WO2019202651A1 - 電動機の診断装置 - Google Patents

電動機の診断装置 Download PDF

Info

Publication number
WO2019202651A1
WO2019202651A1 PCT/JP2018/015822 JP2018015822W WO2019202651A1 WO 2019202651 A1 WO2019202651 A1 WO 2019202651A1 JP 2018015822 W JP2018015822 W JP 2018015822W WO 2019202651 A1 WO2019202651 A1 WO 2019202651A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase current
negative phase
circuit
current
Prior art date
Application number
PCT/JP2018/015822
Other languages
English (en)
French (fr)
Inventor
俊彦 宮内
誠 金丸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880092193.4A priority Critical patent/CN111936874B/zh
Priority to PCT/JP2018/015822 priority patent/WO2019202651A1/ja
Priority to EP18915192.1A priority patent/EP3783376B1/en
Priority to JP2020514817A priority patent/JP6945728B2/ja
Priority to KR1020207029000A priority patent/KR102376883B1/ko
Publication of WO2019202651A1 publication Critical patent/WO2019202651A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/003Measuring mean values of current or voltage during a given time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/02Measuring effective values, i.e. root-mean-square values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • This application relates to an electric motor diagnosis apparatus.
  • the applicant has proposed a motor diagnostic device including a motor, a diagnostic device, a current sensor and a voltage sensor as constituent elements (see Patent Document 1).
  • a current detection circuit that detects current and a voltage detection circuit that detects the voltage of the motor from the voltage of the main circuit of the power supply are provided, and the motor is operating from the negative phase current, negative phase voltage, positive phase current, and negative phase admittance. Even when the load torque fluctuates, the power supply imbalance is distinguished and the winding short-circuit is judged and detected.
  • the present application discloses a technique for solving the above-described problem, and provides a motor diagnostic device capable of detecting a short-circuit fault in a stator winding of a motor with high accuracy without calculating a reverse phase admittance.
  • the purpose is to do.
  • An electric motor diagnosis device disclosed in the present application includes an electric current detection circuit that detects electric current of the electric motor, and an arithmetic processing unit that receives an output of the electric current detection circuit and determines a winding short-circuit abnormality of the electric motor.
  • the operation processing unit calculates an effective value from the electric current of the motor to determine an operation state, and an initial reverse phase current analysis that analyzes an initial reverse phase current in a normal state And an evaluation value of the winding short circuit by the difference between the negative phase current calculated from the current of the motor during operation and the analyzed initial negative phase current, and the evaluation value and the set threshold value
  • a winding short-circuit determining unit that determines a winding short-circuit of the electric motor by comparison.
  • the winding short-circuit determination is performed using the difference between the negative-phase current calculated from the current of the motor during operation and the initial negative-phase current as an evaluation value, Since the phase admittance is not calculated, it is possible to detect a short-circuit fault in the stator winding of the motor with high accuracy.
  • FIG. 1 is a circuit configuration diagram showing a motor diagnosis apparatus according to Embodiment 1.
  • FIG. It is a conceptual diagram of a winding short circuit.
  • 3 is a configuration diagram of an arithmetic processing unit of the electric motor diagnosis apparatus according to Embodiment 1.
  • FIG. 3 is a flowchart for analyzing an initial reverse phase current using the electric motor diagnosis apparatus according to the first embodiment.
  • 3 is a flowchart for performing a winding short-circuit determination using the electric motor diagnosis apparatus according to Embodiment 1;
  • FIG. 5 is a circuit configuration diagram showing a motor diagnostic apparatus according to a second embodiment.
  • 6 is a configuration diagram of an arithmetic processing unit of an electric motor diagnosis apparatus according to Embodiment 2.
  • 6 is a flowchart for analyzing an initial reverse phase current using the electric motor diagnosis apparatus according to the second embodiment. 6 is a flowchart for performing a winding short-circuit determination using the electric motor diagnosis apparatus according to the second embodiment. It is a figure showing the correspondence of the voltage imbalance rate and negative phase current which are used for the diagnostic apparatus of the electric motor which concerns on Embodiment 3.
  • FIG. 1 is a flowchart for analyzing an initial reverse phase current using the electric motor diagnosis apparatus according to the second embodiment. 6 is a flowchart for performing a winding short-circuit determination using the electric motor diagnosis apparatus according to the second embodiment. It is a figure showing the correspondence of the voltage imbalance rate and negative phase current which are used for the diagnostic apparatus of the electric motor which concerns on Embodiment 3.
  • FIG. 1 is a circuit configuration diagram showing a motor diagnosis apparatus according to Embodiment 1, which is mainly used in a control center which is a closed switchboard.
  • the main circuit 1 of the power source drawn from the power system is provided with a circuit breaker 2 for wiring, an electromagnetic contactor 3, and an instrument transformer 4 for detecting the load current of the main circuit 1.
  • an electric motor 5 as a load is connected, and the mechanical equipment 6 is driven to operate by the electric motor 5.
  • the electric motor diagnosis device 100 includes a current detection circuit 7, an arithmetic processing unit 10, a storage device 11, a setting circuit 12, a display unit 13, a drive circuit 14, an external output unit 15, and a communication circuit 16 connected to the instrument transformer 4. It has.
  • the current detection circuit 7 detects the current of the motor by converting the load current of the main circuit 1 detected by the instrument transformer 4 into a predetermined signal such as the phase current of the motor 5, and the arithmetic processing unit 10 and the storage device 11 is output. That is, the current of the motor 5 is detected from the current flowing through the main circuit 1 of the power source connected to the motor 5.
  • the output of the current detection circuit 7 is input to the arithmetic processing unit 10, and a reverse phase current or the like is calculated by current analysis of the motor to determine a winding short circuit while the motor is operating.
  • the arithmetic processing unit 10 includes a CPU (Central Processing Unit) as an arithmetic processing device. Note that various arithmetic circuits such as an application specific integrated circuit (ASIC), an integrated circuit (IC), and a digital signal processor (DSP), various signal processing circuits, and the like may be provided as the arithmetic processing device.
  • ASIC application specific integrated circuit
  • IC integrated circuit
  • DSP digital signal processor
  • the storage device 11 is connected to the arithmetic processing unit 10 and the setting circuit 12, and exchanges data with the arithmetic processing unit 10.
  • the storage device 11 includes a RAM (Random Access Memory) configured to be able to read and write data from the arithmetic processing unit 10, a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing unit 10, or a nonvolatile memory
  • RAM Random Access Memory
  • ROM Read Only Memory
  • a memory EEPROM: Electrically-Erasable-Programmable-Read-Only-Memory
  • the setting circuit 12 connected to the storage device 11 has a set key, and the initial normal state data is stored and held in the storage device 11 by pressing (for example, long pressing) the set key. Further, data until the set key is released can be stored.
  • the display unit 13 is connected to the arithmetic processing unit 10 and displays an abnormal state, a warning, and the like when the detected physical quantity such as a load current and the arithmetic processing unit 10 detect an abnormality of the electric motor 5.
  • the drive circuit 14 is connected to the arithmetic processing unit 10 and outputs a control signal for opening and closing the electromagnetic contactor 3 based on a result calculated by the arithmetic processing unit 10 based on the current signal detected by the instrument transformer 4. .
  • the external output unit 15 outputs signals such as an abnormal state and a warning from the arithmetic processing unit 10 to the outside.
  • the external monitoring device 200 is composed of a PC (Personal Computer) or the like, and is connected to one or a plurality of electric motor diagnosis devices 100.
  • the information of the arithmetic processing unit 10 is appropriately received via the communication circuit 16 and the electric motor.
  • the operation status of the diagnostic apparatus 100 is monitored.
  • the connection between the external monitoring device 200 and the communication circuit 16 of the motor diagnosis device 100 may be a cable or may be wireless.
  • a connection may be established via the Internet by configuring a network between the diagnosis apparatuses 100 of a plurality of electric motors.
  • FIG. 2 is a conceptual diagram of a winding short circuit diagnosed according to the present disclosure.
  • the number of short circuits is Nf.
  • the stator winding of the electric motor 5 may generate both the same-layer short circuit and the interlayer short circuit, and in this embodiment, both short circuits are diagnosed as winding short circuits. In the present disclosure, it is not necessary to input the rating information of the electric motor 5 before starting the operation.
  • FIG. 3 is a configuration diagram illustrating an outline of the arithmetic processing unit 10 in the electric motor diagnosis apparatus according to the first embodiment.
  • the arithmetic processing unit 10 includes a current conversion unit 20, an initial analysis unit 30, a determination unit 40, an analysis unit 50, and an abnormality determination unit 60.
  • the current conversion unit 20 includes an effective value calculation unit 21 and a reverse-phase current calculation unit 22, and from the three-phase current detected by the current detection circuit 7, the reverse-phase current Isn is expressed by the following equation (1) by symmetrical coordinate conversion processing. Is calculated.
  • Isn reverse phase current
  • Iu u phase current
  • Iv v phase current
  • Iw w phase current
  • the initial analysis unit 30 includes an initial reverse phase current analysis unit 31.
  • the initial negative phase current analysis unit 31 analyzes the normal negative phase current value Isn before determining the winding short circuit. For example, the reverse phase current value for one month is calculated, and the averaged value is set as the initial reverse phase current value Isn0.
  • the determination unit 40 includes an operation state determination unit 41.
  • the operation state determination unit 41 determines the operation state of the motor based on the effective value of the current calculated by the effective value calculation unit 21.
  • the determination of the motor operating state is not limited to the effective value of the current, but may be determined based on the instantaneous value of the current or the on / off signal of the electromagnetic contactor 3.
  • the analysis unit 50 includes an evaluation value analysis unit 51 and performs an analysis for determination by the winding short-circuit determination unit 61 of the abnormality determination unit 60.
  • Winding short-circuiting is a short-circuiting phenomenon between coil strands. When a winding short-circuit occurs, the three-phase stator current becomes asymmetric and can be detected by a reverse phase component.
  • Ypp admittance of normal phase-normal phase component
  • Ynn admittance of reverse phase-reverse phase component
  • Ypn admittance of normal phase-reverse phase component
  • Ynp admittance of reverse phase-normal phase component
  • Yn reverse Phase admittance
  • power supply angular velocity
  • rs stator resistance
  • rr rotor resistance
  • rf short circuit resistance
  • Ls stator leakage inductance
  • Lr rotor leakage inductance
  • Lm excitation inductance
  • short circuit rate
  • the off-diagonal component Ypn of the admittance Y can be used as an index of winding short-circuit, it is not easy to calculate the off-diagonal component Ypn on an actual machine. Therefore, here, a method of measuring and monitoring only the reverse phase current Isn by analyzing normal data of the initial reverse phase current Isn0 is adopted.
  • the abnormality determination unit 60 includes a winding short-circuit determination unit, and determines whether or not there is a winding short-circuit depending on whether or not the evaluation value A calculated by the evaluation value analysis unit 51 exceeds a preset threshold value ⁇ 1.
  • the threshold value ⁇ 1 is a value that varies depending on the rating of the electric motor 5.
  • FIG. 4 is a flowchart for analyzing the initial reverse-phase current using the electric motor diagnosis apparatus according to the first embodiment.
  • the current (current of each phase) of the electric motor 5 is acquired from the current detection circuit 7 (step S11), and the effective value calculation unit 21 calculates the effective value of the current (step S12).
  • the operation state determination unit 41 determines whether or not the motor 5 is in the operation state from the effective value of the current, and if it is determined as the operation state (Yes in step S13), the reverse phase current calculation unit 22 calculates the reverse phase current ( Step S14). It is determined whether or not the number of calculation of the reverse phase current exceeds the predetermined number.
  • Step S15 If it is determined that the predetermined number of times is exceeded (Yes in step S15), the negative phase current value of the predetermined number of times is averaged to obtain the initial negative phase current value Isn0. (Step S16) The initial negative phase current value Isn0 is stored in the storage device 11. When the number of calculation of the reverse phase current is less than the predetermined number (No in Step S15), the current of the motor is acquired again, and Steps S11 to S15 are repeated until the predetermined number of times is reached.
  • FIG. 5 is a flowchart for determining the winding short circuit.
  • the current (current of each phase) of the electric motor 5 is acquired from the current detection circuit 7 (step S21), and the effective value calculation unit 21 calculates the effective value of the current (step S22).
  • the operation state determination unit 41 determines whether or not the motor 5 is in the operation state from the effective value of the current. If it is determined that the motor 5 is in the operation state (Yes in step S23), the reverse phase current calculation unit 22 calculates the reverse phase current Isn. (Step S24).
  • the evaluation value of the equation (8) is calculated by the evaluation value analysis unit 51 from the initial negative phase current Isn0 calculated in step S16 of FIG. 4 and stored in the storage device 11 and the negative phase current Isn calculated in step S24.
  • A is calculated (step S25).
  • the winding short-circuit determining unit 61 compares the evaluation value A with a preset threshold value ⁇ 1, and if A ⁇ ⁇ 1 is satisfied (Yes in step S26), it is determined that the winding is short-circuited and output to the outside (step S27). ). If A ⁇ 1 in step S26, the process returns to step S21 in which the current of each electric motor 5 (current of each phase) is acquired again.
  • the evaluation value A is compared with the preset threshold value ⁇ 1. Since the determination of the winding short-circuit is performed, the initial state can be offset and the negative-phase admittance is not calculated, so that a short-circuit fault in the stator winding of the motor can be detected with high accuracy. In addition, since a voltage detection circuit is not required, it is possible to provide a motor diagnostic device that can detect a short-circuit fault in the stator winding of the motor with high accuracy while suppressing power consumption with a simple configuration.
  • the voltage imbalance rate is small. This is because, when the voltage imbalance rate is large, the reverse phase current value changes due to fluctuations in the load torque, which increases the possibility of erroneous detection during the winding short-circuit determination.
  • the magnitude of the voltage unbalance rate can be selected in advance from the load balance.
  • a system with a small selected voltage unbalance rate may be targeted.
  • the measurement of the voltage imbalance rate described later may be performed in parallel or acquired in advance to determine whether this embodiment is applicable.
  • FIG. 6 is a circuit configuration diagram showing the electric motor diagnosis apparatus according to the second embodiment.
  • the main circuit 1 is provided with an instrument transformer 8 for detecting the voltage of the main circuit 1.
  • the electric motor diagnosis device 100 is provided with a voltage detection circuit 9 connected to the instrument transformer 8.
  • Other configurations are the same as those in the first embodiment.
  • the voltage detection circuit 9 detects the line voltage of the main circuit 1 of the power source connected to the electric motor, converts it into a predetermined signal such as the phase voltage of the electric motor 5, detects the voltage of the electric motor, Output to the storage device 11.
  • the output of the current detection circuit 7 and the voltage detection circuit 9 is input to the arithmetic processing unit 10, and the reverse phase current, the voltage imbalance rate, and the like are calculated by analyzing the voltage and current of the motor 5, and the winding while the motor is operating Detect by detecting short circuit.
  • FIG. 7 is a configuration diagram illustrating an outline of the arithmetic processing unit 10 in the electric motor diagnosis apparatus according to the second embodiment.
  • the arithmetic processing unit 10 includes a current-voltage conversion unit 20a, an initial analysis unit 30, a determination unit 40, an analysis unit 50, and an abnormality determination unit 60.
  • the current-voltage conversion unit 20a includes an effective value calculation unit 21, a reverse-phase current calculation unit 22, and a voltage imbalance rate calculation unit 23.
  • the current-voltage conversion unit 20a performs a symmetric coordinate conversion process from the three-phase current detected by the current detection circuit 7.
  • the negative phase current Isn is calculated by the equation (1) described in the first embodiment.
  • the voltage unbalance rate calculator 23 calculates the voltage unbalance rate Vunbal using the phase voltage or line voltage of each phase.
  • the voltage unbalance rate Vunbal is obtained by using the following equation, for example, when calculating from the line voltage.
  • Vuv is a line voltage between u phase and v phase
  • Vvw is a line voltage between v phase and w phase
  • Vwu is a line voltage between w phase and u phase.
  • the voltage unbalance rate calculation unit 23 calculates the reverse phase current only when the voltage unbalance rate Vunbal is 1% or less, and does not calculate the reverse phase current when the voltage unbalance rate exceeds 1%. . This is because when the voltage imbalance rate is large, the negative phase current value changes due to the change in load torque, so that the possibility of erroneous detection at the time of winding short-circuit determination increases. Even when short-circuit determination is performed, for example, by limiting to only when the voltage imbalance rate is 1% or less, the winding short-circuit determination accuracy can be increased.
  • the initial analysis unit 30 includes an initial reverse phase current analysis unit 31.
  • the initial negative phase current analysis unit 31 analyzes the normal negative phase current value Isn before determining the winding short circuit. As in the first embodiment, for example, the reverse phase current value for one month is calculated, and the averaged value is set as the initial reverse phase current value Isn0.
  • the determination unit 40 includes an operating state determination unit 41 and a voltage imbalance determination unit 42.
  • the operation state determination unit 41 determines the operation state of the motor based on the effective values of the current and voltage calculated by the effective value calculation unit 21.
  • the determination of the operating state of the motor is not limited to the effective values of the current and voltage, but may be determined from the instantaneous value of the current or voltage or from the on / off signal of the electromagnetic contactor 3.
  • the voltage imbalance determination unit 42 determines whether or not the voltage imbalance rate Vunbal is greater than a preset threshold value ⁇ 2. As described above, for example, a value of 1% is used as the threshold ⁇ 2.
  • the analysis unit 50 includes an evaluation value analysis unit 51 and performs an analysis for determination by the winding short-circuit determination unit 61 of the abnormality determination unit 60.
  • the method for calculating the evaluation value A is the same as in the first embodiment. That is, by analyzing the initial reverse phase current Isn0, it can be seen that if only Isn and Isn0 are measured and the evaluation value A is used as an index, the occurrence of a winding short circuit can be detected. At this time, the voltage imbalance rate Vunbal can be detected with high accuracy if it is limited to, for example, 1% or less. Further, at the initial stage of introduction of the electric motor 5, the winding short circuit is determined by monitoring the evaluation value A of the equation (8) after initialization (calculating the reverse phase admittance Yn) as no winding short circuit occurs.
  • the configuration of the abnormality determination unit 60 is the same as that of the first embodiment.
  • the abnormality determination unit 60 includes a winding short-circuit determination unit, and whether or not the evaluation value A calculated by the evaluation value analysis unit 51 exceeds a preset threshold value ⁇ 1. Thus, it is determined whether or not the winding is short-circuited.
  • FIG. 8 is a flowchart for analyzing the initial reverse-phase current using the electric motor diagnosis apparatus according to the second embodiment.
  • the current of the motor 5 (current of each phase) is acquired from the current detection circuit 7 and the voltage (line voltage or phase voltage) of the motor 5 is acquired from the voltage detection circuit 9 (step S31).
  • the effective values of current and voltage are calculated (step S32).
  • the operation state determination unit 41 determines whether or not the motor 5 is in the operation state from the effective values of the current and voltage. If it is determined as the operation state (Yes in step S33), the voltage unbalance rate calculation unit 23 determines the voltage unbalance rate. Vunbal is calculated (step S34).
  • the voltage unbalance rate Vunbal is compared with a preset threshold value ⁇ 2, and if the voltage unbalance rate Vunbal ⁇ ⁇ 2 is satisfied (Yes in step S35), the reverse phase current calculation unit 22 calculates the reverse phase current (step S36). ). It is determined whether or not the number of calculation of the reverse phase current exceeds the predetermined number. If it is determined that the predetermined number of times is exceeded (Yes in step S37), the negative phase current value of the predetermined number of times is averaged to obtain the initial negative phase current value Isn0. (Step S38) The initial negative phase current value Isn0 is stored in the storage device 11. When the number of calculation of the reverse phase current is less than the predetermined number (No in step S37), the current of the motor is acquired again, and step S31 to step S37 are repeated until the predetermined number of times is reached.
  • FIG. 9 is a flowchart for determining a winding short circuit.
  • the current of the motor 5 current of each phase
  • the voltage (line voltage or phase voltage) of the motor 5 is acquired from the voltage detection circuit 9 (step S41).
  • the effective values of current and voltage are calculated (step S42).
  • the operation state determination unit 41 determines whether or not the motor 5 is in the operation state from the effective values of the current value and the voltage value.
  • the equilibrium rate Vunbal is calculated (step S44).
  • the voltage unbalance rate Vunbal is compared with a preset threshold value ⁇ 2, and if the voltage unbalance rate Vunbal ⁇ ⁇ 2 is satisfied (Yes in step S45), the reverse phase current calculation unit 22 calculates the reverse phase current Isn (step S45). S46).
  • the evaluation value of the equation (8) is calculated by the evaluation value analysis unit 51 from the initial negative phase current Isn0 calculated in step S38 of FIG. 8 and stored in the storage device 11 and the negative phase current Isn calculated in step S46.
  • A is calculated (step S47).
  • the winding short-circuit determining unit 61 compares the evaluation value A with a preset threshold value ⁇ 1, and if A ⁇ ⁇ 1 is satisfied (Yes in step S48), it is determined that the winding is short-circuited and output to the outside (step S49). ). If A ⁇ 1 in step S48, the process returns to step S41 in which the current (current of each phase) and voltage (line voltage or phase voltage) of the motor 5 are acquired again.
  • the same effects as those of the first embodiment can be obtained. Further, the voltage unbalance rate Vunbal is obtained for the voltage unbalance rate Vunbal that is unknown or estimated to be large. If the voltage unbalance rate Vunbal is greater than a preset threshold value ⁇ 2, for example, 1%, the reverse Since it is stipulated that the short-circuit determination by the phase current is not performed, an error in the short-circuit determination is suppressed. Needless to say, if the calculated voltage unbalance rate Vunbal is smaller than the preset threshold value ⁇ 2, the winding short-circuit determination is performed according to the flowcharts of FIGS.
  • the initial reverse phase current value Isn0 is obtained by repeatedly calculating and averaging a plurality of times (predetermined number of times) before performing the winding short-circuit determination, but for each motor model and rating. By creating a correspondence table between the voltage imbalance rate and the negative phase current, it is possible to hold the initial negative phase current value Isn0.
  • FIG. 10 is a diagram showing the correspondence relationship between the voltage imbalance rate and the negative-phase current in a table format.
  • a row of the array Vun (n) and a row of the voltage unbalance rate Vunbal are prepared.
  • the preset threshold value ⁇ 2 is 1% with respect to the voltage unbalance rate Vunbal
  • the array Vun (0), Vun (1), Vun (2) is 0 ⁇ Vunbal ⁇ 0.1, 0.1 ⁇ Vunbal ⁇ 0.2, 0.2 ⁇ Vunbal ⁇ 0.3, respectively.
  • the voltage unbalance rate is calculated for an electric motor of a certain model P and rated Q, and the reverse phase current is calculated when the voltage unbalance rate is 1% or less.
  • the negative phase current value and the voltage imbalance rate are stored as a set. Then, the negative phase current and the voltage unbalance rate are stored for a certain period, and then the average of the negative phase current is obtained for each voltage unbalance rate to determine the initial negative phase current value for each voltage unbalance rate.
  • the negative phase current value Isn (1) 1 when the voltage imbalance rate is 0.15% is stored in the column of the negative phase current Isn (1) of the array Vun (1).
  • the array Vun (1) is calculated m times a predetermined number of times, m values of the negative phase current Isn (1) corresponding to Vun (1) are averaged to obtain Isn0 (1).
  • the initial negative phase current Isn0 (n) corresponding to the array Vun (n) divided into 10 is obtained and used as a table.
  • the voltage imbalance rate is calculated in step S44.
  • the initial negative phase current value corresponding to the calculated voltage imbalance rate is read from the table stored in the storage device 11.
  • a value of evaluation value A
  • the motor that has obtained the voltage unbalance rate at the time of creating the table of the correspondence relationship between the voltage unbalance rate and the reverse phase current shown in FIG. 10 or the control center system using the motor, or the voltage unbalance rate is known.
  • this system it is possible to use the values in this table from the motor model, rating, and voltage imbalance ratio without calculating the initial negative phase current value.
  • the third embodiment it is possible to perform the winding short-circuit determination without calculating the initial reverse phase current value before the winding short-circuit determination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

電動機の診断装置において、電動機(5)の電流を検出する電流検出回路(7)と、電流検出回路(7)の出力を入力して電動機(5)の巻線短絡異常を判定する演算処理部(10)とを備え、演算処理部(10)は、電動機(5)の運転状態を判定する運転状態判定部(41)と、正常時の初期逆相電流を解析する初期逆相電流解析部(31)と、運転時の電動機の電流から算出された逆相電流の初期逆相電流からの差分を評価値として電動機の巻線短絡を判定するようにしたので、逆相アドミタンスを算出することがないため、高精度に電動機の固定子巻線の短絡故障を検出できる。

Description

電動機の診断装置
 本願は、電動機の診断装置に関する。
 プラントには電動機が多数存在しており、その設備の診断はメンテナンス部門が五感診断により判定している。特に重要度の高い電動機に関しては、定期的な診断が必要になるためコストが高くなる。さらに、電動機では、機械的ストレスと熱劣化で生じた絶縁物の空隙または損傷部が放電等でレヤショート(層間短絡)を誘発し、突然絶縁破壊に至る場合があるため、一度電動機の劣化が始まると劣化が進展する状態にしか進まない。
 そこで、電動機の常時監視技術に関心が高まっている。しかしながら、電動機の常時監視の多くは、電動機毎に様々なセンサ等の計測機器を取り付けることを前提としている。計測機器は、例えばトルクメータ、エンコーダ、加速度センサ等である。ただし、数百から数千台のモータを集中管理するモータコントロールセンタへの適用は配線の数が多くなることから、その適用は現実的ではない。そのため、特殊なセンサを用いずにモータコントロールセンタで計測される電流と電圧の情報から電動機の状態を簡易的に診断し、信頼性、生産性、安全性を向上する装置が必要である。
 これに対し、出願人は、電動機、診断装置、電流センサおよび電圧センサを構成要素とした電動機の診断装置を提案している(特許文献1参照)。電流を検出する電流検出回路と、電源の主回路の電圧から電動機の電圧を検出する電圧検出回路とを設けて、逆相電流、逆相電圧、正相電流、逆相アドミタンスから、電動機稼働中で負荷トルクが変動する際にも電源不平衡を区別して巻線短絡を判定して検出を行うものである。
特許第6099852号公報
 上述の特許文献1に開示の電動機の診断装置での固定子巻線の短絡診断においては、逆相アドミタンスを用いた評価値A(特許文献1中式(10) A=|Isn-Yn・Vsn| ここでIsn:逆相電流、Yn:逆相アドミタンス、Vsn:逆相電圧)により、巻線短絡の判断を行っている。ここで、初期の逆相アドミタンスYnを求める際に、電源不平衡が小さいと逆相電流値が小さいため、逆相アドミタンスYnの誤差が大きくなる。初期逆相アドミタンスYnの誤差が大きくなると、巻線短絡評価値の右辺第二項の値の誤差が大きくなり、巻線短絡を誤検出する虞がある。そのため、逆アドミタンスYnを用いない手法が求められている。
 本願は、上記の課題を解決するための技術を開示するものであり、逆相アドミタンスを算出することなく、高精度に電動機の固定子巻線の短絡故障を検出できる、電動機の診断装置を提供することを目的とする。
 本願に開示される電動機の診断装置は、電動機の電流を検出する電流検出回路と、前記電流検出回路の出力が入力され前記電動機の巻線短絡異常を判定する演算処理部と、を備えた電動機の診断装置であって、前記演算処理部は、前記電動機の電流から実効値を算出して運転状態を判定する運転状態判定部と、正常時の初期逆相電流を解析する初期逆相電流解析部と、運転時の前記電動機の電流から算出された逆相電流と前記解析された初期逆相電流との差分により巻線短絡の評価値を算出し、前記評価値と設定された閾値との比較によって電動機の巻線短絡を判定する巻線短絡判定部と、を備えたものである。
 本願に開示される電動機の診断装置によれば、運転時の前記電動機の電流から算出された逆相電流と前記初期逆相電流との差分を評価値として巻線短絡の判定を行うので、逆相アドミタンスを算出することがないため、高精度に電動機の固定子巻線の短絡故障を検出できる。
実施の形態1に係る電動機の診断装置を示す回路構成図である。 巻線短絡の概念図である。 実施の形態1に係る電動機の診断装置の演算処理部の構成図である。 実施の形態1に係る電動機の診断装置を用いた初期逆相電流を解析するフローチャートである。 実施の形態1に係る電動機の診断装置を用いて巻線短絡判定を行うフローチャートである。 実施の形態2に係る電動機の診断装置を示す回路構成図である。 実施の形態2に係る電動機の診断装置の演算処理部の構成図である。 実施の形態2に係る電動機の診断装置を用いた初期逆相電流を解析するフローチャートである。 実施の形態2に係る電動機の診断装置を用いて巻線短絡判定を行うフローチャートである。 実施の形態3に係る電動機の診断装置に用いられる電圧不平衡率と逆相電流との対応関係を表わす図である。
 以下、本実施の形態について図を参照して説明する。なお、各図中、同一符号は、同一または相当部分を示すものとする。
実施の形態1.
 以下、実施の形態1に係る電動機の診断装置を図1から図5に基づいて説明する。
 図1は実施の形態1に係るおける電動機の診断装置を示す回路構成図で、主に閉鎖配電盤であるコントロールセンタで使用されるものである。図において、電力系統から引き込まれた電源の主回路1には、配線用遮断器2、電磁接触器3、主回路1の負荷電流を検出する計器用変成器4が設けられている。さらに負荷である電動機5が接続され、この電動機5により機械設備6が運転駆動される。
 電動機の診断装置100は、計器用変成器4に接続された電流検出回路7、演算処理部10、記憶装置11、設定回路12、表示部13、駆動回路14、外部出力部15および通信回路16を備えている。
 電流検出回路7は、計器用変成器4により検出された主回路1の負荷電流を電動機5の相電流などの所定の信号に変換して電動機の電流を検出し、演算処理部10および記憶装置11に出力する。すなわち、電動機5に接続される電源の主回路1に流れる電流から電動機5の電流を検出する。
 演算処理部10には、電流検出回路7の出力が入力され、電動機の電流解析により逆相電流などを算出して、電動機稼働中の巻線短絡の判定を行う。
 演算処理部10は、演算処理装置として、CPU(Central Processing Unit)が備えられている。なお、演算処理装置として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)等各種の論理回路、及び各種の信号処理回路等が備えられてもよい。
 記憶装置11は、演算処理部10および設定回路12に接続され、演算処理部10とデータのやり取りを行う。記憶装置11は、演算処理部10からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理部10からデータを読み出し可能に構成されたROM(Read Only Memory)あるいは不揮発性メモリ(EEPROM:Electrically Erasable Programmable Read Only Memory)等を備える。
 記憶装置11に接続された設定回路12は、セットキーを有しており、このセットキーを押す(例えば長押しする)ことによって、初期の正常状態のデータを記憶装置11に記憶保持させる。また、セットキーを解除するまでの間のデータを記憶させることができる。
 表示部13は演算処理部10に接続され、負荷電流等の検出された物理量および演算処理部10が電動機5の異常を検出したときに異常状態、警告等を表示する。
 駆動回路14は演算処理部10に接続され、計器用変成器4により検出された電流信号をもとに演算処理部10が演算した結果に基づき、電磁接触器3を開閉する制御信号を出力する。
 外部出力部15は演算処理部10からの異常状態および警告等の信号を外部に出力する。
 外部の監視装置200はPC(パーソナルコンピュータ)等から構成され、1つあるいは複数の電動機の診断装置100に接続されており、演算処理部10の情報を通信回路16を介して適宜受信するとともに電動機の診断装置100の動作状況を監視する。この外部の監視装置200と電動機の診断装置100の通信回路16との接続は、ケーブルを用いてもよいし、無線によるものであってもよい。複数の電動機の診断装置100との間にネットワークを構成してインターネットを介した接続であってもよい。
 図2は、本開示により診断する巻線短絡の概念図である。図において、a相で短絡が発生し短絡電流Ifが流れた場合、その短絡巻数をNfとする。全体の巻数Nとの比で短絡率μは
   μ=Nf/N
と表わされ、一般化される。また、電動機5の固定子巻線は同層短絡および層間短絡のいずれも発生する可能性があり、本実施の形態ではいずれの短絡も巻線短絡として診断する。
 なお、本開示では、動作開始前に、電動機5の定格情報を入力する必要がない。
 図3は、実施の形態1に係る電動機の診断装置における演算処理部10の概要を示す構成図である。演算処理部10は、電流変換部20、初期解析部30、判定部40、解析部50、異常判定部60を備える。
 電流変換部20は、実効値算出部21と逆相電流算出部22を備え、電流検出回路7で検出した三相の電流から、対称座標変換処理によって下記式(1)により、逆相電流Isnを算出する。
Figure JPOXMLDOC01-appb-M000001
ここで、Isn:逆相電流、Iu:u相電流、Iv:v相電流、Iw:w相電流である。
 初期解析部30は、初期逆相電流解析部31を備える。初期逆相電流解析部31は、巻線短絡判定をする前に正常時の逆相電流値Isnを解析する。例えば、1か月分の逆相電流値を算出し、それを平均化した値を初期逆相電流値Isn0とする。
 判定部40は、運転状態判定部41を備える。運転状態判定部41は、実効値算出部21で算出された電流の実効値を基にモータの運転状態を判定する。モータの運転状態の判定のためには、電流の実効値に限らず電流の瞬時値による判定あるいは電磁接触器3のオン、オフ信号から判定しても良い。
 解析部50は、評価値解析部51を備え、異常判定部60の巻線短絡判定部61での判定のための解析が行われる。評価値解析部51は、評価値A=|Isn-Isn0|の値を算出する。
 次に評価値Aの計算について説明する。巻線短絡はコイル素線間の短絡現象で、巻線短絡が発生すると三相固定子電流は非対称となるため、逆相成分により検出できる。三相誘導電動機の固定子巻線の一部が巻線短絡した場合の短絡率をμ(μ=Nf/N)、μ≪1と仮定すると、正相電圧Vspと逆相電圧Vsn、正相電流Ispと逆相電流Isnの間に以下の関係式が導かれる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ここで、Ypp:正相-正相成分のアドミタンス、Ynn:逆相-逆相成分のアドミタンス、Ypn:正相-逆相成分のアドミタンス、Ynp:逆相-正相成分のアドミタンス、Yn:逆相アドミタンス、ω:電源角速度、rs:固定子抵抗、rr:回転子抵抗、rf:短絡抵抗、Ls:固定子漏れインダクタンス、Lr:回転子漏れインダクタンス、Lm:励磁インダクタンス、μ:短絡率である。
 アドミタンスYの非対角成分Ypnは巻線短絡の指標にできるが、実機において非対角成分Ypnを算出することは容易ではない。そのため、ここでは初期逆相電流Isn0の正常時データを解析することにより、逆相電流Isnのみを計測、監視する方法を採用する。
 巻線短絡が発生しないとき(μ=0)はアドミタンスYの非対角成分Ypnはゼロであるため、
  Isn=Yn・Vsn=Isn0  ・・・(6)
である。巻線短絡が発生すると、
  Isn=Yn・Vsn+Ypn・Vsp=Isn0+Ypn・Vsp・・・(7)
とIsnが変化する。
 すなわち、初期逆相電流Isn0を解析することにより、IsnとIsn0のみを計測して、
評価値A=|Isn-Isn0|  ・・・(8)
を指標とすれば、巻線短絡発生を検出できることがわかる。
 電動機導入初期は巻線短絡未発生として初期化(逆相アドミタンスYnを計算)した後、式(8)の評価値Aを監視することで巻線短絡を判定する。
 異常判定部60は、巻線短絡判定部を備え、評価値解析部51で計算した評価値Aに対して、予め設定された閾値δ1を超えたか否かにより、巻線短絡の有無を判定する。なお、 閾値δ1は電動機5の定格によって異なる値である。
 次に、電動機の診断装置100を用いて診断する処理工程について図4および図5を用いて説明する。
 図4は、実施の形態1に係る電動機の診断装置を用いた初期逆相電流を解析するフローチャートである。電流検出回路7より電動機5の電流(各相の電流)を取得し(ステップS11)、実効値算出部21で電流の実効値を算出する(ステップS12)。電流の実効値から運転状態判定部41で電動機5が運転状態か否か判断し、運転状態と判定されれば(ステップS13でYes)、逆相電流算出部22で逆相電流を算出する(ステップS14)。逆相電流の算出回数が所定回数を超えたか否か判定し、所定回数を超えたと判定されれば(ステップS15でYes)、所定回数の逆相電流値を平均化し、初期逆相電流値Isn0とする(ステップS16)この初期逆相電流値Isn0は記憶装置11に記憶される。逆相電流の算出回数が所定回数に満たない場合(ステップS15でNo)、再度電動機の電流を取得し、所定回数になるまでステップS11からステップS15を繰り返す。
 初期逆相電流値Isn0を算出した後、巻線短絡判定の診断を行う。
 図5は、巻線短絡判定を行うフローチャートである。電流検出回路7より電動機5の電流(各相の電流)を取得し(ステップS21)、実効値算出部21で電流の実効値を算出する(ステップS22)。電流の実効値から運転状態判定部41で電動機5が運転状態か否か判断し、運転状態と判定されれば(ステップS23でYes)、逆相電流算出部22で逆相電流Isnを算出する(ステップS24)。
 次に、図4のステップS16で算出し、記憶装置11に記憶されている初期逆相電流Isn0とステップS24で算出した逆相電流Isnとから評価値解析部51で式(8)の評価値Aを算出する(ステップS25)。巻線短絡判定部61で、評価値Aと予め設定された閾値δ1とを比較し、A≧δ1を満たせば(ステップS26でYes)、巻線短絡と判定し、外部へ出力する(ステップS27)。
 ステップS26でA<δ1の場合、再度電動機5の電流(各相の電流)を取得するステップS21に戻る。
 以上のように、実施の形態1によれば、巻線短絡の評価値Aとして、逆相電流の初期値からの差分を用い、評価値Aと予め設定された閾値δ1とを比較することで巻線短絡の判断を行うので、初期状態をオフセットでき、逆相アドミタンスを算出することがないので、高精度に電動機の固定子巻線の短絡故障を検出できる。また、電圧検出回路も不要となるので、簡易な構成で消費電力も抑制され高精度に電動機の固定子巻線の短絡故障を検出できる、電動機の診断装置の提供が可能となる。
 なお、本実施の形態においては、電圧不平衡率が小さい場合を想定している。電圧不平衡率が大きい場合には負荷トルクの変動によって逆相電流値が変わるため、巻線短絡判定の際に誤検出する可能性が高まるためである。本実施の形態で例示した閉鎖配電盤であるコントロールセンタで使用される系においては、負荷バランスから予め電圧不平衡率の大小を選別できる。本実施の形態では、選別された電圧不平衡率が小さい系を対象とすればよい。あるいは後述する電圧不平衡率の測定を並行して実施し、または予め取得しておき、本実施の形態が適用可能か判断すればよい。
実施の形態2.
 以下、実施の形態2に係る電動機の診断装置を図6から図9に基づいて説明する。
 図6は実施の形態2に係るおける電動機の診断装置を示す回路構成図で、実施の形態1と異なるのは、主回路1には主回路1の電圧を検出する計器用変圧器8が設けられ、電動機の診断装置100には、計器用変圧器8に接続された電圧検出回路9が設けられたことである。それ以外の構成は実施の形態1と同様である。
 電圧検出回路9は、電動機に接続される電源の主回路1の線間電圧を検出して、電動機5の相電圧等所定の信号に変換して電動機の電圧を検出し、演算処理部10および記憶装置11に出力する。
 演算処理部10には、電流検出回路7および電圧検出回路9出力が入力され、電動機5の電圧および電流の解析により逆相電流、電圧不平衡率などを算出して、電動機稼働中の巻線短絡を判定して検出を行う。
 図7は、実施の形態2に係る電動機の診断装置における演算処理部10の概要を示す構成図である。演算処理部10は、電流電圧変換部20a、初期解析部30、判定部40、解析部50、異常判定部60を備える。
 電流電圧変換部20aは、実効値算出部21、逆相電流算出部22および電圧不平衡率算出部23を備え、電流検出回路7で検出した三相の電流から、対称座標変換処理によって実施の形態1で述べた式(1)により、逆相電流Isnを算出する。
 電圧不平衡率算出部23は、各相の相電圧もしくは線間電圧を用いて電圧不平衡率Vunbalを算出する。電圧不平衡率Vunbalは、例えば線間電圧から算出する場合、次の式を用いて求める。
 Vunbal=((各線間電圧と平均電圧との最大差)/平均電圧)×100%
 即ち  (Vuv-Vavg)/Vavg×100%
     (Vvw-Vavg)/Vavg×100%
     (Vwu-Vavg)/Vavg×100%  の最大値
  但し、平均電圧Vavg=(Vuv+Vvw+Vwu)/3
 ここで、Vuv:u相―v相間の線間電圧、Vvw:v相―w相間の線間電圧、Vwu:w相―u相間の線間電圧である。
 電圧不平衡率算出部23において、電圧不平衡率Vunbalが1%以下のときのみ逆相電流を算出し、電圧不平衡率が1%を超える場合には、逆相電流を計算しないのが好ましい。なぜなら、電圧不平衡率が大きい場合には負荷トルクの変動によって逆相電流値が変わるため、巻線短絡判定の際に誤検出する可能性が高まるためである。短絡判定するときにも、例えば電圧不平衡率1%以下のときのみと限定することで、巻線短絡判定精度を高めることができる。
 初期解析部30は、初期逆相電流解析部31を備える。初期逆相電流解析部31は、巻線短絡判定をする前に正常時の逆相電流値Isnを解析する。実施の形態1と同様に例えば、1か月分の逆相電流値を算出し、それを平均化した値を初期逆相電流値Isn0とする。
 判定部40は、運転状態判定部41および電圧不平衡判定部42を備える。運転状態判定部41は、実効値算出部21で算出された電流および電圧の実効値を基にモータの運転状態を判定する。モータの運転状態の判定のためには、電流および電圧の実効値に限らず電流または電圧の瞬時値による判定あるいは電磁接触器3のオン、オフ信号から判定しても良い。
 電圧不平衡判定部42は、電圧不平衡率Vunbalが予め設定された閾値δ2より大きいか否かを判定する。閾値δ2は上述したように、例えば1%の値を用いる。
 解析部50は、評価値解析部51を備え、異常判定部60の巻線短絡判定部61での判定のための解析が行われる。評価値解析部51は、式(8)の評価値A=|Isn-Isn0|の値を算出する。評価値Aの算出方法は実施の形態1と同様である。
 すなわち、初期逆相電流Isn0を解析することにより、IsnとIsn0のみを計測して、評価値Aを指標とすれば、巻線短絡発生を検出できることがわかる。
 このとき、電圧不平衡率Vunbalは例えば1%以下の場合と限定すると高精度に検出できる。また、電動機5の導入初期は巻線短絡未発生として初期化(逆相アドミタンスYnを計算)した後、式(8)の評価値Aを監視することで巻線短絡を判定する。
 異常判定部60の構成は実施の形態1と同様であり、巻線短絡判定部を備え、評価値解析部51で計算した評価値Aに対して、予め設定された閾値δ1を超えたか否かにより、巻線短絡の有無を判定する。
 次に、電動機の診断装置100を用いて診断する処理工程について図8および図9を用いて説明する。
 図8は、実施の形態2に係る電動機の診断装置を用いた初期逆相電流を解析するフローチャートである。電流検出回路7より電動機5の電流(各相の電流)を取得するとともに電圧検出回路9より電動機5の電圧(線間電圧または相電圧)を取得し(ステップS31)、実効値算出部21で電流および電圧の実効値を算出する(ステップS32)。電流および電圧の実効値から運転状態判定部41で電動機5が運転状態か否か判断し、運転状態と判定されれば(ステップS33でYes)、電圧不平衡率算出部23で電圧不平衡率Vunbalを算出する(ステップS34)。
 電圧不平衡率Vunbalと予め設定された閾値δ2とを比較し、電圧不平衡率Vunbal≦δ2を満たせば(ステップS35でYes)、逆相電流算出部22で逆相電流を算出する(ステップS36)。逆相電流の算出回数が所定回数を超えたか否か判定し、所定回数を超えたと判定されれば(ステップS37でYes)、所定回数の逆相電流値を平均化し、初期逆相電流値Isn0とする(ステップS38)この初期逆相電流値Isn0は記憶装置11に記憶される。逆相電流の算出回数が所定回数に満たない場合(ステップS37でNo)、再度電動機の電流を取得し、所定回数になるまでステップS31からステップS37を繰り返す。
 初期逆相電流値Isn0を算出した後、巻線短絡判定の診断を行う。
 図9は、巻線短絡判定を行うフローチャートである。電流検出回路7より電動機5の電流(各相の電流)を取得するとともに電圧検出回路9より電動機5の電圧(線間電圧または相電圧)を取得し(ステップS41)、実効値算出部21で電流および電圧の実効値を算出する(ステップS42)。電流値および電圧値の実効値から運転状態判定部41で電動機5が運転状態か否か判断し、運転状態と判定されれば(ステップS43でYes)、電圧不平衡率算出部23で電圧不平衡率Vunbalを算出する(ステップS44)。
 電圧不平衡率Vunbalと予め設定された閾値δ2とを比較し、電圧不平衡率Vunbal≦δ2を満たせば(ステップS45でYes)、逆相電流算出部22で逆相電流Isnを算出する(ステップS46)。次に、図8のステップS38で算出し、記憶装置11に記憶されている初期逆相電流Isn0とステップS46で算出した逆相電流Isnとから評価値解析部51で式(8)の評価値Aを算出する(ステップS47)。巻線短絡判定部61で、評価値Aと予め設定された閾値δ1とを比較し、A≧δ1を満たせば(ステップS48でYes)、巻線短絡と判定し、外部へ出力する(ステップS49)。
 ステップS48でA<δ1の場合、再度電動機5の電流(各相の電流)、電圧(線間電圧または相電圧)を取得するステップS41に戻る。
 以上のように、実施の形態2によれば、実施の形態1と同様の効果を奏する。さらに、電圧不平衡率Vunbalが未知のものあるいは大きいと推測されるものについて、電圧不平衡率Vunbalを求め、電圧不平衡率Vunbalが予め設定した閾値δ2、例えば1%より大の場合は、逆相電流での短絡判定を行わないと規定するため、短絡判定の誤差が抑制される。算出された電圧不平衡率Vunbalが予め設定した閾値δ2より小さければ、図8および図9のフローチャートに従って、巻線短絡判定が行われることは言うまでもない。
実施の形態3.
 実施の形態1および2において、初期逆相電流値Isn0は巻線短絡判定を行う前に複数回(所定の回数)繰り返し算出し、平均化することで求めたが、電動機の機種および定格毎に電圧不平衡率と逆相電流との対応テーブルを作成しておくことで、初期逆相電流値Isn0を保有することも可能である。
 図10は、電圧不平衡率と逆相電流との対応関係をテーブル形式で表わす図である。まず、このテーブルの作成方法について説明する。配列Vun(n)の行と電圧不平衡率Vunbalの行を準備する。電圧不平衡率Vunbalに対し、予め設定した閾値δ2を1%とすると、10等分された配列Vun(0)、Vun(1)、Vun(2)、・・・・、Vun(7)、Vun(8)、Vun(9)に対応した電圧不平衡率Vunbal(%)は、順に0≦Vunbal≦0.1、0.1<Vunbal≦0.2、0.2<Vunbal≦0.3、・・・・、0.7<Vunbal≦0.8、0.8<Vunbal≦0.9、0.9<Vunbal≦1.0となる。
 ある機種Pで定格Qの電動機について、電圧不平衡率を算出し、電圧不平衡率が1%以下の場合に逆相電流を算出する。逆相電流値と電圧不平衡率をセットで記憶させる。そして、一定期間逆相電流と電圧不平衡率を記憶させ、その後電圧不平衡率毎に逆相電流の平均を求め、電圧不平衡率毎の初期逆相電流値を決定する。例えば、電圧不平衡率が0.15%の時の逆相電流値Isn(1)1は配列Vun(1)の逆相電流Isn(1)の欄に格納される。配列Vun(1)が所定回数m回算出されると、Vun(1)に対応する逆相電流Isn(1)のm個の値を平均化し、Isn0(1)とする。同様に10分割された配列Vun(n)に対応する初期逆相電流Isn0(n)を求めデーブルとする。
 機種Pで定格Qの電動機について巻線短絡判定を行う場合には、例えば、図9のフローチャートに従い、ステップS44において電圧不平衡率を算出する。算出した電圧不平衡率に対応する初期逆相電流値を記憶装置11に格納されたテーブルから読み出す。この読み出された初期逆相電流値とステップS46で算出された逆相電流を用い、ステップS47で評価値A=|Isn-Isn0|の値を算出し、巻線短絡判定を行う。
 また、上述の図10に示される電圧不平衡率と逆相電流との対応関係のテーブル作成時に電圧不平衡率を取得した電動機あるいはそれを用いたコントロールセンタの系、あるいは電圧不平衡率が既知の系においては、初期逆相電流値を算出することなく電動機の機種および定格、電圧不平衡率からこのテーブルの値を用いることが可能である。
 以上のように、実施の形態3によれば、巻線短絡判定前に、初期逆相電流値を算出することなく、巻線短絡判定を行うことが可能となる。
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1:主回路、 2:配線用遮断器、 3:電磁接触器、 4:計器用変成器、 5:電動機、 6:機械設備、 7:電流検出回路、 8:計器用変圧器、 9:電圧検出回路、 10:演算処理部、 11:記憶装置、 12:設定回路、 13:表示部、 14:駆動回路、 15:外部出力部、 16:通信回路、 20:電流変換部、 20a:電流電圧変換部、 21:実効値算出部、 22:逆相電流算出部、 23:電圧不平衡率算出部、 30:初期解析部、  31:初期逆相電流解析部、 40:判定部、 41:運転状態判定部、 42:電圧不平衡判定部、 50:解析部、 51:評価値解析部、 60:異常判定部、 61:巻線短絡判定部、 100:電動機の診断装置、 200:監視装置。

Claims (4)

  1.  電動機の電流を検出する電流検出回路と、前記電流検出回路の出力が入力され前記電動機の巻線短絡異常を判定する演算処理部と、を備えた電動機の診断装置であって、
    前記演算処理部は、
     前記電動機の電流から実効値を算出して運転状態を判定する運転状態判定部と、
     正常時の初期逆相電流を解析する初期逆相電流解析部と、
     運転時の前記電動機の電流から算出された逆相電流と前記解析された初期逆相電流との差分により巻線短絡の評価値を算出し、前記評価値と設定された閾値との比較によって電動機の巻線短絡を判定する巻線短絡判定部と、を備えた電動機の診断装置。
  2.  前記電動機の電圧を検出する電圧検出回路をさらに備え、
    前記演算処理部は、
     前記電動機の電流および電圧から実効値を算出して運転状態を判定する運転状態判定部と、
     前記電動機の電圧から電圧不平衡率を算出し、算出された前記電圧不平衡率と設定された閾値とを比較し巻線短絡判定を行うか判定する電圧不平衡率判定部と、
     前記電圧不平衡率判定部で巻線短絡判定を行うと判定された場合、正常時の初期逆相電流を解析する初期逆相電流解析部と、
     前記電圧不平衡率判定部で巻線短絡判定を行うと判定された場合、運転時の前記電動機の電流から算出された逆相電流と前記解析された初期逆相電流との差分により巻線短絡の評価値を算出し、前記評価値と設定された閾値との比較によって電動機の巻線短絡を判定する巻線短絡判定部と、を備えた請求項1に記載の電動機の診断装置。
  3.  予め電動機の機種および定格毎に所定の電圧不平衡率範囲毎の逆相電流を取得し、取得された複数の逆相電流を平均化して電圧不平衡率範囲毎の初期逆相電流値としたテーブルを格納する記憶装置を備え、
     前記初期逆相電流解析部は、前記記憶装置から前記電動機の機種および定格毎に作成された所定範囲毎の電圧不平衡率の初期逆相電流値としたテーブルを読み出して、予め所得した前記電動機の電圧不平衡率に対応する初期逆相電流の値とすることを特徴とする請求項1に記載の電動機の診断装置。
  4.  予め電動機の機種および定格毎に所定の電圧不平衡率範囲毎の逆相電流を取得し、取得された複数の逆相電流を平均化して電圧不平衡率範囲毎の初期逆相電流値としたテーブルを格納する記憶装置を備え、
     前記初期逆相電流解析部は、前記電圧不平衡率判定部で巻線短絡判定を行うと判定された場合、前記記憶装置から前記電動機の機種および定格毎に作成された所定範囲毎の電圧不平衡率の初期逆相電流値としたテーブルを読み出して、前記算出された電圧不平衡率に対応する初期逆相電流の値とすることを特徴とする請求項2に記載の電動機の診断装置。
PCT/JP2018/015822 2018-04-17 2018-04-17 電動機の診断装置 WO2019202651A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880092193.4A CN111936874B (zh) 2018-04-17 2018-04-17 电动机的诊断装置
PCT/JP2018/015822 WO2019202651A1 (ja) 2018-04-17 2018-04-17 電動機の診断装置
EP18915192.1A EP3783376B1 (en) 2018-04-17 2018-04-17 Electric motor diagnosing device
JP2020514817A JP6945728B2 (ja) 2018-04-17 2018-04-17 電動機の診断装置
KR1020207029000A KR102376883B1 (ko) 2018-04-17 2018-04-17 전동기의 진단 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015822 WO2019202651A1 (ja) 2018-04-17 2018-04-17 電動機の診断装置

Publications (1)

Publication Number Publication Date
WO2019202651A1 true WO2019202651A1 (ja) 2019-10-24

Family

ID=68238891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015822 WO2019202651A1 (ja) 2018-04-17 2018-04-17 電動機の診断装置

Country Status (5)

Country Link
EP (1) EP3783376B1 (ja)
JP (1) JP6945728B2 (ja)
KR (1) KR102376883B1 (ja)
CN (1) CN111936874B (ja)
WO (1) WO2019202651A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731204A (zh) * 2020-12-29 2021-04-30 哈尔滨宇龙自动化有限公司 一种永磁同步电机匝间短路故障定位检测控制方法
KR20220057233A (ko) * 2020-10-29 2022-05-09 경북대학교 산학협력단 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법
WO2023084625A1 (ja) * 2021-11-10 2023-05-19 三菱電機株式会社 電動機の診断装置、電動機の診断方法および電動機の異常予兆推論装置
WO2024013809A1 (ja) * 2022-07-11 2024-01-18 東芝三菱電機産業システム株式会社 絶縁診断装置及び絶縁診断方法
US11988715B2 (en) 2020-10-29 2024-05-21 Kyungpook National University Industry-Academic Cooperation Foundation Device for diagnosing turn-short fault of induction motor and method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190331A1 (ja) * 2021-03-11 2022-09-15 株式会社日立産機システム 電力変換装置
CN113567768A (zh) * 2021-09-09 2021-10-29 深圳市诺科科技有限公司 一种步进电机缺相检测电路及其方法
CN114325466B (zh) * 2021-11-25 2022-11-18 中国大唐集团科学技术研究院有限公司火力发电技术研究院 一种发电机出口互感器匝间短路自检***
CN117074942B (zh) * 2023-10-16 2023-12-22 希望森兰科技股份有限公司 一种电机故障自诊断方法、装置及储存介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504857B1 (ja) * 1970-02-09 1975-02-25
JP2012186973A (ja) * 2011-03-08 2012-09-27 Doshisha 交流電動機における固定子巻線の短絡故障診断方法
JP6099852B2 (ja) 2014-12-10 2017-03-22 三菱電機株式会社 電動機の診断装置
WO2017081908A1 (ja) * 2015-11-11 2017-05-18 三菱電機株式会社 電動機の診断装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504857A (en) * 1973-05-18 1975-01-18 Hitachi Ltd Unbalance detection relay
US6099852A (en) 1998-09-23 2000-08-08 Johnson & Johnson Vision Products, Inc. Wettable silicone-based lenses
JP2000245054A (ja) 1999-02-21 2000-09-08 Yazaki Corp 通電不良判定装置
US6636823B1 (en) * 1999-09-30 2003-10-21 Rockwell Automation Technologies, Inc. Method and apparatus for motor fault diagnosis
KR100925148B1 (ko) * 2007-11-28 2009-11-05 고려대학교 산학협력단 3상 교류 전동기의 고장 진단 장치, 방법, 및 상기 방법을실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한매체
KR101099022B1 (ko) * 2009-01-30 2011-12-28 위덕대학교 산학협력단 발전기용 고장 진단 시스템 및 그 제어방법
KR101142973B1 (ko) * 2010-02-23 2012-05-08 고려대학교 산학협력단 전동기 결선 불량 진단 장치, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 매체
CN102135600A (zh) * 2011-01-28 2011-07-27 中国人民解放军海军潜艇学院 异步电动机故障检测装置及方法
US8963556B2 (en) * 2013-04-30 2015-02-24 Eaton Corporation System and method for detecting excess voltage drop in three-phase AC circuits
GB2534406B (en) * 2015-01-23 2017-01-11 Rolls Royce Plc Fault detection and diagnosis
CN106291352A (zh) * 2015-05-26 2017-01-04 江森自控空调冷冻设备(无锡)有限公司 电机故障检测方法和装置以及电机故障保护***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504857B1 (ja) * 1970-02-09 1975-02-25
JP2012186973A (ja) * 2011-03-08 2012-09-27 Doshisha 交流電動機における固定子巻線の短絡故障診断方法
JP6099852B2 (ja) 2014-12-10 2017-03-22 三菱電機株式会社 電動機の診断装置
WO2017081908A1 (ja) * 2015-11-11 2017-05-18 三菱電機株式会社 電動機の診断装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057233A (ko) * 2020-10-29 2022-05-09 경북대학교 산학협력단 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법
KR102488028B1 (ko) * 2020-10-29 2023-01-13 경북대학교 산학협력단 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법
US11988715B2 (en) 2020-10-29 2024-05-21 Kyungpook National University Industry-Academic Cooperation Foundation Device for diagnosing turn-short fault of induction motor and method thereof
CN112731204A (zh) * 2020-12-29 2021-04-30 哈尔滨宇龙自动化有限公司 一种永磁同步电机匝间短路故障定位检测控制方法
WO2023084625A1 (ja) * 2021-11-10 2023-05-19 三菱電機株式会社 電動機の診断装置、電動機の診断方法および電動機の異常予兆推論装置
KR20240070590A (ko) 2021-11-10 2024-05-21 미쓰비시덴키 가부시키가이샤 전동기의 진단 장치, 전동기의 진단 방법 및 전동기의 이상 징조 추론 장치
WO2024013809A1 (ja) * 2022-07-11 2024-01-18 東芝三菱電機産業システム株式会社 絶縁診断装置及び絶縁診断方法
JP7422942B1 (ja) 2022-07-11 2024-01-26 東芝三菱電機産業システム株式会社 絶縁診断装置及び絶縁診断方法

Also Published As

Publication number Publication date
JP6945728B2 (ja) 2021-10-06
EP3783376A1 (en) 2021-02-24
EP3783376B1 (en) 2022-04-27
KR20200130405A (ko) 2020-11-18
CN111936874A (zh) 2020-11-13
CN111936874B (zh) 2023-10-03
JPWO2019202651A1 (ja) 2021-02-25
EP3783376A4 (en) 2021-05-19
KR102376883B1 (ko) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2019202651A1 (ja) 電動機の診断装置
JP6099852B2 (ja) 電動機の診断装置
JP5875734B2 (ja) 電動機の診断装置および開閉装置
US9625519B2 (en) Drive failure protection
US20160103157A1 (en) Ratio metric current measurement
JP5065192B2 (ja) モータ制御装置及びモータの絶縁劣化検出方法
US20050218907A1 (en) System and method for on line monitoring of insulation condition for dc machines
KR20090055156A (ko) 3상 교류 전동기의 고장 진단 장치, 방법, 및 상기 방법을실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한매체
KR20070021573A (ko) 모터 제어 장치, 그 제어방법 및 인버터부의 고장검출장치
KR102104117B1 (ko) 전동기의 진단 장치
EP2587654A1 (en) Power conversion apparatus
KR20150080063A (ko) 확장형 칼만 필터를 이용한 동기 발전기의 고장 진단 방법 및 장치
JPWO2020208743A1 (ja) 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
WO2017081908A1 (ja) 電動機の診断装置
KR100823723B1 (ko) 인버터구동 교류전동기의 고정자권선 결함 진단 장치 및방법
WO2023084625A1 (ja) 電動機の診断装置、電動機の診断方法および電動機の異常予兆推論装置
KR20030053385A (ko) 유도 전동기 상시 감시 시스템
JP2005321203A (ja) 系統保護リレー電源の劣化診断方法
Jacob et al. Energy Management by Online Efficiency Estimation and Condition Monitoring of Induction Motor
Surya et al. A simplified cost effective condition monitoring and diagnostic system for detection of faults and protection of electrical machines
KR20240041384A (ko) 전기부하의 동작전류 분석을 통한 반도체 장비용 fdc 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514817

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207029000

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018915192

Country of ref document: EP

Effective date: 20201117