中,实时或定时获取用户的运动幅度,并在运动幅度小于预设运动幅度时,则判定用户处于睡眠状态。这样,减轻了空调器或者服务器的计算负担。
此外,本申请还提出一种空调器,所述空调器包括雷达传感器、存储器、处理器及存储在存储器上并可在处理器上运行的睡眠阶段的监测程序,所述处理器执行所述睡眠阶段的监测程序时实现如以上实施例所述的睡眠阶段的监测方法的步骤。
此外,本申请还提出一种计算机可读存储介质,所述计算机可读存储介质包括睡眠阶段的监测程序,所述睡眠阶段的监测程序被处理器执行时实现如以上实施例所述的睡眠阶段的监测方法的步骤。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是电视机,手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种睡眠阶段的监测方法,其中,所述睡眠阶段的监测方法包括以下步骤:
    实时或定时通过雷达传感器获取用户的运动幅度变化率;
    根据所述运动幅度变化率确定所述用户的睡眠阶段。
  2. 如权利要求1所述的睡眠阶段的监测方法,其中,所述根据所述运动幅度变化率确定所述用户的睡眠阶段的步骤包括:
    实时或定时通过所述雷达传感器获取所述用户的呼吸频率变化率;
    根据所述呼吸频率变化率以及所述运动幅度变化率确定所述睡眠阶段。
  3. 如权利要求1所述的睡眠阶段的监测方法,其中,所述根据所述运动幅度变化率确定所述用户的睡眠阶段之后,还包括:
    获取所述睡眠阶段对应的运行参数;
    控制所述空调器按照所述运行参数运行。
  4. 如权利要求3所述的睡眠阶段的监测方法,其中,所述获取所述睡眠阶段对应的运行参数之后,还包括:
    在获取到多个所述睡眠阶段对应的运行参数时,获取所述睡眠阶段的优先级;
    控制所述空调器按照优先级最高的睡眠阶段对应的运行参数运行。
  5. 如权利要求1所述的睡眠阶段的监测方法,其中,所述实时或定时通过雷达传感器获取用户的运动幅度变化率的步骤包括:
    实时或定时通过所述雷达传感器获取所述用户与所述空调器之间的距离;
    根据所述距离获取所述用户的运行幅度变化率。
  6. 如权利要求5所述的睡眠阶段的监测方法,其中,所述根据所述距离获取所述用户的运行幅度变化率的步骤包括:
    计算本次获取到的距离与上次获取到的距离之间的差值,将所述差值作为所述用户的运动幅度;
    根据所述运动幅度与上次获取到的距离计算所述运动幅度变化率。
  7. 如权利要求6所述的睡眠阶段的监测方法,其中,所述将所述差值作为所述用户的运动幅度之后,还包括:
    判断所述运动幅度是否小于预设运动幅度;
    在所述运动幅度小于所述预设运动幅度时,则执行所述根据所述运动幅度与上次获取到的距离计算所述运动幅度变化率的步骤。
  8. 如权利要求1所述的睡眠阶段的监测方法,其中,所述实时或定时通过雷达传感器获取用户的运动幅度变化率之前,还包括:
    判断所述用户是否处于睡眠状态;
    在所述用户处于所述睡眠状态时,则执行所述实时或定时通过雷达传感器获取用户的运动幅度变化率的步骤。
  9. 如权利要求8所述的睡眠阶段的监测方法,其中,所述判断所述用户是否处于睡眠状态的步骤包括:
    实时或定时获取所述用户的运动幅度;
    在所述运动幅度小于所述预设运动幅度时,则判定所述用户处于所述睡眠状态。
  10. 一种空调器,其中,所述空调器包括雷达传感器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的睡眠阶段的监测程序,所述处理器执行上述睡眠阶段的监测程序,所述睡眠阶段的监测程序包括:
    实时或定时通过雷达传感器获取用户的运动幅度变化率;
    根据所述运动幅度变化率确定所述用户的睡眠阶段。
  11. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有睡眠阶段的监测程序,所述处理器执行上述睡眠阶段的监测程序,所述睡眠阶段的监测程序包括:
    实时或定时通过雷达传感器获取用户的运动幅度变化率;
    根据所述运动幅度变化率确定所述用户的睡眠阶段。
PCT/CN2018/097383 2018-04-23 2018-07-27 睡眠阶段的监测方法、空调器及计算机可读存储介质 WO2019205321A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810370873.X 2018-04-23
CN201810370873.XA CN108613341A (zh) 2018-04-23 2018-04-23 睡眠阶段的监测方法、空调器及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2019205321A1 true WO2019205321A1 (zh) 2019-10-31

Family

ID=63660482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097383 WO2019205321A1 (zh) 2018-04-23 2018-07-27 睡眠阶段的监测方法、空调器及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN108613341A (zh)
WO (1) WO2019205321A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779150A (zh) * 2019-11-14 2020-02-11 宁波奥克斯电气股份有限公司 一种基于毫米波的空调器控制方法、装置及空调器
CN114674065A (zh) * 2022-03-07 2022-06-28 广州天环信息技术有限公司 一种基于无线传感网络的可预测温控***及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701319B (zh) * 2020-05-22 2022-09-09 广东美的制冷设备有限公司 空调器控制方法、空调器及可读存储介质
CN113693557B (zh) * 2020-05-22 2023-12-26 广东美的制冷设备有限公司 睡眠质量检测方法、空调器及可读存储介质
CN112066528A (zh) * 2020-08-10 2020-12-11 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
AU2020464165B2 (en) * 2020-08-18 2023-05-18 Conex Healthcare Pte. Ltd. Non-contact and non-intrusive continuous monitoring platform
CN113189885A (zh) * 2021-04-30 2021-07-30 海尔(深圳)研发有限责任公司 用于家居***中睡眠环境控制的方法、装置、设备及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103006225A (zh) * 2013-01-11 2013-04-03 湖南纳雷科技有限公司 一种监测睡眠呼吸状态的睡眠仪
CN103006223A (zh) * 2012-12-13 2013-04-03 中国人民解放军第四军医大学 一种家用非接触睡眠监测装置及方法
CN104676854A (zh) * 2015-02-15 2015-06-03 青岛海尔空调器有限总公司 空调器睡眠运行控制方法
CN104848473A (zh) * 2015-04-23 2015-08-19 广东美的制冷设备有限公司 基于可穿戴设备的空调器控制方法、装置和***
CN105042769A (zh) * 2015-06-30 2015-11-11 广东美的制冷设备有限公司 睡眠状态监控方法及装置、空调器***
CN205278866U (zh) * 2015-12-29 2016-06-01 珠海奥美健康科技有限公司 一种多功能智能灯
US20180073760A1 (en) * 2016-09-09 2018-03-15 Trane International Inc. Sleep enhancement in an hvac system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087850A (ja) * 2004-09-21 2006-04-06 Charm & Mark Kk 睡眠状態検知装置・検知システム、および睡眠状態検知起動の空調機器・照明機器・音響機器等制御装置・制御システム
CN104748303B (zh) * 2015-03-13 2017-06-16 广东美的制冷设备有限公司 基于可穿戴设备的空调器控制方法、装置和***
CN106236013A (zh) * 2016-06-22 2016-12-21 京东方科技集团股份有限公司 一种睡眠监测方法及装置
CN106679093A (zh) * 2016-12-30 2017-05-17 广东美的制冷设备有限公司 空调睡眠控制方法及装置和空调器
CN107560096B (zh) * 2017-10-09 2019-12-13 深圳市建滔科技有限公司 基于深度睡眠的自然风调频空调、空调***和控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103006223A (zh) * 2012-12-13 2013-04-03 中国人民解放军第四军医大学 一种家用非接触睡眠监测装置及方法
CN103006225A (zh) * 2013-01-11 2013-04-03 湖南纳雷科技有限公司 一种监测睡眠呼吸状态的睡眠仪
CN104676854A (zh) * 2015-02-15 2015-06-03 青岛海尔空调器有限总公司 空调器睡眠运行控制方法
CN104848473A (zh) * 2015-04-23 2015-08-19 广东美的制冷设备有限公司 基于可穿戴设备的空调器控制方法、装置和***
CN105042769A (zh) * 2015-06-30 2015-11-11 广东美的制冷设备有限公司 睡眠状态监控方法及装置、空调器***
CN205278866U (zh) * 2015-12-29 2016-06-01 珠海奥美健康科技有限公司 一种多功能智能灯
US20180073760A1 (en) * 2016-09-09 2018-03-15 Trane International Inc. Sleep enhancement in an hvac system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779150A (zh) * 2019-11-14 2020-02-11 宁波奥克斯电气股份有限公司 一种基于毫米波的空调器控制方法、装置及空调器
CN110779150B (zh) * 2019-11-14 2021-05-14 宁波奥克斯电气股份有限公司 一种基于毫米波的空调器控制方法、装置及空调器
CN114674065A (zh) * 2022-03-07 2022-06-28 广州天环信息技术有限公司 一种基于无线传感网络的可预测温控***及方法

Also Published As

Publication number Publication date
CN108613341A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2019205321A1 (zh) 睡眠阶段的监测方法、空调器及计算机可读存储介质
WO2018076757A1 (zh) 一种人***置获取方法和装置
WO2018076744A1 (zh) 智能穿戴设备的穿戴状态检测方法及检测装置
WO2019114553A1 (zh) 空气调节器及其控制方法、装置以及存储介质
WO2016173225A1 (zh) 一种基于移动终端距离传感器的对焦方法及对焦***
WO2019051888A1 (zh) 基于日程的家电控制方法、装置和计算机可读存储介质
WO2014082483A1 (zh) 超声弹性成像***和方法、实时动态帧间处理方法
WO2020258574A1 (zh) 空调器的控制方法、装置、空调器和存储介质
WO2017124792A1 (zh) 动态捕捉人脸摄像的方法、***及移动终端
WO2017133274A1 (zh) 一种终端屏幕亮度调节方法、***及终端
WO2010056024A2 (en) Method and device for inputting force intensity and rotation intensity based on motion sensing
WO2018205413A1 (zh) 音频音量的调整方法、终端及计算机可读存储介质
WO2017181686A1 (zh) 一种移动终端视频通讯中画面角度自动修正方法及***
WO2016127838A1 (zh) 一种数控机床及其调试方法
WO2018107668A1 (zh) 空调器及其一键开机控制方法
WO2017113689A1 (zh) 虚拟现实***中的空间定位方法、装置及***
WO2020098013A1 (zh) 电视节目推荐方法、终端、***及存储介质
WO2019114552A1 (zh) 空气调节装置及控制方法、终端和存储介质
WO2020124848A1 (zh) 空调器的控制方法、空调器及存储介质
WO2016124054A1 (zh) 除颤监护仪同步除颤***及方法
WO2022124562A1 (ko) 골프 스윙 연습 보조장치
WO2018174567A1 (ko) 보행 보조기의 위험 상황 판단 방법 및 장치
WO2019114587A1 (zh) 虚拟现实终端的信息处理方法、装置及可读存储介质
WO2019137240A1 (zh) 一种基于智能手环的深度睡眠唤醒方法及其***
WO2018120717A1 (zh) 空调器控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 25.03.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916640

Country of ref document: EP

Kind code of ref document: A1