WO2019201063A1 - 一种天线***、馈电网络重构方法及装置 - Google Patents

一种天线***、馈电网络重构方法及装置 Download PDF

Info

Publication number
WO2019201063A1
WO2019201063A1 PCT/CN2019/079760 CN2019079760W WO2019201063A1 WO 2019201063 A1 WO2019201063 A1 WO 2019201063A1 CN 2019079760 W CN2019079760 W CN 2019079760W WO 2019201063 A1 WO2019201063 A1 WO 2019201063A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
antenna sub
antenna
radio frequency
sub
Prior art date
Application number
PCT/CN2019/079760
Other languages
English (en)
French (fr)
Inventor
张关喜
沈龙
王勇勇
秦忠明
赵建平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19789463.7A priority Critical patent/EP3780280A4/en
Publication of WO2019201063A1 publication Critical patent/WO2019201063A1/zh
Priority to US17/073,387 priority patent/US11469525B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • H01Q21/293Combinations of different interacting antenna units for giving a desired directional characteristic one unit or more being an array of identical aerial elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/002Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an antenna system, a feed network reconstruction method, and an apparatus.
  • the mobile communication antenna system mainly includes an antenna, a feeder cable, and an RF channel.
  • the antenna at the top of the tower is connected to the RF channel below via a length of feeder cable.
  • the output power of the transmitter in the RF channel is fed through the feeder cable to the antenna installed at the top of the tower and transmitted to the air.
  • the mobile phone signal is received by the tower base station antenna and then enters the tower through the feeder cable. The receiver in the RF channel.
  • the large antenna array can overcome the path loss of the multipath transmission due to the high gain, and meet the requirements of the backhaul and mobile scenes in the 5G communication.
  • the number of radio frequency channels is generally concentrated in a horizontal dimension.
  • Each radio frequency channel is connected to an antenna array, and an antenna sub-array composed of a plurality of antenna radiating elements in a vertical direction is used. Therefore, the mobile communication antenna system can perform beam scanning at the horizontal level to achieve coverage of the beam at 120 degrees on the horizontal plane, but generally a fixed beam in the vertical direction, resulting in a part when the user is distributed in a vertical direction such as a tall building. The beam coverage of the floor is not good.
  • the present application provides an antenna system, a feed network reconstruction method, and a device, which can dynamically adjust a beam coverage of an antenna system.
  • the present application provides an antenna system including: an antenna array, a control unit, a network reconstruction unit, and K radio frequency channels;
  • the antenna array includes L antenna sub-arrays, where L is a positive integer greater than one;
  • the network reconstruction unit is configured to divide the L antenna sub-arrays into M antenna sub-array groups, and connect the M antenna sub-array groups to the K radio frequency channels, wherein one antenna sub-array group One polarization direction is connected to one RF channel; M is a positive integer, and K is an integral multiple of M;
  • the control unit is configured to control the network reconstruction unit to adjust a mapping relationship between the antenna sub-array group and the antenna sub-array of the at least one of the K radio frequency channels.
  • the control unit in the antenna system controls the network reconstruction unit to change the network state, and adjusts the mapping relationship between the antenna sub-array group and the antenna sub-array connected to each radio channel to change the connection of each radio channel.
  • the number of radiating elements in the antenna sub-array group in the horizontal direction and/or the vertical direction may also change the horizontal and/or vertical distribution of the radio frequency channel, so that at least one of the K radio frequency channels may be changed.
  • the narrower the beam width of the beam generated by the antenna sub-array group on the horizontal plane, and the vertical of the radiating elements in the antenna sub-array group The more the number, the narrower the beam generated by the beam generated by the antenna sub-array group in the vertical direction, so the width of the generated beam of the antenna sub-array group connected to each RF channel can be adjusted, and the respective K radio channels are
  • the connected antenna sub-array group generates beam beams of the beam.
  • control unit is configured to control the network reconfiguration unit to adjust an antenna sub-array group and an antenna connected to at least one of the K radio frequency channels
  • the mapping relationship of the sub-array is specifically: controlling the network reconstruction unit to adjust the number X of the antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, wherein the X antenna sub-array groups in the horizontal direction are the same
  • the beam generated in the polarization direction includes E directions in the horizontal direction, X and E are positive integers, and 1 ⁇ E ⁇ X ⁇ M.
  • the control unit may control the network reconstruction unit to adjust the number of the antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, when each polarization of the antenna array is in the horizontal direction.
  • each polarization of the antenna system can perform multi-directional beam coverage in the horizontal direction, and each polarization of the antenna array corresponds to a single horizontal direction.
  • the antenna system can perform single-point beam coverage in the horizontal direction. Therefore, by adjusting the number of antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, the horizontal coverage of the beam of the antenna system can be changed.
  • the control unit is configured to control the network reconfiguration unit to adjust the K
  • the mapping relationship between the antenna sub-array group and the antenna sub-array connected to the at least one radio frequency channel in the radio channel is specifically: controlling the network reconfiguration unit to adjust the number Y of the antenna sub-array groups connected to the K radio frequency channels in the vertical direction,
  • the beam generated in the same polarization direction of the Y antenna sub-array groups in the vertical direction includes F directions in the vertical direction, and Y and F are positive integers, and 1 ⁇ F ⁇ Y ⁇ M.
  • the control unit may control the network reconstruction unit to adjust the number of the antenna sub-array groups connected to the K radio frequency channels in the vertical direction, when each polarization of the antenna array is in the vertical direction.
  • each polarization of the antenna system can perform multi-directional beam coverage in the vertical direction, and each polarization of the antenna array corresponds to a single direction in the vertical direction.
  • the antenna system can perform single-point beam coverage in the vertical direction. Therefore, by adjusting the number of the antenna sub-array groups connected to the K radio frequency channels in the vertical direction, the vertical coverage of the beam of the antenna system can be changed.
  • control unit is configured to control the network reconfiguration unit to adjust the K radio frequency
  • the mapping relationship between the antenna sub-array group and the antenna sub-array connected to the at least one radio frequency channel in the channel is specifically: controlling the network reconfiguration unit to adjust an antenna included in the antenna sub-array group connected to at least one of the K radio frequency channels
  • the number of antenna sub-arrays included in the antenna sub-array group connected to the radio frequency channel is changed in the horizontal direction because the antenna sub-array in the horizontal direction of the antenna sub-array group The more the number, the narrower the horizontal width of the beam produced by the antenna sub-array group, so that the coverage of the beam in the horizontal direction can be changed.
  • control unit is configured to control the network reconfiguration unit to adjust the K radio frequency
  • the mapping relationship between the antenna sub-array group and the antenna sub-array connected to the at least one radio frequency channel in the channel is specifically: controlling the network reconfiguration unit to adjust an antenna included in the antenna sub-array group connected to at least one of the K radio frequency channels.
  • the number of antenna sub-arrays included in the antenna sub-array group connected to the variable radio frequency channel is adjusted in the vertical direction because the antenna sub-array in the vertical direction of the antenna sub-array group The greater the number of beams, the narrower the vertical width of the beam produced by the antenna sub-array group, so that the coverage of the beam in the vertical direction can be changed.
  • control unit is further configured to control the network reconfiguration unit to adjust the K radio frequency The spacing between the antenna sub-arrays in the antenna sub-array group to which at least one RF channel in the channel is connected. That is, in the embodiment of the present application, the beam generated by the antenna sub-array group connected to the at least one radio frequency channel is changed by changing the horizontal spacing between the antenna sub-arrays in the antenna sub-array group to which the radio frequency channel is connected.
  • Width because the horizontal distance between the antenna sub-arrays connected to one RF channel is larger, the narrower the horizontal width of the RF channel beam, the larger the vertical spacing between the antenna sub-arrays connected to one RF channel, and the higher the vertical width of the RF channel beam. It is narrow, so it is possible to change the coverage of the beam in the horizontal and vertical directions.
  • control unit is further configured to control the network reconfiguration unit to adjust the K radio frequency
  • the phase shift increment in the antenna sub-array group to which at least one radio frequency channel in the channel is connected is changed. That is to say, in the embodiment of the present application, by changing the radio frequency channel to connect different antenna sub-arrays, the phase shift increment in the antenna sub-array group connected to the radio frequency channel is changed, and the RF is changed under different phase shift increments.
  • the beams generated by the antenna sub-array group connected to the channel can have different directions, so that the direction of the beam can be changed.
  • the present application provides a feed network reconstruction method, the method comprising: first, dividing L antenna sub-arrays in an antenna array into M antenna sub-array groups, and M antenna sub-array groups Connected to the K radio frequency channels respectively, wherein one polarization direction of one antenna sub-array group is connected to one radio frequency channel, L is a positive integer greater than 1, M is a positive integer, and K is an integral multiple of M; Any one of the RF channels for signal processing of signals received by the connected antenna sub-array group and/or signals to be transmitted. Then, the mapping relationship between the antenna sub-array group connected to at least one of the K radio frequency channels and the antenna sub-array is adjusted.
  • the mapping relationship between the antenna sub-array group connected to each radio frequency channel and the antenna sub-array is adjusted to change the radiation unit in the antenna sub-array group connected to each radio frequency channel in the horizontal direction and/or vertical.
  • the number of directions may also change the distribution of the RF channel in the horizontal direction and/or the vertical direction to change the coverage of the beam generated by the antenna sub-array group to which the at least one RF channel is connected.
  • the narrower the beam width of the beam generated by the antenna sub-array group on the horizontal plane, and the vertical of the radiating elements in the antenna sub-array group The more the number, the narrower the beam generated by the beam generated by the antenna sub-array group in the vertical direction, so the width of the generated beam of the antenna sub-array group connected to each RF channel can be adjusted, and the respective K radio channels are
  • the connected antenna sub-array group generates beam beams of the beam.
  • the mapping between the antenna sub-array group and the antenna sub-array of the at least one of the K radio frequency channels is adjusted, including: The number X of the antenna sub-array groups connected by the K radio frequency channels in the horizontal direction, wherein the beams generated in the same polarization direction of the X antenna sub-array groups in the horizontal direction include E directions in the horizontal direction, X and E are positive integers, and 1 ⁇ E ⁇ X ⁇ M.
  • the antenna system can adjust the number of the antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, and each of the polarizations of the antenna array corresponds to multiple radio frequencies in the horizontal direction.
  • each polarization of the antenna system can be multi-directional beam coverage in the horizontal direction, and each polarization of the antenna array corresponds to a single RF channel connected in the horizontal direction.
  • the antenna system can perform single-point beam coverage in the horizontal direction. Therefore, by adjusting the number of antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, the horizontal coverage of the beam of the antenna system can be changed.
  • the antenna of the at least one radio frequency channel connected to the K radio frequency channels is adjusted
  • the mapping relationship between the array group and the antenna sub-array includes: adjusting the number Y of the K radio frequency channel connecting antenna sub-array groups in the vertical direction, wherein the Y antenna sub-array groups in the vertical direction have the same polarization direction
  • the generated beam includes F pointing directions in the vertical direction, and Y and F are positive integers, and 1 ⁇ F ⁇ Y ⁇ M.
  • the number of the antenna sub-array groups connected to the K radio frequency channels is adjusted in the vertical direction, and each polarization of the antenna array corresponds to a plurality of radio frequency channels in the vertical direction.
  • each polarization of the antenna system can be multi-directional beam coverage in the vertical direction.
  • the antenna system can perform single-point beam coverage in the vertical direction. Therefore, by adjusting the number of the antenna sub-array groups connected to the K radio frequency channels in the vertical direction, the vertical coverage of the beam of the antenna system can be changed.
  • the antenna of the at least one of the K radio frequency channels is connected
  • the mapping relationship between the array group and the antenna sub-array includes: adjusting the number of antenna sub-arrays included in the antenna sub-array group connected to at least one of the K radio frequency channels in a horizontal direction, wherein the antenna included in the horizontal direction
  • the beams generated by the antenna sub-array groups having different numbers of sub-arrays have different widths in the horizontal direction.
  • the number of antenna sub-arrays included in the antenna sub-array group connected to the radio frequency channel is changed in the horizontal direction because the antenna sub-array in the horizontal direction of the antenna sub-array group The more the number, the narrower the horizontal width of the beam produced by the antenna sub-array group, so that the coverage of the beam in the horizontal direction can be changed.
  • the antenna of the at least one radio frequency channel connected to the K radio frequency channels is adjusted
  • the mapping relationship between the array group and the antenna sub-array includes: adjusting an amount of the antenna sub-array included in the antenna sub-array group connected to at least one of the K radio frequency channels in a vertical direction, wherein the vertical direction includes The beams generated by the antenna sub-array groups having different numbers of antenna sub-arrays have different widths in the vertical direction.
  • the number of antenna sub-arrays included in the antenna sub-array group connected to the variable radio frequency channel is adjusted in the vertical direction because the antenna sub-array in the vertical direction of the antenna sub-array group The greater the number of beams, the narrower the vertical width of the beam produced by the antenna sub-array group, so that the coverage of the beam in the vertical direction can be changed.
  • the method further includes: adjusting, by the at least one radio frequency channel of the K radio frequency channels, The spacing between the antenna sub-arrays included in the antenna sub-array group to change the width of the beam generated by the antenna sub-array group to which the at least one radio frequency channel is connected.
  • the radio frequency channel by changing the horizontal spacing between the antenna sub-arrays in the antenna sub-array group to which the radio frequency channel is connected, because the horizontal spacing of the antenna sub-arrays connected by one radio frequency channel is larger, the radio frequency channel The narrower the horizontal width of the beam, the larger the vertical spacing between the antenna sub-arrays connected to one RF channel, and the narrower the vertical width of the RF channel beam, so that the coverage of the beam in the horizontal and vertical directions can be changed.
  • the method further includes: adjusting, by the at least one radio frequency channel of the K radio frequency channels, The phase shift increment in the antenna sub-array group. That is to say, in the embodiment of the present application, by changing the radio frequency channel to connect different antenna sub-arrays, the phase shift increment in the antenna sub-array group connected to the radio frequency channel is changed, and the RF is changed under different phase shift increments.
  • the beams generated by the antenna sub-array group connected to the channel can have different directions, so that the direction of the beam can be changed.
  • the present application provides an antenna system including a processor and a memory, wherein the memory is configured to store program code, and when the program code is executed by the processor, the antenna system implements the first aspect A function in an antenna system.
  • the application provides a network device, where the network device includes a processor configured to support the network device to implement the functions of the antenna system provided by the first aspect.
  • the network device can also include a memory for coupling with the processor that retains the program instructions and data necessary for the network device.
  • the network device can also include a communication interface for the network device to communicate with other devices or communication networks.
  • the present application provides a processing apparatus including a processor configured to support the processing apparatus to implement the functions of a control unit in an antenna system provided by the first aspect.
  • the present application provides a computer storage medium for storing computer software instructions for use in a processor in an antenna system provided by the above second aspect, comprising a program designed to perform the above aspects.
  • the present application provides a computer program comprising instructions which, when executed by a computer, cause a computer to perform the functions performed by a control unit in the antenna system of the first aspect above.
  • FIG. 1 is a structural diagram of a wireless communication system provided by the present application.
  • FIG. 2 is a schematic structural diagram of an antenna system provided by the present application.
  • FIG. 3 is a schematic structural diagram of an antenna array of an 8-row by 4-row radiation unit provided by the present application.
  • FIG. 4 is a schematic diagram showing the functional structure of a four-port transmission device provided by the present application.
  • FIG. 5 is a schematic diagram showing the functional structure of a five-port transmission device provided by the present application.
  • FIG. 6 is a schematic diagram of a beam coverage mode switching provided by the present application.
  • FIG. 7 is a schematic diagram of another beam coverage mode switching provided by the present application.
  • FIG. 8 is a schematic diagram of still another beam coverage mode switching provided by the present application.
  • FIG. 9 is a schematic diagram of still another beam coverage mode switching provided by the present application.
  • FIG. 10 is a schematic diagram of still another beam coverage mode switching provided by the present application.
  • FIG. 11 is a schematic diagram of still another beam coverage mode switching provided by the present application.
  • FIG. 12 is a schematic flowchart diagram of a method for reconstructing a feed network provided by the present application.
  • FIG. 13 is a schematic structural diagram of a network device provided by the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by the present application.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the present application.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • FIG. 1 is a structural diagram of a communication system according to an embodiment of the present invention.
  • the wireless communication system 100 may include one or more network devices 101 and one or more terminal devices 102.
  • the network device 101 can be used as the transmitting end of the beam or the receiving end.
  • the terminal device 102 can be used as the receiving end or the transmitting end. This application does not specifically limit this. among them,
  • the network device 101 which may be the antenna system of the present application, or a device configured to include the antenna system of the present application, uses the antenna system to produce different directed beams to cover the entire cell 103.
  • network device 101 may in turn generate differently directed beam transmit wireless signals to communicate with terminal devices 102 in different orientations.
  • the network device 101 may be a base station, where the base station may be a base transceiver station (BTS) in a time division synchronous code division multiple access (TD-SCDMA) system, or may be An evolved NodeB (eNB) in an LTE system, and a base station in a 5G system, a new air interface (NR) system.
  • the base station may also be an access point (AP), a transmission reception point (TRP), a central unit (CU), or other network entity, and may include some of the functions of the above network entities or All features.
  • AP access point
  • TRP transmission reception point
  • CU central unit
  • the terminal device 102 which may be distributed throughout the wireless communication system 100, may be stationary or mobile.
  • the terminal device 102 may be a mobile device, a mobile station (MS), a mobile unit (MU), an M2M terminal, an antenna unit, a remote unit, a terminal agent, and a mobile client. and many more.
  • the terminal device 102 may also be an antenna system in the present application or configured as a terminal device including the antenna system in the present application.
  • the terminal device 102 generates different directed beams by the antenna system, performs uplink communication with the network device 101, or performs M2M communication with other terminal devices 102, and the like. That is to say, in the wireless communication system 100, both the network device 101 and the terminal 102 may perform beam alignment and multi-beam communication using the antenna system in the present application.
  • the wireless communication system 100 shown in FIG. 1 can operate in a high frequency band, is not limited to a long term evolution (LTE) system, and may be a fifth generation mobile communication (5G) system in the future.
  • LTE long term evolution
  • 5G fifth generation mobile communication
  • NR New air interface
  • M2M machine to machine
  • the antenna system in the present application includes an antenna array. Since the directivity of the single antenna is limited, it will work in order to suit various applications. Two or more single antennas at the same frequency are fed and spatially arranged according to certain requirements to form an antenna array, also called an antenna array.
  • the antenna radiating elements constituting the antenna array are called array elements.
  • the antenna array comprises a phased array antenna (PAA), the phased array antenna is a directional antenna array arranged by radiating elements, the phase relationship of each radiating element is controllable, and the antenna array uses a phase shifter to control each The signal phase of the radiating elements, thereby changing the superimposed reinforcing direction of the entire antenna array signal in space, thereby realizing electronic scanning of the beam.
  • the phased array antenna is an antenna that changes the shape of the beam by controlling the feeding phase of the radiating elements in the antenna array, and the control phase can change the pointing of the maximum value of the antenna pattern to achieve the purpose of beam scanning.
  • the architecture of the wireless communication system in FIG. 1 is only an exemplary implementation manner in the embodiment of the present invention.
  • the communication system architecture in the embodiment of the present invention includes, but is not limited to, the above communication system architecture.
  • FIG. 2 is a structural diagram of an antenna system according to an embodiment of the present invention.
  • the antenna system 200 includes: an antenna array 210, a control unit 220, a network reconstruction unit 230, and K radio frequencies.
  • Channel 240, antenna array 210, control unit 220, network reconstruction unit 230, and K radio frequency channels 240 are connected by feed cables or other means. among them:
  • the antenna array 210 may include L antenna sub-arrays, where L is a positive integer greater than one.
  • the antenna array in the present application may also be a triangular array, a hexagonal array, a diamond array, a circular array, or the like. Therefore, the antenna array of the present application includes at least the A row by column B radiation unit and the various forms described above. Part of the array in the array.
  • the positional relationship between the A row and the B column radiation unit in the present application is relatively vertical. Any one of the L antenna sub-arrays includes a radiating element.
  • FIG. 3 it is a schematic structural diagram of an antenna array of an 8-row by 4-row radiating element according to an embodiment of the present invention.
  • the 8 row by 4 column antenna array may include 8 antenna sub-arrays.
  • the radiating elements 310 in each dashed box constitute an antenna sub-array 320.
  • the eight antenna sub-arrays 320 can be divided into four antenna sub-array groups 330.
  • adjacent antenna sub-arrays 3002 in each solid-line frame can form an antenna sub-array group 330.
  • each antenna sub-array 320 do not overlap
  • the antenna sub-arrays 320 included in each antenna sub-array group 330 do not overlap.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the network reconstruction unit 230 is configured to divide the L antenna sub-arrays into M antenna sub-array groups, and connect the M antenna sub-array groups to the K radio frequency channels, wherein one of the antenna sub-array groups
  • the polarization direction is connected to an RF channel
  • M is a positive integer
  • K is an integral multiple of M.
  • the network reconstruction unit 230 may include at least two working states. In different working states, the number of antenna sub-arrays respectively included in the M antenna sub-array groups is different in horizontal or vertical direction.
  • antenna sub-array group 1 includes antenna sub-array 1 and antenna sub-array 2
  • antenna sub-array group 2 includes antenna sub-array 3 and antenna sub-array 4
  • the antenna sub-array group 1 includes an antenna sub-array 1 and an antenna sub-array 3
  • the antenna sub-array group 2 includes an antenna sub-array 2 and an antenna sub-array 4.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the polarization type of the radiation unit in the antenna array includes single polarization and dual polarization.
  • the radiation unit in the antenna array is in one antenna sub-array group.
  • There may be a feed port that can be used to simultaneously feed the vibrators on each of the radiating elements in the antenna sub-array group, at which time K M.
  • the radiating elements in the antenna array may have two feed ports in one antenna sub-array group, and each of the feed ports may be given to each of the antenna sub-array groups.
  • the antenna system can change the antenna sub-array group connected to the K radio frequency channels in each polarization direction in the case where the radiation unit is multi-polarized, and/or The number in the vertical direction, in turn, enables adjustment of the coverage of the beam in each polarization direction of the antenna.
  • Any one of the K radio frequency channels 240 is used for signal processing of signals received by the connected antenna sub-array groups and/or signals to be transmitted.
  • one antenna sub-array group may be connected to each radio frequency channel, and the antenna sub-array group may include multiple radiating units, that is, one radio frequency channel may include multiple radiating units.
  • the indicators for a single RF channel can include radiation gain, beam level or vertical width (horizontal and vertical half power angle), beam pointing, and the like.
  • the plurality of radiating elements connected in one RF channel have a certain amplitude and phase relationship with each other. Under the action of the same feed, the beam pattern is formed by beamforming in the working frequency band of the RF channel.
  • the RF channel can include a receiving channel and a transmitting channel for demodulating a radio frequency signal from an antenna or other device to a quadrature baseband signal, the transmitting channel modulating the orthogonal baseband signal to a radio frequency signal, where
  • the receive channel circuitry includes front-end filtering, programmable attenuators, limiters, low noise preamplifiers, quadrature demodulator, differential filtering and amplification, and a wideband local oscillator source.
  • the circuitry of the transmit channel includes a quadrature demodulator, a programmable attenuator, a driver amplifier, and a broadband local oscillator source.
  • the control unit 220 is configured to control the network reconfiguration unit 230 to adjust a mapping relationship between the antenna sub-array group and the antenna sub-array of the at least one of the K radio frequency channels.
  • the network reconstruction unit 230 may include at least two network states, and the number of antenna sub-arrays in the horizontal and/or vertical direction in the antenna sub-array group to which the K radio frequency channels are connected in each network state. Not the same.
  • the network reconstruction unit may include a network state 1 and a network state 2, and the antenna array may be divided into an antenna sub-array 1, an antenna sub-array 2, an antenna sub-array 3, and an antenna sub-array 4, wherein the antenna sub- The array 1 is adjacent to the antenna sub-array 2 in the horizontal direction, adjacent to the antenna sub-array 3 in the vertical direction, the antenna sub-array 4 is adjacent to the antenna sub-array 2 in the vertical direction, and the antenna sub-array 4 and the antenna sub-array 3 are horizontally oriented. Adjacent.
  • the antenna sub-array 1 and the antenna sub-array 2 can form an antenna sub-array group A connected to the radio frequency channel 1
  • the antenna sub-array 3 and the antenna sub-array 4 can form an antenna sub-array group B connected to the radio frequency channel 2. Therefore, the RF channel 1 and the RF channel 2 are distributed in the vertical direction, so the antenna system can form two directed beams on the vertical plane, and the two beams are aligned in the horizontal direction, so that the vertical direction can be realized. Beam scanning for wide coverage in the vertical direction.
  • the antenna sub-array 1 and the antenna sub-array 3 may form an antenna sub-array group A connected to the radio frequency channel 1
  • the antenna sub-array 2 and the antenna array 4 may constitute an antenna sub-array group B connected to the radio frequency channel 2
  • the RF channel 1 and the RF channel 2 are distributed in the horizontal direction, so the antenna system can form two directed beams on the horizontal plane, and the two beams on the vertical plane have the same orientation, so that beam scanning in the horizontal direction can be realized, and the level is realized. Wide coverage in the direction.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the implementation of the present invention is based on the hardware structure of the antenna array in the prior art.
  • a network reconstruction unit is added between the RF channel and the antenna array, and the network reconstruction unit is controlled by the control unit in the antenna system to change the network state and adjust each RF.
  • the mapping relationship between the channel sub-array group and the antenna sub-array to change the number of radiating elements in the horizontal and/or vertical direction of the antenna sub-array group connected to each radio frequency channel, and also change the radio frequency channel in The situation is distributed in the horizontal direction and/or the vertical direction, so that the coverage of the beam generated by the antenna sub-array group connected to at least one of the K radio frequency channels can be changed.
  • the narrower the beam width of the beam generated by the antenna sub-array group on the horizontal plane, and the vertical of the radiating elements in the antenna sub-array group The more the number, the narrower the beam generated by the beam generated by the antenna sub-array group in the vertical direction, so the width of the generated beam of the antenna sub-array group connected to each RF channel can be adjusted, and the respective K radio channels are
  • the connected antenna sub-array group generates beam beams of the beam.
  • control unit 220 is configured to control the network reconstruction unit 230 to adjust the number X of the antenna sub-array groups connected to the K radio frequency channels 240 in the horizontal direction, where the horizontal direction is
  • the beams generated in the same polarization direction of the X antenna sub-array groups include E directions in the horizontal direction, and X and E are positive integers, and 1 ⁇ E ⁇ X ⁇ M. That is, in the embodiment of the present application, the control unit may control the network reconstruction unit to adjust the number of the antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, when each polarization of the antenna array is in the horizontal direction.
  • each polarization of the antenna system can perform multi-directional beam coverage in the horizontal direction, and each polarization of the antenna array corresponds to a single horizontal direction.
  • the antenna system can perform single-point beam coverage in the horizontal direction. Therefore, by adjusting the number of antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, the horizontal coverage of the beam of the antenna system can be changed.
  • control unit 220 is configured to control the network reconstruction unit 230 to adjust the number Y of the antenna sub-array groups connected to the K radio frequency channels 240 in the vertical direction, where the vertical direction is
  • the beams generated in the same polarization direction of the Y antenna sub-array groups include F directions in the vertical direction, and Y and F are positive integers, and 1 ⁇ F ⁇ Y ⁇ M. That is, in the embodiment of the present application, the control unit may control the network reconstruction unit to adjust the number of the antenna sub-array groups connected to the K radio frequency channels in the vertical direction, when each polarization of the antenna array is in the vertical direction.
  • each polarization of the antenna system can perform multi-directional beam coverage in the vertical direction, and each polarization of the antenna array corresponds to a single direction in the vertical direction.
  • the antenna system can perform single-point beam coverage in the vertical direction. Therefore, by adjusting the number of the antenna sub-array groups connected to the K radio frequency channels in the vertical direction, the vertical coverage of the beam of the antenna system can be changed.
  • control unit 220 is configured to control the network reconstruction unit 230 to adjust an antenna sub-array included in the antenna sub-array group connected to at least one of the K radio frequency channels 240 in a horizontal direction.
  • the number of the upper ones, wherein the beams generated by the antenna sub-array groups having different numbers of antenna sub-arrays included in the horizontal direction have different widths in the horizontal direction.
  • the number of antenna sub-arrays included in the antenna sub-array group connected to the radio frequency channel is changed in the horizontal direction because the antenna sub-array in the horizontal direction of the antenna sub-array group The more the number, the narrower the horizontal width of the beam produced by the antenna sub-array group, so that the coverage of the beam in the horizontal direction can be changed.
  • control unit 220 is configured to control the network reconstruction unit 230 to adjust an antenna sub-array included in the antenna sub-array group connected to at least one of the K radio frequency channels 240 in a vertical direction.
  • the number of the upper ones, wherein the beams generated by the antenna sub-array groups having different numbers of antenna sub-arrays included in the vertical direction have different widths in the vertical direction.
  • the number of antenna sub-arrays included in the antenna sub-array group connected to the variable radio frequency channel is adjusted in the vertical direction because the antenna sub-array in the vertical direction of the antenna sub-array group The greater the number of beams, the narrower the vertical width of the beam produced by the antenna sub-array group, so that the coverage of the beam in the vertical direction can be changed.
  • control unit 220 is further configured to control the network reconstruction unit 230 to adjust an antenna sub-array in the antenna sub-array group to which at least one of the K radio frequency channels 240 is connected.
  • the spacing between the two to change the width of the beam generated by the antenna sub-array group to which the at least one RF channel is connected.
  • the radio frequency is The narrower the horizontal width of the channel beam, the larger the vertical space distance between the antenna sub-arrays connected to one RF channel, and the narrower the vertical width of the RF channel beam, so that the coverage of the beam in the horizontal and vertical directions can be changed.
  • control unit 220 is further configured to control the network reconstruction unit 230 to adjust a phase shift increment in the antenna sub-array group to which at least one of the K radio frequency channels 240 is connected.
  • the control unit 220 is further configured to control the network reconstruction unit 230 to adjust a phase shift increment in the antenna sub-array group to which at least one of the K radio frequency channels 240 is connected.
  • a four-port transmission device will be introduced.
  • a four-port transmission device is provided in the embodiment of the present invention.
  • the four-port transmission device may include four ports: port 1, port 2, port 3, and port 4.
  • the transmission device can have two working states. In the working state 1, the four-port transmission device can realize the RF energy transmission of the port 1 and the port 3, and the RF energy transmission of the port 4 and the port 2 to achieve the cross-transmission effect. . In the working state 2, the four-port transmission device can realize the RF energy transmission of the port 1 and the port 2, and the RF energy transmission of the port 4 and the port 3, thereby achieving the effect of parallel transmission.
  • the network reconstruction unit in FIG. 2 above may include a plurality of the four transmission devices.
  • a network reconstruction unit configured by using the four-port transmission device shown in FIG. 4 is used to control the network reconstruction unit to adjust at least one radio frequency of the K radio frequency channels.
  • the spatial arrangement of the antenna sub-arrays in the antenna sub-array group connected to the channel is used to change the coverage of the beam generated by the antenna sub-array group to which the at least one radio frequency channel is connected.
  • the following embodiments include three coverage modes of the beam, namely horizontal coverage, vertical coverage, and horizontal + vertical coverage. In the horizontal coverage mode, the antenna array has multiple RF channels mapped in the horizontal direction and a fixed RF channel in the vertical direction. In the vertical coverage mode, the antenna array has multiple RFs mapped in the vertical direction. Channels, in horizontal + vertical coverage, the antenna array maps multiple RF channels in the horizontal and vertical directions.
  • Embodiments 1 to 3 are all illustrated by a dual-polarized antenna array of 8 ⁇ 4 radiating elements and 8 RF channels.
  • the antenna array in each polarization direction is mapped with four RF channels, and TR is used to represent one RF channel, that is, the four RF channels of TR1, TR2, TR3, and TR4 are mapped on the antenna array in the first polarization direction.
  • the four RF channels of TR5, TR6, TR7, and TR8 are mapped on the antenna array in the second polarization direction.
  • Embodiment 1 Switching between horizontal coverage mode and horizontal + vertical coverage mode.
  • FIG. 6 is a schematic diagram of switching between horizontal coverage and horizontal+vertical coverage.
  • the completion of the switching of the coverage pattern may include the following four steps.
  • Step 1 Group the antenna arrays and divide multiple antenna sub-arrays.
  • the antenna array 610 can be divided into eight antenna sub-arrays, and each antenna sub-array can include four rows by one column of radiating elements, and the radiating elements have two dual polarizations.
  • the eight antenna sub-arrays are arranged in 2 rows by 4 columns on the antenna array plane.
  • Step 2 Connect multiple antenna sub-arrays and radio frequency channels to the network reconstruction unit.
  • the network reconstruction unit 620 may include two of the above four-port transmission devices for each polarization, wherein the antenna array passes through each of the above four-port transmission devices in each polarization direction.
  • the feeding ports corresponding to the eight antenna sub-arrays are divided into four antenna sub-array groups, and the corresponding feeding ports of the four antenna sub-array groups are respectively connected to four radio frequency channels. Because the two polarizations of the radiation unit are respectively connected to two RF channels, wherein TR1, TR2, TR3, and TR4 are RF channels in the first polarization direction, and TR5, TR6, TR7, and TR8 are RF channels in the second polarization direction. .
  • the radio frequency channels TR1, TR2, TR3, TR4 in the first polarization direction of the antenna array 610 can refer to the radio frequency in the first polarization direction through the connection between the two four-port transmission devices and the antenna sub-array in the antenna array 610.
  • Step 3 Adjust the mapping relationship between the antenna sub-array group and the antenna sub-array.
  • the antenna sub-array 1 and the antenna sub-array 5 form the antenna sub-array group A connected to the radio frequency channel TR1
  • the antenna sub- The array 2 and the antenna sub-array 6 form an antenna sub-array group B connected to the radio frequency channel TR2
  • the antenna sub-array 3 and the antenna sub-array 7 form an antenna sub-array group C connected to the radio frequency channel TR3, the antenna sub-array 4 and the antenna sub-array.
  • the antenna sub-array group D is connected to the radio frequency channel TR4.
  • an antenna sub-array group includes 8 rows by 1 column radiation elements in the antenna array, so the mapping relationship of the RF channels on the antenna array is four RF channels in the horizontal direction, vertical One RF channel in the direction.
  • the antenna sub-array 1 and the antenna sub-array 2 form the antenna sub-array group A connected to the radio frequency channel TR1
  • the antenna sub-array 6 is composed of an antenna sub-array group B connected to the radio frequency channel TR2
  • the antenna sub-array 3 and the antenna sub-array 4 are formed into an antenna sub-array group C connected to the radio frequency channel TR3
  • the antenna sub-array 7 and the antenna sub-array 8 form an antenna.
  • the sub-array group D is connected to the radio frequency channel TR4.
  • an antenna sub-array group includes 4 rows by 2 columns of radiating elements in the antenna array, so the mapping relationship of the RF channels on the antenna array is 2 RF channels in the horizontal direction, vertical 2 RF channels in the direction.
  • Step 4 The antenna sub-array group forms a beam.
  • phase shift increments in the antenna sub-array group connected in one radio frequency channel are consistent, beamforming can be completed through the radio frequency channel according to the signals received or transmitted by the radiation units in the antenna sub-array group.
  • the RF channels TR1, TR2, TR3, and TR4 of the antenna array 610 may be distributed in the horizontal direction of the antenna array, and each 8 ⁇ 1 radiating elements constitute one.
  • the antenna sub-array group (one radiating unit per row, eight radiating elements in each row) is connected to one radio frequency channel, wherein the phase shift increments in different antenna sub-array groups are different, so the beam covering effect 1 of the antenna system is There are four pointed beams in the horizontal direction and only one directed beam in the vertical direction.
  • the number of rows of radiating elements in each antenna sub-array group is greater than the number of columns of radiating cells, so the horizontal width of each beam is greater than the vertical width. That is to say, the beam coverage effect 1 of the antenna system is a horizontal wide coverage and a vertical narrow coverage.
  • the radio frequency channels TR1, TR2, TR3, and TR4 of the antenna array 610 can be distributed in the horizontal direction and the vertical direction of the antenna array, every 4 ⁇ 2
  • the radiating elements form an antenna sub-array group (two radiating elements per row, four radiating elements in each row) connected to one radio frequency channel, wherein the phase shift increments in different antenna sub-array groups are different, and the beam coverage effect of the antenna system 2 is a beam with two pointing directions in the horizontal direction and two pointing beams in the vertical direction.
  • the number of rows of radiating elements in each antenna sub-array group is greater than the number of columns of radiating cells, so the horizontal width of each beam is greater than the vertical width. That is to say, the beam coverage effect 2 of the antenna system is wider coverage of the horizontal multi-beam, the coverage of the vertical multi-beam is wider, and the vertical coverage of each beam is wider than the horizontal coverage.
  • the horizontal width of the beam generated by the antenna sub-array group connected to the radio frequency channel is narrower.
  • the more the number of antenna sub-arrays in the antenna sub-array group connected to the radio frequency channel is in the horizontal direction the narrower the vertical width of the generated antenna sub-array group to which the radio frequency channel is connected.
  • the more the number of antenna sub-array groups connected to the above K radio frequency channels are distributed in the horizontal direction the more the antenna system can generate more differently directed beams in the horizontal direction.
  • the antenna system adjusts the number of antenna sub-arrays in the antenna sub-array group connected to the K radio frequency channels by switching between the working state 1 and the working state 2 by the network reconstruction unit 620, and further The switching between the beam coverage effect 1 of the network reconstruction unit 620 in the operational state 1 and the beam coverage effect 2 in the operational state 2 is completed.
  • the beam coverage effect 1 has 4 differently directed beams
  • the beam coverage effect 2 has 2 differently directed beams.
  • the horizontal coverage of the beam coverage effect 1 is larger than the horizontal coverage of the beam coverage effect 2, and the beam The beam horizontal width of coverage effect 1 is greater than the beam horizontal width of beam coverage effect 2; in the vertical direction, beam coverage effect 1 has 1 fixed-point beam, and beam coverage effect 2 can have 2 differently directed beams, beam coverage effect
  • the vertical coverage of 1 is smaller than the vertical coverage of beam coverage effect 2
  • the beam vertical width of beam coverage effect 1 is smaller than the beam vertical width of beam coverage effect 2.
  • the beam coverage of the antenna system can be adjusted, and the antenna system beam can be horizontally covered. Switching between vertical narrow coverage and "wider coverage, wider coverage”.
  • Embodiment 2 Switching between horizontal + vertical coverage and vertical coverage.
  • FIG. 7 is a schematic diagram of switching between horizontal + vertical coverage and vertical coverage.
  • the completion of the switching of the coverage pattern may include the following four steps.
  • Step 1 Group the antenna arrays and divide multiple antenna sub-arrays.
  • the antenna array 710 can be divided into eight antenna sub-arrays, and each antenna sub-array can include two rows by two columns of radiating elements, and the radiating elements have two dual polarizations.
  • the eight antenna sub-arrays are arranged in 4 rows by 2 columns on the antenna array plane.
  • Step 2 Connect multiple antenna sub-arrays and radio frequency channels to the network reconstruction unit.
  • the network reconstruction unit 720 may include two four-port transmission devices per polarization, wherein each of the antenna arrays has eight four-port transmission devices in each polarization direction.
  • the feeding port corresponding to the antenna sub-array is divided into four antenna sub-array groups, and the corresponding feeding ports of the four antenna sub-array groups are respectively connected to four radio frequency channels. Because the two polarizations of the radiation unit are respectively connected to two RF channels, wherein TR1, TR2, TR3, and TR4 are RF channels in the first polarization direction, and TR5, TR6, TR7, and TR8 are RF channels in the second polarization direction. .
  • the radio frequency channels TR1, TR2, TR3, TR4 of the antenna array 710 in the first polarization direction through the antenna arrays in the antenna array 710 through the two four-port transmission devices.
  • the radio frequency channels TR5, TR6, TR7, and TR8 in the second polarization direction of the antenna array 710 can be connected to the radio frequency channel in the first polarization direction through the connection between the two four-port transmission devices and the antenna sub-array in the antenna array 710.
  • Step 3 Adjust the mapping relationship between the antenna sub-array group and the antenna sub-array.
  • the antenna sub-array 1 and the antenna sub-array 3 form the antenna sub-array group A connected to the radio frequency channel TR1
  • the antenna sub-array 2 and the antenna sub-array 4 constitutes the antenna sub-array group B connected to the radio frequency channel TR2
  • the antenna sub-array 5 and the antenna sub-array 7 form the antenna sub-array group C connected to the radio frequency channel TR3, the antenna sub-array 6 and the antenna sub-array 8
  • the antenna sub-array group D is connected to the radio frequency channel TR4.
  • an antenna sub-array group includes 4 rows by 2 columns of radiating elements in the antenna array, so the mapping relationship of the radio frequency channels on the antenna array is 2 radio frequency channels in the horizontal direction and 2 radio frequency channels in the vertical direction.
  • the antenna sub-array 1 and the antenna sub-array 2 form an antenna sub-array group A connected to the radio frequency channel TR1, the antenna sub-array 3 and the antenna.
  • the sub-array 4 constitutes an antenna sub-array group B connected to the radio frequency channel TR2
  • the antenna sub-array 5 and the antenna sub-array 6 form an antenna sub-array group C connected to the radio frequency channel TR3
  • the antenna sub-array 7 and the antenna sub-array 8 form an antenna sub-array.
  • the array group D is connected to the RF channel TR4.
  • an antenna sub-array group includes 2 rows by 4 columns of radiating elements in the antenna array, so the mapping relationship of the radio frequency channels on the antenna array is 1 radio frequency channel in the horizontal direction and 4 radio frequency channels in the vertical direction.
  • Step 4 The antenna sub-array group forms a beam.
  • the signals can be completed through the radio frequency channel according to the signals received or transmitted by the radiating units in the antenna sub-array group. Forming.
  • the radio frequency channels TR1, TR2, TR3, and TR4 of the antenna array 710 may be distributed in the horizontal direction and the vertical direction of the antenna array every 4 ⁇ 2 radiations.
  • the unit constitutes an antenna sub-array group (two radiating elements per row, four radiating elements in each row) connected to one radio frequency channel, wherein the phase shift increments in different antenna sub-array groups are different, so the beam coverage of the antenna system Effect 1 is that there are two directed beams in the horizontal direction and two directed beams in the vertical direction.
  • the number of rows of radiating elements in each antenna sub-array group is greater than the number of columns of radiating cells, so the horizontal width of each beam is greater than the vertical width. That is to say, the beam coverage effect 1 of the antenna system is a horizontal multi-beam wider coverage, and a vertical multi-beam wider coverage.
  • the radio frequency channels TR1, TR2, TR3, and TR4 of the antenna array 710 may be distributed in the horizontal direction and the vertical direction of the antenna array, every 2 ⁇ 4
  • the radiating elements form an antenna sub-array group (4 radiating elements per row, 2 radiating elements in each row) connected to one RF channel, wherein the phase shift increments in different antenna sub-array groups are different, and the beam coverage effect of the antenna system 2 is a beam with a pointing direction in the horizontal direction and four pointing beams in the vertical direction.
  • the number of columns of radiating elements in each antenna sub-array group is greater than the number of rows of radiating elements, so the vertical width of each beam is greater than the horizontal width. That is to say, the beam coverage effect 2 of the antenna system is a wide coverage of horizontal single beams and a wide coverage of vertical multiple beams.
  • the horizontal width of the beam generated by the antenna sub-array group connected to the radio frequency channel is narrower.
  • the more the number of antenna sub-arrays in the antenna sub-array group connected to the radio frequency channel is in the horizontal direction the narrower the vertical width of the generated antenna sub-array group to which the radio frequency channel is connected.
  • the more the number of antenna sub-array groups connected to the above K radio frequency channels are distributed in the horizontal direction the more the antenna system can generate more differently directed beams in the horizontal direction.
  • the antenna system adjusts the number of antenna sub-arrays in the antenna sub-array group to which the K radio frequency channels are connected by switching between the working state 1 and the working state 2 by the network reconstruction unit 720, and further The switching between the beam coverage effect 1 of the network reconstruction unit 720 in the operational state 1 and the beam coverage effect 2 in the operational state 2 is completed.
  • the beam coverage effect 1 has two beams that are differently directed, and the beam coverage effect 2 has one beam that is differently directed.
  • the horizontal coverage of the beam coverage effect 1 is greater than the horizontal coverage of the beam coverage effect 2, and the beam
  • the beam horizontal width of coverage effect 1 is greater than the beam horizontal width of beam coverage effect 2; in the vertical direction, beam coverage effect 1 can have 2 differently directed beams, beam coverage effect 2 can have 4 differently directed beams, and beam coverage
  • the vertical coverage of effect 1 is smaller than the vertical coverage of beam coverage effect 2
  • the beam vertical width of beam coverage effect 1 is smaller than the beam vertical width of beam coverage effect 2.
  • Embodiment 2 by adjusting the horizontal multi-channel distribution of the RF channel on the antenna array and the switching of the horizontal + vertical multi-channel distribution of the antenna array, the beam coverage of the antenna system can be adjusted, and the antenna system beam "horizontal multi-beam” is realized. Switching between wider coverage, vertical multi-beam coverage and “horizontal single-beam coverage, vertical multi-beam coverage”.
  • Embodiment 3 Switching between horizontal coverage mode and vertical coverage mode.
  • FIG. 8 is a schematic diagram of switching between a horizontal coverage mode and a vertical coverage mode.
  • the completion of the switching of the coverage pattern may include the following four steps.
  • Step 1 Group the antenna arrays and divide multiple antenna sub-arrays.
  • the antenna array 810 can be divided into 16 antenna sub-arrays, and each antenna sub-array can include two rows by one column of radiating elements, and the radiating elements have two dual polarizations.
  • the 16 antenna sub-arrays are arranged in 4 rows by 4 columns on the antenna array plane.
  • Step 2 Connect multiple antenna sub-arrays and radio frequency channels to the network reconstruction unit.
  • the network reconstruction unit 820 may include two four-port transmission devices per polarization, wherein each of the antenna arrays may be connected by eight four-port transmission devices in each polarization direction.
  • the feeding ports corresponding to the antenna sub-arrays are divided into four antenna sub-array groups, and the corresponding feeding ports of the four antenna sub-array groups are respectively connected to the four radio frequency channels. Because the two polarizations of the radiation unit are respectively connected to two RF channels, wherein TR1, TR2, TR3, and TR4 are RF channels in the first polarization direction, and TR5, TR6, TR7, and TR8 are RF channels in the second polarization direction. .
  • the radio frequency channels TR1, TR2, TR3, TR4 in the first polarization direction of the antenna array 810 can refer to the radio frequency channel TR1 in the first polarization direction through the connection of the eight four-port transmission devices to the antenna sub-array in the antenna array 810. , TR2, TR3, TR4.
  • Step 3 Adjust the mapping relationship between the antenna sub-array group and the antenna sub-array.
  • the antenna sub-array 1, the antenna sub-array 5, the antenna sub-array 9, and the antenna sub-array 13 constitute the antenna sub-array group A.
  • the antenna sub-array 2, the antenna sub-array 6, the antenna sub-array 10 and the antenna sub-array 14 form an antenna sub-array group B connected to the radio frequency channel TR2, the antenna sub-array 3, the antenna sub-array 7, and the antenna
  • the sub-array 11 and the antenna sub-array 15 form an antenna sub-array group C connected to the radio frequency channel TR3.
  • the antenna sub-array 4, the antenna sub-array 8, the antenna sub-array 12 and the antenna sub-array 16 form an antenna sub-array group D connected to the radio frequency channel.
  • an antenna sub-array group includes 8 rows by 1 column of radiating elements in the antenna array, so the mapping relationship of the radio frequency channels on the antenna array is 4 radio frequency channels in the horizontal direction and 1 radio frequency channel in the vertical direction.
  • the antenna sub-array 1, the antenna sub-array 2, the antenna sub-array 3, and the antenna sub-array 4 constitute an antenna sub-array group A connected to the radio frequency.
  • the antenna sub-array 5, the antenna sub-array 6, the antenna sub-array 7 and the antenna sub-array 8 form an antenna sub-array group B connected to the radio frequency channel TR2, and the antenna sub-array 9, the antenna sub-array 10, and the antenna sub-array 11
  • the antenna sub-array 12 and the antenna sub-array group C are connected to the radio frequency channel TR3.
  • an antenna sub-array group includes 2 rows by 4 columns of radiating elements in the antenna array, so the mapping relationship of the RF channels on the antenna array is 1 RF channel in the horizontal direction, vertical 4 RF channels in the direction.
  • Step 4 The antenna sub-array group forms a beam.
  • the signals can be completed through the radio frequency channel according to the signals received or transmitted by the radiating units in the antenna sub-array group. Forming.
  • the radio frequency channels TR1, TR2, TR3, and TR4 of the antenna array 810 may be distributed in the horizontal direction of the antenna array, every 8 ⁇ 1
  • the radiating elements form an antenna sub-array group (one radiating element per row, eight radiating elements in each row) connected to one radio frequency channel, wherein the phase shift increments in different antenna sub-array groups are different, so the beam of the antenna system
  • the coverage effect 1 is that there are four pointed beams in the horizontal direction and only one directed beam in the vertical direction.
  • the number of rows of radiating elements in each antenna sub-array group is greater than the number of columns of radiating cells, so the horizontal width of each beam is greater than the vertical width, that is, the beam covering effect 1 of the antenna system is horizontal multi-beam wide coverage. , vertical single beam narrow coverage.
  • the radio frequency channels TR1, TR2, TR3, TR4 of the antenna array 810 may be distributed in the horizontal direction and the vertical direction of the antenna array, each 2 ⁇ 4 radiating elements form an antenna sub-array group (4 radiating elements per row, 2 radiating elements in each row) connected to one RF channel, and the beam covering effect 2 of the antenna system has a pointing beam in the horizontal direction. There are four pointing beams in the vertical direction.
  • the number of columns of the radiating elements in each antenna sub-array group is larger than the number of rows of the radiating elements, so the vertical width of each beam is greater than the horizontal width, that is, the beam covering effect 2 of the antenna system is a horizontal single-beam narrow coverage. , vertical multi-beam wide coverage.
  • the horizontal width of the beam generated by the antenna sub-array group connected to the radio frequency channel is narrower.
  • the more the number of antenna sub-arrays in the antenna sub-array group connected to the radio frequency channel is in the horizontal direction the narrower the vertical width of the generated antenna sub-array group to which the radio frequency channel is connected.
  • the more the number of antenna sub-array groups connected to the above K radio frequency channels are distributed in the horizontal direction the more the antenna system can generate more differently directed beams in the horizontal direction.
  • the antenna system adjusts the number of antenna sub-arrays in the antenna sub-array group connected to the K radio frequency channels by switching between the working state 1 and the working state 2 by the network reconstruction unit 820, and further The switching between the beam coverage effect 1 of the network reconstruction unit 820 in the operational state 1 and the beam coverage effect 2 in the operational state 2 is completed.
  • the beam coverage effect 1 may have 4 differently directed beams, and the beam coverage effect 2 has only one fixed-pointed beam, and the horizontal coverage of the beam coverage effect 1 is greater than the horizontal coverage of the beam coverage effect 2,
  • the beam horizontal width of the beam coverage effect 1 is greater than the beam horizontal width of the beam coverage effect 2; in the vertical direction, the beam coverage effect 1 has only one fixed-point beam, and the beam coverage effect 2 can have four differently directed beams, beams.
  • the vertical coverage of coverage effect 1 is smaller than the vertical coverage of beam coverage effect 2, but the beam vertical width of beam coverage effect 1 is smaller than the beam vertical width of beam coverage effect 2.
  • the beam coverage of the antenna system can be adjusted, and the antenna system beam is “horizontal multi-beam wide coverage, vertical single Switching between narrow beam coverage and "horizontal single-beam narrow coverage, vertical multi-beam wide coverage”.
  • the first embodiment to the third embodiment are to adjust the spatial arrangement of the antenna sub-arrays connected to the radio frequency channel on the entire antenna array surface.
  • a possible application scenario of the antenna system provided by the present application may be specifically described in Embodiment 4 and Embodiment 5.
  • the antenna system provided by the present application may transfer all the RF channels mapped on the antenna array to the lower half of the sky or The RF channels mapped in the lower half of the antenna array are all transferred to the upper half of the sky surface to change the number of radiating elements connected to each RF channel in the horizontal or vertical direction of the antenna array, thereby changing the coverage of the antenna system.
  • the network reconstruction unit may include a plurality of four-port transmission devices as shown in FIG. 4 above.
  • Embodiment 4 The RF channel distribution of the upper half and the lower half of the antenna array is switched to adjust the beam coverage.
  • a dual-polarized antenna array of 8 ⁇ 4 radiating elements and eight RF channels are exemplified.
  • the antenna array in each polarization direction is mapped with four RF channels, and TR is used to represent one RF channel, that is, the four RF channels of TR1, TR2, TR3, and TR4 are mapped on the antenna array in the first polarization direction.
  • the four RF channels of TR5, TR6, TR7, and TR8 are mapped on the antenna array in the second polarization direction.
  • FIG. 9 is a schematic diagram of switching of the RF channel on the half-day surface and the lower half-surface of the antenna array.
  • the completion of the switching of the RF channel on the half-day and the lower half of the antenna array may include the following four steps.
  • Step 1 Group the antenna arrays and divide multiple antenna sub-arrays.
  • the antenna array 910 can be divided into eight antenna sub-arrays, and each antenna sub-array can include four rows by one column of radiating elements, and the radiating elements have two dual polarizations.
  • the eight antenna sub-arrays are arranged in 2 rows by 4 columns on the antenna array plane.
  • Step 2 Connect multiple antenna sub-arrays and radio frequency channels to the network reconstruction unit.
  • the network reconstruction unit 920 may include two four-port transmission devices per polarization, wherein each of the antenna arrays has eight four-port transmission devices in each polarization direction.
  • the feeding port corresponding to the antenna sub-array is divided into four antenna sub-array groups, and the corresponding feeding ports of the four antenna sub-array groups are respectively connected to four radio frequency channels. Because the two polarizations of the radiation unit are respectively connected to two RF channels, wherein TR1, TR2, TR3, and TR4 are RF channels in the first polarization direction, and TR5, TR6, TR7, and TR8 are RF channels in the second polarization direction. .
  • the radio frequency channels TR1, TR2, TR3, TR4 in the first polarization direction of the antenna array 910 can refer to the radio frequency channel TR1 in the first polarization direction by the connection between the two four-port transmission devices and the antenna sub-array in the antenna array 910. , TR2, TR3, TR4.
  • Step 3 Adjust the mapping relationship between the antenna sub-array group and the antenna sub-array.
  • the antenna sub-array 1 and the antenna sub-array 2 form the antenna sub-array group A connected to the radio frequency channel TR1
  • the antenna sub- The array 3 and the antenna sub-array 4 form an antenna sub-array group B connected to the radio frequency channel TR2
  • the antenna sub-array 5 and the antenna sub-array 6 form an antenna sub-array group C connected to the radio frequency channel TR3, the antenna sub-array 7 and the antenna sub-array.
  • the antenna sub-array group D is connected to the radio frequency channel TR4.
  • an antenna sub-array group includes 4 rows by 2 columns of radiation elements in the antenna array, so the mapping relationship of the RF channels on the antenna array is 2 RF channels in the horizontal direction, vertical 2 RF channels in the direction.
  • the antenna sub-array 5 is separately composed of the antenna sub-array group A connected to the radio frequency channel TR1, and the antenna sub-array 6 is separately formed into the antenna sub-array.
  • the group B is connected to the RF channel TR2, and the antenna sub-array 7 is separately formed into the antenna sub-array group C and connected to the RF channel TR3.
  • the antenna sub-array 8 is separately formed into the antenna sub-array group D and connected to the RF channel TR4.
  • one antenna sub-array group includes four rows by one column of radiating elements in the antenna array, so the mapping relationship of the radio frequency channel on the antenna array is four radio frequency channels in the horizontal direction, vertical 1 RF channel in the direction.
  • Step 4 Form a beam in the antenna sub-array group.
  • the signals can be completed through the radio frequency channel according to the signals received or transmitted by the radiating units in the antenna sub-array group. Forming.
  • the radio frequency channels TR1, TR2, TR3, and TR4 of the antenna array 910 may be distributed in the horizontal direction and the vertical direction of the antenna array, every 4 ⁇ 2 radiating elements.
  • each antenna sub-array group is larger than the number of columns of the radiating elements, so the horizontal width of each beam is greater than the vertical width, that is, the beam covering effect 1 of the antenna system is horizontal and the multi-beam is wider. Coverage, vertical multi-beam coverage.
  • the RF channels TR1, TR2, TR3, and TR4 of the antenna array 910 may be distributed in the horizontal direction of the antenna array, and each 4 ⁇ 1 radiating elements constitute an antenna.
  • the sub-array group (2 radiating elements per row, 4 radiating elements in each row) is connected to one RF channel, and the beam covering effect 2 of the antenna system has two pointing beams in the horizontal direction and two pointing directions in the vertical direction. Beam.
  • the number of rows of the radiating elements in each antenna sub-array group is larger than the number of columns of the radiating elements, so the horizontal width of each beam is greater than the vertical width, that is, the beam covering effect 2 of the antenna system is horizontal and the multi-beam is wider. Coverage, vertical single beam coverage is wider, and the horizontal coverage of each beam is wider than the vertical coverage.
  • the horizontal width of the beam generated by the antenna sub-array group connected to the radio frequency channel is narrower.
  • the more the number of antenna sub-arrays in the antenna sub-array group connected to the radio frequency channel is in the horizontal direction the narrower the vertical width of the generated antenna sub-array group to which the radio frequency channel is connected.
  • the more the number of antenna sub-array groups connected to the above K radio frequency channels are distributed in the horizontal direction the more the antenna system can generate more differently directed beams in the horizontal direction.
  • the antenna system adjusts the number of antenna sub-arrays in the antenna sub-array group to which the K radio frequency channels are connected by switching between the working state 1 and the working state 2 by the network reconstruction unit 920, and further The switching between the beam coverage effect 1 of the network reconstruction unit 920 in the operational state 1 and the beam coverage effect 2 in the operational state 2 is completed.
  • the beam coverage effect 1 may have two differently directed beams, and the beam coverage effect 2 may have four differently directed beams.
  • the horizontal coverage of the beam coverage effect 1 is smaller than the horizontal coverage of the beam coverage effect 2.
  • the beam horizontal width of the beam coverage effect 1 is smaller than the beam horizontal width of the beam coverage effect 2; in the vertical direction, the beam coverage effect 1 can have 2 fixed-point beams, and the beam coverage effect 2 has only one fixed-point beam, the beam The vertical coverage of coverage effect 1 is greater than the vertical coverage of beam coverage effect 2, and the beam vertical width of beam coverage effect 1 is equal to the beam vertical width of beam coverage effect 2.
  • the beam coverage of the antenna system can be adjusted and adjusted, so that the beam of the antenna system is covered by the horizontal multi-beam and the vertical multi-beam is wider. Coverage" is switched between "horizontal multi-beam wide coverage, vertical single-beam wide coverage”.
  • the network reconstruction unit may include a plurality of five-port transmission devices as shown in FIG. 5, the five-port transmission device includes two working states, and in the working state 1 Next, port 1 implements directional transmission to port 3 and port 4, and port 2 implements directional transmission to port 5; in the case of working state 2, port 1 implements directional transmission to port 3, and port 2 implements directional transmission to port 4, port 5 disconnected.
  • the following fifth embodiment is illustrated by a dual-polarized antenna array of 8 ⁇ 4 radiating elements and eight radio frequency channels.
  • the antenna array in each polarization direction is mapped with four RF channels, and TR is used to represent one RF channel, that is, the four RF channels of TR1, TR2, TR3, and TR4 are mapped on the antenna array in the first polarization direction.
  • the four RF channels of TR5, TR6, TR7, and TR8 are mapped on the antenna array in the second polarization direction.
  • Embodiment 5 The RF channel distribution of the upper half and the lower half of the antenna array is switched to adjust the beam coverage.
  • FIG. 10 is a schematic diagram of switching between the sky surface and the lower surface of the antenna array by using a five-port transmission device.
  • the completion of the switching of the RF channel on the half-day and the lower half of the antenna array may include the following four steps.
  • Step 1 Group the antenna arrays and divide multiple antenna sub-arrays.
  • the antenna array 1010 can be divided into eight antenna sub-arrays, and each antenna sub-array can include four rows by one column of radiating elements, and the radiating elements have two dual polarizations.
  • the eight antenna sub-arrays are arranged in 2 rows by 4 columns on the antenna array plane.
  • Step 2 Connect multiple antenna sub-arrays and radio frequency channels to the network reconstruction unit.
  • the network reconstruction unit 1020 may include two five-port transmission devices shown in FIG. 5 for each polarization, wherein the antenna array passes through two five ports in each polarization direction.
  • the transmitting device divides the feeding port corresponding to the eight antenna sub-arrays into four antenna sub-array groups, and connects the corresponding feeding ports of the four antenna sub-array groups to the four RF channels. Because the two polarizations of the radiation unit are respectively connected to two RF channels, wherein TR1, TR2, TR3, and TR4 are RF channels in the first polarization direction, and TR5, TR6, TR7, and TR8 are RF channels in the second polarization direction. .
  • the RF channels TR5, TR6, TR7, and TR8 in the second polarization direction of the antenna array 1010 can refer to the RF channel TR1 in the first polarization direction through the connection between the two five-port transmission devices and the antenna sub-array in the antenna array 1010. , TR2, TR3, TR4.
  • Step 3 Adjust the mapping relationship between the antenna sub-array group and the antenna sub-array.
  • the antenna sub-array 1 and the antenna sub-array 2 form an antenna sub-array group A connected to the radio frequency channel TR1
  • the array 4 constitutes an antenna sub-array group B connected to the radio frequency channel TR2
  • the antenna sub-array 5 and the antenna sub-array 6 form an antenna sub-array group C connected to the radio frequency channel TR3
  • the antenna sub-array 7 and the antenna sub-array 8 form an antenna sub-array.
  • Group D is connected to the RF channel TR4.
  • an antenna sub-array group includes 4 rows by 2 columns of radiating elements in the antenna array, so the mapping relationship of the radio frequency channels on the antenna array is 2 radio frequency channels in the horizontal direction and 2 radio frequency channels in the vertical direction.
  • the antenna sub-array 5 is separately formed into the antenna sub-array group A and connected to the radio frequency channel TR1
  • the antenna sub-array 6 is separately composed of the antenna sub-array group B connected to the radio frequency.
  • the antenna sub-array 7 is separately formed into the antenna sub-array group C and connected to the radio frequency channel TR3.
  • the antenna sub-array 8 is separately formed into the antenna sub-array group D and connected to the radio frequency channel TR4.
  • an antenna sub-array group includes four rows by one column of radiating elements in the antenna array, so the mapping relationship of the radio frequency channels on the antenna array is four radio frequency channels in the horizontal direction and one radio frequency channel in the vertical direction.
  • Step 4 The antenna sub-array group forms a beam.
  • the signals can be completed through the radio frequency channel according to the signals received or transmitted by the radiating units in the antenna sub-array group. Forming.
  • the RF channels TR1, TR2, TR3, and TR4 of the antenna array 1010 may be distributed in the horizontal direction and the vertical direction of the antenna array, every 4 ⁇ 2 radiating elements.
  • each antenna sub-array group is larger than the number of columns of the radiating elements, so the horizontal width of each beam is greater than the vertical width, that is, the beam covering effect 1 of the antenna system is horizontal and the multi-beam is wider. Coverage, vertical multi-beam coverage is wider, and the horizontal coverage of each beam is wider than the vertical coverage.
  • the RF channels TR1, TR2, TR3, and TR4 of the antenna array 1010 may be distributed in the horizontal direction of the antenna array, and each 4 ⁇ 1 radiating elements constitute an antenna.
  • the sub-array group (2 radiating elements per row, 4 radiating elements in each row) is connected to one RF channel, and the beam covering effect 2 of the antenna system has two pointing beams in the horizontal direction and two pointing directions in the vertical direction. Beam.
  • the number of rows of the radiating elements in each antenna sub-array group is larger than the number of columns of the radiating elements, so the horizontal width of each beam is greater than the vertical width, that is, the beam covering effect 2 of the antenna system is horizontal and the multi-beam is wider. Coverage, vertical single beam coverage is wider, and the horizontal coverage of each beam is wider than the vertical coverage.
  • the horizontal width of the beam generated by the antenna sub-array group connected to the radio frequency channel is narrower.
  • the more the number of antenna sub-arrays in the antenna sub-array group connected to the radio frequency channel is in the horizontal direction the narrower the vertical width of the generated antenna sub-array group to which the radio frequency channel is connected.
  • the more the number of antenna sub-array groups connected to the above K radio frequency channels are distributed in the horizontal direction the more the antenna system can generate more differently directed beams in the horizontal direction.
  • the antenna system adjusts the number of antenna sub-arrays in the antenna sub-array group connected to the K radio frequency channels by switching between the working state 1 and the working state 2 by the network reconstruction unit 1020, and further The switching between the beam coverage effect 1 of the network reconstruction unit 1020 in the operational state 1 and the beam coverage effect 2 in the operational state 2 is completed.
  • the beam coverage effect 1 may have two differently directed beams, and the beam coverage effect 2 may have four differently directed beams.
  • the horizontal coverage of the beam coverage effect 1 is smaller than the horizontal coverage of the beam coverage effect 2.
  • the beam horizontal width of the beam coverage effect 1 is smaller than the beam horizontal width of the beam coverage effect 2; in the vertical direction, the beam coverage effect 1 may have two fixed-point beams, and the beam coverage effect 2 has only one fixed-point beam.
  • the vertical coverage of beam coverage effect 1 is greater than the vertical coverage of beam coverage effect 2, but the beam vertical width of beam coverage effect 1 is equal to the beam vertical width of beam coverage effect 2.
  • Embodiment 5 by adjusting the switching of the upper and lower half-plane distributions of the RF channel by the reconstruction unit, the beam coverage of the antenna system can be adjusted and adjusted, so that the beam of the antenna system is covered by the horizontal multi-beam, and the vertical is more Switching between wider coverage of the beam and "horizontal multi-beam wide coverage, vertical single-beam narrow coverage".
  • the network reconfiguration unit adjusts the spacing of the antenna sub-arrays in the antenna sub-array group connected to at least one of the K radio frequency channels to change.
  • the width of the beam generated by the antenna sub-array group connected to the at least one radio frequency channel ie, the coverage of each beam
  • the antenna reconfigurable unit can adjust the antenna connected to at least one of the K radio frequency channels
  • the phase shift increment in the sub-array group is used to change the direction of the beam generated by the antenna sub-array group to which the at least one radio frequency channel is connected, thereby enabling the switching of the coverage area of the antenna system beam.
  • Embodiment 6 a dual-polarized antenna array of 8 ⁇ 8 radiating elements and eight RF channels are exemplified.
  • the antenna array in each polarization direction is mapped with four RF channels, and TR is used to represent one RF channel, that is, the four RF channels of TR1, TR2, TR3, and TR4 are mapped on the antenna array in the first polarization direction.
  • the four RF channels of TR5, TR6, TR7, and TR8 are mapped on the antenna array in the second polarization direction.
  • Embodiment 6 Coverage area switching of an antenna system beam.
  • FIG. 11 is a schematic diagram of a coverage area switching of an antenna system beam.
  • the network reconstruction unit 1120 can form two coverage areas in the beam of the antenna system.
  • each coverage area is composed of two overlapping beams.
  • the coverage area 1 is the overlap of the two beams generated by TR1 and TR3
  • the coverage area 2 is the overlap of the two beams generated by TR2 and TR4, using two beams with a wide horizontal width.
  • Single-sector 120-degree coverage is achieved.
  • the network reconstruction unit 1120 can form four coverage areas in the beam of the antenna system, and each coverage area has one beam in each polarization direction of the antenna array.
  • the coverage area 1 is the beam coverage produced by TR1
  • the coverage area 2 is the beam coverage generated by TR3
  • the coverage area 3 is the beam coverage generated by TR2
  • the coverage area 4 is the beam coverage generated by TR4.
  • Completing the switching of the beam coverage area may include the following four steps.
  • Step 1 Group the antenna arrays and divide multiple antenna sub-arrays.
  • the antenna array 1110 is an antenna array of 8 ⁇ 8 radiating elements, and the antenna array 1110 can be divided into 8 antenna sub-arrays 1111, and each antenna sub-array 1111 can include a column of radiation in the antenna array 1110.
  • the unit ie, the antenna sub-array is 8 vertically arranged radiating elements).
  • the eight antenna sub-arrays 1111 are arranged in a horizontal direction on the plane of the antenna array.
  • Step 2 Connect multiple antenna sub-arrays and radio frequency channels to the network reconstruction unit.
  • the network reconstruction unit 1120 may include two four-port transmission devices as shown in FIG. 4 for each polarization, wherein each of the polarization directions of the antenna array 1110 passes through two.
  • the four-port transmission device divides the feed port corresponding to the eight antenna sub-arrays into four antenna sub-array groups, and connects the corresponding feed ports of the four antenna sub-array groups to the four RF channels. Because the two polarizations of the radiation unit are respectively connected to two RF channels, wherein TR1, TR2, TR3, and TR4 are RF channels in the first polarization direction, and TR5, TR6, TR7, and TR8 are RF channels in the second polarization direction. .
  • connection of the antenna sub-arrays in the antenna array 1110 shows the connection of the antenna sub-arrays in the antenna array 1110, and the RF channels TR5, TR6, TR7, and TR8 in the second direction of the antenna array 1110 pass through the above two four-port transmission devices and antennas.
  • the connection of the antenna sub-arrays in the array 1110 may correspond to the radio frequency channels TR1, TR2, TR3, and TR4 in the first polarization direction.
  • Step 3 Adjust the mapping relationship between the antenna sub-array group and the antenna sub-array.
  • the antenna sub-array 1 and the antenna sub-array 3 form the antenna sub-array group A connected to the radio frequency.
  • the antenna sub-array 5 and the antenna sub-array 7 form an antenna sub-array group B connected to the radio frequency channel TR2
  • the antenna sub-array 2 and the antenna sub-array 4 form an antenna sub-array group C connected to the radio frequency channel TR3.
  • the array 6 and the antenna sub-array 8 form an antenna sub-array group D connected to the radio frequency channel TR4.
  • one antenna sub-array group includes two columns of radiating elements (one column of radiating elements, that is, one antenna sub-array) in the antenna array 1110, so the mapping relationship of the radio frequency channels on the antenna array is horizontal.
  • the distance between the two antenna sub-arrays in the connected antenna sub-array group on each RF channel is 2 column spacings (the distance between adjacent antenna sub-arrays is 1 column spacing).
  • the antenna sub-array 1 and the antenna sub-array 5 form the antenna sub-array group A connected to the radio frequency channel TR1.
  • the antenna sub-array 3 and the antenna sub-array 7 form an antenna sub-array group B connected to the radio frequency channel TR2
  • the antenna sub-array 2 and the antenna sub-array 6 form an antenna sub-array group C connected to the radio frequency channel TR3
  • the antenna sub-array 4 and The antenna sub-array 8 constitutes an antenna sub-array group D connected to the radio frequency channel TR4.
  • an antenna sub-array group includes two columns of radiating elements (one column of radiating elements, that is, one antenna sub-array) in the antenna array, so the mapping relationship of the radio frequency channel on the antenna array is horizontal.
  • the upper four RF channels one RF channel in the vertical direction.
  • the spacing between the two antenna sub-arrays in the connected antenna sub-array group on each RF channel is 4 column spacings (the distance between adjacent antenna sub-arrays is 1 column spacing).
  • Step 4 The antenna sub-array group forms a beam.
  • the signals can be completed through the radio frequency channel according to the signals received or transmitted by the radiating units in the antenna sub-array group. Forming.
  • the radio frequency channels TR1, TR2, TR3, and TR4 of the antenna array 1110 may be distributed in the horizontal direction of the antenna array, since each RF channel is connected
  • the beam element width of the structure unit 1120 in the working state 1 is wide, and a single-sector 120-degree coverage can be realized by using two non-overlapping beam coverage areas.
  • the beam coverage effect of the antenna system can be achieved by adjusting the phase shift increments in the antenna sub-array group connected to different RF channels (the coverage area 1 is covered by the beam generated by the RF channel TR1 and the beam overlap generated by the RF channel TR3).
  • the coverage area 2 is covered by the beam generated by the RF channel TR2 and the beam generated by the RF channel TR4.
  • the radio frequency channels TR1, TR2, TR3, and TR4 of the antenna array 1110 may be distributed in the horizontal direction of the antenna array, since each RF channel is connected
  • the beam horizontal width of the reconstruction unit 1120 in the working state 2 is narrow, and the single-sector 120-degree coverage can be realized by using four non-overlapping beam coverage areas.
  • the beam coverage effect of the antenna system can be achieved by adjusting the phase shift increments in the antenna sub-array group connected to different RF channels (the beam generated by the RF channel TR1 in the coverage area 1 and the RF channel TR3 in the coverage area 2)
  • the beam coverage, the coverage area 3 is covered by the beam generated by the RF channel TR2, and the coverage area 4 has the beam coverage generated by the RF channel TR4.
  • the network reconstruction unit 1120 is in the working state 1, the spacing between the two antenna sub-arrays 1111 connected to each radio frequency channel is 2 column spacing, and the network reconstruction unit 1120 is in the working state 2, each The spacing between the two antenna sub-arrays 1111 to which the RF channel is connected is 4 column spacing. The larger the column spacing between the two antenna sub-arrays connected by one RF channel, the narrower the horizontal width of the beam generated by the antenna sub-array group to which the RF channel is connected.
  • the horizontal width of the beam formed by each RF channel is wider, and the two non-coincident beams can be used to implement the single The sector is covered by 120 degrees.
  • the horizontal width of the beam formed by each RF channel is narrow, and a single-sector 120-degree coverage can be achieved by using four non-coincident beams.
  • the network reconstruction unit 1120 switches from the working state 1 to the working state 2, the horizontal width of the beam formed by the connected antenna sub-array on each radio frequency channel is narrowed, and the phase shift increment on each radio frequency channel is adjusted. Thereby changing the orientation of the generated beam of the antenna array group connected to each RF channel.
  • the antenna system can change the spacing between the connected antenna sub-arrays on each RF channel by adjusting the mapping relationship between the RF channel and the antenna sub-array in the connected antenna sub-array group through the network reconstruction unit. And the phase shift increment on each RF channel, thereby switching the beam coverage area of the antenna system.
  • FIG. 12 illustrates a feed network reconstruction method provided by the present application, which includes the following two steps; S1201-S1202.
  • the antenna system divides the L antenna sub-arrays in the antenna array into M antenna sub-array groups, and connects the M antenna sub-array groups to the K radio frequency channels respectively.
  • one polarization direction of one antenna sub-array group is connected to one radio frequency channel, L is a positive integer greater than 1, M is a positive integer, K is an integral multiple of M; any one of the K radio frequency channels, It is used for signal processing on signals received by the connected antenna sub-array group and/or signals to be transmitted.
  • the polarization type of the radiation unit in the antenna array includes single polarization and dual polarization.
  • the radiation unit in the antenna array is in one antenna sub-array group.
  • There may be a feed port that can be used to simultaneously feed the vibrators on each of the radiating elements in the antenna sub-array group, at which time K M.
  • the radiating elements in the antenna array may have two feed ports in one antenna sub-array group, and each of the feed ports may be given to each of the antenna sub-array groups.
  • the antenna system can change the antenna sub-array group connected to the K radio frequency channels in each polarization direction in the case where the radiation unit is multi-polarized, and/or The number in the vertical direction, in turn, enables adjustment of the coverage of the beam in each polarization direction of the antenna.
  • the antenna system adjusts a mapping relationship between the antenna sub-array group and the antenna sub-array connected to at least one of the K radio frequency channels.
  • the antenna system can adjust the number X of the antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, wherein the same polarization direction of the X antenna sub-array groups in the horizontal direction
  • the generated beam includes E directions in the horizontal direction, X and E are positive integers, and 1 ⁇ E ⁇ X ⁇ M. That is to say, in the embodiment of the present application, the antenna system can adjust the number of the antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, and each of the polarizations of the antenna array corresponds to multiple radio frequencies in the horizontal direction.
  • each polarization of the antenna system can be multi-directional beam coverage in the horizontal direction, and each polarization of the antenna array corresponds to a single RF channel connected in the horizontal direction.
  • the antenna system can perform single-point beam coverage in the horizontal direction. Therefore, by adjusting the number of antenna sub-array groups connected to the K radio frequency channels in the horizontal direction, the horizontal coverage of the beam of the antenna system can be changed.
  • the antenna system may adjust the number Y of the K radio frequency channel connected antenna sub-array groups in the vertical direction, and the same polarization direction of the Y antenna sub-array groups in the vertical direction.
  • the beam includes F pointing directions in the vertical direction, Y and F are positive integers, and 1 ⁇ F ⁇ Y ⁇ M. That is to say, in the embodiment of the present application, the number of the antenna sub-array groups connected to the K radio frequency channels is adjusted in the vertical direction, and each polarization of the antenna array corresponds to a plurality of radio frequency channels in the vertical direction.
  • each polarization of the antenna system can be multi-directional beam coverage in the vertical direction.
  • the antenna system can perform single-point beam coverage in the vertical direction. Therefore, by adjusting the number of the antenna sub-array groups connected to the K radio frequency channels in the vertical direction, the vertical coverage of the beam of the antenna system can be changed.
  • the antenna system may adjust a mapping relationship between the antenna sub-array group and the antenna sub-array connected to the at least one of the K radio frequency channels, including: adjusting at least one of the K radio frequency channels.
  • the number of antenna sub-arrays included in the antenna sub-array group connected by the radio frequency channel is in the horizontal direction, wherein the beams generated by the antenna sub-array groups having different numbers of antenna sub-arrays in the horizontal direction have different widths in the horizontal direction.
  • the number of antenna sub-arrays included in the antenna sub-array group connected to the radio frequency channel is changed in the horizontal direction because the antenna sub-array in the horizontal direction of the antenna sub-array group The more the number, the narrower the horizontal width of the beam produced by the antenna sub-array group, so that the coverage of the beam in the horizontal direction can be changed.
  • the antenna system may adjust the number of the antenna sub-arrays included in the antenna sub-array group connected to the at least one of the K radio frequency channels in a vertical direction, where the vertical direction includes The beam generated by the antenna sub-array group having a different number of antenna sub-arrays has different widths in the vertical direction. That is to say, in the embodiment of the present application, the number of antenna sub-arrays included in the antenna sub-array group connected to the variable radio frequency channel is adjusted in the vertical direction because the antenna sub-array in the vertical direction of the antenna sub-array group The greater the number of beams, the narrower the vertical width of the beam produced by the antenna sub-array group, so that the coverage of the beam in the vertical direction can be changed.
  • the antenna system may adjust a spacing between antenna sub-arrays in the antenna sub-array group to which at least one of the K radio frequency channels is connected, to change the at least one radio frequency channel.
  • the width of the beam generated by the connected antenna sub-array group may be adjusted.
  • the radio frequency channel by changing the horizontal spacing between the antenna sub-arrays in the antenna sub-array group to which the radio frequency channel is connected, because the horizontal spacing of the antenna sub-arrays connected by one radio frequency channel is larger, the radio frequency channel The narrower the horizontal width of the beam, the larger the vertical spacing between the antenna sub-arrays connected to one RF channel, and the narrower the vertical width of the RF channel beam, so that the coverage of the beam in the horizontal and vertical directions can be changed.
  • the antenna system can adjust a phase shift increment in the antenna sub-array group to which at least one of the K radio frequency channels is connected. That is to say, in the embodiment of the present application, by changing the radio frequency channel to connect different antenna sub-arrays, the phase shift increment in the antenna sub-array group connected to the radio frequency channel is changed, and the RF is changed under different phase shift increments.
  • the beams generated by the antenna sub-array group connected to the channel can have different directions, so that the direction of the beam can be changed.
  • the antenna system adjusts the mapping relationship between the antenna sub-array group and the antenna sub-array connected to each radio frequency channel to change the radiation unit in the antenna sub-array group connected to each radio frequency channel in the horizontal direction and/or Or the number in the vertical direction may also change the distribution of the RF channel in the horizontal direction and/or the vertical direction to change the coverage of the beam generated by the antenna sub-array group to which the at least one RF channel is connected.
  • the narrower the beam width of the beam generated by the antenna sub-array group on the horizontal plane, and the vertical of the radiating elements in the antenna sub-array group The more the number, the narrower the beam generated by the beam generated by the antenna sub-array group in the vertical direction, so the width of the generated beam of the antenna sub-array group connected to each RF channel can be adjusted, and the respective K radio channels are
  • the connected antenna sub-array group generates beam beams of the beam.
  • FIG. 13 is a schematic structural diagram of the antenna system shown in FIG. 2 when it is applied to a terminal device, and FIG. 13 shows a network device 1300 provided by some embodiments of the present application.
  • network device 1300 can include one or more processors 1310, memory 1320, communication interface 1330, at least one RF channel 1340, network reconstruction unit 1350, phase shifting unit 1360, and antenna array 1370.
  • Communication interface 1330 can be used by network device 1300 to communicate with other communication devices, such as terminal devices or other network devices.
  • the communication interface 1330 communication interface may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • 5G 5G
  • the network device 1300 may also be configured with a wired communication interface 1330 to support wired communication.
  • the backhaul connection between one network device 1300 and other network devices 1300 may be a wired communication connection.
  • the RF channel 1340 can include a transmitter (TX) 1341 and a receiver (RX) 1342.
  • the transmitter (TX) 1351 can be used to perform transmission processing on signals output by the network device processor 1310, for example, by beamforming.
  • Receiver (RX) 1342 can be used to receive processing of the mobile communication signals received by antenna array 1370, such as by directional reception.
  • the transmitter 1341/receiver 1342 may include a beamforming controller for multiplying the transmit/receive signal by a weight vector, the control signal directed to transmit/receive.
  • transmitter 1341 and receiver 1342 can be viewed as a wireless modem.
  • network device 1300 there is at least one radio frequency channel 1340.
  • the antenna array 1370 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • Memory 1320 is coupled to processor 1310 for storing various software programs and/or sets of instructions.
  • memory 1320 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 1320 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 1320 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the processor 1310 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and provide cell handover control and the like for terminals in the control area.
  • the processor 1310 may include: a baseband unit (BBU) (for baseband encoding/decoding and the like), a digital signal processing (DSP), and a micro control unit (micro control unit, MCU), administration module/communication module (AM/CM) (center for voice exchange and information exchange), basic module (BM) (for call processing, signaling processing, Radio resource management, radio link management and circuit maintenance functions), code conversion and sub-multiplexer (TCSM) (for performing multiplexing demultiplexing and code conversion functions) and the like.
  • BBU baseband unit
  • DSP digital signal processing
  • MCU micro control unit
  • AM/CM administration module/communication module
  • BM basic module
  • TCSM code conversion and sub-multiplexer
  • the processor 1310 is configured to control the network reconfiguration unit 1350 to adjust a mapping relationship between an antenna sub-array group and an antenna sub-array connected to at least one of the K radio frequency channels, and thereby change the at least one radio frequency channel.
  • the specific function of the processor 1310 can be referred to the control unit 210 in the antenna system 200 shown in FIG. 2, and the control unit in other embodiments, and details are not described herein.
  • the network reconstruction unit 1350 can be configured to adjust a mapping relationship between the radio frequency channel and the antenna sub-array in the antenna array, thereby changing the beam coverage of the antenna system.
  • the network reconstruction unit 1350 can be coupled with the phase shifting unit 1360 as a feed network to feed the antenna elements on the antenna array.
  • the network reconfiguration unit 1350 reference may be made to the network reconfiguration unit 230 in the antenna system 200 shown in FIG. 2, and the network reconfiguration unit in other embodiments, which are not described herein.
  • the processor 1310 can be used to read and execute computer readable instructions. Specifically, the processor 1310 can be used to invoke a program stored in the memory 1320, for example, the implementation of the signal transmission method provided by one or more embodiments of the present application on the network device 1300 side, and execute the instructions contained in the program. When the program is executed by the processor 1310, the functions of the antenna system shown in Fig. 2 described above can be realized.
  • the network device 1300 can be the network device 101 in the wireless communication system 100 shown in FIG. 1, can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). , NodeB, eNodeB, connection point or TRP, etc.
  • the network device 1300 shown in FIG. 13 is only one implementation of the embodiment of the present application. In actual applications, the network device 1300 may further include more or fewer components, which are not limited herein.
  • FIG. 14 a schematic structural diagram of the antenna system shown in FIG. 2 is applied to a terminal device
  • FIG. 14 is a schematic structural diagram of a terminal device provided by the present application.
  • the terminal device 1400 of FIG. 14 includes a processor 1410, a memory 1420, an input and output device 1430, a plurality of radio frequency channels 1440, a network reconstruction unit 1450, and an antenna array 1460.
  • the processor 1410 is mainly used for processing communication protocols and communication data, and controlling terminal devices, executing software programs, processing data of software programs, and the like.
  • Memory 1420 is primarily used to store software programs and data. Multiple RF channels are mainly used for the conversion of baseband signals and RF signals and the processing of RF signals.
  • the antenna array 1460 is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • Input/output device 1430 such as a touch screen, display screen, keyboard, etc., is primarily used to receive data input by the user and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the network reconstruction unit 1450 can be configured to adjust a mapping relationship between the radio frequency channel and the antenna sub-array in the antenna array, thereby changing the beam coverage of the antenna system.
  • the network reconstruction unit 1450 can be coupled to the phase shifting unit as a feed network to feed the antenna elements on the antenna array.
  • the specific functions of the network reconfiguration unit 1450 in this application may be referred to other embodiments, and are not described herein.
  • the processor 1410 When the data needs to be transmitted, the processor 1410 performs baseband processing on the data to be transmitted, and then outputs the baseband signal to the radio frequency circuit.
  • the plurality of radio frequency channels 1440 perform radio frequency processing on the baseband signal, and then transmit the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF channel 1440 receives the RF signal through the antenna array 1460, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor 1410, which converts the baseband signal into data and The data is processed.
  • only one memory 1420 and processor 1410 are shown in FIG. In an actual end product, there may be one or more processors and one or more memories.
  • the memory 1420 may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna array 1460 and the plurality of radio frequency channels 1440 having the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor having the processing function is regarded as the processing unit of the terminal device.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the processing unit may be a central processing unit (CPU), a network processor (in English: network processor, NP) or a combination of a CPU and an NP.
  • the processing unit may further comprise a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), and a general array logic (GAL). Or any combination thereof.
  • the device for implementing the receiving function in the transceiver unit may be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit is regarded as a sending unit, that is, the transceiver unit includes a receiving unit and a sending unit.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit or the like.
  • the transmitting unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • the communication device is a chip
  • the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be another division manner. For example, multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described above as separate components may or may not be physically separated.
  • the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the above-described integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present application, in essence or the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, server or network device, etc., and in particular a processor in a computer device) to perform all or part of the steps of the above-described methods of various embodiments of the present application.
  • the foregoing storage medium may include: a U disk, a mobile hard disk, a magnetic disk, an optical disk, a read-only memory (abbreviation: ROM), or a random access memory (abbreviation: RAM).
  • a medium that can store program code may include: a U disk, a mobile hard disk, a magnetic disk, an optical disk, a read-only memory (abbreviation: ROM), or a random access memory (abbreviation: RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种天线***、馈电网络重构方法及装置,该天线***可包括:天线阵列,网络重构单元,控制单元和K个射频通道,其中,天线阵列可以包括L个天线子阵列,网络重构单元可以将L个天线子阵列分为M个天线子阵列组,并将M个天线子阵列组分别连接到K个射频通道中;K个射频通道中的任意一个射频通道,可以对连接的天线子阵列组接收到的信号和/或待发射的信号进行信号处理;控制单元可以控制网络重构单元调整每个射频通道连接的天线子阵列组与天线子阵列的映射关系。采用本申请可以动态调整天线***的波束覆盖范围。

Description

一种天线***、馈电网络重构方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种天线***、馈电网络重构方法及装置。
背景技术
天线是各种无线通信***的关键部件之一。移动通信天线***主要包括天线、馈线电缆和射频通道。塔顶的天线通过一定长度的馈线电缆与下面的射频通道相连接。对于下行链路,射频通道中的发射机的输出功率通过馈电电缆馈入安装于塔顶的天线并发射到空中,对于上行链路,手机信号被塔顶基站天线接收后通过馈线电缆进入塔下的射频通道中的接收机。
在目前的移动通信中,大型天线阵列由于增益高可克服多径传输的路径损耗,满足5G通信中对回传和移动等场景要求。移动通信天线***在射频通道数较少的情况下,射频通道数一般集中在水平维度上,每个射频通道上都连接天线阵列一个由垂直方向上的多个天线辐射单元构成的天线子阵列,所以移动通信天线***在水平上可以进行波束扫描,以实现波束在水平面上120度均可覆盖,但垂直方向上一般是一个固定的波束,导致当用户分布在垂直方向上如高楼内时,部分楼层的波束覆盖效果不佳。
因此,如何提高移动通信天线***的波束覆盖的灵活性,成为本领域技术人员正在研究的技术问题。
发明内容
本申请提供一种天线***、馈电网络重构方法及装置,可动态调整天线***的波束覆盖范围。
第一方面,本申请提供了一种天线***,该天线***包括:天线阵列、控制单元、网络重构单元和K个射频通道;
该天线阵列包括L个天线子阵列,其中,L为大于1的正整数;
该网络重构单元,用于将该L个天线子阵列分为M个天线子阵列组,并将该M个天线子阵列组分别连接到该K个射频通道中,其中,一个天线子阵列组的一个极化方向连接到一个射频通道;M为正整数,K为M的整倍数;
该K个射频通道中的任意一个射频通道,用于对连接的天线子阵列组的接收到的信号和/或待发射的信号进行信号处理;
该控制单元,用于控制该网络重构单元调整该K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系。
通过本申请的实施例,天线***中的控制单元控制网络重构单元改变网络状态,调整每个射频通道连接的天线子阵列组与天线子阵列的映射关系,以改变每个射频通道所连接的天线子阵列组中辐射单元在水平方向上和/或垂直方向上的数量,也可以改变射频通道在水平方向上和/或垂直方向上分布情况,从而可以改变该K个射频通道中至少一个射频通道连接的天线子阵列组生成的波束的覆盖范围,。因为天线子阵列组中的辐射单元在水平方向 上的个数越多,该天线子阵列组生成的波束在水平面上的波束宽度越窄,天线子阵列组中的辐射单元在垂直方向上的个数越多,该天线子阵列组生成的波束在垂直方向上生成的波束越窄,所以,可以调整每个射频通道所连接的天线子阵列组生成波束的宽度,以及上述K个射频通道中各自所连接的天线子阵列组生成波束的波束指向。通过波束宽度和波束指向的调整,即可以实现动态调整天线***的波束覆盖范围。
结合第一方面,在第一方面的第一种可能的实现方式中,该控制单元,用于控制该网络重构单元调整该K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,具体为:控制该网络重构单元调整该K个射频通道连接的天线子阵列组在水平方向上的数量X,其中,水平方向上的该X个天线子阵列组的相同极化方向上生成的波束在水平方向上包括E个指向,X、E均为正整数,1≤E≤X≤M。也即是说,本申请实施例中,控制单元可以控制网络重构单元调整该K个射频通道连接的天线子阵列组在水平方向上的数量,当天线阵列的每个极化在水平方向上对应有多个射频通道各自所连接的天线子阵列组时,天线***的每个极化可以在水平方向上进行多指向的波束覆盖,当天线阵列的每个极化在水平方向上对应有单个射频通道所连接的天线子阵列组时,天线***可以在水平方向上进行单一指向的波束覆盖。因此,通过调整所述K个射频通道连接的天线子阵列组在水平方向上的数量,可以改变天线***的波束的水平覆盖范围。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的第二种可能的实现方式中;该控制单元,用于控制所述网络重构单元调整该K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,具体为:控制该网络重构单元调整该K个射频通道连接的天线子阵列组在垂直方向上的数量Y,其中,垂直方向上的所述Y个天线子阵列组的相同极化方向上生成的波束在垂直方向上包括F个指向,Y、F均为正整数,1≤F≤Y≤M。也即是说,本申请实施例中,控制单元可以控制网络重构单元调整该K个射频通道连接的天线子阵列组在垂直方向上的数量,当天线阵列的每个极化在垂直方向上对应有多个射频通道各自所连接的天线子阵列组时,天线***的每个极化可以在垂直方向上进行多指向的波束覆盖,当天线阵列的每个极化在垂直方向上对应有单个射频通道所连接的天线子阵列组时,天线***可以在垂直方向上进行单一指向的波束覆盖。因此,通过调整所述K个射频通道连接的天线子阵列组在垂直方向上的数量,可以改变天线***的波束的垂直覆盖范围。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的第三种可能的实现方式中,该控制单元,用于控制该网络重构单元调整该K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,具体为:控制该网络重构单元调整该K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在水平方向上的数量,其中,水平方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在水平方向上的宽度不同。也即是说,本申请实施例中,通过改变射频通道所连接的天线子阵列组中所包括的天线子阵列在水平方向上的数量,因为天线子阵列组中水平方向上的天线子阵列的个数越多,该天线子阵列组生产的波束的水平宽度越窄,所以即可以实现改变波束在水平方向上的覆盖范围。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的第四种可 能的实现方式中,该控制单元,用于控制该网络重构单元调整该K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,具体为:控制该网络重构单元调整该K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在垂直方向上的数量,其中,垂直方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在垂直方向上的宽度不同。也即是说,本申请实施例中,通过调整变射频通道所连接的天线子阵列组中所包括的天线子阵列在垂直方向上的数量,因为天线子阵列组中垂直方向上的天线子阵列的个数越多,该天线子阵列组生产的波束的垂直宽度越窄,所以即可以实现改变波束在垂直方向上的覆盖范围。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的第五种可能的实现方式中,控制单元,还用于控制该网络重构单元调整该K个射频通道中至少一个射频通道所连接的该天线子阵列组中的天线子阵列之间的间距,。也即是说,本申请实施例中,通过改变射频通道所连接的天线子阵列组中的天线子阵列之间的水平间距,以改变该至少一个射频通道所连接的天线子阵列组生成的波束的宽度,因为一个射频通道所连接天线子阵列的水平间距离越大,射频通道波束的水平宽度越窄,一个射频通道所连接天线子阵列之间垂直间距越大,射频通道波束的垂直宽度越窄,所以即可以实现改变波束在水平和垂直方向上的覆盖范围。
结合第一方面,或者第一方面的上述任一种可能的实现方式,在第一方面的第六种可能的实现方式中,控制单元,还用于控制该网络重构单元调整该K个射频通道中至少一个射频通道所连接的该天线子阵列组中的相移增量。也即是说,本申请实施例中,通过改变射频通道连接不同的天线子阵列,从而改变射频通道所连接的天线子阵列组中的相移增量,不同的相移增量下,该射频通道所连接的天线子阵列组生成的波束可以有不同的指向,所以即可以实现改变波束的指向。
第二方面,本申请提供了一种馈电网络重构方法,该方法包括:首先,将天线阵列中的L个天线子阵列分为M个天线子阵列组,并将M个天线子阵列组分别连接到该K个射频通道中,其中,一个天线子阵列组的一个极化方向连接到一个射频通道,L为大于1的正整数,M为正整数,K为M的整倍数;该K个射频通道中的任意一个射频通道,用于对连接的天线子阵列组接收到的信号和/或待发射的信号进行信号处理。然后,调整该K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系。
通过本申请的实施例,调整每个射频通道连接的天线子阵列组与天线子阵列的映射关系,以改变每个射频通道所连接的天线子阵列组中辐射单元在水平方向上和/或垂直方向上的数量,也可以改变射频通道在水平方向上和/或垂直方向上分布情况,以改变该至少一个射频通道所连接的天线子阵列组生成的波束的覆盖范围。因为天线子阵列组中的辐射单元在水平方向上的个数越多,该天线子阵列组生成的波束在水平面上的波束宽度越窄,天线子阵列组中的辐射单元在垂直方向上的个数越多,该天线子阵列组生成的波束在垂直方向上生成的波束越窄,所以,可以调整每个射频通道所连接的天线子阵列组生成波束的宽度,以及上述K个射频通道中各自所连接的天线子阵列组生成波束的波束指向。通过波束宽度和波束指向的调整,即可以实现动态调整天线***的波束覆盖范围。
结合第二方面,在第二方面的第一种可能的实现方式中,该调整所述K个射频通道中 至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,包括:调整所述K个射频通道连接的天线子阵列组在水平方向上的数量X,其中,水平方向上的该X个天线子阵列组的相同极化方向上生成的波束在水平方向上包括E个指向,X、E均为正整数,1≤E≤X≤M。也即是说,本申请实施例中,天线***可以调整该K个射频通道连接的天线子阵列组在水平方向上的数量,当天线阵列的每个极化在水平方向上对应有多个射频通道各自所连接的天线子阵列组时,天线***的每个极化可以在水平方向上进行多指向的波束覆盖,当天线阵列的每个极化在水平方向上对应有单个射频通道所连接的天线子阵列组时,天线***可以在水平方向上进行单一指向的波束覆盖。因此,通过调整所述K个射频通道连接的天线子阵列组在水平方向上的数量,可以改变天线***的波束的水平覆盖范围。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的第二种可能的实现方式中,该调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,包括:调整该K个射频通道连接天线子阵列组在垂直方向上的数量Y,其中,垂直方向上的该Y个天线子阵列组的相同极化方向上生成的波束在垂直方向上包括F个指向,Y、F均为正整数,1≤F≤Y≤M。也即是说,本申请实施例中,调整该K个射频通道连接的天线子阵列组在垂直方向上的数量,当天线阵列的每个极化在垂直方向上对应有多个射频通道各自所连接的天线子阵列组时,天线***的每个极化可以在垂直方向上进行多指向的波束覆盖,当天线阵列的每个极化在垂直方向上对应有单个射频通道所连接的天线子阵列组时,天线***可以在垂直方向上进行单一指向的波束覆盖。因此,通过调整所述K个射频通道连接的天线子阵列组在垂直方向上的数量,可以改变天线***的波束的垂直覆盖范围。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的第三种可能的实现方式中,该调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,包括:调整该K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在水平方向上的数量,其中,水平方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在水平方向上的宽度不同。也即是说,本申请实施例中,通过改变射频通道所连接的天线子阵列组中所包括的天线子阵列在水平方向上的数量,因为天线子阵列组中水平方向上的天线子阵列的个数越多,该天线子阵列组生产的波束的水平宽度越窄,所以即可以实现改变波束在水平方向上的覆盖范围。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的第四种可能的实现方式中,该调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,包括:调整所述K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在垂直方向上的数量,其中,垂直方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在垂直方向上的宽度不同。也即是说,本申请实施例中,通过调整变射频通道所连接的天线子阵列组中所包括的天线子阵列在垂直方向上的数量,因为天线子阵列组中垂直方向上的天线子阵列的个数越多,该天线子阵列组生产的波束的垂直宽度越窄,所以即可以实现改变波束在垂直方向上的覆盖范围。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的第五种可能的实现方式中,还包括:调整该K个射频通道中至少一个射频通道所连接的该天线子阵 列组所包括的天线子阵列之间的间距,以改变该至少一个射频通道所连接的天线子阵列组生成的波束的宽度。也即是说,本申请实施例中,通过改变射频通道所连接的天线子阵列组中的天线子阵列之间的水平间距,因为一个射频通道所连接天线子阵列的水平间距越大,射频通道波束的水平宽度越窄,一个射频通道所连接天线子阵列之间垂直间距越大,射频通道波束的垂直宽度越窄,所以即可以实现改变波束在水平和垂直方向上的覆盖范围。
结合第二方面,或者第二方面的上述任一种可能的实现方式,在第二方面的第六种可能的实现方式中,还包括:调整该K个射频通道中至少一个射频通道所连接的该天线子阵列组中的相移增量。也即是说,本申请实施例中,通过改变射频通道连接不同的天线子阵列,从而改变射频通道所连接的天线子阵列组中的相移增量,不同的相移增量下,该射频通道所连接的天线子阵列组生成的波束可以有不同的指向,所以即可以实现改变波束的指向。
第三方面,本申请提供一种天线***,该天线***包括处理器和存储器,其中,该存储器用于存储程序代码,该程序代码被该处理器执行时,该天线***实现第一方面提供的一种天线***中的功能。
第四方面,本申请提供一种网络设备,该网络设备中包括处理器,处理器被配置为支持该网络设备实现第一方面提供的天线***的功能。该网络设备还可以包括存储器,存储器用于与处理器耦合,其保存该网络设备必要的程序指令和数据。该网络设备还可以包括通信接口,用于该网络设备与其他设备或通信网络通信。
第五方面,本申请提供一种处理装置,该处理装置包括处理器,处理器被配置为支持该处理装置实现第一方面提供的天线***中控制单元的功能。
第六方面,本申请提供一种计算机存储介质,用于存储为上述第二方面提供的一种天线***中的处理器中所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第七方面,本申请提供了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行上述第一方面中的天线***中的控制单元所执行的功能。
附图说明
图1是本申请提供的一种无线通信***架构图。
图2是本申请提供的一种天线***的结构示意图。
图3是本申请提供的一种8行乘4列辐射单元的天线阵列的结构示意图。
图4是本申请提供的一种四端口传输器件的功能结构示意图。
图5是本申请提供的一种五端口传输器件的功能结构示意图。
图6是本申请提供的一种波束覆盖形态切换示意图。
图7是本申请提供的另一种波束覆盖形态切换示意图。
图8是本申请提供的又一种波束覆盖形态切换示意图。
图9是本申请提供的又一种波束覆盖形态切换示意图。
图10是本申请提供的又一种波束覆盖形态切换示意图。
图11是本申请提供的又一种波束覆盖形态切换示意图。
图12是本申请提供的一种馈电网络重构方法的流程示意图。
图13是本申请提供的一种网络设备的结构示意图。
图14是本申请提供的一种终端设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例进行描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
图1是本发明实施例提供的一种通信***架构图,该无线通信***100中可以包括一个或多个网络设备101、一个或多个终端设备102。网络设备101既可以作为波束的发射端,也可以作为接收端,同理,终端设备102既可以作为接收端也可以作为发射端,本申请对此不作具体限定。其中,
网络设备101,可以为本申请中的天线***,或者被配置为包含有本申请中的天线***的设备,并利用所述天线***生产不同指向的波束,以覆盖整个小区103。例如,在下行通信过程中,网络设备101可以依次生成不同指向的波束发射无线信号与处于不同方位的终端设备102进行通信。可选的,网络设备101可以为基站,基站可以是时分同步码分多址(time division synchronous code division multiple access,TD-SCDMA)***中的基站收发台(base transceiver station,BTS),也可以是LTE***中的演进型基站(evolution NodeB,eNB),以及5G***、新空口(NR)***中的基站。另外,基站也可以为接入点(access point,AP)、传输节点(transmission reception point TRP)、中心单元(central unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端设备102,可以分布在整个无线通信***100中,可以是静止的,也可以是移动 的。在本申请的一些实施例中,终端设备102可以是移动设备、移动台(mobile station,MS)、移动单元(mobile unit,MU)、M2M终端、天线单元,远程单元、终端代理、移动客户端等等。在未来通信***中,终端设备102也可以为本申请中的天线***,或者被配置为包含有本申请中的天线***的终端设备。例如,终端设备102利用所述天线***生成不同指向的波束,与网络设备101进行上行通信,或者与其他终端设备102进行M2M通信等。也即是说,在无线通信***100中,网络设备101和终端102都可能采用本申请中的天线***进行波束对准和多波束通信。
图1所示的无线通信***100可以工作在高频频段上,不限于长期演进(long term evolution,LTE)***,还可以是未来演进的第五代移动通信(the 5th genration,5G)***、新空口(NR)***,机器与机器通信(machine to machine,M2M)***等。
可以理解的是,基于上述图1所示无线通信***架构,本申请中天线***中包括天线阵列(antenna array),由于单一天线的方向性是有限的,为了适合各种场合的应用,将工作在同一频率的两个或两个以上的单个天线,按照一定的要求进行馈电和空间排列构成天线阵列,也叫天线阵。构成天线阵的天线辐射单元称为阵元。其中,天线阵列包括相控阵天线(phased array antenna,PAA),相控阵天线是有辐射单元排列而成的定向天线阵列,各辐射单元的相位关系可控,天线阵列利用移相器控制每个辐射单元的信号相位,从而改变整个天线阵列信号在空间的叠加加强方向,从而实现波束的电子扫描。也就是说相控阵天线是通过控制天线阵列中辐射单元的馈电相位来改变波束的方向图形状的天线,控制相位可以改变天线方向图最大值的指向,以达到波束扫描的目的。
可以理解的是,图1中的无线通信***架构只是本发明实施例中的一种示例性的实施方式,本发明实施例中的通信***架构包括但不仅限于以上通信***架构。
下面基于上述无线通信***,结合本申请中提供的天线***的实施例,对本申请中提出的技术问题进行具体分析和解决。
请参见图2,图2是本发明实施例提供的一种天线***的结构图,如图2所示,天线***200包括:天线阵列210、控制单元220、网络重构单元230和K个射频通道240,天线阵列210、控制单元220、网络重构单元230和K个射频通道240通过馈电线缆或者其他方式连接。其中:
天线阵列210,可包括L个天线子阵列,其中,L大于1的正整数。由于本申请中的天线阵列还可以为三角阵列、六边形阵列、菱形阵列,圆形阵列等,因此,本申请中的天线阵列至少包括的A行乘B列辐射单元可以与上述各种形态的阵列中一部分阵列。可选的,在上述各种形态的阵列中,本申请中的A行与B列辐射单元之间的位置关系是相对垂直的。该L个天线子阵列中的任意一个天线子阵列都包括有辐射单元。
例如,如图3所示,为本发明实施例提供的一种8行乘4列辐射单元的天线阵列的结构示意图。在图3中,该8行乘4列的天线阵列可以包括有8个天线子阵列,如图3所示,每个虚线框内的辐射单元310组成一个天线子阵列320。该8个天线子阵列320可以分为4个天线子阵列组330,如图3所示,每个实线框内的相邻天线子阵列3002可以组成一个天线子阵列组330。具体的,各天线子阵列320包括的辐射单元310不重叠,且各天线子阵 列组330包括的天线子阵列320也不重叠。示例仅仅用于解释本申请,不应构成限定。
网络重构单元230,可用于将上述L个天线子阵列分为M个天线子阵列组,并将M个天线子阵列组分别连接到K个射频通道中,其中,一个天线子阵列组的一个极化方向连接到一个射频通道,M为正整数,K为M的整倍数。
具体实现中,该网络重构单元230,可以包括至少两种工作状态,在不同的工作状态下,M个天线子阵列组各自包括的天线子阵列在水平或者垂直方向上分布的数量不同。例如,在网络状态1的情况下,天线子阵列组1包括天线子阵列1和天线子阵列2,天线子阵列组2包括天线子阵列3和天线子阵列4;在网络状态2的情况下,天线子阵列组1包括天线子阵列1和天线子阵列3,天线子阵列组2包括天线子阵列2和天线子阵列4。示例仅仅用于解释本申请,不应构成限定。
具体实现中,天线阵列中的辐射单元的极化类型包括单极化和双极化,在天线阵列中的辐射单元为单极化的情况下,天线阵列中的辐射单元一个天线子阵列组中可以有一个馈电端口,该馈电端口可以用于给该天线子阵列组中的每个辐射单元上的振子同时进行馈电,此时K=M。在天线阵列中的辐射单元为双极化的情况下,天线阵列中的辐射单元一个天线子阵列组中可以有两个馈电端口,每一个馈电端口可以给天线子阵列组中的每一个辐射单元上的同一极化方向的振子进行馈电,双极化的极化方向可以是+45°和-45度,此时K=2M。因此,本发明实施例中,天线***可以在辐射单元为多极化的情况下,实现在每个极化方向上都能够改变上述K个射频通道所连接的天线子阵列组在水平和/或垂直方向上的数量,进而实现在天线的每个极化方向上都能够调整波束的覆盖范围。
K个射频通道240中的任一个射频通道,用于对连接的天线子阵列组接收到的信号和/或待发射的信号进行信号处理。
具体实现中,每个射频通道上可以连接有一个天线子阵列组,该天线子阵列组可以包括有多个辐射单元,也即是说,一个射频通道可以包括有多个辐射单元。单个射频通道的指标可以包括辐射增益、波束水平或垂直宽度(水平及垂直半功率角)、波束指向等。在一个射频通道连接的多个辐射单元相互之间有一定的幅度和相位关系,在同一馈源的作用下,在该射频通道的工作频段内通过波束赋形形成波束的方向图。该射频通道可以包括有接收通道和发射通道,该接收通道用于将来自天线或者其他设备的射频信号解调到正交基带信号,该发射通道将正交基带信号调制到射频信号,其中,该接收通道的电路包括前端滤波、可编程衰减器、限幅器、低噪声前置放大器、正交解调器、差分滤波与放大、以及宽频带本振源。该发射通道的电路包括正交解调器、可编程衰减器、驱动放大器、宽频带本振源。
控制单元220,可用于控制上述网络重构单元230调整上述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系。
具体实现中,该网络重构单元230可以包括至少两种网络状态,在每种网络状态下,K个射频通道所连接的天线子阵列组中在水平和/或垂直方向上天线子阵列的数量都不一样。
举例说明,例如,该网络重构单元可以包括有网络状态1和网络状态2,天线阵列可以分为天线子阵列1、天线子阵列2、天线子阵列3、天线子阵列4,其中,天线子阵列1与天线子阵列2水平方向上相邻,与天线子阵列3垂直方向上相邻,天线子阵列4与天线子阵列2垂直方向上相邻,天线子阵列4与天线子阵列3水平方向上相邻。在网络状态1 下,天线子阵列1与天线子阵列2可以组成天线子阵列组A连入射频通道1中,天线子阵列3与天线子阵列4可以组成天线子阵列组B连入射频通道2中,因此,射频通道1和射频通道2分布在垂直方向上,所以天线***可以在垂直平面上形成两个指向的波束,在水平方向上两个波束的指向一致,因此可以实现垂直方向上的波束扫描,实现垂直方向上的广覆盖。在网络状态2下,天线子阵列1与天线子阵列3可以组成天线子阵列组A连入射频通道1,天线子阵列2和天线阵列4可以组成天线子阵列组B连入射频通道2,因此射频通道1和射频通道2分布在水平方向上,所以天线***可以在水平平面上形成两个指向的波束,垂直平面上两个波束的指向一致,因此可以实现水平方向上的波束扫描,实现水平方向上的广覆盖。示例仅仅用于解释本申请,不应构成限定。
本发明实施基于现有技术中的天线阵列的硬件结构,在射频通道与天线阵列之间加入了网络重构单元,通过天线***中的控制单元控制网络重构单元改变网络状态,调整每个射频通道连接的天线子阵列组与天线子阵列的映射关系,以改变每个射频通道所连接的天线子阵列组中辐射单元在水平方向上和/或垂直方向上的数量,也可以改变射频通道在水平方向上和/或垂直方向上分布情况,从而可以改变该K个射频通道中至少一个射频通道连接的天线子阵列组生成的波束的覆盖范围。因为天线子阵列组中的辐射单元在水平方向上的个数越多,该天线子阵列组生成的波束在水平面上的波束宽度越窄,天线子阵列组中的辐射单元在垂直方向上的个数越多,该天线子阵列组生成的波束在垂直方向上生成的波束越窄,所以,可以调整每个射频通道所连接的天线子阵列组生成波束的宽度,以及上述K个射频通道中各自所连接的天线子阵列组生成波束的波束指向。通过波束宽度和波束指向的调整,即可以实现动态调整天线***的波束覆盖范围。
在一种可能的实现方式中,该控制单元220,可用于控制该网络重构单元230调整该K个射频通道240连接的天线子阵列组在水平方向上的数量X,其中,水平方向上的X个天线子阵列组的相同极化方向上生成的波束在水平方向上包括E个指向,X、E均为正整数,1≤E≤X≤M。也即是说,本申请实施例中,控制单元可以控制网络重构单元调整该K个射频通道连接的天线子阵列组在水平方向上的数量,当天线阵列的每个极化在水平方向上对应有多个射频通道各自所连接的天线子阵列组时,天线***的每个极化可以在水平方向上进行多指向的波束覆盖,当天线阵列的每个极化在水平方向上对应有单个射频通道所连接的天线子阵列组时,天线***可以在水平方向上进行单一指向的波束覆盖。因此,通过调整所述K个射频通道连接的天线子阵列组在水平方向上的数量,可以改变天线***的波束的水平覆盖范围。
在一种可能的实现方式中,该控制单元220,可用于控制该网络重构单元230调整该K个射频通道240连接的天线子阵列组在垂直方向上的数量Y,其中,垂直方向上的Y个天线子阵列组的相同极化方向上生成的波束在垂直方向上包括F个指向,Y、F均为正整数,1≤F≤Y≤M。也即是说,本申请实施例中,控制单元可以控制网络重构单元调整该K个射频通道连接的天线子阵列组在垂直方向上的数量,当天线阵列的每个极化在垂直方向上对应有多个射频通道各自所连接的天线子阵列组时,天线***的每个极化可以在垂直方向上进行多指向的波束覆盖,当天线阵列的每个极化在垂直方向上对应有单个射频通道所连接的天线子阵列组时,天线***可以在垂直方向上进行单一指向的波束覆盖。因此,通过 调整所述K个射频通道连接的天线子阵列组在垂直方向上的数量,可以改变天线***的波束的垂直覆盖范围。
在一种可能的实现方式中,该控制单元220,可用于控制该网络重构单元230调整该K个射频通道240中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在水平方向上的数量,其中,水平方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在水平方向上的宽度不同。也即是说,本申请实施例中,通过改变射频通道所连接的天线子阵列组中所包括的天线子阵列在水平方向上的数量,因为天线子阵列组中水平方向上的天线子阵列的个数越多,该天线子阵列组生产的波束的水平宽度越窄,所以即可以实现改变波束在水平方向上的覆盖范围。
在一种可能的实现方式中,该控制单元220,可用于控制该网络重构单元230调整该K个射频通道240中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在垂直方向上的数量,其中,垂直方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在垂直方向上的宽度不同。也即是说,本申请实施例中,通过调整变射频通道所连接的天线子阵列组中所包括的天线子阵列在垂直方向上的数量,因为天线子阵列组中垂直方向上的天线子阵列的个数越多,该天线子阵列组生产的波束的垂直宽度越窄,所以即可以实现改变波束在垂直方向上的覆盖范围。
在一种可能的实现方式中,该控制单元220还可以用于控制该网络重构单元230调整该K个射频通道240中至少一个射频通道所连接的该天线子阵列组中的天线子阵列之间的间距,以改变该至少一个射频通道所连接的天线子阵列组生成的波束的宽度。也即是说,本申请实施例中,通过改变射频通道所连接的天线子阵列组中的天线子阵列之间的水平距离,因为一个射频通道所连接天线子阵列的水平空间距离越大,射频通道波束的水平宽度越窄,一个射频通道所连接天线子阵列之间垂直空间距离越大,射频通道波束的垂直宽度越窄,所以即可以实现改变波束在水平和垂直方向上的覆盖范围。
在一种可能的实现方式中,该控制单元220还可以用于控制该网络重构单元230调整该K个射频通道240中至少一个射频通道所连接的该天线子阵列组中的相移增量。也即是说,本申请实施例中,通过改变射频通道连接不同的天线子阵列,从而改变射频通道所连接的天线子阵列组中的相移增量,不同的相移增量下,该射频通道所连接的天线子阵列组生成的波束可以有不同的指向,所以即可以实现改变波束的指向。
下面结合上述图2所示天线***,对本申请中的天线***如何控制该网络重构单元调整上述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,以改变上述至少一个射频通道所连接的天线子阵列组生成的波束的覆盖范围进行示例性说明。
首先,介绍一种四端口传输器件。如图4所示,为本发明实施例提供的一种四端口传输器件,该四端口传输器件可以包括有端口1、端口2、端口3、端口4共四个端口。其中,该传输器件可以有两种工作状态,在工作状态1下,该四端口传输器件可以实现端口1和端口3的射频能量传输,端口4和端口2的射频能量传输,实现交叉传输的效果。在工作状态2下,该四端口传输器件可以实现端口1和端口2的射频能量传输,端口4和端口3 的射频能量传输,实现平行传输的效果。上述图2中的网络重构单元可以包括多个该四个传输器件。
接下来利用实施方式一至实施方式三,来具体说明如何利用多个上述图4所示的四端口传输器件构成的网络重构单元,控制该网络重构单元调整上述K个射频通道中至少一个射频通道所连接的天线子阵列组中天线子阵列的空间排布,以改变上述至少一个射频通道所连接的天线子阵列组生成的波束的覆盖范围。以下实施例包括波束的三种覆盖形态,即水平覆盖形态,垂直覆盖形态,水平+垂直覆盖形态。在水平覆盖形态下,天线阵列的在水平方向上映射有多个射频通道,而在垂直方向上映射为固定的一个射频通道,在垂直覆盖形态下,天线阵列在垂直方向上映射有多个射频通道,在水平+垂直覆盖形态下,天线阵列在水平和垂直方向上映射有多个射频通道。
需要说明的是,以下实施方式一至实施方式三均以8×4辐射单元的双极化天线阵列,8个射频通道进行示例说明。其中,每个极化方向的天线阵列都映射有4个射频通道,用TR表示一个射频通道,即第一极化方向的天线阵列上映射有TR1、TR2、TR3、TR4这4个射频通道,第二极化方向的天线阵列上映射有TR5、TR6、TR7、TR8这4射频通道。
实施方式一:水平覆盖形态与水平+垂直覆盖形态的切换。
请参见图6,图6为水平覆盖形态与水平+垂直覆盖形态的切换示意图。完成覆盖形态的切换可以包括如下四个步骤。
步骤1、对天线阵列进行分组,划分出多个天线子阵列。
具体的,如图6所示,天线阵列610可以分成8个天线子阵列,每个天线子阵列可以包括有4行乘1列的辐射单元,该辐射单元有两个双极化。这8个天线子阵列在天线阵列平面上成2行乘4列排列。
步骤2、将多个天线子阵列和射频通道连接到网络重构单元中。
具体的,如图6所示,网络重构单元620每个极化上都可以包括两个上述四端口传输器件,其中,天线阵列每个极化方向上都通过两个上述四端口传输器件将8个天线子阵列对应的馈电端口分成4个天线子阵列组,并将这4个天线子阵列组对应的馈电端口分别连接到4个射频通道中。因为辐射单元两个极化分别连接两个射频通道,其中,TR1、TR2、TR3、TR4为第一极化方向上射频通道,TR5、TR6、TR7、TR8为第二极化方向上的射频通道。图6中的网络重构单元620示出了天线阵列610第一极化方向上的射频通道TR1、TR2、TR3、TR4通过两个上述四端口传输器件与天线阵列610中天线子阵列的连接情况,天线阵列610第二极化方向上的射频通道TR5、TR6、TR7、TR8通过两个上述四端口传输器件与天线阵列610中天线子阵列的连接情况可对应参照第一极化方向上的射频通道TR1、TR2、TR3、TR4。
步骤3、调整天线子阵列组与天线子阵列的映射关系。
具体的,当网络重构单元620中的四端口传输器件都在工作状态1(交叉状态)时,天线子阵列1和天线子阵列5组成天线子阵列组A连入射频通道TR1中,天线子阵列2和天线子阵列6组成天线子阵列组B连入射频通道TR2中,天线子阵列3和天线子阵列7组成天线子阵列组C连入射频通道TR3中,天线子阵列4和天线子阵列8组成天线子阵列组D连入射频通道TR4中。在网络重构单元620的工作状态1下,一个天线子阵列组包括天 线阵列中的8行乘1列辐射单元,所以射频通道在天线阵列上的映射关系为水平方向上四个射频通道,垂直方向上一个射频通道。
当网络重构单元620中的四端口传输器件都在工作状态2(平行状态)时,天线子阵列1和天线子阵列2组成天线子阵列组A连入射频通道TR1中,天线子阵列5和天线子阵列6组成天线子阵列组B连入射频通道TR2中,天线子阵列3和天线子阵列4组成天线子阵列组C连入射频通道TR3中,天线子阵列7和天线子阵列8组成天线子阵列组D连入射频通道TR4中。在网络重构单元620的工作状态2下,一个天线子阵列组包括天线阵列中的4行乘2列辐射单元,所以射频通道在天线阵列上的映射关系为水平方向上2个射频通道,垂直方向上2个射频通道。
步骤4、天线子阵列组形成波束。
由于一个射频通道中所连接的天线子阵列组中的相移增量一致,所以根据天线子阵列组中的各辐射单元接收或发送的信号,即可以通过射频通道完成波束成形。
所以通过调整射频通道中所连接的天线子阵列组中的相移增量,即可产生多个指向的波束。
如图6所示,在网络重构单元620的工作状态1下,天线阵列610的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上,每8×1个辐射单元组成一个天线子阵列组(每一行1个辐射单元,每一列8个辐射单元)连入一个射频通道,其中,不同天线子阵列组中的相移增量不同,所以,天线***的波束覆盖效果1为水平方向上有四个指向的波束,在垂直方向上只有一个指向的波束。并且,每个天线子阵列组中辐射单元的行数大于辐射单元的列数,所以每个波束的水平宽度大于垂直宽度。也即是说,天线***的波束覆盖效果1为水平广覆盖,垂直窄覆盖。
如图6所示,在网络重构单元620的工作状态2下,天线阵列610的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上和垂直方向上,每4×2个辐射单元组成一个天线子阵列组(每一行2个辐射单元,每一列4个辐射单元)连入一个射频通道,其中,不同天线子阵列组中的相移增量不同,天线***的波束覆盖效果2为水平方向上有两个指向的波束,在垂直方向上也有两个指向的波束。并且,每个天线子阵列组中辐射单元的行数大于辐射单元的列数,所以每个波束的水平宽度大于垂直宽度。也即是说,天线***的波束覆盖效果2为水平多波束较广覆盖,垂直多波束较广覆盖,且每一个波束的垂直覆盖范围比水平覆盖范围广。
由于,射频通道所连接的天线子阵列组中的天线子阵列在垂直方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的水平宽度越窄。射频通道所连接的天线子阵列组中的天线子阵列在水平方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的垂直宽度越窄。上述K个射频通道所连接的天线子阵列组在水平方向上分布的数量越多,则天线***可以在水平方向上生成越多不同指向的波束。上述K个射频通道所连接的天线子阵列组在垂直方向上分布的数量越多,则天线***可以在垂直方向上生成越多不同指向的波束。所以,图6中所示的波束覆盖效果1和波束覆盖效果2的比较结果可具体如下表1所示:
Figure PCTCN2019079760-appb-000001
Figure PCTCN2019079760-appb-000002
表1
结合图6和表1,天线***通过网络重构单元620在工作状态1和工作状态2之间的切换,调整上述K个射频通道所连接的天线子阵列组中的天线子阵列的数量,进而完成网络重构单元620的在工作状态1下的波束覆盖效果1和在工作状态2下的波束覆盖效果2之间的切换。其中,在水平方向上,波束覆盖效果1有4个不同指向的波束,波束覆盖效果2有2个不同指向的波束,波束覆盖效果1的水平覆盖范围大于波束覆盖效果2的水平覆盖范围,波束覆盖效果1的波束水平宽度大于波束覆盖效果2的波束水平宽度;在垂直方向上,波束覆盖效果1有1个固定指向的波束,波束覆盖效果2可以有2个不同指向的波束,波束覆盖效果1的垂直覆盖范围小于波束覆盖效果2的垂直覆盖范围,波束覆盖效果1的波束垂直宽度小于波束覆盖效果2的波束垂直宽度。
在实施方式一中,通过调整射频通道在天线阵列上的水平多通道分布和天线阵列的水平+垂直多通道分布的切换,可以调整天线***的波束覆盖范围,实现天线***波束“水平广覆盖,垂直窄覆盖”与“水平较广覆盖,垂直较广覆盖”之间的切换。
实施方式二:水平+垂直覆盖形态与垂直覆盖形态的切换。
请参见图7,图7为水平+垂直覆盖形态与垂直覆盖形态的切换示意图。完成覆盖形态的切换可以包括如下四个步骤。
步骤1、对天线阵列进行分组,划分出多个天线子阵列。
具体的,如图7所示,天线阵列710可以分成8个天线子阵列,每个天线子阵列可以包括有2行乘2列的辐射单元,该辐射单元有两个双极化。这8个天线子阵列在天线阵列平面上成4行乘2列排列。
步骤2、将多个天线子阵列和射频通道连接到网络重构单元中。
具体的,如图7所示,网络重构单元720每个极化上都可以包括两个四端口传输器件,其中,天线阵列每个极化方向上都通过两个四端口传输器件将8个天线子阵列对应的馈电端口分成4个天线子阵列组,并将这4个天线子阵列组对应的馈电端口分别连接到4个射频通道中。因为辐射单元两个极化分别连接两个射频通道,其中,TR1、TR2、TR3、TR4为第一极化方向上射频通道,TR5、TR6、TR7、TR8为第二极化方向上的射频通道。图7中的网络重构单元720示出了天线阵列710在第一极化方向上的射频通道TR1、TR2、TR3、TR4通过两个四端口传输器件与天线阵列710中天线子阵列的连接情况,天线阵列710第二极化方向上的射频通道TR5、TR6、TR7、TR8通过两个四端口传输器件与天线阵列710中天线子阵列的连接情况可对应参照第一极化方向上的射频通道TR1、TR2、TR3、TR4。
步骤3、调整天线子阵列组与天线子阵列的映射关系。
具体的,当网络重构单元720中的四端口传输器件都在状态1(交叉状态)时,天线子阵列1和天线子阵列3组成天线子阵列组A连入射频通道TR1中,天线子阵列2和天线子阵列4组成天线子阵列组B连入射频通道TR2中,天线子阵列5和天线子阵列7组成天线子阵列组C连入射频通道TR3中,天线子阵列6和天线子阵列8组成天线子阵列组D连入射频通道TR4中。在状态1下,一个天线子阵列组包括天线阵列中的4行乘2列辐射单元,所以射频通道在天线阵列上的映射关系为水平方向上2个射频通道,垂直方向上2个射频通道。
当网络重构单元720中的四端口传输器件都在状态1(平行状态)时,天线子阵列1和天线子阵列2组成天线子阵列组A连入射频通道TR1中,天线子阵列3和天线子阵列4组成天线子阵列组B连入射频通道TR2中,天线子阵列5和天线子阵列6组成天线子阵列组C连入射频通道TR3中,天线子阵列7和天线子阵列8组成天线子阵列组D连入射频通道TR4中。在状态2下,一个天线子阵列组包括天线阵列中的2行乘4列辐射单元,所以射频通道在天线阵列上的映射关系为水平方向上1个射频通道,垂直方向上4个射频通道。
步骤4、天线子阵列组形成波束。
由于一个射频通道中所连接的天线子阵列组中的各辐射单元之间的相移增量一致,所以根据天线子阵列组中的各辐射单元接收或发送的信号,即可以通过射频通道完成波束成形。
所以通过调整射频通道中所连接的天线子阵列组中的相移增量,即可产生多个指向的波束。
如图7所示,在网络重构单元720的工作状态1下,天线阵列710的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向和垂直方向上,每4×2个辐射单元组成一个天线子阵列组(每一行2个辐射单元,每一列4个辐射单元)连入一个射频通道,其中,不同天线子阵列组中的相移增量不同,所以,天线***的波束覆盖效果1为水平方向上有两个指向的波束,在垂直方向上也有两个指向的波束。并且,每个天线子阵列组中辐射单元的行数大于辐射单元的列数,所以每个波束的水平宽度大于垂直宽度。也即是说,天线***的波束覆盖效果1为水平多波束较广覆盖,垂直多波束较广覆盖。
如图7所示,在网络重构单元720的工作状态2下,天线阵列710的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上和垂直方向上,每2×4个辐射单元组成一个天线子阵列组(每一行4个辐射单元,每一列2个辐射单元)连入一个射频通道,其中,不同天线子阵列组中的相移增量不同,天线***的波束覆盖效果2为水平方向上有一个指向的波束,在垂直方向上有四个指向的波束。并且,每个天线子阵列组中辐射单元的列数大于辐射单元的行数,所以每个波束的垂直宽度大于水平宽度。也即是说,天线***的波束覆盖效果2为水平单波束较广覆盖,垂直多波束广覆盖。
由于,射频通道所连接的天线子阵列组中的天线子阵列在垂直方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的水平宽度越窄。射频通道所连接的天线子阵列组中的天线子阵列在水平方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的垂直宽度越窄。上述K个射频通道所连接的天线子阵列组在水平方向上分布的数量越多,则天线***可以在水平方向上生成越多不同指向的波束。上述K个射频通道所连接的天线 子阵列组在垂直方向上分布的数量越多,则天线***可以在处置方向上生成越多不同指向的波束。所以,图7中所示的波束覆盖效果1和波束覆盖效果2的比较结果可具体如下表2所示:
Figure PCTCN2019079760-appb-000003
表2
结合图7和表2,天线***通过网络重构单元720在工作状态1和工作状态2之间的切换,调整上述K个射频通道所连接的天线子阵列组中的天线子阵列的数量,进而完成网络重构单元720的在工作状态1下的波束覆盖效果1和在工作状态2下的波束覆盖效果2之间的切换。其中,在水平方向上,波束覆盖效果1有2个不同指向的波束,波束覆盖效果2有1个不同指向的波束,波束覆盖效果1的水平覆盖范围大于波束覆盖效果2的水平覆盖范围,波束覆盖效果1的波束水平宽度大于波束覆盖效果2的波束水平宽度;在垂直方向上,波束覆盖效果1可以有2个不同指向的波束,波束覆盖效果2可以有4个不同指向的波束,波束覆盖效果1的垂直覆盖范围小于波束覆盖效果2的垂直覆盖范围,波束覆盖效果1的波束垂直宽度小于波束覆盖效果2的波束垂直宽度。
在实施方式二中,通过调整射频通道在天线阵列上的水平多通道分布和在天线阵列的水平+垂直多通道分布的切换,可以调整天线***的波束覆盖范围,实现天线***波束“水平多波束较广覆盖,垂直多波束较广覆盖”与“水平单波束较广覆盖,垂直多波束广覆盖”之间的切换。
实施方式三:水平覆盖形态与垂直覆盖形态的切换。
请参见图8,图8为水平覆盖形态与垂直覆盖形态的切换示意图。完成覆盖形态的切换可以包括如下四个步骤。
步骤1、对天线阵列进行分组,划分出多个天线子阵列。
具体的,如图8所示,天线阵列810可以分成16个天线子阵列,每个天线子阵列可以包括有2行乘1列的辐射单元,该辐射单元有两个双极化。这16个天线子阵列在天线阵列平面上成4行乘4列排列。
步骤2、将多个天线子阵列和射频通道连接到网络重构单元中。
具体的,如图8所示,网络重构单元820每个极化上都可以包括两个四端口传输器件,其中,天线阵列每个极化方向上都可以通过八个四端口传输器件将16个天线子阵列对应的馈电端口分成4个天线子阵列组,并将这4个天线子阵列组对应的馈电端口分别连接到4个射频通道中。因为辐射单元两个极化分别连接两个射频通道,其中,TR1、TR2、TR3、TR4为第一极化方向上射频通道,TR5、TR6、TR7、TR8为第二极化方向上的射频通道。 图8中的网络重构单元820示出了天线阵列810第一极化方向上的射频通道TR1、TR2、TR3、TR4通过八个四端口传输器件与天线阵列810中天线子阵列的连接情况,天线阵列810第二极化方向上的射频通道TR5、TR6、TR7、TR8通过八个四端口传输器件与天线阵列810中天线子阵列的连接情况可对应参照第一极化方向上的射频通道TR1、TR2、TR3、TR4。
步骤3、调整天线子阵列组与天线子阵列的映射关系。
具体的,当网络重构单元820中的四端口传输器件都在状态1(交叉状态)时,天线子阵列1、天线子阵列5、天线子阵列9、天线子阵列13组成天线子阵列组A连入射频通道TR1中,天线子阵列2、天线子阵列6、天线子阵列10和天线子阵列14组成天线子阵列组B连入射频通道TR2中,天线子阵列3、天线子阵列7、天线子阵列11、天线子阵列15组成天线子阵列组C连入射频通道TR3中,天线子阵列4、天线子阵列8、天线子阵列12和天线子阵列16组成天线子阵列组D连入射频通道TR4中。在状态1下,一个天线子阵列组包括天线阵列中的8行乘1列辐射单元,所以射频通道在天线阵列上的映射关系为水平方向上4个射频通道,垂直方向上1个射频通道。
当网络重构单元820中的四端口传输器件都在状态2(平行状态)时,天线子阵列1、天线子阵列2、天线子阵列3和天线子阵列4组成天线子阵列组A连入射频通道TR1中,天线子阵列5、天线子阵列6、天线子阵列7和天线子阵列8组成天线子阵列组B连入射频通道TR2中,天线子阵列9、天线子阵列10、天线子阵列11和天线子阵列12组成天线子阵列组C连入射频通道TR3中,天线子阵列13、天线子阵列14、天线子阵列15和天线子阵列16组成天线子阵列组D连入射频通道TR4中。在网络重构单元820的工作状态2下,一个天线子阵列组包括天线阵列中的2行乘4列辐射单元,所以射频通道在天线阵列上的映射关系为水平方向上1个射频通道,垂直方向上4个射频通道。
步骤4、天线子阵列组形成波束。
由于一个射频通道中所连接的天线子阵列组中的各辐射单元之间的相移增量一致,所以根据天线子阵列组中的各辐射单元接收或发送的信号,即可以通过射频通道完成波束成形。
所以通过调整射频通道中所连接的天线子阵列组中的相移增量,即可产生多个指向的波束。
如图8所示,在网络重构单元820的工作状态1(交叉状态)下,天线阵列810的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上,每8×1个辐射单元组成一个天线子阵列组(每一行1个辐射单元,每一列8个辐射单元)连入一个射频通道,其中,不同天线子阵列组中的相移增量不同,所以,天线***的波束覆盖效果1为水平方向上有四个指向的波束,在垂直方向上只有一个指向的波束。并且,每个天线子阵列组中辐射单元的行数大于辐射单元的列数,所以每个波束的水平宽度大于垂直宽度,也即是说,天线***的波束覆盖效果1为水平多波束广覆盖,垂直单波束窄覆盖。
如图8所示,在网络重构单元820的工作状态2(平行状态)下,天线阵列810的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上和垂直方向上,每2×4个辐射单元组成一个天线子阵列组(每一行4个辐射单元,每一列2个辐射单元)连入一 个射频通道,天线***的波束覆盖效果2为水平方向上有一个指向的波束,在垂直方向上有四个指向的波束。并且,每个天线子阵列组中辐射单元的列数大于辐射单元的行数,所以每个波束的垂直宽度大于水平宽度,也即是说,天线***的波束覆盖效果2为水平单波束窄覆盖,垂直多波束广覆盖。
由于,射频通道所连接的天线子阵列组中的天线子阵列在垂直方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的水平宽度越窄。射频通道所连接的天线子阵列组中的天线子阵列在水平方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的垂直宽度越窄。上述K个射频通道所连接的天线子阵列组在水平方向上分布的数量越多,则天线***可以在水平方向上生成越多不同指向的波束。上述K个射频通道所连接的天线子阵列组在垂直方向上分布的数量越多,则天线***可以在处置方向上生成越多不同指向的波束。所以,图8中所示的波束覆盖效果1和波束覆盖效果2的比较结果可具体如下表3所示:
Figure PCTCN2019079760-appb-000004
表3
结合图8和表3,天线***通过网络重构单元820在工作状态1和工作状态2之间的切换,调整上述K个射频通道所连接的天线子阵列组中的天线子阵列的数量,进而完成网络重构单元820的在工作状态1下的波束覆盖效果1和在工作状态2下的波束覆盖效果2之间的切换。其中,在水平方向上,波束覆盖效果1可以有4个不同指向的波束,波束覆盖效果2只有1个固定指向的波束,波束覆盖效果1的水平覆盖范围大于波束覆盖效果2的水平覆盖范围,但波束覆盖效果1的波束水平宽度大于波束覆盖效果2的波束水平宽度;在垂直方向上,波束覆盖效果1只有1个固定指向的波束,波束覆盖效果2可以有4个不同指向的波束,波束覆盖效果1的垂直覆盖范围小于波束覆盖效果2的垂直覆盖范围,但波束覆盖效果1的波束垂直宽度小于波束覆盖效果2的波束垂直宽度。
本实施方式三中,通过调整射频通道在水平多通道分布和在天线阵列的垂直多通道分布的切换,可以调整天线***的波束覆盖范围,实现天线***波束在“水平多波束广覆盖,垂直单波束窄覆盖”与“水平单波束窄覆盖,垂直多波束广覆盖”之间的切换。
上面实施方式一至实施方式三是在整个天线阵列面上调整射频通道所连接天线子阵列的空间排布。下面通过实施方式四和实施方式五可以具体说明本申请提供的天线***的一种可能的应用场景,本申请提供的天线***可以让天线阵列上半天面映射的射频通道全部转移到下半天面或者将天线阵列下半天面映射的射频通道全部转移到上半天面上,以改变每个射频通道所连接的辐射单元在天线阵列水平方向或垂直方向的数量,进而改变天线系 统的覆盖范围。
下面实施方式四中,网络重构单元可以包括多个如上图4所示的四端口传输器件。
实施方式四:天线阵列上半天面和下半天面的射频通道分布切换,以调整波束覆盖范围。
需要说明的是,以下实施方式四以8×4辐射单元的双极化天线阵列,8个射频通道进行示例说明。其中,每个极化方向的天线阵列都映射有4个射频通道,用TR表示一个射频通道,即第一极化方向的天线阵列上映射有TR1、TR2、TR3、TR4这4个射频通道,第二极化方向的天线阵列上映射有TR5、TR6、TR7、TR8这4射频通道。
请参见图9,图9为射频通道在天线阵列上半天面和下半天面的切换示意图。完成射频通道在天线阵列上半天面和下半天面的切换,可以包括如下四个步骤。
步骤1、对天线阵列进行分组,划分出多个天线子阵列。
具体的,如图9所示,天线阵列910可以分成8个天线子阵列,每个天线子阵列可以包括有4行乘1列的辐射单元,该辐射单元有两个双极化。这8个天线子阵列在天线阵列平面上成2行乘4列排列。
步骤2、将多个天线子阵列和射频通道连接到网络重构单元中。
具体的,如图9所示,网络重构单元920每个极化上都可以包括两个四端口传输器件,其中,天线阵列每个极化方向上都通过两个四端口传输器件将8个天线子阵列对应的馈电端口分成4个天线子阵列组,并将这4个天线子阵列组对应的馈电端口分别连接到4个射频通道中。因为辐射单元两个极化分别连接两个射频通道,其中,TR1、TR2、TR3、TR4为第一极化方向上射频通道,TR5、TR6、TR7、TR8为第二极化方向上的射频通道。图9中的网络重构单元920示出了天线阵列910第一极化方向上的射频通道TR1、TR2、TR3、TR4通过两个四端口传输器件与天线阵列910中天线子阵列的连接情况,天线阵列910第二极化方向上的射频通道TR5、TR6、TR7、TR8通过两个四端口传输器件与天线阵列910中天线子阵列的连接情况可对应参照第一极化方向上的射频通道TR1、TR2、TR3、TR4。
步骤3、调整天线子阵列组与天线子阵列的映射关系。
具体的,当网络重构单元920中的四端口传输器件都在工作状态1(交叉状态)时,天线子阵列1和天线子阵列2组成天线子阵列组A连入射频通道TR1中,天线子阵列3和天线子阵列4组成天线子阵列组B连入射频通道TR2中,天线子阵列5和天线子阵列6组成天线子阵列组C连入射频通道TR3中,天线子阵列7和天线子阵列8组成天线子阵列组D连入射频通道TR4中。在网络重构单元920的工作状态1下,一个天线子阵列组包括天线阵列中的4行乘2列辐射单元,所以射频通道在天线阵列上的映射关系为水平方向上2个射频通道,垂直方向上2个射频通道。
当网络重构单元920中的四端口传输器件都在工作状态2(平行状态)时,天线子阵列5单独组成天线子阵列组A连入射频通道TR1中,天线子阵列6单独组成天线子阵列组B连入射频通道TR2中,天线子阵列7单独组成天线子阵列组C连入射频通道TR3中,天线子阵列8单独组成天线子阵列组D连入射频通道TR4中。在网络重构单元920的工作状态2下,一个天线子阵列组包括天线阵列中的4行乘1列辐射单元,所以射频通道在天线 阵列上的映射关系为水平方向上4个射频通道,垂直方向上1个射频通道。
步骤4、天线子阵列组中形成波束。
由于一个射频通道中所连接的天线子阵列组中的各辐射单元之间的相移增量一致,所以根据天线子阵列组中的各辐射单元接收或发送的信号,即可以通过射频通道完成波束成形。
所以通过调整射频通道中所连接的天线子阵列组中的相移增量,即可产生多个指向的波束。
在图9中,网络重构单元920的工作状态1下,天线阵列910的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上和垂直方向上,每4×2个辐射单元组成一个天线子阵列组(每一行2个辐射单元,每一列4个辐射单元)连入一个射频通道,其中,不同天线子阵列组中的相移增量不同,所以,天线***的波束覆盖效果1为水平方向上有2个指向的波束,在垂直方向上也有2个指向的波束。并且,每个天线子阵列组中辐射单元的行数大于辐射单元的列数,所以每个波束的水平宽度大于垂直宽度,也即是说,天线***的波束覆盖效果1为水平多波束较广覆盖,垂直多波束较广覆盖。
在图9中,在网络重构单元920的工作状态2下,天线阵列910的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上,每4×1个辐射单元组成一个天线子阵列组(每一行2个辐射单元,每一列4个辐射单元)连入一个射频通道,天线***的波束覆盖效果2为水平方向上有2个指向的波束,在垂直方向上也有两个指向的波束。并且,每个天线子阵列组中辐射单元的行数大于辐射单元的列数,所以每个波束的水平宽度大于垂直宽度,也即是说,天线***的波束覆盖效果2为水平多波束较广覆盖,垂直单波束较广覆盖,且每一个波束的水平覆盖范围比垂直覆盖范围广。
由于,射频通道所连接的天线子阵列组中的天线子阵列在垂直方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的水平宽度越窄。射频通道所连接的天线子阵列组中的天线子阵列在水平方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的垂直宽度越窄。上述K个射频通道所连接的天线子阵列组在水平方向上分布的数量越多,则天线***可以在水平方向上生成越多不同指向的波束。上述K个射频通道所连接的天线子阵列组在垂直方向上分布的数量越多,则天线***可以在处置方向上生成越多不同指向的波束。所以,图9中所示的波束覆盖效果1和波束覆盖效果2的比较结果可具体如下表4所示:
Figure PCTCN2019079760-appb-000005
表4
结合图9和表4,天线***通过网络重构单元920在工作状态1和工作状态2之间的 切换,调整上述K个射频通道所连接的天线子阵列组中的天线子阵列的数量,进而完成网络重构单元920的在工作状态1下的波束覆盖效果1和在工作状态2下的波束覆盖效果2之间的切换。其中,在水平方向上,波束覆盖效果1可以有2个不同指向的波束,波束覆盖效果2可以有4个不同指向的波束,波束覆盖效果1的水平覆盖范围小于波束覆盖效果2的水平覆盖范围,波束覆盖效果1的波束水平宽度小于波束覆盖效果2的波束水平宽度;在垂直方向上,波束覆盖效果1可以有2个固定指向的波束,波束覆盖效果2只有1个固定指向的波束,波束覆盖效果1的垂直覆盖范围大于波束覆盖效果2的垂直覆盖范围,波束覆盖效果1的波束垂直宽度等于波束覆盖效果2的波束垂直宽度。
本实施方式四中,通过调整射频通道在天线阵列的上下半天面分布的切换,可以调整调整天线***的波束覆盖范围,实现天线***的波束在“水平多波束较广覆盖,垂直多波束较广覆盖”与“水平多波束广覆盖,垂直单波束较广覆盖”之间的切换。
下面通过实施方式五,进一步具体说明利用五端口传输器件实现射频通道在天线阵列的上下半天面之间切换的应用场景。不限于图4所示的四端口传输器件,实施方式五中,网络重构单元可以包括多个如图5五端口传输器件,该五端口传输器件包括两种工作状态,在工作状态1的情况下,端口1向端口3和端口4实现定向传输,端口2向端口5实现定向传输;在工作状态2的情况下,端口1向端口3实现定向传输,端口2向端口4实现定向传输,端口5断开。
需要说明的是,以下实施方式五以8×4辐射单元的双极化天线阵列,8个射频通道进行示例说明。其中,每个极化方向的天线阵列都映射有4个射频通道,用TR表示一个射频通道,即第一极化方向的天线阵列上映射有TR1、TR2、TR3、TR4这4个射频通道,第二极化方向的天线阵列上映射有TR5、TR6、TR7、TR8这4射频通道。
实施方式五:天线阵列上半天面和下半天面的射频通道分布切换,以调整波束覆盖范围。
请参见图10,图10为通过五端口传输器件实现射频通道在天线阵列上天面和下天面的切换示意图。完成射频通道在天线阵列上半天面和下半天面的切换,可以包括如下四个步骤。
步骤1、对天线阵列进行分组,划分出多个天线子阵列。
具体的,如图10所示,天线阵列1010可以分成8个天线子阵列,每个天线子阵列可以包括有4行乘1列的辐射单元,该辐射单元有两个双极化。这8个天线子阵列在天线阵列平面上成2行乘4列排列。
步骤2、将多个天线子阵列和射频通道连接到网络重构单元中。
具体的,如图10所示,网络重构单元1020每个极化上都可以包括两个图5所示的五端口传输器件,其中,天线阵列每个极化方向上都通过两个五端口传输器件将8个天线子阵列对应的馈电端口分成4个天线子阵列组,并将这4个天线子阵列组对应的馈电端口分别连接到4个射频通道中。因为辐射单元两个极化分别连接两个射频通道,其中,TR1、TR2、TR3、TR4为第一极化方向上射频通道,TR5、TR6、TR7、TR8为第二极化方向上的射频通道。图10中的网络重构单元1020示出了天线阵列1010第一极化方向上的射频通 道TR1、TR2、TR3、TR4通过两个五端口传输器件与天线阵列1010中天线子阵列的连接情况,天线阵列1010第二极化方向上的射频通道TR5、TR6、TR7、TR8通过两个五端口传输器件与天线阵列1010中天线子阵列的连接情况可对应参照第一极化方向上的射频通道TR1、TR2、TR3、TR4。
步骤3、调整天线子阵列组与天线子阵列的映射关系。
具体的,当网络重构单元1020中的五端口传输器件都在状态1时,天线子阵列1和天线子阵列2组成天线子阵列组A连入射频通道TR1中,天线子阵列3和天线子阵列4组成天线子阵列组B连入射频通道TR2中,天线子阵列5和天线子阵列6组成天线子阵列组C连入射频通道TR3中,天线子阵列7和天线子阵列8组成天线子阵列组D连入射频通道TR4中。在状态1下,一个天线子阵列组包括天线阵列中的4行乘2列辐射单元,所以射频通道在天线阵列上的映射关系为水平方向上2个射频通道,垂直方向上2个射频通道。
当网络重构单元1020中的五端口传输器件都在状态2时,天线子阵列5单独组成天线子阵列组A连入射频通道TR1中,天线子阵列6单独组成天线子阵列组B连入射频通道TR2中,天线子阵列7单独组成天线子阵列组C连入射频通道TR3中,天线子阵列8单独组成天线子阵列组D连入射频通道TR4中。在状态2下,一个天线子阵列组包括天线阵列中的4行乘1列辐射单元,所以射频通道在天线阵列上的映射关系为水平方向上4个射频通道,垂直方向上1个射频通道。
步骤4、天线子阵列组形成波束。
由于一个射频通道中所连接的天线子阵列组中的各辐射单元之间的相移增量一致,所以根据天线子阵列组中的各辐射单元接收或发送的信号,即可以通过射频通道完成波束成形。
所以通过调整射频通道中所连接的天线子阵列组中的相移增量,即可产生多个指向的波束。
在图10中,网络重构单元1020的工作状态1下,天线阵列1010的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上和垂直方向上,每4×2个辐射单元组成一个天线子阵列组(每一行2个辐射单元,每一列4个辐射单元)连入一个射频通道,其中,不同天线子阵列组中的相移增量不同,所以,天线***的波束覆盖效果1为水平方向上有2个指向的波束,在垂直方向上也有2个指向的波束。并且,每个天线子阵列组中辐射单元的行数大于辐射单元的列数,所以每个波束的水平宽度大于垂直宽度,也即是说,天线***的波束覆盖效果1为水平多波束较广覆盖,垂直多波束较广覆盖,且每一个波束的水平覆盖范围比垂直覆盖范围广。
在图10中,在网络重构单元1020的工作状态2下,天线阵列1010的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上,每4×1个辐射单元组成一个天线子阵列组(每一行2个辐射单元,每一列4个辐射单元)连入一个射频通道,天线***的波束覆盖效果2为水平方向上有2个指向的波束,在垂直方向上也有两个指向的波束。并且,每个天线子阵列组中辐射单元的行数大于辐射单元的列数,所以每个波束的水平宽度大于垂直宽度,也即是说,天线***的波束覆盖效果2为水平多波束较广覆盖,垂直单波束较广覆盖,且每一个波束的水平覆盖范围比垂直覆盖范围广。
由于,射频通道所连接的天线子阵列组中的天线子阵列在垂直方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的水平宽度越窄。射频通道所连接的天线子阵列组中的天线子阵列在水平方向上的数量越多,该射频通道所连接的天线子阵列组生成波束的垂直宽度越窄。上述K个射频通道所连接的天线子阵列组在水平方向上分布的数量越多,则天线***可以在水平方向上生成越多不同指向的波束。上述K个射频通道所连接的天线子阵列组在垂直方向上分布的数量越多,则天线***可以在处置方向上生成越多不同指向的波束。所以,图10中所示的波束覆盖效果1和波束覆盖效果2的比较结果可具体如下表5所示:
Figure PCTCN2019079760-appb-000006
表5
结合图10和表5,天线***通过网络重构单元1020在工作状态1和工作状态2之间的切换,调整上述K个射频通道所连接的天线子阵列组中的天线子阵列的数量,进而完成网络重构单元1020的在工作状态1下的波束覆盖效果1和在工作状态2下的波束覆盖效果2之间的切换。其中,在水平方向上,波束覆盖效果1可以有2个不同指向的波束,波束覆盖效果2可以有4个不同指向的波束,波束覆盖效果1的水平覆盖范围小于波束覆盖效果2的水平覆盖范围,但波束覆盖效果1的波束水平宽度小于波束覆盖效果2的波束水平宽度;在垂直方向上,波束覆盖效果1可以有2个固定指向的波束,波束覆盖效果2只有1个固定指向的波束,波束覆盖效果1的垂直覆盖范围大于波束覆盖效果2的垂直覆盖范围,但波束覆盖效果1的波束垂直宽度等于波束覆盖效果2的波束垂直宽度。
在实施方式五中,通过重构单元调整射频通道在天线阵列的上下半天面分布的切换,可以调整调整天线***的波束覆盖范围,实现天线***的波束在“水平多波束较广覆盖,垂直多波束较广覆盖”与“水平多波束广覆盖,垂直单波束窄覆盖”之间的切换。
下面实施方式六示出了天线***波束的覆盖区域的切换,本申请通过网络重构单元调整K个射频通道中至少一个射频通道所连接的天线子阵列组中的天线子阵列的间距,以改变至少一个射频通道所连接的天线子阵列组生成的波束的宽度(即每一个波束的覆盖范围),同时,通过网络重构单元可以调整该K个射频通道中至少一个射频通道所连接的该天线子阵列组中的相移增量,以改变该至少一个射频通道所连接的天线子阵列组生成的波束的指向,进而可以实现天线***波束的覆盖区域的切换。
需要说明的是,以下实施方式六以8×8辐射单元的双极化天线阵列,8个射频通道进行示例说明。其中,每个极化方向的天线阵列都映射有4个射频通道,用TR表示一个射频通道,即第一极化方向的天线阵列上映射有TR1、TR2、TR3、TR4这4个射频通道,第 二极化方向的天线阵列上映射有TR5、TR6、TR7、TR8这4射频通道。
实施方式六:天线***波束的覆盖区域切换。
请参见图11,图11为天线***波束的覆盖区域切换示意图。如图11所示,网络重构单元1120在工作状态1下,天线***的波束可以形成两个覆盖区域,在天线阵列的每个极化方向上,每一个覆盖区域都由2个重叠的波束。例如,在第一极化方向上,覆盖区域1为TR1和TR3产生的两个波束重合覆盖,覆盖区域2为TR2和TR4产生的两个波束重合覆盖,利用两个水平宽度较宽的波束即可实现单扇区120度覆盖。
如图11所示,网络重构单元1120在工作状态2下,天线***的波束可以形成四个覆盖区域,在天线阵列的每个极化方向上,每一个覆盖区域都有1个波束。例如,在第一极化方向上,覆盖区域1为TR1产的波束覆盖,覆盖区域2为TR3产生的波束覆盖,覆盖区域3为TR2产生的波束覆盖,覆盖区域4为TR4产生的波束覆盖。
完成波束覆盖区域的切换可以包括如下四个步骤。
步骤1、对天线阵列进行分组,划分出多个天线子阵列。
具体的,如图11所示,天线阵列1110是8×8辐射单元的天线阵列,天线阵列1110可以分成8个天线子阵列1111,每个天线子阵列1111可以包括有天线阵列1110中的一列辐射单元(即该天线子阵列为8个垂直排列的辐射单元)。这8个天线子阵列1111在天线阵列所在平面上成水平方向排列。
步骤2、将多个天线子阵列和射频通道连接到网络重构单元中。
具体的,如图11所示,网络重构单元1120每个极化上都可以包括两个上述图4所示的四端口传输器件,其中,天线阵列1110的每个极化方向上都通过两个上述四端口传输器件将8个天线子阵列对应的馈电端口分成4个天线子阵列组,并将这4个天线子阵列组对应的馈电端口分别连接到4个射频通道中。因为辐射单元两个极化分别连接两个射频通道,其中,TR1、TR2、TR3、TR4为第一极化方向上射频通道,TR5、TR6、TR7、TR8为第二极化方向上的射频通道。图11中的网络重构单元1120示出了天线阵列1110中天线子阵列的连接情况,天线阵列1110第二方向上的射频通道TR5、TR6、TR7、TR8通过两个上述四端口传输器件与天线阵列1110中天线子阵列的连接情况可对应参照第一极化方向上的射频通道TR1、TR2、TR3、TR4。
步骤3、调整天线子阵列组与天线子阵列的映射关系。
具体的,当网络重构单元1120为工作状态1的情况下(即四端口传输器件都在状态2:平行传输时),天线子阵列1和天线子阵列3组成天线子阵列组A连入射频通道TR1中,天线子阵列5和天线子阵列7组成天线子阵列组B连入射频通道TR2中,天线子阵列2和天线子阵列4组成天线子阵列组C连入射频通道TR3中,天线子阵列6和天线子阵列8组成天线子阵列组D连入射频通道TR4中。在网络重构单元1120的工作状态1下,一个天线子阵列组包括天线阵列1110中的两列辐射单元(一列辐射单元即一个天线子阵列),所以射频通道在天线阵列上的映射关系为水平方向上四个射频通道,垂直方向上一个射频通道。并且,每个射频通道上所连接天线子阵列组中的两个天线子阵列之间的距离为2个列间距(相邻的天线子阵列之间距离为1个列间距)。
当网络重构单元1120为工作状态2的情况下(即四端口传输器件都在状态1:交叉传 输时),天线子阵列1和天线子阵列5组成天线子阵列组A连入射频通道TR1中,天线子阵列3和天线子阵列7组成天线子阵列组B连入射频通道TR2中,天线子阵列2和天线子阵列6组成天线子阵列组C连入射频通道TR3中,天线子阵列4和天线子阵列8组成天线子阵列组D连入射频通道TR4中。在网络重构单元1120的工作状态2下,一个天线子阵列组包括天线阵列中的两列辐射单元(一列辐射单元即一个天线子阵列),所以射频通道在天线阵列上的映射关系为水平方向上四个射频通道,垂直方向上一个射频通道。并且,每个射频通道上所连接天线子阵列组中的两个天线子阵列之间的间距为4个列间距(相邻的天线子阵列之间距离为1个列间距)。
步骤4、天线子阵列组形成波束。
因为一个射频通道中所连接的天线子阵列组中的各辐射单元之间的相移增量一致,所以根据天线子阵列组中的各辐射单元接收或发送的信号,即可以通过射频通道完成波束成形。
所以通过调整射频通道中所连接的天线子阵列组中的相移增量,即可产生多个指向的波束。
如图6所示,在网络重构单元1120的工作状态1下,天线阵列1110的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上,由于,每个射频通道所连接的天线子阵列组中的天线子阵列之间的列间距越大,形成波束的水平宽度越窄,每个射频通道所连接的两个天线子阵列之间的间距为2个列间距,所以网络重构单元1120在工作状态1下的波束水平宽度较宽,用两个不重叠的波束覆盖区域即可以实现单扇区120度覆盖。通过调整不同射频通道所连接的天线子阵列组中的相移增量,即可以实现天线***的波束覆盖效果1(覆盖区域1由射频通道TR1产生的波束和射频通道TR3产生的波束重合覆盖,覆盖区域2由射频通道TR2产生的波束和射频通道TR4产生的波束重合覆盖。
如图6所示,在网络重构单元1120的工作状态2下,天线阵列1110的射频通道TR1、TR2、TR3、TR4可以分布在天线阵列的水平方向上,由于,每个射频通道所连接的天线子阵列组中的天线子阵列之间的列间距越大,形成波束的水平宽度越窄,而每个射频通道所连接的两个天线子阵列之间的间距为4个列间距,所以网络重构单元1120在工作状态2下的波束水平宽度较窄,用四个不重叠的波束覆盖区域才可以实现单扇区120度覆盖。通过调整不同射频通道所连接的天线子阵列组中的相移增量,即可以实现天线***的波束覆盖效果2(覆盖区域1由射频通道TR1产生的波束、覆盖区域2由射频通道TR3产生的波束覆盖,覆盖区域3由射频通道TR2产生的波束覆盖,覆盖区域4有射频通道TR4产生的波束覆盖。
综上,网络重构单元1120在工作状态1下,每个射频通道所连接的两个天线子阵列1111之间的间距为2个列间距,网络重构单元1120在工作状态2下,每个射频通道所连接的两个天线子阵列1111之间的间距为4个列间距。由于一个射频通道所连接的两个天线子阵列之间的列间距越大,该射频通道所连接的天线子阵列组所产生波束的水平宽度越窄。所以,对比网络重构单元1120的两种工作状态,在网络重构单元的工作状态1下,每个射频通道所形成的波束的水平宽度较宽,利用两个不重合的波束即可实现单扇区120度覆盖。在网络重构单元1120的工作状态2下,每个射频通道所形成的波束的水平宽度较窄,利用四个 不重合的波束即可实现单扇区120度覆盖。
网络重构单元1120从工作状态1切换到工作状态2,每个射频通道上所连接的天线子阵列形成的波束的水平宽度变窄,并且每个射频通道上的相移增量会被调整,从而改变了每个射频通道所连接的天线阵列组生成波束的指向。
在实施方式六中,天线***通过网络重构单元通过调整射频通道与所连接的天线子阵列组中天线子阵列的映射关系,可以改变每个射频通道上所连接的天线子阵列之间的间距和每个射频通道上的相移增量,进而实现天线***的波束覆盖区域的切换。
参考图12,图12示出了本申请提供的一种馈电网络重构方法,该方法包括如下两个步骤;S1201-S1202。
S1201、天线***将天线阵列中的L个天线子阵列分为M个天线子阵列组,并将M个天线子阵列组分别连接到K个射频通道中。其中,,一个天线子阵列组的一个极化方向连接到一个射频通道,L为大于1的正整数,M为正整数,K为M的整倍数;K个射频通道中的任意一个射频通道,用于对连接的天线子阵列组接收到的信号和/或待发射的信号进行信号处理。
具体实现中,天线阵列中的辐射单元的极化类型包括单极化和双极化,在天线阵列中的辐射单元为单极化的情况下,天线阵列中的辐射单元一个天线子阵列组中可以有一个馈电端口,该馈电端口可以用于给该天线子阵列组中的每个辐射单元上的振子同时进行馈电,此时K=M。在天线阵列中的辐射单元为双极化的情况下,天线阵列中的辐射单元一个天线子阵列组中可以有两个馈电端口,每一个馈电端口可以给天线子阵列组中的每一个辐射单元上的同一极化方向的振子进行馈电,双极化的极化方向可以是+45°和-45度,此时K=2M。因此,本发明实施例中,天线***可以在辐射单元为多极化的情况下,实现在每个极化方向上都能够改变上述K个射频通道所连接的天线子阵列组在水平和/或垂直方向上的数量,进而实现在天线的每个极化方向上都能够调整波束的覆盖范围。
S1202、天线***调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系。
在一种可能的实现方式中,天线***可以调整所述K个射频通道连接的天线子阵列组在水平方向上的数量X,其中,水平方向上的X个天线子阵列组的相同极化方向上生成的波束在水平方向上包括E个指向,X、E均为正整数,1≤E≤X≤M。也即是说,本申请实施例中,天线***可以调整该K个射频通道连接的天线子阵列组在水平方向上的数量,当天线阵列的每个极化在水平方向上对应有多个射频通道各自所连接的天线子阵列组时,天线***的每个极化可以在水平方向上进行多指向的波束覆盖,当天线阵列的每个极化在水平方向上对应有单个射频通道所连接的天线子阵列组时,天线***可以在水平方向上进行单一指向的波束覆盖。因此,通过调整所述K个射频通道连接的天线子阵列组在水平方向上的数量,可以改变天线***的波束的水平覆盖范围。
在又一种可能的实现方式中,天线***可以调整该K个射频通道连接天线子阵列组在垂直方向上的数量Y,垂直方向上的Y个天线子阵列组的相同极化方向上生成的波束在垂直方向上包括F个指向,Y、F均为正整数,1≤F≤Y≤M。也即是说,本申请实施例中, 调整该K个射频通道连接的天线子阵列组在垂直方向上的数量,当天线阵列的每个极化在垂直方向上对应有多个射频通道各自所连接的天线子阵列组时,天线***的每个极化可以在垂直方向上进行多指向的波束覆盖,当天线阵列的每个极化在垂直方向上对应有单个射频通道所连接的天线子阵列组时,天线***可以在垂直方向上进行单一指向的波束覆盖。因此,通过调整所述K个射频通道连接的天线子阵列组在垂直方向上的数量,可以改变天线***的波束的垂直覆盖范围。
在又一种可能的实现方式中,天线***可以调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,包括:调整该K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在水平方向上的数量,其中,水平方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在水平方向上的宽度不同。也即是说,本申请实施例中,通过改变射频通道所连接的天线子阵列组中所包括的天线子阵列在水平方向上的数量,因为天线子阵列组中水平方向上的天线子阵列的个数越多,该天线子阵列组生产的波束的水平宽度越窄,所以即可以实现改变波束在水平方向上的覆盖范围。
在又一种可能的实现方式中,天线***可以调整所述K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在垂直方向上的数量,其中,垂直方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在垂直方向上的宽度不同。也即是说,本申请实施例中,通过调整变射频通道所连接的天线子阵列组中所包括的天线子阵列在垂直方向上的数量,因为天线子阵列组中垂直方向上的天线子阵列的个数越多,该天线子阵列组生产的波束的垂直宽度越窄,所以即可以实现改变波束在垂直方向上的覆盖范围。
在又一种可能的实现方式中,天线***可以调整该K个射频通道中至少一个射频通道所连接的该天线子阵列组中的天线子阵列之间的间距,以改变该至少一个射频通道所连接的天线子阵列组生成的波束的宽度。也即是说,本申请实施例中,通过改变射频通道所连接的天线子阵列组中的天线子阵列之间的水平间距,因为一个射频通道所连接天线子阵列的水平间距越大,射频通道波束的水平宽度越窄,一个射频通道所连接天线子阵列之间垂直间距越大,射频通道波束的垂直宽度越窄,所以即可以实现改变波束在水平和垂直方向上的覆盖范围。
在又一种可能的实现方式中,天线***可以调整该K个射频通道中至少一个射频通道所连接的该天线子阵列组中的相移增量。也即是说,本申请实施例中,通过改变射频通道连接不同的天线子阵列,从而改变射频通道所连接的天线子阵列组中的相移增量,不同的相移增量下,该射频通道所连接的天线子阵列组生成的波束可以有不同的指向,所以即可以实现改变波束的指向。
本发明实施例中,天线***通过调整每个射频通道连接的天线子阵列组与天线子阵列的映射关系,以改变每个射频通道所连接的天线子阵列组中辐射单元在水平方向上和/或垂直方向上的数量,也可以改变射频通道在水平方向上和/或垂直方向上分布情况,以改变该至少一个射频通道所连接的天线子阵列组生成的波束的覆盖范围。因为天线子阵列组中的辐射单元在水平方向上的个数越多,该天线子阵列组生成的波束在水平面上的波束宽度越窄,天线子阵列组中的辐射单元在垂直方向上的个数越多,该天线子阵列组生成的波束在垂直方向上生成的波束越窄,所以,可以调整每个射频通道所连接的天线子阵列组生成波 束的宽度,以及上述K个射频通道中各自所连接的天线子阵列组生成波束的波束指向。通过波束宽度和波束指向的调整,即可以实现动态调整天线***的波束覆盖范围。
需要说明的是,图12所示实施例的具体内容可参照上述图2实施例中的控制单元以及网络重构单元的功能,具体应用场景可以参照图6至图11所示的实施方式,在此不再赘述。
参考图13,为上述图2所示的天线***应用于终端设备时的结构示意图,图13示出了本申请的一些实施例提供的网络设备1300。如图13所示,网络设备1300可包括:一个或多个处理器1310、存储器1320、通信接口1330、至少一个射频通道1340、网络重构单元1350、移相单元1360、天线阵列1370。
通信接口1330可用于网络设备1300与其他通信设备,例如终端设备或其他网络设备、进行通信。具体的,通信接口1330通信接口可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,网络设备1300还可以配置有有线的通信接口1330来支持有线通信,例如一个网络设备1300与其他网络设备1300之间的回程连接可以是有线通信连接。
射频通道1340可包括发射器(TX)1341和接收器(RX)1342。其中,发射器(TX)1351可用于对网络设备处理器1310输出的信号进行发射处理,例如通过波束成形实现定向发送。接收器(RX)1342可用于对天线阵列1370接收的移动通信信号进行接收处理,例如通过波束成形实现定向接收。在本申请的一些实施例中,发射器1341/接收器1342可以包括波束成形控制器,用于对发送信号/接收信号乘以权重向量,控制信号定向发射/接收。
在本申请中的一些实施例中,发射器1341和接收器1342可看作一个无线调制解调器。在网络设备1300中,有至少一个射频通道1340。天线阵列1370可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。
存储器1320与处理器1310耦合,用于存储各种软件程序和/或多组指令。具体的,存储器1320可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器1320可以存储操作***(下述简称***),例如uCOS、VxWorks、RTLinux等嵌入式操作***。存储器1320还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
处理器1310可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内的终端提供小区切换控制等。具体的,处理器1310可包括:基带处理单元(baseband unit,BBU)(用于基带编码/译码等功能)、数字信号处理器(digital signal processing,DSP)、微控制器(micro control unit,MCU)、管理/通信模块(administration module/communication module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(basic module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(transcoder and submultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。该处理器1310可用于控制所述网络重构单元1350调整所述K个射频通道中至少一个射频通道所连接的天线子阵列组与天线子阵列的映射关系,进而改变所述至少一个射频通道所连接的天线子阵列组生成的波束的覆盖范围。该处理器1310的具体功能可以参照上 述图2所示天线***200中的控制单元210,以及其他实施例中的控制单元,在此不作赘述。
网络重构单元1350可用于调整射频通道与天线阵列中的天线子阵列的映射关系,从而改变天线***的波束覆盖范围。具体实现中,网络重构单元1350可以与移相单元1360耦合为一个馈电网络对天线阵列上的天线振子进行馈电。网络重构单元1350具体功能可以参照图2所示天线***200中的网络重构单元230,以及其他实施例中的网络重构单元,在此不作赘述。
本申请实施例中,处理器1310可用于读取和执行计算机可读指令。具体的,处理器1310可用于调用存储于存储器1320中的程序,例如本申请的一个或多个实施例提供的信号传输方法在网络设备1300侧的实现程序,并执行该程序包含的指令,当该程序被处理器1310执行时,可以实现上述图2所示天线***的功能。
可以理解的,网络设备1300可以是图1示出的无线通信***100中的网络设备101,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB,连接点或TRP等等。
需要说明的,图13所示的网络设备1300仅仅是本申请实施例的一种实现方式,实际应用中,网络设备1300还可以包括更多或更少的部件,这里不作限制。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
参考图14,为上述图2所示的天线***应用于终端设备时的结构示意图,图14示出了本申请提供的一种终端设备结构示意图。图14中终端设备1400包括处理器1410、存储器1420、输入输出装置1430、多个射频通道1440、网络重构单元1450、以及天线阵列1460。处理器1410主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器1420主要用于存储软件程序和数据。多个射频通道主要用于基带信号与射频信号的转换以及对射频信号的处理。天线阵列1460主要用于收发电磁波形式的射频信号。输入输出装置1430,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。网络重构单元1450可用于调整射频通道与天线阵列中的天线子阵列的映射关系,从而改变天线***的波束覆盖范围。具体实现中,网络重构单元1450可以与移相单元耦合为一个馈电网络对天线阵列上的天线振子进行馈电。网络重构单元1450在本申请中的具体功能可以参照其他实施例,在此不作赘述。
当需要发送数据时,处理器1410对待发送的数据进行基带处理后,输出基带信号至射频电路,多个射频通道1440将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频通道1440通过天线阵列1460接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1410,处理器1410将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器1420和处理器1410。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器1420也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与 处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线阵列1460和多个射频通道1440视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。处理单元可以是中央处理器(central processing unit,CPU),网络处理器(英文:network processor,NP)或者CPU和NP的组合。处理单元还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,缩写:GAL)或其任意组合。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。当所述通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可能可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本申 请各个实施例上述方法的全部或部分步骤。其中,而前述的存储介质可包括:U盘、移动硬盘、磁碟、光盘、只读存储器(read-only memory,缩写:ROM)或者随机存取存储器(random access memory,缩写:RAM)等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种天线***,其特征在于,包括:天线阵列、控制单元、网络重构单元和K个射频通道;
    所述天线阵列包括L个天线子阵列,其中,L为大于1的正整数;
    所述网络重构单元,用于将所述L个天线子阵列分为M个天线子阵列组,并将所述M个天线子阵列组分别连接到所述K个射频通道中,其中,一个天线子阵列组的一个极化方向连接到一个射频通道;M为正整数,K为M的整倍数;
    所述K个射频通道中的任意一个射频通道,用于对连接的天线子阵列组接收到的信号和/或待发射的信号进行信号处理;
    所述控制单元,用于控制所述网络重构单元调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系。
  2. 根据权利要求1所述***,其特征在于,所述控制单元,用于控制所述网络重构单元调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,具体为:
    控制所述网络重构单元调整所述K个射频通道连接的天线子阵列组在水平方向上的数量X,其中,水平方向上的X个天线子阵列组的相同极化方向上生成的波束在水平方向上包括E个指向,X、E均为正整数,1≤E≤X≤M。
  3. 根据权利要求1至2任一所述***,其特征在于,所述控制单元,用于控制所述网络重构单元调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,具体为:
    控制所述网络重构单元调整所述K个射频通道连接天线子阵列组在垂直方向上的数量Y,其中,垂直方向上的Y个天线子阵列组的相同极化方向上生成的波束在垂直方向上包括F个指向,Y、F均为正整数,1≤F≤Y≤M。
  4. 根据权利要求1至3任一所述***,其特征在于,所述控制单元,用于控制所述网络重构单元调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,具体为:
    控制所述网络重构单元调整所述K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在水平方向上的数量,其中,水平方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在水平方向上的宽度不同。
  5. 根据权利要求1至4任一所述***,其特征在于,所述控制单元,用于控制所述网络重构单元调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,具体为:
    控制所述网络重构单元调整所述K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在垂直方向上的数量,其中,垂直方向上包括的天线子阵列数量不 同的天线子阵列组生成的波束在垂直方向上的宽度不同。
  6. 一种馈电网络重构方法,其特征在于,包括:
    将天线阵列中的L个天线子阵列分为M个天线子阵列组,并将M个天线子阵列组分别连接到所述K个射频通道中,其中,一个天线子阵列组的一个极化方向连接到一个射频通道,L为大于1的正整数,M为正整数,K为M的整倍数;所述K个射频通道中的任意一个射频通道,用于对连接的天线子阵列组接收到的信号和/或待发射的信号进行信号处理;
    调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系。
  7. 根据权利要求6所述方法,其特征在于,所述调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,包括:
    调整所述K个射频通道连接的天线子阵列组在水平方向上的数量X,其中,水平方向上的X个天线子阵列组的相同极化方向上生成的波束在水平方向上包括E个指向,X、E均为正整数,1≤E≤X≤M。
  8. 根据权利要求6至7任一所述方法,其特征在于,所述调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,包括:
    调整所述K个射频通道连接天线子阵列组在垂直方向上的数量Y,其中,垂直方向上的Y个天线子阵列组的相同极化方向上生成的波束在垂直方向上包括F个指向,Y、F均为正整数,1≤F≤Y≤M。
  9. 根据权利要求6至8任一所述方法,其特征在于,所述调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,包括:
    调整所述K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在水平方向上的数量,其中,水平方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在水平方向上的宽度不同。
  10. 根据权利要求6至9任一所述方法,其特征在于,所述调整所述K个射频通道中至少一个射频通道连接的天线子阵列组与天线子阵列的映射关系,包括:
    调整所述K个射频通道中至少一个射频通道连接的天线子阵列组所包括的天线子阵列在垂直方向上的数量,其中,在垂直方向上包括的天线子阵列数量不同的天线子阵列组生成的波束在垂直方向上的宽度不同。
PCT/CN2019/079760 2018-04-18 2019-03-26 一种天线***、馈电网络重构方法及装置 WO2019201063A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19789463.7A EP3780280A4 (en) 2018-04-18 2019-03-26 ANTENNA SYSTEM AND POWER NETWORK RECONSTRUCTION METHOD AND DEVICE
US17/073,387 US11469525B2 (en) 2018-04-18 2020-10-18 Antenna system, feeding network reconfiguration method, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810351693.7A CN110391506B (zh) 2018-04-18 2018-04-18 一种天线***、馈电网络重构方法及装置
CN201810351693.7 2018-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/073,387 Continuation US11469525B2 (en) 2018-04-18 2020-10-18 Antenna system, feeding network reconfiguration method, and apparatus

Publications (1)

Publication Number Publication Date
WO2019201063A1 true WO2019201063A1 (zh) 2019-10-24

Family

ID=68239304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079760 WO2019201063A1 (zh) 2018-04-18 2019-03-26 一种天线***、馈电网络重构方法及装置

Country Status (4)

Country Link
US (1) US11469525B2 (zh)
EP (1) EP3780280A4 (zh)
CN (1) CN110391506B (zh)
WO (1) WO2019201063A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036456B (zh) * 2018-02-28 2024-07-05 华为技术有限公司 一种天线装置及相关设备
CN110391506B (zh) * 2018-04-18 2021-06-01 上海华为技术有限公司 一种天线***、馈电网络重构方法及装置
TWI713257B (zh) * 2019-08-23 2020-12-11 啓碁科技股份有限公司 天線系統
CN111029741B (zh) * 2019-12-06 2022-03-25 京信通信技术(广州)有限公司 天线阵列结构及通信设备
US11477760B2 (en) * 2019-12-19 2022-10-18 Qualcomm Incorporated Frequency diversity techniques for single frequency networks
CN113472398B (zh) * 2020-03-30 2023-03-28 中国电信股份有限公司 用于信关站的卫星跟踪装置、方法、信关站以及介质
KR20230017280A (ko) 2020-05-27 2023-02-03 피보탈 컴웨어 인코포레이티드 5g 무선 네트워크들을 위한 rf 신호 중계기 디바이스 관리
CN113556156B (zh) * 2020-06-03 2023-08-08 中兴通讯股份有限公司 3d-mimo天线及其参数确定方法、基站、电子设备和可读介质
US11026055B1 (en) 2020-08-03 2021-06-01 Pivotal Commware, Inc. Wireless communication network management for user devices based on real time mapping
WO2022056024A1 (en) 2020-09-08 2022-03-17 Pivotal Commware, Inc. Installation and activation of rf communication devices for wireless networks
CN112217537B (zh) * 2020-09-22 2022-02-11 珠海格力电器股份有限公司 多通道信号收发***、方法、电子设备和存储介质
WO2022155529A1 (en) 2021-01-15 2022-07-21 Pivotal Commware, Inc. Installation of repeaters for a millimeter wave communications network
JP2024505881A (ja) * 2021-01-26 2024-02-08 ピヴォタル コムウェア インコーポレイテッド スマートリピータシステム
US11245442B1 (en) * 2021-03-08 2022-02-08 Huawei Technologies Co., Ltd. Method and apparatus for communication using massive-beam MIMO phased array
CA3224854A1 (en) 2021-07-07 2023-01-12 Pivotal Commware, Inc. Multipath repeater systems
CN114006177B (zh) * 2021-12-30 2022-04-15 浩泰智能(成都)科技有限公司 一种相控阵天线模块的阵列结构、控制方法、电子设备
WO2023205182A1 (en) 2022-04-18 2023-10-26 Pivotal Commware, Inc. Time-division-duplex repeaters with global navigation satellite system timing recovery
CN117441267A (zh) * 2022-05-20 2024-01-23 北京小米移动软件有限公司 天线模组、移动终端以及天线阵列的辐射范围的调整方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066631A1 (en) * 2006-09-21 2010-03-18 Raytheon Company Panel Array
CN205355262U (zh) * 2015-12-11 2016-06-29 中国电子科技集团公司信息科学研究院 阵列天线
CN105958214A (zh) * 2016-05-09 2016-09-21 中国电子科技集团公司第三十八研究所 一种可扩展高集成有源相控阵天线
CN106559107A (zh) * 2015-09-17 2017-04-05 华为终端(东莞)有限公司 一种确定收发天线的方法及装置
CN107733536A (zh) * 2016-08-11 2018-02-23 中国电信股份有限公司 天线校准方法和***、校准信号处理器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990830A (en) * 1998-08-24 1999-11-23 Harris Corporation Serial pipelined phase weight generator for phased array antenna having subarray controller delay equalization
US6907272B2 (en) * 2002-07-30 2005-06-14 UNIVERSITé LAVAL Array receiver with subarray selection
US7075485B2 (en) * 2003-11-24 2006-07-11 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Low cost multi-beam, multi-band and multi-diversity antenna systems and methods for wireless communications
KR100880892B1 (ko) * 2007-04-11 2009-01-30 한국전자통신연구원 다중 모드 안테나 및 그 안테나의 모드 제어방법
CN101394019B (zh) * 2008-11-06 2012-05-09 上海交通大学 可重构天线
CN102522632B (zh) * 2011-12-19 2013-11-27 东南大学 卫星移动通信相控阵天线的分子阵数字化波束跟踪方法
WO2013190369A2 (en) * 2012-06-22 2013-12-27 Adant Technologies, Inc. A reconfigurable antenna system
CN202871981U (zh) * 2012-08-24 2013-04-10 北京聚利科技股份有限公司 可重构多波束天线的控制装置、天线和收费***
US20140210666A1 (en) * 2013-01-25 2014-07-31 Alexander Maltsev Apparatus, system and method of wireless communication via an antenna array
EP3691323A1 (en) * 2015-03-24 2020-08-05 SONY Corporation Apparatus
JP6234634B2 (ja) * 2015-04-15 2017-11-22 三菱電機株式会社 アンテナ装置
US11835645B2 (en) * 2016-06-14 2023-12-05 Mediatek Inc. Reconfigurable RF front end and antenna arrays for radar mode switching
CN106848579A (zh) * 2016-12-21 2017-06-13 摩比天线技术(深圳)有限公司 移动通信自切换波束天线***及其天线
US10425878B2 (en) * 2017-01-09 2019-09-24 Qualcomm Incorporated Techniques to identify sets of multiple beams compatible with configurations for routing signals in a user equipment
CN107516769A (zh) * 2017-09-28 2017-12-26 中国联合网络通信集团有限公司 辐射方向图可重构的天线
CN109980362B (zh) * 2017-12-27 2021-06-01 华为技术有限公司 一种天线装置及波束状态切换方法
CN113036456B (zh) * 2018-02-28 2024-07-05 华为技术有限公司 一种天线装置及相关设备
CN110391506B (zh) * 2018-04-18 2021-06-01 上海华为技术有限公司 一种天线***、馈电网络重构方法及装置
KR20210081123A (ko) * 2019-12-23 2021-07-01 삼성전자주식회사 위상 변환을 위한 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066631A1 (en) * 2006-09-21 2010-03-18 Raytheon Company Panel Array
CN106559107A (zh) * 2015-09-17 2017-04-05 华为终端(东莞)有限公司 一种确定收发天线的方法及装置
CN205355262U (zh) * 2015-12-11 2016-06-29 中国电子科技集团公司信息科学研究院 阵列天线
CN105958214A (zh) * 2016-05-09 2016-09-21 中国电子科技集团公司第三十八研究所 一种可扩展高集成有源相控阵天线
CN107733536A (zh) * 2016-08-11 2018-02-23 中国电信股份有限公司 天线校准方法和***、校准信号处理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780280A4 *

Also Published As

Publication number Publication date
CN110391506B (zh) 2021-06-01
US20210036437A1 (en) 2021-02-04
EP3780280A1 (en) 2021-02-17
CN110391506A (zh) 2019-10-29
EP3780280A4 (en) 2021-05-19
US11469525B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2019201063A1 (zh) 一种天线***、馈电网络重构方法及装置
CN110098856B (zh) 一种天线装置及相关设备
EP2816664B1 (en) Antenna system
Black Holographic beam forming and MIMO
CN110212312B (zh) 一种天线装置及相关设备
US10020866B2 (en) Wireless communication node with adaptive communication
WO2018177142A1 (zh) 一种天线***、信号处理***以及信号处理方法
JP6504490B2 (ja) マルチセクタmimoアクティブ・アンテナ・システムおよび通信デバイス
TW201534062A (zh) 用於收發器之波束形成裝置,方法及電腦程式
US10285179B2 (en) Flexible reconfiguration of an antenna arrangement
CN106716714B (zh) 体育场天线
WO2015042968A1 (zh) 扇区配置方法及装置、***
CN107667480B (zh) 传输设备及其方法、计算机可读介质
US10581501B2 (en) Flexible analog architecture for sectorization
WO2022083405A1 (zh) 一种天线、信道状态信息传输方法和相关装置
CN110380763A (zh) 收发方向图非互易全数字波束成形天线阵列及其实现方法
WO2023088446A1 (zh) 一种天线及通信***
CN112103625B (zh) 一种高隔离、低副瓣MassiveMIMO天线阵列及组阵方法
Saranya Hybrid Digital Beamforming Design for Massive planar antenna array for 5G communication
WO2022141529A1 (zh) 馈电网络、天线、天线***、基站及波束赋形方法
WO2022170515A1 (zh) 一种反射阵列天线
WO2021098291A1 (zh) 一种虚拟天线映射方法及网络设备
CN206807453U (zh) 用于用户终端的信号收发装置、用户终端
JP2024052187A (ja) 受電装置、受信装置、端末装置、無線電力伝送システム及び通信システム
CN116803020A (zh) 无线收发装置及其波束成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019789463

Country of ref document: EP

Effective date: 20201102