WO2019204674A1 - Method for reversible bonding - Google Patents

Method for reversible bonding Download PDF

Info

Publication number
WO2019204674A1
WO2019204674A1 PCT/US2019/028219 US2019028219W WO2019204674A1 WO 2019204674 A1 WO2019204674 A1 WO 2019204674A1 US 2019028219 W US2019028219 W US 2019028219W WO 2019204674 A1 WO2019204674 A1 WO 2019204674A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
substrates
elevated temperature
ranged
crosslinkabie
Prior art date
Application number
PCT/US2019/028219
Other languages
French (fr)
Inventor
Jacob L. Meyer
Pixiang Lan
Original Assignee
ATSP Innovations, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/388,018 external-priority patent/US11130293B2/en
Application filed by ATSP Innovations, Inc. filed Critical ATSP Innovations, Inc.
Publication of WO2019204674A1 publication Critical patent/WO2019204674A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/502Additional features of adhesives in the form of films or foils characterized by process specific features process for debonding adherents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/166Metal in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester

Definitions

  • the second is that the unit members of the structure and the reversible adhesive do not experience a glass or melt transition within the range of temperatures experienced by the structure during day/night cycles (-160 to 120 °C) in conditions without thermal controls which would induce undesirable adhesive reversion due to an uncontrolled change in phase and negate mechanical properties of the bonded interface.
  • This eliminates shape memory polymers and some“gecko” adhesive schemes which generally rely on polymers which have glass transitions below 120°C.
  • the reversible adhesive joint must be scalable and able to be implemented into complex geometries. This eliminates gecko adhesive schemes due to their reliance on patterned fibrillar surfaces.
  • ATSP-based adhesives present a viable and possibly unique solution to minimize mass and reduce component numbers in reconfigurable space structures.
  • Table 1 provides a review of reversible adhesive systems available from literature.
  • Table 1 is a summary of experimental conditions and bonding strength results.
  • FIG. 1 shows tan delta curves of free standing cured ATSP films measured via film tension mode in DMA Peaks in tan delta curves indicate significant changes in the available chain motions.
  • Table 2 is a summary' of results of the thickness measurements of the lap shear test specimens. Standard deviations were calculated for each sample based on 5 independent measurements (units are in microns).
  • FIG. 2 show's scanning Electron Microscope (SEM) images of the ATSP coated A1 specimens prepared for DMA/ITR tests (a) uniformly formed ATSP coating layer (h) ATSP coating thickness is about 100 mhi. (c) samples for lap shear and bond/debond tests.
  • SEM scanning Electron Microscope
  • FIG. 3 shows the effects of misalignment and substrate roughness.
  • FIG. 4 is SEM images of the ATSP coated A3 specimens bonded via ITR.
  • FIG. 5 shows the thermomechanical DMA cycle to enable ITR reversible debonding of the two parts.
  • FIG. 6 is a graph of temperature versus displacement characterizing reversible debonding temperatures for the three different chemistries (C1AL C2A2, and CBAB) of ATSP.
  • FIG. 7 is a graph of DMA thermomechanical cycle of ATSP-coated matching A1 7075 pails; first ITR bonding, second cryogenic cooling, and last high-temperature treatment.
  • FIG. 8 is a graph of three subsequent bonding/debonding cycles in DMA on the same bonding region showing highly repeatable debonding characteristics in terms of debonding displacement corresponding to close operation temperatures and effective pressure (Pressure is applied in tensile mode as tensile stress).
  • FIG. 9 shows SEM images of reversibly debonded surface with close-up views of surface features.
  • FIG. 10 is a picture and 3D design of the bond/debond toolkit.
  • FIG, 11 is a picture of a pair of bond/debond samples with 100% of cohesive failure
  • FIG. 12 is a schematic graph of the bond and debond process.
  • FIG, 13 is a real time debond force vs. time at room temperature and 380 C 'C
  • Table 3 is a summary of the orthogonal experimental conditions and their results.
  • Table 4 is an analysis of the orthogonal experiment.
  • FIG. 14 is an example of failure mode analysis of UV light and the NIH‘Image’ software.
  • FIG. 15 is a depiction of the sample and bond/debond process over arbitrary cycles; (a) cone shape joint (b) bond/debond process: bond at 340°C with 5.7 MPa pressure, debond at ISGTl
  • FIG. 16 is a machine drawing a picture of the self-aligning coupons coated with reversibly adhesive ATSP coating.
  • FIG, 17 is graphs of debond results, (a) 1-5-10-.... 50th debond at 150°C, (b) 20th debond at room temperature. 150°C and 340°C, (c) 50th debond at room temperature and 150°C, (d) 51st debond at room temperature,
  • FIG, 18 is UV light image of samples (a) after 30 times of bond/debond, and (b) after the 51 st time room temperature debond.
  • FIG. 19 shows a schematic of resistive heating scheme for ITR bonding.
  • FIG. 20 is (Left) a picture of the resistive heating apparatus and (Right) a picture of ATSP+10%GNP articles bonded via resistive heating.
  • FIG. 21 is pictures of Figure 8, Resistively bonded coupons of ATSP+I 0%GNP after mechanical debond at room temperature. Both sides evidence cohesive failure, interface diameter was 10 mm (0.39”).
  • FIG. 22 shows bulk (thick section) resistive composite (CB2AB2+10 wt.% CNT + 20 wt.% MCF) on 7075 A1 for reversible bond/debond, (a) sample preparation method: sandblast and coating, hot press of bulk composite on Al sample, machine smaller coupons %'ith composite thickness of 0.5, 1.0 and 1.5 mm (b) experimental setup for bonding, (c) bonded sample,
  • FIG, 23 shows one sample/side heating for bonding a cylinder (embed with heater) to a plain surface (aluminum coated with ATSP), (a) configuration of the cylinder attached to a plain surface, (b) bonded samples, (c) bonded samples hold dead weight, (d) open sample (cylinder) after debond, (e) open sample (plate) after debond.
  • FIG. 24 show ' s one sample/side heating for bonding a cylinder (embed with heater) to a plain surface (ATSP - chopped carbon fiber composite), (a) configuration of the cylinder attached to a ATSP composite plain surface, (b) bonded samples, (c) de-bond curve (force vs, time) of sample,
  • FIG. 25 show's (a) ATSP coated titanium coupons, (b) configuration of induction heating setup, (c) debond curve (force vs. time) for bonded titanium coupons, (d) samples after debond.
  • Oligomer combinations are designated as the combination of the two oligomer sets (e.g,, Cl Al, CBAB, etc.), Monomers used for these oligomerizations were: trimesic acid (TMA), isophthalic acid (IPA), 4-aceloxybenzoic acid (4-ABA), hydroquinone diacetate (HQDA), and biphenol diacetate (BPDA).
  • TMA trimesic acid
  • IPA isophthalic acid
  • HQDA hydroquinone diacetate
  • BPDA biphenol diacetate
  • Biphenol diacetate was used as a stiffer and more thermo-oxidatively stable replacement for HQDA, In total, eight such syntheses were carried out to produce eight oligomer types, Cl, C2, CB, CB2, Al, A2, AB, AB2.“C” oligomers were capped with carboxylic acid functional groups while “A” oligomers were capped with acetoxy functional groups.
  • Oligomer feed ratios were (in terms of TMA:IPA:4-ABA:HQDA:BPDA) for Cl 2:3:6:4:0, for C2 1:4:6:4:0, for CB 1:2:3 :0:2, for CB2 1:3:5:0:3, for Al 2:2:2:7:0, for A2 1:2:S:5:0, for AB 1:0:3 :0:3, and for AB2 1 :1:S:0:4.
  • ATS coatings was measured to be around 40-60 mip for lap shear samples (TABLE 1) by an eddy- current-based magnetic coating thickness gauge.
  • FIG. 5 is an example of the thermomechanical DMA cycle to enable ITR reversible debonding of the two parts.
  • the force is kept at 5M (6.4 MPa) with ramp up of temperature to 400°C: if the bond did not break, the temperature was held at 400°C and force was ramped up to 18N.
  • FIG, 6 is the in- situ displacement vs, temperature reversible debonding for three different chemistries (C1A1, C2A2, and CBAB) of ATSP, where the debonding temperatures at 5N are 336°C, 372°C and 392°C for C1A1, C2A2, and CBAB, respectively.
  • Fracture surface clearly shows the evidence of ductile failure mode - fibrillation/drawing is clearly evident in the lower right close-up image, as compared to surface features of fractured specimen at room temperature. Note the concave appearance was formed due to the extremely high bond temperature (400°C). This example demonstrates that reversible bonding is achievable using the process described provided that there is no delamination of the coating from the substrate.
  • Figure 22 shows a 3D diagram for the bond/debond toolkit with the main parts being: 1) stage and shafts, 2) lead screw/nut, 3) sample holders, 4) Sc 5) top and botom samples, 6) heater, 7) force transducer, and 8) other electrical parts such as DC electric motor and control system, not shown in the schematic.
  • the motor’s rotation (8) can move the top sample (4) up and down and can have the positions of contact with bottom sample (5) at the target bonding force and also debond the samples.
  • the force transducer (7) can measure the applied load between the two samples, and also give feedback signal to motor to rotate and achieve target force.
  • the heaters (6) behind the samples enable high temperature bond/debond tests, while the long shafts (1) isolate the high temperature parts in the middle and protect the other parts from high temperature.
  • FIG. 11 shows the CB2AB2 coated samples of the bond/debond toolkit after debonding, and the contacting area is a circle with 10 mm diameter (78.5 mm2). Because of a larger area of contact, the thickness of the coating had almost zero change before bond and after debond, with only the flatness of the peaks of the coating after debond.
  • Figure 13 shows the bond/debond process parameters. In FIG.
  • FIG. 12(a) shows the debond process: first debond happens at room temperature while ramping to reach the maximum pull-off force of 350 lbs (20 MPa), if the samples fail before this force, stop the test; if the samples can survive, decrease the load to zero, and increase temperature to bonded temperature, then test the debond until the samples’ failure.
  • FIG. 13 is a real time debonding process at room temperature and 380°C: the room temperature debond strength went up to 350 lbs (20 MPa), and the 380°C debond strength was 77 lbs (4.4 MPa).
  • an ultraviolet (UY) light source was used to determine the failure mode: with UV light, the adhesive failure part with substrate exposed has darker color and other areas with polymer coverage has a lighter color, as shown in FIG.14-top of a dehonded sample under U V light and the analysis. Because the adhesive failure could happen on both samples, as shown the black area (adhesive failure) in FIG. 14-bottom, thus we need to add all the dark areas on the two samples for adhesive/cohesive failure percentage calculation.
  • UY ultraviolet
  • Table 4 show's the analysis of the orthogonal experimental results: each of the values in the table was the average of three experiments carried out with that specific condition.
  • the load effect values of 28.5 MPa in Table 4 was the average values from test numbers 1, 4, and 7, which all have the same bond pressure of 28,5 MPa.
  • the last column in the table shows a score that relates the average values: the highest value for each condition received one point; each zero would subtract one from the score.
  • temperature effect 380°C has the highest debond strength at 25°C and bond temperature, however, it has smallest cohesive failure percentage which is detrimental for reversible adhesion applications; 340°C has both good bond strength and 100% cohesive failure.
  • load effects 5.7 MPa has the highest strength and cohesive failure.
  • Figure 18(a) is the result of 11 experiments out of the total 50 experiments, and the average debond force is 1280 ⁇ 225N (16.3 ⁇ 2.9 MPa, with minimum of 995N and maximum of 1568 N), which is a very' high force for a joint with such a small contact area.
  • ATSP coupled with carbonaceous fillers milled carbon fibers [MCF], carbon nanotubes [CMT], and graphene nanoplatelets [GNP]
  • MCF milled carbon fibers
  • CMT carbon nanotubes
  • GNP graphene nanoplatelets
  • FIG. 19 shows a schematic of the process. Pressure was applied along with DC current such that the coating temperature increased via Joule heating.
  • compositions were selected to examine appropriate resistivity' for the application coupled with the need for a coating morphology that offered appropriate mechanical strength.
  • Four coatings within this space were initially examined.
  • Two coatings (CB2AB2 + 4 w ⁇ % M5 GNP [5 um GNP diameter] and CB2AB + 4 wt% M25 GNP) offered good mechanical integrity but had resistance in the 10” W range, which was too high for practical use in this application, CB2AB2 + 10 wt% M5 GNP had poor coating quality' but. potentially acceptable resistance.
  • CB2AB2 + 10 wt% M25 GNP had acceptable coating quality' and roughness and offered resistances in the range of hundreds of ohms for coatings of 30-50 um (1-2 mils).
  • FIG. 20 Apparatus to bond via Joule heating and measure temperature is shown in FIG. 20 as well as bonded specimen. Following mechanical debond of bonded specimens, it can be seen (as in FIG. 21) that the resistively bonded area can evidence a 100% cohesive failure, thereby enabling reversible bonding as described above.
  • FIG 22(a) shows the sample preparation process for the bulk (thick section) resistive composite on fiat 7075 Ai substrate: I) produce a 7075 A1 substrate, sandblast for the substrate to increase the bonding strength, then deposit a coating layer with same composition as the bulk composite, 2) assemble the coated sample with the hot press mold and load the uncured composite in the mold, 3) take the cured sample out and then machine smaller coupons (8.9 mm square surface, with different thickness) out of the cured sample.
  • FIG 22(b) is the experimental setup for bonding, the two coupons are connected with the two-power supply- ends respectively, and the thermocouple is inserted in the tiny hole on the negative power side.
  • the outcome current is 2.5 A and the power is 70 W; this experimental parameter can bond the sample in about 1 min, at the time, the near contact temperature is about 140°C.
  • FIG 22(c) show's the bonded sample.
  • FIG. 23(a) shows an ATSP coated aluminum cylinder that is embed with heating wire that is contacting with a flat aluminum surface with ATSP coating.
  • an applied pressure of 1.7 MPa, temperature of 36G°C, and 5 min duration at temperatures of 360°C when the samples cool down and release the pressure and the normal pressure is released, the two samples are bonded together, as seen in FIG. 22(b).
  • FIG. 23(c) show's that the bonded sample is holding a dead weight of 3kg.
  • FIG. 23 (d) an (e) shows the samples after break, the samples are only partially bonded because the cylinder surface was not w'ell machined and thus only partial contact was achieved.
  • FIG 24(a) shows an ATSP coated aluminum cylinder embed with heating wire that is contacting with a flat ATSP - chopped carbon fiber composite (30 wt.% of carbon fiber).
  • compressive pressure O.SSMPa
  • heat 360°C
  • 5 min duration at temperature of 360°C
  • FIG 24(c) shows that the force vs. time debond curve of the two samples, it had a 744 N debond force, corresponding with 1.51 MPa debond pressure.
  • the carbon fiber composite is more flexible and had higher thermal insulation properties, thus, it was easier to heat the samples to 360°C and the contact is more uniform.
  • a method of adhesively bonding at least two substrates includes the steps of:
  • crosslinkabie resin by electrostatic powder deposition onto substrates to define crosslinkabie resin coated portion of the substrates
  • the adhesively bonded substrates can include the steps to debond the substrates such to provide for rebonding. This may include the step of debonding the bonded cured resin surface by tensile and/or shear pressure in the range 100 kPa to 55 MPa, and wherein a cohesive failure across the bonded cured resin surface is accomplished by roughing the crosslinkable resin coated portion of the substrates by grit blasting, electrochemical etching, or laser ablation prior to bonding
  • step of debonding further creates separable cured resin surfaces across the substrates and wherein the separable cured resin surfaces across the substrates are defined for rebonding when abutted and the compressive force and elevated temperature is reapplied, such that the rebonded cured resin surface possesses at least 4 wt% exchangeable sites within the crosslinks of the bonded cured resin surface,
  • the crosslinkable resin may consist of crosslinkable aromatic polyester oligomers with molecular weights between 700 and 2500 g/moi and having a mixture of carboxylic acid and acetoxy functional end groups.
  • the crosslinkable resin may he deposited onto another polymer matrix composite.
  • the substrate is an induction heatable material and the requisite elevated temperature, ranged between 150°C and 420° €, is supplied by an induction heating source.
  • conductive fillers such as graphene nanoplatelets, milled carbon fiber, carbon nanotubes, silver microspheres copper microspheres, carbon black, metallic whiskers are blended with the crosslinkable resin prior to depositing onto substrates.
  • the elevated temperature for adhesive bonding ranged between 150°C and 420°C, is supplied through Joule heating by current passed through the copductively conductive fillers or is supplied through microwave heating as produced by an applied microwave field.
  • the elevated temperature may be produced by frictional forces between the coatings such as those generated by ultrasonic oscillations or rotational frictional welding.

Abstract

A method of reversible bonding based on deposition of a coating capable of an indefinite number of reversible bonding cycles as enable by bond exchange reactions is provided. This is accomplished by deposition of crosslinkable aromatic polyester oligomers on a substrate. The coated article is heated to produce a fully thermoset network by condensation reactions. The fully thermoset network has access to a type of bond exchange reaction within the resin that permits the dynamic exchange of ester bonds within the resin. To execute the bonding step a source of heat is applied at a pressure. To debond, there is applied force in tension and/or shear that causes the coating to fail. The reversibility of the process is contingent on the cohesive (rather than adhesive) failure of the coating - that is, the coating must not delaminate from the substrate. Failure must occur in the resin of the reversible coating.

Description

METHOD FOR REVERSIBLE BONDING
Cross :
Figure imgf000003_0001
[01 ] The present application claims priority to US Provisional Application Serial No. 62/659,844 filed April 19, 2018 entitled Reversible Adhesion and Interchain Transesterification Composite Welding Mechanism and is a Continuation in Part of US Application Serial No. 16/268,733 filed February 6, 2019 entitled Ablative Composites Based On Aromatic Thermosetting Copolyesters, which claims priority' to US Provisional Applications Serial Nos 62/627,337 filed February 7, 2018, and 62/786,269 filed November 16, 2018, all of which are incorporated herein by reference in their entireties.
Figure imgf000003_0002
[02] At a glance, space frame construction technologies have generally relied on metal-based unit elements, which are either permanently joined or connected via labor-intensive and difficult to automate joint mechanisms. Although such designs are readily used on low-orbit space missions their large weights and infeasibility of reassembly under space conditions preclude their implementation on future space missions. To address these problems, recent studies have employed fiber composite elements atached via mechanical interlocks to lightweight, high strengih/stifftiess cellular structures. Even though these designs address the above-mentioned issues and present reversible joints, the length scales are currently far below those of targeted applications and joining requires complex mechanical interlocks which may inhibit a fully autonomous assembly. Present automation concepts for assembly of cellular structures involve unit members that have a relatively low packing factor and specific mechanical properties and therefore would occupy launch volume and mass needlessly. [03] There are several criteria for a practical reversible adhesive scheme relevant to missions in space. The first is that it be a fully reversible and ail solid-state process as liquids generally have an unacceptably high vapor pressure in vacuum which eliminates approaches that rely on uncured polymer or a meltable interstitial phase. The second is that the unit members of the structure and the reversible adhesive do not experience a glass or melt transition within the range of temperatures experienced by the structure during day/night cycles (-160 to 120 °C) in conditions without thermal controls which would induce undesirable adhesive reversion due to an uncontrolled change in phase and negate mechanical properties of the bonded interface. This eliminates shape memory polymers and some“gecko” adhesive schemes which generally rely on polymers which have glass transitions below 120°C. Additionally, the reversible adhesive joint must be scalable and able to be implemented into complex geometries. This eliminates gecko adhesive schemes due to their reliance on patterned fibrillar surfaces. With a glass transition temperature of up to 310°C and the entire polymer backbone possessing thermally-activated labile ester bonds and therefore the complete structure accessible as a reversible adhesive, ATSP-based adhesives present a viable and possibly unique solution to minimize mass and reduce component numbers in reconfigurable space structures. Table 1 provides a review of reversible adhesive systems available from literature.
Figure imgf000004_0001
[04] Reversible adhesives are an attractive option for assembly and disassembly of reconfigurable space structures due to potentially lower mass needed. At present, available schemes do not address the wide temperature ranges needed for space applications. In this project, we have demonstrated that interchain transesterifications (ITR - a type of dynamic covalent exchange reactions afforded by aromatic thermosetting copolyesters (ATSP)) between two ATSP coatings can successfully be used as a reversible adhesive concept provided that the mode of debonding is completely cohesive. Coatings comprised of varying glass transition temperatures (from 170 to 310°C) were applied to aluminum substrates and cured in a convection oven Bonding conditions were optimized to produce complete cohesive failure repeatedly (up to 50 cycles). Additionally, we demonstrate that the high glass transition temperatures of ATSP produce high strength bonds throughout temperature ranges relevant for structural applications.
Brief® ' the Figures
[05] The patent or application file contains at least one drawing executed in color Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fees.
[06] A fuller understanding of the foregoing may be had by reference to the accompanying drawings, w!ierein:
[07] Table 1 is a summary of experimental conditions and bonding strength results.
[08] FIG. 1 shows tan delta curves of free standing cured ATSP films measured via film tension mode in DMA Peaks in tan delta curves indicate significant changes in the available chain motions.
[09] Table 2 is a summary' of results of the thickness measurements of the lap shear test specimens. Standard deviations were calculated for each sample based on 5 independent measurements (units are in microns).
[010] FIG. 2 show's scanning Electron Microscope (SEM) images of the ATSP coated A1 specimens prepared for DMA/ITR tests (a) uniformly formed ATSP coating layer (h) ATSP coating thickness is about 100 mhi. (c) samples for lap shear and bond/debond tests.
[Oi l] FIG. 3 shows the effects of misalignment and substrate roughness.
[012] FIG. 4 is SEM images of the ATSP coated A3 specimens bonded via ITR.
[033] FIG. 5 shows the thermomechanical DMA cycle to enable ITR reversible debonding of the two parts.
[014] FIG. 6 is a graph of temperature versus displacement characterizing reversible debonding temperatures for the three different chemistries (C1AL C2A2, and CBAB) of ATSP. [015] FIG. 7 is a graph of DMA thermomechanical cycle of ATSP-coated matching A1 7075 pails; first ITR bonding, second cryogenic cooling, and last high-temperature treatment.
[016] FIG. 8 is a graph of three subsequent bonding/debonding cycles in DMA on the same bonding region showing highly repeatable debonding characteristics in terms of debonding displacement corresponding to close operation temperatures and effective pressure (Pressure is applied in tensile mode as tensile stress).
[017] FIG. 9 shows SEM images of reversibly debonded surface with close-up views of surface features.
[018] FIG. 10 is a picture and 3D design of the bond/debond toolkit.
[019] FIG, 11 is a picture of a pair of bond/debond samples with 100% of cohesive failure
[020] FIG. 12 is a schematic graph of the bond and debond process.
[021] FIG, 13 is a real time debond force vs. time at room temperature and 380C'C
[022] Table 3 is a summary of the orthogonal experimental conditions and their results.
[023] Table 4 is an analysis of the orthogonal experiment.
[024] FIG. 14 is an example of failure mode analysis of UV light and the NIH‘Image’ software.
[025] FIG. 15 is a depiction of the sample and bond/debond process over arbitrary cycles; (a) cone shape joint (b) bond/debond process: bond at 340°C with 5.7 MPa pressure, debond at ISGTl
[026] FIG. 16 is a machine drawing a picture of the self-aligning coupons coated with reversibly adhesive ATSP coating.
[027] FIG, 17 is graphs of debond results, (a) 1-5-10-.... 50th debond at 150°C, (b) 20th debond at room temperature. 150°C and 340°C, (c) 50th debond at room temperature and 150°C, (d) 51st debond at room temperature,
[028] FIG, 18 is UV light image of samples (a) after 30 times of bond/debond, and (b) after the 51 st time room temperature debond.
[029] FIG. 19 shows a schematic of resistive heating scheme for ITR bonding.
[030] FIG. 20 is (Left) a picture of the resistive heating apparatus and (Right) a picture of ATSP+10%GNP articles bonded via resistive heating. [031] FIG. 21 is pictures of Figure 8, Resistively bonded coupons of ATSP+I 0%GNP after mechanical debond at room temperature. Both sides evidence cohesive failure, interface diameter was 10 mm (0.39”).
[032] FIG. 22 shows bulk (thick section) resistive composite (CB2AB2+10 wt.% CNT + 20 wt.% MCF) on 7075 A1 for reversible bond/debond, (a) sample preparation method: sandblast and coating, hot press of bulk composite on Al sample, machine smaller coupons %'ith composite thickness of 0.5, 1.0 and 1.5 mm (b) experimental setup for bonding, (c) bonded sample,
[033] FIG, 23 shows one sample/side heating for bonding a cylinder (embed with heater) to a plain surface (aluminum coated with ATSP), (a) configuration of the cylinder attached to a plain surface, (b) bonded samples, (c) bonded samples hold dead weight, (d) open sample (cylinder) after debond, (e) open sample (plate) after debond.
[034] FIG. 24 show's one sample/side heating for bonding a cylinder (embed with heater) to a plain surface (ATSP - chopped carbon fiber composite), (a) configuration of the cylinder attached to a ATSP composite plain surface, (b) bonded samples, (c) de-bond curve (force vs, time) of sample,
[035] FIG. 25 show's (a) ATSP coated titanium coupons, (b) configuration of induction heating setup, (c) debond curve (force vs. time) for bonded titanium coupons, (d) samples after debond.
¾ssr¾! ii of the In mtos
[036] Referring now to the figures, a process is described to produce a reversibly adhesive coating capable of an indefinite number of reversible bonding cycles as enable by bond exchange reactions. This is accomplished by electrostatic powder deposition or paint spray deposition of erosslinkahle aromatic polyester oligomers on a roughened metallic substrate. The coated article is heated to melt the oligomers and then produce a fully thermoset network by condensation reactions. The fully thermoset network has access to a type of bond exchange reaction within the resin termed interchain transesterification (ITR) that permits the dynamic exchange of ester bonds within the resin. Necessary' to execute tills bonding step of this process is a source of heat and method applying contact pressure. As well, during the debond operation, there must be an applied force in tension and/or shear that causes the coating to fail. The reversibility of the process is contingent on the cohesive (rather than adhesive) failure of the coating during debond - that is, the coating must not delaminate from the substrate. Failure must occur in the resin phase of the reversible coating, Absent the delamination, there does not appear to be a limit to the potential number of cycles that the bond/debond operation can be continued through.
[037] Example 1;
[038] Crossllnkable aromatic copolyester oligomers were synthesized in a batch melt polymerization in a 2L reactor at 270°C under an argon atmosphere with the acetic acid by-product distilled out and measured during the process. The reactions proceeded until acetic acid generation was complete, Reactant stoichiometries were selected to provide a broad range of potential glass transition temperatures (see Figure 2) by modification of the crosslinker density and main chain stiffness as determine using Dynamic Mechanical Analyzer (DMA) instrument. Oligomer combinations are designated as the combination of the two oligomer sets (e.g,, Cl Al, CBAB, etc.), Monomers used for these oligomerizations were: trimesic acid (TMA), isophthalic acid (IPA), 4-aceloxybenzoic acid (4-ABA), hydroquinone diacetate (HQDA), and biphenol diacetate (BPDA). Biphenol diacetate was used as a stiffer and more thermo-oxidatively stable replacement for HQDA, In total, eight such syntheses were carried out to produce eight oligomer types, Cl, C2, CB, CB2, Al, A2, AB, AB2.“C” oligomers were capped with carboxylic acid functional groups while “A” oligomers were capped with acetoxy functional groups. Oligomer feed ratios were (in terms of TMA:IPA:4-ABA:HQDA:BPDA) for Cl 2:3:6:4:0, for C2 1:4:6:4:0, for CB 1:2:3 :0:2, for CB2 1:3:5:0:3, for Al 2:2:2:7:0, for A2 1:2:S:5:0, for AB 1:0:3 :0:3, and for AB2 1 :1:S:0:4.
[039] From the position of the peak of the tan delta curve (ratio of loss modulus / shear modulus), we identified the glass transition temperature, C1A1 : 239°C; C2A2: 250°C; CBAB: 3G7°C; and CB2AB2: 173°C, which allows us to vary this control parameter by up to I34°C, as shown in FIG. 1.
[040] For the coating specimens, uncured matching oligomers of ATSP were sprayed onto aerospace grade Al 7075 substrates employing an electrostatic powder technique - examples of a coated article can be seen in FIG. 2. The samples were then cured in a convection oven at 270°C for about 30 min. Upon curing, ATS coatings was measured to be around 40-60 mip for lap shear samples (TABLE 1) by an eddy- current-based magnetic coating thickness gauge.
[041] Operational parameters of temperature, time and pressure for the ITR bonding were assessed and characterized via proof-of-concept Dynamic Mechanical Analysis (DMA) tests (Q800, TA Instruments). The uniaxial fixture was operated in the DMA to enable compressive force (bonding force) during the ITR process and to apply tensile force (pull-off force) during the pull-off experiments. The DMA setup is limited to il S N in both modes. For the DMA experiments, A! pieces of 1 mm and 2 mm diameter circular heads (coated with ATS?) were brought in contact with rectangular bases of 10 mm x 10 mm A1 pieces. Upon enabling successful ITR bonding between the two pieces, pull-off tests were applied to measure strengths of the samples. Measured pull-off strengths were beyond the limits of the DMA fixture (18 N) for both 1 mm and 2 mm diameter heads. However, larger diameter heads are more likely to see misalignment between two parts (FIG, 3), which causes partial bonding between the parts (FIG, 3-top), while a smaller diameter causes full-scale bonding (FIG, 3-bottom). As well, adhesive strength between the metal and coating is shown to be necessary. De!axnination is observable in FIG. 3~top, in this case, the substrate was not roughened prior to electrostatic powder deposition whereas the example in FIG3-bottom has a completely cohesive (entirely through polymer) failure mode. We obtained scanning electron microscopy (SEM) images of the ITR bonded samples (FIG, 4). The samples at smaller diameter (1 mm) still evidenced bonding strength that was beyond the force limits of the DMA. To fail into the force limit of the DMA, even smaller diameters were employed, yet due to mechanical properties of the metal parts coming into effect at smaller scales, we limited the smallest diameter size to 1 mm. Overall, with results of the DMA analysis, we have observed that 23 MPa, 30 min and 400°C enables effective ITR bonding and can be considered an effective upper bound in terms of conditions necessary for effective bonding.
[042] FIG. 5 is an example of the thermomechanical DMA cycle to enable ITR reversible debonding of the two parts. In the cycle, the force is kept at 5M (6.4 MPa) with ramp up of temperature to 400°C: if the bond did not break, the temperature was held at 400°C and force was ramped up to 18N. FIG, 6 is the in- situ displacement vs, temperature reversible debonding for three different chemistries (C1A1, C2A2, and CBAB) of ATSP, where the debonding temperatures at 5N are 336°C, 372°C and 392°C for C1A1, C2A2, and CBAB, respectively. The high bond strength is well demonstrated at room and high temperature, however in space the temperature can range from cryogenic to high temperature. Thus, as shown in FIG. 7, a static load study was carried out from -150°C to 200°C and the results show' that the bond strength is well maintained (~13MPa) throughout this temperature range. This example demonstrates that the process described can produce a high mechanical strength adhesive bond in the solid state as enabled by bond exchange reactions.
[043]
[044] Following the process from Example 1, three consecutive cycles of reversible ITR bonding/debonding were successfully performed over the same bonding area using uniaxial loading fixture in DMA as shown in FIG, 8, The ITR cycles demonstrated quite repeatable trends with respect to displacement over the bond line at the given temperature and tensile stress (pressure) which effectively validates the reversibility concept of the ITR bonding. Another major finding is that the debonding, or reversibility', occurred in cohesive mode as the corresponding surface on the base substrate still contained polymer coating. As seen in SEM (Hitachi 480G) images in FIG, 9, the applied ATSP coating remained on the metal substrate surface. Fracture surface clearly shows the evidence of ductile failure mode - fibrillation/drawing is clearly evident in the lower right close-up image, as compared to surface features of fractured specimen at room temperature. Note the concave appearance was formed due to the extremely high bond temperature (400°C). This example demonstrates that reversible bonding is achievable using the process described provided that there is no delamination of the coating from the substrate.
[045] Example 3,
[046] Due to the limited force range available in the TA Instruments Q800 DMA as compared to the very high pull-off strengths obtained during these experiments, a specifically developed reversible bonding toolkit was implemented, as shown in FIG, 10. Debonding is a necessary' step for demonstration of ITR reversible bonding; however, the force required for debond can he very high, for example: to separate a 10 mm diameter bond at room temperature with a pull-off strength of 3GMPa, the force would need to be 2355N. Hydraulic systems are widely used for high force applications, but hydraulic power is not applicable for in-space conditions. Thus, an electric motor with the lead screw/nut was used to supply force to the press and pull for reversible adhesion application. Figure 22 shows a 3D diagram for the bond/debond toolkit with the main parts being: 1) stage and shafts, 2) lead screw/nut, 3) sample holders, 4) Sc 5) top and botom samples, 6) heater, 7) force transducer, and 8) other electrical parts such as DC electric motor and control system, not shown in the schematic.
[047] With help of lead screw/nut (2), the motor’s rotation (8) can move the top sample (4) up and down and can have the positions of contact with bottom sample (5) at the target bonding force and also debond the samples. The force transducer (7) can measure the applied load between the two samples, and also give feedback signal to motor to rotate and achieve target force. The heaters (6) behind the samples enable high temperature bond/debond tests, while the long shafts (1) isolate the high temperature parts in the middle and protect the other parts from high temperature.
[048] CB2AB2 was chosen for the remaining experiments since it displayed the highest lap shear strengths in the las shear tests. FIG, 11 shows the CB2AB2 coated samples of the bond/debond toolkit after debonding, and the contacting area is a circle with 10 mm diameter (78.5 mm2). Because of a larger area of contact, the thickness of the coating had almost zero change before bond and after debond, with only the flatness of the peaks of the coating after debond. Figure 13 shows the bond/debond process parameters. In FIG. 12(a), the temperature increases from room temperature to the target temperature, holds for a specific bond duration, and then cools down to room temperature; the force increases from 0 to target bonding pressure at ery' beginning, and then holds the pressure until the sample cools down to room temperature. FIG. 12(b) shows the debond process: first debond happens at room temperature while ramping to reach the maximum pull-off force of 350 lbs (20 MPa), if the samples fail before this force, stop the test; if the samples can survive, decrease the load to zero, and increase temperature to bonded temperature, then test the debond until the samples’ failure. FIG. 13 is a real time debonding process at room temperature and 380°C: the room temperature debond strength went up to 350 lbs (20 MPa), and the 380°C debond strength was 77 lbs (4.4 MPa).
[049] Nine different ITR parameter combinations (instead of ail 27) were examined according to the orthogonal experimental design, as shown in Table 3. Three experimental parameters, namely temperature, load and time were examined for this parametric study; and there were three different level values for each parameter: three different bond temperatures (380°€, 34G°C and 3Q0°C), three different bond loads (28,5 MPa, 17.1 MPa and 5.7 MPa), and three different bond durations (30min, 15min, and 5min). Results of the tests are sho wn on the right side of Table 3, and we list three different parameters (debond strength at room temperature, debond strength at bond temperatures and cohesive failure percentage) to evaluate the results. As for calculation of the cohesive failure percentage, an ultraviolet (UY) light source was used to determine the failure mode: with UV light, the adhesive failure part with substrate exposed has darker color and other areas with polymer coverage has a lighter color, as shown in FIG.14-top of a dehonded sample under U V light and the analysis. Because the adhesive failure could happen on both samples, as shown the black area (adhesive failure) in FIG. 14-bottom, thus we need to add all the dark areas on the two samples for adhesive/cohesive failure percentage calculation.
[050] Table 4 show's the analysis of the orthogonal experimental results: each of the values in the table was the average of three experiments carried out with that specific condition. For example, the load effect values of 28.5 MPa in Table 4 was the average values from test numbers 1, 4, and 7, which all have the same bond pressure of 28,5 MPa. The last column in the table shows a score that relates the average values: the highest value for each condition received one point; each zero would subtract one from the score. As for temperature effect. 380°C has the highest debond strength at 25°C and bond temperature, however, it has smallest cohesive failure percentage which is detrimental for reversible adhesion applications; 340°C has both good bond strength and 100% cohesive failure. As for load effects, 5.7 MPa has the highest strength and cohesive failure. Regarding the bond time duration, 30 min produces the highest strength and vety high cohesive failure percentage. Thus, according to the parameter levels listed in current Orthogonal experiments and considering reversible adhesion and bonding strength, the combination of 340°C, 5.7 MPa and 30 min will produce the best results. Note that even lower pressure of bonding process should be also evaluated in future.
[051] Example 4,
[052] Following from the conditions described In Example 3, and to carry out proof of concept of bond/debond multiple times, we designed a cotie shape joint structure that has surface contact area of 78.2tmn2, as shown in FIG. IS(a) and FIG . 16 (with more detail of dimensions). The experimental process as shown in Figure 15(b) was repeated 50 times, with experimental parameters: bond at 340°C, 5,7MPa and hold for 15 rain (1st to 35th experiment) or 7 min (36th to 50th experiment). The shorter times (not 30 min from orthogonal analysis) for the bonding process was due to time constraints. After the bonding process test the structure strength by debond until cool dow¾ to 15G°C Additionally, for the 20th and 50th experiment, bond with same parameters; to verify the bond strength at di fferent temperatures, the joint was debond with load up to a maximum force of 1568 N(350 lbs.) at room temperature, 150 C and 34CPC (if not debond, reduce the force to zero, heat it up to next stage and do debond up to 1568 N at the higher temperature stage). Results are shown in FIG, 17 with the debond curves of the cone surface joint. Figure 18(a) is the result of 11 experiments out of the total 50 experiments, and the average debond force is 1280±225N (16.3±2.9 MPa, with minimum of 995N and maximum of 1568 N), which is a very' high force for a joint with such a small contact area. As shown in FIG 17 (b) and (c), for the 20th and 50th experiment both of the debond strength reached a minimum force of 1568 N (20 MPa) at room temperature (without break); at 150°C, the 20th cycle still reached a strength of 1 568N, while the 50th cycle reached 1417 N ( this was due to the different hold time: 15 min for 20th cycle and 7 min for 50th cycle): at 340°C, the 20th cycle debonded with a very small force of 74 N (0.95 MPa), which will enable a low debond force if debond at 340°C in future real applications, Another important finding is that the surface was 100% cohesive failure after 30 times of bond/debond, as demonstrated in FIG 18(a); after 51 st debond at room temperature, which is much more aggressive than 150°C, there are two spots of adhesive failure on the top of the cone (with 95% of cohesive failure), as shown in FIG 18(b). Moreover, during the 51st cycle of bond/debond, the joint is able to reach a debond force of 2244 N (501 lbs, 28.7 MPa) at room temperature (and therefore yielding a higher strength value than the debonds conducted at 150°C), thus we can determine that the debond strength does not degrade, These 51 cycles of bond/debond testing definitively prove the concept of reversible adhesion using interchain transesterification.
[053] Example 5.
[054] Prior studies have shown that ATSP coupled with carbonaceous fillers (milled carbon fibers [MCF], carbon nanotubes [CMT], and graphene nanoplatelets [GNP]) can produce relatively high electrical conductivities. In this reporting period ATS P and a conductive carbonaceous phase was coated onto several target coupons as in FIG. 19 (Right) on aluminum substrate.
[055] In this method, coated surfaces were brought into contact with each other with applied DC current (which will force Joule heating on the less-conductive ATSP/C bondiine) to induce the TTR adhesive conditions, FIG. 19 shows a schematic of the process. Pressure was applied along with DC current such that the coating temperature increased via Joule heating.
[056] Compositions were selected to examine appropriate resistivity' for the application coupled with the need for a coating morphology that offered appropriate mechanical strength. Four coatings within this space were initially examined. Two coatings (CB2AB2 + 4 w†% M5 GNP [5 um GNP diameter] and CB2AB + 4 wt% M25 GNP) offered good mechanical integrity but had resistance in the 10” W range, which was too high for practical use in this application, CB2AB2 + 10 wt% M5 GNP had poor coating quality' but. potentially acceptable resistance. CB2AB2 + 10 wt% M25 GNP had acceptable coating quality' and roughness and offered resistances in the range of hundreds of ohms for coatings of 30-50 um (1-2 mils). Apparatus to bond via Joule heating and measure temperature is shown in FIG. 20 as well as bonded specimen. Following mechanical debond of bonded specimens, it can be seen (as in FIG. 21) that the resistively bonded area can evidence a 100% cohesive failure, thereby enabling reversible bonding as described above.
[057] Example 6.
[058] In this example, vve used a thicker section of ATSP composite for the resistive heating method. FIG 22(a) shows the sample preparation process for the bulk (thick section) resistive composite on fiat 7075 Ai substrate: I) produce a 7075 A1 substrate, sandblast for the substrate to increase the bonding strength, then deposit a coating layer with same composition as the bulk composite, 2) assemble the coated sample with the hot press mold and load the uncured composite in the mold, 3) take the cured sample out and then machine smaller coupons (8.9 mm square surface, with different thickness) out of the cured sample. FIG 22(b) is the experimental setup for bonding, the two coupons are connected with the two-power supply- ends respectively, and the thermocouple is inserted in the tiny hole on the negative power side. By supply of a norma! load of 4 MPa and voltage of 30 V, the outcome current is 2.5 A and the power is 70 W; this experimental parameter can bond the sample in about 1 min, at the time, the near contact temperature is about 140°C. FIG 22(c) show's the bonded sample.
[059] Example 7,
[060] In this example, we demonstrate that embedded heating elements can be used to provide conditions applicable for ITR-based bonding, FIG. 23(a) shows an ATSP coated aluminum cylinder that is embed with heating wire that is contacting with a flat aluminum surface with ATSP coating. At an applied pressure of 1.7 MPa, temperature of 36G°C, and 5 min duration at temperatures of 360°C, when the samples cool down and release the pressure and the normal pressure is released, the two samples are bonded together, as seen in FIG. 22(b). And FIG. 23(c) show's that the bonded sample is holding a dead weight of 3kg. FIG. 23 (d) an (e) shows the samples after break, the samples are only partially bonded because the cylinder surface was not w'ell machined and thus only partial contact was achieved.
[061 ] FIG 24(a) shows an ATSP coated aluminum cylinder embed with heating wire that is contacting with a flat ATSP - chopped carbon fiber composite (30 wt.% of carbon fiber). With compressive pressure (O.SSMPa), heat (360°C), and 5 min duration at temperature of 360°C, when samples cool the pressure is released and the two samples are bonded together, as seen in FIG 24(b), And FIG 24(c) shows that the force vs. time debond curve of the two samples, it had a 744 N debond force, corresponding with 1.51 MPa debond pressure. Compared with above ATSP coated aluminum surface, the carbon fiber composite is more flexible and had higher thermal insulation properties, thus, it was easier to heat the samples to 360°C and the contact is more uniform. [062] Example 8.
[063] In this example, we demonstrate use of induction heating as a heat source for the bonding operation. Using a induction heater (Induction Innovations MD-70G Mini-Ductor II Magnetic Induction Heater Kit), and placement of the joint of the two coupons in the induction cod, we applied a compressive force (355N, corresponding to 4 5 MPa pressure), as shown in FIG 25(b) following this, the induction heater was turned on for 40 see, allowed to cool for 20 sec, then release the coupons from bonding stage at which point they were well bonded. Figure 4(c) is the debonding curve (force vs. time) for the bonded titanium coupons at room temperature, and it showed a maximum debond force of 2046N (corresponding to 26 MPa) , which is similar as previous data with aluminum substrate. This non-contact induction heating method is far more efficient compared with either embedded heating method or clamshell radiant heating.
[064] In various embodiments in the present invention there is provided a method of adhesively bonding at least two substrates. The method includes the steps of:
a. preparing a crosslinkabie resin depositable by electrostatic powder deposition, and wherein the crosslinkabie resin possesses exchangeable bonds within the crosslinkabie resin after curing;
b. depositing the crosslinkabie resin by electrostatic powder deposition onto substrates to define crosslinkabie resin coated portion of the substrates;
e bonding the crosslinkabie resin coated portions of the substrates by abutting the crosslinkabie resin coated portions of the substrates to each other and applying a compressive pressure in the range 100 kPa to 20 MPa at an elevated temperature in the range of 150°C to 420°C such that the crosslinkabie resin coated portions of the substrates’ crosslinks with itself across the crosslinkabie resin coated portions of the substrates to create a bonded cured resin surface; and
d wherein the bonded cured resin surface possesses at least 4 wt% exchangeable sites within the crosslinks of the bonded cured resin surface. [065] In addition, the adhesively bonded substrates can include the steps to debond the substrates such to provide for rebonding. This may include the step of debonding the bonded cured resin surface by tensile and/or shear pressure in the range 100 kPa to 55 MPa, and wherein a cohesive failure across the bonded cured resin surface is accomplished by roughing the crosslinkable resin coated portion of the substrates by grit blasting, electrochemical etching, or laser ablation prior to bonding
[066] in addition, wherein the step of debonding further creates separable cured resin surfaces across the substrates and wherein the separable cured resin surfaces across the substrates are defined for rebonding when abutted and the compressive force and elevated temperature is reapplied, such that the rebonded cured resin surface possesses at least 4 wt% exchangeable sites within the crosslinks of the bonded cured resin surface,
[067] In various embodiments, the crosslinkable resin may consist of crosslinkable aromatic polyester oligomers with molecular weights between 700 and 2500 g/moi and having a mixture of carboxylic acid and acetoxy functional end groups. Alternative!y, the crosslinkable resin may he deposited onto another polymer matrix composite. In yet other embodiments, the substrate is an induction heatable material and the requisite elevated temperature, ranged between 150°C and 420°€, is supplied by an induction heating source.
[068] In yet other embodiments, there may be a heating element embedded within the crosslinkable resin coated portion of the substrates and the requisite elevated temperature ranged between 150°C and 420°C, is produced by resistive heating by current passed through the heating element. In yet other embodiments, there may be a heating element embedded within the coated layer and the requisite elevated temperature, ranged between 150°C and 420°C, is produced by resistive heating by current passed through the heating element.
[069] In other embodiments, conductive fillers such as graphene nanoplatelets, milled carbon fiber, carbon nanotubes, silver microspheres copper microspheres, carbon black, metallic whiskers are blended with the crosslinkable resin prior to depositing onto substrates. In these embodiments, the elevated temperature for adhesive bonding, ranged between 150°C and 420°C, is supplied through Joule heating by current passed through the copductively conductive fillers or is supplied through microwave heating as produced by an applied microwave field. In addition, the elevated temperature may be produced by frictional forces between the coatings such as those generated by ultrasonic oscillations or rotational frictional welding.
[070] While particular elements, embodiments, and applications of the present invention have been shown and described, it is understood that the invention is not limited thereto because modifications may be made by those skilled in the art. particularly in light of the foregoing teaching. It is therefore contemplated by the appended claims to cover such modifications and incorporate those features which come within the sprint and scope of the invention.

Claims

1. A method of adhesive bonding comprising:
preparing a crosslinkabie resin depositab!e by electrostatic powder deposition, and wherein the crosslinkabie resin possesses exchangeable bonds within the crosslinkabie resin after curing; depositing the crosslinkabie resin by electrostatic powder deposition onto substrates to define crosslinkabie resin coated portion of the substrates; bonding the crosslinkabie resin coated portions of the substrates by abutting the crosslinkabie resin coated portions of the substrates to each other and applying a compressive pressure in the range 100 kPa to 20 MPa at an elevated temperature in the range of 150°C to 420°C such that the crosslinkabie resin coated portions of the substrates crosslinks with itself across the crosslinkabie resin coated portions of the substrates to create a bonded cured resin surface; and wherein the bonded cured resin surface possesses at least 4 wt% exchangeable sites within the crosslinks of the bonded cured resin surface.
2. The method of claim 1„ wherein the crosslinkabie resin consists of crosslinkabie aromatic polyester oligomers with molecular weights between 700 and 2500 g/moi and having a mixture of carboxylic acid and acetoxy functional end groups
3. The method of claim 1, wherein the crosslinkabie resin is deposited onto metal !ic substrates roughened by sandblasting, electrochemical etching, or faser ablation.
4. The method of claim 1, wherein the cross! inkable resin is deposited onto another polymer matrix composite.
5. The method of claim 1. wherein the substrate is an induction heatable material and die requisite elevated temperature, ranged between 150°C and 420°C, is supplied via an induction heating source.
6. The method of claim I, wherein there is a heating element embedded within the substrate and the requisite elevated temperature, ranged between ranged between 150°C and 420°C, is produced by resistive heating by current passed through the heating element.
7. The method of claim 1, wherein there is a heating element embedded within the crossllnkable resin coated portion of the substrates and the requisite elevated temperature, ranged between 150°C and 420°C, is produced by resistive heating by current passed through the heating element
8. The method of claim 1, wherein the requisite elevated temperature is produced by frictional forces between the coatings such as those generated by ultrasonic oscillations or rotationai frictional welding.
9. The method of claim 1, wherein conductive fillers such as graphene nanoplatelets, milled carbon fiber, carbon nanotubes, silver microspheres, copper microspberes, carbon black, metallic whiskers are blended with the crossllnkable resin prior to depositing onto substrates
10. The method of claim 9, wherein the elevated temperature for adhesive bonding, ranged between 150°C and 420°C, is supplied through microwave heating as produced by an applied microwave field.
11. The method of claim 9, wherein the elevated temperature for adhesive bonding, ranged between ranged between I50°C and 420°C, is supplied through Joule heating by current passed through the conductive fillers.
12. A method of reversibly adhesive bonding comprising:
preparing a crossiinkabie resin depositabie by electrostatic powder deposition, and wherein the crossiinkabie resin possesses exchangeable bonds within the crossiinkabie resin after curing; depositing the crossiinkabie resin by electrostatic powder deposition onto substrates to define crossiinkabie resin coated portion of the substrates; abutting the crossiinkabie resin coated portions of the substrates to each other and applying a compressive force in the range 100 kPa to 20 MPa at an elevated temperature in the range of I50°C to 420°C such that the crossiinkabie resin coated portions of the substrates crosslinks with itself across the crossiinkabie resin coated portions of the substrates to create a bonded cured resin surface; and wherein the bonded cured resin surface possesses at least 4 wt% exchangeable sites within the crosslink s of the bonded cured resin surface; debonding the bonded cured resin surface by tensile and/or shear pressure in the range 100 kPa to S5 MPa, and wherein a cohesive failure across the bonded cured resin surface is accomplished by roughing the crossiinkabie resin coated portion of the substrates by grit blasting, electrochemical etching, or laser ablation prior to bonding.
13. The method of Claim 12 wherein the step of debonding further creates separable cured resin surfaces across the substrates and wherein the separable cured resin surfaces across the substrates are defined for rebonding when abutted and a compressive force and elevated temperature is reapplied, such that the rebonded cured resin surface possesses at least 4 wt% exchangeable sites within the crosslinks of the bonded cured resin surface.
14. The method of claim 12, wherein the crosslinkable resin consists of erosslinkahle aromatic polyester oligomers with molecular weights between 700 and 2500 g/raol and having a mixture of carboxylic acid and aeetoxy functional end groups.
15. The method of claim 12, wherein the crosslinkable resin is deposited onto another polymer matrix composite.
16. The method of claim 12, wherein the substrate is an induction heatable material and the requisite elevated temperature, ranged between 150°C and 420°C, is supplied by an induction heating source.
17. The method of claim 12, wherein there is a heating element embedded within the crosslinkable resin coated portion of the substrates and the requisite elevated temperature, ranged between 150°C and 420°C, is produced by resistive heating by current passed through the heating element
18. The method of claim 12 wherein there is a heating element embedded within the coated layer and the requisite elevated temperature, ranged between 150°C and 420°C, is produced by resistive heating by current passed through the heating element.
19. The method of claim 12, wherein conductive fillers such as graphene nanoplatelets, milled carbon fiber, carbon nanotubes, silver microspheres, copper microspheres, carbon black, metallic whiskers are blended with the crosslinkable resin prior to depositing onto substrates.
20. The method of Claim 19. wherein the elevated temperature for reversibly adhesive bonding, ranged between 150°C and 420°C, is supplied through Joule heating by current passed through the conductlvely conductive fillers.
21. The method of claim 12, wherein the elevated temperature is produced by frictional forces between the coatings such as those generated by ultrasonic oscillations or rotational frictional welding.
22. The method of claim 19, wherein the elevated temperature for reversibly adhesive bonding, ranged between ranged between 150°C and 420°C, is supplied through microwave heating as produced by an applied microwave field.
PCT/US2019/028219 2018-04-19 2019-04-19 Method for reversible bonding WO2019204674A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862659844P 2018-04-19 2018-04-19
US62/659,844 2018-04-19
US16/388,018 US11130293B2 (en) 2018-02-07 2019-04-18 Method for reversible bonding
US16/388,018 2019-04-18

Publications (1)

Publication Number Publication Date
WO2019204674A1 true WO2019204674A1 (en) 2019-10-24

Family

ID=68240348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/028219 WO2019204674A1 (en) 2018-04-19 2019-04-19 Method for reversible bonding

Country Status (1)

Country Link
WO (1) WO2019204674A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020031614A1 (en) * 2000-07-01 2002-03-14 Paul-Ludwig Waterkamp Electrostatic coating of moldings with thermoplastic and crosslinkable copolyamide hot-melt adhesives
US20150290877A1 (en) * 2014-04-09 2015-10-15 Nike, Inc. Selectively Applied Adhesive Particulate on Nonmetallic Substrates
EP2957610A1 (en) * 2014-06-20 2015-12-23 Nitto Denko Corporation Debondable adhesive composition
US20170125268A1 (en) * 2013-08-01 2017-05-04 International Business Machines Corporation Wafer debonding using mid-wavelength infrared radiation ablation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020031614A1 (en) * 2000-07-01 2002-03-14 Paul-Ludwig Waterkamp Electrostatic coating of moldings with thermoplastic and crosslinkable copolyamide hot-melt adhesives
US20170125268A1 (en) * 2013-08-01 2017-05-04 International Business Machines Corporation Wafer debonding using mid-wavelength infrared radiation ablation
US20150290877A1 (en) * 2014-04-09 2015-10-15 Nike, Inc. Selectively Applied Adhesive Particulate on Nonmetallic Substrates
EP2957610A1 (en) * 2014-06-20 2015-12-23 Nitto Denko Corporation Debondable adhesive composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, WENQING ET AL.: "Adhesion characteristics of aromatic thermosetting copolyester and glass fiber laminates with copper foils for improved circuit boards", POLYMERS FOR ADVANCED TECHNOLOGIES, vol. 27, no. 12, 2016, pages 1577 - 1585, XP055643502 *

Similar Documents

Publication Publication Date Title
JP7206049B2 (en) Carbon nanotube-based thermal interface materials and methods of making and using same
EP2440622B1 (en) Method for protecting a substrate from lightning strikes
Jia et al. Multifunctional ceramic composite system for simultaneous thermal protection and electromagnetic interference shielding for carbon fiber-reinforced polymer composites
US7455881B2 (en) Methods for coating a magnesium component
Mahdi et al. A comparison of oven-cured and induction-cured adhesively bonded composite joints
Meyer et al. Reversible bonding of aromatic thermosetting copolyesters for in‐space assembly
US11130293B2 (en) Method for reversible bonding
WO2010024177A1 (en) Method for formation of metal coating film, and aerospace structure member
CN1261296C (en) Article including a composite of unstabilized zirconium oxide particles in a metallic matrix, and its preparation
US5041335A (en) Undercoat composition and a metal substrate coated with a resin composition
TW202102588A (en) Molded article of carbon-fiber-reinforced composite material and production method for molded article of carbon-fiber-reinforced composite material
WO2019204674A1 (en) Method for reversible bonding
Bashandeh et al. The effect of surface texturing on thin film reversible adhesive bond strength
Kravchenko et al. Spray‐Assisted Microwave Welding of Thermoplastics Using Carbon Nanostructures with Enabled Health Monitoring
Meyer et al. Wide Area Reversible Adhesive for In‐Space Assembly
Zhao et al. Accelerated‐curing epoxy structural film adhesive for bonding lightweight honeycomb sandwich structures
EP1112183B1 (en) A liquid crystal polymer (in situ) coating for co-cured composite structure
US5876856A (en) Article having a high-temperature thermal control coating
Olofinjana et al. Microwave processing of adhesive joints using a temperature controlled feedback system
Meyer Bond exchange reactions in high temperature thermoset polymers
US20230405884A1 (en) Method for Repairing Composite Materials Via Dielectric Barrier Discharge
US6974606B2 (en) Thermoplastic coating for composite structures
Sarmah et al. Patch repair of composites using Dielectric Barrier Discharge-induced heating and curing
WO2024034292A1 (en) Joined object production method, joined object, and electric/electronic component
JP6886134B2 (en) Heat-resistant paint and heat-resistant coating film using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788172

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788172

Country of ref document: EP

Kind code of ref document: A1