WO2019205002A1 - 手持云台的姿态解算的方法和云台*** - Google Patents

手持云台的姿态解算的方法和云台*** Download PDF

Info

Publication number
WO2019205002A1
WO2019205002A1 PCT/CN2018/084363 CN2018084363W WO2019205002A1 WO 2019205002 A1 WO2019205002 A1 WO 2019205002A1 CN 2018084363 W CN2018084363 W CN 2018084363W WO 2019205002 A1 WO2019205002 A1 WO 2019205002A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
posture
tilt
information
attitude
Prior art date
Application number
PCT/CN2018/084363
Other languages
English (en)
French (fr)
Inventor
张翔
李兵
刘帅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880012526.8A priority Critical patent/CN110352331A/zh
Priority to PCT/CN2018/084363 priority patent/WO2019205002A1/zh
Publication of WO2019205002A1 publication Critical patent/WO2019205002A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present invention relates to the field of pan/tilt, and more particularly to a method for attitude solution of a handheld pan/tilt head and a pan/tilt system.
  • the pan/tilt achieves stabilization control of the camera by the rotation of three axes, that is, the rotation of the yaw axis, the roll axis, and the pitch axis.
  • attitude calculation of the gimbal is a key issue in the stability control.
  • the basic idea of attitude calculation is to use the gyroscope's short-term dependence on attitude estimation, the long-term dependence of accelerometer and geomagnetic sensor on attitude estimation, and the fusion of different sensor attitude information through data fusion method.
  • Attitude estimation results for dynamic performance and long-term stability.
  • the accelerometer is used to obtain the attitude calculation method of the reference attitude, and the attitude error will increase with the motion acceleration, which affects the accuracy of the attitude calculation of the gimbal.
  • the embodiment of the invention provides a method for calculating the attitude of the handheld pan/tilt and a pan/tilt system, which can improve the accuracy of the attitude calculation of the gimbal.
  • a method for calculating a posture of a handheld pan/tilt head includes: acquiring first posture information measured by an inertial measurement unit in the cloud platform; and acquiring a visual odometer in the mounting component of the pan/tilt Measuring the second posture information obtained by the data, wherein the mounting component is configured to mount the pan/tilt; and correcting the first posture information according to the second posture information to obtain a posture of the pan/tilt.
  • a pan/tilt head system including: a pan/tilt head, wherein the pan/tilt head is provided with an inertial measurement unit; a mounting component, the mounting component is used for mounting the pan/tilt head, and the mounting component Providing a visual odometer; the first processor is configured to acquire first posture information measured by the inertial measurement unit in the cloud platform, and obtain the measurement data obtained by the visual odometer in the mounting component of the cloud platform And second correcting the first posture information according to the second posture information to obtain a posture of the pan/tilt.
  • a system comprising: a memory for storing computer executable instructions; a processor for accessing the memory and executing the computer executable instructions to perform the method of the first aspect above Operation.
  • a computer storage medium having stored therein program code, the program code being operative to indicate a method of performing the first aspect described above.
  • the attitude information obtained by the measurement data of the visual odometer in the mounting component of the pan/tilt is used to correct the attitude information of the pan/tilt measured by the inertial measurement unit in the pan/tilt, thereby reducing the attitude error. , thereby improving the accuracy of the attitude calculation of the gimbal.
  • FIG. 1a and 1b are schematic diagrams of a cloud platform to which the technical solution of the embodiment of the present invention is applied.
  • FIG. 2 is a schematic structural diagram of a PTZ system according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for calculating a posture of a handheld pan/tilt according to an embodiment of the present invention.
  • FIG. 4 is a processing architecture diagram of a pan-tilt attitude solution according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a pan/tilt head system according to an embodiment of the present invention.
  • Figure 6 is a schematic block diagram of a system in accordance with an embodiment of the present invention.
  • the size of the sequence numbers of the processes does not imply a sequence of executions, and the order of execution of the processes should be determined by its function and internal logic, and should not be construed as an embodiment of the present invention.
  • the implementation process constitutes any limitation.
  • a component when a component is “fixedly connected” or “connected” to another component, or when one component is “fixed” to another component, it may be directly on another component, or There can be a centered component.
  • the technical solution of the embodiment of the present invention can be applied to various cloud platforms, for example, a handheld cloud platform, but the embodiment of the present invention is not limited thereto.
  • FIG. 1a is a schematic diagram of a cloud platform to which the technical solution of the embodiment of the present invention is applied.
  • the pan/tilt head may include a translating shaft arm 101, a translating shaft motor 102, a roll axis arm 103, a roll axis motor 104, a pitch axis arm 105, and a pitch axis motor 106.
  • each motor can be controlled by a corresponding electric control
  • the translational shaft arm 101 and the translational axis motor 102 constitute a translational shaft rotation mechanism for rotating the translational shaft
  • the roll axis arm 103 The roll axis motor 104 constitutes a roll axis rotating mechanism for rotating the roll axis
  • the pitch axis arm 105 and the pitch axis motor 106 constitute a pitch axis rotating shaft mechanism for rotating the pitch axis.
  • the pan/tilt may further include a base 107 and a camera fixing mechanism 108.
  • the camera fixing mechanism 108 is used to fix the camera 109. It should be understood that the pedestal 107 may not be part of the pan/tilt, but together with the gimbal, constitute a pan-tilt system.
  • an inertial measurement unit is provided in the camera fixing mechanism 108 for measuring the attitude of the gimbal.
  • an IMU can include a gyroscope and an accelerometer.
  • the processor of the gimbal can fuse the attitude information obtained by the gyroscope and the accelerometer respectively to obtain the attitude solution result.
  • the accelerometer is used to obtain the reference attitude for the attitude calculation, and the attitude error will increase with the motion acceleration, which affects the accuracy of the attitude calculation of the gimbal.
  • the accelerometer in the static state, can measure the component of gravity in the body coordinate system, and the roll angle can be obtained according to the geometric relationship of the force projection. And pitch angle
  • the accelerometer since the accelerometer is sensitive to the specific force, ⁇ and ⁇ obtained by the above equation when the moving body has motion acceleration will produce an error.
  • the attitude calculation is performed by using the measurement data of the visual odometer in the mount component of the pan-tilt, and the posture obtained by the measurement data of the visual odometer in the mount component of the pan-tilt is used as a reference.
  • the attitude corrects the attitude of the gimbal, thereby reducing the attitude error and improving the accuracy of the attitude calculation of the gimbal.
  • the mount component of the pan/tilt is used to mount the pan/tilt.
  • the mounting member may be the base 107 of FIG. 1a, or the mounting member may be the fourth shaft structure 110 of the four-axis pan/tilt system shown in FIG. 1b, but this embodiment of the invention Not limited.
  • a visual odometer 112 is disposed in the fourth shaft structure 110.
  • the three-axis head 120 is mounted on the shaft end of the fourth shaft 111.
  • the visual odometer 112 may be disposed at one end of the fourth shaft structure 110, as shown in FIG. 1b, but the embodiment of the present invention is not limited thereto.
  • a pan/tilt (such as a three-axis pan/tilt) and a mounted component may be referred to as a pan/tilt system, which may also be referred to as a pan/tilt.
  • FIG. 1b may be referred to as a four-axis pan/tilt system or a four-axis pan/tilt head as a whole.
  • FIG. 2 is a schematic diagram showing the architecture of a pan/tilt system according to an embodiment of the present invention.
  • an IMU 221 and a Visual Odometry (VO) 222 are disposed in the mount component of the pan/tilt.
  • the IMU 211 is installed in the gimbal.
  • the processor 223 in the mount component obtains the pose information of the mount component from the measurement data of the IMU 221 and the VO 222 in the mount component.
  • the measurement data of the IMU 221 and the VO 222 in the mounting component can be data-fused by the inertial-VO combined navigation filter to obtain the posture of the mounting component.
  • the processor 212 in the pan/tilt uses the posture of the mounting component as the reference posture of the pan/tilt, and corrects the attitude information of the pan/tilt measured by the IMU 211 in the pan/tilt to obtain the posture of the gimbal. Since the attitude of the mounting component is obtained by the inertial-VO combined navigation filter, the attitude error caused by the motion acceleration has been compensated. Therefore, the attitude of the mounting component is used as the reference attitude of the gimbal, and the attitude measurement using the accelerometer is avoided. The resulting motion acceleration error.
  • the attitude information may be obtained only by the measurement data of the VO 222, and the posture information of the pan/tilt measured by the IMU 211 in the pan/tilt is corrected as a reference posture of the pan/tilt, and the posture of the gimbal is obtained. .
  • FIG. 3 is a schematic flow chart of a method 300 for gesture resolution of a handheld pan/tilt in accordance with an embodiment of the present invention.
  • the inertial measurement unit in the gimbal can measure the attitude information (first posture information) of the gimbal. After the posture information is corrected, the posture estimation result that satisfies the requirement can be obtained.
  • the posture calculation is performed using the second posture information (the posture information of the mounting member) obtained from the measurement data of the visual odometer in the mounting member of the pan/tilt. That is to say, when the attitude information measured by the inertial measurement unit in the pan/tilt is corrected, the attitude information of the mount component of the pan/tilt is used.
  • the mounting member of the gimbal may be, for example, a fourth-axis structure or a pedestal, but the embodiment of the present invention is not limited thereto.
  • the second pose information may be derived only from the measurement data of the visual odometer.
  • an inertial measurement unit and a visual odometer are disposed in the mounting component of the pan/tilt, and the second posture information is determined by the inertial measurement unit and the vision in the mounting component.
  • the measurement data of the odometer is obtained. That is, in the present embodiment, the second posture information is obtained from the measurement data of the inertial measurement unit and the visual odometer in the mounting member.
  • the second posture information may be a posture of the mounting component, wherein the posture of the mounting component may be a posture in a body coordinate system of the mounting component, or may be other
  • the coordinate system for example, the attitude in the navigation coordinate system (NED coordinate system), is not limited in this embodiment of the present invention.
  • NED coordinate system the attitude in the navigation coordinate system
  • the posture of the mounting member in the body coordinate system of the mounting member will be described as an example.
  • the corresponding coordinate system transformation may be used, and no longer one by one. Narration.
  • the measurement data of the inertial measurement unit and the visual odometer in the mounting component may be data fusion by using a combined navigation filter to obtain a body coordinate system of the mounting component.
  • the posture of the mounting member may be data fusion by using a combined navigation filter to obtain a body coordinate system of the mounting component.
  • the above-mentioned combined navigation filter may specifically adopt a Kalman filter to realize data fusion of the measurement data of the inertial measurement unit and the measurement data of the visual odometer, and obtain the body coordinate system of the mounted component.
  • the posture of the mounting part may specifically adopt a Kalman filter to realize data fusion of the measurement data of the inertial measurement unit and the measurement data of the visual odometer, and obtain the body coordinate system of the mounted component.
  • the attitude of the mounted component is obtained by the inertial-VO combined navigation filter, which can compensate the attitude error caused by the motion acceleration.
  • using the attitude of the mounting component as the reference attitude of the pan-tilt can avoid the use of the accelerometer for attitude measurement.
  • Motion acceleration error is different from the method of directly calculating the attitude of the gimbal by using the inertial-VO integrated navigation filter, that is, directly using the measurement data of the VO to correct the measurement data of the inertial measurement unit in the gimbal, and the calculation amount is low. Can improve the efficiency of the attitude calculation of the gimbal.
  • the posture information measured by the inertial measurement unit in the pan/tilt is corrected according to the posture information obtained from the measurement data of the visual odometer in the mounting component of the pan-tilt, and the posture of the pan-tilt is obtained. .
  • the acceleration error caused by the accelerometer for attitude measurement can be avoided, thereby improving the accuracy of the attitude calculation of the gimbal.
  • the posture of the mounting component in the body coordinate system of the mounting component may be converted into the mounting component of the pan-tilt body coordinate system. a posture; correcting the first posture information by using a posture of the mounting member in the body coordinate system of the pan head as a reference posture to obtain a posture of the pan/tilt.
  • the posture information output by the mounting member is the posture of the mounting member in the body coordinate system of the mounting member.
  • the IMU measured by Yuntai is the attitude information of the gimbal in the body coordinate system of the PTZ. Converting the posture of the mounting component in the body coordinate system of the mounting component to the posture of the mounting component in the body coordinate system of the pan/tilt, and then using it as the reference attitude, the pan/tilt measured by the IMU of the pan/tilt The posture information is corrected to obtain the posture of the pan/tilt.
  • data fusion may be performed according to the first posture information and the reference posture by using a Kalman filter to obtain correction information; and the first posture is performed according to the correction information.
  • the information is corrected to obtain the posture of the gimbal.
  • the posture information of the pan/tilt may be corrected by using a Kalman filter, and data fusion between the first posture information and the reference posture is implemented by a Kalman filter to obtain correction information.
  • the attitude error may be determined according to the first posture information and the reference posture; and the data fusion is performed according to the attitude error, the attitude error state equation, and the attitude observation equation to obtain the correction information.
  • the first posture information is corrected according to the correction information to obtain the posture of the pan/tilt.
  • the gyro zero offset in the inertial measurement unit of the pan/tilt may be corrected according to the correction information to obtain a corrected gyro bias.
  • the attitude error estimate is obtained by the Kalman filter, and the gyro bias error.
  • the attitude correction can be performed to obtain the corrected attitude; the gyro zero offset can be used to correct the gyro zero offset, and the corrected gyro zero offset can be obtained, and the gyro measurement value can be further obtained. Make corrections.
  • the attitude information obtained by the measurement data of the visual odometer in the mounting component of the pan/tilt is used to correct the attitude information of the pan/tilt measured by the inertial measurement unit in the pan/tilt, thereby reducing the attitude error. , thereby improving the accuracy of the attitude calculation of the gimbal.
  • the second posture information when the second posture information cannot be acquired, acquiring measurement data of an accelerometer in the inertial measurement unit of the pan/tilt; according to the measurement data of the accelerometer The first posture information is corrected to obtain the posture of the pan/tilt.
  • the posture information of the pan/tilt is corrected by using the second posture information.
  • the second posture information cannot be acquired, for example, due to communication interruption or other reasons, the pan/tilt does not receive the posture information of the mounting component, and in this case, the attitude of the measurement data of the accelerometer to the pan/tilt may be employed. The information is corrected.
  • data fusion may be performed according to the measurement data of the accelerometer and the first posture information by using a Kalman filter to obtain correction information.
  • the attitude error may be determined according to the measurement data of the accelerometer and the first attitude information; and the data fusion is performed according to the attitude error, the attitude error state equation, and the attitude observation equation to obtain the correction information.
  • the first posture information is corrected according to the correction information to obtain the posture of the pan/tilt.
  • the gyro zero offset in the inertial measurement unit of the pan/tilt may be corrected according to the correction information to obtain a corrected gyro bias.
  • the attitude error estimate is obtained by the Kalman filter, and the gyro bias error.
  • the attitude correction can be performed to obtain the corrected attitude; the gyro zero offset can be used to correct the gyro zero offset, and the corrected gyro zero offset can be obtained, and the gyro measurement value can be further obtained. Make corrections.
  • the attitude information of the pan/tilt is corrected by using the measurement data of the accelerometer, and can be used as a supplementary method for correcting the attitude information of the pan/tilt using the posture information of the mounting component.
  • the method of automatically using the measurement data of the accelerometer can be automatically switched.
  • the body coordinate system of the gimbal is a coordinate system with the point on the gimbal as the origin.
  • the body coordinate system ⁇ b ⁇ -O b x b y b z b of the gimbal can be defined as follows: the coordinate system origin O b is the center of the pan-tilt IMU; the x b- axis is in the vertical symmetry plane of the gimbal and parallel to the camera The optical axis of the lens points to the front; the y b axis is perpendicular to the vertical symmetry plane of the gimbal pointing to the right; the z b axis is in the vertical symmetry plane of the gimbal, perpendicular to the x b axis and pointing downward.
  • the body coordinate system ⁇ p ⁇ -O p x p y p z p of the mount component is the coordinate system with the point on the mount component as the origin.
  • the ideal output of the gyroscope in the PTZ IMU is the projection of the angular velocity of the cloud-body coordinate system ⁇ b ⁇ relative to the inertial system ⁇ i ⁇ in the ⁇ b ⁇ system.
  • the actual output of the gyroscope is recorded as
  • the ideal output of the accelerometer in the PTZ IMU is the projection of the specific force in the ⁇ b ⁇ system, denoted as f b , and the actual output of the accelerometer is recorded as
  • Attitude angular rate Determined by:
  • the determined actual body coordinate system is denoted as ⁇ b' ⁇ .
  • the quaternion update algorithm is obtained by discretizing the quaternion differential equation and taking the first-order approximation.
  • the attitude quaternion is updated to obtain the attitude matrix.
  • n r is the gyro measurement noise, and assumes that n r is Gaussian white noise; b is the gyro bias, and is false A form of random walk, where n w is Gaussian white noise.
  • the embodiment of the present invention adopts a mounting component to combine the ⁇ p ⁇ -system attitude of the navigation Kalman filter output.
  • the joint angle will be Convert to the cloud platform coordinate system ⁇ b ⁇ , get To
  • the conversion formula is as shown in equation (17):
  • the attitude observation equation is:
  • the observation matrix is:
  • n ⁇ [n ⁇ x n ⁇ y n ⁇ z ] T (22)
  • the reference pose of the ⁇ b ⁇ system is obtained.
  • the observation of the posture correction is obtained according to the equation (19).
  • the attitude error the attitude observation equation shown in equation (20) and the attitude error state equation shown in equation (15) can obtain correction information, that is, attitude error estimation value, through the Kalman filter. And gyro zero offset error ⁇ .
  • the equation (15) can be discretized and a first-order approximation can be obtained, and the discretized error state equation is obtained as the state equation of the attitude solving Kalman filter, and the equation (20) is used as the attitude observation equation, passing through the Kalman Filter output: attitude error estimate And gyro zero offset error ⁇ .
  • the latest posture can be corrected to obtain the corrected posture; the gyro zero offset is corrected to obtain the corrected gyro bias.
  • FIG. 4 is a block diagram showing the processing of a pan-tilt attitude solution according to an embodiment of the present invention.
  • the angular velocity measurement of the cloud platform coordinate system ⁇ b ⁇ is obtained by the pan-tilt IMU. Then perform the posture update, for example, according to the formula (4), and obtain the current latest posture quaternion estimation value.
  • Mounting component combined navigation filter output ⁇ p ⁇ system attitude Convert to ⁇ b ⁇ , for example, according to equation (17) to get the reference pose of ⁇ b ⁇ by with
  • the observation of attitude correction is obtained according to equation (19).
  • the correction information is obtained by the attitude solving Kalman filter: the attitude error estimate And gyro zero offset error ⁇ .
  • Equation (15) can be discretized and a first-order approximation can be obtained to obtain a discretized error state equation as the state equation of the attitude solving Kalman filter.
  • Equation (20) is used as the attitude observation equation and passes through the Kalman filter. Output And ⁇ . Then, according to the output of the Kalman filter, the posture after the posture update is corrected to obtain the corrected posture; and the gyro zero offset is corrected to obtain the corrected gyro bias.
  • an accelerometer can be used to correct the attitude when the gimbal communicates with the mounting component or other causes cause the gimbal to not receive the attitude of the mounting component.
  • the unit of gravity of the actual gravity in the ⁇ b ⁇ system is:
  • the attitude error is:
  • the accelerometer is used to correct the attitude, and the observation equation is the same as (20).
  • the attitude error obtained according to equation (25), the attitude observation equation shown in equation (20), and the attitude error state equation shown in equation (15) can be corrected by the Kalman filter, that is, the attitude error estimate. And gyro zero offset error ⁇ .
  • the algorithm used for the Kalman filter is not limited.
  • the Kalman filter can employ the following algorithm.
  • the technical solution of the embodiment of the invention corrects the attitude information of the pan/tilt measured by the inertial measurement unit in the pan/tilt by using the attitude information of the mounting component of the pan-tilt, because the attitude of the mounting component is an inertial-VO combined navigation filter
  • the obtained attitude error caused by the motion acceleration has been compensated, so that the motion acceleration error caused by the accelerometer for attitude measurement can be avoided, thereby improving the accuracy of the attitude calculation of the gimbal.
  • pan/tilt system of the embodiment of the present invention may perform the foregoing various methods of the embodiments of the present invention, that is, the specific working processes of the following various products, and may refer to the corresponding processes in the foregoing method embodiments.
  • FIG. 5 shows a schematic block diagram of a pan/tilt head system 500 in accordance with an embodiment of the present invention.
  • the pan/tilt system 500 can include:
  • a cloud platform 510 wherein the cloud platform 510 is provided with an inertial measurement unit;
  • a first processor 530 configured to acquire first posture information measured by the inertial measurement unit in the pan/tilt, acquire second posture information obtained by measurement data of a visual odometer in the mounting component of the pan/tilt, and And correcting the first posture information according to the second posture information to obtain a posture of the pan/tilt.
  • the first processor 530 may be disposed in the cloud platform 510.
  • the mounting component 520 is provided with an inertial measurement unit and a visual odometer; the pan/tilt system 500 further includes:
  • the second processor 540 is configured to obtain the second posture information by measurement data of an inertial measurement unit and a visual odometer in the mounting component.
  • the second posture information includes a posture of the mounting component in a body coordinate system of the mounting component
  • the second processor 540 is configured to perform data fusion on the measurement data of the inertial measurement unit and the visual odometer in the mounting component by using a combined navigation filter to obtain the hanging in the body coordinate system of the mounting component. The posture of the loaded component.
  • the second processor 540 is disposed in the mounting component.
  • the first processor 530 is configured to:
  • the posture of the mounting member in the body coordinate system of the pan/tilt is used as a reference posture, and the first posture information is corrected to obtain a posture of the pan/tilt.
  • the first processor 530 is configured to:
  • the first processor 530 is configured to:
  • Data fusion is performed according to the attitude error, the attitude error state equation, and the attitude observation equation to obtain the correction information.
  • the first processor 530 is configured to:
  • the first processor 530 is configured to:
  • the first processor 530 is configured to:
  • Data fusion is performed according to the attitude error, the attitude error state equation, and the attitude observation equation to obtain the correction information.
  • the first processor 530 is configured to:
  • the mounting component 520 is a fourth shaft structure or a base.
  • first processor 530 and the second processor 540 are not limited in the embodiment of the present invention, for example, they may be a microprocessor or other processor.
  • first processor 530 and the second processor 540 may also be combined, that is, their functions may be implemented by one processor.
  • FIG. 6 shows a schematic block diagram of a system 600 in accordance with one embodiment of the present invention.
  • the system 600 can include a processor 610 and a memory 620.
  • system 600 may also include components that are generally included in other computer systems, such as a communication interface, etc., which is not limited by the embodiment of the present invention.
  • Memory 620 is used to store computer executable instructions.
  • the memory 620 may be various types of memory, for example, may include a high speed random access memory (RAM), and may also include a non-volatile memory, such as at least one disk memory, which is implemented by the present invention. This example is not limited to this.
  • RAM high speed random access memory
  • non-volatile memory such as at least one disk memory
  • the processor 610 is configured to access the memory 620 and execute the computer executable instructions to perform the operations in the methods of the various embodiments of the present invention described above.
  • the processor 610 is configured to perform the following operations:
  • the second attitude information is obtained by measurement data of an inertial measurement unit and a visual odometer in the mounting component.
  • the second posture information includes a posture of the mounting component in a body coordinate system of the mounting component
  • the posture of the mounting component in the body coordinate system of the mounting component is obtained by data fusion of the measurement data of the inertial measurement unit and the visual odometer in the mounting component by the combined navigation filter.
  • processor 610 is specifically configured to perform the following operations:
  • the posture of the mounting member in the body coordinate system of the pan/tilt is used as a reference posture, and the first posture information is corrected to obtain a posture of the pan/tilt.
  • processor 610 is specifically configured to perform the following operations:
  • processor 610 is specifically configured to perform the following operations:
  • Data fusion is performed according to the attitude error, the attitude error state equation, and the attitude observation equation to obtain the correction information.
  • processor 610 is further configured to:
  • processor 610 is specifically configured to perform the following operations:
  • processor 610 is specifically configured to perform the following operations:
  • Data fusion is performed according to the attitude error, the attitude error state equation, and the attitude observation equation to obtain the correction information.
  • processor 610 is further configured to:
  • the processor 610 may include a microprocessor, a field-programmable gate array (FPGA), a central processing unit (CPU), a graphics processing unit (GPU), etc., and is implemented by the present invention. This example is not limited to this.
  • the pan/tilt system and system of the embodiments of the present invention may correspond to the execution subject of the pan/tilt attitude solution method of the embodiment of the present invention, and the above-mentioned and other operations and/or functions of the respective modules in the pan-tilt system and the system are respectively.
  • the corresponding processes of the foregoing various methods are implemented, and are not described herein for brevity.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores program code, and the program code can be used to indicate a method for performing the pan/tilt attitude solution of the embodiment of the invention.
  • the term "and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships.
  • a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Navigation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Gyroscopes (AREA)

Abstract

一种手持云台的姿态解算的方法(300)和云台***(500)。该方法包括:获取云台(510)中的惯性测量单元测量的第一姿态信息;获取由所述云台的挂载部件(520)中的视觉里程计(112)的测量数据得到的第二姿态信息,其中,所述挂载部件(520)用于挂载所述云台(510);根据所述第二姿态信息对所述第一姿态信息进行修正,得到所述云台(510)的姿态。上述技术方案,能够提高云台姿态解算的精度。

Description

手持云台的姿态解算的方法和云台***
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本发明涉及云台领域,并且更具体地,涉及一种手持云台的姿态解算的方法和云台***。
背景技术
云台通过三个轴的旋转,即,平移(yaw)轴、横滚(roll)轴和俯仰(pitch)轴的旋转,实现对摄像机的增稳控制。
云台姿态解算是增稳控制中的关键问题。姿态解算的基本思想是利用陀螺仪对姿态估计的短期可依赖性和加速度计、地磁传感器等对姿态估计的长期可依赖性,通过数据融合方法对不同传感器的姿态信息进行融合,得到同时满足动态性能和长期稳定性的姿态估计结果。然而,目前采用加速度计得到参考姿态的姿态解算方式,姿态误差会随运动加速度变大,影响云台姿态解算的精度。
因此,如何提高云台姿态解算的精度,成为一个亟待解决的技术问题。
发明内容
本发明实施例提供了一种手持云台的姿态解算的方法和云台***,能够提高云台姿态解算的精度。
第一方面,提供了一种手持云台的姿态解算的方法,包括:获取云台中的惯性测量单元测量的第一姿态信息;获取由所述云台的挂载部件中的视觉里程计的测量数据得到的第二姿态信息,其中,所述挂载部件用于挂载所述云台;根据所述第二姿态信息对所述第一姿态信息进行修正,得到所述云台的姿态。
第二方面,提供了一种云台***,包括:云台,所述云台中设置有惯 性测量单元;挂载部件,所述挂载部件用于挂载所述云台,所述挂载部件中设置有视觉里程计;第一处理器,用于获取所述云台中的惯性测量单元测量的第一姿态信息,获取由所述云台的挂载部件中的视觉里程计的测量数据得到的第二姿态信息,以及,根据所述第二姿态信息对所述第一姿态信息进行修正,得到所述云台的姿态。
第三方面,提供了一种***,包括:存储器,用于存储计算机可执行指令;处理器,用于访问所述存储器,并执行所述计算机可执行指令,以进行上述第一方面的方法中的操作。
第四方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码可以用于指示执行上述第一方面的方法。
本发明实施例的技术方案,利用由云台的挂载部件中的视觉里程计的测量数据得到的姿态信息对云台中的惯性测量单元测量的云台的姿态信息进行修正,可以减小姿态误差,从而提高云台姿态解算的精度。
附图说明
图1a和图1b是应用本发明实施例的技术方案的云台的示意图。
图2是本发明实施例的云台***的架构示意图。
图3是本发明实施例的手持云台的姿态解算的方法的示意性流程图。
图4是本发明实施例的云台姿态解算的处理架构图。
图5是本发明实施例的云台***的示意性框图。
图6是本发明实施例的***的示意性框图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
还应理解,本发明实施例中的公式只是一种示例,而非限制本发明实施例的范围,各公式可以进行变形,这些变形也应属于本发明保护的范围。
还应理解,在本发明的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
还应理解,本说明书中描述的各种实施方式,既可以单独实施,也可以组合实施,本发明实施例对此并不限定。
需要说明的是,本发明实施例中当一组件与另一组件“固定连接”或“连接”,或者,一组件“固定于”另一组件时,它可以直接在另一组件上,或者也可以存在居中的组件。
除非另有说明,本发明实施例所使用的所有技术和科学术语与本发明的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。本申请所使用的术语“和/或”包括一个或多个相关的所列项的任意的和所有的组合。
本发明实施例的技术方案可以应用于各种云台,例如,手持云台,但本发明实施例对此并不限定。
图1a是应用本发明实施例的技术方案的一种云台的示意图。
如图1a所示,云台可以包括平移轴轴臂101、平移轴电机102,横滚轴轴臂103、横滚轴电机104、俯仰轴轴臂105和俯仰轴电机106。它们构成云台的转轴机构,其中,每个电机可由相应的电调控制,平移轴轴臂101和平移轴电机102构成平移轴转轴机构,用于进行平移轴的旋转;横滚轴轴臂103和横滚轴电机104构成横滚轴转轴机构,用于进行横滚轴的旋转;俯仰轴轴臂105和俯仰轴电机106构成俯仰轴转轴机构,用于进行俯仰轴的旋转。另外,云台还可以包括基座107和摄像机固定机构108。摄像机固定机构108用于固定摄像机109。应理解,基座107也可以不作为云台的一部分,而与云台一起构成云台***。
在云台中,例如,摄像机固定机构108内设置有惯性测量单元(Inertial Measurement Unit,IMU),用于测量云台的姿态。例如,IMU可以包括陀螺仪和加速度计。云台的处理器可以通过对陀螺仪和加速度计分别得到的姿态信息进行融合,得到姿态解算结果。然而,采用加速度计得到参考姿态进行姿态解算,姿态误差会随运动加速度变大,影响云台姿态解算的精度。
具体而言,静止状态下,加速度计能够测量重力在机体坐标系的分量,根据比力投影的几何关系可以得到滚转角
Figure PCTCN2018084363-appb-000001
和俯仰角
Figure PCTCN2018084363-appb-000002
实际上,由于加速度计敏感的是比力,当运动体存在运动加速度时用上式得到的φ和θ会产生误差。
鉴于此,在本发明实施例中,利用云台的挂载部件中的视觉里程计的测量数据进行姿态解算,将由云台的挂载部件中的视觉里程计的测量数据得到的姿态作为参考姿态对云台的姿态进行修正,从而减小姿态误差,提高云台姿态解算的精度。
云台的挂载部件用于挂载云台。例如,该挂载部件可以是图1a中的基座107,或者,该挂载部件可以是图1b所示的四轴云台***中的第四轴结构110,但本发明实施例对此并不限定。
以图1b为例,第四轴结构110中设置有视觉里程计112。三轴云台120挂载在第四轴111的轴端。作为一个实施例,视觉里程计112可以设置于第四轴结构110的一端,如图1b中所示的位置,但本发明实施例对此并不限定。
应理解,云台(如三轴云台)与挂载部件一块可以称为云台***,也可以称为云台。例如,图1b整体可以称为四轴云台***或者四轴云台。
图2示出了本发明实施例的云台***的架构示意图。
如图2所示,在云台的挂载部件中设置有IMU 221和视觉里程计(Visual Odometry,VO)222。云台中设置有IMU 211。挂载部件中的处理器223由挂载部件中的IMU 221和VO 222的测量数据得到挂载部件的姿态信息。具体地,可以通过惯性-VO组合导航滤波器对挂载部件中的IMU 221和VO 222的测量数据进行数据融合得到挂载部件的姿态。云台中的处理器212将挂载部件的姿态作为云台的参考姿态,对云台中的IMU 211测量的云台的姿态信息进行修正,得到云台的姿态。由于挂载部件的姿态是由惯性-VO组合导航滤波器得到的,已经补偿了运动加速度产生的姿态误差,因此采用挂载部件的姿态作为云台的参考姿态,避免了采用加速度计进行姿态测量带来的运动加速度误差。
可选地,作为一个实施例,也可以仅由VO 222的测量数据得到姿态信息,作为云台的参考姿态,对云台中的IMU 211测量的云台的姿态信息进行修正,得到云台的姿态。
图3示出了本发明一个实施例的手持云台的姿态解算的方法300的示意性流程图。
310,获取云台中的惯性测量单元测量的第一姿态信息。
云台中的惯性测量单元,可以测得云台的姿态信息(第一姿态信息)。 该姿态信息经过修正后,可以得到满足要求的姿态估计结果。
320,获取由所述云台的挂载部件中的视觉里程计的测量数据得到的第二姿态信息,其中,所述挂载部件用于挂载所述云台。
在本发明实施例中,利用由云台的挂载部件中的视觉里程计的测量数据得到的第二姿态信息(挂载部件的姿态信息)进行姿态解算。也就是说,在对云台中的惯性测量单元测得的姿态信息进行修正时,采用云台的挂载部件的姿态信息。
云台的挂载部件例如可以是第四轴结构或基座,但本发明实施例对此并不限定。
可选地,在本发明的一个实施例中,可以仅由视觉里程计的测量数据得到第二姿态信息。
可选地,在本发明的另一个实施例中,云台的挂载部件中设置有惯性测量单元和视觉里程计,所述第二姿态信息由所述挂载部件中的惯性测量单元和视觉里程计的测量数据得到。也就是说,在本实施例中,由所述挂载部件中的惯性测量单元和视觉里程计的测量数据得到第二姿态信息。
可选地,所述第二姿态信息可以是所述挂载部件的姿态,其中,所述挂载部件的姿态可以是在所述挂载部件的体坐标系下的姿态,也可以是在其他坐标系,例如,导航坐标系(NED坐标系)下的姿态,本发明实施例对此并不限定。以下为了便于描述,以所述挂载部件的体坐标系下的所述挂载部件的姿态为例进行说明,对于其他坐标系下的姿态,采用相应的坐标系变换即可,不再一一赘述。
可选地,作为本发明的一个实施例,可以通过组合导航滤波器对所述挂载部件中的惯性测量单元和视觉里程计的测量数据进行数据融合得到所述挂载部件的体坐标系下的所述挂载部件的姿态。
上述组合导航滤波器即惯性-VO组合导航滤波器,具体可以采用卡尔曼滤波器,实现对惯性测量单元的测量数据和视觉里程计的测量数据的数据融合,得到挂载部件的体坐标系下的挂载部件的姿态。
由惯性-VO组合导航滤波器得到挂载部件的姿态,能够补偿运动加速度产生的姿态误差,这样,采用挂载部件的姿态作为云台的参考姿态,可以避免采用加速度计进行姿态测量带来的运动加速度误差。另外,这种方式相对于直接采用惯性-VO组合导航滤波器解算云台的姿态的方式,即直接采用 VO的测量数据对云台中的惯性测量单元的测量数据进行修正的方式,计算量低,能够提高云台姿态解算的效率。
330,根据所述第二的姿态信息对所述第一姿态信息进行修正,得到所述云台的姿态。
在本发明实施例中,根据由云台的挂载部件中的视觉里程计的测量数据得到的姿态信息对所述云台中的惯性测量单元测量的姿态信息进行修正,得到所述云台的姿态。这样,可以避免采用加速度计进行姿态测量带来的运动加速度误差,从而能够提高云台姿态解算的精度。
可选地,在本发明一个实施例中,可以将所述挂载部件的体坐标系下的所述挂载部件的姿态转换为所述云台的体坐标系下的所述挂载部件的姿态;将所述云台的体坐标系下的所述挂载部件的姿态作为参考姿态,对所述第一姿态信息进行修正,得到所述云台的姿态。
具体而言,挂载部件输出的姿态信息为所述挂载部件的体坐标系下的所述挂载部件的姿态。云台的IMU测得的为云台的体坐标系下云台的姿态信息。将挂载部件的体坐标系下的挂载部件的姿态转换为云台的体坐标系下的挂载部件的姿态后,再将其作为参考姿态,对云台的IMU测得的云台的姿态信息进行修正,得到所述云台的姿态。
可选地,在本发明一个实施例中,可以通过卡尔曼滤波器,根据所述第一姿态信息和所述参考姿态进行数据融合,得到修正信息;根据所述修正信息对所述第一姿态信息进行修正,得到所述云台的姿态。
具体而言,对云台的姿态信息进行修正可以采用卡尔曼滤波器,通过卡尔曼滤波器实现对所述第一姿态信息和所述参考姿态的数据融合,得到修正信息。例如,可以根据所述第一姿态信息和所述参考姿态,确定姿态误差;再根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。然后,再根据所述修正信息对所述第一姿态信息进行修正,得到所述云台的姿态。另外,还可以根据所述修正信息对所述云台的惯性测量单元中的陀螺仪零偏进行修正,得到修正后的陀螺仪零偏。例如,通过卡尔曼滤波器得到姿态误差估计值,以及陀螺仪零偏误差。利用姿态误差估计值可以进行姿态修正,得到修正后的姿态;利用陀螺仪零偏误差可以对陀螺仪零偏进行修正,即可得到修正后的陀螺仪零偏,并可进一步对陀螺仪测量值进行修正。
本发明实施例的技术方案,利用由云台的挂载部件中的视觉里程计的测量数据得到的姿态信息对云台中的惯性测量单元测量的云台的姿态信息进行修正,可以减小姿态误差,从而提高云台姿态解算的精度。
可选地,在本发明一个实施例中,在无法获取所述第二姿态信息时,获取所述云台的惯性测量单元中的加速度计的测量数据;根据所述加速度计的测量数据对所述第一姿态信息进行修正,得到所述云台的姿态。
具体而言,在能获取到所述第二姿态信息时,采用所述第二姿态信息对云台的姿态信息进行修正。在无法获取所述第二姿态信息时,例如,由于通信中断或者其他原因,云台未接收到挂载部件的姿态信息,在这种情况下,可以采用加速度计的测量数据对云台的姿态信息进行修正。
可选地,可以通过卡尔曼滤波器,根据所述加速度计的测量数据和所述第一姿态信息进行数据融合,得到修正信息。例如,可以根据所述加速度计的测量数据和所述第一姿态信息,确定姿态误差;再根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。然后,再根据所述修正信息对所述第一姿态信息进行修正,得到所述云台的姿态。另外,还可以根据所述修正信息对所述云台的惯性测量单元中的陀螺仪零偏进行修正,得到修正后的陀螺仪零偏。例如,通过卡尔曼滤波器得到姿态误差估计值,以及陀螺仪零偏误差。利用姿态误差估计值可以进行姿态修正,得到修正后的姿态;利用陀螺仪零偏误差可以对陀螺仪零偏进行修正,即可得到修正后的陀螺仪零偏,并可进一步对陀螺仪测量值进行修正。
在无法获取挂载部件的姿态信息时,采用加速度计的测量数据对云台的姿态信息进行修正,可以作为采用挂载部件的姿态信息对云台的姿态信息进行修正的一种补充的方式。可以在无法获取挂载部件的姿态信息时,可以自动切换到采用加速度计的测量数据的方式。
下面结合具体的公式描述本发明实施例的技术方案。应理解,这只是为了便于本领域技术人员理解本发明实施例的技术方案,不应理解为对本发明实施例的限定。
云台的体坐标系为以云台上的点为原点的坐标系。例如,可以定义云台的体坐标系{b}-O bx by bz b如下:坐标系原点O b为云台IMU的中心;x b轴在云台垂直对称面内并平行于相机镜头光轴指向前方;y b轴垂直于云台垂直对称面指向右方;z b轴在云台垂直对称面内,与x b轴垂直并指向下方。 挂载部件的体坐标系{p}-O px py pz p为以挂载部件上的点为原点的坐标系。另外,定义导航坐标系{n}为当地地理坐标系。
云台IMU中的陀螺仪的理想输出为云台体坐标系{b}相对惯性系{i}的转动角速率在{b}系的投影,记为
Figure PCTCN2018084363-appb-000003
陀螺仪实际输出记为
Figure PCTCN2018084363-appb-000004
另外,云台IMU中的加速度计的理想输出为比力在{b}系的投影,记为f b,加速度计实际输出记为
Figure PCTCN2018084363-appb-000005
采用四元数
Figure PCTCN2018084363-appb-000006
作为{n}系对{b}系的姿态表示,则无误差的理想四元数微分方程由下式确定:
Figure PCTCN2018084363-appb-000007
上式中姿态角速率
Figure PCTCN2018084363-appb-000008
由下式确定:
Figure PCTCN2018084363-appb-000009
上式中
Figure PCTCN2018084363-appb-000010
由最新的姿态更新值确定,
Figure PCTCN2018084363-appb-000011
Figure PCTCN2018084363-appb-000012
分别是地球自转角速率和位置角速率。对于场合为低速、短距离、近地面的移动拍摄,因此
Figure PCTCN2018084363-appb-000013
Figure PCTCN2018084363-appb-000014
可近似忽略,故有
Figure PCTCN2018084363-appb-000015
在实际***中,由于陀螺仪测量误差和导航解算误差的存在,四元数微分方程的实际解算通过下式进行:
Figure PCTCN2018084363-appb-000016
Figure PCTCN2018084363-appb-000017
确定的实际机体坐标系记为{b′}。对四元数微分方程进行离散化求解并取一阶近似,可得如下所示的四元数更新算法:
Figure PCTCN2018084363-appb-000018
按照上式进行姿态四元数更新得到姿态矩阵
Figure PCTCN2018084363-appb-000019
考虑如下所示的陀螺仪测量误差模型:
Figure PCTCN2018084363-appb-000020
其中n r为陀螺仪测量噪声,并假设n r为高斯白噪声;b为陀螺仪零偏,并假为
Figure PCTCN2018084363-appb-000021
形式的随机游走过程,其中n w为高斯白噪声。用
Figure PCTCN2018084363-appb-000022
表示陀螺仪零偏估计,认为
Figure PCTCN2018084363-appb-000023
是常值零偏,则其导数
Figure PCTCN2018084363-appb-000024
根据该陀螺仪测量误差模型,有:
Figure PCTCN2018084363-appb-000025
定义陀螺仪零偏误差为:
Figure PCTCN2018084363-appb-000026
Figure PCTCN2018084363-appb-000027
定义姿态解算的状态量为
Figure PCTCN2018084363-appb-000028
根据四元数微分方程和陀螺 仪测量误差模型有:
Figure PCTCN2018084363-appb-000029
对于状态估计量,有:
Figure PCTCN2018084363-appb-000030
Figure PCTCN2018084363-appb-000031
表示
Figure PCTCN2018084363-appb-000032
引起的误差四元数,根据四元数乘法有:
Figure PCTCN2018084363-appb-000033
上式对时间求导,并根据姿态解算***的状态方程可得:
Figure PCTCN2018084363-appb-000034
考虑陀螺仪测量误差模型(5),上式可写为:
Figure PCTCN2018084363-appb-000035
Figure PCTCN2018084363-appb-000036
记φ为{b′}系相对{b}系的姿态角偏差并认为φ是小角度,则
Figure PCTCN2018084363-appb-000037
的近似表达式为
Figure PCTCN2018084363-appb-000038
带入式(13)可得
Figure PCTCN2018084363-appb-000039
则姿态误差状态方程为:
Figure PCTCN2018084363-appb-000040
即:
Figure PCTCN2018084363-appb-000041
本发明实施例采用挂载部件组合导航卡尔曼滤波器输出的{p}系姿态
Figure PCTCN2018084363-appb-000042
作为观测信息,通过关节角将
Figure PCTCN2018084363-appb-000043
转换至云台体坐标系{b},得到
Figure PCTCN2018084363-appb-000044
Figure PCTCN2018084363-appb-000045
的转换公式如式(17)所示:
Figure PCTCN2018084363-appb-000046
其中旋转矩阵
Figure PCTCN2018084363-appb-000047
与云台构型有关,不同构型的云台有不同的旋转顺序,对应不同的旋转矩阵。采用
Figure PCTCN2018084363-appb-000048
作为参考姿态,则姿态修正四元数为:
Figure PCTCN2018084363-appb-000049
上式中
Figure PCTCN2018084363-appb-000050
为当前最新的姿态四元数估计值。小角度条件下,根据上式可得姿态修正的观测量(姿态误差)如下:
Figure PCTCN2018084363-appb-000051
姿态观测方程为:
Figure PCTCN2018084363-appb-000052
其中观测矩阵为:
H φ=[I 3×3 0 3×12]              (21)
观测噪声为:
n φ=[n φx n φy n φz] T             (22)
云台IMU输出云台体坐标系{b}的角速度测量值
Figure PCTCN2018084363-appb-000053
按照式(4)进行四元数更新得到当前最新的姿态四元数估计值
Figure PCTCN2018084363-appb-000054
挂载部件组合导航滤波器输出的姿态
Figure PCTCN2018084363-appb-000055
根据式(17)得到{b}系的参考姿态
Figure PCTCN2018084363-appb-000056
再根据式(19)得到姿态修正的观测量(姿态误差)。根据该姿态误差,式(20)所示的姿态观测方程,式(15)所示的姿态误差状态方程,通过卡尔曼滤波器可以得到修正信息,即姿态误差估计值
Figure PCTCN2018084363-appb-000057
和陀螺仪零偏误差ε。
可选地,可以对式(15)进行离散化并取一阶近似,得到离散化的误差状态方程作为姿态解算卡尔曼滤波器的状态方程,式(20)作为姿态观测方程,经过卡尔曼滤波器得到输出:姿态误差估计值
Figure PCTCN2018084363-appb-000058
和陀螺仪零偏误差ε。
根据滤波器的输出可以对最新的姿态进行修正,得到修正后的姿态;对陀螺仪零偏进行修正,得到修正后的陀螺仪零偏。
图4示出了本发明一个实施例的云台姿态解算的处理架构图。
如图4所示,通过云台IMU得到云台体坐标系{b}的角速度测量值
Figure PCTCN2018084363-appb-000059
再进行姿态更新,例如按照式(4)进行更新,得到当前最新的姿态四元数估计值
Figure PCTCN2018084363-appb-000060
挂载部件组合导航滤波器输出的{p}系姿态
Figure PCTCN2018084363-appb-000061
转换到{b}系,例如根据式(17)转换得到{b}系的参考姿态
Figure PCTCN2018084363-appb-000062
Figure PCTCN2018084363-appb-000063
Figure PCTCN2018084363-appb-000064
例如,根据式(19)得到姿态修正的观测量(姿态误差)
Figure PCTCN2018084363-appb-000065
然后再由姿态解算卡尔曼滤波器得到修正信息:姿态误差估计值
Figure PCTCN2018084363-appb-000066
和陀螺仪零偏误差ε。例如,可以对式(15)进行离散化并取一阶近似,得到离散化的误差状态方程作为姿态解算卡尔曼滤波器的状态方程,式(20)作为姿态观测方程,经过卡尔曼滤波器输出
Figure PCTCN2018084363-appb-000067
和ε。然后根据卡尔曼滤波器的输出对姿态更新后的姿态进行修正,得到修正后的姿态;并对陀螺仪零偏进行修正,得到修正后的陀螺仪零偏。
可选地,当云台与挂载部件通讯断开或其他原因导致云台未接收 到挂载部件姿态时,可采用加速度计修正姿态。
设导航坐标系{n}的z向的正单位向量为
Figure PCTCN2018084363-appb-000068
则重力参考向量在{b}系的单位投影为:
Figure PCTCN2018084363-appb-000069
其中姿态矩阵
Figure PCTCN2018084363-appb-000070
由最新的姿态四元数估计值得到。在云台静止假设条件下,实际重力在{b}系的单位投影为:
Figure PCTCN2018084363-appb-000071
反应了姿态解算滤波器输出的姿态估计值,
Figure PCTCN2018084363-appb-000073
反应了由加速度计得到的姿态测量值,则姿态误差为:
Figure PCTCN2018084363-appb-000074
采用加速度计修正姿态,观测方程同式(20)。
根据式(25)得到的姿态误差,式(20)所示的姿态观测方程,式(15)所示的姿态误差状态方程,通过卡尔曼滤波器可以得到修正信息,即姿态误差估计值
Figure PCTCN2018084363-appb-000075
和陀螺仪零偏误差ε。
在本发明实施例中,对于卡尔曼滤波器采用的算法不做限定。例如,卡尔曼滤波器可以采用如下的算法。
Figure PCTCN2018084363-appb-000076
本发明实施例的技术方案,利用云台的挂载部件的姿态信息对云台中的惯性测量单元测量的云台的姿态信息进行修正,由于挂载部件的姿态是由惯性-VO组合导航滤波器得到的,已经补偿了运动加速度产生的姿态误差,因此能够避免采用加速度计进行姿态测量带来的运动加速度误差,从而 提高云台姿态解算的精度。
上文详细描述了本发明实施例的手持云台的姿态解算的方法,下面将描述本发明实施例的云台***。应理解,本发明实施例的云台***可以执行前述本发明实施例的各种方法,即以下各种产品的具体工作过程,可以参考前述方法实施例中的对应过程。
图5示出了本发明实施例的云台***500的示意性框图。
如图5所示,云台***500可以包括:
云台510,所述云台510中设置有惯性测量单元;
挂载部件520,所述挂载部件520用于挂载所述云台510,所述挂载部件520中设置有视觉里程计;
第一处理器530,用于获取所述云台中的惯性测量单元测量的第一姿态信息,获取由所述云台的挂载部件中的视觉里程计的测量数据得到的第二姿态信息,以及,根据所述第二姿态信息对所述第一姿态信息进行修正,得到所述云台的姿态。
可选地,在本发明一个实施例中,所述第一处理器530可以设置于所述云台510中。
可选地,在本发明一个实施例中,所述挂载部件520中设置有惯性测量单元和视觉里程计;所述云台***500还包括:
第二处理器540,用于由所述挂载部件中的惯性测量单元和视觉里程计的测量数据得到所述第二姿态信息。
可选地,在本发明一个实施例中,所述第二姿态信息包括所述挂载部件的体坐标系下的所述挂载部件的姿态;
所述第二处理器540用于通过组合导航滤波器对所述挂载部件中的惯性测量单元和视觉里程计的测量数据进行数据融合得到所述挂载部件的体坐标系下的所述挂载部件的姿态。
可选地,在本发明一个实施例中,所述第二处理器540设置于所述挂载部件中。
可选地,在本发明一个实施例中,所述第一处理器530用于:
将所述挂载部件的体坐标系下的所述挂载部件的姿态转换为所述云台的体坐标系下的所述挂载部件的姿态;
将所述云台的体坐标系下的所述挂载部件的姿态作为参考姿态, 对所述第一姿态信息进行修正,得到所述云台的姿态。
可选地,在本发明一个实施例中,所述第一处理器530用于:
通过卡尔曼滤波器,根据所述第一姿态信息和所述参考姿态进行数据融合,得到修正信息;
根据所述修正信息对所述第一姿态信息进行修正,得到所述云台的姿态。
可选地,在本发明一个实施例中,所述第一处理器530用于:
根据所述第一姿态信息和所述参考姿态,确定姿态误差;
根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。
可选地,在本发明一个实施例中,所述第一处理器530用于:
在无法获取所述第二姿态信息时,获取所述云台的惯性测量单元中的加速度计的测量数据;
根据所述加速度计的测量数据对所述第一姿态信息进行修正,得到所述云台的姿态。
可选地,在本发明一个实施例中,所述第一处理器530用于:
通过卡尔曼滤波器,根据所述加速度计的测量数据和所述第一姿态信息进行数据融合,得到修正信息;
根据所述修正信息对所述第一姿态信息进行修正,得到所述云台的姿态。
可选地,在本发明一个实施例中,所述第一处理器530用于:
根据所述加速度计的测量数据和所述第一姿态信息,确定姿态误差;
根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。
可选地,在本发明一个实施例中,所述第一处理器530用于:
根据所述修正信息对所述云台的惯性测量单元中的陀螺仪零偏进行修正,得到修正后的陀螺仪零偏。
可选地,在本发明一个实施例中,所述挂载部件520为第四轴结构或基座。
应理解,本发明实施例对第一处理器530和第二处理器540的具 体实现形式不做限定,例如它们可以是微处理器或者其他处理器。另外,第一处理器530和第二处理器540也可以合并,即可以由一个处理器实现它们的功能。
图6示出了本发明一个实施例的***600的示意性框图。
如图6所示,该***600可以包括处理器610和存储器620。
应理解,***600中还可以包括其他计算机***中通常所包括的部件,例如,通信接口等,本发明实施例对此并不限定。
存储器620用于存储计算机可执行指令。
存储器620可以是各种种类的存储器,例如可以包括高速随机存取存储器(Random Access Memory,RAM),还可以包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器,本发明实施例对此并不限定。
处理器610用于访问该存储器620,并执行该计算机可执行指令,以进行上述本发明各种实施例的方法中的操作。
具体地,处理器610用于进行如下操作:
获取云台中的惯性测量单元测量的第一姿态信息;
获取由所述云台的挂载部件中的视觉里程计的测量数据得到的第二姿态信息,其中,所述挂载部件用于挂载所述云台;
根据所述第二姿态信息对所述第一姿态信息进行修正,得到所述云台的姿态。
可选地,所述第二姿态信息由所述挂载部件中的惯性测量单元和视觉里程计的测量数据得到。
可选地,所述第二姿态信息包括所述挂载部件的体坐标系下的所述挂载部件的姿态;
其中,所述挂载部件的体坐标系下的所述挂载部件的姿态为通过组合导航滤波器对所述挂载部件中的惯性测量单元和视觉里程计的测量数据进行数据融合得到的。
可选地,处理器610具体用于进行如下操作:
将所述挂载部件的体坐标系下的所述挂载部件的姿态转换为所述云台的体坐标系下的所述挂载部件的姿态;
将所述云台的体坐标系下的所述挂载部件的姿态作为参考姿态, 对所述第一姿态信息进行修正,得到所述云台的姿态。
可选地,处理器610具体用于进行如下操作:
通过卡尔曼滤波器,根据所述第一姿态信息和所述参考姿态进行数据融合,得到修正信息;
根据所述修正信息对所述第一姿态信息进行修正,得到所述云台的姿态。
可选地,处理器610具体用于进行如下操作:
根据所述第一姿态信息和所述参考姿态,确定姿态误差;
根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。
可选地,处理器610还用于进行如下操作:
在无法获取所述第二姿态信息时,获取所述云台的惯性测量单元中的加速度计的测量数据;
根据所述加速度计的测量数据对所述第一姿态信息进行修正,得到所述云台的姿态。
可选地,处理器610具体用于进行如下操作:
通过卡尔曼滤波器,根据所述加速度计的测量数据和所述第一姿态信息进行数据融合,得到修正信息;
根据所述修正信息对所述第一姿态信息进行修正,得到修正后的所述云台的姿态。
可选地,处理器610具体用于进行如下操作:
根据所述加速度计的测量数据和所述第一姿态信息,确定姿态误差;
根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。
可选地,处理器610还用于进行如下操作:
根据所述修正信息对所述云台的惯性测量单元中的陀螺仪零偏进行修正,得到修正后的陀螺仪零偏。
处理器610可以包括微处理器,现场可编程门阵列(Field-Programmable Gate Array,FPGA),中央处理器(Central Processing unit,CPU),图形处理器(Graphics Processing Unit,GPU)等,本发明实施例对此并不限 定。
本发明实施例的云台***和***可对应于本发明实施例的云台姿态解算的方法的执行主体,并且云台***和***中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码可以用于指示执行上述本发明实施例的云台姿态解算的方法。
应理解,在本发明实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个 地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种手持云台的姿态解算的方法,其特征在于,包括:
    获取云台中的惯性测量单元测量的第一姿态信息;
    获取由所述云台的挂载部件中的视觉里程计的测量数据得到的第二姿态信息,其中,所述挂载部件用于挂载所述云台;
    根据所述第二姿态信息对所述第一姿态信息进行修正,得到所述云台的姿态。
  2. 根据权利要求1所述的方法,其特征在于,所述第二姿态信息由所述挂载部件中的惯性测量单元和视觉里程计的测量数据得到。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二姿态信息包括所述挂载部件的体坐标系下的所述挂载部件的姿态;
    其中,所述挂载部件的体坐标系下的所述挂载部件的姿态为通过组合导航滤波器对所述挂载部件中的惯性测量单元和视觉里程计的测量数据进行数据融合得到的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述第二姿态信息对所述第一姿态信息进行修正,包括:
    将所述挂载部件的体坐标系下的所述挂载部件的姿态转换为所述云台的体坐标系下的所述挂载部件的姿态;
    将所述云台的体坐标系下的所述挂载部件的姿态作为参考姿态,对所述第一姿态信息进行修正,得到所述云台的姿态。
  5. 根据权利要求4所述的方法,其特征在于,所述对所述第一姿态信息进行修正,包括:
    通过卡尔曼滤波器,根据所述第一姿态信息和所述参考姿态进行数据融合,得到修正信息;
    根据所述修正信息对所述第一姿态信息进行修正,得到所述云台的姿态。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一姿态信息和所述参考姿态进行数据融合,包括:
    根据所述第一姿态信息和所述参考姿态,确定姿态误差;
    根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法 还包括:
    在无法获取所述第二姿态信息时,获取所述云台的惯性测量单元中的加速度计的测量数据;
    根据所述加速度计的测量数据对所述第一姿态信息进行修正,得到所述云台的姿态。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述加速度计的测量数据对所述第一姿态信息进行修正,包括:
    通过卡尔曼滤波器,根据所述加速度计的测量数据和所述第一姿态信息进行数据融合,得到修正信息;
    根据所述修正信息对所述第一姿态信息进行修正,得到修正后的所述云台的姿态。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述加速度计的测量数据和所述第一姿态信息进行数据融合,包括:
    根据所述加速度计的测量数据和所述第一姿态信息,确定姿态误差;
    根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。
  10. 根据权利要求5、6、8和9中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述修正信息对所述云台的惯性测量单元中的陀螺仪零偏进行修正,得到修正后的陀螺仪零偏。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述挂载部件为第四轴结构或基座。
  12. 一种云台***,其特征在于,包括:
    云台,所述云台中设置有惯性测量单元;
    挂载部件,所述挂载部件用于挂载所述云台,所述挂载部件中设置有视觉里程计;
    第一处理器,用于获取所述云台中的惯性测量单元测量的第一姿态信息,获取由所述云台的挂载部件中的视觉里程计的测量数据得到的第二姿态信息,以及,根据所述第二姿态信息对所述第一姿态信息进行修正,得到所述云台的姿态。
  13. 根据权利要求12所述的云台***,其特征在于,所述挂载部件中 设置有惯性测量单元;
    所述云台***还包括:
    第二处理器,用于由所述挂载部件中的惯性测量单元和视觉里程计的测量数据得到所述第二姿态信息。
  14. 根据权利要求13所述的云台***,其特征在于,所述第二姿态信息包括所述挂载部件的体坐标系下的所述挂载部件的姿态;
    所述第二处理器用于通过组合导航滤波器对所述挂载部件中的惯性测量单元和视觉里程计的测量数据进行数据融合得到所述挂载部件的体坐标系下的所述挂载部件的姿态。
  15. 根据权利要求13或14所述的云台***,其特征在于,所述第二处理器设置于所述挂载部件中。
  16. 根据权利要求12至15中任一项所述的云台***,其特征在于,所述第一处理器用于:
    将所述挂载部件的体坐标系下的所述挂载部件的姿态转换为所述云台的体坐标系下的所述挂载部件的姿态;
    将所述云台的体坐标系下的所述挂载部件的姿态作为参考姿态,对所述第一姿态信息进行修正,得到所述云台的姿态。
  17. 根据权利要求16所述的云台***,其特征在于,所述第一处理器用于:
    通过卡尔曼滤波器,根据所述第一姿态信息和所述参考姿态进行数据融合,得到修正信息;
    根据所述修正信息对所述第一姿态信息进行修正,得到所述云台的姿态。
  18. 根据权利要求17所述的云台***,其特征在于,所述第一处理器用于:
    根据所述第一姿态信息和所述参考姿态,确定姿态误差;
    根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。
  19. 根据权利要求12至18中任一项所述的云台***,其特征在于,所述第一处理器用于:
    在无法获取所述第二姿态信息时,获取所述云台的惯性测量单元中的加速度计的测量数据;
    根据所述加速度计的测量数据对所述第一姿态信息进行修正,得到所述云台的姿态。
  20. 根据权利要求19所述的云台***,其特征在于,所述第一处理器用于:
    通过卡尔曼滤波器,根据所述加速度计的测量数据和所述第一姿态信息进行数据融合,得到修正信息;
    根据所述修正信息对所述第一姿态信息进行修正,得到所述云台的姿态。
  21. 根据权利要求20所述的云台***,其特征在于,所述第一处理器用于:
    根据所述加速度计的测量数据和所述第一姿态信息,确定姿态误差;
    根据所述姿态误差、姿态误差状态方程和姿态观测方程进行数据融合,得到所述修正信息。
  22. 根据权利要求17、18、20和21中任一项所述的云台***,其特征在于,所述第一处理器用于:
    根据所述修正信息对所述云台的惯性测量单元中的陀螺仪零偏进行修正,得到修正后的陀螺仪零偏。
  23. 根据权利要求12至22中任一项所述的云台***,其特征在于,所述第一处理器设置于所述云台中。
  24. 根据权利要求12至23中任一项所述的云台***,其特征在于,所述挂载部件为第四轴结构或基座。
  25. 一种***,其特征在于,包括:
    存储器,用于存储计算机可执行指令;
    处理器,用于访问所述存储器,并执行所述计算机可执行指令,以进行根据权利要求1至11中任一项所述的方法中的操作。
PCT/CN2018/084363 2018-04-25 2018-04-25 手持云台的姿态解算的方法和云台*** WO2019205002A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880012526.8A CN110352331A (zh) 2018-04-25 2018-04-25 手持云台的姿态解算的方法和云台***
PCT/CN2018/084363 WO2019205002A1 (zh) 2018-04-25 2018-04-25 手持云台的姿态解算的方法和云台***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084363 WO2019205002A1 (zh) 2018-04-25 2018-04-25 手持云台的姿态解算的方法和云台***

Publications (1)

Publication Number Publication Date
WO2019205002A1 true WO2019205002A1 (zh) 2019-10-31

Family

ID=68174174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084363 WO2019205002A1 (zh) 2018-04-25 2018-04-25 手持云台的姿态解算的方法和云台***

Country Status (2)

Country Link
CN (1) CN110352331A (zh)
WO (1) WO2019205002A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739819A (zh) * 2021-08-05 2021-12-03 上海高仙自动化科技发展有限公司 校验方法、装置、电子设备、存储介质及芯片
CN113795798A (zh) * 2020-07-20 2021-12-14 深圳市大疆创新科技有限公司 云台及其性能的评估方法及装置、可移动平台

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238438B (zh) * 2020-02-14 2022-03-11 天津时空经纬测控技术有限公司 非接触姿态测量方法以及存储介质
CN111238440B (zh) * 2020-02-14 2022-03-11 天津时空经纬测控技术有限公司 非接触姿态测量***
CN111654634B (zh) * 2020-06-24 2022-02-08 杭州海康威视数字技术股份有限公司 确定摄像机中机芯组件和云台组件倾斜的方法、摄像机
CN113841025A (zh) * 2020-10-14 2021-12-24 深圳市大疆创新科技有限公司 用于可移动平台的位置姿态确定方法、相关装置和***
WO2022082442A1 (zh) * 2020-10-20 2022-04-28 深圳市大疆创新科技有限公司 云台的控制方法及云台
CN113074726A (zh) * 2021-03-16 2021-07-06 深圳市慧鲤科技有限公司 位姿确定方法及装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110184593A1 (en) * 2006-04-19 2011-07-28 Swope John M System for facilitating control of an aircraft
CN105676880A (zh) * 2016-01-13 2016-06-15 零度智控(北京)智能科技有限公司 一种云台摄像装置的控制方法及***
CN106200693A (zh) * 2016-08-12 2016-12-07 东南大学 土地调查小型无人机的云台实时控制***及控制方法
CN106375669A (zh) * 2016-09-30 2017-02-01 重庆零度智控智能科技有限公司 一种稳像方法、装置和无人机
CN107817821A (zh) * 2017-10-27 2018-03-20 成都鼎信精控科技有限公司 一种基于mems陀螺仪组合的稳定云台及控制方法
CN107850436A (zh) * 2015-05-23 2018-03-27 深圳市大疆创新科技有限公司 使用惯性传感器和图像传感器的传感器融合

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014140356A1 (en) * 2013-03-15 2014-09-18 Freefly Systems Inc. Method for enabling manual adjustment of a pointing direction of an actively stabilized camera
WO2015085483A1 (en) * 2013-12-10 2015-06-18 SZ DJI Technology Co., Ltd. Sensor fusion
EP3782912A1 (en) * 2014-12-23 2021-02-24 SZ DJI Osmo Technology Co., Ltd. Uav panoramic imaging
CN107250908B (zh) * 2016-01-26 2019-04-19 深圳市大疆灵眸科技有限公司 云台、无人飞行器、拍摄设备以及可移动设备
CN111076044A (zh) * 2016-02-01 2020-04-28 深圳市大疆灵眸科技有限公司 竖向增稳机构、云台装置及拍摄设备
CN106231192B (zh) * 2016-08-04 2019-05-07 北京二郎神科技有限公司 一种图像采集方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110184593A1 (en) * 2006-04-19 2011-07-28 Swope John M System for facilitating control of an aircraft
CN107850436A (zh) * 2015-05-23 2018-03-27 深圳市大疆创新科技有限公司 使用惯性传感器和图像传感器的传感器融合
CN105676880A (zh) * 2016-01-13 2016-06-15 零度智控(北京)智能科技有限公司 一种云台摄像装置的控制方法及***
CN106200693A (zh) * 2016-08-12 2016-12-07 东南大学 土地调查小型无人机的云台实时控制***及控制方法
CN106375669A (zh) * 2016-09-30 2017-02-01 重庆零度智控智能科技有限公司 一种稳像方法、装置和无人机
CN107817821A (zh) * 2017-10-27 2018-03-20 成都鼎信精控科技有限公司 一种基于mems陀螺仪组合的稳定云台及控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795798A (zh) * 2020-07-20 2021-12-14 深圳市大疆创新科技有限公司 云台及其性能的评估方法及装置、可移动平台
CN113739819A (zh) * 2021-08-05 2021-12-03 上海高仙自动化科技发展有限公司 校验方法、装置、电子设备、存储介质及芯片
CN113739819B (zh) * 2021-08-05 2024-04-16 上海高仙自动化科技发展有限公司 校验方法、装置、电子设备、存储介质及芯片

Also Published As

Publication number Publication date
CN110352331A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2019205002A1 (zh) 手持云台的姿态解算的方法和云台***
WO2018184467A1 (zh) 一种云台姿态检测方法及装置
US8761439B1 (en) Method and apparatus for generating three-dimensional pose using monocular visual sensor and inertial measurement unit
WO2019205034A1 (zh) 云台位姿修正方法和装置
US20220155800A1 (en) Method and apparatus for yaw fusion and aircraft
WO2020133172A1 (zh) 图像处理方法、设备及计算机可读存储介质
CN111380514A (zh) 机器人位姿估计方法、装置、终端及计算机存储介质
WO2022063120A1 (zh) 组合导航***初始化方法、装置、介质及电子设备
WO2019084709A1 (zh) 控制云台的方法、云台、控制***和可移动设备
JP2012173190A (ja) 測位システム、測位方法
JP7025215B2 (ja) 測位システム及び測位方法
CN108318027B (zh) 载体的姿态数据的确定方法和装置
CN107402022B (zh) 一种稳定云台的加速度计校准方法及装置
WO2018191957A1 (zh) 一种云台姿态估计方法、装置以及相应的云台
JP2015179002A (ja) 姿勢推定方法、姿勢推定装置及びプログラム
US10209075B2 (en) Orientation determination for devices generating electromagnetic interference
WO2018166051A1 (zh) 一种姿态数据获取方法及装置
CN113804170B (zh) 带倾斜补偿的导航仪和相关方法
US8566055B1 (en) Gyro indexing compensation method and system
JP2015004593A (ja) ナビゲーション装置
JP5017527B2 (ja) 電子コンパスシステム
US10564733B2 (en) Operating method of tracking system, controller, tracking system, and non-transitory computer readable storage medium
Ryan et al. MEMS based AHRS with adaptive bias estimation for high performance rate sensor replacement
WO2019148431A1 (zh) 多关节机构标定的方法、装置和计算机***
CN111811500A (zh) 目标对象的位姿估计方法、装置、存储介质和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916826

Country of ref document: EP

Kind code of ref document: A1