WO2019205169A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2019205169A1
WO2019205169A1 PCT/CN2018/085182 CN2018085182W WO2019205169A1 WO 2019205169 A1 WO2019205169 A1 WO 2019205169A1 CN 2018085182 W CN2018085182 W CN 2018085182W WO 2019205169 A1 WO2019205169 A1 WO 2019205169A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
network device
terminal
message
pilot
Prior art date
Application number
PCT/CN2018/085182
Other languages
English (en)
French (fr)
Inventor
唐珣
张戬
柴丽
王宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880092811.5A priority Critical patent/CN112106417B/zh
Priority to PCT/CN2018/085182 priority patent/WO2019205169A1/zh
Publication of WO2019205169A1 publication Critical patent/WO2019205169A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the signal from the drone can be received by more base stations due to less obstruction, and the drone can receive more signals from the base station, resulting in the uplink direction and The interference in the downlink direction increases.
  • a signal transmitted by the drone may be received by the serving base station, the interfering base station 1 and the interfering base station 2, the serving base station, the interfering base station 1 and The signals transmitted by the interfering base station 2 may also be received by the drone.
  • the solution proposes that multiple base stations cooperate, and multiple base stations that cooperate with each other allocate the same time-frequency resource to the same terminal for joint transmission downlink.
  • Data and joint reception of uplink data The plurality of cells of the plurality of base stations constitute a virtual cell, and the terminal switches between the virtual cells.
  • the method reduces the interference of the uplink and the downlink to a certain extent, and reduces the switching frequency of the terminal to some extent.
  • one terminal occupies time-frequency resources of multiple base stations, which reduces spectrum efficiency.
  • the embodiment of the present application provides a communication method and device for improving spectrum efficiency when using virtual cell communication.
  • different terminals can receive beams transmitted by different network devices, and terminals in different directions can perform space division multiplexing, thereby improving virtual cell resources. Utilization, further improving spectrum efficiency and system capacity.
  • the configuration information is also used to indicate a control area in the virtual cell resource, and the control area may be, but not limited to, the following two manners.
  • the control area includes m dedicated control areas, where the m dedicated control areas are in one-to-one correspondence with the m network devices, and different dedicated control areas correspond to different network devices, and one network device occupies one
  • the dedicated control area is used to carry downlink control information of the corresponding network device.
  • the configuration information includes a number of dedicated control areas, or includes a size or a location of resources occupied by each of the dedicated control areas of the m dedicated control areas, to help the terminal correctly receive downlink control information.
  • the configuration information may be carried by a dedicated physical channel, a handover command, another RRC message, or a media access layer control unit MAC CE, or the number of dedicated control areas, or the size of resources occupied by each dedicated control area or
  • the location may be carried in a dedicated physical channel, a handover command, another RRC message, or a media access layer control unit MAC CE, and the terminal acquires the division information of the dedicated control area by receiving one of the information.
  • the method may further include: detecting downlink in the dedicated control area according to the number of received dedicated control areas or the size or location of resources occupied by each dedicated control area. Control information, demodulating the downlink data information according to the detected downlink control information.
  • the resource allocation information is used to detect a pilot signal in the pilot resource region, where the pilot resource region is used to carry a beam-related pilot signal, for example, a demodulation reference symbol, and a beam-related pilot signal is used to
  • the beam carrying the downlink control information is used for channel estimation, and can be used for control channel demodulation and data channel demodulation.
  • the reference signals used for control channel demodulation and data channel demodulation may be the same or different.
  • any one of the m network devices can be understood as one or more of the m network devices.
  • the size or location of the resource occupied by the pilot resource region and the allocation information of the pilot resource may also be indicated by other information, such as a broadcast message or a system message, a dedicated physical channel, an over-handover command, other RRC messages, or a MAC CE.
  • the terminal acquires the information of the pilot resource by receiving other information.
  • the configuration information is used to indicate the size or location of the resources occupied by the pilot resource region and the allocation information of the pilot resources, and the configuration information may be carried by the above messages.
  • the allocation information of the pilot resource includes a port number of the pilot signal, or a number of ports of the pilot signal.
  • the method may further include: detecting the pilot signal in the pilot resource region, and performing downlink control channel in the common control region according to a channel estimation result of the pilot signal.
  • the downlink detection information is obtained according to the result of the blind detection, and the downlink data information is demodulated according to the downlink control information.
  • the configuration information may be received from the first network device by: receiving a system message or a broadcast message from the first network device, where the system message or the broadcast message carries the configuration information; Or receiving a dedicated physical channel message from the first network device, where the dedicated physical channel message carries the configuration information; or receiving an RRC configuration message from the first network device, where the RRC configuration message carries Receiving a configuration command; or receiving a handover command from the first network device, where the handover command carries the configuration information; or receiving another RRC message or MAC CE from the first network device, the other RRC message or The MAC CE carries the configuration information.
  • location information may also be received from the first network device, where the location information is used to indicate a location of the network device for uplink data reception in the m network devices, according to the The location of the network device receiving the uplink data and the location of itself, generating a beam directed to the network device for uplink data reception.
  • the beam is used for uplink and downlink data transmission to improve spectrum efficiency.
  • the location information may include location coordinates of a network device for uplink data reception in the m network devices, and/or an index number of the network device for uplink data reception, where the index number is used to distinguish Different network devices of m network devices.
  • receiving a system message or a broadcast message from the first network device the system message or the broadcast message carrying the location information; or receiving a dedicated physical channel from the first network device a message that the location information is carried in the dedicated physical channel message; or, the semi-static configuration message is received from the first network device, where the semi-static configuration message carries the location information; or, from the first
  • the network device receives the uplink scheduling UL-Grant information, where the foregoing scheduling information carries the location information.
  • the first notification message may be received from the first network device, and the correspondence between the pilot resource and the first redundancy version is determined according to the first notification message, where the terminal acquires Determining the downlink data sent by the multiple beams corresponding to the pilot resources, and performing HARQ combining on the downlink data sent by the multiple beams according to the correspondence between the pilot resources and the first redundancy version. Transmitting the same data through multiple beams helps to meet low-latency, high-reliability transmission requirements.
  • multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • the pilot resource is a port number
  • the terminal receives the correspondence between the port number sent by the first network device and the redundancy version.
  • the RRC message sent by the first network device the RRC message carries a correspondence between the pilot resource and a first redundancy version number; or, from the first network device Receiving a downlink semi-persistent scheduling configuration message, where the downlink semi-persistent scheduling configuration message carries a correspondence between the pilot resource and a first redundancy version number; or receives downlink control information DCI from the first network device, where The DCI information carries a correspondence between the pilot resource and the first redundancy version number, or receives downlink control information DCI from the first network device, where the DCI information carries a pilot port number, or The first network device receives downlink control information DCI, where the DCI information carries a number of pilot ports.
  • the data of some ports can also be selected for merging, which can focus the processing power of the terminal on high-quality signals, which helps to improve the reliability and quality of data transmission.
  • the second notification message is further received from the first network device, and the correspondence between the index number of the network device for uplink data reception and the second redundancy version is determined according to the second notification message. And transmitting, according to the correspondence between the index number of the network device for uplink data reception and the second redundancy version, the data of the corresponding redundancy version to the network device for uplink data reception.
  • the virtual cell communication When the virtual cell communication is adopted, multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • a communication method is provided, and an execution body of the method may be a terminal, where the method is mainly implemented by: receiving location information from the first network device, where the location information is used to indicate the m networks
  • the location of the network device used for uplink data reception in the device generates a beam directed to the network device for uplink data reception according to the location of the network device for uplink data reception and its location.
  • the beam is used for uplink and downlink data transmission to improve spectrum efficiency.
  • receiving a system message or a broadcast message from the first network device the system message or the broadcast message carrying the location information; or receiving a dedicated physical channel from the first network device a message that the location information is carried in the dedicated physical channel message; or, the semi-static configuration message is received from the first network device, where the semi-static configuration message carries the location information; or, from the first
  • the network device receives the uplink scheduling UL-Grant information, where the foregoing scheduling information carries the location information.
  • the first notification message may be received from the first network device, and the correspondence between the pilot resource and the first redundancy version is determined according to the first notification message, where the terminal acquires Determining the downlink data sent by the multiple beams corresponding to the pilot resources, and performing HARQ combining on the downlink data sent by the multiple beams according to the correspondence between the pilot resources and the first redundancy version. Transmitting the same data through multiple beams helps to meet low-latency, high-reliability transmission requirements.
  • multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • the pilot resource is a port number
  • the terminal receives the correspondence between the port number sent by the first network device and the redundancy version.
  • the RRC message sent by the first network device the RRC message carries a correspondence between the pilot resource and a first redundancy version number; or, from the first network device Receiving a downlink semi-persistent scheduling configuration message, where the downlink semi-persistent scheduling configuration message carries a correspondence between the pilot resource and a first redundancy version number; or receives downlink control information DCI from the first network device, where The DCI information carries a correspondence between the pilot resource and the first redundancy version number, or receives downlink control information DCI from the first network device, where the DCI information carries a pilot port number, or The first network device receives downlink control information DCI, where the DCI information carries a number of pilot ports.
  • the data of some ports can also be selected for merging, which can focus the processing power of the terminal on high-quality signals, which helps to improve the reliability and quality of data transmission.
  • the second notification message is further received from the first network device, and the correspondence between the index number of the network device for uplink data reception and the second redundancy version is determined according to the second notification message. And transmitting, according to the correspondence between the index number of the network device for uplink data reception and the second redundancy version, the data of the corresponding redundancy version to the network device for uplink data reception.
  • the virtual cell communication When the virtual cell communication is adopted, multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • the configuration information is received from the first network device, where the configuration information is used to indicate a data area in the virtual cell resource, where the data area is commonly occupied by m network devices, and the m network devices include the first
  • the network device and the one or more second network devices receive downlink data information in the data area according to the configuration information, where the downlink data information is used by one or more of the m network devices Information carried by the beam.
  • different terminals can receive beams transmitted by different network devices, and terminals in different directions can perform space division multiplexing, thereby improving virtual cell resources. Utilization, further improving spectrum efficiency and system capacity.
  • the configuration information is also used to indicate a control area in the virtual cell resource, and the control area may be, but not limited to, the following two manners.
  • the control area includes m dedicated control areas, where the m dedicated control areas are in one-to-one correspondence with the m network devices, and different dedicated control areas correspond to different network devices, and one network device occupies one
  • the dedicated control area is used to carry downlink control information of the corresponding network device.
  • the configuration information includes a number of dedicated control areas, or includes a size or a location of resources occupied by each of the dedicated control areas of the m dedicated control areas, to help the terminal correctly receive downlink control information.
  • the m dedicated control areas may be divided into equal division manners, or may be divided into unequal division manners.
  • the terminal may receive the number of dedicated control areas.
  • the terminal may What is received is the size or location of resources occupied by each dedicated control area.
  • the configuration information may be carried by a dedicated physical channel, a handover command, another RRC message, or a media access layer control unit MAC CE, or the number of dedicated control areas, or the size of resources occupied by each dedicated control area or
  • the location may be carried in a dedicated physical channel, a handover command, another RRC message, or a media access layer control unit MAC CE, and the terminal acquires the division information of the dedicated control area by receiving one of the information.
  • the method may further include: detecting downlink in the dedicated control area according to the number of received dedicated control areas or the size or location of resources occupied by each dedicated control area. Control information, demodulating the downlink data information according to the detected downlink control information.
  • the second type the control area is a common control area, and the common control area is used to carry a beam carrying downlink control information of any one of the m network devices, where the configuration information is further used to indicate the virtual cell resource.
  • the pilot resource region, the configuration information further includes a size or a location of the resource occupied by the pilot resource region, and allocation information of the pilot resource, where the allocation information of the pilot resource is used to detect the pilot resource region.
  • a pilot resource region is used to carry a beam-related pilot signal, for example, a demodulation reference symbol, and a beam-related pilot signal is used for channel estimation of the beam carrying the downlink control information, which can be used for control Channel demodulation and data channel demodulation, of course, the reference signals used for control channel demodulation and data channel demodulation may be the same or different.
  • the size or location of the resource occupied by the pilot resource region and the allocation information of the pilot resource may also be indicated by other information, such as a broadcast message or a system message, a dedicated physical channel, an over-handover command, other RRC messages, or a MAC CE.
  • the terminal acquires the information of the pilot resource by receiving other information.
  • the configuration information is used to indicate the size or location of the resource occupied by the pilot resource region and the allocation information of the pilot resource, and the configuration information can be carried by the above messages.
  • the allocation information of the pilot resource includes a port number of the pilot signal, or a number of ports of the pilot signal.
  • the method may further include: detecting the pilot signal in the pilot resource region, and performing downlink control channel in the common control region according to a channel estimation result of the pilot signal.
  • the downlink detection information is obtained according to the result of the blind detection, and the downlink data information is demodulated according to the downlink control information.
  • a third aspect of the present invention provides a communication method, where an execution subject of the method may be a terminal, where the method is mainly implemented by: receiving a first notification message from the first network device, and determining a guide according to the first notification message. And the terminal acquires downlink data sent on multiple beams corresponding to the pilot resource, and according to the correspondence between the pilot resource and the first redundancy version, the corresponding relationship between the frequency resource and the first redundancy version. The relationship is performed by performing HARQ combining on the downlink data sent by the multiple beams. Transmitting the same data through multiple beams helps to meet low-latency, high-reliability transmission requirements.
  • multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • the pilot resource is a port number
  • the terminal receives the correspondence between the port number sent by the first network device and the redundancy version.
  • the RRC message sent by the first network device the RRC message carries a correspondence between the pilot resource and a first redundancy version number; or, from the first network device Receiving a downlink semi-persistent scheduling configuration message, where the downlink semi-persistent scheduling configuration message carries a correspondence between the pilot resource and a first redundancy version number; or receives downlink control information DCI from the first network device, where The DCI information carries a correspondence between the pilot resource and the first redundancy version number, or receives downlink control information DCI from the first network device, where the DCI information carries a pilot port number, or The first network device receives downlink control information DCI, where the DCI information carries a number of pilot ports.
  • the data of some ports can also be selected for merging, which can focus the processing power of the terminal on high-quality signals, which helps to improve the reliability and quality of data transmission.
  • location information may also be received from the first network device, where the location information is used to indicate a location of the network device for uplink data reception in the m network devices, according to the The location of the network device receiving the uplink data and the location of itself, generating a beam directed to the network device for uplink data reception.
  • the beam is used for uplink and downlink data transmission to improve spectrum efficiency.
  • receiving a system message or a broadcast message from the first network device the system message or the broadcast message carrying the location information; or receiving a dedicated physical channel from the first network device a message that the location information is carried in the dedicated physical channel message; or, the semi-static configuration message is received from the first network device, where the semi-static configuration message carries the location information; or, from the first
  • the network device receives the uplink scheduling UL-Grant information, where the foregoing scheduling information carries the location information.
  • the configuration information is also used to indicate a control area in the virtual cell resource, and the control area may be, but not limited to, the following two manners.
  • the control area includes m dedicated control areas, where the m dedicated control areas are in one-to-one correspondence with the m network devices, and different dedicated control areas correspond to different network devices, and one network device occupies one
  • the dedicated control area is used to carry downlink control information of the corresponding network device.
  • the configuration information includes a number of dedicated control areas, or includes a size or a location of resources occupied by each of the dedicated control areas of the m dedicated control areas, to help the terminal correctly receive downlink control information.
  • the method may further include: detecting downlink in the dedicated control area according to the number of received dedicated control areas or the size or location of resources occupied by each dedicated control area. Control information, demodulating the downlink data information according to the detected downlink control information.
  • the second type the control area is a common control area, and the common control area is used to carry a beam carrying downlink control information of any one of the m network devices, where the configuration information is further used to indicate the virtual cell resource.
  • the pilot resource region, the configuration information further includes a size or a location of the resource occupied by the pilot resource region, and allocation information of the pilot resource, where the allocation information of the pilot resource is used to detect the pilot resource region.
  • a pilot resource region is used to carry a beam-related pilot signal, for example, a demodulation reference symbol, and a beam-related pilot signal is used for channel estimation of the beam carrying the downlink control information, which can be used for control Channel demodulation and data channel demodulation, of course, the reference signals used for control channel demodulation and data channel demodulation may be the same or different.
  • the size or location of the resource occupied by the pilot resource region and the allocation information of the pilot resource may also be indicated by other information, such as a broadcast message or a system message, a dedicated physical channel, an over-handover command, other RRC messages, or a MAC CE.
  • the terminal acquires the information of the pilot resource by receiving other information.
  • the configuration information is used to indicate the size or location of the resources occupied by the pilot resource region and the allocation information of the pilot resources, and the configuration information may be carried by the above messages.
  • the allocation information of the pilot resource includes a port number of the pilot signal, or a number of ports of the pilot signal.
  • the configuration information may be received from the first network device by: receiving a system message or a broadcast message from the first network device, where the system message or the broadcast message carries the configuration information; Or receiving a dedicated physical channel message from the first network device, where the dedicated physical channel message carries the configuration information; or receiving an RRC configuration message from the first network device, where the RRC configuration message carries Receiving a configuration command; or receiving a handover command from the first network device, where the handover command carries the configuration information; or receiving another RRC message or MAC CE from the first network device, the other RRC message or The MAC CE carries the configuration information.
  • a plurality of network devices share the data area by using beam communication, and different terminals can receive beams transmitted by different network devices, and terminals in different directions can perform space division multiplexing, thereby improving utilization of virtual cell resources and further improving Spectrum efficiency and system capacity.
  • the configuration information is also used to indicate a control area in the virtual cell resource, and the control area may be, but not limited to, the following two manners.
  • the control area includes m dedicated control areas, where the m dedicated control areas are in one-to-one correspondence with the m network devices, and different dedicated control areas correspond to different network devices, and one network device occupies one
  • the dedicated control area is used to carry downlink control information of the corresponding network device.
  • the configuration information includes a number of dedicated control areas, or includes a size or a location of resources occupied by each of the dedicated control areas of the m dedicated control areas, to help the terminal correctly receive downlink control information.
  • the m dedicated control areas may be divided into equal division manners, or may be divided into unequal division manners.
  • the terminal may receive the number of dedicated control areas.
  • the terminal may What is received is the size or location of resources occupied by each dedicated control area.
  • the configuration information may be carried by a dedicated physical channel, a handover command, another RRC message, or a media access layer control unit MAC CE, or the number of dedicated control areas, or the size of resources occupied by each dedicated control area or
  • the location may be carried in a dedicated physical channel, a handover command, other RRC messages, or a medium access layer control unit MAC CE, and the one of the pieces of information is used to indicate the division information of the dedicated control area to the terminal.
  • the second type the control area is a common control area, and the common control area is used to carry a beam carrying downlink control information of any one of the m network devices, where the configuration information is further used to indicate the virtual cell resource.
  • the pilot resource region, the configuration information further includes a size or a location of the resource occupied by the pilot resource region, and allocation information of the pilot resource, where the allocation information of the pilot resource is used to detect the pilot resource region.
  • a pilot resource region is used to carry a beam-related pilot signal, for example, a demodulation reference symbol, and a beam-related pilot signal is used for channel estimation of the beam carrying the downlink control information, which can be used for control Channel demodulation and data channel demodulation, of course, the reference signals used for control channel demodulation and data channel demodulation may be the same or different.
  • the size or location of the resource occupied by the pilot resource region and the allocation information of the pilot resource may also be indicated by other information, such as a broadcast message or a system message, a dedicated physical channel, an over-handover command, other RRC messages, or a MAC CE.
  • the information of the pilot resource is indicated to the terminal by transmitting other information.
  • the configuration information is used to indicate the size or location of the resources occupied by the pilot resource region and the allocation information of the pilot resources, and the configuration information is carried by the above messages.
  • the allocation information of the pilot resource includes a port number of the pilot signal, or a number of ports of the pilot signal.
  • configuration information may be sent to the terminal by transmitting one of the following messages: a system message or a broadcast message, a dedicated physical channel message, an RRC configuration message, a handover command, or other RRC message or MAC CE. Carry configuration information in any kind of message.
  • location information may also be sent to the terminal, where the location information is used to indicate the location of the network device for uplink data reception in the m network devices.
  • the terminal can be configured to generate a beam directed to the corresponding network device, and different terminals use the beam to transmit uplink data to different base stations, and no significant interference occurs in the uplink direction. It helps to use the beam for uplink and downlink data transmission when using virtual cell communication, improving spectrum efficiency.
  • the location information may include location coordinates of a network device for uplink data reception in the m network devices, and/or an index number of the network device for uplink data reception, where the index number is used to distinguish Different network devices of m network devices.
  • the location information is indicated to the terminal by sending any of the following messages to the terminal: a system message or a broadcast message, a dedicated physical channel message, a semi-static configuration message, an uplink scheduling UL-Grant information.
  • the first notification message may be sent to the terminal, where the first notification message carries a correspondence between the pilot resource and the first redundancy version, where one or more network devices of the m network devices are The plurality of beams corresponding to the pilot resource send downlink data, where the correspondence is used by the terminal to perform HARQ combining on downlink data on multiple beams. Transmitting the same data through multiple beams helps to meet low-latency, high-reliability transmission requirements.
  • multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • the pilot resource is a port number
  • the terminal receives the correspondence between the port number sent by the first network device and the redundancy version.
  • the terminal may further send a second notification message to the terminal, where the second notification message carries a correspondence between an index number of the network device used for uplink data reception and a second redundancy version, where Corresponding relationship between the index number of the network device received by the uplink data and the second redundancy version is used for performing HARQ combining on the uplink data of the multiple redundancy versions received by the network device corresponding to the index number.
  • the virtual cell communication When the virtual cell communication is adopted, multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • a fifth aspect of the present invention provides a communication method, where an execution entity of the method may be a first network device, where the method is mainly implemented by: sending location information to a terminal, where the location information is used to indicate the m network devices.
  • the location of the network device for uplink data reception generates a beam directed to the network device for uplink data reception according to the location of the network device for uplink data reception and its location.
  • the terminal can be configured to generate a beam directed to the corresponding network device, and different terminals use the beam to transmit uplink data to different base stations, and no significant interference occurs in the uplink direction. It helps to use the beam for uplink and downlink data transmission when using virtual cell communication, improving spectrum efficiency.
  • the location information may include location coordinates of a network device for uplink data reception in the m network devices, and/or an index number of the network device for uplink data reception, where the index number is used to distinguish Different network devices of m network devices.
  • the location information is indicated to the terminal by sending any of the following messages to the terminal: a system message or a broadcast message, a dedicated physical channel message, a semi-static configuration message, an uplink scheduling UL-Grant information.
  • the first notification message may be sent to the terminal, where the first notification message carries a correspondence between the pilot resource and the first redundancy version, where one or more network devices of the m network devices are The plurality of beams corresponding to the pilot resource send downlink data, where the correspondence is used by the terminal to perform HARQ combining on downlink data on multiple beams. Transmitting the same data through multiple beams helps to meet low-latency, high-reliability transmission requirements.
  • multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • the corresponding relationship is carried in the following message: the RRC message, the downlink semi-persistent scheduling configuration message, and the downlink control information DCI, where the DCI carries the pilot
  • the DCI carries the pilot
  • the terminal may further send a second notification message to the terminal, where the second notification message carries a correspondence between an index number of the network device used for uplink data reception and a second redundancy version, where Corresponding relationship between the index number of the network device received by the uplink data and the second redundancy version is used for performing HARQ combining on the uplink data of the multiple redundancy versions received by the network device corresponding to the index number.
  • the virtual cell communication When the virtual cell communication is adopted, multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • the configuration information is further sent to the terminal, where the configuration information is used to indicate a data area in the virtual cell resource, where the data area is commonly occupied by m network devices, where the m network devices include the a network device and one or more second network devices, wherein the data area is used by one or more network devices of the m network devices to transmit a beam carrying downlink data information; and the bearer downlink is sent in the data region The beam of data information.
  • the configuration information is used to indicate a data area in the virtual cell resource, where the data area is commonly occupied by m network devices, where the m network devices include the a network device and one or more second network devices, wherein the data area is used by one or more network devices of the m network devices to transmit a beam carrying downlink data information; and the bearer downlink is sent in the data region The beam of data information.
  • a plurality of network devices share the data area by using beam communication, and different terminals can receive beams transmitted by different network devices, and terminals in different directions can perform space division multiple
  • the control area includes m dedicated control areas, where the m dedicated control areas are in one-to-one correspondence with the m network devices, and different dedicated control areas correspond to different network devices, and one network device occupies one
  • the dedicated control area is used to carry downlink control information of the corresponding network device.
  • the configuration information includes a number of dedicated control areas, or includes a size or a location of resources occupied by each of the dedicated control areas of the m dedicated control areas, to help the terminal correctly receive downlink control information.
  • the m dedicated control areas may be divided into equal division manners, or may be divided into unequal division manners.
  • the terminal may receive the number of dedicated control areas.
  • the terminal may What is received is the size or location of resources occupied by each dedicated control area.
  • the configuration information may be carried by a dedicated physical channel, a handover command, another RRC message, or a media access layer control unit MAC CE, or the number of dedicated control areas, or the size of resources occupied by each dedicated control area or
  • the location may be carried in a dedicated physical channel, a handover command, other RRC messages, or a medium access layer control unit MAC CE, and the one of the pieces of information is used to indicate the division information of the dedicated control area to the terminal.
  • the second type the control area is a common control area, and the common control area is used to carry a beam carrying downlink control information of any one of the m network devices, where the configuration information is further used to indicate the virtual cell resource.
  • the pilot resource region, the configuration information further includes a size or a location of the resource occupied by the pilot resource region, and allocation information of the pilot resource, where the allocation information of the pilot resource is used to detect the pilot resource region.
  • a pilot resource region is used to carry a beam-related pilot signal, for example, a demodulation reference symbol, and a beam-related pilot signal is used for channel estimation of the beam carrying the downlink control information, which can be used for control Channel demodulation and data channel demodulation, of course, the reference signals used for control channel demodulation and data channel demodulation may be the same or different.
  • multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • the corresponding relationship is carried in the following message: the RRC message, the downlink semi-persistent scheduling configuration message, and the downlink control information DCI, where the DCI carries the pilot
  • the DCI carries the pilot
  • the terminal may further send a second notification message to the terminal, where the second notification message carries a correspondence between an index number of the network device used for uplink data reception and a second redundancy version, where Corresponding relationship between the index number of the network device received by the uplink data and the second redundancy version is used for performing HARQ combining on the uplink data of the multiple redundancy versions received by the network device corresponding to the index number.
  • the virtual cell communication When the virtual cell communication is adopted, multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting the TB, and contributes to high reliability of data transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay.
  • the configuration information is further sent to the terminal, where the configuration information is used to indicate a data area in the virtual cell resource, where the data area is commonly occupied by m network devices, where the m network devices include the a network device and one or more second network devices, wherein the data area is used by one or more network devices of the m network devices to transmit a beam carrying downlink data information; and the bearer downlink is sent in the data region The beam of data information.
  • the configuration information is used to indicate a data area in the virtual cell resource, where the data area is commonly occupied by m network devices, where the m network devices include the a network device and one or more second network devices, wherein the data area is used by one or more network devices of the m network devices to transmit a beam carrying downlink data information; and the bearer downlink is sent in the data region The beam of data information.
  • a plurality of network devices share the data area by using beam communication, and different terminals can receive beams transmitted by different network devices, and terminals in different directions can perform space division multiple
  • the configuration information is also used to indicate a control area in the virtual cell resource, and the control area may be, but not limited to, the following two manners.
  • the control area includes m dedicated control areas, where the m dedicated control areas are in one-to-one correspondence with the m network devices, and different dedicated control areas correspond to different network devices, and one network device occupies one
  • the dedicated control area is used to carry downlink control information of the corresponding network device.
  • the configuration information includes the number of dedicated control areas, or the size or location of resources occupied by each dedicated control area in the m dedicated control areas, to help the terminal correctly receive downlink control information.
  • the m dedicated control areas may be divided into equal division manners, or may be divided into unequal division manners.
  • the terminal may receive the number of dedicated control areas.
  • the terminal may What is received is the size or location of resources occupied by each dedicated control area.
  • the configuration information may be carried by a dedicated physical channel, a handover command, another RRC message, or a media access layer control unit MAC CE, or the number of dedicated control areas, or the size of resources occupied by each dedicated control area or
  • the location may be carried in a dedicated physical channel, a handover command, other RRC messages, or a medium access layer control unit MAC CE, and the one of the pieces of information is used to indicate the division information of the dedicated control area to the terminal.
  • the second type the control area is a common control area, and the common control area is used to carry a beam carrying downlink control information of any one of the m network devices, where the configuration information is further used to indicate the virtual cell resource.
  • the pilot resource region, the configuration information further includes a size or a location of the resource occupied by the pilot resource region, and allocation information of the pilot resource, where the allocation information of the pilot resource is used to detect the pilot resource region.
  • the size or location of the resource occupied by the pilot resource region and the allocation information of the pilot resource may also be indicated by other information, such as a broadcast message or a system message, a dedicated physical channel, an over-handover command, other RRC messages, or a MAC CE.
  • the information of the pilot resource is indicated to the terminal by transmitting other information.
  • the configuration information is used to indicate the size or location of the resources occupied by the pilot resource region and the allocation information of the pilot resources, and the configuration information is carried by the above messages.
  • the allocation information of the pilot resource includes a port number of the pilot signal, or a number of ports of the pilot signal.
  • configuration information may be sent to the terminal by transmitting one of the following messages: a system message or a broadcast message, a dedicated physical channel message, an RRC configuration message, a handover command, or other RRC message or MAC CE. Carry configuration information in any kind of message.
  • location information may also be sent to the terminal, where the location information is used to indicate a location of the network device for uplink data reception in the m network devices, according to the network for uplink data reception.
  • the location of the device and its location generate a beam directed to the network device for uplink data reception.
  • the terminal can be configured to generate a beam directed to the corresponding network device, and different terminals use the beam to transmit uplink data to different base stations, and no significant interference occurs in the uplink direction. It helps to use the beam for uplink and downlink data transmission when using virtual cell communication, improving spectrum efficiency.
  • the location information may include location coordinates of a network device for uplink data reception in the m network devices, and/or an index number of the network device for uplink data reception, where the index number is used to distinguish Different network devices of m network devices.
  • the location information is indicated to the terminal by sending any of the following messages to the terminal: a system message or a broadcast message, a dedicated physical channel message, a semi-static configuration message, an uplink scheduling UL-Grant information.
  • a communication device which has any of the possible designs, the second aspect, the third aspect, the first aspect, the possible design, and the second aspect. Any of the three possible features of the terminal behavior in a possible design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device can be a chip or an integrated circuit.
  • the apparatus includes a memory and a processor, the memory stores a set of programs, the processor is configured to execute a program stored in the memory, and when the program is executed, the apparatus can perform the first aspect, the second aspect, A third aspect, any one of the possible designs of the first aspect, any of the possible designs of the second aspect, and any of the possible aspects of the third aspect.
  • the device also includes a transceiver for communicating between the device and the network device.
  • the device is a terminal.
  • a communication device which has any possible design that implements the fourth aspect, the fifth aspect, the sixth aspect, and the fourth aspect, and any possible design and the fifth aspect of the fifth aspect. Any of six possible features of the design of network device behavior.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device is a base station.
  • a chip is provided, the chip being connected to a memory or the chip comprising a memory for reading and executing a software program stored in the memory to implement the fourth aspect, the fifth aspect, and the sixth aspect as described above Any of the possible designs of the fourth aspect, any of the possible designs of the fifth aspect, and the method of any of the possible designs of the sixth aspect.
  • 1 is a schematic diagram of interference of a drone in the prior art
  • FIG. 2 is a schematic diagram of switching of a drone in the prior art
  • FIG. 6 is a schematic diagram of a manner in which a base station in a virtual cell adopts beam communication according to an embodiment of the present application
  • FIG. 8a is a schematic flowchart of a communication method in an embodiment of the present application.
  • 8b is a second schematic flowchart of a communication method in an embodiment of the present application.
  • 8c is a third schematic flowchart of a communication method in an embodiment of the present application.
  • FIG. 10 is a second schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 11 is a third schematic structural diagram of a communication device in an embodiment of the present application.
  • FIG. 12 is a fourth schematic structural diagram of a communication device according to an embodiment of the present application.
  • the present application provides a communication method and apparatus for improving spectrum efficiency when using virtual cell communication.
  • the method and the device are based on the same or similar concepts, and therefore the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • a terminal also called a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal includes a handheld device having a wireless connection function, an in-vehicle device, and the like.
  • the terminal can be: a mobile phone, a tablet, a laptop, a palmtop, a mobile internet device (MID), a wearable device (such as a smart watch, a smart bracelet, a pedometer, etc.).
  • In-vehicle equipment eg, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rails, etc.
  • virtual reality (VR) equipment e.g., virtual reality (VR) equipment
  • augmented reality (AR) equipment industrial control (industrial control)
  • Wireless terminals smart home devices (eg, refrigerators, televisions, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in self driving, wireless terminals in remote medical surgery, intelligence Wireless terminals in a smart grid, wireless terminals in transport safety, wireless terminals in smart cities, or wireless terminals in smart homes, flying devices (eg, smart Robots, hot air balloons, drones, airplanes, etc.
  • a possible application scenario of the present application is that the height of the terminal satisfies a preset condition or the terminal is in a preset flight state, and the height may be a height of the terminal relative to the ground, or may be an altitude, or other forms of height.
  • An access network (AN) device is a device that connects a terminal to a wireless network in a communication system to which the present application is applied.
  • An AN device is a node in a radio access network, which may also be called a base station, and may also be referred to as a radio access network (RAN) node (or device).
  • RAN radio access network
  • a base station is a device deployed in a radio access network to provide wireless communication functions for a terminal.
  • the AN device in this application is described by taking a base station as an example.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like. It can be applied in systems with different radio access technologies, such as in long term evolution (LTE) systems, or in more possible communication systems such as 5th Generation (5G) communication systems.
  • LTE long term evolution
  • 5G 5th Generation
  • Possible deployment forms of the base station include: a centralized unit (CU) and a distributed unit (DU) separation scenario; and a single site scenario.
  • a single site includes a gNB/NR-NB, a transmission reception point (TRP), an evolved Node B (eNB), a radio network controller (RNC), and a Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU) ), or wireless fidelity (Wifi) access point (AP), etc.
  • the single site is gNB/NR-NB.
  • the baseband unit (BBU) function in 5G is reconstructed into two functional entities, CU and DU.
  • the CU device mainly includes a non-real-time wireless high-layer protocol stack function, and also supports partial core network function sinking and edge application service deployment, and the DU device mainly processes the physical layer function and the layer 2 function of the real-time requirement.
  • the CU supports protocols such as radio resource control (RRC), packet data convergence protocol (PDCP), and service data adaptation protocol (SDAP).
  • the DU mainly supports radio link control (RLC), media access control (MAC), and physical layer (PHY) protocols.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the DU generally adopts a distributed deployment mode. In a normal case, one CU needs to connect more than one DU.
  • the gNB has the functions of CU and DU and is usually deployed as a single site. The division of the above functions is merely an example.
  • FIG. 3a and FIG. 3b are diagrams showing the architecture of two possible access networks when the embodiment of the present application is applied to a 5G communication system.
  • the AN device is a gNB, and one or more TRPs may exist under one gNB.
  • FIG. 3b in a 5G communication system, there may be a CU-DU separation scenario.
  • the CU In the CU-DU separation scenario, the CU is an S1 access point on the access network side.
  • the base station may also be another network device having a base station function, and in particular, may also be a terminal serving as a base station function in D2D communication.
  • a virtual cell refers to a combination of intra-frequency cells in multiple existing cellular networks, and may also be referred to as a cell set, a cell combination, a cell cluster, a dedicated cell based on a service, a reserved cell, an embedded cell, a sub-cell, Air cell.
  • the coverage of the virtual cell is the union of the coverage of multiple co-frequency cells constituting the virtual cell.
  • the resources constituting the virtual cell may be briefly described as virtual cell resources, and the virtual cell resources include some or all of the resources reserved from the plurality of co-frequency cells.
  • multiple base stations cooperate to allocate the same time-frequency resource to one or more terminals
  • the coverage of the virtual cell is the sum of the coverages of the cells of the multiple base stations that cooperate with each other, and the same time-frequency resource is Virtual cell resources.
  • the cell identifier of the virtual cell is used by the terminal to distinguish different virtual cells, and may also be used to distinguish the virtual cell from the common cell.
  • a normal cell refers to a cell in an existing cellular network.
  • the beam is a strong directivity signal transmitted by the terminal or the base station by means of beam domain communication.
  • Beam-domain communication refers to weighting the signals on different arrays of line or area array antennas, using the interference principle to form beams, so that the signals are enhanced in the specified direction and weakened in other directions.
  • the terminals in different directions Or the site can be spatially multiplexed to increase system capacity.
  • the basic idea of the present application is that multiple base stations cooperate to allocate the same time-frequency resource to multiple terminals, and the multiple base stations can jointly send data to one or more terminals occupying the virtual cell resource, or jointly receive one. Or data sent by multiple terminals.
  • each of the plurality of base stations independently performs scheduling and beamforming, and the cell serving the terminal in the virtual cell sends a beam to the terminal, and other base stations/cells participating in the cooperation may use the same time-frequency resource as different terminals. service. In this way, spectrum efficiency can be improved when using virtual cell communication.
  • the communication method provided by the embodiment of the present application can be applied to a fourth generation (4th generation, 4G) communication system, a fifth generation (5th generation, 5G) communication system, or various communication systems in the future.
  • FIG. 4 shows an architecture of a possible communication system to which the communication method provided by the embodiment of the present application is applicable.
  • the communication system includes: at least one terminal 401 and at least one base station 402.
  • the cells of at least one base station 402 constitute a virtual cell.
  • FIG. 4 shows three terminals and three base stations, three terminals are respectively represented by 401-1, 401-2, and 401-3, and three base stations are respectively used by 402-1, 402-2, and 402-3. Said.
  • the terms of the terminal 401 and the base station 402 reference may be made to the description of points 1) and 2) above.
  • One of the base stations 402-1, 402-2, and 402-3 may be a management node, and the terminals 401-1, 401-2, and 401-3 are configured to receive a configuration message of the management node, and cooperate with the base stations 402-1, 402. -2 and 402-3 for data transmission.
  • the management node determines the virtual cell resource, for example, may negotiate with the other two base stations to determine that the same transmission resource is shared as the virtual cell resource.
  • the base stations 402-1, 402-2, and 402-3 can multiplex virtual cell resources by means of beam communication.
  • the manner of dividing the channel region in the virtual cell resource may include, but is not limited to, the following two modes.
  • the following two methods are introduced based on the unit time domain resource, that is, based on the time domain dimension, the unit time domain resource and the frequency domain dimension of the virtual cell occupying the time domain resource are introduced, and the total frequency domain resource occupied by the virtual cell is introduced.
  • the channel division mode in the cell resource can be referred to the following division manner.
  • the virtual cell resource includes a data area and a control area.
  • the control area may include a plurality of dedicated control areas.
  • the number of dedicated control areas is m.
  • Each of the m base stations occupies a separate dedicated control area.
  • m dedicated control areas are represented by dedicated control area 1 to dedicated control area m.
  • the frequency domain resources occupied by the dedicated control area may be the same or different.
  • the dedicated control area may be used by the corresponding base station to send downlink control information, and the data area is used for m base stations to jointly occupy, and the downlink data information may be sent by using beam multiplexing.
  • the dedicated control area 1 can be used for the base station 1 to send downlink control information
  • the dedicated control area 2 can be used for the base station 2 to send downlink control information
  • the dedicated control area 3 can be used for the base station 3 to send downlink control information
  • the base station 1 The base station 2 and the base station 3 can jointly transmit the downlink data in a beam multiplexing manner using the data region.
  • the common occupation can be understood as sharing or sharing.
  • the virtual cell resource includes a data area and a control area, and may further include a pilot resource area.
  • the control area is a common control area, and the common control area is used for m base stations to share.
  • the m base stations can use beam multiplexing to transmit downlink control information
  • the data area is used for m base stations to jointly occupy, and m base stations
  • the downlink data information can be transmitted by using beam multiplexing.
  • the pilot resource region is used for m base stations to jointly occupy, and can be used for transmitting beam-related pilot signals, for example, transmitting demodulation reference symbols (DMRS), and beam-related pilot signals for control channel demodulation.
  • DMRS demodulation reference symbols
  • data channel demodulation of course, the reference signals used for control channel demodulation and data channel demodulation may be the same or different.
  • the channel distribution in Figure 5b is just an example.
  • the terminal When receiving the downlink data, the terminal needs to know the size or location of the control area to correctly receive and demodulate the downlink data in the data area.
  • the following describes the notification mode of the control area in the virtual cell resource.
  • the resource location of the virtual cell resource may be specified in the protocol, or may be determined by multiple base stations included in the virtual cell, such as by a control node in multiple base stations initiating negotiation, and negotiating with other nodes to determine a part of one or more base stations. Or all resources are used as virtual cell resources.
  • the control node of the plurality of base stations may send the resource configuration information of the virtual cell to the one or more terminals of the service, notify the resource location of the virtual cell resource of the terminal by using the resource configuration information, and obtain the resource location of the virtual cell resource according to the resource configuration information. .
  • the base station may also notify the terminal of the division of the control area, and the following focuses on this aspect.
  • the base station may be a control node among a plurality of base stations, and the terminal is any one of a plurality of terminals served by the virtual cell.
  • the size of the resources occupied by the control area and the data area in the time domain may be specified according to the protocol, or may be notified to the terminal by the base station.
  • the control area of each subframe occupies 1 to 3 symbols
  • the data area occupies the remaining symbols in the subframe.
  • the control region includes m dedicated control regions. If m is divided into equal divisions, the frequency domain resources occupied by each dedicated control area are the same, and the base station can notify the number of dedicated control areas of the terminal. After receiving the number of dedicated control areas sent by the base station, the terminal according to the virtual cell The location of the resource determines the size and location of the frequency domain resources occupied by each dedicated control area.
  • the frequency domain resource size occupied by each dedicated control area may be different, and the base station may notify the terminal of the resource size occupied by each dedicated control area, for example, notify the number of RBs occupied by each dedicated control area, and the terminal
  • system messages are divided into a master information block (MIB) and a system information block.
  • the base station can be indicated by the MIB, for example by an idle bit in the MIB.
  • the number of dedicated control areas is represented by three idle bits in the MIB.
  • the number of control regions that can be characterized by 3 bits is [0, 7] or [1, 8], and the maximum number of control regions is 8.
  • the 000 characterization m is 1,001
  • the characterization m is 2
  • 010 characterization m is 3...
  • the number of the dedicated control area may be notified in the system message in the synchronization signal block (SS-block).
  • SS-block synchronization signal block
  • the number of dedicated control areas or the size of resources occupied by each dedicated control area may also be indicated by a dedicated physical channel.
  • the base station For a specific method for the base station to indicate the number of the dedicated control areas by using the dedicated physical channel, reference may be made to the method for indicating the number of control region symbols in the physical control format indication channel (PCFICH) channel in the prior art LTE.
  • PCFICH physical control format indication channel
  • the base station notifies the terminal of the number of the dedicated control area or the size of the resource occupied by the dedicated control area through the PCFICH channel, which may be indicated by a control format indicator (CFI), for example, the CFI may be a value.
  • CFI 1, 2, 3, 4...
  • the number of dedicated control areas or the size of resources occupied by each dedicated control area can also be indicated by a handover command.
  • the terminal may be handed over to the virtual cell by the ordinary cell, or may be switched between different virtual cells.
  • the terminal receives the handover command sent by the source base station, and may indicate the number of the dedicated control area or the resource size of each dedicated control area in the handover command, and may also indicate the location of each dedicated control area in the handover command.
  • the number of frequency domain resource locations and/or unit frequency domain resources indicates the RB location and/or the number of RBs.
  • the total number of RBs occupied by the virtual cell resource is 20, and the dedicated control area 1 is occupied by the RB15 to RB20, the dedicated control area 2 is occupied by the RB21 to RB25, and the dedicated control area 3 is occupied by the RB26.
  • the RB30 and the dedicated control area 4 occupy RB31 to RB35.
  • the frequency domain resources of each dedicated control area may be configured by using a handover command, and the frequency domain resources occupied by each dedicated control area may be the same or different. . If it is different, the frequency domain resource location occupied by each dedicated control area may be indicated in the handover command, such as indicating the RB location.
  • the number of dedicated control areas or the size of resources occupied by each dedicated control area may also be indicated by other RRC messages or a MAC access element (MAC CE).
  • MAC CE MAC access element
  • each base station can transmit a beam carrying downlink control information in the common control area, without requiring other base stations to coordinate resource locations.
  • the terminal does not know the resource location of the downlink control channel, and needs to perform blind detection on the downlink control channel.
  • the base station needs to notify the allocation information of the pilot resources of the terminal.
  • the allocation information of the pilot resources may be the port number of the pilot signal used for controlling the channel demodulation, or the number of ports of the pilot signal.
  • the base station may notify the terminal beam-specific reference signal in the allocation information of the pilot resource, and the terminal detects the beam-specific reference signal according to the allocation information of the pilot resource, obtains the channel estimation result, and uses the channel estimation result to perform downlink control channel blind detection. And determining whether there is corresponding downlink control information (for example, an uplink scheduling instruction, a downlink data transmission indication, and the like), and when determining the downlink control information, performing data transmission or reception according to the downlink control information.
  • the terminal detects multiple pilot signals in the pilot resource region, obtains energy or power information of multiple beams, and compares energy or power of each beam with a set threshold.
  • the allocation information of the pilot resource notified by the base station to the terminal includes the port number or the number of ports used by the pilot signal, and the port number or port number used by the pilot signal can be briefly described as the pilot signal port number or the pilot signal.
  • the number of ports For example, the pilot signal is a DMRS, and the base station notifies the terminal of the DMRS port number or the number of DMRS ports.
  • the terminal detects the beam-specific reference signal according to the received pilot signal port number or the number of pilot signal ports.
  • the notification manner may be, but is not limited to, the following manner.
  • a base station can indicate a pilot signal port number or a number of pilot signal ports through an MIB. For example, it can be indicated by a free bit in the MIB.
  • the number of pilot signal ports is represented by two idle bits in the MIB.
  • the number of pilot signal ports that can be characterized by 2 bits is [0, 3] or [1, 4], and the maximum number of pilot signal ports is 4.
  • the number of 00 characterization pilot signal ports is 1, 01 indicates that the number of pilot signal ports is 2, 10 indicates that the number of pilot signal ports is 3, and 11 indicates that the number of pilot signal ports is 4.
  • the base station can also notify the pilot signal port number or the number of pilot signal ports in the system message in the SS-block. For specific details, refer to the above description by MIB, and details are not described herein.
  • the base station Indicated by a dedicated physical channel.
  • the base station For a specific method for the base station to indicate the number of the pilot signal port number or the number of the pilot signal port by using the dedicated physical channel, reference may be made to the method for indicating the number of symbols in the control region of the PCFICH channel in the prior art LTE.
  • the base station notifies the terminal of the number of the pilot signal port number or the number of the pilot signal port through the PCFICH channel, which may be indicated by a control format indicator (CFI).
  • CFI control format indicator
  • the terminal may be handed over to the virtual cell by the ordinary cell, or may be switched between different virtual cells.
  • the terminal receives the handover command sent by the source base station, and the source base station may indicate the pilot signal port number or the number of pilot signal ports in the handover command.
  • the virtual cell includes the base station 1, the base station 2, and the base station 3.
  • the terminal served by the virtual cell includes the terminal a and the terminal b.
  • One of the base station 1, the base station 2, and the base station 3 is a control node, for example, the base station 1 is a control node.
  • the base station 1 allocates virtual cell resources for the terminal a and the terminal b, and notifies the terminal a and the terminal b of the number of the plurality of dedicated control areas, or the resource size/position occupied by each dedicated control area, or the pilot signal port number, or The number of pilot signal ports.
  • the base station 2 transmits a beam a to the terminal a in the data region of the virtual cell resource, and the base station 3 transmits the beam b to the terminal b on the control region of the virtual cell resource, and the directions of the beam a and the beam b are different, so in the downlink direction, the base station 2
  • the beam a transmitted to the terminal a does not interfere with the terminal b
  • the beam b transmitted by the base station 3 to the terminal b does not interfere with the terminal a.
  • FIG. 6 is merely an exemplary illustration. In an actual application, virtual cell resources may be multiplexed by any number of base stations by using a beam. Similarly, the digital transmission in the uplink direction can also be completed by the beam.
  • multiple base stations can send downlink data or receive uplink data to multiple terminals on the same virtual cell resource by using beam communication. Due to the strong directivity of the beam, different base stations generate different directions. The beam improves the signal-to-noise ratio of the link, and does not cause significant interference in the downlink direction. The utilization of virtual cell resources can be improved, and the spectrum efficiency when using virtual cell communication can be improved to some extent.
  • a plurality of network devices share the data area by using beam communication. Different terminals can receive beams sent by different network devices, and terminals in different directions can perform space division multiplexing, thereby improving utilization of virtual cell resources and further improving spectrum efficiency. And system capacity.
  • the base station uses the beam to transmit downlink control information or downlink data information, and the terminal that receives the downlink data may have the capability of supporting the beamforming technology, or may not have the capability of supporting the beamforming technology.
  • the terminal may also use the beam to send uplink data to the base station. Before transmitting the uplink data, the terminal notifies the base station of the capability of the terminal, and the capability of the terminal includes whether the terminal has the capability of generating a beam, and/or the number of beams that the terminal can simultaneously generate.
  • the base station receives the information about the capability of the terminal reported by the terminal, determines whether the terminal can transmit the uplink data by using the beam according to the capability information of the terminal, and/or determines the number of beams generated by the terminal at the same time.
  • the base station may send the location information of the base station to the terminal, and the terminal generates a beam directed to the base station according to the location information of the received base station in combination with the location of the terminal itself.
  • the location information of the base station may be location information generated by any one of the positioning systems, and includes, for example, the following information: longitude, dimension, altitude, or altitude.
  • the base station can transmit the location information of the base station through a broadcast message or a dedicated message.
  • the base station that sends the location information of the base station may be a control node of the multiple base stations to which the virtual cell belongs, and the control node sends the location of the multiple base stations to which the virtual cell belongs, specifically by using a broadcast message or a dedicated message. To send.
  • the base station may also carry the locations of the multiple base stations in a semi-static configuration message or in an uplink scheduling (UL-Grant).
  • the correspondence between the index number and the location coordinates of the base station is carried in the broadcast message, or the dedicated message, or the semi-static configuration message, or the UL-Grant, where the index number of the base station may be the internal number of the base station in the virtual cell.
  • the number of base stations to which the virtual cell belongs is 3, and the index number of the base station may be 1, 2, or 3.
  • the plurality of terminals served by the virtual cell determine the location coordinates of the plurality of base stations according to the location information sent by the control node.
  • the terminal determines the location of the base station to receive the uplink data according to the location coordinates corresponding to the index number of the base station, and generates a beam directed to the base station according to the location of the base station and its own location.
  • Which one or more base stations are selected in the virtual cell for uplink data reception is implemented by the base station.
  • the best base station can be selected according to the uplink signal quality to perform terminal uplink data reception.
  • the base station can indicate the location of each base station in the virtual cell to the terminal, and can assist the terminal to generate a beam directed to the corresponding base station.
  • Different terminals use the beam to send uplink data to different base stations, and no obvious interference occurs in the uplink direction. It helps to use the beam for uplink and downlink data transmission when using virtual cell communication, improving spectrum efficiency.
  • the following describes the scheme of using the beam for duplication when communicating in a virtual cell.
  • multiple beams can be selected to transmit the same data, which helps to meet low-latency and high-reliability transmission requirements.
  • the plurality of base stations to which the virtual cell belongs may have an ideal backhaul (ie, ideal backhaul) communication capability, and the communication delay between the plurality of base stations having the ideal backhaul is zero or close to zero, which can be ignored, so that the multiple base stations can Jointly send and receive data to the terminal.
  • an ideal backhaul ie, ideal backhaul
  • multiple base stations that complete an X2 connection over fiber can have an ideal backhaul.
  • a typical backhaul scenario is a baseband resource sharing scenario of multiple base stations, that is, a baseband pool (BBU-pool) scenario.
  • BBU-pool baseband pool
  • the MAC entity is configured to schedule multiple base stations of the virtual cell to jointly transmit beams. As shown in FIG.
  • the two bearers transmit two beams.
  • the bearer 1 and the bearer 2 have independent PDCP entities and independent RLC entities.
  • the bearer 1 and the bearer 2 share one MAC entity, and the MAC entity schedules the virtual cell by scheduling.
  • a plurality of base stations jointly transmit beam 1 and beam 2.
  • the base stations transmitting beam 1 and beam 2 may be the same base station or different base stations, and beam 1 and beam 2 carry the same downlink data.
  • a plurality of base stations to which the virtual cell belongs jointly send downlink data to the terminal, and generate a MAC protocol data unit (PDU) in the MAC entity.
  • the MAC PDU may also be referred to as a transmission block (TB). Since multiple base stations share one MAC entity, for any one MAC PDU, the MAC entity may select multiple beams for repeated transmission, and multiple beams may be generated by one or more of multiple base stations, and sent by multiple beams.
  • a TB for a terminal similar to a drone, receives flight control commands while in flight, which can help achieve low latency and high reliability transmission.
  • the terminal needs to combine the TBs received by multiple beams, so that the data can be correctly acquired.
  • the following describes the implementation process of sending the same TB through multiple beams.
  • the terminal needs to know the redundancy version number of the data carried on each beam to correctly merge. .
  • the beam has a corresponding relationship with the pilot resource.
  • the following uses the pilot resource as the port number as an example.
  • the beam has a corresponding relationship with the port number.
  • the base station needs to notify the redundancy version number corresponding to the terminal port number.
  • the terminal can know the redundancy version number of the data carried on each beam by the correspondence between the port number and the redundancy version number.
  • the manner in which the base station notifies the correspondence between the port number and the redundancy version number may include the following, that is, the manner in which the terminal obtains the correspondence between the port number and the redundancy version number may include the following.
  • the base station notified to the terminal may be a control node among a plurality of base stations to which the virtual cell belongs.
  • Mode 1 static notification.
  • the base station sends a notification message, such as an RRC message, to the terminal, where the notification message carries the correspondence between the port number and the redundancy version number.
  • the base station notifies the terminal of the correspondence between the port number and the redundancy version, and the terminal acquires the correspondence between the port number and the redundancy version according to the notification of the base station.
  • the redundancy version numbers are 0, 2, 3, and 1, respectively, in order of use.
  • the base station notifies the terminal that the port numbers to be detected are 7, 8, 9, and 10.
  • the redundancy versions corresponding to each port are 0, 2, 3, and 1, respectively.
  • the base station may further notify the terminal of the number of pilot signal port numbers or pilot signal ports that need to be detected by the terminal, and the correspondence between the port number and the redundancy version number.
  • the pilot signal is a DMRS
  • the base station notifies the terminal of the DMRS port number or the number of DMRS ports.
  • the terminal acquires the pilot signal port number or the number of pilot signal ports according to the received notification message, detects the reference signal corresponding to the port number, obtains the channel estimation result, and uses the channel estimation result to perform downlink control channel blind detection. And determining whether there is a corresponding downlink control information.
  • the terminal may further select a part of the port number in the port number indicated by the base station, combine the downlink data on the beam of the part of the port number according to the corresponding redundancy version number, and perform a subsequent channel decoding process.
  • the port number selected by the terminal may be as follows: the terminal detects the reference signal corresponding to the port number, determines whether the energy or power of the reference signal exceeds the threshold, and has a port number or a beam corresponding to the reference signal exceeding the threshold.
  • the threshold value may be specified in the protocol or carried in a notification message sent by the base station.
  • the base station does not carry the pilot signal port number or the number of pilot signal ports that need to be detected by the terminal in the notification message, but only carries the correspondence between the port number and the redundancy version number.
  • the terminal After receiving the notification message, the terminal detects multiple ports or beams, selects ports whose energy or power exceeds the set threshold, and the terminal obtains the channel estimation result of the reference signals of the port numbers, and performs data demodulation to obtain the ports. Downstream data carried on the beam of the number.
  • the terminal determines the redundancy version number corresponding to the downlink data carried on the beams according to the correspondence between the port number and the redundancy version, and combines the obtained downlink data on the beams according to the corresponding redundancy version number, and the subsequent channel decoding. Process.
  • the terminal may also detect all ports, perform data demodulation on all channel estimation results, select demodulation data corresponding to some ports to be combined, and select which parts may be selected according to the port number carried in the notification message of the base station. Or the number of ports, or in the manner described above based on energy or power.
  • mode 4 or mode 5 can also be employed.
  • the base station indicates the port number in the downlink DCI of the downlink dynamic scheduling.
  • the terminal acquires the order of the redundancy versions corresponding to the respective ports according to the protocol description or the indication of the control node in the multiple base stations of the virtual cell, and obtains the port numbers of the multiple beams that are repeatedly transmitted according to the configuration message of the control node, for example,
  • the control node configures the port numbers of the multiple beams repeatedly transmitted through the RRC message to be 7, 8, 9, and 10.
  • the terminal determines the redundancy version corresponding to the port number indicated by the base station according to the order of the redundancy version. Specifically, the terminal selects a corresponding number of redundancy versions in order according to the port number notified by the base station.
  • the protocol description or the port number indicated by the control node corresponds to a redundancy version sequence of 0, 2, 3, and 1.
  • the port numbers indicated by the base station in the downlink DCI are 8 and 10, and the terminal can determine the redundancy corresponding to the port number 8.
  • the remaining version is 0, and the redundancy version corresponding to port number 10 is 2.
  • the base station indicates the number of ports in the downlink DCI of the downlink dynamic scheduling.
  • the terminal acquires the order of the redundancy versions corresponding to the respective ports according to the protocol description or the indication of the control node in the multiple base stations of the virtual cell, and obtains the port numbers of the multiple beams that are repeatedly transmitted according to the configuration message of the control node, for example,
  • the control node configures the port numbers of the multiple beams repeatedly transmitted through the RRC message to be 7, 8, 9, and 10.
  • the terminal determines the redundancy version corresponding to the number of ports indicated by the base station according to the order of the redundancy version. Specifically, the terminal selects a corresponding number of redundancy versions in order according to the number of ports notified by the base station.
  • the protocol description or the port number indicated by the control node corresponds to a redundancy version sequence of 0, 2, 3, and 1.
  • the number of ports indicated by the base station in the downlink DCI is 3, and the terminal may determine multiple beam bearer data for repeated transmission.
  • the redundancy version numbers are 0, 2, and 3, respectively.
  • the third embodiment can independently form the solution that needs to be protected in this application, and can also be combined with the first embodiment to generate the solution that needs to be protected in this application.
  • multiple redundancy versions of one TB can be transmitted through multiple beams on one time-frequency resource, which improves the probability of successfully detecting TB, and helps to implement data. High reliability of transmission. Further, compared with the traditional repetitive transmission technology, it helps to shorten the time taken for repeated transmission, thereby shortening the data transmission delay. By selectively selecting the data of some ports for merging, the terminal can focus on the high-quality signal, which helps to improve the reliability and quality of data transmission.
  • the terminal can also use the beam for repeated transmission in the uplink direction. Again, it helps to meet low latency and high reliability transmission requirements.
  • the control node of the multiple base stations to which the virtual cell belongs to notify the terminal of the index number of the uplink data receiving base station, and may also notify the correspondence between the index number of the uplink data receiving base station and the redundancy version number, where the uplink data receiving base station is For one or more of the plurality of base stations, the index number of the uplink data receiving base station may be briefly described as the base station index number.
  • the difference is that the downlink mode is the correspondence between the port number and the redundancy version number, and the uplink direction is Correspondence between the base station index number and the redundancy version number.
  • the uplink notification mode can learn from the downlink notification mode, and will not be described here.
  • the virtual cell includes m network devices (network devices, ie, the base stations described above), and the m network devices include the first network device and the at least one second network device.
  • S801a The first network device sends configuration information to the terminal, where the terminal receives configuration information sent by the first network device.
  • the configuration information may be sent through a dedicated physical channel, a handover command, other RRC messages, or a media access layer control unit MAC CE, or sent through other RRC messages or MAC CEs.
  • the configuration information is used to indicate a data area in the virtual cell resource, where the data area is occupied by m network devices.
  • the data area is used by one or more network devices of the m network devices to send a beam carrying downlink data information.
  • One or more network devices of the S802a and the m network devices transmit the beam carrying the downlink data information, and the terminal receives the downlink data information carried by the beam of the one or more network devices of the m network devices in the data region.
  • S801b The first network device sends location information to the terminal, where the terminal receives the location information sent by the first network device.
  • the location information is used to indicate the location of the network device for uplink data reception in the m network devices, may include location coordinates of the network devices for uplink data reception in the m network devices, and/or the uplink data reception
  • the index number of the network device, the index number is used to distinguish different network devices of the m network devices.
  • the terminal generates a beam directed to the network device for uplink data reception according to the location of the network device for uplink data reception and the location of the network device.
  • the first network device sends a first notification message to the terminal, where the terminal receives the first notification message from the first network device.
  • One or more network devices of the S802c and the m network devices send downlink data in multiple beams corresponding to the pilot resources.
  • S803c The terminal acquires downlink data that is sent on multiple beams corresponding to the pilot resource, and performs HARQ combining on the downlink data sent by the multiple beams according to the correspondence between the pilot resource and the first redundancy version.
  • FIG. 8a, FIG. 8b, and FIG. 8c can be independently formed, or any two combined forming solutions, which are all in the scope of protection of the embodiments of the present application.
  • the embodiment of the present application further provides a communication device 900, which is used to perform operations performed by the terminal in the foregoing method embodiment.
  • the communication device 900 includes a receiving unit 901, a processing unit 902, and a transmitting unit 903.
  • the receiving unit 901 is configured to receive configuration information sent by the first network device, where the configuration information is used to indicate a data area in the virtual cell resource, where the data area is occupied by m network devices, and the m network devices include the first network device And one or more second network devices.
  • the receiving unit 901 is further configured to receive, in the data area, downlink data information carried by a beam of one or more network devices of the m network devices.
  • the configuration information includes the number of the dedicated control areas, or the configuration information includes a size or a location of resources occupied by each of the m dedicated control areas.
  • the communication device 900 further includes a processing unit 902, configured to detect downlink control information in the dedicated control region, and demodulate the downlink data information according to the detected downlink control information.
  • a processing unit 902 configured to detect downlink control information in the dedicated control region, and demodulate the downlink data information according to the detected downlink control information.
  • the configuration information is further used to indicate a control area and a pilot resource area in the virtual cell resource, where the control area is a common control area, where the common control area is used to carry any one of the m network devices.
  • the configuration information includes a size or a location of the resource occupied by the pilot resource region, and allocation information of the pilot resource, where the allocation information of the pilot resource is used to detect a pilot signal in the pilot resource region, where the pilot signal is used for Channel estimation is performed on the beam carrying the downlink control information.
  • the allocation information of the pilot resource includes a port number of the pilot signal, or a number of ports of the pilot signal.
  • the processing unit 902 is further configured to: in the pilot resource region, detect the pilot signal according to the configuration information, and perform blind detection of the downlink control channel in the common control region according to the channel estimation result of the pilot signal, according to the result of the blind detection.
  • the downlink control information is obtained, and the downlink data information is demodulated according to the downlink control information.
  • the receiving unit 901 is configured to receive a system message or a broadcast message sent by the first network device, where the system message or the broadcast message carries the configuration information; or receive the dedicated physical channel message sent by the first network device, and the dedicated physical channel message. And carrying the configuration information; or receiving the RRC configuration message sent by the first network device, where the RRC configuration message carries the configuration information; or receiving the handover command sent by the first network device, where the handover command carries the configuration information.
  • the receiving unit 901 is configured to receive location information sent by the first network device, where the location information is used to indicate a location of the network device used for uplink data reception in the m network devices, where the location information includes the m network devices.
  • the location coordinates of the network device used for uplink data reception, and the index number of the network device used for uplink data reception, and the index number is used to distinguish different network devices of the m network devices;
  • the processing unit 902 is configured to generate a beam directed to the network device for uplink data reception according to the location of the network device for uplink data reception and the location of the network device.
  • the receiving unit 901 is configured to receive a system message or a broadcast message sent by the first network device, where the system message or the broadcast message carries the location information; or receive the dedicated physical channel message sent by the first network device, and the dedicated physical channel The message carries the location information; or receives the semi-static configuration message sent by the first network device, and the semi-static configuration message carries the location information; or receives the uplink scheduling information sent by the first network device, where the scheduling information carries the location information.
  • the receiving unit 901 is further configured to receive a first notification message from the first network device, determine, according to the first notification message, a correspondence between the pilot resource and the first redundancy version, and obtain the pilot resource.
  • Corresponding multiple downlink data carried on the multiple beams, and hybrid automatic repeat request HARQ combining is performed on the downlink data carried by the multiple beams according to the corresponding relationship between the pilot resources and the first redundancy version.
  • the receiving unit 901 is configured to receive an RRC message sent by the first network device, where the RRC message carries a correspondence between the pilot resource and the first redundancy version number; or receives the downlink semi-persistent scheduling sent by the first network device.
  • the configuration message, the downlink semi-persistent scheduling configuration message carries the correspondence between the pilot resource and the first redundancy version number; or receives the downlink control information DCI sent by the first network device, where the DCI information carries the pilot resource and the first redundancy
  • the correspondence between the remaining version numbers, or the DCI information carries the pilot port number, or the DCI information carries the number of pilot ports.
  • the receiving unit 901 is configured to receive a second notification message from the first network device, where the processing unit 902 is further configured to determine, according to the second notification message, an index number and a second redundancy of the network device used for uplink data receiving. The correspondence of the versions.
  • the communication device 900 further includes a sending unit 903, configured to send corresponding redundancy to the network device for uplink data receiving according to the correspondence between the index number of the network device for uplink data reception and the second redundancy version. Version of the data.
  • the embodiment of the present application further provides a communication device 1000, which is used to execute the network device (or base station) in the foregoing method embodiment. Operation.
  • the communication device 1000 includes a transmission unit 1001 processing unit 1002.
  • the processing unit 1002 is configured to generate configuration information.
  • the sending unit 1001 is further configured to send, in a data area of the virtual cell resource, a beam that carries downlink data information.
  • the configuration information is further used to indicate a control area in the virtual cell resource, where the control area includes m dedicated control areas, where the m dedicated control areas are in one-to-one correspondence with the m network devices.
  • the dedicated control area is used by the corresponding network device to send downlink control information; the configuration information includes the number of the dedicated control areas, or the configuration information includes each dedicated control area occupied by the m dedicated control areas. The size or location of the resource.
  • the configuration information is further used to indicate a control area and a pilot resource area in the virtual cell resource, where the control area is a common control area, where the common control area is used to carry the m network devices.
  • the configuration information includes a size or a location of the resource occupied by the pilot resource region, and allocation information of the pilot resource, where the allocation information of the pilot resource is used to detect a pilot signal in the pilot resource region, where The pilot signal is used to perform channel estimation on the beam carrying the downlink control information;
  • the sending unit 1001 is further configured to send, to the terminal, a size or a location of a resource occupied by the pilot resource region, and allocation information of the pilot resource.
  • the sending unit 1001 is configured to: send a system message or a broadcast message to the terminal, where the system message or the broadcast message carries configuration information; or send a dedicated physical channel message to the terminal, where the dedicated physical channel message carries configuration information; or Sending an RRC configuration message to the terminal, where the RRC configuration message carries the configuration information; or sending a handover command to the terminal, where the handover command carries the configuration information.
  • the sending unit 1001 is configured to send location information to the terminal, where the location information is used to indicate a location of the network device used for uplink data reception in the m network devices.
  • the sending unit 1001 is configured to send a system message or a broadcast message to the terminal, where the system message or the broadcast message carries the location information; or send the dedicated physical channel message to the terminal, where the dedicated physical channel message carries the location information; or The semi-static configuration message is sent to the terminal, and the semi-static configuration message carries the location information; or the uplink scheduling information is sent to the terminal, where the scheduling information carries the location information.
  • the sending unit 1001 is further configured to send a first notification message to the terminal, where the first notification message carries a correspondence between the pilot resource and the first redundancy version; and the correspondence between the pilot resource and the first redundancy version is used.
  • the hybrid automatic repeat request HARQ merge is performed on the downlink data on the multiple beams corresponding to the pilot resources.
  • the sending unit 1001 is configured to send an RRC message to the terminal, where the RRC message carries a correspondence between the pilot resource and the first redundancy version number; or, the downlink semi-persistent scheduling configuration message is sent to the terminal, and the downlink semi-persistent scheduling configuration is configured.
  • the message carries the corresponding relationship between the pilot resource and the first redundancy version number; or, the downlink control information DCI is sent to the terminal, where the DCI information carries the correspondence between the pilot resource and the first redundancy version number, or the DCI information
  • the pilot port number is carried, or the number of pilot ports is carried in the DCI information.
  • the sending unit 1001 is further configured to send a second notification message to the terminal, where the second notification message carries a correspondence between the index number of the network device for receiving the uplink data and the second redundancy version, and is used for uplink data receiving.
  • the correspondence between the index number of the network device and the second redundancy version is used for performing HARQ combining on the uplink data of multiple redundancy versions received by the network device corresponding to the index number.
  • the embodiment of the present application further provides a communication device 1100, which is used to implement the operation performed by the terminal in the communication method provided by the foregoing embodiment, and the communication is performed.
  • the device 1100 includes a transceiver 1101, a processor 1102, and a memory 1103.
  • Transceiver 1101 is optional.
  • the processor 1102 is configured to invoke a set of programs that, when executed, cause the processor 1102 to perform the operations performed by the terminal in one of the communication methods provided by the above embodiments.
  • the memory 1103 is used to store programs executed by the processor 1102.
  • the function module receiving unit 901 and the transmitting unit 903 in FIG. 9 can be implemented by the transceiver 1101, and the processing unit 902 can be implemented by the processor 1102.
  • the function module sending unit 1001 in FIG. 10 can be implemented by the transceiver 1101, and the processing unit 1002 can be implemented by the processor 1102.
  • the processor 1102 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor 1102 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 1103 may include a volatile memory such as a random-access memory (RAM); the memory 1103 may also include a non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid state drive (SSD); the memory 1103 may also include a combination of the above types of memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid state drive (SSD); the memory 1103 may also include a combination of the above types of memory.
  • the embodiment of the present application further provides a communication device 1200, which is used to implement the network device (or base station) in the communication method provided by the foregoing embodiment.
  • the communication device 1200 includes a transceiver 1201, a processor 1202, and a memory 1203.
  • Transceiver 1201 is optional.
  • the processor 1202 is configured to invoke a set of programs that, when executed, cause the processor 1202 to perform the operations performed by the terminal in one of the communication methods provided by the above embodiments.
  • the memory 1203 is for storing a program executed by the processor 1202.
  • the function module transmitting unit 1001 in FIG. 10 can be implemented by the transceiver 1201, and the processing unit 1002 can be implemented by the processor 1202.
  • the processor 1202 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 1203 may include a volatile memory such as a random-access memory (RAM); the memory 1203 may also include a non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid-state drive (SSD); the memory 1203 may also include a combination of the above types of memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid-state drive (SSD); the memory 1203 may also include a combination of the above types of memory.
  • part or all of the operations and functions performed by the described terminal and the base station (network device) may be implemented by using a chip or an integrated circuit.
  • the embodiment of the present application provides a computer storage medium, which stores a computer program, and the computer program includes instructions for executing the communication method provided by the foregoing embodiment.
  • the embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, causes the computer to execute the communication method provided by the above embodiments.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以在采用虚拟小区通信时提高频谱效率。该方法为:从第一网络设备接收配置信息,所述配置信息用于指示虚拟小区资源中的数据区域,所述数据区域为m个网络设备共同占用,所述m个网络设备包括所述第一网络设备和一个或多个第二网络设备;在所述数据区域接收通过所述m个网络设备中一个或多个网络设备的波束承载的下行数据信息。

Description

一种通信方法及装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
蜂窝通信***在设计之初主要针对地面终端,当终端的高度高于基站时,将会产生干扰增多和频繁切换的问题。以终端为无人机为例,当无人机的飞行高度高于基站时,无人机接入蜂窝网络进行通信会产生以下问题。一方面,由于基站信号的辐射方向主要朝向地面,虽然会有地面信号的反射或者散射导致部分信号扩散向空中,或者基站天线也会有一些旁瓣向空中辐射,但总的来说,无人机接收到的信号强度会比较低。另一方面,无人机处于高空飞行时,由于遮挡物变少,无人机发出的信号能被更多的基站收到,且无人机能够接收到更多基站的信号,导致上行方向和下行方向上的干扰均有增加。如图1所示,当处于高空中的无人机与服务基站通信时,无人机发送的信号可能会被服务基站、干扰基站1和干扰基站2接收到,该服务基站、干扰基站1和干扰基站2发送的信号也可能均会被该无人机接收到。再一方面,由于基站天线向空中辐射的旁瓣覆盖范围较小,所以无人机的小范围移动都会导致切换,另外,除水平移动外,无人机的高度改变也会导致切换。如图2所示,无人机的水平移动(从位置1到位置3),会导致从小区1切换至小区2,无人机的垂直移动(从位置1到位置2)会导致从小区2切换到小区3。综上所述,当无人机的高度高于基站时,不仅无人机接收到的下行信号质量变差,而且无人机的空中飞行会导致更多的切换,导致无人机的通信性能变差。
针对终端的高度高于基站时产生的干扰增多和频繁切换的问题,有方案提出多个基站协同合作,协同合作的多个基站将相同的时频资源分配给同一个终端,用于联合发送下行数据以及联合接收上行数据。该多个基站的多个小区构成虚拟小区,终端在虚拟小区间进行切换。该方法在一定程度上降低了上下行的干扰,并在一定程度上降低了终端的切换频率。但是,一个终端占用多个基站的时频资源,降低了频谱效率。
发明内容
本申请实施例提供一种通信方法及装置,用以在采用虚拟小区通信时提高频谱效率。
本申请实施例提供的具体技术方案如下:
第一方面,提供一种通信方法,该方法的执行主体可以是终端,该方法主要通过以下方式实现:从第一网络设备接收配置信息,该配置信息用于指示虚拟小区资源中的数据区域,该数据区域为m个网络设备共同占用,m个网络设备包括所述第一网络设备和一个或多个第二网络设备,根据所述配置信息,在所述数据区域接收下行数据信息,所述下行数据信息是通过所述m个网络设备中的一个或多个网络设备的波束承载的信息。这样,通过在数据区域接收一个或多个网络设备通过波束承载的下行数据信息,不同的终端可以接收不同的网络设备发送的波束,不同方向的终端可以进行空分复用,从而提高虚拟小区资源的利用率,进一步提高频谱效率和***容量。
在一个可能的设计中,该配置信息还用于指示虚拟小区资源中的控制区域,控制区域可以但不限于有以下两种划分方式。
第一种,所述控制区域包括m个专用控制区域,所述m个专用控制区域与所述m个网络设备一一对应,不同的专用控制区域与不同的网络设备对应,一个网络设备占用一个专用控制区域,所述专用控制区域用于承载对应的网络设备的下行控制信息。
可选的,在这种方式下,配置信息包括专用控制区域的个数,或包括m个专用控制区域中每一个专用控制区域占用资源的大小或位置,以助于终端正确接收下行控制信息。
可选的,m个专用控制区域可以采用等分方式划分,也可以采用不等分方式划分,当等分时,终端可以接收的是专用控制区域的个数,当不等分时,终端可以接收的是每一个专用控制区域占用资源的大小或位置。
可选的,配置信息可以通过专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE来携带,或者,专用控制区域的个数、或每一个专用控制区域占用资源的大小或位置,可以携带于专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE中,终端通过接收这些信息中的一种来获取专用控制区域的这些划分信息。
可选的,在这种方式下,该方法还可以包括以下步骤:根据接收到的专用控制区域的个数、或每一个专用控制区域占用资源的大小或位置,在所述专用控制区域检测下行控制信息,根据检测到的下行控制信息对所述下行数据信息进行解调。
第二种:所述控制区域为公用控制区域,所述公用控制区域用于承载所述m个网络设备中任一网络设备的承载下行控制信息的波束(即该公共控制区域对于m个网络设备是共用的),该配置信息还用于指示虚拟小区资源中的导频资源区域,该配置信息还包括所述导频资源区域占用资源的大小或位置、以及导频资源的分配信息,导频资源的分配信息用于在所述导频资源区域检测导频信号,导频资源区域用于承载波束相关的导频信号,例如,解调参考符号,波束相关的导频信号用于对所述承载所述下行控制信息的波束进行信道估计,可用于控制信道解调和数据信道解调,当然,用于控制信道解调和数据信道解调的参考信号可以是相同的,也可以是不同的。本申请中,m个网络设备中任一网络设备可以理解为m个网络设备中一个或多个网络设备。
当然,导频资源区域占用资源的大小或位置、以及导频资源的分配信息还可以通过其他信息来指示,例如,广播消息或***消息、专用物理信道、过切换命令、其他RRC消息或MAC CE,终端通过接收其他信息来获取导频资源的这些信息。或者,配置信息来指示导频资源区域占用资源的大小或位置、以及导频资源的分配信息,而配置信息可以通过上述这些消息来携带。
可选的,所述导频资源的分配信息包括所述导频信号的端口号,或所述导频信号的端口数量。
在一个可能的设计中,该方法还可以包括以下步骤:在所述导频资源区域检测所述导频信号,根据所述导频信号的信道估计结果在所述公用控制区域进行下行控制信道的盲检测,根据盲检测的结果获得下行控制信息,根据所述下行控制信息对所述下行数据信息进行解调。
在一个可能的设计中,可以通过以下方式从第一网络设备接收配置信息:从所述第一网络设备接收***消息或广播消息,所述***消息或所述广播消息中携带所述配置信息;或者,从所述第一网络设备接收专用物理信道消息,所述专用物理信道消息中携带所述配 置信息;或者,从所述第一网络设备接收RRC配置消息,所述RRC配置消息中携带所述配置信息;或者,从所述第一网络设备接收切换命令,所述切换命令中携带所述配置信息;或者,从所述第一网络设备接收其他RRC消息或MAC CE,该其他RRC消息或MAC CE携带所述配置信息。
在一个可能的设计中,还可以从所述第一网络设备接收位置信息,所述位置信息用于指示所述m个网络设备中用于上行数据接收的网络设备的位置,根据所述用于上行数据接收的网络设备的位置和自身的位置,生成指向所述用于上行数据接收的网络设备的波束。这样,通过获取虚拟小区内各个网络设备的位置,能够辅助生成指向相应网络设备的波束,不同的终端向不同的基站发送承载上行数据的波束,在上行方向上不会产生明显的干扰,有助于在采用虚拟小区通信时使用波束进行上下行数据传输,提高频谱效率。
所述位置信息可能包括所述m个网络设备中用于上行数据接收的网络设备的位置坐标,和/或所述用于上行数据接收的网络设备的索引号,所述索引号用于区分所述m个网络设备的不同网络设备。
在一个可能的设计中,从所述第一网络设备接收***消息或广播消息,所述***消息或所述广播消息中携带所述位置信息;或者,从所述第一网络设备接收专用物理信道消息,所述专用物理信道消息中携带所述位置信息;或者,从所述第一网络设备接收半静态配置消息,所述半静态配置消息中携带所述位置信息;或者,从所述第一网络设备接收上行调度UL-Grant信息,所述上述调度信息中携带所述位置信息。
在一个可能的设计中,还可以从所述第一网络设备接收第一通知消息,根据所述第一通知消息,确定导频资源和第一冗余版本的对应关系,所述终端获取在所述导频资源对应的多个波束上发送的下行数据,并根据所述导频资源和所述第一冗余版本的对应关系,对所述多个波束发送的下行数据进行HARQ合并。通过多个波束传输相同的数据,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
可选的,导频资源为端口号,终端接收第一网络设备发送的端口号与冗余版本的对应关系。
在一个可能的设计中,从所述第一网络设备发送的RRC消息,所述RRC消息中携带所述导频资源和第一冗余版本号的对应关系;或者,从所述第一网络设备接收下行半静态调度配置消息,所述下行半静态调度配置消息中携带所述导频资源和第一冗余版本号的对应关系;或者,从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带所述导频资源和第一冗余版本号的对应关系,或者,从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带导频端口号,或者,从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带导频端口数量。
在一个可能的设计中,还可以选取部分端口的数据进行合并,这样能够将终端的处理能力聚焦于高质量的信号,有助于提高数据传输的可靠性和质量。
在一个可能的设计中,还从所述第一网络设备接收第二通知消息,根据所述第二通知消息,确定用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系;根据用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系,向所述用于上行数据接收 的网络设备发送相对应的冗余版本的数据。同样,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
第二方面,提供一种通信方法,该方法的执行主体可以是终端,该方法主要通过以下方式实现:从所述第一网络设备接收位置信息,所述位置信息用于指示所述m个网络设备中用于上行数据接收的网络设备的位置,根据所述用于上行数据接收的网络设备的位置和自身的位置,生成指向所述用于上行数据接收的网络设备的波束。这样,通过获取虚拟小区内各个网络设备的位置,能够辅助生成指向相应网络设备的波束,不同的终端向不同的基站发送承载上行数据的波束,在上行方向上不会产生明显的干扰,有助于在采用虚拟小区通信时使用波束进行上下行数据传输,提高频谱效率。
所述位置信息可能包括所述m个网络设备中用于上行数据接收的网络设备的位置坐标,和/或所述用于上行数据接收的网络设备的索引号,所述索引号用于区分所述m个网络设备的不同网络设备。
在一个可能的设计中,从所述第一网络设备接收***消息或广播消息,所述***消息或所述广播消息中携带所述位置信息;或者,从所述第一网络设备接收专用物理信道消息,所述专用物理信道消息中携带所述位置信息;或者,从所述第一网络设备接收半静态配置消息,所述半静态配置消息中携带所述位置信息;或者,从所述第一网络设备接收上行调度UL-Grant信息,所述上述调度信息中携带所述位置信息。
在一个可能的设计中,还可以从所述第一网络设备接收第一通知消息,根据所述第一通知消息,确定导频资源和第一冗余版本的对应关系,所述终端获取在所述导频资源对应的多个波束上发送的下行数据,并根据所述导频资源和所述第一冗余版本的对应关系,对所述多个波束发送的下行数据进行HARQ合并。通过多个波束传输相同的数据,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
可选的,导频资源为端口号,终端接收第一网络设备发送的端口号与冗余版本的对应关系。
在一个可能的设计中,从所述第一网络设备发送的RRC消息,所述RRC消息中携带所述导频资源和第一冗余版本号的对应关系;或者,从所述第一网络设备接收下行半静态调度配置消息,所述下行半静态调度配置消息中携带所述导频资源和第一冗余版本号的对应关系;或者,从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带所述导频资源和第一冗余版本号的对应关系,或者,从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带导频端口号,或者,从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带导频端口数量。
在一个可能的设计中,还可以选取部分端口的数据进行合并,这样能够将终端的处理能力聚焦于高质量的信号,有助于提高数据传输的可靠性和质量。
在一个可能的设计中,还从所述第一网络设备接收第二通知消息,根据所述第二通知消息,确定用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系;根据用于 上行数据接收的网络设备的索引号与第二冗余版本的对应关系,向所述用于上行数据接收的网络设备发送相对应的冗余版本的数据。同样,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
在一个可能的设计中,从第一网络设备接收配置信息,该配置信息用于指示虚拟小区资源中的数据区域,该数据区域为m个网络设备共同占用,m个网络设备包括所述第一网络设备和一个或多个第二网络设备,根据所述配置信息,在所述数据区域接收下行数据信息,所述下行数据信息是通过所述m个网络设备中的一个或多个网络设备的波束承载的信息。这样,通过在数据区域接收一个或多个网络设备通过波束承载的下行数据信息,不同的终端可以接收不同的网络设备发送的波束,不同方向的终端可以进行空分复用,从而提高虚拟小区资源的利用率,进一步提高频谱效率和***容量。
在一个可能的设计中,该配置信息还用于指示虚拟小区资源中的控制区域,控制区域可以但不限于有以下两种划分方式。
第一种,所述控制区域包括m个专用控制区域,所述m个专用控制区域与所述m个网络设备一一对应,不同的专用控制区域与不同的网络设备对应,一个网络设备占用一个专用控制区域,所述专用控制区域用于承载对应的网络设备的下行控制信息。
可选的,在这种方式下,配置信息包括专用控制区域的个数,或包括m个专用控制区域中每一个专用控制区域占用资源的大小或位置,以助于终端正确接收下行控制信息。
可选的,m个专用控制区域可以采用等分方式划分,也可以采用不等分方式划分,当等分时,终端可以接收的是专用控制区域的个数,当不等分时,终端可以接收的是每一个专用控制区域占用资源的大小或位置。
可选的,配置信息可以通过专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE来携带,或者,专用控制区域的个数、或每一个专用控制区域占用资源的大小或位置,可以携带于专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE中,终端通过接收这些信息中的一种来获取专用控制区域的这些划分信息。
可选的,在这种方式下,该方法还可以包括以下步骤:根据接收到的专用控制区域的个数、或每一个专用控制区域占用资源的大小或位置,在所述专用控制区域检测下行控制信息,根据检测到的下行控制信息对所述下行数据信息进行解调。
第二种:所述控制区域为公用控制区域,所述公用控制区域用于承载所述m个网络设备中任一网络设备的承载下行控制信息的波束,该配置信息还用于指示虚拟小区资源中的导频资源区域,该配置信息还包括所述导频资源区域占用资源的大小或位置、以及导频资源的分配信息,导频资源的分配信息用于在所述导频资源区域检测导频信号,导频资源区域用于承载波束相关的导频信号,例如,解调参考符号,波束相关的导频信号用于对所述承载所述下行控制信息的波束进行信道估计,可用于控制信道解调和数据信道解调,当然,用于控制信道解调和数据信道解调的参考信号可以是相同的,也可以是不同的。
当然,导频资源区域占用资源的大小或位置、以及导频资源的分配信息还可以通过其他信息来指示,例如,广播消息或***消息、专用物理信道、过切换命令、其他RRC消息或MAC CE,终端通过接收其他信息来获取导频资源的这些信息。或者,配置信息来指示导频资源区域占用资源的大小或位置、以及导频资源的分配信息,而配置信息可以通过 上述这些消息来携带。
可选的,所述导频资源的分配信息包括所述导频信号的端口号,或所述导频信号的端口数量。
在一个可能的设计中,该方法还可以包括以下步骤:在所述导频资源区域检测所述导频信号,根据所述导频信号的信道估计结果在所述公用控制区域进行下行控制信道的盲检测,根据盲检测的结果获得下行控制信息,根据所述下行控制信息对所述下行数据信息进行解调。
在一个可能的设计中,可以通过以下方式从第一网络设备接收配置信息:从所述第一网络设备接收***消息或广播消息,所述***消息或所述广播消息中携带所述配置信息;或者,从所述第一网络设备接收专用物理信道消息,所述专用物理信道消息中携带所述配置信息;或者,从所述第一网络设备接收RRC配置消息,所述RRC配置消息中携带所述配置信息;或者,从所述第一网络设备接收切换命令,所述切换命令中携带所述配置信息;或者,从所述第一网络设备接收其他RRC消息或MAC CE,该其他RRC消息或MAC CE携带所述配置信息。
第三方面,提供一种通信方法,该方法的执行主体可以是终端,该方法主要通过以下方式实现:从所述第一网络设备接收第一通知消息,根据所述第一通知消息,确定导频资源和第一冗余版本的对应关系,所述终端获取在所述导频资源对应的多个波束上发送的下行数据,并根据所述导频资源和所述第一冗余版本的对应关系,对所述多个波束发送的下行数据进行HARQ合并。通过多个波束传输相同的数据,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
可选的,导频资源为端口号,终端接收第一网络设备发送的端口号与冗余版本的对应关系。
在一个可能的设计中,从所述第一网络设备发送的RRC消息,所述RRC消息中携带所述导频资源和第一冗余版本号的对应关系;或者,从所述第一网络设备接收下行半静态调度配置消息,所述下行半静态调度配置消息中携带所述导频资源和第一冗余版本号的对应关系;或者,从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带所述导频资源和第一冗余版本号的对应关系,或者,从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带导频端口号,或者,从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带导频端口数量。
在一个可能的设计中,还可以选取部分端口的数据进行合并,这样能够将终端的处理能力聚焦于高质量的信号,有助于提高数据传输的可靠性和质量。
在一个可能的设计中,还从所述第一网络设备接收第二通知消息,根据所述第二通知消息,确定用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系;根据用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系,向所述用于上行数据接收的网络设备发送相对应的冗余版本的数据。同样,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
在一个可能的设计中,还可以从所述第一网络设备接收位置信息,所述位置信息用于指示所述m个网络设备中用于上行数据接收的网络设备的位置,根据所述用于上行数据接收的网络设备的位置和自身的位置,生成指向所述用于上行数据接收的网络设备的波束。这样,通过获取虚拟小区内各个网络设备的位置,能够辅助生成指向相应网络设备的波束,不同的终端向不同的基站发送承载上行数据的波束,在上行方向上不会产生明显的干扰,有助于在采用虚拟小区通信时使用波束进行上下行数据传输,提高频谱效率。
所述位置信息可能包括所述m个网络设备中用于上行数据接收的网络设备的位置坐标,和/或所述用于上行数据接收的网络设备的索引号,所述索引号用于区分所述m个网络设备的不同网络设备。
在一个可能的设计中,从所述第一网络设备接收***消息或广播消息,所述***消息或所述广播消息中携带所述位置信息;或者,从所述第一网络设备接收专用物理信道消息,所述专用物理信道消息中携带所述位置信息;或者,从所述第一网络设备接收半静态配置消息,所述半静态配置消息中携带所述位置信息;或者,从所述第一网络设备接收上行调度UL-Grant信息,所述上述调度信息中携带所述位置信息。
在一个可能的设计中,从第一网络设备接收配置信息,该配置信息用于指示虚拟小区资源中的数据区域,该数据区域为m个网络设备共同占用,m个网络设备包括所述第一网络设备和一个或多个第二网络设备,根据所述配置信息,在所述数据区域接收下行数据信息,所述下行数据信息是通过所述m个网络设备中的一个或多个网络设备的波束承载的信息。这样,通过在数据区域接收一个或多个网络设备通过波束承载的下行数据信息,不同的终端可以接收不同的网络设备发送的波束,不同方向的终端可以进行空分复用,从而提高虚拟小区资源的利用率,进一步提高频谱效率和***容量。
在一个可能的设计中,该配置信息还用于指示虚拟小区资源中的控制区域,控制区域可以但不限于有以下两种划分方式。
第一种,所述控制区域包括m个专用控制区域,所述m个专用控制区域与所述m个网络设备一一对应,不同的专用控制区域与不同的网络设备对应,一个网络设备占用一个专用控制区域,所述专用控制区域用于承载对应的网络设备的下行控制信息。
可选的,在这种方式下,配置信息包括专用控制区域的个数,或包括m个专用控制区域中每一个专用控制区域占用资源的大小或位置,以助于终端正确接收下行控制信息。
可选的,m个专用控制区域可以采用等分方式划分,也可以采用不等分方式划分,当等分时,终端可以接收的是专用控制区域的个数,当不等分时,终端可以接收的是每一个专用控制区域占用资源的大小或位置。
可选的,配置信息可以通过专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE来携带,或者,专用控制区域的个数、或每一个专用控制区域占用资源的大小或位置,可以携带于专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE中,终端通过接收这些信息中的一种来获取专用控制区域的这些划分信息。
可选的,在这种方式下,该方法还可以包括以下步骤:根据接收到的专用控制区域的个数、或每一个专用控制区域占用资源的大小或位置,在所述专用控制区域检测下行控制信息,根据检测到的下行控制信息对所述下行数据信息进行解调。
第二种:所述控制区域为公用控制区域,所述公用控制区域用于承载所述m个网络设备中任一网络设备的承载下行控制信息的波束,该配置信息还用于指示虚拟小区资源中的 导频资源区域,该配置信息还包括所述导频资源区域占用资源的大小或位置、以及导频资源的分配信息,导频资源的分配信息用于在所述导频资源区域检测导频信号,导频资源区域用于承载波束相关的导频信号,例如,解调参考符号,波束相关的导频信号用于对所述承载所述下行控制信息的波束进行信道估计,可用于控制信道解调和数据信道解调,当然,用于控制信道解调和数据信道解调的参考信号可以是相同的,也可以是不同的。
当然,导频资源区域占用资源的大小或位置、以及导频资源的分配信息还可以通过其他信息来指示,例如,广播消息或***消息、专用物理信道、过切换命令、其他RRC消息或MAC CE,终端通过接收其他信息来获取导频资源的这些信息。或者,配置信息来指示导频资源区域占用资源的大小或位置、以及导频资源的分配信息,而配置信息可以通过上述这些消息来携带。
可选的,所述导频资源的分配信息包括所述导频信号的端口号,或所述导频信号的端口数量。
在一个可能的设计中,该方法还可以包括以下步骤:在所述导频资源区域检测所述导频信号,根据所述导频信号的信道估计结果在所述公用控制区域进行下行控制信道的盲检测,根据盲检测的结果获得下行控制信息,根据所述下行控制信息对所述下行数据信息进行解调。
在一个可能的设计中,可以通过以下方式从第一网络设备接收配置信息:从所述第一网络设备接收***消息或广播消息,所述***消息或所述广播消息中携带所述配置信息;或者,从所述第一网络设备接收专用物理信道消息,所述专用物理信道消息中携带所述配置信息;或者,从所述第一网络设备接收RRC配置消息,所述RRC配置消息中携带所述配置信息;或者,从所述第一网络设备接收切换命令,所述切换命令中携带所述配置信息;或者,从所述第一网络设备接收其他RRC消息或MAC CE,该其他RRC消息或MAC CE携带所述配置信息。
第四方面,提供一种通信方法,该方法的执行主体可以是第一网络设备,该方法主要通过以下方式实现:向终端发送配置信息,该配置信息用于指示虚拟小区资源中的数据区域,该数据区域为m个网络设备共同占用,所述m个网络设备包括所述第一网络设备和一个或多个第二网络设备,所述数据区域用于所述m个网络设备中一个或多个网络设备发送承载下行数据信息的波束;在所述数据区域发送所述承载下行数据信息的波束。这样,通过多个网络设备采用波束通信方式共用数据区域,不同的终端可以接收不同的网络设备发送的波束,不同方向的终端可以进行空分复用,从而提高虚拟小区资源的利用率,进一步提高频谱效率和***容量。
在一个可能的设计中,该配置信息还用于指示虚拟小区资源中的控制区域,控制区域可以但不限于有以下两种划分方式。
第一种,所述控制区域包括m个专用控制区域,所述m个专用控制区域与所述m个网络设备一一对应,不同的专用控制区域与不同的网络设备对应,一个网络设备占用一个专用控制区域,所述专用控制区域用于承载对应的网络设备的下行控制信息。
可选的,在这种方式下,配置信息包括专用控制区域的个数,或包括m个专用控制区域中每一个专用控制区域占用资源的大小或位置,以助于终端正确接收下行控制信息。
可选的,m个专用控制区域可以采用等分方式划分,也可以采用不等分方式划分,当等分时,终端可以接收的是专用控制区域的个数,当不等分时,终端可以接收的是每一个 专用控制区域占用资源的大小或位置。
可选的,配置信息可以通过专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE来携带,或者,专用控制区域的个数、或每一个专用控制区域占用资源的大小或位置,可以携带于专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE中,通过发送这些信息中的一种来向终端指示专用控制区域的这些划分信息。
第二种:所述控制区域为公用控制区域,所述公用控制区域用于承载所述m个网络设备中任一网络设备的承载下行控制信息的波束,该配置信息还用于指示虚拟小区资源中的导频资源区域,该配置信息还包括所述导频资源区域占用资源的大小或位置、以及导频资源的分配信息,导频资源的分配信息用于在所述导频资源区域检测导频信号,导频资源区域用于承载波束相关的导频信号,例如,解调参考符号,波束相关的导频信号用于对所述承载所述下行控制信息的波束进行信道估计,可用于控制信道解调和数据信道解调,当然,用于控制信道解调和数据信道解调的参考信号可以是相同的,也可以是不同的。
当然,导频资源区域占用资源的大小或位置、以及导频资源的分配信息还可以通过其他信息来指示,例如,广播消息或***消息、专用物理信道、过切换命令、其他RRC消息或MAC CE,通过发送其他信息来向终端指示导频资源的这些信息。或者,配置信息来指示导频资源区域占用资源的大小或位置、以及导频资源的分配信息,通过上述这些消息来携带配置信息。
可选的,所述导频资源的分配信息包括所述导频信号的端口号,或所述导频信号的端口数量。
在一个可能的设计中,可以通过发送以下消息中的一种来向终端发送配置信息:***消息或广播消息、专用物理信道消息、RRC配置消息、切换命令、或其他RRC消息或MAC CE。在任一种消息中携带配置信息。
在一个可能的设计中,还可以向终端发送位置信息,所述位置信息用于指示所述m个网络设备中用于上行数据接收的网络设备的位置。这样,通过向终端指示虚拟小区内各个网络设备的位置,能够辅助终端生成指向相应网络设备的波束,不同的终端向不同的基站采用波束发送上行数据,在上行方向上不会产生明显的干扰,有助于在采用虚拟小区通信时使用波束进行上下行数据传输,提高频谱效率。
所述位置信息可能包括所述m个网络设备中用于上行数据接收的网络设备的位置坐标,和/或所述用于上行数据接收的网络设备的索引号,所述索引号用于区分所述m个网络设备的不同网络设备。
在一个可能的设计中,通过向所述终端发送以下任一种消息来向所述终端指示所述位置信息:***消息或广播消息、专用物理信道消息、半静态配置消息、上行调度UL-Grant信息。
在一个可能的设计中,还可以向所述终端发送第一通知消息,第一通知消息携带导频资源和第一冗余版本的对应关系,m个网络设备中的一个或多个网络设备在所述导频资源对应的多个波束发送下行数据,所述对应关系用于所述终端对多个波束上的下行数据进行HARQ合并。通过多个波束传输相同的数据,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的 重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
可选的,导频资源为端口号,终端接收第一网络设备发送的端口号与冗余版本的对应关系。
在一个可能的设计中,在向所述终端发送以下任一种消息中携带所述对应关系:RRC消息、下行半静态调度配置消息、下行控制信息DCI,所述DCI信息中携带所述导频资源和第一冗余版本号的对应关系,或者,所述DCI信息中携带导频端口号,或者,所述DCI信息中携带导频端口数量。
在一个可能的设计中,还可以向所述终端发送第二通知消息,所述第二通知消息携带用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系,所述用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系用于对索引号对应的网络设备收到的多个冗余版本的上行数据进行HARQ合并。同样,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
第五方面,提供一种通信方法,该方法的执行主体可以是第一网络设备,该方法主要通过以下方式实现:向终端发送位置信息,所述位置信息用于指示所述m个网络设备中用于上行数据接收的网络设备的位置,根据所述用于上行数据接收的网络设备的位置和自身的位置,生成指向所述用于上行数据接收的网络设备的波束。这样,通过向终端指示虚拟小区内各个网络设备的位置,能够辅助终端生成指向相应网络设备的波束,不同的终端向不同的基站采用波束发送上行数据,在上行方向上不会产生明显的干扰,有助于在采用虚拟小区通信时使用波束进行上下行数据传输,提高频谱效率。
所述位置信息可能包括所述m个网络设备中用于上行数据接收的网络设备的位置坐标,和/或所述用于上行数据接收的网络设备的索引号,所述索引号用于区分所述m个网络设备的不同网络设备。
在一个可能的设计中,通过向所述终端发送以下任一种消息来向所述终端指示所述位置信息:***消息或广播消息、专用物理信道消息、半静态配置消息、上行调度UL-Grant信息。
在一个可能的设计中,还可以向所述终端发送第一通知消息,第一通知消息携带导频资源和第一冗余版本的对应关系,m个网络设备中的一个或多个网络设备在所述导频资源对应的多个波束发送下行数据,所述对应关系用于所述终端对多个波束上的下行数据进行HARQ合并。通过多个波束传输相同的数据,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
可选的,导频资源为端口号,终端接收第一网络设备发送的端口号与冗余版本的对应关系。
在一个可能的设计中,在向所述终端发送以下任一种消息中携带所述对应关系:RRC消息、下行半静态调度配置消息、下行控制信息DCI,所述DCI信息中携带所述导频资源和第一冗余版本号的对应关系,或者,所述DCI信息中携带导频端口号,或者,所述DCI信息中携带导频端口数量。
在一个可能的设计中,还可以向所述终端发送第二通知消息,所述第二通知消息携带用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系,所述用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系用于对索引号对应的网络设备收到的多个冗余版本的上行数据进行HARQ合并。同样,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
在一个可能的设计中,还可以向终端发送配置信息,该配置信息用于指示虚拟小区资源中的数据区域,该数据区域为m个网络设备共同占用,所述m个网络设备包括所述第一网络设备和一个或多个第二网络设备,所述数据区域用于所述m个网络设备中一个或多个网络设备发送承载下行数据信息的波束;在所述数据区域发送所述承载下行数据信息的波束。这样,通过多个网络设备采用波束通信方式共用数据区域,不同的终端可以接收不同的网络设备发送的波束,不同方向的终端可以进行空分复用,从而提高虚拟小区资源的利用率,进一步提高频谱效率和***容量。
在一个可能的设计中,该配置信息还用于指示虚拟小区资源中的控制区域,控制区域可以但不限于有以下两种划分方式。
第一种,所述控制区域包括m个专用控制区域,所述m个专用控制区域与所述m个网络设备一一对应,不同的专用控制区域与不同的网络设备对应,一个网络设备占用一个专用控制区域,所述专用控制区域用于承载对应的网络设备的下行控制信息。
可选的,在这种方式下,配置信息包括专用控制区域的个数,或包括m个专用控制区域中每一个专用控制区域占用资源的大小或位置,以助于终端正确接收下行控制信息。
可选的,m个专用控制区域可以采用等分方式划分,也可以采用不等分方式划分,当等分时,终端可以接收的是专用控制区域的个数,当不等分时,终端可以接收的是每一个专用控制区域占用资源的大小或位置。
可选的,配置信息可以通过专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE来携带,或者,专用控制区域的个数、或每一个专用控制区域占用资源的大小或位置,可以携带于专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE中,通过发送这些信息中的一种来向终端指示专用控制区域的这些划分信息。
第二种:所述控制区域为公用控制区域,所述公用控制区域用于承载所述m个网络设备中任一网络设备的承载下行控制信息的波束,该配置信息还用于指示虚拟小区资源中的导频资源区域,该配置信息还包括所述导频资源区域占用资源的大小或位置、以及导频资源的分配信息,导频资源的分配信息用于在所述导频资源区域检测导频信号,导频资源区域用于承载波束相关的导频信号,例如,解调参考符号,波束相关的导频信号用于对所述承载所述下行控制信息的波束进行信道估计,可用于控制信道解调和数据信道解调,当然,用于控制信道解调和数据信道解调的参考信号可以是相同的,也可以是不同的。
当然,导频资源区域占用资源的大小或位置、以及导频资源的分配信息还可以通过其他信息来指示,例如,广播消息或***消息、专用物理信道、过切换命令、其他RRC消息或MAC CE,通过发送其他信息来向终端指示导频资源的这些信息。或者,配置信息来指示导频资源区域占用资源的大小或位置、以及导频资源的分配信息,通过上述这些消息 来携带配置信息。
可选的,所述导频资源的分配信息包括所述导频信号的端口号,或所述导频信号的端口数量。
在一个可能的设计中,可以通过发送以下消息中的一种来向终端发送配置信息:***消息或广播消息、专用物理信道消息、RRC配置消息、切换命令、或其他RRC消息或MAC CE。在任一种消息中携带配置信息。
第六方面,提供一种通信方法,该方法的执行主体可以是第一网络设备,该方法主要通过以下方式实现:向所述终端发送第一通知消息,第一通知消息携带导频资源和第一冗余版本的对应关系,m个网络设备中的一个或多个网络设备在所述导频资源对应的多个波束发送下行数据,所述对应关系用于所述终端对多个波束上的下行数据进行HARQ合并。通过多个波束传输相同的数据,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
可选的,导频资源为端口号,终端接收第一网络设备发送的端口号与冗余版本的对应关系。
在一个可能的设计中,在向所述终端发送以下任一种消息中携带所述对应关系:RRC消息、下行半静态调度配置消息、下行控制信息DCI,所述DCI信息中携带所述导频资源和第一冗余版本号的对应关系,或者,所述DCI信息中携带导频端口号,或者,所述DCI信息中携带导频端口数量。
在一个可能的设计中,还可以向所述终端发送第二通知消息,所述第二通知消息携带用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系,所述用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系用于对索引号对应的网络设备收到的多个冗余版本的上行数据进行HARQ合并。同样,有助于满足低时延高可靠的传输需求。在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。
在一个可能的设计中,还可以向终端发送配置信息,该配置信息用于指示虚拟小区资源中的数据区域,该数据区域为m个网络设备共同占用,所述m个网络设备包括所述第一网络设备和一个或多个第二网络设备,所述数据区域用于所述m个网络设备中一个或多个网络设备发送承载下行数据信息的波束;在所述数据区域发送所述承载下行数据信息的波束。这样,通过多个网络设备采用波束通信方式共用数据区域,不同的终端可以接收不同的网络设备发送的波束,不同方向的终端可以进行空分复用,从而提高虚拟小区资源的利用率,进一步提高频谱效率和***容量。
在一个可能的设计中,该配置信息还用于指示虚拟小区资源中的控制区域,控制区域可以但不限于有以下两种划分方式。
第一种,所述控制区域包括m个专用控制区域,所述m个专用控制区域与所述m个网络设备一一对应,不同的专用控制区域与不同的网络设备对应,一个网络设备占用一个专用控制区域,所述专用控制区域用于承载对应的网络设备的下行控制信息。
可选的,在这种方式下,配置信息包括专用控制区域的个数,或包括m个专用控制区 域中每一个专用控制区域占用资源的大小或位置,以助于终端正确接收下行控制信息。
可选的,m个专用控制区域可以采用等分方式划分,也可以采用不等分方式划分,当等分时,终端可以接收的是专用控制区域的个数,当不等分时,终端可以接收的是每一个专用控制区域占用资源的大小或位置。
可选的,配置信息可以通过专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE来携带,或者,专用控制区域的个数、或每一个专用控制区域占用资源的大小或位置,可以携带于专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE中,通过发送这些信息中的一种来向终端指示专用控制区域的这些划分信息。
第二种:所述控制区域为公用控制区域,所述公用控制区域用于承载所述m个网络设备中任一网络设备的承载下行控制信息的波束,该配置信息还用于指示虚拟小区资源中的导频资源区域,该配置信息还包括所述导频资源区域占用资源的大小或位置、以及导频资源的分配信息,导频资源的分配信息用于在所述导频资源区域检测导频信号,导频资源区域用于承载波束相关的导频信号,例如,解调参考符号,波束相关的导频信号用于对所述承载所述下行控制信息的波束进行信道估计,可用于控制信道解调和数据信道解调,当然,用于控制信道解调和数据信道解调的参考信号可以是相同的,也可以是不同的。
当然,导频资源区域占用资源的大小或位置、以及导频资源的分配信息还可以通过其他信息来指示,例如,广播消息或***消息、专用物理信道、过切换命令、其他RRC消息或MAC CE,通过发送其他信息来向终端指示导频资源的这些信息。或者,配置信息来指示导频资源区域占用资源的大小或位置、以及导频资源的分配信息,通过上述这些消息来携带配置信息。
可选的,所述导频资源的分配信息包括所述导频信号的端口号,或所述导频信号的端口数量。
在一个可能的设计中,可以通过发送以下消息中的一种来向终端发送配置信息:***消息或广播消息、专用物理信道消息、RRC配置消息、切换命令、或其他RRC消息或MAC CE。在任一种消息中携带配置信息。
在一个可能的设计中,还可以向终端发送位置信息,所述位置信息用于指示所述m个网络设备中用于上行数据接收的网络设备的位置,根据所述用于上行数据接收的网络设备的位置和自身的位置,生成指向所述用于上行数据接收的网络设备的波束。这样,通过向终端指示虚拟小区内各个网络设备的位置,能够辅助终端生成指向相应网络设备的波束,不同的终端向不同的基站采用波束发送上行数据,在上行方向上不会产生明显的干扰,有助于在采用虚拟小区通信时使用波束进行上下行数据传输,提高频谱效率。
所述位置信息可能包括所述m个网络设备中用于上行数据接收的网络设备的位置坐标,和/或所述用于上行数据接收的网络设备的索引号,所述索引号用于区分所述m个网络设备的不同网络设备。
在一个可能的设计中,通过向所述终端发送以下任一种消息来向所述终端指示所述位置信息:***消息或广播消息、专用物理信道消息、半静态配置消息、上行调度UL-Grant信息。
第七方面,提供一种通信装置,该装置具有实现上述第一方面、第二方面、第三方面、第一方面的任一种可能的设计、第二方面的任一种可能的设计和第三方面的任一种可能的 设计中终端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器存储有一组程序,处理器用于执行存储器存储的程序,当程序被执行时,所述装置可以执行上述第一方面、第二方面、第三方面、第一方面的任一种可能的设计、第二方面的任一种可能的设计和第三方面的任一种可能的设计所述的方法。
在一个可能的设计中,该装置还包括收发器,用于该装置与网络设备之间进行通信。
在一个可能的设计中,该装置为终端。
第八方面,提供一种通信装置,该装置具有实现上述第四方面、第五方面、第六方面、第四方面的任一种可能的设计、第五方面的任一种可能的设计和第六方面的任一种可能的设计中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器存储有一组程序,处理器用于执行存储器存储的程序,当该程序被执行时,所述装置可以执行上述第四方面、第五方面、第六方面、第四方面的任一种可能的设计、第五方面的任一种可能的设计和第六方面的任一种可能的设计中所述的方法。
在一个可能的设计中,该装置还包括收发器,用于该装置与终端之间进行通信。
在一个可能的设计中,该装置为基站。
第九方面,提供一种芯片,该芯片与存储器相连或者该芯片包括存储器,用于读取并执行所述存储器中存储的软件程序,以实现如上述第一方面、第二方面、第三方面、第一方面的任一种可能的设计、第二方面的任一种可能的设计和第三方面的任一种可能的设计所述的方法。
第十方面,提供一种芯片,该芯片与存储器相连或者该芯片包括存储器,用于读取并执行所述存储器中存储的软件程序,以实现如上述第四方面、第五方面、第六方面、第四方面的任一种可能的设计、第五方面的任一种可能的设计和第六方面的任一种可能的设计中所述的方法。
第十一方面,提供了一种通信***,该通信***包括第七方面和第八方面所述的装置。
第十二方面,提供一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述各方面和各方面的任一可能的设计中方法的指令。
第十三方面,提供了一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述各方面和各方面的任一可能的设计中所述的方法。
附图说明
图1为现有技术中无人机干扰示意图;
图2为现有技术中无人机切换示意图;
图3a为本申请实施例中接入网的结构示意图之一;
图3b为本申请实施例中接入网的结构示意图之二;
图4为本申请实施例中通信***的架构示意图;
图5a和图5b为本申请实施例中两种虚拟小区资源的划分方式示意图;
图6为本申请实施例中虚拟小区内基站采用波束通信的方式示意图;
图7为本申请实施例中重复传输技术的协议栈示意图;
图8a为本申请实施例中通信方法流程示意图之一;
图8b为本申请实施例中通信方法流程示意图之二;
图8c为本申请实施例中通信方法流程示意图之三;
图9为本申请实施例中通信装置的结构示意图之一;
图10为本申请实施例中通信装置的结构示意图之二;
图11为本申请实施例中通信装置的结构示意图之三;
图12为本申请实施例中通信装置的结构示意图之四。
具体实施方式
本申请提供一种通信方法及装置,用以在采用虚拟小区通信时提高频谱效率。其中,方法和设备是基于相同或相似构思的,因此设备与方法的实施可以相互参见,重复之处不再赘述。
为方便理解,首先介绍一下本申请用到的一些用语的基本概念。
1)终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端包括具有无线连接功能的手持式设备、车载设备等。目前,终端可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。本申请一种可能的应用的场景为终端的高度满足预设条件或终端处于预设的飞行状态,上述高度可以为终端相对于地面的高度,也可以为海拔高度,或者其他形式的高度。
2)接入网(access network,AN)设备,是本申请应用的通信***中将终端接入到无线网络的设备。AN设备为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。基站,是一种部署在无线接入网中用以为终端提供无线通信功能的装置。
为方便描述,本申请中AN设备以称为基站为例进行描述。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。可以应用在不同的无线接入技术的***中,例如长期演进(long term evolution,LTE)***中,或者,第五代(5th Generation,5G)通信***等更多可能的通信***中。基站可能的部署形态包括:集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离场景;以及单站点的场景。单站点包括 gNB/NR-NB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在5G通信***中,单站点为gNB/NR-NB。5G中的基带单元(baseband unit,BBU)功能被重构成CU和DU两个功能实体。其中,CU设备主要包括非实时的无线高层协议栈功能,同时也支持部分核心网功能下沉和边缘应用业务的部署,而DU设备主要处理物理层功能和实时性需求的层2功能。具体的,CU支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议。DU主要支持无线链路控制层(radio link control,RLC)、媒体接入控制层(media access control,MAC)和物理层(PHY)协议。DU一般采用分布式部署方式,在通常情况下一个CU要连接一个以上的DU。gNB具有CU和DU的功能,并且通常作为单站点的形态部署。以上功能的划分仅仅是一个示例,第五代(5th generation,5G)通信***或者未来通信***将哪些功能在CU中实现以及哪些功能在DU中实现,具体方案还有待确定。图3a和图3b示出了本申请实施例应用于5G通信***时,两种可能适用的接入网的架构图。如图3a所示,在5G通信***中,AN设备为gNB,一个gNB下可能存在一个或多个TRP。如图3b所示,在5G通信***中,可能会存在CU-DU分离场景。在CU-DU分离场景下,CU是接入网侧的S1接入点。下行数据的传输流程为:CU收到核心网发送的下行数据后,将下行数据分发给DU,DU将接收到的下行数据发送给终端。上行数据的传输流程为:终端将上行数据发送给DU,DU将接收到的上行数据发送给CU,CU在收到DU发送的上行数据后,将接收到的上行数据发送给核心网。
另外,基站还可以是其他具有基站功能的网络设备,特别地,还可以是D2D通信中担任基站功能的终端。
3)虚拟小区,是指多个现有蜂窝网络中同频小区的组合,也可以称为小区集合、小区组合、小区簇、基于业务的专用小区、预留小区、嵌入式小区、子小区、空中小区。虚拟小区的覆盖范围为组成该虚拟小区的多个同频小区的覆盖范围的并集。构成虚拟小区的资源可以简述为虚拟小区资源,虚拟小区资源包括从该多个同频小区预留出来的部分或全部资源。本申请中多个基站协同合作,将相同的时频资源分配给一个或多个终端,虚拟小区的覆盖范围是协同合作的多个基站的小区的覆盖范围的总和,该相同的时频资源就是虚拟小区资源。虚拟小区的小区标识用于终端对不同的虚拟小区进行区分,还可以用于将虚拟小区和普通小区进行区分。普通小区是指现有蜂窝网络中的小区。
4)波束,是终端或基站采用波束域通信的方式发送的强指向性的信号。波束域通信是指对线阵或面阵天线的不同阵子上的信号进行加权,利用干涉原理,形成波束,使得信号在指定方向上得到增强,其他方向上得到削弱,这样,不同方向上的终端或站点可以进行空分复用,从而提高***容量。
5)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。多个,是指两个或两个以上。“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。字符“/”一般表示前后关联对象是一种“或”的 关系。
本申请的基本思想是,多个基站协同合作,将相同的时频资源分配给多个终端,该多个基站可以向占用该虚拟小区资源的一个或多个终端联合发送数据,或者联合接收一个或多个终端发送的数据。也可以,该多个基站中的各个基站独立进行调度和波束赋形,虚拟小区中为终端服务的小区向终端发送波束,参与协作的其他基站/小区可以利用相同的时频资源为不同的终端服务。这样,在采用虚拟小区通信时可以提高频谱效率。
本申请实施例提供的通信方法可以应用于***(4thgeneration,4G)通信***、第五代(5th generation,5G)通信***或未来的各种通信***。
下面将结合附图,对本申请实施例进行详细描述。
图4示出了本申请实施例提供的通信方法适用的一种可能的通信***的架构,参阅图4所示,所述通信***中包括:至少一个终端401和至少一个基站402。至少一个基站402的小区构成虚拟小区。图4中示出了3个终端和3个基站,3个终端分别用401-1、401-2、401-3来表示,3个基站分别用402-1、402-2、402-3来表示。终端401和基站402的术语解释可参考上述第1)点和第2)点的描述。基站402-1、402-2和402-3中可以有一个基站为管理节点,终端401-1、401-2和401-3用于接收管理节点的配置消息,并与基站402-1、402-2和402-3进行数据传输。管理节点确定虚拟小区资源,例如可与其他两个基站协商确定共享相同的传输资源为虚拟小区资源。基站402-1、402-2和402-3可通过波束通信方式复用虚拟小区资源。
基于图4所示的通信***的架构,下面对本申请实施例提供的通信方法做详细说明。
实施例一
以下介绍一下虚拟小区资源内各信道区域的划分方式。
虚拟小区资源的时域资源维度,是虚拟小区在时域上占用一个或多个单位时域资源,其中,单位时域资源是指按照时域资源粒度划分的最基本的传输单元,可以是指一个帧、或一个子帧、或一个时隙、或一个微小(mini)时隙、或一个符号等。虚拟小区资源的频域资源维度,是虚拟小区在频域上占用的总长度,是***带宽中的部分资源,例如,可以是一段资源块(resource block,RB)范围、或若干个带宽部分(bandwidth part,BWP)、或若干个载波、或一段资源粒子(resource element,RE)范围。
虚拟小区资源内信道区域的划分方式可以但不限于包括以下两种方式。以下两种方式的介绍均以单位时域资源为基础,即,基于时域维度为虚拟小区占用时域资源的单位时域资源、频域维度为虚拟小区占用的总频域资源进行介绍,虚拟小区资源中的信道划分模式可参照以下划分方式。
方式一:虚拟小区资源中包括数据区域和控制区域。其中,控制区域可包括多个专用控制区域。
假设有m个基站协同合作,即虚拟小区包括的基站的数量为m个,m为大于1的整数,则专用控制区域的数目为m。m个基站中的各基站占用单独的专用控制区域。如图5a所示,m个专用控制区域用专用控制区域1~专用控制区域m来表示。专用控制区域占用的频域资源大小可以相同,也可以不同。专用控制区域可以用于相应的基站发送下行的控制信息,数据区域用于m个基站共同占用,可采用波束复用的方式发送下行数据信息。例如m=3,专用控制区域1可以用于基站1发送下行控制信息,专用控制区域2可以用于基站2发送下行控制信息,专用控制区域3可以用于基站3发送下行控制信息,而基站1、 基站2和基站3可以共同使用数据区域基于波束复用的方式来发送下行数据。本申请中,共同占用,可以理解为共用,或者共同使用。
方式二:如图5b所示,虚拟小区资源中包括数据区域和控制区域,还可以包括导频资源区域。其中,控制区域为公用控制区域,该公用控制区域用于m个基站共同占用,m个基站可采用波束复用的方式发送下行的控制信息,数据区域用于m个基站共同占用,m个基站可采用波束复用的方式发送下行数据信息。导频资源区域用于m个基站共同占用,可以用于发送波束相关的导频信号,例如,发送解调参考符号(demodulation reference symbol,DMRS),波束相关的导频信号用于控制信道解调和数据信道解调,当然,用于控制信道解调和数据信道解调的参考信号可以是相同的,也可以是不同的。图5b中的信道分布方式只是一种示例。
终端在接收下行数据时,需要先知道控制区域的大小或位置,才能在数据区域正确接收并解调下行数据,以下介绍一下虚拟小区资源内控制区域的通知方式。
虚拟小区资源的资源位置可以在协议中规定,也可以由虚拟小区包括的多个基站协商确定,如由多个基站中的控制节点发起协商,与其它节点协商确定将一个或多个基站的部分或全部资源作为虚拟小区资源。多个基站中的控制节点可以向服务的一个或多个终端发送虚拟小区的资源配置信息,通过资源配置信息通知给终端虚拟小区资源的资源位置,终端根据资源配置信息获得虚拟小区资源的资源位置。进一步的,基站还可以向终端通知控制区域的划分情况,以下重点介绍一下这方面。在以下的介绍中,基站可以是多个基站中的控制节点,终端为虚拟小区服务的多个终端中的任意一个终端。
一种可以实现的方式中,控制区域和数据区域在时域上占用的资源大小可以根据协议规定,也可以由基站通知给终端。例如,在LTE中,一般情况下每个子帧的控制区域占用1~3个符号,数据区域占用子帧内的其余符号。
1、若虚拟小区资源的信道划分模式为上述方式一,即控制区域包括m个专用控制区域。若m采用等分的划分方式,每个专用控制区域占用的频域资源大小相同,基站可以通知给终端专用控制区域的个数,终端接收基站发送的专用控制区域的个数后,根据虚拟小区资源的位置,可以确定每个专用控制区域占用的频域资源大小和位置。若采用不等分的划分方式,各个专用控制区域占用的频域资源大小可能不同,基站可以通知给终端每个专用控制区域占用的资源大小,例如通知各个专用控制区域占用的RB个数,终端接收到基站通知的各个专用控制区域占用的资源大小,可以根据虚拟小区资源的位置和各个专用控制区域占用的资源大小,确定每个专用控制区域的频域资源大小和位置。示例性的,假设m=3,虚拟小区资源中的单位时域资源为一个子帧,控制区域占用子帧中的前3个符号,数据区域占用子帧中的其他符号。虚拟小区资源在频域维度占用24个RB,将24个RB分为3组,每个专用控制区域占用8个RB。当然,3个专用控制区域也可以不等分的占用24个RB。在采用等分的划分方式时,基站可以向终端通知专用控制区域的个数3,终端根据虚拟小区资源的位置,确定每个专用控制区域占用8个RB。当采用不等分的划分方式时,基站可以向终端通知每个专用控制区域占用的RB数。
通知方式可以但不限于采用以下方式。
(1)若采用等分的划分方式,每个专用控制区域占用的频域资源大小相同,专用控制区域的个数可以通过***消息通知。例如,在LTE中,***消息分为主信息块(master information block,MIB)和***信息块。基站可以通过MIB来指示,例如通过MIB中的 空闲比特(bit)来指示。例如采用MIB中的3个空闲bit表示专用控制区域的个数。3个比特可以表征的控制区域的个数范围为[0,7]或[1,8],表征控制区域的最大个数为8。如,000表征m为1,001表征m为2,010表征m为3……。举个例子,虚拟资源占用的RB总数为20,MIB中的比特所指示的专用控制区域的个数是4,则每个专用控制区域的RB个数为20/4=5。类似的,在5G中,还可以在同步信号块(synchronization signal block,SS-block)中的***消息中通知专用控制区域的个数,具体细节可参考上述描述,不再赘述。是否采用等分的划分方式可以由基站通知,也可以由协议规定。
(2)专用控制区域的个数或每个专用控制区域占用资源大小还可以通过专用物理信道指示。其中,基站通过专用物理信道指示专用控制区域的个数的具体方法,可以参考现有技术LTE中物理控制格式指示信道(physical control format indication channel,PCFICH)信道指示控制区域符号个数的方法。基站通过PCFICH信道将专用控制区域的个数或每个专用控制区域占用资源大小通知给终端,具体可以由传输控制格式指示信息(control format indicator,CFI),来指示,例如,CFI可以取值为CFI=1、2、3、4……。
(3)专用控制区域的个数或每个专用控制区域占用资源大小还可以通过切换命令指示。具体的,终端可以由普通小区切换进入虚拟小区,或者可以不同的虚拟小区之间进行切换。在切换的过程中,终端接收源基站发送的切换命令,可以在切换命令中指示专用控制区域的个数或每个专用控制区域占用资源大小,还可以在切换命令中指示每个专用控制区域的频域资源位置和/或单位频域资源的个数,例如指示RB位置和/或RB个数。如第(1)点中的例子,虚拟小区资源占用的RB总数为20,可以在切换命令中指示专用控制区域1占用RB15~RB20、专用控制区域2占用RB21~RB25、专用控制区域3占用RB26~RB30、专用控制区域4占用RB31~RB35。若终端由普通小区或原来的虚拟小区切换进入新的虚拟小区,每个专用控制区域的频域资源可以通过切换命令进行配置,每个专用控制区域占用的频域资源大小可以相同,也可以不同。若不同,则在切换命令中指示每个专用控制区域占用的频域资源位置即可,如指示RB位置。
(4)专用控制区域的个数或每个专用控制区域占用资源大小还可以通过其他RRC消息或媒体接入层控制单元(MAC control element,MAC CE)指示。
2、若虚拟小区资源的信道划分模式为上述方式二,即控制区域为公用控制区域,各个基站均可以在公用控制区域发送承载下行控制信息的波束,无需其他基站协调资源位置。这种情况下,终端不知道下行控制信道的资源位置,需要对下行控制信道进行盲检测。基站需要通知给终端导频资源的分配信息,例如,导频资源的分配信息可以是用于控制信道解调的导频信号的端口号,或该导频信号的端口数量。
基站可以在导频资源的分配信息中通知给终端波束专用的参考信号,终端根据导频资源的分配信息检测波束专用的参考信号,获得信道估计结果,并使用信道估计结果进行下行控制信道盲检测,判断是否有相应的下行控制信息(例如上行调度指令、下行数据传输指示等),在确定有下行控制信息时,按照下行控制信息进行数据发送或接收。另一种可能的实现方式中,终端检测导频资源区域的多个导频信号,获得多个波束的能量或者功率的信息,将各个波束的能量或功率与设定的门限进行比较,若某个波束的能量或功率超过设定的门限,则说明终端处于该波束的覆盖范围内,终端使用该波束对应导频信号的信道估计结果在公用控制区域进行下行控制信道盲检测,判断是否有相应的下行控制信息,在确定有下行控制信息时,按照下行控制信息进行数据发送或接收。设定的门限可以在协议 中规定或者在导频资源的分配信息中携带。
具体的,基站向终端通知的导频资源的分配信息中包括导频信号使用的端口号或端口数量,导频信号使用的端口号或端口数量可以简述为导频信号端口号或导频信号端口数量。例如,导频信号为DMRS,基站向终端通知DMRS端口号或DMRS端口数量。终端根据接收到的导频信号端口号或导频信号端口数量,检测波束专用的参考信号。其中,通知方式可以但不限于采用以下方式。
a、通过广播消息或***消息通知。例如,在LTE中,基站可以通过MIB来指示导频信号端口号或导频信号端口数量。比如,可以通过MIB中的空闲比特(bit)来指示。例如采用MIB中的2个空闲bit表示导频信号端口数量。2个比特可以表征的导频信号端口数量的范围为[0,3]或[1,4],表征导频信号端口数量的最大个数为4。如,00表征导频信号端口数量为1,01表征导频信号端口数量为2,10表征导频信号端口数量为3,11表征导频信号端口数量为4。类似的,在5G中,基站还可以在SS-block中的***消息中通知导频信号端口号或导频信号端口数量。具体细节可参考上述通过MIB来通知的描述,不再赘述。
b、通过专用物理信道指示。其中,基站通过专用物理信道指示导频信号端口号或导频信号端口数量的具体方法,可以参考现有技术LTE中PCFICH信道指示控制区域符号个数的方法。基站通过PCFICH信道将导频信号端口号或导频信号端口数量通知给终端,具体可以由传输控制格式指示信息(control format indicator,CFI)来指示,例如,CFI可以取值为CFI=1、2、3、4……。
c、通过切换命令指示。具体的,终端可以由普通小区切换进入虚拟小区,或者可以在不同的虚拟小区之间进行切换。在切换的过程中,终端接收源基站发送的切换命令,源基站可以在切换命令中指示导频信号端口号或导频信号端口数量。
d、通过其他RRC消息或MAC CE指示。
至此,虚拟小区资源内各信道区域的划分方式以及各划分方式下的配置信息的通知方式介绍完毕。
当采用方式一对虚拟小区资源进行信道划分时,各个基站占用各自的专用控制区域发送下行控制信息。虚拟小区包括的多个基站共同占用数据区域发送承载下行数据信息的波束,终端根据接收到的基站发送的专用控制区域的个数或各个专用控制区域占用的资源大小/位置,检测下行控制信息,并对下行数据信息进行解调。
当采用方式二对虚拟小区资源进行信道划分时,虚拟小区包括的多个基站共同占用公用控制区域发送承载下行控制信息的波束,并共同占用数据区域发送承载下行数据信息的波束,终端根据接收到的基站发送的导频信号端口号或导频信号端口数量,检测波束专用的参考信号,并根据对参考信号的信道估计结果进行下行控制信道的盲检测,根据盲检测的结果获得下行控制信息,进而根据下行控制信息对下行数据进行解调。
举例来说,如图6所示,假设虚拟小区包括基站1、基站2和基站3,虚拟小区服务的终端包括终端a和终端b。基站1、基站2和基站3中有一个基站为控制节点,例如基站1为控制节点。基站1为终端a和终端b分配虚拟小区资源,并向终端a和终端b通知多个专用控制区域的个数、或各个专用控制区域占用的资源大小/位置、或导频信号端口号、或导频信号端口数量。基站2在虚拟小区资源的数据区域上向终端a发送波束a,基站3在虚拟小区资源的控制区域上向终端b发送波束b,波束a和波束b的方向指向不同,因此在下行方向上,基站2向终端a发送的波束a不会对终端b产生干扰,基站3向终端b 发送的波束b不会对终端a产生干扰。图6仅为示例性说明,实际应用中,虚拟小区资源可以由任意数量的基站通过波束来复用。类似的,上行方向的数传也可以通过波束完成。
通过上述实施例提供的方法,多个基站在相同的虚拟小区资源上,能够采用波束通信的方式向多个终端发送下行数据或接收上行数据,由于波束的强指向性,不同基站生成不同方向的波束,提升了链路的信噪比,而且在下行方向不会产生明显的干扰,虚拟小区资源的利用率可以得到较好提高,在一定程度上可以提高采用虚拟小区通信时的频谱效率。通过多个网络设备采用波束通信方式共用数据区域,不同的终端可以接收不同的网络设备发送的波束,不同方向的终端可以进行空分复用,从而提高虚拟小区资源的利用率,进一步提高频谱效率和***容量。
实施例二
采用波束通信的方式,需要发送端和接收端中至少一方具有支持波束赋形技术的能力。在下行通信过程中,基站采用波束发送下行控制信息或者下行数据信息,接收下行数据的终端可以具有支持波束赋形技术的能力,也可以不具有支持波束赋形技术的能力。在上行通信时,终端也可以采用波束向基站发送上行数据。在发送上行数据之前,终端向基站通知终端的能力,终端的能力包括终端是否具有生成波束的能力,和/或终端能够同时生成波束的数量。基站接收终端上报的终端的能力的信息,根据终端的能力的信息确定终端是否能够采用波束发送上行数据,和/或,确定终端同时生成波束的数量。
若基站确定终端能够具有生成波束的能力,则基站可以向终端发送基站的位置信息,终端根据接收到的基站的位置信息结合终端自身的位置,生成指向基站的波束。其中,基站的位置信息可以是任一种定位***生成的位置信息,例如包括以下信息:经度、维度、离地高度或海拔高度。基站可以通过广播消息或专用消息来发送基站的位置信息。
这样,终端根据接收到的基站发送的基站的位置信息,能够生成指向基站的波束,基站通过向终端发送基站的位置信息,能够辅助终端生成指向基站的波束。
本实施例二可以独立形成本申请需要保护的方案,还可以与实施例一结合生成本申请需要保护的方案。当与实施例一结合时,发送基站的位置信息的基站可以是虚拟小区所属多个基站中的控制节点,控制节点发送虚拟小区所属的多个基站的位置,具体的可以通过广播消息或专用消息来发送。对于基于调度的上行发送来说,基站还可以在半静态配置消息中或在上行调度(UL-Grant)中携带该多个基站的位置。可选的,在广播消息、或专用消息、或半静态配置消息、或UL-Grant中携带基站的索引号和位置坐标的对应关系,其中,基站的索引号可以是基站在虚拟小区的内部编号,例如,虚拟小区所属的基站个数为3,基站的索引号可以是1、2、或3。虚拟小区服务的多个终端根据控制节点发送的位置信息,确定该多个基站的位置坐标。具体的,终端根据基站的索引号对应的位置坐标来确定待接收上行数据的基站的位置,并根据该基站的位置和自身的位置,生成指向该基站的波束。在虚拟小区中具体选择哪个或哪几个基站进行上行数据接收,属于基站实现,例如可以根据上行信号质量选择最好的基站进行终端上行数据的接收。
这样,通过基站向终端指示虚拟小区内各个基站的位置,能够辅助终端生成指向相应基站的波束,不同的终端向不同的基站采用波束发送上行数据,在上行方向上不会产生明显的干扰,有助于在采用虚拟小区通信时使用波束进行上下行数据传输,提高频谱效率。
实施例三
以下介绍一下采用虚拟小区通信时使用波束进行重复传输(duplication)的方案。在 下行方向,可以选择多个波束传输相同的数据,有助于满足低时延高可靠的传输需求。
虚拟小区所属的多个基站之间可能具有理想回程线路(即理想backhaul)通信能力,具有理想backhaul的多个基站之间的通信时延为零或接近零,可以忽略,从而该多个基站可以联合向终端收发数据。例如,通过光纤完成X2连接的多个基站间可具有理想backhaul。理想backhaul的典型场景如多个基站的基带资源共享场景,也就是基带池(即BBU-pool)场景。在多个基站具有理想backhaul通信能力时,可以看成多个基站共享一个媒体访问控制(media access control,MAC)实体。MAC实体用于调度虚拟小区的多个基站联合发送波束。如图7所示,通过两个承载发送两个波束为例,载1和承载2具有独立的PDCP实体和独立的RLC实体,承载1和承载2共享一个MAC实体,MAC实体调度通过调度虚拟小区的多个基站来联合发送波束1和波束2,发送波束1和波束2的基站可以是同一个基站也可以是不同的基站,波束1和波束2承载相同的下行数据。
虚拟小区所属的多个基站联合向终端发送下行数据,在MAC实体生成MAC协议数据单元(Protocol Data Unit,PDU),MAC PDU也可以称为传输块(transmission block,TB)。由于多个基站共享一个MAC实体,对于任意一份MAC PDU,MAC实体可以选择多个波束进行重复发送,多个波束可以是多个基站中的一个或多个生成的,通过多个波束发送同一个TB,对于类似于无人机的终端在飞行时接收飞行控制命令,可以有助于实现低时延高可靠的传输。
当MAC实体采用多个波束发送同一个TB时,终端需要对多个波束接收的TB进行合并,从而可以正确获取数据。以下对通过多个波束发送同一个TB的实现过程做具体介绍。
采用多个波束对同一个TB进行重复传输,重复传输的的多个波束所承载的数据具有不同的冗余版本,终端需要知道每个波束上承载的数据的冗余版本号,才能正确进行合并。波束与导频资源具有对应关系,以下以导频资源为端口号为例进行介绍。波束与端口号具有对应关系,基站需要通知终端端口号对应的冗余版本号,终端通过端口号与冗余版本号的对应关系,即可以获知每个波束上承载的数据的冗余版本号。基站通知端口号与冗余版本号的对应关系的方式可以包括以下几种,也即终端获取端口号与冗余版本号的对应关系的方式可以包括以下几种。其中,以下描述中,向终端通知的基站可以是虚拟小区的所属的多个基站中的控制节点。
方式1、静态通知。基站向终端发送通知消息,例如RRC消息,在通知消息中携带端口号和冗余版本号的对应关系。
方式2、动态通知。基站在下行半静态调度配置消息中指示端口号和冗余版本号的对应关系。
方式3、动态通知。基站在下行动态调度的下行分配(DL assignment)消息中指示端口号和冗余版本号的对应关系。例如,将端口号和冗余版本号的对应关系携带于指示下行调度的下行控制信息(downlink control information,DCI)中。
针对上述方式1~方式3,以下做具体描述。
基站向终端通知端口号和冗余版本的对应关系,终端根据基站的通知获取端口号和冗余版本的对应关系。例如,在LTE中,采用HARQ重传时可以有4个不同的冗余版本,冗余版本号按照使用顺序分别为0、2、3、1。基站向终端通知需要检测的端口号为7、8、9、10,每个端口对应的冗余版本分别为0、2、3、1。
具体的,基站还可以向终端通知需要终端检测的导频信号端口号或导频信号端口数 量,以及端口号和冗余版本号的对应关系。例如,导频信号为DMRS,基站向终端通知DMRS端口号或DMRS端口数量。在下行通信过程中,终端根据接收到通知消息,获取导频信号端口号或导频信号端口数量,检测端口号对应的参考信号,获得信道估计结果,并使用信道估计结果进行下行控制信道盲检测,判断是否有相应的下行控制信息,在确定有下行控制信息时,按照下行控制信息接收下行数据,获得端口号对应波束所承载的下行数据,终端按照端口号和冗余版本号的对应关系,确定每个波束上承载数据对应的冗余版本号,将获得的多个波束上的下行数据按照相应的冗余版本号进行合并(例如进行HARQ合并),然后进行信道解码获得最终的TB数据。
可选的,终端还可以在基站指示的端口号中选择部分端口号,将该部分端口号的波束上的下行数据按照相应的冗余版本号进行合并,以及后续信道解码流程。具体的,终端选择哪些端口号可以按照以下方式:终端检测端口号对应的参考信号,判断参考信号的能量或功率是否超过门限值,存在超过门限值的参考信号对应的端口号或波束。门限值可以在协议中规定或者在基站发送的通知消息中携带。
可选的,基站在通知消息中不携带需要终端检测的导频信号端口号或导频信号端口数量,只是携带端口号和冗余版本号的对应关系。终端接收到通知消息后,对多个端口或者波束进行检测,选择能量或功率超过设定的门限的端口,终端获取这些端口号的参考信号的信道估计结果,并进行数据解调,获得这些端口号的波束上承载的下行数据。终端按照端口号和冗余版本的对应关系,确定这些波束上承载的下行数据对应的冗余版本号,将获得的这些波束上的下行数据按照相应的冗余版本号进行合并,以及后续信道解码流程。
可选的,终端也可以对所有端口进行检测,对所有信道估计结果进行数据解调,选择部分端口对应的解调数据进行合并,具体选择哪些部分,可以按照基站的通知消息中携带的端口号或端口数量,或者按照上述根据能量或功率选择的方式。
除上述方式1~方式3外,还可以采用方式4或方式5。
方式4、动态通知。基站在下行动态调度的下行DCI中指示端口号。终端根据协议描述或虚拟小区的多个基站中的控制节点的指示来获取各个端口对应的冗余版本的顺序,并根据控制节点的配置消息来获取重复传输的多个波束的端口号,例如,控制节点通过RRC消息配置重复传输的多个波束的端口号为7、8、9、10,终端根据冗余版本的顺序,来确定基站指示的端口号所对应的冗余版本。具体地,终端根据基站通知的端口号,按顺序选择相应数量的冗余版本。例如,协议描述或者控制节点指示的端口号对应的冗余版本顺序为0、2、3、1,基站在下行DCI中指示的端口号为8和10,则终端可以确定端口号8对应的冗余版本为0,端口号10对应的冗余版本为2。
方式5、动态通知。基站在下行动态调度的下行DCI中指示端口数量。终端根据协议描述或虚拟小区的多个基站中的控制节点的指示来获取各个端口对应的冗余版本的顺序,并根据控制节点的配置消息来获取重复传输的多个波束的端口号,例如,控制节点通过RRC消息配置重复传输的多个波束的端口号为7、8、9、10,终端根据冗余版本的顺序,来确定基站指示的端口数量所对应的冗余版本。具体地,终端根据基站通知的端口数量,按顺序选择相应数量的冗余版本。例如,协议描述或者控制节点指示的端口号对应的冗余版本顺序为0、2、3、1,基站在下行DCI中指示的端口数量为3,则终端可以确定重复传输的多个波束承载数据的冗余版本号分别是0、2、3。
除了指示端口号和冗余版本的对应关系的方式不同之外,基站和终端在方式4和方式 5的其他处理过程与方式1~方式3相同,例如,检测波束以及对多个波束上的冗余版本进行合并的过程。
实施例三可以独立形成本申请需要保护的方案,还可以与实施例一结合生成本申请需要保护的方案。当与实施例一结合时,在采用虚拟小区通信时,可以在一份时频资源上通过多个波束传输一个TB的多个冗余版本,提高了成功检测TB的概率,有助于实现数据传输的高可靠性。进一步的,相对于传统的重复传输技术,有助于缩短重复传输所用的时间,从而缩短数据传输时延。通过终端有选择性的选取部分端口的数据进行合并,能够将终端的处理能力聚焦于高质量的信号,有助于提高数据传输的可靠性和质量。
类似的,若终端也支持波束赋形技术,具有波束生成能力,在上行方向,终端也可以使用波束进行重复传输。同样,有助于满足低时延高可靠的传输需求。具体的,虚拟小区所属的多个基站中的控制节点向终端通知上行数据接收基站的索引号,还可以通知上行数据接收基站的索引号与冗余版本号的对应关系,其中上行数据接收基站为多个基站中的一个或多个,上行数据接收基站的索引号可简述为基站索引号。终端根据接收到的基站索引号和相应的冗余版本,生成不同的冗余版本,并向基站索引号对应的基站发送承载相应冗余版本的波束,每一个波束承载同一个TB。MAC实体根据基站索引号和冗余版本号的对应关系,获知每个波束上承载的上行数据的冗余版本号,进一步对多个冗余版本进行合并以及数据解调。基站向终端通知基站索引号和冗余版本号的对应关系的方式可以参考上述方式1~方式5的描述,其中的区别是,下行方式为端口号与冗余版本号的对应关系,上行方向为基站索引号与冗余版本号的对应关系。上行的通知方式可以借鉴下行的通知方式,在此不再赘述。
上述实施例一、实施例二和实施例三中的任意两个或三个方案可以结合成为本申请需要保护的方案。
基于上述描述,假设虚拟小区包括m个网络设备(网络设备即上文描述的基站),m个网络设备中包括第一网络设备和至少一个第二网络设备。
如图8a所示,本申请实施例提供的一种通信方法的流程大致可以描述如下。该流程是以上文中实施例的描述为基础的。
S801a、第一网络设备向终端发送配置信息,终端接收第一网络设备发送的配置信息。
具体的,配置信息可以通过专用物理信道、切换命令、其他RRC消息或媒体接入层控制单元MAC CE来发送,或者通过其他RRC消息或MAC CE来发送。
该配置信息用于指示虚拟小区资源中的数据区域,该数据区域为m个网络设备共同占用。其中,数据区域用于m个网络设备中一个或多个网络设备发送承载下行数据信息的波束。控制区域的划分方式及用途可以参见上述描述。
S802a、m个网络设备中的一个或多个网络设备发送承载下行数据信息的波束,终端在数据区域接收通过m个网络设备中的一个或多个网络设备的波束承载的下行数据信息。
如图8b所示,本申请实施例提供的另一种通信方法的流程大致可以描述如下。该流程是以上文中实施例的描述为基础的。
S801b、第一网络设备向终端发送位置信息,终端接收第一网络设备发送的位置信息。
该位置信息用于指示m个网络设备中用于上行数据接收的网络设备的位置,可以包括m个网络设备中用于上行数据接收的网络设备的位置坐标,和/或该用于上行数据接收的网络设备的索引号,该索引号用于区分该m个网络设备的不同网络设备。
S802b、终端根据用于上行数据接收的网络设备的位置和自身的位置,生成指向用于上行数据接收的网络设备的波束。
如图8c所示,本申请实施例提供的另一种通信方法的流程大致可以描述如下。该流程是以上文中实施例的描述为基础的。
S801c、第一网络设备向终端发送第一通知消息,终端从第一网络设备接收第一通知消息。
该第一通知消息用于指示导频资源和第一冗余版本的对应关系。
S802c、m个网络设备中的一个或多个网络设备在导频资源对应的多个波束发送下行数据。
S803c、终端获取在导频资源对应的多个波束上发送的下行数据,并根据导频资源和第一冗余版本的对应关系,对多个波束发送的下行数据进行HARQ合并。
可选的,第一网络设备还向终端发送第二通知消息,终端接收第一网络设备发送的第二通知消息。该第二通知消息用于指示:用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系。终端按照该对应关系向用于上行数据接收的网络设备发送承载上行数据的波束,m个网络设备中的一个或多个网络设备接收承载上行数据的波束,对索引号对应的网络设备收到的多个冗余版本的上行数据进行HARQ合并。
类似的,上述图8a、图8b和图8c所示的方法能够独立形成方案,或任意两个合并形成方案,都属于本申请实施例需要保护的范围。
基于与上述方法实施例的同一发明构思,如图9所示,本申请实施例还提供了一种通信装置900,该通信装置900用于执行上述方法实施例中终端所执行的操作。该通信装置900包括接收单元901、处理单元902和发送单元903。
接收单元901,用于接收第一网络设备发送的配置信息,配置信息用于指示虚拟小区资源中的数据区域,该数据区域为m个网络设备共同占用,m个网络设备包括该第一网络设备和一个或多个第二网络设备。
该接收单元901,还用于在该数据区域接收通过该m个网络设备中一个或多个网络设备的波束承载的下行数据信息。
可选的,该配置信息还用于指示虚拟小区资源中的控制区域,该控制区域包括m个专用控制区域,该m个专用控制区域与该m个网络设备一一对应,该专用控制区域用于承载对应的网络设备的下行控制信息;
该配置信息包括该专用控制区域的个数,或者,该配置信息包括该m个专用控制区域中每一个专用控制区域占用资源的大小或位置。
可选的,该通信装置900还包括处理单元902,用于在该专用控制区域检测下行控制信息;根据检测到的下行控制信息对该下行数据信息进行解调。
可选的,该配置信息还用于指示虚拟小区资源中的控制区域和导频资源区域,该控制区域为公用控制区域,该公用控制区域用于承载该m个网络设备中任一网络设备的承载下行控制信息的波束;
该配置信息包括该导频资源区域占用资源的大小或位置、以及导频资源的分配信息,该导频资源的分配信息用于在该导频资源区域检测导频信号,该导频信号用于对该承载该下行控制信息的波束进行信道估计。
可选的,导频资源的分配信息包括导频信号的端口号,或导频信号的端口数量。
可选的,处理单元902还用于根据配置信息,在导频资源区域检测导频信号,并根据导频信号的信道估计结果在公用控制区域进行下行控制信道的盲检测,根据盲检测的结果获得下行控制信息,根据下行控制信息对下行数据信息进行解调。
可选的,接收单元901用于接收第一网络设备发送的***消息或广播消息,***消息或广播消息中携带配置信息;或者,接收第一网络设备发送的专用物理信道消息,专用物理信道消息中携带配置信息;或者,接收第一网络设备发送的RRC配置消息,RRC配置消息中携带配置信息;或者,接收第一网络设备发送的切换命令,切换命令中携带配置信息。
可选的,接收单元901用于接收第一网络设备发送的位置信息,位置信息用于指示该m个网络设备中用于上行数据接收的网络设备的位置,该位置信息包括m个网络设备中用于上行数据接收的网络设备的位置坐标,和用于上行数据接收的网络设备的索引号,索引号用于区分m个网络设备的不同网络设备;
处理单元902,用于根据用于上行数据接收的网络设备的位置和自身的位置,生成指向用于上行数据接收的网络设备的波束。
可选的,接收单元901,用于接收第一网络设备发送的***消息或广播消息,***消息或广播消息中携带位置信息;或者,接收第一网络设备发送的专用物理信道消息,专用物理信道消息中携带位置信息;或者,接收第一网络设备发送的半静态配置消息,半静态配置消息中携带位置信息;或者,接收第一网络设备发送的上行调度信息,上述调度信息中携带位置信息。
可选的,接收单元901,还用于从该第一网络设备接收第一通知消息,根据该第一通知消息,确定导频资源和第一冗余版本的对应关系;获取在该导频资源对应的多个波束上承载的下行数据,并根据该导频资源和该第一冗余版本的对应关系,对该多个波束承载的下行数据进行混合自动重传请求HARQ合并。
可选的,接收单元901用于接收第一网络设备发送的RRC消息,RRC消息中携带导频资源和第一冗余版本号的对应关系;或者,接收第一网络设备发送的下行半静态调度配置消息,下行半静态调度配置消息中携带导频资源和第一冗余版本号的对应关系;或者,接收第一网络设备发送的下行控制信息DCI,DCI信息中携带导频资源和第一冗余版本号的对应关系,或者,DCI信息中携带导频端口号,或者,DCI信息中携带导频端口数量。
可选的,接收单元901用于从该第一网络设备接收第二通知消息;处理单元902还用于根据第二通知消息,确定用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系。
通信装置900还包括发送单元903,用于根据该用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系,向该用于上行数据接收的网络设备发送相对应的冗余版本的数据。
基于与上述方法实施例的同一发明构思,如图10所示,本申请实施例还提供了一种通信装置1000,该通信装置1000用于执行上述方法实施例中网络设备(或基站)所执行的操作。该通信装置1000包括发送单元1001处理单元1002。其中,处理单元1002用于生成配置信息;
发送单元1001,用于向终端发送配置信息,配置信息用于指示虚拟小区资源中的数据区域,所述数据区域为m个网络设备共同占用,所述m个网络设备包括所述第一网络设 备和一个或多个第二网络设备,所述数据区域用于所述m个网络设备中一个或多个网络设备发送承载下行数据信息的波束;
发送单元1001,还用于在在虚拟小区资源的数据区域发送承载下行数据信息的波束。
可选的,所述配置信息还用于指示虚拟小区资源中的控制区域,所述控制区域包括m个专用控制区域,所述m个专用控制区域与所述m个网络设备一一对应,所述专用控制区域用于对应的网络设备发送下行控制信息;所述配置信息包括所述专用控制区域的个数,或者,所述配置信息包括所述m个专用控制区域中每一个专用控制区域占用资源的大小或位置。
可选的,所述配置信息还用于指示虚拟小区资源中的控制区域和导频资源区域,所述控制区域为公用控制区域,所述公用控制区域用于承载所述m个网络设备中任一网络设备的承载下行控制信息的波束;
所述配置信息包括所述导频资源区域占用资源的大小或位置、以及导频资源的分配信息,所述导频资源的分配信息用于在所述导频资源区域检测导频信号,所述导频信号用于对所述承载所述下行控制信息的波束进行信道估计;
发送单元1001,还用于向终端发送导频资源区域占用资源的大小或位置、以及导频资源的分配信息。
可选的,导频资源的分配信息包括导频信号的端口号,或导频信号的端口数量。
可选的,发送单元1001用于,向终端发送***消息或广播消息,***消息或广播消息中携带配置信息;或者,向终端发送专用物理信道消息,专用物理信道消息中携带配置信息;或者,向终端发送RRC配置消息,RRC配置消息中携带配置信息;或者,向终端发送切换命令,切换命令中携带配置信息。
可选的,发送单元1001用于向终端发送位置信息,位置信息用于指示m个网络设备中用于上行数据接收的网络设备的位置。
可选的,发送单元1001,用于向终端发送***消息或广播消息,***消息或广播消息中携带位置信息;或者,向终端发送专用物理信道消息,专用物理信道消息中携带位置信息;或者,向终端发送半静态配置消息,半静态配置消息中携带位置信息;或者,向终端发送上行调度信息,上述调度信息中携带位置信息。
可选的,发送单元1001,还用于向终端发送第一通知消息,第一通知消息携带导频资源和第一冗余版本的对应关系;导频资源和第一冗余版本的对应关系用于终端对导频资源对应的多个波束上的下行数据进行混合自动重传请求HARQ合并。
可选的,发送单元1001用于向终端发送RRC消息,RRC消息中携带导频资源和第一冗余版本号的对应关系;或者,向终端发送下行半静态调度配置消息,下行半静态调度配置消息中携带导频资源和第一冗余版本号的对应关系;或者,向终端发送下行控制信息DCI,DCI信息中携带导频资源和第一冗余版本号的对应关系,或者,DCI信息中携带导频端口号,或者,DCI信息中携带导频端口数量。
可选的,发送单元1001,还用于向终端发送第二通知消息,第二通知消息携带用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系,用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系用于对索引号对应的网络设备收到的多个冗余版本的上行数据进行HARQ合并。
基于与上述通信方法同一发明构思,如图11所示,本申请实施例还提供了一种通信装 置1100,该通信装置1100用于实现上述实施例提供的通信方法中终端执行的操作,该通信装置1100包括:收发器1101、处理器1102、存储器1103。收发器1101为可选的。处理器1102用于调用一组程序,当程序被执行时,使得处理器1102执行上述实施例提供的通信方法之一中终端执行的操作。存储器1103用于存储处理器1102执行的程序。图9中的功能模块接收单元901、发送单元903可以通过收发器1101来实现,处理单元902可以通过处理器1102来实现。图10中的功能模块发送单元1001可以通过收发器1101来实现,处理单元1002可以通过处理器1102来实现。
处理器1102可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器1102还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器1103可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器1103也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器1103还可以包括上述种类的存储器的组合。
基于与上述通信方法同一发明构思,如图12所示,本申请实施例还提供了一种通信装置1200,该通信装置1200用于实现上述实施例提供的通信方法中网络设备(或基站)执行的操作,该通信装置1200包括:收发器1201、处理器1202、存储器1203。收发器1201为可选的。处理器1202用于调用一组程序,当程序被执行时,使得处理器1202执行上述实施例提供的通信方法之一中终端执行的操作。存储器1203用于存储处理器1202执行的程序。图10中的功能模块发送单元1001可以通过收发器1201来实现,处理单元1002可以通过处理器1202来实现。
处理器1202可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器1202还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器1203可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器1203也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器1203还可以包括上述种类的存储器的组合。
在本申请上述实施例提供的通信方法中,所描述的终端和基站(网络设备)所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
为了实现上述图9、图10或图11所述的装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该装置实现上述实施例提供的通信方法中终端和基站(网络设备) 所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该装置必要的程序指令和数据。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例提供的通信方法的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例提供的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    从第一网络设备接收配置信息,所述配置信息用于指示虚拟小区资源中的数据区域,所述数据区域为m个网络设备共同占用,所述m个网络设备包括所述第一网络设备和一个或多个第二网络设备;
    在所述数据区域接收通过所述m个网络设备中一个或多个网络设备的波束承载的下行数据信息。
  2. 如权利要求1所述的方法,其特征在于,所述配置信息还用于指示虚拟小区资源中的控制区域,所述控制区域包括m个专用控制区域,所述m个专用控制区域与所述m个网络设备一一对应,所述专用控制区域用于承载对应的网络设备的下行控制信息;
    所述配置信息包括所述专用控制区域的个数,或者,所述配置信息包括所述m个专用控制区域中每一个专用控制区域占用资源的大小或位置。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述专用控制区域检测下行控制信息;
    根据检测到的下行控制信息对所述下行数据信息进行解调。
  4. 如权利要求1所述的方法,其特征在于,所述配置信息还用于指示虚拟小区资源中的控制区域和导频资源区域,所述控制区域为公用控制区域,所述公用控制区域用于承载所述m个网络设备中一个或多个网络设备的承载下行控制信息的波束;
    所述配置信息包括所述导频资源区域占用资源的大小或位置、以及导频资源的分配信息,所述导频资源的分配信息用于在所述导频资源区域检测导频信号,所述导频信号用于对所述承载所述下行控制信息的波束进行信道估计。
  5. 如权利要求4所述的方法,其特征在于,所述导频资源的分配信息包括所述导频信号的端口号,或所述导频信号的端口数量。
  6. 如权利要求4或5所述的方法,其特征在于,所述方法还包括:
    在所述导频资源区域检测所述导频信号;
    根据所述导频信号的信道估计结果在所述公用控制区域进行下行控制信道的盲检测;
    根据所述盲检测的结果获得下行控制信息,根据所述下行控制信息对所述下行数据信息进行解调。
  7. 如权利要求1~6任一项所述的方法,其特征在于,所述从第一网络设备接收配置信息,包括:
    从所述第一网络设备接收***消息或广播消息,所述***消息或所述广播消息中携带所述配置信息;或者,
    从所述第一网络设备接收专用物理信道消息,所述专用物理信道消息中携带所述配置信息;或者,
    从所述第一网络设备接收RRC配置消息,所述RRC配置消息携带所述配置信息;或者,
    从所述第一网络设备接收切换命令,所述切换命令中携带所述配置信息。
  8. 如权利要求1~7任一项所述的方法,其特征在于,所述方法还包括:
    从所述第一网络设备接收位置信息,所述位置信息用于指示所述m个网络设备中用于 上行数据接收的网络设备的位置;
    根据所述用于上行数据接收的网络设备的位置和自身的位置,生成指向所述用于上行数据接收的网络设备的波束。
  9. 如权利要求8所述的方法,其特征在于,所述从所述第一网络设备接收位置信息,包括:
    从所述第一网络设备接收***消息或广播消息,所述***消息或所述广播消息中携带所述位置信息;或者,
    从所述第一网络设备接收专用物理信道消息,所述专用物理信道消息中携带所述位置信息;或者,
    从所述第一网络设备接收半静态配置消息,所述半静态配置消息中携带所述位置信息;或者,
    从所述第一网络设备接收上行调度信息,所述上述调度信息中携带所述位置信息。
  10. 如权利要求1~9任一项所述的方法,其特征在于,所述方法还包括:
    从所述第一网络设备接收第一通知消息;
    根据所述第一通知消息,确定导频资源和第一冗余版本的对应关系;
    获取在所述导频资源对应的多个波束上承载的下行数据,并根据所述导频资源和所述第一冗余版本的对应关系,对所述多个波束承载的下行数据进行混合自动重传请求HARQ合并。
  11. 如权利要求10所述的方法,其特征在于,所述从所述第一网络设备接收第一通知消息,包括:
    从所述第一网络设备接收RRC消息,所述RRC消息中携带所述导频资源和第一冗余版本号的对应关系;或者,
    从所述第一网络设备接收下行半静态调度配置消息,所述下行半静态调度配置消息中携带所述导频资源和第一冗余版本号的对应关系;或者,
    从所述第一网络设备接收下行控制信息DCI,所述DCI信息中携带所述导频资源和第一冗余版本号的对应关系,或者,所述DCI信息中携带导频端口号,或者,所述DCI信息中携带导频端口数量。
  12. 如权利要求1~11任一项所述的方法,其特征在于,所述方法还包括:
    从所述第一网络设备接收第二通知消息;
    根据所述第二通知消息,确定所述m个网络设备中用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系;
    根据所述用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系,向所述用于上行数据接收的网络设备发送相对应的冗余版本的数据。
  13. 一种通信方法,其特征在于,包括:
    向终端发送配置信息,所述配置信息用于指示虚拟小区资源中的数据区域,所述数据区域为m个网络设备共同占用,所述m个网络设备包括所述第一网络设备和一个或多个第二网络设备,所述数据区域用于所述m个网络设备中一个或多个网络设备发送承载下行数据信息的波束;
    在所述数据区域发送所述承载下行数据信息的波束。
  14. 如权利要求13所述的方法,其特征在于,所述配置信息还用于指示虚拟小区资 源中的控制区域,所述控制区域包括m个专用控制区域,所述m个专用控制区域与所述m个网络设备一一对应,所述专用控制区域用于对应的网络设备发送下行控制信息;
    所述配置信息包括所述专用控制区域的个数,或者,所述配置信息包括所述m个专用控制区域中每一个专用控制区域占用资源的大小或位置。
  15. 如权利要求14所述的方法,其特征在于,所述配置信息还用于指示虚拟小区资源中的控制区域和导频资源区域,所述控制区域为公用控制区域,所述公用控制区域用于承载所述m个网络设备中一个或多个网络设备的承载下行控制信息的波束;
    所述配置信息包括所述导频资源区域占用资源的大小或位置、以及导频资源的分配信息,所述导频资源的分配信息用于在所述导频资源区域检测导频信号,所述导频信号用于对所述承载所述下行控制信息的波束进行信道估计。
  16. 如权利要求15所述的方法,其特征在于,所述导频资源的分配信息包括所述导频信号的端口号,或所述导频信号的端口数量。
  17. 如权利要求13~16任一项所述的方法,其特征在于,所述向终端发送配置信息,包括:
    向所述终端发送***消息或广播消息,所述***消息或所述广播消息中携带所述配置信息;或者,
    向所述终端发送专用物理信道消息,所述专用物理信道消息中携带所述配置信息;或者,
    向所述终端发送RRC配置消息,所述RRC配置消息中携带所述配置信息;或者,
    向所述终端发送切换命令,所述切换命令中携带所述配置信息。
  18. 如权利要求13~17任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送位置信息,所述位置信息用于指示所述m个网络设备中用于上行数据接收的网络设备的位置。
  19. 如权利要求18所述的方法,其特征在于,所述向所述终端发送位置信息,包括:
    向所述终端发送***消息或广播消息,所述***消息或所述广播消息中携带所述位置信息;或者,
    向所述终端发送专用物理信道消息,所述专用物理信道消息中携带所述位置信息;或者,
    向所述终端发送半静态配置消息,所述半静态配置消息中携带所述位置信息;或者,
    向所述终端发送上行调度信息,所述上述调度信息中携带所述位置信息。
  20. 如权利要求13~18任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第一通知消息,所述第一通知消息用于指示导频资源和第一冗余版本的对应关系;
    所述导频资源和第一冗余版本的对应关系用于对所述导频资源对应的多个波束上的下行数据进行混合自动重传请求HARQ合并。
  21. 如权利要求20所述的方法,其特征在于,所述向所述终端发送第一通知消息,包括:
    向所述终端发送RRC消息,所述RRC消息中携带所述导频资源和第一冗余版本号的对应关系;或者,
    向所述终端发送下行半静态调度配置消息,所述下行半静态调度配置消息中携带所述 导频资源和第一冗余版本号的对应关系;或者,
    向所述终端发送下行控制信息DCI,所述DCI信息中携带所述导频资源和第一冗余版本号的对应关系,或者,所述DCI信息中携带导频端口号,或者,所述DCI信息中携带导频端口数量。
  22. 如权利要求13~21任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二通知消息,所述第二通知消息用于指示用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系,所述用于上行数据接收的网络设备的索引号与第二冗余版本的对应关系用于对索引号对应的网络设备收到的多个冗余版本的上行数据进行HARQ合并。
  23. 一种通信装置,其特征在于,包括:
    处理器,用于与存储器耦合,调用所述存储器中的程序,执行所述程序以实现如权利要求1-12任意一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求1-12任意一项所述的方法。
  25. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1-12任意一项所述的方法。
  26. 一种芯片装置,其特征在于,所述芯片与存储器相连或者所述芯片包括所述存储器,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1-12任意一项所述的方法。
  27. 一种通信装置,其特征在于,包括:
    处理器,用于与存储器耦合,调用所述存储器中的程序,执行所述程序以实现如权利要求13-22任意一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求13-22任意一项所述的方法。
  29. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求13-22任意一项所述的方法。
  30. 一种芯片装置,其特征在于,所述芯片与存储器相连或者所述芯片包括所述存储器,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求13-22任意一项所述的方法。
PCT/CN2018/085182 2018-04-28 2018-04-28 一种通信方法及装置 WO2019205169A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880092811.5A CN112106417B (zh) 2018-04-28 2018-04-28 一种通信方法及装置
PCT/CN2018/085182 WO2019205169A1 (zh) 2018-04-28 2018-04-28 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085182 WO2019205169A1 (zh) 2018-04-28 2018-04-28 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2019205169A1 true WO2019205169A1 (zh) 2019-10-31

Family

ID=68293682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085182 WO2019205169A1 (zh) 2018-04-28 2018-04-28 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN112106417B (zh)
WO (1) WO2019205169A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115209422A (zh) * 2022-06-17 2022-10-18 北京邮电大学 一种密集城区下无人机基站协同组网参数配置方法
WO2023155660A1 (zh) * 2022-02-18 2023-08-24 中兴通讯股份有限公司 多层网络通信***、方法、运行控制装置及通信设备
CN116743315A (zh) * 2023-08-15 2023-09-12 北京智芯微电子科技有限公司 下行控制信道盲检方法、装置、设备、芯片及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335653A (zh) * 2012-05-21 2015-02-04 Lg电子株式会社 在多小区无线通信***中共享无线资源信息的方法及其设备
CN106162753A (zh) * 2016-07-19 2016-11-23 厦门大学 一种资源分配方法及装置
WO2017123045A1 (en) * 2016-01-13 2017-07-20 Samsung Electronics Co., Ltd. Method and apparatus for supporting multiple services in wireless communication systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547994A (zh) * 2012-01-18 2012-07-04 中兴通讯股份有限公司 一种消除小区间干扰的方法及***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335653A (zh) * 2012-05-21 2015-02-04 Lg电子株式会社 在多小区无线通信***中共享无线资源信息的方法及其设备
WO2017123045A1 (en) * 2016-01-13 2017-07-20 Samsung Electronics Co., Ltd. Method and apparatus for supporting multiple services in wireless communication systems
CN106162753A (zh) * 2016-07-19 2016-11-23 厦门大学 一种资源分配方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155660A1 (zh) * 2022-02-18 2023-08-24 中兴通讯股份有限公司 多层网络通信***、方法、运行控制装置及通信设备
CN115209422A (zh) * 2022-06-17 2022-10-18 北京邮电大学 一种密集城区下无人机基站协同组网参数配置方法
CN115209422B (zh) * 2022-06-17 2024-05-24 北京邮电大学 一种密集城区下无人机基站协同组网参数配置方法
CN116743315A (zh) * 2023-08-15 2023-09-12 北京智芯微电子科技有限公司 下行控制信道盲检方法、装置、设备、芯片及存储介质
CN116743315B (zh) * 2023-08-15 2023-10-31 北京智芯微电子科技有限公司 下行控制信道盲检方法、装置、设备、芯片及存储介质

Also Published As

Publication number Publication date
CN112106417A (zh) 2020-12-18
CN112106417B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2018141272A1 (zh) 终端、网络设备和通信方法
WO2020048438A1 (zh) 一种射频参数的上报方法及装置
JP2023523171A (ja) ユーザ機器および基地局
WO2020221318A1 (zh) 一种上行波束管理方法及装置
WO2020090387A1 (ja) 通信装置及び制御装置
US20200314933A1 (en) Communications method and apparatus
WO2018176324A1 (zh) 数据交互的方法、终端设备及网络设备
WO2019101018A1 (zh) 一种链路恢复方法、终端设备及网络设备
EP4329212A1 (en) Communication control method, wireless terminal, and base station
WO2020066583A1 (ja) 通信装置、制御装置及び通信システム
WO2021114059A1 (zh) 一种通信方法及装置
WO2019205169A1 (zh) 一种通信方法及装置
CN114175697A (zh) 使用比特图的长期演进-m资源预留
CN117296417A (zh) 用于无线通信***中的集成接入和回程节点的复用切换的设备和方法
WO2023011188A1 (zh) 一种通信方法及装置
WO2022267818A1 (zh) 一种移动性管理方法及通信装置
EP4329211A1 (en) Communication control method, wireless terminal, base station, and ris device
WO2019095396A1 (zh) 一种数据传输节点确定方法和装置
KR20210150231A (ko) 무선 통신 시스템에서 iab 노드의 이중 접속을 이용한 데이터 송수신 방법 및 장치
WO2023019463A1 (zh) 无线通信的方法和设备
WO2023019860A1 (zh) 无线通信的方法和终端设备
WO2023210484A1 (ja) 通信装置、及び通信方法
WO2023019465A1 (zh) 无线通信的方法和终端设备
WO2023019464A1 (zh) 无线通信方法、第一终端设备和第二终端设备
EP4380070A1 (en) Apparatus and method for beam operation of iab node in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916080

Country of ref document: EP

Kind code of ref document: A1