WO2019200974A1 - 支持NB-IoT的高精度温度传感器 - Google Patents

支持NB-IoT的高精度温度传感器 Download PDF

Info

Publication number
WO2019200974A1
WO2019200974A1 PCT/CN2019/000070 CN2019000070W WO2019200974A1 WO 2019200974 A1 WO2019200974 A1 WO 2019200974A1 CN 2019000070 W CN2019000070 W CN 2019000070W WO 2019200974 A1 WO2019200974 A1 WO 2019200974A1
Authority
WO
WIPO (PCT)
Prior art keywords
iot
quartz crystal
pulse
asic
temperature
Prior art date
Application number
PCT/CN2019/000070
Other languages
English (en)
French (fr)
Inventor
章礼道
Original Assignee
章礼道
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 章礼道 filed Critical 章礼道
Publication of WO2019200974A1 publication Critical patent/WO2019200974A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications

Definitions

  • the high-precision temperature sensor supporting the NB-IoT of the invention relates to a high resolution, high precision, high stability, low power consumption which can be applied in industrial and scientific research environments, supports the Internet of Things, and is convenient for mass interconnection and long-distance transmission. Temperature sensor that shares signals.
  • the core component of the prior art quartz crystal thermometer is a resonant quartz crystal oscillator.
  • the working mechanism is different from the traditional temperature sensor (platinum resistance thermometer, thermocouple thermometer, etc.), and its working mechanism is “resonance", not by molecular The “resistance” or “electromotive force” produced by thermal motion.
  • the frequency-temperature characteristic is a cubic polynomial curve which is quite close to a straight line; a, b, and c are the coefficients of the first, second, and third polynomial, respectively, and the cutting type and vibration mode of the quartz wafer. related.
  • the prior art quartz crystal thermometer has at least two quartz crystal oscillators, one is a reference quartz crystal oscillator with a temperature of 0 ° C, and the other is a quartz crystal oscillator for measuring the temperature, which is obtained by the frequency difference between the two. Temperature measurement; in order to reduce the frequency drift of the reference quartz crystal oscillator, the reference quartz crystal oscillator is usually placed in an oven with precise temperature control; even then, there is still a non-negligible reference frequency drift, the prior art quartz crystal
  • the resolution of the thermometer can be 0.001K ⁇ 0.0001K, but its accuracy can only be 0.1K ⁇ 0.05K.
  • NB-IoT Near Band Internet of Things Narrowband - Internet of Things
  • Narrowband - Internet of Things is a cellular-based narrowband Internet of Things technology.
  • the high-precision temperature sensor supporting the NB-IoT adopts a completely different technical route from the prior art, and provides a high resolution, high precision, high stability, low power consumption and can be applied in an industrial and scientific research environment.
  • the Internet of Things is a temperature sensor that facilitates massive interconnection and long-distance transmission and sharing of signals.
  • the high-precision temperature sensor supporting the NB-IoT of the invention comprises a quartz crystal probe (1), a satellite navigation system antenna (2), a satellite navigation system module (3), an ASIC (4), an NB-IoT chip (5), and an NB- IoT antenna (6), lithium titanate rechargeable battery (7) and ABS engineering plastic case and silicone rubber waterproof cover; satellite navigation system antenna (2) receiving satellite navigation system timing signal, satellite navigation system module (3) output high precision seconds Pulse to ASIC (4); ASIC (4) integrates oscillator, high-speed counter, arithmetic unit, time-scale generator, memory, display unit, power management unit; oscillator and quartz crystal probe (1) composed of quartz crystal oscillator The output sine wave, the frequency of the sine wave varies with the temperature of the quartz crystal probe (1); the pulse shaping circuit at the front end of the high-speed counter converts the sine wave into a narrow-point pulse of the same frequency, and the high-speed counter is in the satellite navigation system module (3) Accurate metering, narrow tip pulse counts during the time interval
  • timing support NB-IoT high-precision temperature sensor due to timing accuracy can be controlled to not exceed 0.009 mK;
  • the accuracy of the high-precision temperature sensor supporting the NB-IoT of the present invention reaches 1 mK (the international practical temperature scale used in 1968 uses the standard platinum resistance thermometer indexing, The indexing accuracy is better than 0.1mK);
  • ⁇ High-precision temperature sensor supporting NB-IoT provides a high-resolution, high-accuracy, high-stability, long-distance transmission, massive interconnection, and shared signal temperature sensor that can be applied in industrial and scientific research environments.
  • ⁇ High-precision temperature sensor supporting NB-IoT can be used for cooling tower real-time optimization closed-loop control, feed pump online efficiency monitoring, circulating pump online efficiency monitoring, condensate pump online efficiency monitoring, induced draft fan online efficiency monitoring, primary fan online efficiency Monitoring and blower online efficiency monitoring;
  • ⁇ High-precision temperature sensor supporting NB-IoT can be widely used in temperature measurement standard transmission, thermal test, earthquake precursor monitoring, climate warming monitoring system, marine hydrological monitoring, high-altitude detection, oil field, natural gas exploitation, brewing, yeast production, Dairy production, antibiotic production, agriculture, medical and other industries;
  • ⁇ High-precision temperature sensor supporting NB-IoT can work in the environment of minus 50 ° C to zero 60 ° C; protection grade IP67, completely prevent dust from entering and can withstand water in a short time (1m);
  • Figure 1 is a system diagram of a high-precision temperature sensor supporting NB-IoT.
  • a preferred embodiment of the invention will now be described by way of example with reference to FIG. 1 using a high precision temperature sensor supporting a NB-IoT of a Beidou satellite navigation system with a range of -50 ° C to 250 ° C.
  • the high-precision temperature sensor (Beidou scheme) supporting the NB-IoT includes a quartz crystal probe (1), a satellite navigation system antenna (2), a satellite navigation system module (3), an ASIC (4), and an NB-IoT chip (5).
  • NB-IoT antenna (6) lithium titanate rechargeable battery (7) and ABS engineering plastic case and silicone rubber waterproof cover
  • satellite navigation system antenna (2) receiving satellite navigation system timing signal, satellite navigation system module (3) Output high-precision second pulse to ASIC (4)
  • ASIC (4) integrates oscillator, high-speed counter, arithmetic unit, time-scale generator, memory, display unit, power management unit; oscillator and quartz crystal probe (1) Quartz crystal oscillator, output sine wave, the frequency of sine wave varies with the temperature of quartz crystal probe (1); the pulse shaping circuit at the front end of high-speed counter converts sine wave into narrow-point pulse of the same frequency, high-speed counter in satellite navigation system
  • the time interval between the opening pulse and the closing pulse provided by the module (3) accurately measures the number of narrow-point pulses; for a specific quartz crystal probe (1), the narrow-point pulse number and the temperature of the quartz crystal probe (1) Single value phase
  • the memory has the narrow pulse number of the specific quartz crystal probe (1) - the temperature curve, which shows the instantaneous temperature and the
  • the satellite navigation system antenna (2) is embodied as a Beidou antenna; in the embodiment, the satellite navigation system module (3) is embodied as a Beidou module;
  • the quartz crystal probe (1) has a nominal oscillation frequency of 28208 kHz at 0 °C, a nominal temperature sensitivity of 1 kHz/K, a nominal frequency of 28158 kHz at -50 °C, and a nominal frequency of 28408 kHz at 200 °C. Because the quartz crystal probe is manufactured with a certain degree of dispersion, the quartz crystal probe for high precision application must be calibrated separately for each quartz crystal probe, and the narrow tip pulse number of the quartz crystal probe (1)-temperature curve is stored. Into the ASIC (4) memory, the accuracy of the calibration will determine the accuracy of the quartz crystal probe (1).
  • the distributed capacitance of the quartz crystal probe (1) and the ASIC (4) oscillator connection cable should be strictly controlled, the smaller the better; the quartz crystal probe (1) and the ASIC (4) oscillator together constitute a high Q quartz crystal
  • the oscillator outputs a sine wave with a frequency that varies with the temperature of the quartz crystal probe (1) from 28158 kHz to 28408 kHz.
  • the pulse shaping circuit of the high-speed counter front end of the ASIC (4) converts the upper half of the sine wave into a sharp pulse with a width of less than 10 ns, and the lower half of the wave is cut off; the number of sharp pulses within 1 s of the high-speed counter is a quartz crystal probe (1)
  • the frequency, the high-frequency counter's high-frequency counting upper limit is 100MHz, that is, the 100MHz sharp pulse sequence can be accurately counted, within a specified time period, one is not much, one is not less.
  • the ASIC (4) operator converts the number of sharp pulses into temperature according to the narrow-point pulse number-temperature curve of the quartz crystal probe (1), and adds the time stamp to the memory of the ASIC (4); 4)
  • the display unit displays the instantaneous temperature °C and the instantaneous temperature change rate °C/min.
  • the Beidou antenna receives the Beidou satellite timing signal, and the Beidou module outputs a high-precision second pulse to the ASIC (4); the second pulse width is less than 10 ns.
  • a preferred embodiment of the invention will now be described by way of example with reference to FIG. 1 as a high-precision temperature sensor supporting a NB-IoT using a GPS satellite navigation system with a range of -50 ° C to 250 ° C.
  • the high-precision temperature sensor (GPS scheme) supporting the NB-IoT of the present invention includes a quartz crystal probe (1), a satellite navigation system antenna (2), a satellite navigation system module (3), an ASIC (4), and an NB-IoT chip (5).
  • NB-IoT antenna (6) lithium titanate rechargeable battery (7) and ABS engineering plastic case and silicone rubber waterproof cover
  • satellite navigation system antenna (2) receiving satellite navigation system timing signal, satellite navigation system module (3) Output high-precision second pulse to ASIC (4)
  • ASIC (4) integrates oscillator, high-speed counter, arithmetic unit, time-scale generator, memory, display unit, power management unit; oscillator and quartz crystal probe (1) Quartz crystal oscillator, output sine wave, the frequency of sine wave varies with the temperature of quartz crystal probe (1); the pulse shaping circuit at the front end of high-speed counter converts sine wave into narrow-point pulse of the same frequency, high-speed counter in satellite navigation system
  • the time interval between the opening pulse and the closing pulse provided by the module (3) accurately measures the number of narrow-point pulses; for a specific quartz crystal probe (1), the narrow-point pulse number and the temperature of the quartz crystal probe (1) Single value correlation
  • the memory has the narrow pulse number of the specific quartz crystal probe (1) - the temperature curve, which shows the instantaneous temperature and the
  • the satellite navigation system antenna (2) is embodied as a GPS antenna; in the embodiment, the satellite navigation system module (3) is embodied as a GPS module;
  • the quartz crystal probe (1) has a nominal oscillation frequency of 28208 kHz at 0 °C, a nominal temperature sensitivity of 1 kHz/K, a nominal frequency of 28158 kHz at -50 °C, and a nominal frequency of 28408 kHz at 200 °C. Because the quartz crystal probe is manufactured with a certain degree of dispersion, the quartz crystal probe for high precision application must be calibrated separately for each quartz crystal probe, and the narrow tip pulse number of the quartz crystal probe (1)-temperature curve is stored. Into the ASIC (4) memory, the accuracy of the calibration will determine the accuracy of the quartz crystal probe (1).
  • the distributed capacitance of the quartz crystal probe (1) and the ASIC (4) oscillator connection cable should be strictly controlled, the smaller the better; the quartz crystal probe (1) and the ASIC (4) oscillator together constitute a high Q quartz crystal
  • the oscillator outputs a sine wave with a frequency that varies with the temperature of the quartz crystal probe (1) from 28158 kHz to 28408 kHz.
  • the pulse shaping circuit of the high-speed counter front end of the ASIC (4) converts the upper half of the sine wave into a sharp pulse with a width of less than 10 ns, and the lower half of the wave is cut off; the number of sharp pulses within 1 s of the high-speed counter is a quartz crystal probe (1)
  • the frequency, the high-frequency counter's high-frequency counting upper limit is 100MHz, that is, the 100MHz sharp pulse sequence can be accurately counted, within a specified time period, one is not much, one is not less.
  • the ASIC (4) operator converts the number of sharp pulses into temperature according to the narrow-point pulse number-temperature curve of the quartz crystal probe (1), and adds the time stamp to the memory of the ASIC (4);
  • the display unit on 4) displays the instantaneous temperature °C and the temperature change rate °C/min.
  • the GPS antenna receives the GPS satellite timing signal, and the GPS module outputs a high-precision second pulse to the ASIC (4); the second pulse width is less than 10 ns.
  • the high-precision temperature sensor (GLONASS scheme) supporting the NB-IoT of the present invention includes a quartz crystal probe (1), a satellite navigation system antenna (2), a satellite navigation system module (3), an ASIC (4), and an NB-IoT chip (5).
  • NB-IoT antenna (6) lithium titanate rechargeable battery (7) and ABS engineering plastic case and silicone rubber waterproof cover
  • satellite navigation system antenna (2) receiving satellite navigation system timing signal, satellite navigation system module (3) Output high-precision second pulse to ASIC (4)
  • ASIC (4) integrates oscillator, high-speed counter, arithmetic unit, time-scale generator, memory, display unit, power management unit; oscillator and quartz crystal probe (1) Quartz crystal oscillator, output sine wave, the frequency of sine wave varies with the temperature of quartz crystal probe (1); the pulse shaping circuit at the front end of high-speed counter converts sine wave into narrow-point pulse of the same frequency, high-speed counter in satellite navigation system
  • the time interval between the opening pulse and the closing pulse provided by the module (3) accurately measures the number of narrow-point pulses; for a specific quartz crystal probe (1), the narrow-point pulse number and the temperature of the quartz crystal probe (1) Single value phase
  • the memory has the narrow pulse number of the specific quartz crystal probe (1) - the temperature curve, which shows the instantaneous temperature and the
  • the satellite navigation system antenna (2) is embodied as a GLONASS antenna; in the embodiment, the satellite navigation system module (3) is embodied as a GLONASS module;
  • the quartz crystal probe (1) has a nominal oscillation frequency of 28208 kHz at 0 °C, a nominal temperature sensitivity of 1 kHz/K, a nominal frequency of 28158 kHz at -50 °C, and a nominal frequency of 28408 kHz at 200 °C. Because the quartz crystal probe is manufactured with a certain degree of dispersion, the quartz crystal probe for high precision application must be calibrated separately for each quartz crystal probe, and the narrow tip pulse number of the quartz crystal probe (1)-temperature curve is stored. Into the ASIC (4) memory, the accuracy of the calibration will determine the accuracy of the quartz crystal probe (1).
  • the distributed capacitance of the quartz crystal probe (1) and the ASIC (4) oscillator connection cable should be strictly controlled, the smaller the better; the quartz crystal probe (1) and the ASIC (4) oscillator together constitute a high Q quartz crystal
  • the oscillator outputs a sine wave with a frequency that varies with the temperature of the quartz crystal probe (1) from 28158 kHz to 28408 kHz.
  • the pulse shaping circuit of the high-speed counter front end of the ASIC (4) converts the upper half of the sine wave into a sharp pulse with a width of less than 10 ns, and the lower half of the wave is cut off; the number of sharp pulses within 1 s of the high-speed counter is a quartz crystal probe (1)
  • the frequency, the high-frequency counter's high-frequency counting upper limit is 100MHz, that is, the 100MHz sharp pulse sequence can be accurately counted, within a specified time period, one is not much, one is not less.
  • the ASIC (4) is based on the narrow pulse number of the quartz crystal probe (1) - the temperature curve, the number of sharp pulses is converted to temperature, plus the time stamp and stored in the ASIC (4) memory; in the ASIC
  • the display unit of (4) displays the instantaneous temperature °C and the temperature change rate °C/min.
  • the GLONASS antenna receives the GLONASS satellite timing signal, and the GLONASS module outputs a high precision second pulse to the ASIC (4); the second pulse width is less than 10 ns.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Electric Clocks (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种支持NB-IoT的高精度温度传感器,包括石英晶体探头(1)、卫星导航***天线(2)、卫星导航***模块(3)、ASIC(4)、NB-IoT芯片(5)、NB-IoT天线(6)、钛酸锂充电电池(7)和ABS工程塑料外壳和硅橡胶防水套。该传感器通过NB-IoT基站和云端数据库与NB-IoT其他用户、控制中心、显示中心共享支持物联网,便于海量互联,远距离传输的温度信号。

Description

支持NB-IoT的高精度温度传感器 (一)技术领域:
本发明支持NB-IoT的高精度温度传感器涉及一种可以在工业、科研环境下应用的高分辨率、高精确度、高稳定性、低功耗,支持物联网,便于海量互联,远距离传输、共享信号的温度传感器。
(二)背景技术:
国际实用温标是以一些可复现的平衡态(定义固定点)的温度指定值,以及在国际实用温标这些固定点上分度的标准内插仪器作为基础的。1968年国际实用温标分成三个温区,分别用标准铂电阻温度计、标准铂铑(10%)铂热电偶和普朗克辐射定律来定义这些温区内的温度数值。
现有技术的石英晶体温度计的核心部件是谐振式石英晶体振荡器,其工作机制与传统的温度传感器(铂电阻温度计、热电偶温度计等)不同,其工作机制是“谐振”,不是靠分子的热运动产生的“电阻”或“电动势”。
现有技术的石英晶体振荡器,其频率——温度特性是一条颇接近直线的三次多项式曲线;a、b、c分别为一、二、三次多项式的系数,与石英晶片的切割类型及振型有关。
现有技术的石英晶体温度计至少有2个石英晶体振荡器,一个是温度为0℃的基准石英晶体振荡器,一个是用作测定温度的传感器石英晶体振荡器,由两者的频差获得被测温度;为减少基准石英晶体振荡器的频率漂移,通常把基准石英晶体振荡器置于精确控制温度的恒温箱中;即使如此,仍然有不可忽略的的基准频率漂移,现有技术的石英晶体温度计分辨率可以做到0.001K~0.0001K,但其精确度只能做到0.1K~0.05K。
现有技术的“成为GPS导航仪和GPS智能导航手机的附加功能的GPS授时的石英晶体温度计”和“成为北斗导航仪和北斗智能导航手机的附加功能的北斗授时的石英晶体温度计”以互联网为技术手段,有可能实现高精度的温度测量的互联网移动应用。
NB-IoT(Narrow Band Internet of Things窄带-物联网)是基于蜂窝的窄带物联网技术。
(三)发明内容:
所要解决的技术问题:
解决现有技术的“成为GPS导航仪和GPS智能导航手机的附加功能的GPS授时的石英晶体温度计”和“成为北斗导航仪和北斗智能导航手机的附加功能的北斗授时的石英晶体温度计”的功耗较高,智能手机待机时间短,在低环境温度和高环境温度下工作可能不正常;对于多数在工业、科研环境下作为温度传感器的集群应用,“成为GPS导航仪和GPS智能导航手机的附加功能的GPS授时的石英晶体温度计”和“成为北斗导航仪和北斗智能导航手机的附加功能的北斗授时的石英晶体温度计”的功能冗余过多。
解决其技术问题采用的技术方案:
本发明支持NB-IoT的高精度温度传感器采取与现有技术完全不同的技术路线,提供一种可以在工业、科研环境下应用的高分辨率、高精确度、高稳定、低功耗,支持物联网,便于海量互联,远距离传输、共享信号的温度传感器。
本发明支持NB-IoT的高精度温度传感器包括石英晶体探头(1)、卫星导航***天线 (2)、卫星导航***模块(3)、ASIC(4)、NB-IoT芯片(5)、NB-IoT天线(6)、钛酸锂充电电池(7)和ABS工程塑料外壳和硅橡胶防水套;卫星导航***天线(2)接收卫星导航***授时信号,卫星导航***模块(3)输出高精度秒脉冲到ASIC(4);ASIC(4)集成有振荡器、高速计数器、运算器、时标发生器、存储器、显示单元、电源管理单元;振荡器和石英晶体探头(1)组成石英晶体振荡器,输出正弦波,正弦波的频率随石英晶体探头(1)的温度而变化;高速计数器前端的脉冲整形电路将正弦波转换为同频率的窄尖脉冲,高速计数器在卫星导航***模块(3)提供的开门脉冲和关门脉冲之间的时间间隔内,精确计量,窄尖脉冲数;对一个特定的石英晶体探头(1),该窄尖脉冲数与石英晶体探头(1)的温度单值相关;存储器内存有该特定的石英晶体探头(1)的窄尖脉冲数——温度曲线,经运算单元和显示单元,显示即时温度及即时温度变化速率;时标发生器为日历时间,与高精度秒脉冲同步步进;温度信号加注时标信号后,经NB-IoT芯片(5)和NB-IoT天线(6)发往NB-IoT基站;通过NB-IoT基站和云端数据库与NB-IoT其他用户、控制中心、显示中心共享高分辨率、高精确度、高稳定性、低功耗,支持物联网,便于海量互联,远距离传输的温度信号。
发明的有益效果:
●以易于获取的具有极高精度的卫星授时信号取代基准石英晶体振荡器使本发明支持NB-IoT的高精度温度传感器由于授时精度引入的误差可以控制在不超过0.1PPM(PPM百万分之一);
●对一台量程为-50℃到250℃的卫星授时的支持NB-IoT的高精度温度传感器由于授时精度引入的误差可以控制在不超过0.009mK;
●以易于获取的具有极高精度的卫星授时信号取代基准石英晶体振荡器使本发明支持NB-IoT的高精度温度传感器的精确度达到1mK(1968年国际实用温标使用标准铂电阻温度计分度,分度精度优于0.1mK);
●支持NB-IoT的高精度温度传感器提供了一种可以在工业、科研环境下应用的高分辨率、高精确度、高稳定性、便于远距离传输、海量互联、共享信号的温度传感器;
●支持NB-IoT的高精度温度传感器在火电站可用于冷却塔实时优化闭环控制、给水泵在线效率监控、循环水泵在线效率监控、凝结水泵在线效率监控、引风机在线效率监控、一次风机在线效率监控、送风机在线效率监控;
●支持NB-IoT的高精度温度传感器可以广泛用于温度计量标准传递、热力试验、地震前兆监测、气候变暖监测***、海洋水文监测、高空探测、油田、天然气开采、、酿酒、酵母生产、乳品生产、抗生素生产、农业、医疗等行业;
●支持NB-IoT的高精度温度传感器可以在零下50℃到零上60℃的环境下工作;防护等级IP67,完全防止粉尘进入及可于短时间内耐浸水(1m);
●支持NB-IoT的高精度温度传感器低功耗,2节钛酸锂充电电池可持续工作4年。
(四)附图说明:
图1为支持NB-IoT的高精度温度传感器的***图。
在图1中:
1石英晶体探头、                    2卫星导航***天线、
3卫星导航***模块、                4 ASIC、
5 NB-IoT芯片、                     6 NB-IoT天线、
7钛酸锂充电电池。
(五)具体实施方式:
实施例1:
现结合图1以一台量程为-50℃到250℃的使用北斗卫星导航***的支持NB-IoT的高精度温度传感器为例说明实现发明的优选方式。
本发明支持NB-IoT的高精度温度传感器(北斗方案)包括石英晶体探头(1)、卫星导航***天线(2)、卫星导航***模块(3)、ASIC(4)、NB-IoT芯片(5)、NB-IoT天线(6)、钛酸锂充电电池(7)和ABS工程塑料外壳和硅橡胶防水套;卫星导航***天线(2)接收卫星导航***授时信号,卫星导航***模块(3)输出高精度秒脉冲到ASIC(4);ASIC(4)集成有振荡器、高速计数器、运算器、时标发生器、存储器、显示单元、电源管理单元;振荡器和石英晶体探头(1)组成石英晶体振荡器,输出正弦波,正弦波的频率随石英晶体探头(1)的温度而变化;高速计数器前端的脉冲整形电路将正弦波转换为同频率的窄尖脉冲,高速计数器在卫星导航***模块(3)提供的开门脉冲和关门脉冲之间的时间间隔内,精确计量窄尖脉冲数;对一个特定的石英晶体探头(1),该窄尖脉冲数与石英晶体探头(1)的温度单值相关;存储器内存有该特定的石英晶体探头(1)的窄尖脉冲数——温度曲线,经运算单元和显示单元,显示即时温度及即时温度变化速率;时标发生器为日历时间,与高精度秒脉冲同步步进;温度信号加注时标信号后,经NB-IoT芯片(5)和NB-IoT天线(6)发往NB-IoT基站;通过NB-IoT基站和云端数据库与NB-IoT其他用户、控制中心、显示中心共享高分辨率、高精确度、高稳定性、低功耗,支持物联网,便于海量互联,远距离传输的温度信号。
卫星导航***天线(2)在本实施例中,具体化为北斗天线;卫星导航***模块(3)在本实施例中,具体化为北斗模块;
石英晶体探头(1)0℃时的公称振荡频率为28208kHz,公称温度敏感特性为1kHz/K,-50℃时公称频率为28158kHz,200℃时公称频率为28408kHz。因为石英晶体探头制造有一定的离散度,高精确度应用的石英晶体探头,必须分别对每一只石英晶体探头进行标定,并将石英晶体探头(1)的窄尖脉冲数——温度曲线存入ASIC(4)的存储器,标定的精确度将决定石英晶体探头(1)的精确度。
石英晶体探头(1)与ASIC(4)的振荡器连接电缆的分布电容应受到严格控制,越小越好;石英晶体探头(1)与ASIC(4)的振荡器共同组成高Q值石英晶体振荡器,输出正弦波,频率随石英晶体探头(1)的温度在28158kHz到28408kHz区间变化。
ASIC(4)的高速计数器前端的脉冲整形电路将正弦波的上半波变换为宽度小于10ns的尖脉冲,下半波切除;高速计数器数出1s内的尖脉冲数即为石英晶体探头(1)的频率,高速计数器的高频计数上限为100MHz,即面对100MHz的尖脉冲序列可精确计数,在规定的时间周期内,一个不多,一个不少。
ASIC(4)的运算器按石英晶体探头(1)的窄尖脉冲数——温度曲线,将尖脉冲数换算为温度,再加上时标后存入ASIC(4)的存储器;在ASIC(4)的显示单元上显示即时温 度℃、即时温度变化速率℃/min。
北斗天线接收北斗卫星授时信号,北斗模块输出高精度秒脉冲到ASIC(4);秒脉冲宽度小于10ns。
实施例2:
现结合图1以一台量程为-50℃到250℃的使用GPS卫星导航***的支持NB-IoT的高精度温度传感器为例说明实现发明的优选方式。
本发明支持NB-IoT的高精度温度传感器(GPS方案)包括石英晶体探头(1)、卫星导航***天线(2)、卫星导航***模块(3)、ASIC(4)、NB-IoT芯片(5)、NB-IoT天线(6)、钛酸锂充电电池(7)和ABS工程塑料外壳和硅橡胶防水套;卫星导航***天线(2)接收卫星导航***授时信号,卫星导航***模块(3)输出高精度秒脉冲到ASIC(4);ASIC(4)集成有振荡器、高速计数器、运算器、时标发生器、存储器、显示单元、电源管理单元;振荡器和石英晶体探头(1)组成石英晶体振荡器,输出正弦波,正弦波的频率随石英晶体探头(1)的温度而变化;高速计数器前端的脉冲整形电路将正弦波转换为同频率的窄尖脉冲,高速计数器在卫星导航***模块(3)提供的开门脉冲和关门脉冲之间的时间间隔内,精确计量窄尖脉冲数;对一个特定的石英晶体探头(1),该窄尖脉冲数与石英晶体探头(1)的温度单值相关;存储器内存有该特定的石英晶体探头(1)的窄尖脉冲数——温度曲线,经运算单元和显示单元,显示即时温度及即时温度变化速率;时标发生器为日历时间,与高精度秒脉冲同步步进;温度信号加注时标信号后,经NB-IoT芯片(5)和NB-IoT天线(6)发住NB-IoT基站;通过NB-IoT基站和云端数据库与NB-IoT其他用户、控制中心、显示中心共享高分辨率、高精确度、高稳定性、低功耗,支持物联网,便于海量互联,远距离传输的温度信号。
卫星导航***天线(2)在本实施例中,具体化为GPS天线;卫星导航***模块(3)在本实施例中,具体化为GPS模块;
石英晶体探头(1)0℃时的公称振荡频率为28208kHz,公称温度敏感特性为1kHz/K,-50℃时公称频率为28158kHz,200℃时公称频率为28408kHz。因为石英晶体探头制造有一定的离散度,高精确度应用的石英晶体探头,必须分别对每一只石英晶体探头进行标定,并将石英晶体探头(1)的窄尖脉冲数——温度曲线存入ASIC(4)的存储器,标定的精确度将决定石英晶体探头(1)的精确度。
石英晶体探头(1)与ASIC(4)的振荡器连接电缆的分布电容应受到严格控制,越小越好;石英晶体探头(1)与ASIC(4)的振荡器共同组成高Q值石英晶体振荡器,输出正弦波,频率随石英晶体探头(1)的温度在28158kHz到28408kHz区间变化。
ASIC(4)的高速计数器前端的脉冲整形电路将正弦波的上半波变换为宽度小于10ns的尖脉冲,下半波切除;高速计数器数出1s内的尖脉冲数即为石英晶体探头(1)的频率,高速计数器的高频计数上限为100MHz,即面对100MHz的尖脉冲序列可精确计数,在规定的时间周期内,一个不多,一个不少。
ASIC(4)的运算器按石英晶体探头(1)的窄尖脉冲数——温度曲线,将尖脉冲数换算为温度,再加上时标后存入ASIC(4)的存储器;在ASIC(4)的显示单元上显示即时温度℃、温度变化速率℃/min。
GPS天线接收GPS卫星授时信号,GPS模块输出高精度秒脉冲到ASIC(4);秒脉冲宽度 小于10ns。
实施例3:
现结合图1以一台量程为-50℃到250℃的使用GLONASS卫星导航***的支持NB-IoT的高精度温度传感器(GLONASS方案)为例说明实现发明的优选方式。
本发明支持NB-IoT的高精度温度传感器(GLONASS方案)包括石英晶体探头(1)、卫星导航***天线(2)、卫星导航***模块(3)、ASIC(4)、NB-IoT芯片(5)、NB-IoT天线(6)、钛酸锂充电电池(7)和ABS工程塑料外壳和硅橡胶防水套;卫星导航***天线(2)接收卫星导航***授时信号,卫星导航***模块(3)输出高精度秒脉冲到ASIC(4);ASIC(4)集成有振荡器、高速计数器、运算器、时标发生器、存储器、显示单元、电源管理单元;振荡器和石英晶体探头(1)组成石英晶体振荡器,输出正弦波,正弦波的频率随石英晶体探头(1)的温度而变化;高速计数器前端的脉冲整形电路将正弦波转换为同频率的窄尖脉冲,高速计数器在卫星导航***模块(3)提供的开门脉冲和关门脉冲之间的时间间隔内,精确计量窄尖脉冲数;对一个特定的石英晶体探头(1),该窄尖脉冲数与石英晶体探头(1)的温度单值相关;存储器内存有该特定的石英晶体探头(1)的窄尖脉冲数——温度曲线,经运算单元和显示单元,显示即时温度及即时温度变化速率;时标发生器为日历时间,与高精度秒脉冲同步步进;温度信号加注时标信号后,经NB-IoT芯片(5)和NB-IoT天线(6)发往NB-IoT基站;通过NB-IoT基站和云端数据库与NB-IoT其他用户、控制中心、显示中心共享高分辨率、高精确度、高稳定性、低功耗,支持物联网,便于海量互联,远距离传输的温度信号。
卫星导航***天线(2)在本实施例中,具体化为GLONASS天线;卫星导航***模块(3)在本实施例中,具体化为GLONASS模块;
石英晶体探头(1)0℃时的公称振荡频率为28208kHz,公称温度敏感特性为1kHz/K,-50℃时公称频率为28158kHz,200℃时公称频率为28408kHz。因为石英晶体探头制造有一定的离散度,高精确度应用的石英晶体探头,必须分别对每一只石英晶体探头进行标定,并将石英晶体探头(1)的窄尖脉冲数——温度曲线存入ASIC(4)的存储器,标定的精确度将决定石英晶体探头(1)的精确度。
石英晶体探头(1)与ASIC(4)的振荡器连接电缆的分布电容应受到严格控制,越小越好;石英晶体探头(1)与ASIC(4)的振荡器共同组成高Q值石英晶体振荡器,输出正弦波,频率随石英晶体探头(1)的温度在28158kHz到28408kHz区间变化。
ASIC(4)的高速计数器前端的脉冲整形电路将正弦波的上半波变换为宽度小于10ns的尖脉冲,下半波切除;高速计数器数出1s内的尖脉冲数即为石英晶体探头(1)的频率,高速计数器的高频计数上限为100MHz,即面对100MHz的尖脉冲序列可精确计数,在规定的时间周期内,一个不多,一个不少。
ASIC(4)的运算器按石英晶体探头(1)的窄尖脉冲数——温度曲线,将尖脉冲数换算为温度,再加上时标后存入、ASIC(4)的存储器;在ASIC(4)的显示单元上显示即时温度℃、温度变化速率℃/min。
GLONASS天线接收GLONASS卫星授时信号,GLONASS模块输出高精度秒脉冲到ASIC(4);秒脉冲宽度小于10ns。

Claims (5)

  1. 一种支持NB-IoT的高精度温度传感器,其特征在于:包括石英晶体探头(1)、卫星导航***天线(2)、卫星导航***模块(3)、ASIC(4)、NB-IoT芯片(5)、NB-IoT天线(6)、钛酸锂充电电池(7)和ABS工程塑料外壳和硅橡胶防水套;卫星导航***天线(2)接收卫星导航***授时信号,卫星导航***模块(3)输出高精度秒脉冲到ASIC(4);ASIC(4)集成有振荡器、高速计数器、运算器、时标发生器、存储器、显示单元电源管理单元;振荡器和石英晶体探头(1)组成石英晶体振荡器,输出正弦波,正弦波的频率随石英晶体探头(1)的温度而变化;高速计数器前端的脉冲整形电路将正弦波转换为同频率的窄尖脉冲,高速计数器在卫星导航***模块(3)提供的开门脉冲和关门脉冲之间的时间间隔内,精确计量窄尖脉冲数;对一个特定的石英晶体探头(1),该窄尖脉冲数与石英晶体探头(1)的温度单值相关;存储器内存有该特定的石英晶体探头(1)的窄尖脉冲数——温度曲线,经运算单元和显示单元,显示即时温度及即时温度变化速率;时标发生器为日历时间,与高精度秒脉冲同步步进;温度信号加注时标信号后,经NB-IoT芯片(5)和NB-IoT天线(6)发往NB-IoT基站;通过NB-IoT基站和云端数据库与NB-IoT其他用户、控制中心、显示中心共享高分辨率、高精确度、高稳定性、低功耗,支持物联网,便于海量互联,远距离传输的温度信号。
  2. 根据权利要求1所述的支持NB-IoT的高精度温度传感器,其特征是所述的石英晶体探头(1)与ASIC(4)的振荡器连接电缆的分布电容应受到严格控制,越小越好;石英晶体探头(1)与ASIC(4)的振荡器共同组成高Q值石英晶体振荡器,输出正弦波。
  3. 根据权利要求1所述的支持NB-IoT的高精度温度传感器,其特征是所述的ASIC(4)的高速计数器前端的脉冲整形电路将正弦波的上半波变换为宽度小于10ns的尖脉冲,下半波切除;高速计数器数出1s内的尖脉冲数即为石英晶体探头(1)的频率,高速计数器的高频计数上限为100MHz,即面对100MHz的尖脉冲序列可精确计数,在规定的时间周期内,一个不多,一个不少。
  4. 根据权利要求1所述的支持NB-IoT的高精度温度传感器,其特征是所述的ASIC(4)的运算器按石英晶体探头(1)的窄尖脉冲数——温度曲线,将尖脉冲数换算为温度,再加上时标后存入ASIC(4)的存储器;在ASIC(4)的显示单元上显示即时温度℃、即时温度变化速率℃/min。
  5. 根据权利要求1所述的支持NB-IoT的高精度温度传感器,其特征是所述的卫星导航***天线(2)接收卫星导航***授时信号,卫星导航***模块(3)输出高精度秒脉冲到ASIC(4);秒脉冲宽度小于10ns。
PCT/CN2019/000070 2018-04-17 2019-04-16 支持NB-IoT的高精度温度传感器 WO2019200974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810341163.4 2018-04-17
CN201810341163.4A CN108593124B (zh) 2018-04-17 2018-04-17 支持NB-IoT的高精度温度传感器

Publications (1)

Publication Number Publication Date
WO2019200974A1 true WO2019200974A1 (zh) 2019-10-24

Family

ID=63622763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000070 WO2019200974A1 (zh) 2018-04-17 2019-04-16 支持NB-IoT的高精度温度传感器

Country Status (2)

Country Link
CN (1) CN108593124B (zh)
WO (1) WO2019200974A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532674A (zh) * 2021-07-07 2021-10-22 东莞市德明仪表有限公司 一种5g通讯物联网温度传感器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108593124B (zh) * 2018-04-17 2023-01-10 章礼道 支持NB-IoT的高精度温度传感器
CN109238372A (zh) * 2018-10-22 2019-01-18 章礼道 高灵敏度支持NB-IoT的温度湿度计
CN109631382A (zh) * 2018-11-20 2019-04-16 章礼道 高灵敏度温度湿度计实时闭环控制的ai空调***
CN110239394A (zh) * 2019-06-25 2019-09-17 章礼道 基于5G-IoT高精度温度传感器的电动乘用车智能电池管理***
CN110501944A (zh) * 2019-08-21 2019-11-26 东北大学秦皇岛分校 基于NB-IoT的油气生产智能监控***及方法
CN112393758B (zh) * 2020-09-08 2022-03-25 浙江中广电器股份有限公司 空气能热泵式烘干机用温湿度传感器筛选方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098398A (ja) * 2004-08-30 2006-04-13 Mitsubishi Materials Corp 無線温度センサ
CN103499400A (zh) * 2013-10-14 2014-01-08 章礼道 北斗gps授时的石英晶体温度计
CN103792021A (zh) * 2014-02-26 2014-05-14 章礼道 Gps授时的石英晶体温度计
CN205958033U (zh) * 2016-08-31 2017-02-15 温州科达智能***工程有限公司 带温度检测的智能环境检测***
CN106657293A (zh) * 2016-12-06 2017-05-10 上海斐讯数据通信技术有限公司 一种数据采集终端、***和方法
CN107820224A (zh) * 2017-10-31 2018-03-20 山东信通电子股份有限公司 基于NB‑iot技术的导线测温装置
CN108593124A (zh) * 2018-04-17 2018-09-28 章礼道 支持NB-IoT的高精度温度传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679466B1 (en) * 2007-03-01 2010-03-16 Discera, Inc. Counter-based resonator frequency compensation
EP2132875B1 (en) * 2007-04-11 2018-08-22 Microdul AG Method for temperature compensation of a time basis
US7472032B1 (en) * 2007-06-25 2008-12-30 Allan Space-Time Solutions, Llc Adaptive multi-axis sensor array
CN201435562Y (zh) * 2009-05-12 2010-03-31 上海辰航汽车部件有限公司 一种线束防水橡胶套
JP5152944B1 (ja) * 2012-09-21 2013-02-27 眞人 田邉 水晶温度計測用プローブおよび水晶温度計測装置
CN103884446A (zh) * 2014-04-08 2014-06-25 章礼道 北斗授时的石英晶体温度计

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098398A (ja) * 2004-08-30 2006-04-13 Mitsubishi Materials Corp 無線温度センサ
CN103499400A (zh) * 2013-10-14 2014-01-08 章礼道 北斗gps授时的石英晶体温度计
CN103792021A (zh) * 2014-02-26 2014-05-14 章礼道 Gps授时的石英晶体温度计
CN205958033U (zh) * 2016-08-31 2017-02-15 温州科达智能***工程有限公司 带温度检测的智能环境检测***
CN106657293A (zh) * 2016-12-06 2017-05-10 上海斐讯数据通信技术有限公司 一种数据采集终端、***和方法
CN107820224A (zh) * 2017-10-31 2018-03-20 山东信通电子股份有限公司 基于NB‑iot技术的导线测温装置
CN108593124A (zh) * 2018-04-17 2018-09-28 章礼道 支持NB-IoT的高精度温度传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532674A (zh) * 2021-07-07 2021-10-22 东莞市德明仪表有限公司 一种5g通讯物联网温度传感器

Also Published As

Publication number Publication date
CN108593124A (zh) 2018-09-28
CN108593124B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2019200974A1 (zh) 支持NB-IoT的高精度温度传感器
EP1798519A1 (en) Geomagnetic sensor, geomagnetic sensor correction method, temperature sensor, temperature sensor correction method, and geomagnetic detection device
CN103970008B (zh) 一种基于晶振误差补偿的守时方法
CN103499400B (zh) 北斗gps授时的石英晶体温度计
JPH112571A (ja) 温度測定方法及び低消費電流で作動する温度測定装置
CN103684255A (zh) 内置晶体的温度补偿晶体振荡器的补偿校准判断控制方法
CN103261862A (zh) 使用多个温度传感器的温度测量校正
CN105978555A (zh) 具有温度补偿的实时时钟计时精度修正电路及方法
WO2019200973A1 (zh) 可穿戴式高精度体温传感器
CN103792021B (zh) Gps授时的石英晶体温度计
CN116106605A (zh) 一种考虑温度变化的电能表参数补偿方法、介质及***
CN103884446A (zh) 北斗授时的石英晶体温度计
WO2020082603A1 (zh) 高灵敏度支持NB-IoT的温度湿度计
CN112737507B (zh) 一种基于温度传感器实现rtc高精度的方法
CN202059372U (zh) 基于高频晶体实现时钟晶体振荡器闭环温度补偿的装置
CN110030784A (zh) 使用卫星授时温度传感器的智能冷冻冷藏箱
CN102545778B (zh) 一种时钟晶体振荡器闭环温度补偿方法和装置
CN101793569A (zh) 石英微机械陀螺敏感器件温度测量方法及温度补偿电路
CN102902288B (zh) 一种恒温控制晶体振荡器及其恒温槽温度控制方法
CN102564634B (zh) 植物叶片表面温度测量仪
JP2010256160A (ja) 電子時計および携帯用電子機器
CN114740260A (zh) 实时检测并调整晶振输出频率的电力专用同步采集方法
CN203432709U (zh) 冻土温度测量记录仪
CN203535468U (zh) 温湿度控制器检测仪
CN204044245U (zh) 一种铷原子频标***信号频率稳定度检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788566

Country of ref document: EP

Kind code of ref document: A1