WO2019200645A1 - 自减压配气机构及采用该自减压配气机构的低温制冷机 - Google Patents

自减压配气机构及采用该自减压配气机构的低温制冷机 Download PDF

Info

Publication number
WO2019200645A1
WO2019200645A1 PCT/CN2018/087142 CN2018087142W WO2019200645A1 WO 2019200645 A1 WO2019200645 A1 WO 2019200645A1 CN 2018087142 W CN2018087142 W CN 2018087142W WO 2019200645 A1 WO2019200645 A1 WO 2019200645A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
high pressure
self
low pressure
Prior art date
Application number
PCT/CN2018/087142
Other languages
English (en)
French (fr)
Inventor
李奥
葛金宏
夏晨曦
周志坡
Original Assignee
中船重工鹏力(南京)超低温技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中船重工鹏力(南京)超低温技术有限公司 filed Critical 中船重工鹏力(南京)超低温技术有限公司
Priority to EP18915018.8A priority Critical patent/EP3783278A4/en
Priority to US17/048,902 priority patent/US11913698B2/en
Publication of WO2019200645A1 publication Critical patent/WO2019200645A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/04Means in valves for absorbing fluid energy for decreasing pressure or noise level, the throttle being incorporated in the closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/006Gas cycle refrigeration machines using a distributing valve of the rotary type

Definitions

  • the invention relates to the technical field of cryogenic refrigerators, in particular to a self-reducing gas distribution mechanism for reducing forward pressure and reducing wear by modifying the structure of a gas distribution valve, and low temperature refrigeration using the self-reducing gas distribution mechanism machine.
  • An ultra-low temperature refrigerator represented by a Gifford-McMahon (GM) refrigerator has an expander and a compressor of a working gas (also referred to as a refrigerant gas).
  • the chiller of this type is provided by the compressor to discharge the high-pressure airflow, enters into the cylinder through the valve-distributing mechanism, moves up and down in the piston, exchanges heat with the cold-storage material, and then expands into the expansion chamber to perform work expansion.
  • the piston flows out of the valve train and returns to the low pressure chamber of the compressor.
  • the cooling effect is formed by the above continuous cycle process.
  • the refrigerator of the type shown in FIG. 1 includes a compressor 1, a cover 2, a cylinder 13, a shifting piston 10, a motor 12 and a driven cam 3 in the cover 2, and an eccentric cam handle on the cam 3.
  • the 31 driving link 5 converts the rotary motion into an up-and-down reciprocating motion, thereby driving the shifting piston to move up and down in the cylinder 13.
  • the valve train RV is composed of a valve valve 6 and a rotary valve 7.
  • the valve valve 6 is mounted in the cover 2, is fixed therein by the positioning pin 16, and is disposed coaxially with the rotary valve 7.
  • the cam lever 31 drives the rotary valve 7 mounted on the bearing 14 to rotate along the rotary shaft.
  • the compressor 1 discharges and compresses the refrigerant gas as a high-pressure refrigerant gas.
  • the high-pressure exhaust pipe 1a supplies the high-pressure refrigerant gas to the cover 2, and transmits it to the high-pressure groove 72 of the rotary valve 7 which is airtightly fitted through the high-pressure air hole 62 of the valve valve 6.
  • the rotary valve 7 is opened with a low pressure hole 71, and the low pressure hole 71 communicates with the low pressure passage 22 in the cover 2. According to the position shown in Fig. 1, the low pressure hole 71 is in overlapping communication with the gas distribution valve vent 63 on the gas distribution valve 6.
  • the system is in a low pressure exhaust phase, and the gas in the expansion chamber 9 is changed from high pressure to low pressure, sequentially passing through the displacement piston.
  • the piston rear hole 10b, the cool storage material 10c, and the piston front hole 10a flow out, and return to the low pressure intake duct 1b of the compressor 1.
  • the low pressure hole 71 does not communicate with the air distribution valve air hole 63 on the air distribution valve 6, and becomes the gas distribution on the high pressure groove 72 and the gas distribution valve 6 on the rotary valve 7.
  • the valve air hole 63 is communicated, and the high-pressure gas discharged from the compressor 1 passes through the high-pressure air hole 62 on the gas distribution valve 6 and the high-pressure groove 72 on the rotary valve 7 communicating therewith, and enters the cylinder 13 in the order of the piston on the piston.
  • the hole 10a, the cool storage material 10c, and the piston rear hole 10b enter the expansion chamber 9.
  • the high-pressure gas discharged from the compressor 1 acts on the back surface of the gas distribution valve 6, and the gas distribution valve 6 is closely attached to the rotary valve 7 by the positive pressure on the back surface parallel to the area of the gas distribution surface 64. Together, this separates the high and low pressure valves on the valve train to isolate the high and low pressure airflow.
  • the magnitude of the positive pressure is proportional to the outer diameter D1 of the gas distribution valve 6, and the positive pressure is supplied through the high pressure contact back surface of the gas distribution valve 6, and the switching plane 73 and the gas distribution surface 64 are pressed to prevent High and low pressure air flow.
  • the high pressure air hole 62 and the air distribution valve air hole 63 on the air distribution valve 6 have a certain size and position requirement, so that the outer diameter D1 of the air distribution valve 6 cannot be too small, otherwise the high pressure air hole 62 and the air distribution valve air hole 63 cannot be fabricated. This makes the positive pressure that is attached together large, and the long-term operation will cause the wear of the contact surface of the rotary valve 7 and the gas distribution valve 6, which affects the performance of the device and reduces the reliability of the device.
  • the object of the present invention is to provide a self-reducing valve mechanism for reducing the forward pressure and reducing the wear by modifying the configuration of the valve, and the low temperature using the self-reducing valve. Refrigerator.
  • a self-decompressing air distribution mechanism includes a gas distribution valve and a rotary valve, wherein the back side of the gas distribution valve is divided into a high pressure surface and a low pressure surface, and the high pressure surface is located at a middle portion of the low pressure surface, and the high pressure surface and the low pressure surface
  • the sealing valve is separated from the third sealing ring of the sealing body by a sealing valve; the valve is provided with a pressure reducing hole extending through the gas distribution surface and the low pressure surface of the gas distribution valve along the axial direction thereof, The pressure hole can communicate with the low pressure passage of the cover body and the back surface of the valve, through which the low pressure airflow in the cover body can be introduced to the back of the valve to reduce the switching plane between the valve distribution surface and the rotary valve. Positive pressure.
  • the inner edge D3 of the inner diameter of the inner peripheral circle formed by the inner edge of the pressure reducing hole at a point corresponding to the inner edge of the pressure reducing hole is larger than the outer diameter D5 of the switching plane.
  • the outer diameter D5 of the switching plane is larger than the outer diameter D4 of the switching region formed by the low pressure hole and the high pressure groove on the rotary valve.
  • the outer diameter D2 of the sealing surface corresponding to the high pressure surface is smaller than the outer diameter D4 of the switching area formed by the low pressure hole and the high pressure groove on the rotary valve.
  • the protruding portion of the cover body is embedded in the corresponding groove of the high pressure surface, and a sealing groove is disposed on the inner wall of the groove, and the third sealing is embedded in the sealing groove
  • the ring separates the high pressure side and the low pressure side.
  • the gas distribution valve is provided with a high-pressure air hole extending through the gas distribution valve in the axial direction and a gas distribution valve venting hole extending through the gas distribution valve; the high-pressure air hole can be connected with the high-pressure exhaust pipe of the compressor.
  • the air valve vent can communicate with the hood air hole on the cover.
  • the high-pressure air hole can communicate with the air distribution valve air hole and the air hole of the cover body through the high pressure groove on the rotary valve; or the air distribution valve air hole communicates with the low pressure passage on the cover body through the low pressure hole of the rotary valve.
  • the first sealing ring and the second sealing ring embedded on the inner wall of the mounting cavity of the cover body are disposed on the circumferential surface of the gas distribution valve, and the gas distribution valve is laterally sealed.
  • a cryogenic refrigerator using a self-reducing gas distribution mechanism characterized in that: the cryogenic refrigerator includes the above self-reducing gas distribution mechanism, and the valve of the self-reducing gas distribution mechanism passes through a valve body positioning pin The eccentricity is fixed on the cover body and a spring is embedded in the high pressure surface area of the air distribution valve; the rotary valve of the self-reducing air distribution mechanism is positioned in the cover body through the bearing.
  • the pressure reducing hole is disposed and the pressure receiving surface of the valve is divided into a low pressure surface and a high pressure surface, and the low pressure airflow in the housing can be introduced into the back surface of the valve through the pressure reducing hole to reduce the back surface of the valve.
  • the high pressure receiving area reduces the positive pressure between the valve timing and the switching plane of the rotary valve, reducing the surface wear and prolonging the service life of the equipment.
  • FIG. 1 is a schematic structural view of a cryogenic refrigerator of a conventional gas distribution mechanism
  • FIG. 2 is a schematic view showing an assembly mechanism of a gas distribution mechanism installed in a cover body
  • Figure 3 is a schematic view showing the structure of the valve train of the present invention in a state in which the low pressure gas passage is in communication;
  • Figure 4 is a detailed structural view of the gas distribution valve of Figure 3;
  • Figure 5 is a schematic view showing the structure of the valve train of the present invention in a state in which the high-pressure gas path is in communication;
  • Figure 6 is a detailed structural view of the gas distribution valve of Figure 5;
  • Figure 7 is a detailed structural view of a rotary valve in the valve train of the present invention.
  • a self-reducing valve assembly mechanism includes a valve valve 6 and a rotary valve 7, and a gas valve 62 is provided with a high-pressure air hole 62 extending through the gas distribution valve 6 in the axial direction.
  • the high-pressure air hole 62 can communicate with the high-pressure exhaust pipe 1a of the compressor 1 through the air distribution valve air hole 63 of the air distribution valve 6, and the air distribution valve air hole 63 can communicate with the cover air hole 21 of the cover body 2;
  • the air hole 62 can communicate with the air distribution valve air hole 63 and the cover air hole 21 through the high pressure groove 72 on the rotary valve 7; or the air distribution valve air hole 63 passes through the low pressure hole 71 of the rotary valve 7 and the low pressure passage 22 on the cover 2 Connected.
  • the first sealing ring b1 and the second sealing ring b2 embedded in the inner wall of the mounting cavity of the cover body 2 are disposed on the circumferential surface of the gas distribution valve 6, and the gas distribution valve 6 is laterally sealed, which will be equipped with the gas distribution valve 6
  • the upper valve air vent 63 is sealingly connected to the hood air hole 21 on the hood 2, and is not in gas communication with other positions.
  • the valve vent 63 is the only passage for the high and low pressure gas entering or exiting the cylinder 13.
  • the rear surface of the valve valve 6 is divided into a high pressure surface 66 and a low pressure surface 65.
  • the high pressure surface 66 is located in the middle of the low pressure surface 65 and passes between the high pressure surface 66 and the low pressure surface 65 through the sealing valve 6 and the third of the housing 2.
  • the sealing ring b3 is sealed and separated; the gas distribution valve 6 is provided with a pressure reducing hole 61 extending through the gas distribution surface 64 and the low pressure surface 65 of the gas distribution valve 6 in the axial direction thereof, and the pressure reducing hole 61 can communicate with the cover body
  • the low pressure passage 22 of the second and the rear surface of the gas distribution valve 6 can introduce a low pressure gas flow in the cover 2 to the back surface of the gas distribution valve 6 to reduce the switching plane of the gas distribution surface 64 and the rotary valve 7. Positive pressure between 73.
  • the switching plane 73 of the rotary valve 7 is in close contact with the gas distribution surface 64 of the rotary valve 6, and the switching plane 73 does not cover the pressure reducing hole 61 on the gas distribution valve 6, ensuring the pressure reducing hole 61 and the cover body.
  • the low pressure passage 22 in the second portion is connected smoothly, and the inside of the pressure reducing hole 61 is a low pressure gas.
  • the outer diameter D5 of the switching plane 73 shown in FIG. 7 should satisfy the following condition: the outer diameter D5 of the switching plane 73 is smaller than the inside of the pressure reducing hole 61.
  • the point corresponding to the edge surrounds the inner diameter D3 of the inner diameter circle of the inner peripheral circle formed by the axial line of the gas distribution valve 6, and the outer diameter D5 of the switching plane 73 is larger than the switching of the low pressure hole 71 and the high pressure groove 72 on the rotary valve 7.
  • the outer diameter D4 of the region is different; the outer diameter D2 of the sealing surface corresponding to the high pressure surface 66 is smaller than the outer diameter D4 of the switching region formed by the low pressure hole 71 and the high pressure groove 72 on the rotary valve 7.
  • the high pressure surface 66 is relatively convex or concave to the low pressure surface 65, but it is not limited to the two methods, and the high pressure surface 66 is not in communication with the pressure reducing hole 61.
  • the pressure applied to the low pressure surface 65 through the pressure reducing hole 61 is a low pressure.
  • the air flow, and the low pressure surface 65 is spaced apart from the high pressure surface 66 such that the low pressure surface 65 does not communicate with the high pressure gas within the high pressure air vent 62. Therefore, the valve valve 6 is subjected to a high pressure gas from the high pressure exhaust pipe 1a to act on the high pressure surface 66 in contact with the high pressure gas stream, and the gas distribution surface 64 is pressed tightly with the switching plane 73 by the forward high pressure gas. The high and low pressure airflow inside the valve train is blocked.
  • the gas distribution valve 6 Since the contact area of the back surface of the gas distribution valve 6 with the high pressure gas in the high pressure gas hole 62 is reduced from the area corresponding to the outer diameter D1 of the conventional gas distribution valve to the sealing surface area corresponding to the outer diameter D2 of the high pressure surface 66, the gas distribution valve 6 received positive pressure by traditional Change into Where Ph is the high pressure exhaust pressure of the compressor 1, and P1 is the low pressure return pressure of the compressor 1, thereby reducing the positive force, that is, by optimizing the pressure receiving area of the high pressure surface 66, the distribution can be minimized.
  • the force applied between the gas valve 6 and the rotary valve 7 reduces the wear between the switching plane 73 and the gas distribution surface 64, thereby prolonging the life of the apparatus.
  • a cryogenic refrigerator using a self-reducing gas distribution mechanism comprising the self-reducing gas distribution mechanism described above, wherein the gas distribution valve 6 of the self-reducing gas distribution mechanism is eccentrically fixed to the cover by the valve body positioning pin 16
  • a spring 15 is embedded in the body 2 and in the region of the high pressure surface 66 of the valve valve 6; the rotary valve 7 of the self-reducing valve train is positioned in the casing 2 via the bearing 14.
  • the cryogenic refrigerator is a valve-switched type of refrigerator, not limited to Gifford-McMahon refrigerators, Solvay refrigerators, pulse tube refrigerators, and the like.
  • the pressure reducing hole 61 is disposed and the pressure receiving surface of the valve valve 6 is partitioned into the low pressure surface 65 and the high pressure surface 66, and the low pressure airflow in the casing 2 can be introduced into the valve valve 6 through the pressure reducing hole 61.
  • the high pressure receiving area of the back side of the valve 6 is lowered, thereby reducing the positive pressure between the valve face 64 and the switching plane 73 of the rotary valve 7, reducing the surface wear and prolonging the service life of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Multiple-Way Valves (AREA)
  • Massaging Devices (AREA)

Abstract

一种自减压配气机构和对应的低温制冷机,自减压配气机构包括配气阀(6)和旋转阀(7),配气阀(6)的背面被分隔为高压面(66)和低压面(65),高压面(66)和低压面(65)之间通过密封配气阀(6)和罩体(2)的第三密封圈(b3)密封分隔开;配气阀(6)上设有沿其轴向贯穿配气阀(6)的配气面(64)和低压面(65)的减压孔(61),减压孔(61)能够连通罩体(2)的低压通路(22)和配气阀(6)的背面,将罩体(2)内的低压气流引入到配气阀(6)的背面。该低温制冷机包括该自减压配气机构。该自减压配气机构通过减压孔(61)和第三密封圈(b3)的设置,减少了受压面积,降低正向的作用力、减小磨损。

Description

自减压配气机构及采用该自减压配气机构的低温制冷机 技术领域
本发明涉及低温制冷机技术领域,具体地说是一种通过改造配气阀的构造来降低正向压力、减小磨损的自减压配气机构及采用该自减压配气机构的低温制冷机。
背景技术
以吉福德-麦克马洪(Gifford-McMahon;GM)制冷机为代表的超低温制冷机具有工作气体(也称为制冷剂气体)的膨胀机及压缩机。该类制冷机由压缩机提供排出的高压气流,经由配气机构进入到置于气缸内,上下往复运动的推移活塞内,与蓄冷材料进行换热,再到膨胀腔内做功膨胀,再经过推移活塞,流出配气机构,回到压缩机低压腔内。通过上述连续循环过程,形成制冷效应。
具体来说,如图1所示的该类制冷机包含压缩机1、罩体2、气缸13、推移活塞10,罩体2内装有电机12以及驱动的凸轮3;凸轮3上的偏心凸轮柄31带动连杆5将旋转运动转化成上下往复运动,从而带动推移活塞在气缸13内上下运动。配气机构RV由配气阀6和旋转阀7组成。配气阀6安装在罩体2内,由定位销16固定在其内,且与旋转阀7同轴布置。凸轮柄31带动安装在轴承14上的旋转阀7沿着旋转轴转动。压缩机1通过将制冷剂气体吸入、压缩,而使之作为高压的制冷剂气体排出。高压排气管道1a将高压的制冷剂气体向罩体2进行供给,并通过配气阀6上的高压气孔62传递给与之气密贴合的旋转阀7上的高压槽72内。旋转阀7上开有低压孔71,且低压孔71与罩体2内的低压通路22连通。按照图1所示位置,低压孔71与配气阀6上的配气阀气孔63重叠连通;此刻***处于低压排气阶段,膨胀腔9内的气体由高压变成低压,顺序通过推移活塞上的活塞后孔10b、蓄冷材料10c、活塞前孔10a流出,回到压缩机1的低压吸气管道1b。当旋转阀7旋转一定角度后,此时,低压孔71不与配气阀6上的配气阀气孔63连通,变成为旋转阀7上的高压槽72与配气阀6上的配气阀气孔63连通,压缩机1排出的高压气,经过配气阀6上的高压气孔62以及与之连通的旋转阀7上的高压槽72进入到气缸13内,顺序经推移活塞上的活塞前孔10a、蓄冷材料10c、活塞后孔10b进入到膨胀腔9内。在上述过程中,压缩机1排出的高压气作用于配气阀6的背面上,配气阀6依靠背面上平行于配气面64的面积大小上的正压力,与旋转阀7紧紧贴合起来,这样将配气机构上的高低压阀门分隔开,隔离高低压气流。传统结构中正压力的大小与配气阀6的外径D1成平方正比关系,通过配气阀6的高压接触背面提供正向的高压压力,将切换平面73与配气面64压紧,以防止高低压气流串气。 但是配气阀6上的高压气孔62和配气阀气孔63有一定尺寸和位置要求,使得配气阀6的外径D1不能太小,否则无法制作高压气孔62和配气阀气孔63。这样使得贴合在一起的正压力较大,长期运行会造成旋转阀7和配气阀6接触面的磨损,影响设备性能,降低设备的可靠性。
发明内容
本发明的目的是针对现有技术存在的问题,提供一种通过改造配气阀的构造来降低正向压力、减小磨损的自减压配气机构及采用该自减压配气机构的低温制冷机。
本发明的目的是通过以下技术方案解决的:
一种自减压配气机构,包括配气阀和旋转阀,其特征在于:所述配气阀的背面被分隔为高压面和低压面,高压面位于低压面的中部且高压面和低压面之间通过密封配气阀和罩体的第三密封圈密封分隔开;所述的配气阀上设有沿其轴向贯穿配气阀的配气面和低压面的减压孔,减压孔能够连通罩体的低压通路和配气阀的背面,通过该减压孔能够将罩体内的低压气流引入到配气阀的背面,以降低配气面与旋转阀的切换平面之间的正压力。
所述减压孔的内缘对应的点围绕配气阀的轴心线构成的内缘圆的减压孔内缘内径D3大于切换平面的外径D5。
所述切换平面的外径D5大于旋转阀上的低压孔和高压槽构成的切换区的外径D4。
所述的高压面对应的密封面的外径D2小于旋转阀上的低压孔和高压槽构成的切换区的外径D4。
所述的高压面相对凸出于低压面时,高压面所对应的部分嵌入罩体的安装腔内,且在该安装腔的内壁上设有密封槽,该密封槽内嵌置第三密封圈以将高压面和低压面密封分隔开。
所述的高压面相对凹入低压面时,罩体的伸出部嵌入高压面所对应的凹槽内,且在该凹槽的内壁上设有密封槽,该密封槽内嵌置第三密封圈以将高压面和低压面密封分隔开。
所述的配气阀上设有沿轴向贯穿配气阀的高压气孔、沿折向贯穿配气阀的配气阀气孔;所述的高压气孔能够与压缩机的高压排气管道连通,配气阀气孔能够与罩体上的罩体气孔相连通。
所述的高压气孔能够通过旋转阀上的高压槽与配气阀气孔、罩体气孔相连通;或者所述的配气阀气孔通过贯穿旋转阀的低压孔与罩体上的低压通路相连通。
所述的配气阀的圆周面上设有嵌置在罩体的安装腔内壁上的第一密封圈和第二密封圈,对配气阀进行侧向密封。
一种采用自减压配气机构的低温制冷机,其特征在于:所述的低温制冷机包括上述的自减压配气机构,该自减压配气机构的配气阀通过阀体定位销偏心固定在罩体上且配气阀的高压面区域嵌置有弹簧;该自减压配气机构的旋转阀通过轴承定位在罩体内。
本发明相比现有技术有如下优点:
本发明通过减压孔的设置并将配气阀的受压面分隔为低压面和高压面,通过减压孔能够将罩体内的低压气流引入到配气阀的背面,降低配气阀的背面高压受力面积,从而降低配气面与旋转阀的切换平面之间的正压力,减少了平面磨损,延长设备的使用寿命。
附图说明
附图1为传统配气机构的低温制冷机的结构示意图;
附图2为配气机构安装在罩体内的组装机构示意图;
附图3是本发明的配气机构在低压气路连通状态时的结构示意图;
附图4是附图3中的配气阀的详细结构示意图;
附图5是本发明的配气机构在高压气路连通状态时的结构示意图;
附图6是附图5中的配气阀的详细结构示意图;
附图7是本发明的配气机构中的旋转阀详细结构示意图。
其中:1—压缩机;1a—高压排气管道;1b—低压吸气管道;2—罩体;21—罩体气孔;22—低压通路;3—凸轮;31—偏心凸轮柄;4—导向套;5—连杆;6—配气阀;61—减压孔;62—高压气孔;63—配气阀气孔;64—配气面;65—低压面;66—高压面;7—旋转阀;71—低压孔;72—高压槽;73—切换平面;8—热腔;9—膨胀腔;10a—活塞前孔;10b—活塞后孔;10c—蓄冷材料;12—电机;13—气缸;14—轴承;15—弹簧;16—阀体定位销;b1—第一密封圈;b2—第二密封圈;b3—第三密封圈。
具体实施方式
下面结合附图与实施例对本发明作进一步的说明。
如图2-7所示:一种自减压配气机构,包括配气阀6和旋转阀7,在配气阀6上设有沿轴向贯穿配气阀6的高压气孔62、沿折向贯穿配气阀6的配气阀气孔63,高压气孔62能够与压缩机1的高压排气管道1a连通,配气阀气孔63能够与罩体2上的罩体气孔21相连通;同时高压气孔62能够通过旋转阀7上的高压槽72与配气阀气孔63、罩体气孔21相连通;或者配气阀气孔63通过贯穿旋转阀7的低压孔71与罩体2上的低压通路22相连通。配气阀6的圆周面上设有嵌置在罩体2的安装腔内壁上的第一密封圈b1和第二密封圈b2,对配气阀6进行侧向密封,这将配气阀6上的配气阀气孔63与罩体2上的罩体气孔21密封 连接,而不与其它位置的气体连通,配气阀气孔63是进入或流出气缸13内的高低压气体的唯一通道。上述配气阀6的背面被分隔为高压面66和低压面65,高压面66位于低压面65的中部且高压面66和低压面65之间通过密封配气阀6和罩体2的第三密封圈b3密封分隔开;所述的配气阀6上设有沿其轴向贯穿配气阀6的配气面64和低压面65的减压孔61,减压孔61能够连通罩体2的低压通路22和配气阀6的背面,通过该减压孔61能够将罩体2内的低压气流引入到配气阀6的背面,以降低配气面64与旋转阀7的切换平面73之间的正压力。
在上述结构中,旋转阀7的切换平面73与旋转阀6的配气面64紧密贴合,切换平面73没有覆盖配气阀6上的减压孔61,确保了减压孔61与罩体2内的低压通路22连接畅通,减压孔61的内部为低压气体,图7所示的切换平面73的外径D5应满足以下条件:切换平面73的外径D5小于减压孔61的内缘对应的点围绕配气阀6的轴心线构成的内缘圆的减压孔内缘内径D3且切换平面73的外径D5大于旋转阀7上的低压孔71和高压槽72构成的切换区的外径D4;另外高压面66对应的密封面的外径D2小于旋转阀7上的低压孔71和高压槽72构成的切换区的外径D4。
如图3、图4所示,高压面66相对凸出于低压面65时,高压面66所对应的部分嵌入罩体2的安装腔内,且在该安装腔的内壁上设有密封槽,该密封槽内嵌置第三密封圈b3以将高压面66和低压面65密封分隔开。
如图5、图6所示,高压面66相对凹入低压面65时,罩体2的伸出部嵌入高压面66所对应的凹槽内,且在该凹槽的内壁上设有密封槽,该密封槽内嵌置第三密封圈b3以将高压面66和低压面65密封分隔开。
以上两种情况分别为高压面66相对凸出或凹入低压面65,但实际并不局限于这个两种方式,且高压面66不与减压孔61连通。
在上述结构的自减压配气机构中,由于配气阀6上的减压孔61始终与罩体2内的低压通路22相连通,通过减压孔61使得低压面65承受的压力为低压气流,且低压面65与高压面66分隔开,使得低压面65不与高压气孔62内的高压气体连通。因此配气阀6受到来自于高压排气管道1a的高压气体作用在与高压气流接触的高压面66,依靠正向的高压气体,将配气面64与切换平面73紧紧的压在一起,隔断了配气机构里面的高低压气流。由于配气阀6的背面与高压气孔62内的高压气体接触面积由传统的配气阀的外径D1对应的面积减少到高压面66的外径D2所对应的密封面面积,使得配气阀6受到的正压力,由传统的
Figure PCTCN2018087142-appb-000001
变化成
Figure PCTCN2018087142-appb-000002
,其中Ph为压缩机1的高压排气压力、Pl为压缩机1的低压回气压力,从而降低了正向的作用力,即通过优化高压面66的受压面积,能够最大限度的降低配气阀6与旋转阀7之间贴合的作用力,降低切换平面73与配气面64之间的磨损,延长了设备的寿命。
一种采用自减压配气机构的低温制冷机,该低温制冷机包括上述的自减压配气机构,该自减压配气机构的配气阀6通过阀体定位销16偏心固定在罩体2上且配气阀6的高压面66区域嵌置有弹簧15;该自减压配气机构的旋转阀7通过轴承14定位在罩体2内。该低温制冷机是阀门切换式的任何形式的制冷机,不局限于吉福德-麦克马洪制冷机、索尔文制冷机、脉管制冷机等。
本发明通过减压孔61的设置并将配气阀6的受压面分隔为低压面65和高压面66,通过减压孔61能够将罩体2内的低压气流引入到配气阀6的背面,降低配气阀6的背面高压受力面积,从而降低配气面64与旋转阀7的切换平面73之间的正压力,减少了平面磨损,延长设备的使用寿命。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内;本发明未涉及的技术均可通过现有技术加以实现。

Claims (10)

  1. 一种自减压配气机构,包括配气阀(6)和旋转阀(7),其特征在于:所述配气阀(6)的背面被分隔为高压面(66)和低压面(65),高压面(66)位于低压面(65)的中部且高压面(66)和低压面(65)之间通过密封配气阀(6)和罩体(2)的第三密封圈(b3)密封分隔开;所述的配气阀(6)上设有沿其轴向贯穿配气阀(6)的配气面(64)和低压面(65)的减压孔(61),减压孔(61)能够连通罩体(2)的低压通路(22)和配气阀(6)的背面,通过该减压孔(61)能够将罩体(2)内的低压气流引入到配气阀(6)的背面,以降低配气面(64)与旋转阀(7)的切换平面(73)之间的正压力。
  2. 根据权利要求1所述的自减压配气机构,其特征在于:所述减压孔(61)的内缘对应的点围绕配气阀(6)的轴心线构成的内缘圆的减压孔内缘内径D3大于切换平面(73)的外径D5。
  3. 根据权利要求1或2所述的自减压配气机构,其特征在于:所述切换平面(73)的外径D5大于旋转阀(7)上的低压孔(71)和高压槽(72)构成的切换区的外径D4。
  4. 根据权利要求3所述的自减压配气机构,其特征在于:所述的高压面(66)对应的密封面的外径D2小于旋转阀(7)上的低压孔(71)和高压槽(72)构成的切换区的外径D4。
  5. 根据权利要求1所述的自减压配气机构,其特征在于:所述的高压面(66)相对凸出于低压面(65)时,高压面(66)所对应的部分嵌入罩体(2)的安装腔内,且在该安装腔的内壁上设有密封槽,该密封槽内嵌置第三密封圈(b3)以将高压面(66)和低压面(65)密封分隔开。
  6. 根据权利要求1所述的自减压配气机构,其特征在于:所述的高压面(66)相对凹入低压面(65)时,罩体(2)的伸出部嵌入高压面(66)所对应的凹槽内,且在该凹槽的内壁上设有密封槽,该密封槽内嵌置第三密封圈(b3)以将高压面(66)和低压面(65)密封分隔开。
  7. 根据权利要求1所述的自减压配气机构,其特征在于:所述的配气阀(6)上设有沿轴向贯穿配气阀(6)的高压气孔(62)、沿折向贯穿配气阀(6)的配气阀气孔(63);所述的高压气孔(62)能够与压缩机(1)的高压排气管道(1a)连通,配气阀气孔(63)能够与罩体(2)上的罩体气孔(21)相连通。
  8. 根据权利要求7所述的自减压配气机构,其特征在于:所述的高压气孔(62)能够通过旋转阀(7)上的高压槽(72)与配气阀气孔(63)、罩体气孔(21)相连通;或者所述的配气阀气孔(63)通过贯穿旋转阀(7)的低压孔(71)与罩体(2)上的低压通路(22)相连通。
  9. 根据权利要求1所述的自减压配气机构,其特征在于:所述的配气阀(6)的圆周面上设有嵌置在罩体(2)的安装腔内壁上的第一密封圈(b1)和第二密封圈(b2),对配气阀(6)进行侧向密封。
  10. 一种采用如权利要求1-9任一所述的自减压配气机构的低温制冷机,其特征在于:所述的低温制冷机包括上述的自减压配气机构,该自减压配气机构的配气阀(6)通过阀体定位销(16)偏心固定在罩体(2)上且配气阀(6)的高压面(66)区域嵌置有弹簧(15);该自减压配气机构的旋转阀(7)通过轴承(14)定位在罩体(2)内。
PCT/CN2018/087142 2018-04-19 2018-05-16 自减压配气机构及采用该自减压配气机构的低温制冷机 WO2019200645A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18915018.8A EP3783278A4 (en) 2018-04-19 2018-05-16 AUTOMATIC DECOMPRESSION AIR DISTRIBUTION MECHANISM AND CRYOGENIC REFRIGERATOR USING IT
US17/048,902 US11913698B2 (en) 2018-04-19 2018-05-16 Self-pressure-relief air distribution mechanism and cryogenic refrigerator using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810355675.6A CN108518504B (zh) 2018-04-19 2018-04-19 自减压配气机构及采用该自减压配气机构的低温制冷机
CN201810355675.6 2018-04-19

Publications (1)

Publication Number Publication Date
WO2019200645A1 true WO2019200645A1 (zh) 2019-10-24

Family

ID=63429751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087142 WO2019200645A1 (zh) 2018-04-19 2018-05-16 自减压配气机构及采用该自减压配气机构的低温制冷机

Country Status (4)

Country Link
US (1) US11913698B2 (zh)
EP (1) EP3783278A4 (zh)
CN (1) CN108518504B (zh)
WO (1) WO2019200645A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913698B2 (en) 2018-04-19 2024-02-27 Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Self-pressure-relief air distribution mechanism and cryogenic refrigerator using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413176B (zh) * 2020-11-09 2023-10-10 深圳供电局有限公司 一种旋转阀机构以及低温制冷机
CN112325517B (zh) * 2020-11-09 2022-06-07 深圳供电局有限公司 一种阀门机构及低温制冷机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349630A (ja) * 2000-06-06 2001-12-21 Sumitomo Heavy Ind Ltd ロータリバルブ及びそれを用いた冷凍機
CN101012980A (zh) * 2006-01-30 2007-08-08 住友重机械工业株式会社 蓄冷器式冷冻机
CN102844634A (zh) * 2010-04-19 2012-12-26 住友重机械工业株式会社 回转阀及使用该回转阀的超低温制冷机
CN208138518U (zh) * 2018-04-19 2018-11-23 中船重工鹏力(南京)超低温技术有限公司 自减压配气机构及采用该自减压配气机构的低温制冷机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996483B2 (ja) * 2013-04-24 2016-09-21 住友重機械工業株式会社 極低温冷凍機
JP6067477B2 (ja) * 2013-05-16 2017-01-25 住友重機械工業株式会社 極低温冷凍機
CN105318040B (zh) * 2014-07-31 2017-10-27 同济大学 一种多气库制冷机回转阀
JP6636356B2 (ja) * 2016-02-18 2020-01-29 住友重機械工業株式会社 極低温冷凍機
CN108518504B (zh) 2018-04-19 2019-11-15 中船重工鹏力(南京)超低温技术有限公司 自减压配气机构及采用该自减压配气机构的低温制冷机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349630A (ja) * 2000-06-06 2001-12-21 Sumitomo Heavy Ind Ltd ロータリバルブ及びそれを用いた冷凍機
CN101012980A (zh) * 2006-01-30 2007-08-08 住友重机械工业株式会社 蓄冷器式冷冻机
CN102844634A (zh) * 2010-04-19 2012-12-26 住友重机械工业株式会社 回转阀及使用该回转阀的超低温制冷机
CN208138518U (zh) * 2018-04-19 2018-11-23 中船重工鹏力(南京)超低温技术有限公司 自减压配气机构及采用该自减压配气机构的低温制冷机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783278A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913698B2 (en) 2018-04-19 2024-02-27 Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Self-pressure-relief air distribution mechanism and cryogenic refrigerator using same

Also Published As

Publication number Publication date
EP3783278A4 (en) 2022-01-05
CN108518504B (zh) 2019-11-15
US11913698B2 (en) 2024-02-27
EP3783278A1 (en) 2021-02-24
CN108518504A (zh) 2018-09-11
US20210207852A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
KR900003716B1 (ko) 다기통 회전식 압축기
WO2019200645A1 (zh) 自减压配气机构及采用该自减压配气机构的低温制冷机
US6227814B1 (en) Reciprocating type refrigerant compressor with an improved internal sealing unit
KR20160108244A (ko) 용량 가변형 사판식 압축기
US6345965B1 (en) Dual stage compressor
CN111853285A (zh) 一种具有预紧力的旋转阀及采用该旋转阀的低温制冷机
CN112325517B (zh) 一种阀门机构及低温制冷机
US7033150B2 (en) Hermetic type compressor
CN208138518U (zh) 自减压配气机构及采用该自减压配气机构的低温制冷机
WO2019200644A1 (zh) 一种配气机构及采用该配气机构的低温制冷机
WO2019232918A1 (zh) 高可靠性低温制冷机
CN111788391B (zh) 旋转式压缩机
JP2000018154A (ja) 往復動型圧縮機
CN108506185A (zh) 中间补气的全封闭单缸活塞制冷压缩机
CN212657291U (zh) 一种具有预紧力的旋转阀及采用该旋转阀的低温制冷机
CN112413176B (zh) 一种旋转阀机构以及低温制冷机
CN208330652U (zh) 一种半封闭中间补气双缸活塞制冷压缩机
CN214838510U (zh) 一种能够抑制泄漏的阀门结构及采用该阀门结构的制冷机
CN108412734A (zh) 一种半封闭中间补气双缸活塞制冷压缩机
CN112413918A (zh) 一种低温制冷机
CN113236807A (zh) 一种能够抑制泄漏的阀门结构及采用该阀门结构的制冷机
JP4071551B2 (ja) 圧縮機
KR200159710Y1 (ko) 밀폐형 왕복동 압축기의 토출장치
KR101557998B1 (ko) 가변용량형 사판식 압축기
CN108412726A (zh) 一种中间补气的开启式单缸活塞制冷压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915018

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018915018

Country of ref document: EP

Effective date: 20201119