WO2019200769A1 - 测试电路、阵列基板及发光显示装置 - Google Patents

测试电路、阵列基板及发光显示装置 Download PDF

Info

Publication number
WO2019200769A1
WO2019200769A1 PCT/CN2018/096922 CN2018096922W WO2019200769A1 WO 2019200769 A1 WO2019200769 A1 WO 2019200769A1 CN 2018096922 W CN2018096922 W CN 2018096922W WO 2019200769 A1 WO2019200769 A1 WO 2019200769A1
Authority
WO
WIPO (PCT)
Prior art keywords
reset
line
module
pixel unit
illuminating
Prior art date
Application number
PCT/CN2018/096922
Other languages
English (en)
French (fr)
Inventor
陈彩琴
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/124,234 priority Critical patent/US10573210B2/en
Publication of WO2019200769A1 publication Critical patent/WO2019200769A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the present application relates to the field of display technologies, and in particular, to a test circuit, an array substrate, and a light-emitting display device.
  • AMOLED Active-matrix organic light emitting device In diode, AMOLED), a general Array substrate and an electroluminescence (EL) substrate, wherein the Array substrate provides a driving circuit, including a gate driving circuit and a scanning driving circuit (Scan) GOA), control circuit (EM GOA) and pixel drive circuit.
  • the pixel drive circuit is used to provide the anode voltage of the EL pixel
  • the gate drive is used to provide the pixel voltage
  • the reset (Vi) drive line is used to provide the Anode reset voltage
  • the voltage (Vdd) drive line is used for the pixel drive voltage
  • the voltage (Vss) is the cathode input voltage of the EL pixel and the like.
  • an EL mask must be separately fabricated, that is, a high-precision metal mask (FMM Mask) and a general metal mask CMM. Mask) to shield the influence of the array substrate, then measure the EL current output characteristics, debug the EL device structure, and greatly increase the development cost.
  • FMM Mask high-precision metal mask
  • CMM CMM general metal mask
  • the present application provides a test circuit, an array substrate, and an illuminating display device, which can determine the position that affects the illuminating problem of the EL illuminating device, and does not need to separately fabricate a mask of the EL illuminating device to shield the driving circuit in the array substrate during ELrecipe debugging. Impact, thereby saving product development costs.
  • a technical solution adopted by the present application is to provide a test circuit, which is disposed at an output end of the scan driving circuit, and is used when the scan driving circuit does not provide a driving signal to the pixel unit.
  • the current output characteristic of the pixel unit is tested; wherein, the test circuit includes an enable signal line, a scan signal turn-on line, and a plurality of switch tubes, the switch tube is a field effect thin film transistor, and each of the switch tubes The first end, the second end, and the third end, the first end of each of the switch tubes is connected to the enable signal line, the second end is connected to the scan signal open line, and the third end
  • the test circuit further includes a reset signal line, and the reset signal line is connected to the pixel unit for providing a reset signal to reset the pixel unit.
  • an array substrate the array substrate includes a test circuit, and the test circuit is disposed at an output end of the scan driving circuit, and is used in the scan driving circuit.
  • the pixel unit provides the driving signal, testing the current output characteristic of the pixel unit; wherein the testing circuit includes an enabling signal line, a scanning signal opening line, and a plurality of switching tubes, each of the switching tubes including the first The first end of the switch tube is connected to the enable signal line, the second end is connected to the scan signal open line, and the third end is connected to the end, the second end and the third end.
  • the testing circuit includes an enabling signal line, a scanning signal opening line, and a plurality of switching tubes, each of the switching tubes including the first The first end of the switch tube is connected to the enable signal line, the second end is connected to the scan signal open line, and the third end is connected to the end, the second end and the third end.
  • the illuminating display device includes a scan driving circuit, a pixel unit and a test circuit which are sequentially connected, and the test circuit is used for Testing a current output characteristic of the pixel unit when the scan driving circuit does not provide a driving signal to the pixel unit;
  • the test circuit includes an enable signal line, a scan signal turn-on line, and a plurality of switch tubes, each of the The switch tube includes a first end, a second end, and a third end, the first end of each of the switch tubes is connected to the enable signal line, and the second end is connected to the scan signal open line, The third end is connected to the pixel unit.
  • the beneficial effects of the present application are: providing a test circuit, an array substrate, and a light-emitting display device, by setting a test circuit at an output end of the scan drive circuit, and testing a current output characteristic of the pixel unit when the scan drive circuit is not driven, The position that affects the illumination problem of the EL light-emitting device is determined, and when the ELrecipe is debugged, it is not necessary to separately fabricate the mask of the EL light-emitting device to shield the influence of the driving circuit in the array substrate, thereby saving the development cost of the product.
  • FIG. 1 is a schematic structural view of an embodiment of a test circuit of the present application.
  • FIG. 2 is a schematic structural diagram of a first embodiment of a pixel subunit of the present application
  • FIG. 3 is a schematic structural view of a second embodiment of a pixel unit of the present application.
  • FIG. 4 is a schematic structural view of an embodiment of an application of an array substrate
  • FIG. 5 is a schematic structural view of an embodiment of a light-emitting display device of the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a test circuit of the present application.
  • the test circuit 10 of the present application is disposed at the output end of the scan driving circuit 20 for testing the current output characteristics of the pixel unit 30 when the scan driving circuit 20 does not provide a driving signal to the pixel unit 30, wherein
  • the pixel unit 30 includes a plurality of pixel sub-units 31 arranged in an array.
  • the test circuit 10 further includes an enable signal line, a scan signal turn-on line (GON), and a plurality of switch tubes T.
  • Each switch tube T includes a first end a, a second end b, and a third end c.
  • the first end a of each switch tube T is connected to the enable signal line Enable, and the second end b is connected to the scan signal open line. GON, the third end c is connected to the pixel unit 30.
  • the switching transistor T in this embodiment may be a field effect thin film transistor, and the corresponding first end a, the second end b, and the third end c respectively correspond to a gate (TFT), a source, and a drain of the field effect thin film transistor. pole.
  • the field effect thin film transistor in this embodiment may be an N-type or P-type field effect thin film transistor, which may be reasonably selected according to actual conditions, and is not further limited herein.
  • test circuit 10 further includes a reset signal line Vi connected to the pixel unit 30 for providing a reset signal to reset the pixel unit 30.
  • FIG. 2 is a schematic structural diagram of a first embodiment of a pixel unit of the present application.
  • each pixel subunit 31 of the pixel unit 30 includes at least a reset module 311, a driving module 312, a compensation module 313, and Illumination control module 314.
  • the reset module 311 is connected to the reset signal line Vi and the driving module 312, and is configured to reset the driving module 312 according to the reset signal input by the reset signal line Vi.
  • the driving module 312 is configured to output a driving current to drive the EL light emitting device to emit light.
  • the compensation module 313 is connected to the scan signal control line Scan and the drive module 312, and configured to perform threshold voltage compensation and data writing on the drive module 312 under the control of the signal control line Scan input control signal, and the illumination control module 314 and the illumination
  • the control line EM, the driving module 312, and the anode connection of the EL lighting device are configured to control the driving module to drive the EL lighting device to emit light according to the lighting control signal input from the lighting control line EM.
  • the reset signal line Vi is connected to the anode of the EL light emitting device for providing a reset signal during the test phase to reset the anode of the EL light emitting device.
  • the cathode of the EL light-emitting device is connected to the common voltage VSS, and the common voltage VSS provides a low-level signal to the EL light-emitting device during the test phase.
  • FIG. 3 is a schematic structural diagram of a second embodiment of a pixel subunit according to the present application.
  • the pixel unit in this embodiment is a specific representation of the pixel sub-unit 31 in the first embodiment.
  • the 7T1C pixel structure circuit is taken as an example to specifically describe the working principle of the test circuit 10.
  • the specific structure of the pixel unit is only schematically shown in the embodiment. In other embodiments, the pixel circuit may be other structures, which are not further defined.
  • the pixel unit in this embodiment may specifically include the following parts:
  • the driving module 312 can include a capacitor C and a first transistor T1, wherein the first end d of the capacitor C is connected to the first voltage Vdd, and the second end e is connected to the first transistor T1. The first end.
  • the reset module 31 may include a reset signal input terminal f, a connection reset signal line Vi, and a connection with the drive module 312.
  • the compensation module 313 may include a second transistor T2, a third transistor T3, a fourth transistor T4, and a seventh transistor T7.
  • the illumination control module 314 includes a fifth transistor T5 and a sixth transistor T6.
  • the second end e of the capacitor C is connected to the first end of the fourth transistor T4, and the second end of the first transistor T1 is connected to the data Vdata and the first voltage Vdd through the second transistor T2 and the fifth transistor T5, respectively, the first transistor T1
  • One end is also connected to the anode of the EL light-emitting device through the sixth transistor T6.
  • the anode end of the EL light emitting device is connected to the reset signal terminal f through the seventh transistor T7, and the cathode of the EL light emitting device is connected to the common voltage VSS.
  • the specific working process of the 7T1C pixel circuit will not be described here.
  • the first transistor T1, the second transistor T2, the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 are all P-type field effect transistors, and may of course be N.
  • a field effect transistor, and the first transistor T1 is a driving transistor.
  • test circuit 10 When the test circuit 10 is used to detect current and analyze problems, the specific signal inputs are as follows:
  • the enable signal line Enable is input with a low level signal, and all the switch tubes T in the test circuit 10 are turned on.
  • the selected switch tube T is a P-type field effect thin film transistor.
  • the enable signal line Enable corresponds to an input high level signal, which is not further limited herein.
  • the cathode of the EL light-emitting device is input to a low potential by the common voltage VSS, thereby driving the EL light-emitting device to emit light.
  • the fifth switch tube T5 that is, the sixth switch tube T6 is turned off, and the first voltage Vdd and the data voltage Vdata are also not input, so that they are in a floating state, so Among the pixel units, only the reset transistor line Vi is turned on, and the seventh transistor T7 is applied to the loop formed by the anode of the EL light-emitting device.
  • the other modules do not form a loop, so the detection of the current of the EL light-emitting device is not affected.
  • the parameters such as the current density and the brightness curve of the EL light-emitting device can be detected, that is, the relationship between the current and the voltage of the EL light-emitting device can be observed to determine the attribution of the problem, that is, determine the current affecting the light-emitting device.
  • the reason for the output characteristic parameter is a problem from the driving circuit on the array substrate or the light emitting device itself.
  • the driving circuit provided by the array substrate can be driven or less, that is, the driving circuit does not affect the detection of the test circuit 10 in the process.
  • the parameter characteristics of the EL light-emitting device that is, the parameter of the EL light-emitting device detected by the test circuit 10 indicates that the EL light-emitting device itself has a problem, and the EL light-emitting device detected by the test circuit 10 is used. If the parameters are normal, it indicates that the problem occurs on the drive circuit of the array substrate.
  • this application does not need to separately fabricate the mask of the EL light-emitting device (high-precision metal mask and general metal mask) to shield the influence of the driving circuit in the array substrate, thereby saving the development cost of the product.
  • the test circuit in the present application can directly input the reset signal, the enable signal, the scan signal turn-on signal and the common voltage to the panel on the existing product, so that the EL light-emitting device can emit light, and the drive circuit on the array substrate can be directly shielded. The effect is to detect the current output characteristics of the EL illuminator to determine where the problem occurs.
  • pixel structure circuits such as 6T1C, 5T1C, and 4T1C may be used, and the circuit of the above pixel structure is provided with an emission control line (EM).
  • EM emission control line
  • the above test circuit can be used to check it, and the specific principle is similar to that of the 7T1C pixel structure, in the case of driving the circuit on the array substrate with little or no driving, the anode of the EL light-emitting device is borrowed by the reset signal.
  • the cathode of the EL light-emitting device is input to the low position through the common voltage Vss to form a loop-lighting EL light-emitting device, thereby detecting the current output characteristic for further analysis, and the specific signal application process will not be described herein.
  • the pixel unit current output characteristic is tested when the scan driving circuit is not driven, and the position that affects the EL light emitting problem can be determined, and the ELrecipe is debugged.
  • the mask of the EL light emitting device is separately fabricated, the influence of the driving circuit in the array substrate is shielded, thereby saving the development cost of the product.
  • FIG. 4 is a schematic structural diagram of an embodiment of an array substrate according to the present application.
  • the array substrate 40 includes the test circuit A described in any of the above embodiments, and the specific structure and principle of the test circuit A are described in detail in the above embodiments, and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of an embodiment of a light-emitting display device of the present application.
  • the light-emitting display device 50 includes a scan driving circuit 20, a pixel unit 30, and a test circuit 10 which are sequentially connected.
  • the test 10 circuit is used to test the current output characteristics of the pixel unit 30 when the scan driving circuit does not supply the driving signal to the pixel unit 30.
  • the test circuit 10 further includes an enable signal line, a scan signal turn-on line (GON), and a plurality of switch tubes T.
  • Each switch tube T includes a first end a, a second end b, and a third end c. The first end a of each switch tube T is connected to the enable signal line Enable, and the second end b is connected to the scan signal open line. GON, the third end c is connected to the pixel unit 30.
  • the switching transistor T in this embodiment may be a field effect thin film transistor, and the corresponding first end a, the second end b, and the third end c respectively correspond to a gate (TFT), a source, and a drain of the field effect thin film transistor. pole.
  • the field effect thin film transistor in this embodiment may be an N-type or P-type field effect thin film transistor, which may be reasonably selected according to actual conditions, and is not further limited herein.
  • test circuit 10 further includes a reset signal line Vi connected to the pixel unit 30 for providing a reset signal to reset the pixel unit 30.
  • the scan driving circuit 20 may include a plurality of cascaded driving units 201.
  • Each driving unit 201 may further include a first clock signal input terminal (CK), a second clock signal input terminal (XCK), and a first voltage input terminal. (VGH) and a second voltage input terminal (VGL) or the like, and the first and driving unit 201 may further include an initial signal input terminal (STV).
  • the above-mentioned light-emitting display device 50 may further include a data driving circuit and the like, and the specific structure and principle of the above-mentioned test circuit are described in detail in the above embodiments, and details are not described herein again.
  • the present application provides a test circuit, an array substrate, and a light-emitting display device.
  • a test circuit By setting a test circuit at an output end of the scan drive circuit, the pixel unit is not driven when the scan drive circuit is not driven.
  • the current output characteristic is tested to determine the position that affects the illumination problem of the EL light-emitting device.
  • ELrecipe When ELrecipe is debugged, it is not necessary to separately fabricate the mask of the EL light-emitting device to shield the influence of the driving circuit in the array substrate, thereby saving the development cost of the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种测试电路、阵列基板及发光显示装置,测试电路(10)设置于扫描驱动电路(20)的输出端,用于在扫描驱动电路(20)不对像素单元(30)提供驱动信号时,对像素单元(30)的电流输出特性进行测试;包括使能信号线、扫描信号开启线以及多个开关管(T),每一开关管(T)包括第一端(a)、第二端(b)以及第三端(c),每一开关管(T)的第一端(a)连接使能信号线,第二端(b)连接扫描信号开启线,第三端(c)连接像素单元(30)。通过上述方式,可以确定影响EL发光器件发光问题出现的位置及节省产品的开发成本。

Description

测试电路、阵列基板及发光显示装置
【技术领域】
本申请涉及显示技术领域,特别是涉及一种测试电路、阵列基板及发光显示装置。
【背景技术】
有源矩阵有机发光显示装置(Active-matrix organic light emitting diode,AMOLED)中,一般分阵列(Array)基板和电致发光(EL)基板,其中Array基板提供驱动电路,包括栅极(Gate)驱动电路、扫描驱动电路(Scan GOA)、控制电路(EM GOA)以及像素驱动电路。像素驱动电路用来提供EL像素的阳极(Anode)电压,栅极驱动用于提供像素电压,复位(Vi)驱动线用于提供Anode复位电压,电压(Vdd)驱动线用于像素驱动电压;公共电压(Vss)为EL像素的阴极(Cathode)输入电压等等。在面板解析中,为了区分和EL的器件问题,只能通过inline抽检来监控器件特性。但对于从组件(module)或者客户反馈的面板问题,无法查询到inline器件特性数据时,此时需要进一步分析其问题的发生位置从而可以针对性的进一步分析问题的成因。因此,迫切需要测试单元电路,来区分Array和EL的问题,或者侦测EL输出电流特性,给解析提供便利。
同时,EL工艺调试时,需单独制作EL掩膜,即高精度金属掩模板(FMM Mask)和一般的金属掩模板CMM Mask)来屏蔽阵列基板的影响,再来测量EL电流输出特性,调试EL器件结构,很大程度上增加了开发成本。
【发明内容】
本申请提供一种测试电路、阵列基板及发光显示装置,能够确定影响EL发光器件发光问题出现的位置,且在ELrecipe调试时,无需单独制作EL发光器件的掩膜来屏蔽阵列基板中驱动电路的影响,从而节省产品的开发成本。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种测试电路,所述测试电路设置于扫描驱动电路的输出端,用于在扫描驱动电路不对像素单元提供驱动信号时,对所述像素单元的电流输出特性进行测试;其中,其中,所述测试电路包括使能信号线、扫描信号开启线以及多个开关管,所述开关管为场效应薄膜晶体管,每一所述开关管包括第一端、第二端以及第三端,每一所述开关管的所述第一端连接所述使能信号线,所述第二端连接所述扫描信号开启线,所述第三端连接所述像素单元,所述测试电路还包括复位信号线,所述复位信号线与所述像素单元连接,用以提供复位信号对所述像素单元进行复位。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种阵列基板,所述阵列基板包括测试电路,所述测试电路设置于扫描驱动电路的输出端,用于在扫描驱动电路不对像素单元提供驱动信号时,对所述像素单元的电流输出特性进行测试;其中,所述测试电路包括使能信号线、扫描信号开启线以及多个开关管,每一所述开关管包括第一端、第二端以及第三端,每一所述开关管的所述第一端连接所述使能信号线,所述第二端连接所述扫描信号开启线,所述第三端连接所述像素单元。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种发光显示装置,其中,所述发光显示装置包括依次连接的扫描驱动电路、像素单元以及测试电路,所述测试电路用于在扫描驱动电路不对所述像素单元提供驱动信号时,对所述像素单元的电流输出特性进行测试;所述测试电路包括使能信号线、扫描信号开启线以及多个开关管,每一所述开关管包括第一端、第二端以及第三端,每一所述开关管的所述第一端连接所述使能信号线,所述第二端连接所述扫描信号开启线,所述第三端连接所述像素单元。
本申请的有益效果是:提供一种测试电路、阵列基板及发光显示装置,通过在扫描驱动电路的输出端设置测试电路,在不驱动扫描驱动电路时,对像素单元电流输出特性进行测试,可以确定影响EL发光器件发光问题出现的位置,且在ELrecipe调试时,无需单独制作EL发光器件的掩膜来屏蔽阵列基板中驱动电路的影响,从而节省产品的开发成本。
【附图说明】
图1是本申请测试电路一实施方式的结构示意图;
图2是本申请像素子单元第一实施方式的结构示意图;
图3是本申请像素单元子第二实施方式的结构示意图;
图4是申请阵列基板一实施方式的结构示意图;
图5是本申请发光显示装置一实施方式的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请测试电路一实施方式的结构示意图。如图1所示,本申请中测试电路10设置于扫描驱动电路20的输出端,用于在扫描驱动电路20不对像素单元30提供驱动信号时,对像素单元30的电流输出特性进行测试,其中像素单元30包括多个阵列排布的像素子单元31。
其中,该测试电路10进一步包括能信号线(Enable)、扫描信号开启线(GON)以及多个开关管T。其中,每一开关管T包括第一端a、第二端b以及第三端c,每一开关管T的所第一端a连接使能信号线Enable,第二端b连接扫描信号开启线GON,第三端c连接像素单元30。本实施例中的开关管T可以为场效应薄膜晶体管,则其对应的第一端a、第二端b以及第三端c分别对应场效应薄膜晶体管的栅极(TFT)、源极以及漏极。且本实施例中的场效应薄膜晶体管可以为选用N型或者P型场效应薄膜晶体管,可以根据实际情况合理选择,此处不做进一步限定。
可选地,该测试电路10进一步包括复位信号线Vi,该复位信号线Vi与像素单元30连接,用以提供复位信号对像素单元30进行复位。
结合图2,图2为本申请像素单元第一实施方式的结构示意图,再来看像素单元30,该像素单元30中每一像素子单元31至少包括复位模块311、驱动模块312、补偿模块313以及发光控制模块314。
其中,复位模块311与复位信号线Vi以及驱动模块312连接,被配置为根据复位信号线Vi输入的复位信号对驱动模块312进行复位,驱动模块312被配置为输出驱动电流来驱动EL发光器件发光,补偿模块313与扫描信号控制线Scan以及驱动模块312连接,被配置为在信号控制线Scan输入控制信号的控制下,对驱动模块312进行阈值电压补偿和数据写入,发光控制模块314与发光控制线EM、驱动模块312以及EL发光器件的阳极连接,被配置以根据发光控制线EM输入的发光控制信号来控制驱动模块以驱动EL发光器件发光。
可选地,复位信号线Vi连接EL发光器件的阳极,用于在测试阶段提供复位信号,将EL发光器件的阳极进行复位。且EL发光器件的阴极连接公共电压VSS,公共电压VSS在测试阶段为EL发光器件提供低电平信号。
请结合图3,图3为本申请像素子单元第二实施方式的结构示意图。本实施例中的像素单元为第一实施方式中像素子单元31的具体表现形式,即本实施例中以7T1C像素结构电路为例,来具体说明该测试电路10的工作原理,当然本实施例中只是示意性的给出像素单元的具体结构,在其它实施例中像素电路还可以是其它结构,此处不做进一步限定,本实施例中的像素单元具体可以包括如下部分:
分别对应到图2中像素单元的各个功能模块,驱动模块312可以包括电容C以及第一晶体管T1,其中,电容C的第一端d连接第一电压Vdd,第二端e连接第一晶体管T1的第一端端。
复位模块31可以包括复位信号输入端f,连接复位信号线Vi以及与驱动模块312连接。
补偿模块313可以包括第二晶体管T2、第三晶体管T3、第四晶体管T4以及第七晶体管T7。
发光控制模块314包括第五晶体管T5及第六晶体管T6。
其中,电容C第二端e连接第四晶体管T4的第一端,第一晶体管T1第二端通过第二晶体管T2及第五晶体管T5分别连接数据Vdata和第一电压Vdd,第一晶体管T1第一端还通过第六晶体管T6连接EL发光器件的阳极。且EL发光器件的阳极端通过第七晶体管T7连接复位信号端f,EL发光器件的阴极连接公共电压VSS。且该7T1C像素电路的具体工作过程此处就不再赘述。
其中,上述的第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6以及第七晶体管T7均为P型场效应晶体管,当然也可是N型场效应晶体管,且第一晶体管T1为驱动晶体管。
当该测试电路10被用于侦测电流和分析问题时,具体的信号输入如下:
首先使能信号线Enable输入低电平信号,开启测试电路10中所有的开关管T,本实施例中,选用的开关管T为P型场效应薄膜晶体管,在其它实施例中,当开关管T为N型场效应薄膜晶体管时,该使能信号线Enable则对应输入高电平信号,此处不做进一步限定。
进一步,扫描信号开启线GON输入低电位,从而将像素单元30的栅极线输入低电位,即对应的扫描信号控制线Scan和Scan-1同时输入低电位,则对应的第二晶体管T2、第三晶体管T3、第四晶体管T4以及第七晶体管T7开启。同时,复位信号线Vi输入高电位,则对应的第一晶体管T1关闭,使得像素单元30中EL发光器件的阳极被输入高位。同时EL发光器件的阴极由公共电压VSS给输入低电位,从而驱动EL发光器件发光。且在此过程中,发光控制线EM无输入信号处于浮空状态,则第五开关管T5即第六开关管T6关闭,第一电压Vdd以及数据电压Vdata也无输入从而处于浮空状态,故此时的像素单元中只有复位信号线Vi经过开启的第七晶体管T7作用于EL发光器件阳极形成的回路,其它模块均未形成回路,故不影响EL发光器件电流的侦测。在具体测试过程中,可以通过侦测EL发光器件的电流密度以及亮度曲线等参数,即可以通过观察EL发光器件电流和电压之间的关系,来确定问题发生的归属,即确定影响发光器件电流输出特性参数的原因是来自阵列基板上的驱动电路还是发光器件本身的出现问题。
本实施例中,在测试电路10对像素单元30进行测试的过程中,阵列基板提供的驱动电路均可以不驱动或者少驱动,也即是该过程中驱动电路不影响测试电路10侦测出的EL发光器件的参数特性,也就是说采用测试电路10侦测出来的EL发光器件的参数出现问题的话,则表明该EL发光器件的本身出现问题,若采用测试电路10侦测出来的EL发光器件的参数正常,则表明该问题出现在阵列基板的驱动电路上。
除此之外,在ELrecipe调试时,本申请无需单独制作EL发光器件的掩膜(高精度金属掩模板和一般金属掩膜板)来屏蔽阵列基板中驱动电路的影响,从而节省产品的开发成本。且本申请中的测试电路可以直接在现有产品上,直接给面板输入复位信号、使能信号、扫描信号开启信号以及公共电压,就可以使得EL发光器件发光,直接可以屏蔽阵列基板上驱动电路的影响,达到侦测EL发光器件的电流输出特性,从而确定问题出现的位置。
当然上述实施例中,仅仅是给出了一种像素结构电路,在实际的运用中,还可以是6T1C、5T1C以及4T1C等像素结构电路,且只要上述像素结构的电路具备发光控制线(EM),均可以运用上述测试电路对其进行检查,且具体的原理和7T1C像素结构的电路类似,均是在少驱动或者不驱动阵列基板上驱动电路的情况下,借用复位信号将EL发光器件的阳极输入高位,通过公共电压Vss将EL发光器件的阴极输入低位,形成回路点亮EL发光器件,从而侦测其电流输出特性进行进一步分析,具体的信号施加过程此处不再赘述。
上述实施方式中,通过在扫描驱动电路的输出端设置测试电路,在不驱动扫描驱动电路时,对像素单元电流输出特性进行测试,可以确定影响EL发光器件发光问题出现的位置,且在ELrecipe调试时,无需单独制作EL发光器件的掩膜来屏蔽阵列基板中驱动电路的影响,从而节省产品的开发成本。
请参阅图4,图4为本申请阵列基板一实施方式的结构示意图。该阵列基板40包括上述任一实施方式中所述的测试电路A,且该测试电路A的具体结构及原理详见上述实施方式中的具体描述,此处不再赘述。
请参阅图5,图5为本申请发光显示装置一实施方式的结构示意图。如图5,该发光显示装置50包括依次连接的扫描驱动电路20、像素单元30以及测试电路10。
其中,测试10电路用于在扫描驱动电路不对像素单元30提供驱动信号时,对像素单元30的电流输出特性进行测试。该测试电路10进一步包括能信号线(Enable)、扫描信号开启线(GON)以及多个开关管T。其中,每一开关管T包括第一端a、第二端b以及第三端c,每一开关管T的所第一端a连接使能信号线Enable,第二端b连接扫描信号开启线GON,第三端c连接像素单元30。本实施例中的开关管T可以为场效应薄膜晶体管,则其对应的第一端a、第二端b以及第三端c分别对应场效应薄膜晶体管的栅极(TFT)、源极以及漏极。且本实施例中的场效应薄膜晶体管可以为选用N型或者P型场效应薄膜晶体管,可以根据实际情况合理选择,此处不做进一步限定。
可选地,该测试电路10进一步包括复位信号线Vi,该复位信号线Vi与像素单元30连接,用以提供复位信号对像素单元30进行复位。
上述的扫描驱动电路20可以包括多个级联的驱动单元201,每一驱动单元201还可以包括第一时钟信号输入端(CK)、第二时钟信号输入端(XCK)、第一电压输入端(VGH)以及第二电压输入端(VGL)等等,且第一及驱动单元201还可以包括初始信号输入端(STV)。
上述的发光显示装置50还可以包括数据驱动电路等,且上述的测试电路的具体结构及原理详见上述实施方式中的具体描述,此处不再赘述。
综上所述,本领域技术人员容易理解,本申请提供一种测试电路、阵列基板及发光显示装置,通过在扫描驱动电路的输出端设置测试电路,在不驱动扫描驱动电路时,对像素单元电流输出特性进行测试,可以确定影响EL发光器件发光问题出现的位置,且在ELrecipe调试时,无需单独制作EL发光器件的掩膜来屏蔽阵列基板中驱动电路的影响,从而节省产品的开发成本。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种测试电路,其中,所述测试电路设置于扫描驱动电路的输出端,用于在扫描驱动电路不对像素单元提供驱动信号时,对所述像素单元的电流输出特性进行测试;
    其中,所述测试电路包括使能信号线、扫描信号开启线以及多个开关管,所述开关管为场效应薄膜晶体管,每一所述开关管包括第一端、第二端以及第三端,每一所述开关管的所述第一端连接所述使能信号线,所述第二端连接所述扫描信号开启线,所述第三端连接所述像素单元,所述测试电路还包括复位信号线,所述复位信号线与所述像素单元连接,用以提供复位信号对所述像素单元进行复位。
  2. 根据权利要求1所述的测试电路,其中,所述像素单元至少包括复位模块、驱动模块、补偿模块以及发光控制模块;
    其中,所述复位模块与所述复位信号线以及驱动模块连接,被配置为根据所述复位信号线输入的复位信号对驱动模块进行复位,所述驱动模块被配置为输出驱动电流来驱动发光器件发光,所述补偿模块与信号控制线以及所述驱动模块连接,被配置以在所述扫描信号控制线输入的控制信号的控制下,对所述驱动模块进行阈值电压补偿和数据写入,所述发光控制模块与发光控制线、驱动模块以及发光器件的阳极连接,被配置以根据所述发光控制线输入的发光控制信号来控制驱动模块以驱动发光器件发光。
  3. 根据权利要求2所述的测试电路,其中,所述复位信号线连接所述发光器件的阳极,用于在测试阶段提供复位信号,将所述发光器件的阳极进行复位。
  4. 根据权利要求2所述的测试电路,其中,所述发光器件的阴极连接公共电压,所述公共电压在测试阶段为所述发光器件提供低电平信号。
  5. 一种阵列基板,其中,所述阵列基板包括测试电路,所述测试电路设置于扫描驱动电路的输出端,用于在扫描驱动电路不对像素单元提供驱动信号时,对所述像素单元的电流输出特性进行测试;
    其中,所述测试电路包括使能信号线、扫描信号开启线以及多个开关管,每一所述开关管包括第一端、第二端以及第三端,每一所述开关管的所述第一端连接所述使能信号线,所述第二端连接所述扫描信号开启线,所述第三端连接所述像素单元。
  6. 根据权利要求5所述的阵列基板,其中,所述测试电路还包括复位信号线,所述复位信号线与所述像素单元连接,用以提供复位信号对所述像素单元进行复位。
  7. 根据权利要求6所述的阵列基板,其中,所述像素单元至少包括复位模块、驱动模块、补偿模块以及发光控制模块;
    其中,所述复位模块与所述复位信号线以及驱动模块连接,被配置为根据所述复位信号线输入的复位信号对驱动模块进行复位,所述驱动模块被配置为输出驱动电流来驱动发光器件发光,所述补偿模块与信号控制线以及所述驱动模块连接,被配置以在所述扫描信号控制线输入的控制信号的控制下,对所述驱动模块进行阈值电压补偿和数据写入,所述发光控制模块与发光控制线、驱动模块以及发光器件的阳极连接,被配置以根据所述发光控制线输入的发光控制信号来控制驱动模块以驱动发光器件发光。
  8. 根据权利要求7所述的阵列基板,其中,所述复位信号线连接所述发光器件的阳极,用于在测试阶段提供复位信号,将所述发光器件的阳极进行复位。
  9. 根据权利要求7所述的阵列基板,其中,所述发光器件的阴极连接公共电压,所述公共电压在测试阶段为所述发光器件提供低电平信号。
  10. 根据权利要求5所述的阵列基板,其中,所述开关管为场效应薄膜晶体管。
  11. 一种发光显示装置,其中,所述发光显示装置包括依次连接的扫描驱动电路、像素单元以及测试电路,所述测试电路用于在扫描驱动电路不对所述像素单元提供驱动信号时,对所述像素单元的电流输出特性进行测试;
    所述测试电路包括使能信号线、扫描信号开启线以及多个开关管,每一所述开关管包括第一端、第二端以及第三端,每一所述开关管的所述第一端连接所述使能信号线,所述第二端连接所述扫描信号开启线,所述第三端连接所述像素单元。
  12. 根据权利要求11所述的发光显示装置,其中,所述测试电路还包括复位信号线,所述复位信号线与所述像素单元连接,用以提供复位信号对所述像素单元进行复位。
  13. 根据权利要求12所述的发光显示装置,其中,述像素单元至少包括复位模块、驱动模块、补偿模块以及发光控制模块;
    其中,所述复位模块与所述复位信号线以及驱动模块连接,被配置为根据所述复位信号线输入的复位信号对驱动模块进行复位,所述驱动模块被配置为输出驱动电流来驱动发光器件发光,所述补偿模块与信号控制线以及所述驱动模块连接,被配置以在所述扫描信号控制线输入的控制信号的控制下,对所述驱动模块进行阈值电压补偿和数据写入,所述发光控制模块与发光控制线、驱动模块以及发光器件的阳极连接,被配置以根据所述发光控制线输入的发光控制信号来控制驱动模块以驱动发光器件发光。
  14. 根据权利要求13所述的发光显示装置,其中,所述复位信号线连接所述发光器件的阳极,用于在测试阶段提供复位信号,将所述发光器件的阳极进行复位。
  15. 根据权利要求13所述的发光显示装置,其中,所述发光器件的阴极连接公共电压,所述公共电压在测试阶段为所述发光器件提供低电平信号。
  16. 根据权利要求11所述的发光显示装置,其中,所述开关管为场效应薄膜晶体管。
PCT/CN2018/096922 2018-04-19 2018-07-25 测试电路、阵列基板及发光显示装置 WO2019200769A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/124,234 US10573210B2 (en) 2018-04-19 2018-09-07 Test circuit, array substrate, and light-emitting display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810355230.8 2018-04-19
CN201810355230.8A CN108399880B (zh) 2018-04-19 2018-04-19 测试电路、阵列基板及发光显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/124,234 Continuation US10573210B2 (en) 2018-04-19 2018-09-07 Test circuit, array substrate, and light-emitting display apparatus

Publications (1)

Publication Number Publication Date
WO2019200769A1 true WO2019200769A1 (zh) 2019-10-24

Family

ID=63100370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096922 WO2019200769A1 (zh) 2018-04-19 2018-07-25 测试电路、阵列基板及发光显示装置

Country Status (2)

Country Link
CN (1) CN108399880B (zh)
WO (1) WO2019200769A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189703B (zh) * 2019-06-28 2022-02-18 武汉天马微电子有限公司 一种显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796136B1 (ko) * 2006-09-13 2008-01-21 삼성에스디아이 주식회사 유기전계발광표시장치 및 그의 구동방법
CN103400546A (zh) * 2013-07-25 2013-11-20 合肥京东方光电科技有限公司 一种阵列基板及其驱动方法、显示装置
CN103489404A (zh) * 2013-09-30 2014-01-01 京东方科技集团股份有限公司 像素单元、像素电路及其驱动方法
CN105243986A (zh) * 2015-11-12 2016-01-13 京东方科技集团股份有限公司 像素补偿电路及其驱动方法、阵列基板以及显示装置
CN105989794A (zh) * 2015-01-29 2016-10-05 上海和辉光电有限公司 Oled显示装置
CN106707641A (zh) * 2016-12-22 2017-05-24 深圳市华星光电技术有限公司 具有测试电路结构的液晶显示面板及液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796136B1 (ko) * 2006-09-13 2008-01-21 삼성에스디아이 주식회사 유기전계발광표시장치 및 그의 구동방법
CN103400546A (zh) * 2013-07-25 2013-11-20 合肥京东方光电科技有限公司 一种阵列基板及其驱动方法、显示装置
CN103489404A (zh) * 2013-09-30 2014-01-01 京东方科技集团股份有限公司 像素单元、像素电路及其驱动方法
CN105989794A (zh) * 2015-01-29 2016-10-05 上海和辉光电有限公司 Oled显示装置
CN105243986A (zh) * 2015-11-12 2016-01-13 京东方科技集团股份有限公司 像素补偿电路及其驱动方法、阵列基板以及显示装置
CN106707641A (zh) * 2016-12-22 2017-05-24 深圳市华星光电技术有限公司 具有测试电路结构的液晶显示面板及液晶显示装置

Also Published As

Publication number Publication date
CN108399880B (zh) 2019-08-02
CN108399880A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
KR102324653B1 (ko) 디스플레이 패널과 그 균열 검출 방법, 디스플레이 장치
WO2019242514A1 (zh) 栅极驱动信号检测电路、方法和显示装置
US9658710B2 (en) Pixel circuit, its driving method, organic light-emitting diode display panel and display device
EP3159882B1 (en) Pixel circuit, driving method therefor and display device
WO2016173121A1 (zh) 一种像素电路及其驱动方法、显示装置
US10068950B2 (en) Pixel circuit, driving method thereof, and display apparatus
US9318540B2 (en) Light emitting diode pixel unit circuit and display panel
WO2015196700A1 (zh) 有机发光二极管像素电路及其驱动方法
US20210375173A1 (en) Display panel, display apparatus and crack detection method therefor
EP3163561B1 (en) Pixel circuit and drive method therefor, organic light-emitting display panel and display device
WO2017041343A1 (zh) Amoled实时补偿***
CN107170400B (zh) 一种电致发光显示面板及其检测方法、显示装置
WO2015180373A1 (zh) 像素电路和显示装置
US9449552B2 (en) Organic light emitting display device and driving method thereof including response to panel abnormality
WO2015196598A1 (zh) 像素电路、显示面板及显示装置
CN104064140A (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
EP3151228B1 (en) Pixel circuit and display device
CN109584805A (zh) Oled显示装置及其驱动薄膜晶体管电性侦测方法
US10354591B2 (en) Pixel driving circuit, repair method thereof and display device
US20180233087A1 (en) Pixel circuit and driving method, array substrate, and display apparatus
CN103325339A (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2019200769A1 (zh) 测试电路、阵列基板及发光显示装置
CN203870951U (zh) 像素电路、有机发光显示面板及显示装置
CN114299849A (zh) 像素电路及其驱动方法和显示面板
US12027119B2 (en) Display device and method for driving same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915604

Country of ref document: EP

Kind code of ref document: A1