WO2019201006A1 - 一种焊炬全位置角度识别方法和*** - Google Patents

一种焊炬全位置角度识别方法和*** Download PDF

Info

Publication number
WO2019201006A1
WO2019201006A1 PCT/CN2019/075017 CN2019075017W WO2019201006A1 WO 2019201006 A1 WO2019201006 A1 WO 2019201006A1 CN 2019075017 W CN2019075017 W CN 2019075017W WO 2019201006 A1 WO2019201006 A1 WO 2019201006A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
torch
acceleration sensor
axis
welding
Prior art date
Application number
PCT/CN2019/075017
Other languages
English (en)
French (fr)
Inventor
何江龙
Original Assignee
成都熊谷加世电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都熊谷加世电器有限公司 filed Critical 成都熊谷加世电器有限公司
Publication of WO2019201006A1 publication Critical patent/WO2019201006A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the invention belongs to the technical field of welding torch angle detection, and particularly relates to a method for identifying the full position angle of a welding torch.
  • the technical solution adopted by the present invention is to provide a method for identifying the full position angle of the welding torch, comprising the following steps:
  • AglX_Value is the voltage value of the X-axis outputted by the three-axis acceleration sensor
  • AglY_Value is the voltage value of the Y-axis output by the three-axis acceleration sensor
  • AglZ_Value is the voltage value of the Z-axis output by the three-axis acceleration sensor
  • the calculation formula of the left torch angle value is:
  • a welding torch full position angle recognition system comprising:
  • the left welding torch is used to weld the left semicircular arc of the pipeline
  • the first three-axis acceleration sensor is mounted on the left welding torch for outputting three voltage values corresponding to the acceleration of the left welding torch on three coordinate axes;
  • a second three-axis acceleration sensor mounted on the right torch for outputting three voltage values corresponding to the acceleration of the right torch on three coordinate axes;
  • a processor for reading three voltage values of the output of the first three-axis acceleration sensor or the second three-axis acceleration sensor, and calculating an angle value of the left torch or the right torch according to the read voltage value specifically including The following program modules:
  • a voltage value reading program for reading a voltage value corresponding to three coordinate axes registered in the first three-axis acceleration sensor or the second three-axis acceleration sensor;
  • the square root calculation program is configured to calculate a square root value Value_y corresponding to the Y axis and a square root value Value_z corresponding to the Z axis according to the three voltage values, and the calculation formula is:
  • AglX_Value is the voltage value of the X-axis outputted by the three-axis acceleration sensor
  • AglY_Value is the voltage value of the Y-axis output by the three-axis acceleration sensor
  • AglZ_Value is the voltage value of the Z-axis output by the three-axis acceleration sensor
  • the arctangent calculation program is configured to calculate an arctangent value Value_y1 corresponding to the Y axis and an arctangent value Value_z1 corresponding to the Z axis according to the square root value, and the calculation formula is:
  • An angle calculation program configured to determine whether the voltage value is from a first triaxial acceleration sensor or a second triaxial acceleration sensor; if it is a first triaxial acceleration sensor, calculating a left torch according to the arc tangent value An angle value ⁇ ; if it is a second three-axis acceleration sensor, the angle value ⁇ of the right torch is calculated according to the arctangent value;
  • the calculation formula of the left torch angle value is:
  • the present invention has the following advantages:
  • the three-axis acceleration sensor can output voltage values corresponding to the three coordinate axes, and then automatically calculate the left welding torch and the right according to the subsequent formula.
  • the real-time actual angle of the torch, the obtained torch angle is more accurate, which facilitates the subsequent steps to accurately match the welding parameters and improve the welding quality of the pipe;
  • the welding parameters can be automatically called according to the calculated torch angle value, no manual intervention is required in the whole process, and the degree of automation is high, which can effectively reduce the labor cost.
  • Figure 1 is a schematic flow chart of the method of the present invention
  • Figure 2 is a schematic illustration of the framework of the system of the present invention.
  • the welding trolley In the actual pipeline welding process, the welding trolley is used to walk on the circular arc track, and the welding torch is clamped on the welding trolley, that is, there are left welding trolley, left welding torch, right welding trolley, right welding torch, and right welding torch adopting Clockwise downward welding, the welding trolley starts from the vicinity of the flat welding PA position, to the PB position of the flat welding, to the vertical welding PC position, to the elevation welding PD position, and then to the overhead welding PE position to achieve the semi-arc welding; The left torch is welded counterclockwise and is axisymmetric with the right torch welding position to achieve welding of the entire pipe.
  • the embodiment provides a method for identifying a full position angle of a welding torch, which includes the following steps:
  • AglX_Value is the voltage value of the X-axis outputted by the three-axis acceleration sensor
  • AglY_Value is the voltage value of the Y-axis output by the three-axis acceleration sensor
  • AglZ_Value is the voltage value of the Z-axis output by the three-axis acceleration sensor
  • the calculation formula of the left torch angle value is:
  • a torch full position angle recognition system including:
  • the left welding torch is used to weld the left semicircular arc of the pipeline
  • the first three-axis acceleration sensor is mounted on the left welding torch for outputting three voltage values corresponding to the acceleration of the left welding torch on three coordinate axes;
  • a second three-axis acceleration sensor mounted on the right torch for outputting three voltage values corresponding to the acceleration of the right torch on three coordinate axes;
  • a processor for reading three voltage values of the output of the first three-axis acceleration sensor or the second three-axis acceleration sensor, and calculating an angle value of the left torch or the right torch according to the read voltage value specifically including The following program modules:
  • a voltage value reading program for reading a voltage value corresponding to three coordinate axes registered in the first three-axis acceleration sensor or the second three-axis acceleration sensor;
  • the square root calculation program is configured to calculate a square root value Value_y corresponding to the Y axis and a square root value Value_z corresponding to the Z axis according to the three voltage values, and the calculation formula is:
  • AglX_Value is the voltage value of the X-axis outputted by the three-axis acceleration sensor
  • AglY_Value is the voltage value of the Y-axis output by the three-axis acceleration sensor
  • AglZ_Value is the voltage value of the Z-axis output by the three-axis acceleration sensor
  • the arctangent calculation program is configured to calculate an arctangent value Value_y1 corresponding to the Y axis and an arctangent value Value_z1 corresponding to the Z axis according to the square root value, and the calculation formula is:
  • An angle calculation program configured to determine whether the voltage value is from a first triaxial acceleration sensor or a second triaxial acceleration sensor; if it is a first triaxial acceleration sensor, calculating a left torch according to the arc tangent value An angle value ⁇ ; if it is a second three-axis acceleration sensor, the angle value ⁇ of the right torch is calculated according to the arctangent value;
  • the calculation formula of the left torch angle value is:
  • a parameter storage program for storing a one-to-one correspondence between the angle of the left torch and the welding parameters, and a one-to-one correspondence between the angle of the right torch and the welding parameters;
  • the parameter calling program is used to call the welding parameter corresponding to the angle value ⁇ to the left welding torch, and to call the welding parameter corresponding to the angle value ⁇ to the right welding torch for welding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

涉及焊接角度检测技术领域的一种焊炬全位置角度识别方法和***,在左焊炬和右焊炬上各安装一个三轴加速度传感器,三轴加速度传感器输出与三个坐标轴对应的电压值,处理器读取电压值,通过平方根函数、反正切函数及角度计算函数,能够自动计算出左焊炬和右焊炬的实时角度,得到的焊炬角度更加精确,便于后续步骤精确匹配焊接参数,提高管道焊接质量。

Description

一种焊炬全位置角度识别方法和*** 技术领域
本发明属于焊炬角度检测技术领域,具体涉及一种焊炬全位置角度识别方法。
背景技术
在管道焊接领域中,一个完整的焊缝是成圆弧形的。由于重力、焊缝宽度、焊炬高度等因素的影响,不同位置对应的焊接特性不同,需要在不同的位置采用适合此位置的参数进行焊接。然而,多数焊接设备没有角度识别功能,在焊接过程中,只能由焊工通过人眼判断焊炬的角度,然后根据判断出的角度来匹配对应的参数进行焊接,人眼观察的角度误差较大,会导致焊接参数应用不够准确,管道焊接质量不佳。
发明内容
本发明的目的在于提供一种可以自动检测出焊炬位置的焊炬全位置角度识别方法。
为达到上述要求,本发明采取的技术方案是:提供一种焊炬全位置角度识别方法,包括以下步骤:
S1、读取第一三轴加速度传感器或第二三轴加速度传感器中寄存的三个坐标轴对应的电压值;其中,第一三轴加速度传感器安装在左焊炬上,第二三轴加速度传感器安装在右焊炬上;
S2、根据读取到的三个电压值计算出Y轴对应的平方根值Value_y和Z轴对应的平方根值Value_z,计算公式为:
Figure PCTCN2019075017-appb-000001
Figure PCTCN2019075017-appb-000002
其中,AglX_Value为三轴加速度传感器输出的X轴的电压值,AglY_Value为三轴加速度传感器输出的Y轴的电压值,AglZ_Value为三轴加速度传感器输出的Z轴的电压值;
S3、根据所述平方根值计算出Y轴对应的反正切值Value_y1和Z轴对应的反正切值Value_z1,计算公式为:
Figure PCTCN2019075017-appb-000003
Figure PCTCN2019075017-appb-000004
S4、如果读取的是第一三轴加速度传感器的电压值,则根据所述反正切值计算得到左焊 炬的角度值α;如果读取的是第二三轴加速度传感器的电压值,则根据所述反正切值计算得到右焊炬的角度值β;
其中,左焊炬角度值计算公式为:
Figure PCTCN2019075017-appb-000005
右焊炬角度值计算公式为:
Figure PCTCN2019075017-appb-000006
一种焊炬全位置角度识别***,包括:
左焊炬,用于实现管道左半圆弧的焊接;
右焊炬,用于实现管道右半圆弧的焊接;
第一三轴加速度传感器,安装在左焊炬上,用于输出三个与左焊炬在三个坐标轴上的加速度一一对应的电压值;
第二三轴加速度传感器,安装在右焊炬上,用于输出三个与右焊炬在三个坐标轴上的加速度一一对应的电压值;
处理器,用于读取第一三轴加速度传感器或第二三轴加速度传感器输出的三个电压值,并根据读取到的电压值计算得到左焊炬或右焊炬的角度值,具体包括以下程序模块:
电压值读取程序,用于读取第一三轴加速度传感器或第二三轴加速度传感器中寄存的三个坐标轴对应的电压值;
平方根计算程序,用于根据三个所述电压值计算出Y轴对应的平方根值Value_y和Z轴对应的平方根值Value_z,计算公式为:
Figure PCTCN2019075017-appb-000007
Figure PCTCN2019075017-appb-000008
其中,AglX_Value为三轴加速度传感器输出的X轴的电压值,AglY_Value为三轴加速度传感器输出的Y轴的电压值,AglZ_Value为三轴加速度传感器输出的Z轴的电压值;
反正切计算程序,用于根据所述平方根值计算出Y轴对应的反正切值Value_y1和Z轴对 应的反正切值Value_z1,计算公式为:
Figure PCTCN2019075017-appb-000009
Figure PCTCN2019075017-appb-000010
角度计算程序,用于判断所述电压值是来自于第一三轴加速度传感器还是第二三轴加速度传感器;如果是第一三轴加速度传感器,则根据所述反正切值计算得到左焊炬的角度值α;如果是第二三轴加速度传感器,则根据所述反正切值计算得到右焊炬的角度值β;
其中,左焊炬角度值计算公式为:
Figure PCTCN2019075017-appb-000011
右焊炬角度值计算公式为:
Figure PCTCN2019075017-appb-000012
与现有技术相比,本发明具有以下优点:
(1)在左焊炬和右焊炬上各安装一个三轴加速度传感器,该三轴加速度传感器可以输出与三个坐标轴对应的电压值,再根据后续公式可以自动计算出左焊炬和右焊炬的实时实际角度,得到的焊炬角度更加精确,便于后续步骤精确匹配焊接参数,提高管道焊接质量;
(2)可以根据计算得到的焊炬角度值自动调用焊接参数,全程无需人工干预,自动化程度高,可有效减少人力成本。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,在这些附图中使用相同的参考标号来表示相同或相似的部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明方法的流程示意图;
图2为本发明***的框架示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,以下结合附图及具体实施例,对本申请作进一步地详细说明。为简单起见,以下描述中省略了本领域技术人员公知的某些技术特征。
在实际的管道焊接过程中,采用焊接小车在圆弧形轨道上行走,焊炬夹持在焊接小车上,即存在左焊接小车、左焊炬,右焊接小车、右焊炬,右焊炬采用顺时针向下焊,焊接小车从平焊PA位附近开始往下焊接,至平角焊PB位,至立焊PC位,至仰角焊PD位,再至仰焊PE位,实现半圆弧焊接;左焊炬采用逆时针向下焊接,则与右焊炬焊接位置轴对称,从而实现整个管道的焊接。
如图1所示,本实施例提供一种焊炬全位置角度识别方法,包括以下步骤:
S0、预设左焊炬角度与焊接参数的一一对应关系,预设右焊炬角度与焊接参数的一一对应关系;
S1、读取第一三轴加速度传感器或第二三轴加速度传感器中寄存的三个坐标轴对应的电压值;其中,第一三轴加速度传感器安装在左焊炬上,第一三轴加速度传感器会随着左焊炬的移动而对应输出三轴上的电压信号,第一三轴加速度传感器将该电压信号转换成数字信号,即转换成电压值存储在自身的DATA寄存器中;第二三轴加速度传感器安装在右焊炬上,第二三轴加速度传感器会随着右焊炬的移动而对应输出三轴上的电压信号,第二三轴加速度传感器将该电压信号转换成数字信号,即转换成电压值存储在自身的DATA寄存器中;
S2、根据读取到的三个电压值计算出Y轴对应的平方根值Value_y和Z轴对应的平方根值Value_z,计算公式为:
Figure PCTCN2019075017-appb-000013
Figure PCTCN2019075017-appb-000014
其中,AglX_Value为三轴加速度传感器输出的X轴的电压值,AglY_Value为三轴加速度传感器输出的Y轴的电压值,AglZ_Value为三轴加速度传感器输出的Z轴的电压值;
S3、根据所述平方根值计算出Y轴对应的反正切值Value_y1和Z轴对应的反正切值Value_z1,计算公式为:
Figure PCTCN2019075017-appb-000015
Figure PCTCN2019075017-appb-000016
S4、如果读取的是第一三轴加速度传感器的电压值,则根据所述反正切值计算得到左焊 炬的角度值α;如果读取的是第二三轴加速度传感器的电压值,则根据所述反正切值计算得到右焊炬的角度值β;
其中,左焊炬角度值计算公式为:
Figure PCTCN2019075017-appb-000017
右焊炬角度值计算公式为:
Figure PCTCN2019075017-appb-000018
S5、调用与角度值α对应的焊接参数给左焊炬进行焊接,或调用与角度值β对应的焊接参数给右焊炬进行焊接。
如图2所示,提供一种焊炬全位置角度识别***,包括:
左焊炬,用于实现管道左半圆弧的焊接;
右焊炬,用于实现管道右半圆弧的焊接;
第一三轴加速度传感器,安装在左焊炬上,用于输出三个与左焊炬在三个坐标轴上的加速度一一对应的电压值;
第二三轴加速度传感器,安装在右焊炬上,用于输出三个与右焊炬在三个坐标轴上的加速度一一对应的电压值;
处理器,用于读取第一三轴加速度传感器或第二三轴加速度传感器输出的三个电压值,并根据读取到的电压值计算得到左焊炬或右焊炬的角度值,具体包括以下程序模块:
电压值读取程序,用于读取第一三轴加速度传感器或第二三轴加速度传感器中寄存的三个坐标轴对应的电压值;
平方根计算程序,用于根据三个所述电压值计算出Y轴对应的平方根值Value_y和Z轴对应的平方根值Value_z,计算公式为:
Figure PCTCN2019075017-appb-000019
Figure PCTCN2019075017-appb-000020
其中,AglX_Value为三轴加速度传感器输出的X轴的电压值,AglY_Value为三轴加速度传感器输出的Y轴的电压值,AglZ_Value为三轴加速度传感器输出的Z轴的电压值;
反正切计算程序,用于根据所述平方根值计算出Y轴对应的反正切值Value_y1和Z轴对应的反正切值Value_z1,计算公式为:
Figure PCTCN2019075017-appb-000021
Figure PCTCN2019075017-appb-000022
角度计算程序,用于判断所述电压值是来自于第一三轴加速度传感器还是第二三轴加速度传感器;如果是第一三轴加速度传感器,则根据所述反正切值计算得到左焊炬的角度值α;如果是第二三轴加速度传感器,则根据所述反正切值计算得到右焊炬的角度值β;
其中,左焊炬角度值计算公式为:
Figure PCTCN2019075017-appb-000023
右焊炬角度值计算公式为:
Figure PCTCN2019075017-appb-000024
参数存储程序,用于存储左焊炬角度与焊接参数的一一对应关系,以及右焊炬角度与焊接参数的一一对应关系;
参数调用程序,用于调用与角度值α对应的焊接参数给左焊炬进行焊接,以及调用与角度值β对应的焊接参数给右焊炬进行焊接。
以上实施例仅表示本发明的几种实施方式,其描述较为具体和详细,但并不能理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明保护范围。因此本发明的保护范围应该以权利要求为准。

Claims (4)

  1. 一种焊炬全位置角度识别方法,其特征在于,包括以下步骤:
    S1、读取第一三轴加速度传感器或第二三轴加速度传感器中寄存的三个坐标轴对应的电压值;其中,第一三轴加速度传感器安装在左焊炬上,第二三轴加速度传感器安装在右焊炬上;
    S2、根据读取到的三个电压值计算出Y轴对应的平方根值Value_y和Z轴对应的平方根值Value_z,计算公式为:
    Figure PCTCN2019075017-appb-100001
    Figure PCTCN2019075017-appb-100002
    其中,AglX_Value为三轴加速度传感器输出的X轴的电压值,AglY_Value为三轴加速度传感器输出的Y轴的电压值,AglZ_Value为三轴加速度传感器输出的Z轴的电压值;
    S3、根据所述平方根值计算出Y轴对应的反正切值Value_y1和Z轴对应的反正切值Value_z1,计算公式为:
    Figure PCTCN2019075017-appb-100003
    Figure PCTCN2019075017-appb-100004
    S4、如果读取的是第一三轴加速度传感器的电压值,则根据所述反正切值计算得到左焊炬的角度值α;如果读取的是第二三轴加速度传感器的电压值,则根据所述反正切值计算得到右焊炬的角度值β;
    其中,左焊炬角度值计算公式为:
    Figure PCTCN2019075017-appb-100005
    右焊炬角度值计算公式为:
    Figure PCTCN2019075017-appb-100006
  2. 根据权利要求1所述的焊炬全位置角度识别方法,其特征在于,所述步骤S1之前还包括:
    S0、预设左焊炬角度与焊接参数的一一对应关系,预设右焊炬角度与焊接参数的一一对应关系;
    所述步骤S4之后还包括:
    S5、调用与角度值α对应的焊接参数给左焊炬进行焊接,或调用与角度值β对应的焊接参数给右焊炬进行焊接。
  3. 一种焊炬全位置角度识别***,其特征在于,包括:
    左焊炬,用于实现管道左半圆弧的焊接;
    右焊炬,用于实现管道右半圆弧的焊接;
    第一三轴加速度传感器,安装在左焊炬上,用于输出三个与左焊炬在三个坐标轴上的加速度一一对应的电压值;
    第二三轴加速度传感器,安装在右焊炬上,用于输出三个与右焊炬在三个坐标轴上的加速度一一对应的电压值;
    处理器,用于读取第一三轴加速度传感器或第二三轴加速度传感器输出的三个电压值,并根据读取到的电压值计算得到左焊炬或右焊炬的角度值,具体包括以下程序模块:
    电压值读取程序,用于读取第一三轴加速度传感器或第二三轴加速度传感器中寄存的三个坐标轴对应的电压值;
    平方根计算程序,用于根据三个所述电压值计算出Y轴对应的平方根值Value_y和Z轴对应的平方根值Value_z,计算公式为:
    Figure PCTCN2019075017-appb-100007
    Figure PCTCN2019075017-appb-100008
    其中,AglX_Value为三轴加速度传感器输出的X轴的电压值,AglY_Value为三轴加速度传感器输出的Y轴的电压值,AglZ_Value为三轴加速度传感器输出的Z轴的电压值;
    反正切计算程序,用于根据所述平方根值计算出Y轴对应的反正切值Value_y1和Z轴对应的反正切值Value_z1,计算公式为:
    Figure PCTCN2019075017-appb-100009
    Figure PCTCN2019075017-appb-100010
    角度计算程序,用于判断所述电压值是来自于第一三轴加速度传感器还是第二三轴加速度传感器;如果是第一三轴加速度传感器,则根据所述反正切值计算得到左焊炬的角度值α; 如果是第二三轴加速度传感器,则根据所述反正切值计算得到右焊炬的角度值β;
    其中,左焊炬角度值计算公式为:
    Figure PCTCN2019075017-appb-100011
    右焊炬角度值计算公式为:
    Figure PCTCN2019075017-appb-100012
  4. 根据权利要求3所述的焊炬全位置角度识别***,其特征在于,所述处理器还包括:
    参数存储程序,用于存储左焊炬角度与焊接参数的一一对应关系,以及右焊炬角度与焊接参数的一一对应关系;
    参数调用程序,用于调用与角度值α对应的焊接参数给左焊炬进行焊接,以及调用与角度值β对应的焊接参数给右焊炬进行焊接。
PCT/CN2019/075017 2018-04-20 2019-02-14 一种焊炬全位置角度识别方法和*** WO2019201006A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810359902.2 2018-04-20
CN201810359902.2A CN108444379A (zh) 2018-04-20 2018-04-20 一种焊炬全位置角度识别方法和***

Publications (1)

Publication Number Publication Date
WO2019201006A1 true WO2019201006A1 (zh) 2019-10-24

Family

ID=63200505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075017 WO2019201006A1 (zh) 2018-04-20 2019-02-14 一种焊炬全位置角度识别方法和***

Country Status (2)

Country Link
CN (1) CN108444379A (zh)
WO (1) WO2019201006A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108444379A (zh) * 2018-04-20 2018-08-24 成都熊谷加世电器有限公司 一种焊炬全位置角度识别方法和***
CN110701640B (zh) * 2019-10-16 2021-06-15 杨梅 智能旋钮及其开关状态获取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019571A (ja) * 2001-07-06 2003-01-21 Nitta Ind Corp スポット溶接電極の面直度センサ並びに面直度計測方法及び装置
US20120273473A1 (en) * 2011-04-28 2012-11-01 Yuming Zhang Systems and methods to control gas tungsten arc welding and plasma arc welding
CN105728904A (zh) * 2016-05-12 2016-07-06 湘潭大学 基于微机械传感器的摆动电弧空间焊缝跟踪***与方法
US20160361776A1 (en) * 2015-06-15 2016-12-15 Illinois Tool Works Inc. Method and apparatus for measurement of three-dimensional welding torch orientation for a welding process without using a magnetometer
CN107635709A (zh) * 2015-01-05 2018-01-26 肯塔基大学研究基金会 用于手工电弧焊过程的三维焊炬取向的测量
CN108444379A (zh) * 2018-04-20 2018-08-24 成都熊谷加世电器有限公司 一种焊炬全位置角度识别方法和***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641031B2 (ja) * 1984-03-02 1994-06-01 新明和工業株式会社 溶接ロボットの溶接方法
CN103801796B (zh) * 2012-11-06 2016-08-31 中国石油天然气集团公司 管道环焊缝的全位置自动焊接方法
US11014183B2 (en) * 2014-08-07 2021-05-25 Illinois Tool Works Inc. System and method of marking a welding workpiece
US10239147B2 (en) * 2014-10-16 2019-03-26 Illinois Tool Works Inc. Sensor-based power controls for a welding system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019571A (ja) * 2001-07-06 2003-01-21 Nitta Ind Corp スポット溶接電極の面直度センサ並びに面直度計測方法及び装置
US20120273473A1 (en) * 2011-04-28 2012-11-01 Yuming Zhang Systems and methods to control gas tungsten arc welding and plasma arc welding
CN107635709A (zh) * 2015-01-05 2018-01-26 肯塔基大学研究基金会 用于手工电弧焊过程的三维焊炬取向的测量
US20160361776A1 (en) * 2015-06-15 2016-12-15 Illinois Tool Works Inc. Method and apparatus for measurement of three-dimensional welding torch orientation for a welding process without using a magnetometer
CN105728904A (zh) * 2016-05-12 2016-07-06 湘潭大学 基于微机械传感器的摆动电弧空间焊缝跟踪***与方法
CN108444379A (zh) * 2018-04-20 2018-08-24 成都熊谷加世电器有限公司 一种焊炬全位置角度识别方法和***

Also Published As

Publication number Publication date
CN108444379A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
JP6280525B2 (ja) カメラのミスキャリブレーションの実行時決定のためのシステムと方法
EP2416113B1 (en) Position and orientation measurement apparatus and position and orientation measurement method
TWI517101B (zh) 三維掃描器校正系統及其校正方法
WO2019201006A1 (zh) 一种焊炬全位置角度识别方法和***
CN107649802B (zh) 一种激光视觉焊缝跟踪***及标定方法
CN109623206B (zh) 用于机器人管道焊接中优化离线规划的焊枪位姿的方法
CN110842901A (zh) 基于一种新型三维标定块的机器人手眼标定方法与装置
WO2020073929A1 (zh) 作业台车及其机械臂光学标靶定位装置和定位方法
CN104139321A (zh) 大型结构件原位测量自动找正***及其找正方法
JP2014044203A5 (zh)
CN104802173A (zh) 视觉传感器的数据生成装置和检测模拟***
CN109465829B (zh) 一种基于转换矩阵误差模型的工业机器人几何参数辨识方法
JP2017015396A (ja) 検査方法、検査装置、処理装置、プログラム及び記録媒体
US9476697B2 (en) Method for determining a closed trajectory by means of a laser and a laser light sensor and apparatus for determining a closed trajectory
CN102818545B (zh) 轴承套圈内孔为圆锥孔的全参数测量***及方法
CN106056603A (zh) 基于立体视觉的焊接执行参数在线检测方法
JP2007533963A5 (zh)
CN109855554A (zh) 用于工程车辆机械臂的挠度测量装置及方法
CN115619738A (zh) 一种模组侧缝焊焊后检测方法
CN110268221A (zh) 线绳测量装置和线绳测量方法
JP2007533963A (ja) 物体の3d位置の非接触式光学的測定方法及び測定装置
CN109108982A (zh) 基于标准量具的多关节机器人几何尺寸精度校准装置及校准方法
JP2014149182A (ja) ワークとの相関位置決め方法
JP2011016165A (ja) 枝管を母管に配置して溶接する溶接方法および枝管を母管に配置する配置方法
JP2005283267A (ja) 貫通穴計測装置及び方法並びに貫通穴計測用プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19787682

Country of ref document: EP

Kind code of ref document: A1